EP2461395A2 - Method for manufacturing an electrode having a porous coating layer, electrode manufactured by same, and electrochemical device comprising same - Google Patents

Method for manufacturing an electrode having a porous coating layer, electrode manufactured by same, and electrochemical device comprising same Download PDF

Info

Publication number
EP2461395A2
EP2461395A2 EP10794340A EP10794340A EP2461395A2 EP 2461395 A2 EP2461395 A2 EP 2461395A2 EP 10794340 A EP10794340 A EP 10794340A EP 10794340 A EP10794340 A EP 10794340A EP 2461395 A2 EP2461395 A2 EP 2461395A2
Authority
EP
European Patent Office
Prior art keywords
electrode
electrode according
coating layer
manufacturing
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10794340A
Other languages
German (de)
French (fr)
Other versions
EP2461395B1 (en
EP2461395A4 (en
Inventor
Joo-Sung Lee
Jong-Hun Kim
Pil-Kyu Park
Jang-Hyuk Hong
Byoung-Jin Shin
Byeong-Gyu Cho
Sun-Mi Jin
In-Chul Kim
Su-Jin Yoon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Chem Ltd
Original Assignee
LG Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chem Ltd filed Critical LG Chem Ltd
Priority to PL10794340T priority Critical patent/PL2461395T3/en
Publication of EP2461395A2 publication Critical patent/EP2461395A2/en
Publication of EP2461395A4 publication Critical patent/EP2461395A4/en
Application granted granted Critical
Publication of EP2461395B1 publication Critical patent/EP2461395B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1212Zeolites, glasses
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/122Inorganic polymers, e.g. silanes, polysilazanes, polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a method for manufacturing an electrode used for an electrochemical device such as a lithium secondary battery, an electrode manufactured therefrom, and a method for manufacturing an electrochemical device comprising the same. More particularly, the present invention relates to a method for manufacturing an electrode having an inorganic material-containing porous coating layer, an electrode manufactured therefrom, and a method for manufacturing an electrochemical device comprising the same.
  • lithium secondary batteries that were developed in early 1990's have a higher operating voltage and a much higher energy density than conventional batteries using a liquid electrolyte, such as Ni-MH batteries, Ni-Cd batteries, H 2 SO 4 -Pb batteries, and the like. These characteristics of the lithium secondary batteries afford advantages.
  • the lithium secondary batteries have disadvantages such as a complex manufacturing process and safety-related problems caused by use of an organic electrolyte, for example, firing, explosion, and the like.
  • lithium-ion polymer batteries developed to overcome the drawbacks of lithium ion batteries are considered as one of next-generation batteries.
  • lithium-ion polymer batteries have a relatively lower battery capacity than lithium ion batteries, and have an insufficient discharging capacity at low temperature. Accordingly, there is an urgent need to solve these disadvantages of the lithium-ion polymer batteries.
  • electrochemical devices A variety of electrochemical devices have been produced from many companies, and each exhibits different safety characteristics. Thus, it is important to evaluate and ensure safety of electrochemical devices. First of all, electrochemical devices should not cause any damage to users in case of malfunction. Taking this into account, safety regulations strictly prohibit safety-related accidents of electrochemical devices such as firing or smoke emission. According to the safety characteristics of electrochemical devices, explosion may occur when an electrochemical device is overheated and subject to thermal runaway and when a separator is punctured.
  • a short circuit may occur between a cathode and an anode, when a polyolefin-based porous substrate that is commonly used as a separator of the electrochemical devices shows a significant thermal shrinking behavior at a temperature of 100°C or above due to its material characteristics and manufacturing characteristics such as elongation.
  • an electrode in which a porous coating layer made from a mixture of binder polymer and an excessive amount of inorganic particles is formed on at least one surface of a porous substrate having a plurality of pores.
  • the inorganic particles contained in the porous coating have high heat resistance, and when an electrochemical device is overheated, the inorganic particles may prevent a short circuit between an anode and a cathode.
  • electrochemical devices having such an electrode may eliminate the need of a conventional separator or may improve thermal stability.
  • An electrode having the porous coating layer is manufactured by dispersing an excessive amount of inorganic particles in a solution having binder polymer dissolved therein, and coating the dispersion solution on an outer surface of an electrode active material layer, followed by drying.
  • it requires a uniform dispersion of pores in the porous coating layer. That is, an excessive amount of inorganic particles in the porous coating layer should be uniformly dispersed.
  • many attempts have been made to disperse the inorganic particles for a long time using physical agitation, ultrasonic dispersion, and the like, after adding the inorganic particles to the binder polymer solution.
