CN102473894B - 制备具有多孔涂层的电极的方法、由此制备的电极及包含其的电化学设备 - Google Patents

制备具有多孔涂层的电极的方法、由此制备的电极及包含其的电化学设备 Download PDF

Info

Publication number
CN102473894B
CN102473894B CN201080029125.7A CN201080029125A CN102473894B CN 102473894 B CN102473894 B CN 102473894B CN 201080029125 A CN201080029125 A CN 201080029125A CN 102473894 B CN102473894 B CN 102473894B
Authority
CN
China
Prior art keywords
electrode
alkoxide
method preparing
preparing electrode
sol solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201080029125.7A
Other languages
English (en)
Other versions
CN102473894A (zh
Inventor
李柱成
金钟勋
朴必圭
洪章赫
辛秉镇
赵炳奎
陈善美
金忍哲
尹琇珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Energy Solution Ltd
Original Assignee
LG Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chemical Co Ltd filed Critical LG Chemical Co Ltd
Publication of CN102473894A publication Critical patent/CN102473894A/zh
Application granted granted Critical
Publication of CN102473894B publication Critical patent/CN102473894B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1212Zeolites, glasses
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/122Inorganic polymers, e.g. silanes, polysilazanes, polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inert Electrodes (AREA)

Abstract

一种制备电极的方法包括(S1)制备含有金属醇盐化合物的溶胶溶液,和(S2)通过将该溶胶溶液电发射至在集流体的至少一个表面上形成的电极活性物质层的外表面上而形成无机纤维的多孔无纺涂层。本发明的在电极活性物质层的外表面上形成的多孔无纺涂层由具有极佳热稳定性的无机纤维制得,因此即使电化学设备过热的情况下,也能够抑制阴极和阳极间的短路,由于均匀分布的孔而改进电化学设备的性能。

