PL2461395T3 - Sposób wytwarzania elektrody z porowatą warstwą powlekającą - Google Patents
Sposób wytwarzania elektrody z porowatą warstwą powlekającąInfo
- Publication number
- PL2461395T3 PL2461395T3 PL10794340T PL10794340T PL2461395T3 PL 2461395 T3 PL2461395 T3 PL 2461395T3 PL 10794340 T PL10794340 T PL 10794340T PL 10794340 T PL10794340 T PL 10794340T PL 2461395 T3 PL2461395 T3 PL 2461395T3
- Authority
- PL
- Poland
- Prior art keywords
- electrode
- manufacturing
- coating layer
- porous coating
- porous
- Prior art date
Links
- 239000011247 coating layer Substances 0.000 title 1
- 238000004519 manufacturing process Methods 0.000 title 1
- 238000000034 method Methods 0.000 title 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1204—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
- C23C18/1208—Oxides, e.g. ceramics
- C23C18/1212—Zeolites, glasses
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1204—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
- C23C18/1208—Oxides, e.g. ceramics
- C23C18/1216—Metal oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1204—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
- C23C18/122—Inorganic polymers, e.g. silanes, polysilazanes, polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/125—Process of deposition of the inorganic material
- C23C18/1254—Sol or sol-gel processing
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/125—Process of deposition of the inorganic material
- C23C18/1295—Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/24—Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/26—Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
- H01G11/28—Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/46—Metal oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/50—Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0471—Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/431—Inorganic material
- H01M50/434—Ceramics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/44—Fibrous material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/46—Separators, membranes or diaphragms characterised by their combination with electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Power Engineering (AREA)
- Electrochemistry (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Ceramic Engineering (AREA)
- Dispersion Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
- Inert Electrodes (AREA)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20090058977 | 2009-06-30 | ||
EP10794340.9A EP2461395B1 (en) | 2009-06-30 | 2010-06-29 | Method for manufacturing an electrode having a porous coating layer |
KR1020100061845A KR101032214B1 (ko) | 2009-06-30 | 2010-06-29 | 다공성 코팅층을 구비한 전극의 제조방법, 이로부터 형성된 전극 및 이를 구비한 전기화학소자 |
PCT/KR2010/004215 WO2011002205A2 (ko) | 2009-06-30 | 2010-06-29 | 다공성 코팅층을 구비한 전극의 제조방법, 이로부터 형성된 전극 및 이를 구비한 전기화학소자 |
Publications (1)
Publication Number | Publication Date |
---|---|
PL2461395T3 true PL2461395T3 (pl) | 2019-05-31 |
Family
ID=43610393
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PL10794340T PL2461395T3 (pl) | 2009-06-30 | 2010-06-29 | Sposób wytwarzania elektrody z porowatą warstwą powlekającą |
Country Status (7)
Country | Link |
---|---|
US (2) | US20120003545A1 (pl) |
EP (1) | EP2461395B1 (pl) |
JP (1) | JP5841936B2 (pl) |
KR (1) | KR101032214B1 (pl) |
CN (1) | CN102473894B (pl) |