  • an object of the invention is to provide a method for manufacturing an electrode with an inorganic material-containing porous coating layer having uniformly dispersed pores, as opposed to a conventional electrode with an inorganic particles-containing porous coating layer, and an electrode manufactured therefrom, and an electrochemical device comprising such an electrode.
  • the present invention provides a method for manufacturing an electrode including (S1) preparing a sol solution containing a metal alkoxide compound, and (S2) forming a porous non-woven coating layer of an inorganic fiber by electro emitting the sol solution onto an outer surface of an electrode active material layer formed on at least one surface of a current collector.
  • the metal alkoxide compound may include silicone-containing alkoxide, aluminum-containing alkoxide, or titanium-containing alkoxide, singularly or in combination.
  • a metal of the metal alkoxide compound may be partially substituted by alkali metals or alkaline earth metals such as lithium, magnesium, barium, and the like, or transition metals such as cobalt, manganese, iron, nickel, vanadium, and the like.
  • the silicone-containing alkoxide may be tetra-alkyl-ortho-silicate (having 1 to 4 carbon atoms)
  • the aluminum-containing alkoxide may be aluminum-sec-butoxide, aluminum isoprotoxide, or aluminum ethoxide
  • the titanium-containing alkoxide may be titanium isopropoxide or titanium alkyl alkoxide (having 1 to 4 carbon atoms).
  • the sol solution may further contain a binder, for example, at least one selected from the group consisting of polyvinylidene fluoride-co-hexafluoropropylene, polyvinylidene fluoride-co-trichloroethylene, polymethylmethacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate, polyvinylalcohol, polyethylene-co-vinyl acetate, polyethylene oxide, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cyanoethylpullulan, cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, pullulan, carboxyl methyl cellulose, and a low-molecular-weight compound having a molecular weight of 10,000 g/mol or less.
  • a binder for example, at least one selected from the group consisting of polyvinylidene
  • the method may further include performing a thermal treatment to separate the binder from the porous non-woven coating layer.
  • the electroemitting may be electrospinning or electrospraying.
  • An electrode according to the present invention may include (a) a current collector and an electrode active material layer formed on at least one surface of the current collector, and (b) a porous non-woven coating layer of an inorganic fiber formed on the outer surface of the electrode active material layer.
  • the inorganic fiber may be formed from inorganic oxide, such as SiO 2 Al 2 O 3 , BaTiO 3 , TiO 2 and the like, singularly or in combination, and a metal of the inorganic oxide may be partially substituted by alkali metals or alkaline earth metals such as lithium, magnesium, barium, and the like, or transition metals such as cobalt, manganese, iron, nickel, vanadium, and the like.
  • inorganic oxide such as SiO 2 Al 2 O 3 , BaTiO 3 , TiO 2 and the like, singularly or in combination
  • a metal of the inorganic oxide may be partially substituted by alkali metals or alkaline earth metals such as lithium, magnesium, barium, and the like, or transition metals such as cobalt, manganese, iron, nickel, vanadium, and the like.
  • the inorganic fiber may be formed by electroemitting such as electrospinning or electrospraying.
  • the inorganic fiber may preferably have an average diameter between 0.001 and 1000 nm, and the non-woven fabric may preferably have a thickness between 0.1 and 100 um, an average pore size between 0.01 and 10 um, and a porosity between 1 and 80%.
  • the electrode of the present invention may be applied to either or both of a cathode and an anode of an electrochemical device such as a lithium secondary battery or a super capacitor.
  • a porous non-woven fabric coating layer on the outer surface of an electrode according to the present invention is made from an inorganic fiber of high thermal stability, and when an electrochemical device is overheated, the porous coating layer may prevent a short circuit between an anode and a cathode.
  • the porous non-woven fabric coating layer of the present invention is made from a fiber-shaped inorganic material, having uniformly dispersed pores, which may contribute to performance improvement of an electrochemical device.
  • the porous non-woven fabric coating layer made from an ultra-fine inorganic fiber using electroemitting may achieve a thin layer, and may be used to manufacture a high capacity electrochemical device.
  • a process for forming a porous non-woven fabric coating layer of an inorganic fiber on the outer surface of an electrode according to the present invention is described as follows.
  • the metal alkoxide compound may include silicone-containing alkoxide, aluminum-containing alkoxide, or titanium-containing alkoxide, singularly or in combination.
  • a metal of the metal alkoxide compound may be partially substituted by alkali metals or alkaline earth metals such as lithium, magnesium, barium, and the like, or transition metals such as cobalt, manganese, iron, nickel, vanadium, and the like, according to necessity.
  • the silicone-containing alkoxide may be, for example, tetra-alkyl-ortho-silicate (having 1 to 4 carbon atoms).