Description

制备具有多孔涂层的电极的方法、由此制备的电极及包含其 的电化学设备
技术领域
本申请为2010年6月29日提交的第PCT/KR2010/004215号国际申请进入国家阶段,要求2009年6月30日在韩国提交的第10-2009-0058977号韩国专利申请和2010年6月29日在韩国提交的第10-2010-0061845号韩国专利申请的优先权,所述申请的全部内容引用在本说明书。
本发明涉及一种制备用于例如锂二次电池的电化学设备的电极的方法、由此形成的电极以及制备包含其的电化学设备的方法。更详细的讲,本发明涉及一种形成具有包含无机材料的多孔涂层的电极的方法、由此形成的电极以及制备包含其的电化学设备的方法。
背景技术
最近,对能量存储技术的关注逐渐增多。随着电化学设备作为能源而广泛地应用于移动电话、摄录一体机、笔记本电脑以及甚至电动车领域中,电化学设备的研究和开发变得越来越具体化。在此方面电化学设备是最受关注的领域,且其中可再充电式二次电池的开发是关注的焦点。目前研究和开发的趋势是电极和电池的新设计以改进容量密度和比能。
在目前可得的二次电池中,在1990年早期开发的锂二次电池具有比使用液态电解质的常规电池(例如Ni-MH电池、Ni-Cd电池、H2SO4-Pb电池等)更高的工作电压和高得多的能量密度。锂二次电池的这些特征具有优势。然而,锂二次电池也存在缺点,例如复杂的制备方法和由于使用有机电解质而产生的安全方面的问题,例如起火、爆炸等。在这种情况下,为克服锂离子电池的缺陷而开发出的锂离子聚合物电池被看作是新一代电池之一。然而,锂离子聚合物电池具有比目前的锂离子电池相对更低的电池容量,且在低温下的放电容量不足。因此,迫切需要解决锂离子聚合物电池的这些缺点。
多种电化学设备由多个厂家制备出,并各自表现出不同的安全特征。因此,评估并确保电化学设备的安全性是非常重要的。最重要的是,电化学设备在故障时不应对使用者造成任何伤害。考虑到这一点,安全规程严禁电化学设备的安全方面的事故,例如起火或冒烟。根据电化学设备的安全特征,当电化学设备过热和处于热失控时或当隔膜被刺穿时可能出现爆炸。特别地,通常用作电化学设备的隔膜的基于聚烯烃的多孔基材由于其材料特征和制备特性(例如拉伸)而在100℃以上的温度下显示出明显的热收缩性,因此阴极和阳极间可能出现短路。
为了解决以上电化学设备安全方面的问题,提出了一种电极,其中由粘合剂聚合物和过量无机颗粒的混合物制得的多孔涂层形成于具有多个孔的多孔基材的至少一个表面上。包含在多孔涂层中的无机颗粒具有高的耐热性,即使在电化学设备过热的情况下,该无机颗粒也可防止阳极和阴极间的短路。因此,具有所述电极的电化学设备可省略常规隔膜或可改进热稳定性。
具有所述多孔涂层的电极通过以下方法制备:使过量无机颗粒分散于含有溶解的粘合剂聚合物的溶液中,将所述分散溶液涂敷于电极活性物质层的外表面并随后进行干燥。为了使电化学设备能良好地运行,需要使孔均匀地分布于所述多孔涂层中。也就是说,所述多孔涂层中的过量无机颗粒应均匀地分散。为了实现均匀分散,很长时间以来,已通过在向粘合剂聚合物溶液中加入无机颗粒后使用物理搅拌、超声分散等而作了很多尝试以分散所述无机颗粒。然而,即使通过使用以上方法而均匀分散的无机颗粒在溶剂干燥过程中也发生无机颗粒彼此附聚的现象。因此,制备具有过量的均匀分散的无机颗粒的多孔涂层是非常困难的。在具有均匀分散的无机颗粒的聚合物溶液的电雾化的情况下也依然存在这种问题。
发明内容
技术问题
因此,本发明的一个目的是提供一种制备形成了含有均匀分布的孔的包含无机材料的多孔涂层的电极的方法,以替代包含无机颗粒的多孔涂层的常规电极,和由所述方法制备的电极以及包含该电极的电化学设备。
技术方案
为了实现所述目的,本发明提供了一种制备电极的方法,其包括:
(S1)制备包含金属醇盐化合物的溶胶溶液,和
(S2)通过将该溶胶溶液电发射(electroemit)至在集流体的至少一个表面上形成的电极活性物质层的外表面上而形成无机纤维的多孔无纺涂层。
在制备本发明的电极的方法中,金属醇盐化合物可包括含有硅的醇盐、含有铝的醇盐、含有钛的醇盐或其结合物。金属醇盐化合物的金属可部分地被碱金属或碱土金属(例如锂、镁、钡等)或过渡金属(例如钴、锰、铁、镍、钒等)替代。
含有硅的醇盐可为四烷基原硅酸盐(含有1至4个碳原子),含有铝的醇盐可为仲丁醇铝、异丙醇铝或乙醇铝,含有钛的醇盐可为异丙醇钛或烷基烷醇钛(含有1至4个碳原子)。
在制备本发明的电极的方法中,溶胶溶液还可包含粘合剂,例如至少一种选自聚偏二氟乙烯-共-六氟丙烯(polyvinylidene fluoride-co-hexafluoropropylene)、聚偏二氟乙烯-共-三氯乙烯(polyvinylidene fluoride-co-trichloroethylene)、聚甲基丙烯酸甲酯(polymethylmethacrylate)、聚丙烯腈(polyacrylonitrile)、聚乙烯基吡咯烷酮(polyvinylpyrrolidone)、聚乙酸乙烯酯(polyvinylacetate)、聚乙烯醇(polyvinylalcohol)、聚乙烯-共-乙酸乙烯酯(polyethylene-co-vinyl acetate)、聚环氧乙烷(polyethyleneoxide)、乙酸纤维素(cellulose acetate)、乙酸丁酸纤维素(cellulose acetate butyrate)、乙酸丙酸纤维素(cellulose acetate propionate)、氰基乙基支链淀粉(cyanoethylpullulan)、氰基乙基聚乙烯醇(cyanoethylpolyvinylalcohol)、氰基乙基纤维素(cyanoethylcellulose)、氰基乙基蔗糖(cyanoethylsucrose)、支链淀粉(pullulan)、羧甲基纤维素(carboxyl methylcellulose)和分子量为10,000g/mol以下的低分子量化合物的物质。
在所述(S2)步骤后还可包括进行热处理以使粘合剂与多孔无纺涂层分离。
在制备本发明的电极的方法中,电发射可为电纺(electrospinning)或电雾化(electrospraying)。
本发明的电极可包括:
(a)集流体和在所述集流体的至少一个表面上形成的电极活性物质层,和
(b)在所述电极活性物质层的外表面上形成的无机纤维的多孔无纺涂层。
在本发明的电极中,无机纤维可由无机氧化物例如SiO2、Al2O3、BaTiO3、TiO2等或其结合物形成,且无机氧化物的金属可部分地被碱金属或碱土金属(例如锂、镁、钡等)或过渡金属(例如钴、锰、铁、镍、钒等)替代。
无机纤维可通过电发射例如电纺(electrospinning)或电雾化(electrospraying)而形成。
在本发明的电极中,无机纤维的平均直径可优选为0.001至1000nm,无纺织物的厚度可优选为0.1至100um,平均孔径可优选为0.01至10um,孔隙率可优选为1至80%。