PL (1) | PL2461395T3 (pl) |
WO (1) | WO2011002205A2 (pl) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101880603B1 (ko) * | 2012-08-22 | 2018-07-23 | 동국대학교 산학협력단 | 리튬이차전지의 음극 활물질용 실리콘 산화물-탄소 복합체의 제조방법 |
KR101451899B1 (ko) | 2012-10-05 | 2014-10-21 | 동국대학교 산학협력단 | 리튬이차전지의 스피넬 리튬 티타늄 옥사이드 나노섬유 음극활물질의 제조방법 |
EP2950087B1 (en) * | 2013-01-28 | 2020-11-04 | Sony Corporation | Impedance measuring device for biological samples and impedance measuring system for biological samples |
CN105074972B (zh) * | 2013-03-12 | 2018-01-12 | 塞克姆公司 | 经由氧化的多氧阴离子盐沉积在无机基底上形成氧化物壳 |
US9363291B2 (en) | 2013-08-01 | 2016-06-07 | Connectwise, Inc. | Systems and methods for managing lost devices of multiple types with multiple policies using melded profiles associated with groups |
WO2015026110A1 (ko) * | 2013-08-19 | 2015-02-26 | 동국대학교 산학협력단 | 흑연-타이타늄계 옥사이드 복합체의 제조방법 |
KR101628729B1 (ko) | 2013-08-19 | 2016-06-10 | 동국대학교 산학협력단 | 흑연-타이타늄계 옥사이드 복합체의 제조방법 |
CN107978732B (zh) * | 2014-06-20 | 2020-03-27 | 东莞新能源科技有限公司 | 极片及电池 |
JP6551878B2 (ja) * | 2015-02-12 | 2019-07-31 | 国立大学法人 岡山大学 | リチウムイオン電池の正極材料の製造方法及びこの方法で製造した電極材料 |
US20190041379A1 (en) * | 2016-02-10 | 2019-02-07 | Sony Corporation | Sample for measurement of electric characteristics, electric characteristic measuring apparatus, and electric characteristic measuring method |
CN107681113B (zh) * | 2016-08-01 | 2020-07-28 | 宁德时代新能源科技股份有限公司 | 正极片及其制备方法以及二次电池 |
KR102654826B1 (ko) * | 2016-09-30 | 2024-04-05 | 주식회사 아모그린텍 | 전극 및 이를 이용한 이차전지와 전극의 제조방법 |
KR20180049401A (ko) | 2016-11-01 | 2018-05-11 | 주식회사 아모그린텍 | 전극 및 이를 이용한 이차전지와 전극의 제조방법 |
KR102122296B1 (ko) * | 2017-04-20 | 2020-06-12 | 주식회사 아모그린텍 | 배터리 및 이를 포함하는 모바일 전자기기 |
KR102164252B1 (ko) * | 2017-05-04 | 2020-10-12 | 주식회사 엘지화학 | 음극 활물질, 상기 음극 활물질을 포함하는 음극, 상기 음극을 포함하는 이차 전지 및 상기 음극 활물질의 제조 방법 |
CN111033819B (zh) * | 2017-08-28 | 2023-05-19 | 阿莫绿色技术有限公司 | 电极及利用其的二次电池和电极的制备方法 |
CN116864912A (zh) * | 2017-12-22 | 2023-10-10 | 新罗纳米技术有限公司 | 具有含陶瓷的分隔器层的分隔器 |
US10111783B1 (en) | 2018-02-16 | 2018-10-30 | American Nano, LLC | Silica fiber composition and method of use |
US11759473B2 (en) | 2018-02-16 | 2023-09-19 | American Nano, LLC | Topical compositions incorporating silica fibers |
US11135806B2 (en) | 2018-02-16 | 2021-10-05 | American Nano Llc. | Compositions incorporating silica fibers |
US20190255223A1 (en) | 2018-02-16 | 2019-08-22 | American Nano, LLC | Silica fiber compositions and methods of use |
JP6876648B2 (ja) * | 2018-03-22 | 2021-05-26 | 株式会社東芝 | 二次電池、電池パック及び車両 |
CN110660955B (zh) * | 2018-06-29 | 2021-11-23 | 宁德时代新能源科技股份有限公司 | 负极极片、其制备方法及电化学装置 |
CN112615052B (zh) * | 2020-12-14 | 2024-04-26 | 江苏纳盾科技有限公司 | 一种复合电解质材料及其制备方法 |
CN113328205A (zh) * | 2021-05-28 | 2021-08-31 | 安徽壹石通新能源材料有限公司 | 一种组合物、含有该组合物的电极及其应用 |
JP2023134867A (ja) * | 2022-03-15 | 2023-09-28 | 株式会社リコー | 電極製造装置、電極製造方法、電気化学素子の製造装置及び電気化学素子の製造方法 |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1156034A (en) * | 1913-01-02 | 1915-10-05 | James K Lanning | Hand-threading shuttle. |
US3447875A (en) * | 1965-06-21 | 1969-06-03 | American Optical Corp | Temperature compensating refractometers |
JPS57191962A (en) * | 1981-05-20 | 1982-11-25 | Hitachi Ltd | Fuel cell |
US5326598A (en) | 1992-10-02 | 1994-07-05 | Minnesota Mining And Manufacturing Company | Electrospray coating apparatus and process utilizing precise control of filament and mist generation |