  • the aluminum-containing alkoxide may be, for example, aluminum-sec-butoxide, aluminum isoprotoxide, or aluminum ethoxide.
  • the titanium-containing alkoxide may be, for example, titanium isopropoxide, or titanium alkyl alkoxide (having 1 to 4 carbon atoms).
  • the present invention may use any metal alkoxide compound if it becomes a fiber-like material by a sol-gel reaction.
  • the sol solution containing the metal alkoxide compound may be prepared by mixing the metal alkoxide compound with a solvent, followed by sputtering, or by maturing through hydrolysis and condensation of an acidic component, such as hydrochloric acid and the like.
  • Korean Patent No. 0596543 discloses a process for preparing a sol solution by maturing a solution of tetra-alkyl-ortho-silicate in ethanol.
  • Korean Patent Publication No. 2009-0054385 teaches a process for preparing a sol solution by maturing a precursor solution including a silicone-containing alkoxide compound and a titanium-containing alkoxide compound. The entire contents of the documents are incorporated herein by reference.
  • a binder may be added to the sol solution according to necessity, and the following exemplary polymers may be used as the binder, for example, polyvinylidene fluoride-co-hexafluoropropylene, polyvinylidene fluoride-co-trichloroethylene, polymethylmethacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate, polyvinylalcohol, polyethylene-co-vinyl acetate, polyethylene oxide, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cyanoethylpullulan, cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, pullulan, carboxyl methyl cellulose, and the like.
  • a low-molecular-weight compound having a molecular weight of 10,000 g/mol or less may be used as the binder.
  • a porous non-woven coating layer of an inorganic fiber is formed by electroemitting the prepared sol solution onto the outer surface of an electrode active material layer formed on at least one surface of a current collector (S2).
  • Electroemitting of the sol solution is also well-known in the art. Electroemitting is a technique for supplying an electric charge by applying high voltage to the solution, and spraying the charged solution onto a substrate through an ultra-fine spray nozzle or a droplet-ejecting spray head. Electroemitting may include electrospinning or electrospraying. Korean Patent Publication No.
  • 2009-0054385 discloses an electrospinning method using an electrospinning apparatus including an injector (a syringe pump) and an injection needle, a bottom electrode (a stainless steel drum for controlling a rotation rate), and a spinning voltage supplier, in which an adjusted distance between the end of the injection needle and the drum is between 5 and 30 cm, an adjusted spinning voltage is 15 kV or more, and an adjusted flow in the syringe pump is between 1 and 20 ml/hr.
  • Korean Patent No. 0271116 describes an electrospraying apparatus and method. The entire contents of the documents are also incorporated herein by reference.
  • the electroemitting according to the present invention forms a non-woven coating layer of an inorganic fiber by locating an electrode on a substrate of an electroemitting apparatus, and electroemitting the prepared sol solution onto the outer surface of an electrode active material layer formed on at least one surface of a current collector of the electrode.
  • porosity of the non-woven coating layer may be optimized by adjusting injection intervals of the syringe pump, a delivery rate of the substrate, and the like, according to the well-known methods.
  • the electrode sprayed with the sol solution according to the present invention is not limited to a specific type of electrode, and the electrode may be fabricated by forming a layer of an electrode active material (that is, an electrode active material layer) on at least one surface of a current collector according to methods known in the art.
  • a cathode active material may include typical cathode active materials for a cathode of conventional electrochemical devices, for example, lithium manganese oxides, lithium cobalt oxides, lithium nickel oxides, lithium iron oxides, or lithium composite oxides thereof, however the present invention is not limited in this regard.
  • An anode active material may include typical anode active materials for an anode of conventional electrochemical devices, for example, lithium intercalation materials such as lithium metals, lithium alloys, carbon, petroleum coke, activated carbon, graphite, or other carbonaceous materials, however the present invention is not limited in this regard.
  • a current collector having a cathode active material layer may be a foil made from aluminum, nickel, or combinations thereof, and a current collector having an anode active material layer may be a foil made from copper, gold, nickel, copper alloys, or combinations thereof.
  • a solvent included in the sol solution may be generally volatilized depending on the type of the solvent, and accordingly, a separate solvent drying process may be not needed. However, a separate solvent drying process may be performed to remove the solvent at room temperature or high temperature according to necessity.
  • thermal treatment for decomposing the electrode having the porous non-woven coating layer may be further performed.
  • the electrode of the present invention fabricated by the above-described exemplary method includes:
  • electroemitting of the sol solution containing the metal alkoxide compound may result in an inorganic fiber made from inorganic oxide or mixtures thereof, such as SiO 2 , Al 2 O 3 , BaTiO 3 , TiO 2 , and the like, through adjustment of an emission density, and inorganic fibers are entangled to form a non-woven fabric having a plurality of uniformly dispersed pores.