本发明的电极可应用于例如锂二次电池或超级电容器的电化学设备的阴极和阳极二者之一或同时应用于二者。
有益效果
根据本发明,形成在电极外表面上的多孔无纺布涂层由具有高的热稳定性的无机纤维制得,从而即使在电化学设备过热的情况下,也可防止阳极和阴极间的短路。此外,与含有过量无机颗粒的常规多孔涂层不同,本发明的多孔无纺织物涂层由纤维状无机材料制得,因此具有均匀分布的孔而有助于电化学设备的性能改进。此外,通过使用电发射法形成的由超细无机纤维构成的多孔无纺织物涂层可为薄层,并可用于制造高容量电化学设备。
附图说明
图1为示例说明在实施例1的电极上形成的涂层的扫描电子显微镜(SEM)图。
图2为示例说明在实施例2的电极上形成的涂层的SEM图。
图3为示例说明在对比实施例1的电极上形成的涂层的SEM图。
图4为示例说明在对比实施例2的电极上形成的涂层的SEM图。
优选实施方案
以下,对本发明作更详细地描述。在描述之前,应理解在本说明书和所附的权利要求中所使用的术语不应被理解为限于通常的或字典上的含义,而是根据发明者可为了最佳的说明而对术语进行合适的限定这一原则而基于对应于本发明的技术方面的含义和概念进行理解。因此,本文所提出的构成只是为了示例说明目的的优选实施例,并非意欲限制本发明的范围,所以应理解在不背离本发明的主旨和范围的情况下可对其作其他等同替换和修改。
根据本发明在电极的外表面上形成无机纤维的多孔无纺织物涂层的方法如下。
首先,制备含有金属醇盐化合物的溶胶溶液(S1)。
金属醇盐化合物可为,可以单独使用含有硅的醇盐、含有铝的醇盐或含有钛的醇盐中的一种或混合使用其中两种或两种以上。该金属醇盐化合物的金属可根据需要,部分地被碱金属或碱土金属(例如锂、镁、钡等)或过渡金属(例如钴、锰、铁、镍、钒等)替代。
含有硅的醇盐可为,例如,四烷基原硅酸盐(含有1至4个碳原子)。含有铝的醇盐可为,例如,仲丁醇铝、异丙醇铝或乙醇铝。含有钛的醇盐可为,例如,异丙醇钛或烷基烷醇钛(含有1至4个碳原子)。然而,本发明可使用任意金属醇盐化合物,只要其可通过溶胶-凝胶反应而变成纤维状材料。
为进行以下描述的电发射,制备含有金属醇盐化合物的溶胶溶液的方法在本技术领域内是众所周知的。通常,含有金属醇盐化合物的溶胶溶液可通过将金属醇盐化合物与溶剂混合并随后进行溅射而制备或通过经由酸性组分(例如盐酸等)的水解和缩合的熟化而制备。
例如,第0596543号韩国专利公开了一种通过四烷基原硅酸盐的乙醇溶液的熟化而制备溶胶溶液的方法。此外,第2009-0054385号韩国专利申请公开了一种通过包括含有硅的醇盐化合物和含有钛的醇盐化合物的前体溶液的熟化而制备溶胶溶液的方法。所述文献的全部内容以引用的方式纳入本说明书。
可根据需要向溶胶溶液中还加入粘合剂,以下示例性聚合物可用作所述粘合剂,例如,聚偏二氟乙烯-共-六氟丙烯(polyvinylidene fluoride-co-hexafluoropropylene)、聚偏二氟乙烯-共-三氯乙烯(polyvinylidene fluoride-co-trichloroethylene)、聚甲基丙烯酸甲酯(polymethylmethacrylate)、聚丙烯腈(polyacrylonitrile)、聚乙烯基吡咯烷酮(polyvinylpyrrolidone)、聚乙酸乙烯酯(polyvinylacetate)、聚乙烯醇(polyvinylalcohol)、聚乙烯-共-乙酸乙烯酯(polyethylene-co-vinyl acetate)、聚环氧乙烷(polyethyleneoxide)、乙酸纤维素(cellulose acetate)、乙酸丁酸纤维素(cellulose acetate butyrate)、乙酸丙酸纤维素(cellulose acetate propionate)、氰基乙基支链淀粉(cyanoethylpullulan)、氰基乙基聚乙烯醇(cyanoethylpolyvinylalcohol)、氰基乙基纤维素(cyanoethylcellulose)、氰基乙基蔗糖(cyanoethylsucrose)、支链淀粉(pullulan)、羧甲基纤维素(carboxyl methylcellulose)等高分子,或分子量为10,000g/mol以下的低分子量化合物可用作所述粘合剂。
随后,无机纤维的多孔无纺涂层通过将所制备的溶胶溶液电发射至在集流体的至少一个表面上形成的电极活性物质层的外表面而形成(S2)。
溶胶溶液的电发射在本技术领域内也是众所周知的。电发射是通过向溶液施加高压而提供电荷,并将所述带电溶液通过超细喷嘴或液滴喷射喷头而喷雾于基材上的技术。电发射可包括电纺(electrospinning)或电雾化(electrospraying)。第2009-0054385号韩国专利申请公开了一种使用由注射器(灌注器泵(syringe pump))和注射针、底电极(控制旋转速率的不锈钢鼓)和纺丝供压器所构成的电纺装置的电纺方法,其中所述注射针末端和鼓之间调整后的间距为5至30nm,调整后的纺丝电压为15kV以上,调整后的灌注器泵的纺丝溶液的流量为1至20ml/hr。此外,第0271116号韩国专利描述了一种电雾化装置和方法。所述文献的全部内容以引用的方式纳入本说明书。
本发明的电发射通过以下方法而形成无机纤维的无纺涂层:将电极置于电发射装置的基板上,并将所制备的溶胶溶液电发射到在电极的集流体的至少一个表面上形成的电极活性物质层的外表面上。在这种情况下,所述无纺涂层的孔隙率可根据众所周知的方法通过调节灌注器泵的注射间隔、基板的传输速率等而优化。
根据本发明经溶胶溶液喷雾的电极无特别限定,所述电极可根据本领域的已知方法通过在集流体的至少一个表面上形成一层电极活性物质(即电极活性物质层)而制造。在所述电极活性物质中,阴极活性物质可包括用于常规电化学设备的阴极的常规阴极活性物质,例如,锂锰氧化物、锂钴氧化物、锂镍氧化物、锂铁氧化物或其锂复合氧化物,然而本发明不限于此。阳极活性物质可包括用于常规电化学设备的阳极的常规阳极活性物质,例如锂嵌入材料,诸如锂金属、锂合金、碳、石油焦炭(petroleum coke)、活性炭(activatedcarbon)、石墨(graphite)或其他含碳材料,然而本发明不限于此。作为非限制性实例,具有阴极活性物质层的集流体可为由铝、镍或其结合物制得的箔,具有阳极活性物质层的集流体可为由铜、金、镍、铜合金或其结合物制得的箔。
在电发射过程中,包含在所述溶胶溶液中的溶剂通常可挥发,取决于所述溶剂的类型,因此可能不需要单独的溶剂干燥步骤,但可根据需要在室温或高温下进行单独的溶剂干燥步骤以去除所述溶剂。
根据需要,为了使所述聚合物粘合剂与多孔无纺涂层分离,还可进行热处理以使具有多孔无纺涂层的电极分解。适用了这种步骤的情况下,电极活性物质层的聚合物不能被分解,因此电极活性物质层的粘合剂和所述聚合物粘合剂的选择需要考虑这些聚合物的分解温度。
由上述方法所制造的本发明的电极包括:
(a)集流体和在所述集流体的至少一个表面上形成的电极活性物质层;和
(b)在所述电极活性物质层的外表面上形成的无机纤维的多孔无纺涂层。
众所周知,包含金属醇盐化合物的溶胶溶液的电发射可通过调节发射密度而生成由无机氧化物或其混合物(例如SiO2、Al2O3、BaTiO3、TiO2等)制得的无机纤维,最终,无机纤维进行缠结以形成具有多个均匀分布的孔的无纺织物。无机氧化物的金属可部分地被碱金属或碱土金属(例如锂、镁、钡等)或过渡金属(例如钴、锰、铁、镍、钒等)替代。此外,所述无机纤维可包含衍生自金属醇盐的有机醇类、粘合剂等。
这种无纺织物直接形成于电极活性物质层上,因此,其形成电极活性物质层的涂层。通过电发射形成的无机纤维通常为直径为1至100nm的纳米尺度的无机纤维,然而鉴于目前的技术趋势,可进行直径为1至1000nm的亚微尺度的无机纤维的形成。
通过电纺形成的无机无纺织物由较长的无机纤维组成,通过电雾化形成的无机无纺织物由较短的无机纤维组成,它们彼此连接以形成网状无纺织物。特别地,可降低通过电发射形成的超细无机纤维的多孔无纺涂层的厚度,并可用于制造高容量电化学设备。
在本发明的电极中,优选地,多孔无纺涂层的厚度为0.1至100um,无纺织物的平均孔径为0.01至10um,孔隙率为1至80%。
本发明的电极可应用于阴极和阳极二者之一或同时应用于二者。插于阴极和阳极之间的无机纤维的多孔无纺涂层可替代常规隔膜。此外,常规隔膜可插于阴极和阳极之间,在这种情况下,即使所述常规隔膜由于过热而发生热收缩或熔化,也可防止阴极和阳极间的短路。
本发明的电化学设备包括可发生电化学反应的任意设备,并包括所有种类的电池,例如原电池、二次电池、燃料电池、太阳能电池或例如超级电容器的电容器(capacitor)等。特别地,在所述二次电池中,优选锂二次电池,其包括锂金属二次电池、锂离子二次电池、锂聚合物二次电池或锂离子聚合物二次电池等。
本发明的电化学设备中,可选择使用在有机溶剂溶解由式A+B-代表的盐的电解质,其中A+包括碱金属阳离子,例如Li+、Na+、K+或其结合物,B-包括含有阴离子的盐,例如PF6 -、BF4 -、Cl-、Br-、I-、ClO4 -、AsF6 -、CH3CO2 -、CF3SO3 -、N(CF3SO2)2 -、C(CF2SO2)3 -或其结合物。作为有机溶剂,例如碳酸亚丙酯(PC)、碳酸亚乙酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸二丙酯(DPC)、二甲基亚砜、乙腈、二甲氧基乙烷、二乙氧基乙烷、四氢呋喃、N-甲基-2-吡咯烷酮(NMP)、碳酸乙基甲基酯(EMC)、γ-丁内酯或其混合物,然而不限于此。
所述电解质可根据制造方法和所需的最终产品性质而在电池制造方法的合适步骤中注入。换句话说,电解质可在电池装配过程前注入或电池装配过程的最后一步的过程中等注入。
具体实施方式
以下,将对本发明的多个优选实施例作更详细的描述以便于更好的理解。然而,本发明的实施例可以多种方式进行修改,且不应将其解释为限制本发明的范围。本发明的实施例是仅旨在使本领域技术人员能更好地理解本发明而提供的。
实施例1
将5g三仲丁醇铝与18.98ml乙醇和0.22ml水混合,在60℃下在搅拌的同时熟化3小时并随后在室温下冷却,以制备溶胶溶液。随后,使用灌注器泵使所制备的溶胶溶液通过内径为0.5mm的管道以100uL/分钟的流速进行传输,在施加10kV的同时使其电雾化(electropraying)至电极(在集流体的外表面上形成有阴极活性物质层的电极)上,以形成涂层。
所形成的涂层的SEM图像示于图1中。可以看出构成所述涂层的Al2O3无机纤维的直径总体为100nm以下。
实施例2
将5.1g乙酸钡溶解于12ml乙酸乙酯中,搅拌2小时。在继续搅拌的同时,缓慢加入5.9mL异丙醇钛并随后搅拌5小时,以制备溶胶溶液。随后,使用灌注器泵使所制备的溶胶溶液通过内径为0.5mm的管道以100uL/分钟的流速进行传输,在施加10kV的同时使其电雾化(electropraying)至电极(在集流体的外表面上形成有阴极活性物质层的电极)上,以形成涂层。
所形成的涂层的SEM图像示于图2中。可以看出构成所述涂层的BaTiO3无机纤维的直径总体为800nm以下。
实施例3
将三仲丁醇铝、乙醇和水以1∶16∶0.6的摩尔比进行混合,在60℃下在搅拌的同时熟化1小时并随后在室温下冷却,以制备溶胶溶液。随后,将所述溶胶溶液、甲醇和水以1∶0.2∶0.003的重量比进行混合并加入3体积%乙酸,在室温下搅拌30分钟。然后,向其中加入5重量%的聚乙烯醇水溶液并随后在室温下搅拌2小时,以制备用于电雾化的溶胶溶液。
使用灌注器泵使所制备的溶胶溶液通过内径为0.5mm的管道以100uL/分钟的流速进行传输,在施加20kV的同时使其电纺(electrospining)至电极(在集流体的外表面上形成有阴极活性物质层的电极)上,以形成涂层。
可以看出构成所述涂层的Al2O3无机纤维的直径总体为300nm以下。
实施例4
将1.275g乙酸钡溶解于3ml乙酸中,搅拌2小时。在继续搅拌的同时,将1.475mL异丙醇钛缓慢加入其中。向其中加入10重量%的浓度的聚乙烯基吡咯烷酮的乙醇溶液并随后在室温下搅拌2小时,以制备溶胶溶液。
使用灌注器泵使所制备的溶胶溶液通过内径为0.5mm的管道以100uL/分钟的流速进行传输,在施加15kV的同时使其电纺(electrospining)至电极(在集流体的外表面上形成有阴极活性物质层的电极)上,以形成涂层。
可以看出构成所述涂层的BaTiO3无机纤维的直径总体为300nm以下。
对比实施例1
将芳族聚酰胺溶解于二甲基乙酰胺以制备聚合物溶液后,向其中加入平均粒径为约500nm的Al2O3无机氧化物颗粒以使聚合物∶无机氧化物的重量比为8∶2,随后使用混合器分散6小时。
随后,使用灌注器泵使所述含有分散于其中的无机氧化物颗粒的聚合物溶液通过内径为2mm的管道以5L/分钟的流速进行传输,在施加23kV的同时使其电纺(electrospining)至电极(在集流体的外表面上形成有阴极活性物质层的电极)上5分钟,以形成涂层。
所形成的涂层的SEM图像示于图3中。可以看出构成涂层的纤维的直径总体为500nm以下,但无机氧化物颗粒发生了附聚而不是有效地分散。
对比实施例2
将芳族聚酰胺溶解于二甲基乙酰胺以制备聚合物溶液后,向其中加入平均粒径为约50nm的Al2O3无机氧化物颗粒以使聚合物∶无机氧化物的重量比为2∶1,随后使用混合器分散6小时。
随后,使用灌注器泵使所述含有分散于其中的无机氧化物颗粒的聚合物溶液通过内径为0.5mm的管道以0.8L/分钟的流速进行传输,在施加23kV的同时使其电纺(electrospining)至电极(在集流体的外表面上形成有阴极活性物质层的电极)上20分钟,以形成涂层。
所形成的涂层的SEM图像示于图4中。可以看出构成所述涂层的纤维的总体通常为100nm以下,但无机氧化物颗粒发生了附聚而不是有效地分散。