JP3371301B2 (ja) * | 1994-01-31 | 2003-01-27 | ソニー株式会社 | 非水電解液二次電池 |
JP4095670B2 (ja) * | 1995-03-31 | 2008-06-04 | 三菱製紙株式会社 | 非水電解液電池セパレーター用不織布およびそれを用いた非水電解液電池 |
ATE310321T1 (de) * | 1995-06-28 | 2005-12-15 | Ube Industries | Nichtwässrige sekundärbatterie |
JPH10284065A (ja) * | 1997-04-05 | 1998-10-23 | Haibaru:Kk | 非水電解液電池 |
DE19916042A1 (de) * | 1999-04-09 | 2000-10-12 | Basf Ag | Naß-in-Naß-Beschichtungsverfahren zur Herstellung von Verbundkörpern, die zur Verwendung in Lithiumionenbatterien geeignet sind |
US6280871B1 (en) * | 1999-10-12 | 2001-08-28 | Cabot Corporation | Gas diffusion electrodes containing modified carbon products |
JP3917853B2 (ja) * | 2001-12-18 | 2007-05-23 | 日本バイリーン株式会社 | 回路基板用基材及びこれを用いた回路基板 |
JP3891484B2 (ja) * | 2002-09-05 | 2007-03-14 | 株式会社ノリタケカンパニーリミテド | 電解質膜およびその膜を備えた燃料電池 |
TWI245079B (en) * | 2002-12-30 | 2005-12-11 | Ind Tech Res Inst | Method for growing highly-ordered nanofibers |
US7875380B2 (en) * | 2003-06-17 | 2011-01-25 | Nanophil Co., Ltd. | Complex membrane for electrochemical device, manufacturing method and electrochemical device having the same |
CN100452487C (zh) * | 2004-06-22 | 2009-01-14 | 松下电器产业株式会社 | 二次电池及其制造方法 |
KR100596543B1 (ko) | 2004-12-06 | 2006-07-04 | 박원호 | 은을 함유하는 실리카 나노섬유 및 제조 방법 |
US7575707B2 (en) * | 2005-03-29 | 2009-08-18 | University Of Washington | Electrospinning of fine hollow fibers |
CN101163533B (zh) * | 2005-04-26 | 2011-06-22 | 日东电工株式会社 | 过滤器滤材及其制造方法和使用方法以及过滤器组件 |
JP4664790B2 (ja) * | 2005-09-28 | 2011-04-06 | 帝人株式会社 | 繊維構造体の製造方法および製造装置 |
US7771880B2 (en) * | 2005-11-21 | 2010-08-10 | University Of Dayton | Solid composite electrolyte membrane and method of making |
RU2403653C2 (ru) * | 2005-12-06 | 2010-11-10 | Эл Джи Кем, Лтд. | Органическо/неорганический композитный разделитель, имеющий градиент морфологии, способ его изготовления и содержащее его электрохимическое устройство |
US9267220B2 (en) * | 2006-03-31 | 2016-02-23 | Cornell University | Nanofibers, nanotubes and nanofiber mats comprising crystaline metal oxides and methods of making the same |
WO2007129839A1 (en) * | 2006-05-04 | 2007-11-15 | Lg Chem, Ltd. | Lithium secondary battery and method for producing the same |
JP2007327148A (ja) * | 2006-06-06 | 2007-12-20 | Tokyo Institute Of Technology | 高分子電解質繊維およびその製造方法 |
WO2008111960A2 (en) * | 2006-09-29 | 2008-09-18 | University Of Akron | Metal oxide fibers and nanofibers, method for making same, and uses thereof |
EP1923934A1 (de) * | 2006-11-14 | 2008-05-21 | Fortu Intellectual Property AG | Wiederaufladbare elektrochemische Batteriezelle |
KR100879767B1 (ko) * | 2007-01-12 | 2009-01-21 | 한국과학기술연구원 | 열처리된 산화티타늄층을 포함하는 슈퍼커패시터용 전극 및그 제조방법 |
US7709139B2 (en) * | 2007-01-22 | 2010-05-04 | Physical Sciences, Inc. | Three dimensional battery |
JP4539658B2 (ja) * | 2007-01-23 | 2010-09-08 | ソニー株式会社 | 電池 |
JP2008198506A (ja) * | 2007-02-14 | 2008-08-28 | Matsushita Electric Ind Co Ltd | 非水電解質二次電池 |
KR100868290B1 (ko) * | 2007-05-04 | 2008-11-12 | 한국과학기술연구원 | 나노파이버 네트워크 구조의 음극 활물질을 구비한이차전지용 음극 및 이를 이용한 이차전지와, 이차전지용음극 활물질의 제조방법 |
US8211496B2 (en) * | 2007-06-29 | 2012-07-03 | Johnson Ip Holding, Llc | Amorphous lithium lanthanum titanate thin films manufacturing method |
CN101849306B (zh) * | 2007-09-06 | 2013-06-12 | 佳能株式会社 | 锂离子储存/释放材料的制备方法、锂离子储存/释放材料、使用该材料的电极结构体和储能器件 |
JP4748136B2 (ja) * | 2007-10-03 | 2011-08-17 | ソニー株式会社 | 耐熱絶縁層付きセパレータ及び非水電解質二次電池 |