  • a metal of the inorganic oxide may be partially substituted by alkali metals or alkaline earth metals such as lithium, magnesium, barium, and the like, or transition metals such as cobalt, manganese, iron, nickel, vanadium, and the like.
  • the inorganic fiber may contain organic alcohols derived from metal alkoxide, a binder, and the like.
  • the non-woven fabric is formed directly on the electrode active material layer, and accordingly, it forms a coating layer of the electrode active material layer.
  • the inorganic fiber formed by electroemitting is generally a nano-size inorganic fiber having a diameter between 1 and 100 nm, however in view of the recent technology trend, it may be a submicron-size inorganic fiber having a diameter between 1 and 1000 nm.
  • the inorganic non-woven fabric formed by electrospinning is comprised of a relatively long inorganic fiber
  • an inorganic non-woven fabric formed by electrospraying is comprised of a relatively short inorganic fiber, and they are connected to each other to form a mesh-type non-woven fabric.
  • a porous non-woven coating layer of an ultra-fine inorganic fiber formed by electroemitting may have a reduced thickness, and may be used to manufacture a high capacity electrochemical device.
  • the porous non-woven coating layer may preferably have a thickness between 0.1 and 100 um, and the non-woven fabric may preferably have an average pore size between 0.01 and 10 um and a porosity between 1 and 80%.
  • the electrode of the present invention may be applied to either or both a cathode and an anode.
  • the porous non-woven coating layer of the inorganic fiber interposed between a cathode and an anode may replace a conventional separator.
  • a conventional separator may be interposed between a cathode and an anode, and in this instance, even though the conventional separator thermally shrinks or melts due to overheat, the porous non-woven coating layer of the inorganic fiber may prevent a short circuit between the cathode and the anode.
  • An electrochemical device of the present invention may be any device in which an electrochemical reaction may occur, and include all kinds of batteries, for example, primary batteries, secondary batteries, fuel cells, solar cells or capacitors such as super capacitors.
  • batteries for example, primary batteries, secondary batteries, fuel cells, solar cells or capacitors such as super capacitors.
  • lithium secondary batteries are preferred, for example, including lithium metal secondary batteries, lithium ion secondary batteries, lithium polymer secondary batteries, or lithium ion polymer secondary batteries.
  • An electrolyte useable in the present invention includes a salt represented by the formula of A + B - , wherein A + represents an alkali metal cation such as Li + , Na + , K + , or combinations thereof, and B - represents a salt containing an anion such as PF 6 - , BF 4 - , Cl - , Br - , I - , Cl0 4 - , AsF 6 - , CH 3 CO 2 - , CF 3 SO 3 - , N(CF 3 SO 2 ) 2 - , C(CF 2 SO 2 ) 3 - , or combinations thereof.
  • a + represents an alkali metal cation such as Li + , Na + , K + , or combinations thereof
  • B - represents a salt containing an anion such as PF 6 - , BF 4 - , Cl - , Br - , I - , Cl0 4 - , AsF 6 - , CH 3
  • the salt may be dissolved in an organic solvent such as propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), dimethyl sulfoxide, acetonitrile, dimethoxyethane, diethoxyethane, tetrahydrofuran, N-methyl-2-pyrrolidone (NMP), ethylmethyl carbonate (EMC), gamma-butyrolactone ( ⁇ -butyrolactone), or their mixtures, however, the present invention is not limited thereto.
  • PC propylene carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • DPC dipropyl carbonate
  • dimethyl sulfoxide acetonitrile, dimethoxyethane, diethoxyethane, tetrahydrofuran
  • NMP N-methyl-2-pyrrolidone
  • the electrolyte may be injected in a suitable step of a battery manufacturing process, depending on a manufacturing process and desired properties of a final product.
  • the electrolyte may be injected before a battery assembly process, during a final step of the battery assembly process, or the like.
  • FIG. 1 An SEM image of the formed coating layer is illustrated in FIG. 1 . It was observed that a diameter of an inorganic fiber of Al 2 O 3 comprising the coating layer was generally 100 nm or less.
  • FIG. 2 An SEM image of the formed coating layer is illustrated in FIG. 2 . It was observed that a diameter of an inorganic fiber of BaTiO 3 comprising the coating layer was generally 800 nm or less.
  • Aluminum tri-sec-butoxide, ethanol, and water were mixed at a mole ratio of 1:16:0.6, and were matured while agitating at 60 ⁇ for 1 hour, followed by cooling at room temperature, to prepare a sol solution. Subsequently, the sol solution, methanol, and water were mixed at a weight ratio of 1:0.2:0.003, were added with 3 volume% of acetic acid, and were agitated at room temperature for 30 minutes. Next, a 5 weight% aqueous solution of polyvinylalcohol was added thereto, followed by agitation at room temperature for 2 hours, to prepare a sol solution for electrospraying.