Claims (9)

1.一种制备电极的方法,所述方法包括:
(S1)制备含有金属醇盐化合物的溶胶溶液;和
(S2)在集流体的至少一个表面上形成电极活性物质层,并通过将所述溶胶溶液电发射至电极活性物质层的外表面上而形成作为隔膜的无机纤维的多孔无纺涂层。
2.权利要求1的制备电极的方法,其中所述金属醇盐化合物的金属包括至少一种选自碱金属、碱土金属和过渡金属的金属。
3.权利要求2的制备电极的方法,其中所述碱金属为锂。
4.权利要求1的制备电极的方法,其中所述金属醇盐化合物包括至少一种选自含有硅的醇盐、含有铝的醇盐和含有钛的醇盐的物质。
5.权利要求4的制备电极的方法,其中所述含有硅的醇盐为四烷基原硅酸盐,含有铝的醇盐为至少一种选自仲丁醇铝、异丙醇铝和乙醇铝的物质或其混合物,所述含有钛的醇盐为异丙醇钛或烷基烷醇钛,其中所述四烷基原硅酸盐的烷基含有1至4个碳原子,所述烷基烷醇钛的烷基含有1至4个碳原子。
6.权利要求1的制备电极的方法,其中所述溶胶溶液还包含粘合剂。
7.权利要求6的制备电极的方法,其中所述粘合剂为至少一种选自聚偏二氟乙烯-六氟丙烯、聚偏二氟乙烯-三氯乙烯、聚甲基丙烯酸甲酯、聚丙烯腈、聚乙烯基吡咯烷酮、聚乙酸乙烯酯、聚乙烯醇、聚乙烯-乙酸乙烯酯、聚环氧乙烷、乙酸纤维素、乙酸丁酸纤维素、乙酸丙酸纤维素、氰基乙基支链淀粉、氰基乙基聚乙烯醇、氰基乙基纤维素、氰基乙基蔗糖、支链淀粉、羧甲基纤维素和分子量为10,000g/mol以下的低分子量化合物的物质。
8.权利要求6的制备电极的方法,其还包括:
在(S2)步骤后,
进行热处理以使多孔无纺涂层中的有机组分分解。
9.权利要求1的制备电极的方法,其中所述电发射为电纺或电雾化。
CN201080029125.7A 2009-06-30 2010-06-29 制备具有多孔涂层的电极的方法、由此制备的电极及包含其的电化学设备 Active CN102473894B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR20090058977 2009-06-30
KR10-2009-0058977 2009-06-30
KR1020100061845A KR101032214B1 (ko) 2009-06-30 2010-06-29 다공성 코팅층을 구비한 전극의 제조방법, 이로부터 형성된 전극 및 이를 구비한 전기화학소자
PCT/KR2010/004215 WO2011002205A2 (ko) 2009-06-30 2010-06-29 다공성 코팅층을 구비한 전극의 제조방법, 이로부터 형성된 전극 및 이를 구비한 전기화학소자
KR10-2010-0061845 2010-06-29