KR101007887B1 (ko) | 2007-11-26 | 2011-01-14 | 주식회사 두본 | 2단계 열처리를 이용한 SiO2-TiO2계 복합무기섬유의 제조방법 |
KR20100137530A (ko) * | 2008-03-25 | 2010-12-30 | 에이일이삼 시스템즈 인코포레이티드 | 고에너지 고출력 전극 및 배터리 |
US20100330419A1 (en) * | 2009-06-02 | 2010-12-30 | Yi Cui | Electrospinning to fabricate battery electrodes |
KR100995154B1 (ko) | 2010-02-11 | 2010-11-18 | 전남대학교산학협력단 | 다공성탄소나노섬유 제조방법, 상기 방법으로 제조된 다공성탄소나노섬유, 및 이를 포함하는 탄소나노섬유응용제품 |
-
2010
- 2010-06-29 KR KR1020100061845A patent/KR101032214B1/ko active IP Right Grant
- 2010-06-29 PL PL10794340T patent/PL2461395T3/pl unknown
- 2010-06-29 EP EP10794340.9A patent/EP2461395B1/en active Active
- 2010-06-29 WO PCT/KR2010/004215 patent/WO2011002205A2/ko active Application Filing
- 2010-06-29 CN CN201080029125.7A patent/CN102473894B/zh active Active
- 2010-06-29 JP JP2012516000A patent/JP5841936B2/ja active Active
-
2011
- 2011-09-09 US US13/229,009 patent/US20120003545A1/en not_active Abandoned
-
2012
- 2012-06-08 US US13/492,128 patent/US20120244292A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
WO2011002205A3 (ko) | 2011-04-21 |
KR20110001951A (ko) | 2011-01-06 |
EP2461395A2 (en) | 2012-06-06 |
CN102473894A (zh) | 2012-05-23 |
JP2012531010A (ja) | 2012-12-06 |
CN102473894B (zh) | 2016-12-28 |
US20120003545A1 (en) | 2012-01-05 |
KR101032214B1 (ko) | 2011-05-02 |
WO2011002205A2 (ko) | 2011-01-06 |
EP2461395A4 (en) | 2014-07-16 |
US20120244292A1 (en) | 2012-09-27 |
EP2461395B1 (en) | 2019-01-23 |
JP5841936B2 (ja) | 2016-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
PL2461395T3 (pl) | Sposób wytwarzania elektrody z porowatą warstwą powlekającą | |
EP2594613A4 (en) | CONDUCTIVE COATING COMPOSITION AND METHOD FOR MANUFACTURING CONDUCTIVE LAYER USING THE SAME | |
HUE058317T2 (hu) | Eljárás szubsztrát kompozit anyaggal történõ bevonására | |
ZA201207881B (en) | Outgassing method for inspecting a coated surface | |
PL3640041T3 (pl) | Sposoby wytwarzania powlekanych paneli | |
PL2144296T3 (pl) | Sposób wytwarzania warstwy półprzewodnikowej | |
PL3293016T3 (pl) | Sposób wytwarzania powlekanego panelu | |
PL2268587T3 (pl) | Sposób nanoszenia cienkiej warstwy | |
EP2505639A4 (en) | PROCESS FOR THE PRODUCTION OF PANCREATIC HORMONE PRODUCTION CELLS | |
GB0711074D0 (en) | Electrolyte pattern and method for manufacturing an electrolyte pattern | |
EP2544515A4 (en) | METHOD FOR PRODUCING A METAL-COATED SUBSTRATE | |
EP2239069A4 (en) | METHOD FOR MANUFACTURING A METALLIC ELEMENT WITH EXTERIOR FLANGE | |
EP2406813A4 (en) | METHOD FOR FORMING AN ELECTROACTIVE LAYER | |
EP2422872A4 (en) | METHOD FOR PRODUCING A POWDER COMPOSITE FILM | |
EP2270839A4 (en) | METHOD FOR MANUFACTURING A BONDED SUBSTRATE | |
EP2184743A4 (en) | METHOD FOR PRODUCING A LATERAL LAYER | |
EP2116310A4 (en) | METHOD FOR THE PRODUCTION OF LENSES WITH A COATING LAYER | |
EP2544516A4 (en) | METHOD FOR PRODUCING A METALLIZED CERAMIC SUBSTRATE | |
EP2404315A4 (en) | METHOD FOR FORMING AN ELECTROACTIVE LAYER | |
EP2261262A4 (en) | METHOD FOR PRODUCING POLYURONATE | |
EP2406814A4 (en) | METHOD FOR FORMING AN ELECTROACTIVE LAYER | |
EP2216803A4 (en) | METHOD FOR PRODUCING A COATED SUBSTRATE | |
EP2371796A4 (en) | PROCESS FOR PRODUCING GLYCERINE | |
EP2576240A4 (en) | METHOD FOR MANUFACTURING SURFACE ELEMENT | |
IL202549A0 (en) | Coated article an method for making a coated article |