  • the prepared sol solution was transferred through a pipe having an inner diameter of 0.5 mm at a flow rate of 100 uL/min using a syringe pump, and was electrospun onto an electrode (having a cathode active material layer formed on the outer surface of a current collector) while applying 20 kV, to form a coating layer.
  • a diameter of an inorganic fiber of Al 2 O 3 comprising the coating layer was generally 300 nm or less.
  • the prepared sol solution was transferred through a pipe having an inner diameter of 0.5 mm at a flow rate of 100 uL/min using a syringe pump, and was electrospun onto an electrode (having a cathode active material layer formed on the outer surface of a current collector) while applying 15 kV, to form a coating layer.
  • a diameter of an inorganic fiber of BaTiO 3 comprising the coating layer was generally 300 nm or less.
  • the polymer solution having the inorganic oxide particles dispersed therein was transferred through a pipe having an inner diameter of 2 mm at a flow rate of 5 L/min using a syringe pump, and was electrospun onto an electrode (having a cathode active material layer formed on the outer surface of a current collector) for 5 minutes while applying 23 kV, to form a coating layer.
  • FIG. 3 An SEM image of the formed coating layer is illustrated in FIG. 3 . It was observed that a diameter of a fiber comprising the coating layer was generally 500 nm or less, but that the inorganic oxide particles were agglomerated rather than effectively dispersed.
  • the polymer solution having the inorganic oxide particles dispersed therein was transferred through a pipe having an inner diameter of 0.5 mm at a flow rate of 0.8 L/min using a syringe pump, and was electrospun onto an electrode (having a cathode active material layer formed on an outer surface of a current collector) for 20 minutes while applying 23 kV, to form a coating layer.
  • FIG. 4 An SEM image of the formed coating layer is illustrated in FIG. 4 . It was observed that a diameter of a fiber comprising the coating layer was generally 100 nm or less, but that the inorganic oxide particles were agglomerated rather than effectively dispersed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inert Electrodes (AREA)

Abstract

A method for manufacturing an electrode may include (S1) preparing a sol solution containing a metal alkoxide compound, and (S2) forming a porous non-woven coating layer of an inorganic fiber by electroemitting the sol solution onto an outer surface of an electrode active material layer formed on at least one surface of a current collector. The porous non-woven coating layer formed on the outer surface of the electrode active material layer may be made from an inorganic fiber having excellent thermal stability. When an electrochemical device is overheated, the porous non-woven coating layer may contribute to suppression of a short circuit between a cathode and an anode and performance improvement of an electrochemical device due to uniform distribution of pores.

Description

    CROSS-REFERENCE TO RELATED APLICATION
  • This application enters into the national phase based on International Application No. PCT/KR2010/004215 filed on June 29, 2010 , which claims priorities from Korean Patent Application No. 10-2009-0058977 filed in Republic of Korea on June 30, 2009, and Korean Patent Application No. 10-2010-0061845 filed in Republic of Korea on June 29, 2010, the entire contents of which are incorporated herein by reference.
  • TECHNICAL FIELD
  • The present invention relates to a method for manufacturing an electrode used for an electrochemical device such as a lithium secondary battery, an electrode manufactured therefrom, and a method for manufacturing an electrochemical device comprising the same. More particularly, the present invention relates to a method for manufacturing an electrode having an inorganic material-containing porous coating layer, an electrode manufactured therefrom, and a method for manufacturing an electrochemical device comprising the same.
  • BACKGROUND ART
  • Recently, there has been an increasing interest in energy storage technologies. As electrochemical devices have been widely used as energy sources in the fields of mobile phones, camcorders, notebook computers and even electric vehicle, research and development has been increasingly made on the electrochemical devices. Among the electrochemical devices, rechargeable secondary batteries are particularly the center of attention. Recent trends of research and development move toward new designs of electrodes and batteries to improve capacity density and specific energy.
  • Among currently available secondary batteries, lithium secondary batteries that were developed in early 1990's have a higher operating voltage and a much higher energy density than conventional batteries using a liquid electrolyte, such as Ni-MH batteries, Ni-Cd batteries, H2SO4-Pb batteries, and the like. These characteristics of the lithium secondary batteries afford advantages. However, the lithium secondary batteries have disadvantages such as a complex manufacturing process and safety-related problems caused by use of an organic electrolyte, for example, firing, explosion, and the like. Under these circumstances, lithium-ion polymer batteries developed to overcome the drawbacks of lithium ion batteries are considered as one of next-generation batteries. However, lithium-ion polymer batteries have a relatively lower battery capacity than lithium ion batteries, and have an insufficient discharging capacity at low temperature. Accordingly, there is an urgent need to solve these disadvantages of the lithium-ion polymer batteries.