Publications (2)

Publication Number Publication Date
CN102473894A CN102473894A (zh) 2012-05-23
CN102473894B true CN102473894B (zh) 2016-12-28

Family

ID=43610393

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080029125.7A Active CN102473894B (zh) 2009-06-30 2010-06-29 制备具有多孔涂层的电极的方法、由此制备的电极及包含其的电化学设备

Country Status (7)

Country Link
US (2) US20120003545A1 (zh)
EP (1) EP2461395B1 (zh)
JP (1) JP5841936B2 (zh)
KR (1) KR101032214B1 (zh)
CN (1) CN102473894B (zh)
PL (1) PL2461395T3 (zh)
WO (1) WO2011002205A2 (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101880603B1 (ko) * 2012-08-22 2018-07-23 동국대학교 산학협력단 리튬이차전지의 음극 활물질용 실리콘 산화물-탄소 복합체의 제조방법
KR101451899B1 (ko) 2012-10-05 2014-10-21 동국대학교 산학협력단 리튬이차전지의 스피넬 리튬 티타늄 옥사이드 나노섬유 음극활물질의 제조방법
CN104937400B (zh) * 2013-01-28 2018-07-03 索尼公司 用于生物样品的阻抗测量装置和用于生物样品的阻抗测量系统
WO2014142802A1 (en) * 2013-03-12 2014-09-18 Sachem, Inc. Oxide shell formation on inorganic substrate via oxidative polyoxoanion salt deposition
US9363291B2 (en) 2013-08-01 2016-06-07 Connectwise, Inc. Systems and methods for managing lost devices of multiple types with multiple policies using melded profiles associated with groups
WO2015026110A1 (ko) * 2013-08-19 2015-02-26 동국대학교 산학협력단 흑연-타이타늄계 옥사이드 복합체의 제조방법
KR101628729B1 (ko) 2013-08-19 2016-06-10 동국대학교 산학협력단 흑연-타이타늄계 옥사이드 복합체의 제조방법
CN105336916A (zh) * 2014-06-20 2016-02-17 东莞新能源科技有限公司 锂离子电池极片及其制备方法
JP6551878B2 (ja) * 2015-02-12 2019-07-31 国立大学法人 岡山大学 リチウムイオン電池の正極材料の製造方法及びこの方法で製造した電極材料
CN108603853B (zh) * 2016-02-10 2022-08-09 索尼公司 电特性测量用样本、电特性测量装置和电特性测量方法
CN107681113B (zh) * 2016-08-01 2020-07-28 宁德时代新能源科技股份有限公司 正极片及其制备方法以及二次电池
KR102654826B1 (ko) * 2016-09-30 2024-04-05 주식회사 아모그린텍 전극 및 이를 이용한 이차전지와 전극의 제조방법
KR20180049401A (ko) * 2016-11-01 2018-05-11 주식회사 아모그린텍 전극 및 이를 이용한 이차전지와 전극의 제조방법
US11646425B2 (en) * 2017-04-20 2023-05-09 Amogreentech Co., Ltd. Battery and mobile electronic device including same
KR102164252B1 (ko) 2017-05-04 2020-10-12 주식회사 엘지화학 음극 활물질, 상기 음극 활물질을 포함하는 음극, 상기 음극을 포함하는 이차 전지 및 상기 음극 활물질의 제조 방법
WO2019045407A2 (ko) * 2017-08-28 2019-03-07 주식회사 아모그린텍 전극 및 이를 이용한 이차전지와 전극의 제조방법
KR20200101958A (ko) * 2017-12-22 2020-08-28 실라 나노테크놀로지스 인코포레이티드 세라믹-포함 세퍼레이터 층을 갖는 세퍼레이터
US10111783B1 (en) 2018-02-16 2018-10-30 American Nano, LLC Silica fiber composition and method of use
US11135806B2 (en) 2018-02-16 2021-10-05 American Nano Llc. Compositions incorporating silica fibers
US20190255223A1 (en) 2018-02-16 2019-08-22 American Nano, LLC Silica fiber compositions and methods of use
US11759473B2 (en) 2018-02-16 2023-09-19 American Nano, LLC Topical compositions incorporating silica fibers
JP6876648B2 (ja) * 2018-03-22 2021-05-26 株式会社東芝 二次電池、電池パック及び車両
CN110660955B (zh) 2018-06-29 2021-11-23 宁德时代新能源科技股份有限公司 负极极片、其制备方法及电化学装置
CN112615052B (zh) * 2020-12-14 2024-04-26 江苏纳盾科技有限公司 一种复合电解质材料及其制备方法
CN113328205A (zh) * 2021-05-28 2021-08-31 安徽壹石通新能源材料有限公司 一种组合物、含有该组合物的电极及其应用
JP2023134867A (ja) * 2022-03-15 2023-09-28 株式会社リコー 電極製造装置、電極製造方法、電気化学素子の製造装置及び電気化学素子の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6200706B1 (en) * 1995-03-31 2001-03-13 Mitsubishi Paper Mills Limited Nonwoven fabric for separator of non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
CN101326658A (zh) * 2005-12-06 2008-12-17 Lg化学株式会社 具有形态梯度的有机/无机复合隔膜、其制造方法和含该隔膜的电化学装置