  • A variety of electrochemical devices have been produced from many companies, and each exhibits different safety characteristics. Thus, it is important to evaluate and ensure safety of electrochemical devices. First of all, electrochemical devices should not cause any damage to users in case of malfunction. Taking this into account, safety regulations strictly prohibit safety-related accidents of electrochemical devices such as firing or smoke emission. According to the safety characteristics of electrochemical devices, explosion may occur when an electrochemical device is overheated and subject to thermal runaway and when a separator is punctured. In particular, a short circuit may occur between a cathode and an anode, when a polyolefin-based porous substrate that is commonly used as a separator of the electrochemical devices shows a significant thermal shrinking behavior at a temperature of 100°C or above due to its material characteristics and manufacturing characteristics such as elongation.
  • In order to solve the above safety-related problems of electrochemical devices, an electrode has been suggested in which a porous coating layer made from a mixture of binder polymer and an excessive amount of inorganic particles is formed on at least one surface of a porous substrate having a plurality of pores. The inorganic particles contained in the porous coating have high heat resistance, and when an electrochemical device is overheated, the inorganic particles may prevent a short circuit between an anode and a cathode. As a result, electrochemical devices having such an electrode may eliminate the need of a conventional separator or may improve thermal stability.
  • An electrode having the porous coating layer is manufactured by dispersing an excessive amount of inorganic particles in a solution having binder polymer dissolved therein, and coating the dispersion solution on an outer surface of an electrode active material layer, followed by drying. For a good operation of electrochemical devices, it requires a uniform dispersion of pores in the porous coating layer. That is, an excessive amount of inorganic particles in the porous coating layer should be uniformly dispersed. For a uniform dispersion, many attempts have been made to disperse the inorganic particles for a long time using physical agitation, ultrasonic dispersion, and the like, after adding the inorganic particles to the binder polymer solution. However, even inorganic particles uniformly dispersed using the above methods may agglomerate with each other during a solvent drying process. For this reason, it is very difficult to manufacture a porous coating layer having an excessive amount of inorganic particles uniformly dispersed therein. This also works on electrospraying of a polymer solution having uniformly dispersed inorganic particles.
  • DISCLOSURE OF INVENTION TECHNICAL PROBLEM
  • Therefore, an object of the invention is to provide a method for manufacturing an electrode with an inorganic material-containing porous coating layer having uniformly dispersed pores, as opposed to a conventional electrode with an inorganic particles-containing porous coating layer, and an electrode manufactured therefrom, and an electrochemical device comprising such an electrode.
  • Technical Solution
  • In order to achieve the object, the present invention provides a method for manufacturing an electrode including (S1) preparing a sol solution containing a metal alkoxide compound, and (S2) forming a porous non-woven coating layer of an inorganic fiber by electro emitting the sol solution onto an outer surface of an electrode active material layer formed on at least one surface of a current collector.
  • In the method for manufacturing an electrode according to the present invention, the metal alkoxide compound may include silicone-containing alkoxide, aluminum-containing alkoxide, or titanium-containing alkoxide, singularly or in combination. A metal of the metal alkoxide compound may be partially substituted by alkali metals or alkaline earth metals such as lithium, magnesium, barium, and the like, or transition metals such as cobalt, manganese, iron, nickel, vanadium, and the like.
  • The silicone-containing alkoxide may be tetra-alkyl-ortho-silicate (having 1 to 4 carbon atoms), the aluminum-containing alkoxide may be aluminum-sec-butoxide, aluminum isoprotoxide, or aluminum ethoxide, and the titanium-containing alkoxide may be titanium isopropoxide or titanium alkyl alkoxide (having 1 to 4 carbon atoms).
  • In the method for manufacturing an electrode according to the present invention, the sol solution may further contain a binder, for example, at least one selected from the group consisting of polyvinylidene fluoride-co-hexafluoropropylene, polyvinylidene fluoride-co-trichloroethylene, polymethylmethacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate, polyvinylalcohol, polyethylene-co-vinyl acetate, polyethylene oxide, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cyanoethylpullulan, cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, pullulan, carboxyl methyl cellulose, and a low-molecular-weight compound having a molecular weight of 10,000 g/mol or less.
  • After the (S2) step, the method may further include performing a thermal treatment to separate the binder from the porous non-woven coating layer.
  • In the method for manufacturing an electrode according to the present invention, the electroemitting may be electrospinning or electrospraying.
  • An electrode according to the present invention may include (a) a current collector and an electrode active material layer formed on at least one surface of the current collector, and (b) a porous non-woven coating layer of an inorganic fiber formed on the outer surface of the electrode active material layer.
  • In the electrode according to the present invention, the inorganic fiber may be formed from inorganic oxide, such as SiO2 Al2O3, BaTiO3, TiO2 and the like, singularly or in combination, and a metal of the inorganic oxide may be partially substituted by alkali metals or alkaline earth metals such as lithium, magnesium, barium, and the like, or transition metals such as cobalt, manganese, iron, nickel, vanadium, and the like.
  • The inorganic fiber may be formed by electroemitting such as electrospinning or electrospraying.
  • In the electrode according to the present invention, the inorganic fiber may preferably have an average diameter between 0.001 and 1000 nm, and the non-woven fabric may preferably have a thickness between 0.1 and 100 um, an average pore size between 0.01 and 10 um, and a porosity between 1 and 80%.
  • The electrode of the present invention may be applied to either or both of a cathode and an anode of an electrochemical device such as a lithium secondary battery or a super capacitor.
  • Advantageous Effects
  • A porous non-woven fabric coating layer on the outer surface of an electrode according to the present invention is made from an inorganic fiber of high thermal stability, and when an electrochemical device is overheated, the porous coating layer may prevent a short circuit between an anode and a cathode. Also, as opposed to a conventional porous coating layer containing an excessive amount of inorganic particles, the porous non-woven fabric coating layer of the present invention is made from a fiber-shaped inorganic material, having uniformly dispersed pores, which may contribute to performance improvement of an electrochemical device. Furthermore, the porous non-woven fabric coating layer made from an ultra-fine inorganic fiber using electroemitting may achieve a thin layer, and may be used to manufacture a high capacity electrochemical device.
  • BRIEF DESCRIPTION OF THE DRAWINGS
    • FIG. 1 is a scanning electron microscope (SEM) image illustrating a coating layer formed on an electrode according to example 1.
    • FIG. 2 is a SEM image illustrating a coating layer formed on an electrode according to example 2.
    • FIG. 3 is a SEM image illustrating a coating layer formed on an electrode according to comparative example 1.
    • FIG. 4 is a SEM image illustrating a coating layer formed on an electrode according to comparative example 2.
    BEST MODE
  • Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to the description, it should be understood that the terms used in the specification and the appended claims should not be construed as limited to general and dictionary meanings, but interpreted based on the meanings and concepts corresponding to technical aspects of the present invention on the basis of the principle that the inventor is allowed to define terms appropriately for the best explanation. Therefore, the description proposed herein is just a preferable example for the purpose of illustrations only, not intended to limit the scope of the invention, so it should be understood that other equivalents and modifications could be made thereto without departing from the spirit and scope of the invention.
  • A process for forming a porous non-woven fabric coating layer of an inorganic fiber on the outer surface of an electrode according to the present invention is described as follows.
  • First, a sol solution containing a metal alkoxide compound is prepared (S1).
  • The metal alkoxide compound may include silicone-containing alkoxide, aluminum-containing alkoxide, or titanium-containing alkoxide, singularly or in combination. A metal of the metal alkoxide compound may be partially substituted by alkali metals or alkaline earth metals such as lithium, magnesium, barium, and the like, or transition metals such as cobalt, manganese, iron, nickel, vanadium, and the like, according to necessity.
  • The silicone-containing alkoxide may be, for example, tetra-alkyl-ortho-silicate (having 1 to 4 carbon atoms). The aluminum-containing alkoxide may be, for example, aluminum-sec-butoxide, aluminum isoprotoxide, or aluminum ethoxide. The titanium-containing alkoxide may be, for example, titanium isopropoxide, or titanium alkyl alkoxide (having 1 to 4 carbon atoms). However, the present invention may use any metal alkoxide compound if it becomes a fiber-like material by a sol-gel reaction.
  • For electroemitting described below, a process for preparing the sol solution containing the metal alkoxide compound is well-known in the art. Typically, the sol solution containing the metal alkoxide compound may be prepared by mixing the metal alkoxide compound with a solvent, followed by sputtering, or by maturing through hydrolysis and condensation of an acidic component, such as hydrochloric acid and the like.
  • For example, Korean Patent No. 0596543 discloses a process for preparing a sol solution by maturing a solution of tetra-alkyl-ortho-silicate in ethanol. Also, Korean Patent Publication No. 2009-0054385 teaches a process for preparing a sol solution by maturing a precursor solution including a silicone-containing alkoxide compound and a titanium-containing alkoxide compound. The entire contents of the documents are incorporated herein by reference.