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1156034A (en) * 1913-01-02 1915-10-05 James K Lanning Hand-threading shuttle.
US3447875A (en) * 1965-06-21 1969-06-03 American Optical Corp Temperature compensating refractometers
JPS57191962A (en) * 1981-05-20 1982-11-25 Hitachi Ltd Fuel cell
US5326598A (en) 1992-10-02 1994-07-05 Minnesota Mining And Manufacturing Company Electrospray coating apparatus and process utilizing precise control of filament and mist generation
JP3371301B2 (ja) * 1994-01-31 2003-01-27 ソニー株式会社 非水電解液二次電池
ATE310321T1 (de) * 1995-06-28 2005-12-15 Ube Industries Nichtwässrige sekundärbatterie
JPH10284065A (ja) * 1997-04-05 1998-10-23 Haibaru:Kk 非水電解液電池
DE19916042A1 (de) * 1999-04-09 2000-10-12 Basf Ag Naß-in-Naß-Beschichtungsverfahren zur Herstellung von Verbundkörpern, die zur Verwendung in Lithiumionenbatterien geeignet sind
US6280871B1 (en) * 1999-10-12 2001-08-28 Cabot Corporation Gas diffusion electrodes containing modified carbon products
JP3917853B2 (ja) * 2001-12-18 2007-05-23 日本バイリーン株式会社 回路基板用基材及びこれを用いた回路基板
JP3891484B2 (ja) * 2002-09-05 2007-03-14 株式会社ノリタケカンパニーリミテド 電解質膜およびその膜を備えた燃料電池
TWI245079B (en) * 2002-12-30 2005-12-11 Ind Tech Res Inst Method for growing highly-ordered nanofibers
WO2004112183A1 (en) * 2003-06-17 2004-12-23 Samshin Creation Co., Ltd. A complex membrane for electrochemical device, manufacturing method and electrochemical device having the same
WO2005124899A1 (ja) * 2004-06-22 2005-12-29 Matsushita Electric Industrial Co., Ltd. 二次電池およびその製造方法
KR100596543B1 (ko) 2004-12-06 2006-07-04 박원호 은을 함유하는 실리카 나노섬유 및 제조 방법
US7575707B2 (en) * 2005-03-29 2009-08-18 University Of Washington Electrospinning of fine hollow fibers
WO2006115270A1 (ja) * 2005-04-26 2006-11-02 Nitto Denko Corporation フィルタ濾材とその製造方法および使用方法ならびにフィルタユニット
JP4664790B2 (ja) * 2005-09-28 2011-04-06 帝人株式会社 繊維構造体の製造方法および製造装置
US7771880B2 (en) * 2005-11-21 2010-08-10 University Of Dayton Solid composite electrolyte membrane and method of making
US9267220B2 (en) * 2006-03-31 2016-02-23 Cornell University Nanofibers, nanotubes and nanofiber mats comprising crystaline metal oxides and methods of making the same
KR100865035B1 (ko) * 2006-05-04 2008-10-23 주식회사 엘지화학 리튬 이차 전지 및 그 제조방법
JP2007327148A (ja) * 2006-06-06 2007-12-20 Tokyo Institute Of Technology 高分子電解質繊維およびその製造方法
WO2008111960A2 (en) * 2006-09-29 2008-09-18 University Of Akron Metal oxide fibers and nanofibers, method for making same, and uses thereof
EP1923934A1 (de) * 2006-11-14 2008-05-21 Fortu Intellectual Property AG Wiederaufladbare elektrochemische Batteriezelle
KR100879767B1 (ko) * 2007-01-12 2009-01-21 한국과학기술연구원 열처리된 산화티타늄층을 포함하는 슈퍼커패시터용 전극 및그 제조방법
US7709139B2 (en) * 2007-01-22 2010-05-04 Physical Sciences, Inc. Three dimensional battery
JP4539658B2 (ja) * 2007-01-23 2010-09-08 ソニー株式会社 電池
JP2008198506A (ja) * 2007-02-14 2008-08-28 Matsushita Electric Ind Co Ltd 非水電解質二次電池
KR100868290B1 (ko) * 2007-05-04 2008-11-12 한국과학기술연구원 나노파이버 네트워크 구조의 음극 활물질을 구비한이차전지용 음극 및 이를 이용한 이차전지와, 이차전지용음극 활물질의 제조방법
US8211496B2 (en) * 2007-06-29 2012-07-03 Johnson Ip Holding, Llc Amorphous lithium lanthanum titanate thin films manufacturing method
TWI387150B (zh) * 2007-09-06 2013-02-21 Canon Kk Lithium ion accumulation. Release material manufacturing method, lithium ion accumulation. A release material, and an electrode structure and a power storage device using the same
JP4748136B2 (ja) * 2007-10-03 2011-08-17 ソニー株式会社 耐熱絶縁層付きセパレータ及び非水電解質二次電池
KR101007887B1 (ko) 2007-11-26 2011-01-14 주식회사 두본 2단계 열처리를 이용한 SiO2-TiO2계 복합무기섬유의 제조방법
CN102027626A (zh) * 2008-03-25 2011-04-20 A123系统公司 高能量高功率电极和电池
US20100330419A1 (en) * 2009-06-02 2010-12-30 Yi Cui Electrospinning to fabricate battery electrodes
KR100995154B1 (ko) 2010-02-11 2010-11-18 전남대학교산학협력단 다공성탄소나노섬유 제조방법, 상기 방법으로 제조된 다공성탄소나노섬유, 및 이를 포함하는 탄소나노섬유응용제품

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6200706B1 (en) * 1995-03-31 2001-03-13 Mitsubishi Paper Mills Limited Nonwoven fabric for separator of non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
CN101326658A (zh) * 2005-12-06 2008-12-17 Lg化学株式会社 具有形态梯度的有机/无机复合隔膜、其制造方法和含该隔膜的电化学装置

Also Published As

Publication number Publication date
WO2011002205A2 (ko) 2011-01-06
US20120244292A1 (en) 2012-09-27
KR20110001951A (ko) 2011-01-06
JP2012531010A (ja) 2012-12-06
EP2461395A2 (en) 2012-06-06
PL2461395T3 (pl) 2019-05-31
EP2461395B1 (en) 2019-01-23
CN102473894A (zh) 2012-05-23
WO2011002205A3 (ko) 2011-04-21
EP2461395A4 (en) 2014-07-16
KR101032214B1 (ko) 2011-05-02
US20120003545A1 (en) 2012-01-05
JP5841936B2 (ja) 2016-01-13

Similar Documents

Publication Publication Date Title
CN102473894B (zh) 制备具有多孔涂层的电极的方法、由此制备的电极及包含其的电化学设备
Li et al. A review of electrospun nanofiber-based separators for rechargeable lithium-ion batteries
CN104088155B (zh) 复合隔膜及其制备方法,以及锂离子电池
JP5703306B2 (ja) 多孔性コーティング層を備えるセパレータの製造方法、その方法によって形成されたセパレータ、及びそれを備える電気化学素子
JP4832430B2 (ja) リチウムイオン二次電池用セパレータ及びリチウムイオン二次電池
TWI321860B (en) Organic/inorganic composite porous film and electrochemical device using the same
CN102150298B (zh) 锂离子二次电池用隔板、其制造方法及锂离子二次电池
CN103181000B (zh) 隔膜的制造方法、由该方法制造的隔膜和具备该隔膜的电化学设备
JP5529148B2 (ja) 非水系電池用セパレータ及びそれを用いた非水系電池、ならびに非水系電池用セパレータの製造方法
JP5834322B2 (ja) セパレータ、その製造方法及びこれを備えた電気化学素子
CN105295263B (zh) 一种聚合物基复合材料及其制备方法
TW201351758A (zh) 電化學裝置隔離膜及其製備方法
CN104241569A (zh) 复合隔膜的制备方法
TW200415813A (en) Durable separator for an electrochemical cell
TW201242147A (en) Lithium ion cell design apparatus and method
KR20060043693A (ko) 전자부품용 세퍼레이터 및 그 제조 방법
TW200405600A (en) Electrical separator having shutdown mechanism, production thereof and use in lithium batteries
TW201230453A (en) Electrospinning for integrated separator for lithium-ion batteries
CN103474601A (zh) 复合隔膜及其制备方法,以及锂离子电池
CN102218271A (zh) 以金属氧化物超细纤维为基本成分的耐热性复合分离膜以及利用其制备的蓄电池
JP2012522352A (ja) 多孔性コーティング層を含むセパレータ、その製造方法、及びそれを備える電気化学素子
US11489232B2 (en) Method for manufacturing separator, separator formed thereby, and electrochemical device including same
CN105934845B (zh) 电器件
JP2016024970A (ja) 電気化学素子用セパレータ
CN111129394B (zh) 功能复合型纳米碳纤维/石墨烯膜及其制备方法与应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211220

Address after: Seoul, South Kerean

Patentee after: LG Energy Solution,Ltd.

Address before: Seoul, South Kerean

Patentee before: LG CHEM, Ltd.