  • A binder may be added to the sol solution according to necessity, and the following exemplary polymers may be used as the binder, for example, polyvinylidene fluoride-co-hexafluoropropylene, polyvinylidene fluoride-co-trichloroethylene, polymethylmethacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate, polyvinylalcohol, polyethylene-co-vinyl acetate, polyethylene oxide, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cyanoethylpullulan, cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, pullulan, carboxyl methyl cellulose, and the like. A low-molecular-weight compound having a molecular weight of 10,000 g/mol or less may be used as the binder.
  • Subsequently, a porous non-woven coating layer of an inorganic fiber is formed by electroemitting the prepared sol solution onto the outer surface of an electrode active material layer formed on at least one surface of a current collector (S2).
  • Electroemitting of the sol solution is also well-known in the art. Electroemitting is a technique for supplying an electric charge by applying high voltage to the solution, and spraying the charged solution onto a substrate through an ultra-fine spray nozzle or a droplet-ejecting spray head. Electroemitting may include electrospinning or electrospraying. Korean Patent Publication No. 2009-0054385 discloses an electrospinning method using an electrospinning apparatus including an injector (a syringe pump) and an injection needle, a bottom electrode (a stainless steel drum for controlling a rotation rate), and a spinning voltage supplier, in which an adjusted distance between the end of the injection needle and the drum is between 5 and 30 cm, an adjusted spinning voltage is 15 kV or more, and an adjusted flow in the syringe pump is between 1 and 20 ml/hr. Also, Korean Patent No. 0271116 describes an electrospraying apparatus and method. The entire contents of the documents are also incorporated herein by reference.
  • The electroemitting according to the present invention forms a non-woven coating layer of an inorganic fiber by locating an electrode on a substrate of an electroemitting apparatus, and electroemitting the prepared sol solution onto the outer surface of an electrode active material layer formed on at least one surface of a current collector of the electrode. In this instance, porosity of the non-woven coating layer may be optimized by adjusting injection intervals of the syringe pump, a delivery rate of the substrate, and the like, according to the well-known methods.
  • The electrode sprayed with the sol solution according to the present invention is not limited to a specific type of electrode, and the electrode may be fabricated by forming a layer of an electrode active material (that is, an electrode active material layer) on at least one surface of a current collector according to methods known in the art. In the electrode active material, a cathode active material may include typical cathode active materials for a cathode of conventional electrochemical devices, for example, lithium manganese oxides, lithium cobalt oxides, lithium nickel oxides, lithium iron oxides, or lithium composite oxides thereof, however the present invention is not limited in this regard. An anode active material may include typical anode active materials for an anode of conventional electrochemical devices, for example, lithium intercalation materials such as lithium metals, lithium alloys, carbon, petroleum coke, activated carbon, graphite, or other carbonaceous materials, however the present invention is not limited in this regard. As a non-limiting example, a current collector having a cathode active material layer may be a foil made from aluminum, nickel, or combinations thereof, and a current collector having an anode active material layer may be a foil made from copper, gold, nickel, copper alloys, or combinations thereof.
  • During electroemitting, a solvent included in the sol solution may be generally volatilized depending on the type of the solvent, and accordingly, a separate solvent drying process may be not needed. However, a separate solvent drying process may be performed to remove the solvent at room temperature or high temperature according to necessity.
  • According to necessity, to separate the polymer binder from the porous non-woven coating layer, thermal treatment for decomposing the electrode having the porous non-woven coating layer may be further performed. In this case, it is required to select the binder in the electrode active material layer and the polymer binder based on a decomposition temperature of the polymers.
  • The electrode of the present invention fabricated by the above-described exemplary method, includes:
    1. (a) a current collector and an electrode active material layer formed on at least one surface of the current collector; and
    2. (b) a porous non-woven coating layer of an inorganic fiber formed on the outer surface of the electrode active material layer.
  • As well known, electroemitting of the sol solution containing the metal alkoxide compound may result in an inorganic fiber made from inorganic oxide or mixtures thereof, such as SiO2, Al2O3, BaTiO3, TiO2, and the like, through adjustment of an emission density, and inorganic fibers are entangled to form a non-woven fabric having a plurality of uniformly dispersed pores. A metal of the inorganic oxide may be partially substituted by alkali metals or alkaline earth metals such as lithium, magnesium, barium, and the like, or transition metals such as cobalt, manganese, iron, nickel, vanadium, and the like. Also, the inorganic fiber may contain organic alcohols derived from metal alkoxide, a binder, and the like.
  • The non-woven fabric is formed directly on the electrode active material layer, and accordingly, it forms a coating layer of the electrode active material layer. The inorganic fiber formed by electroemitting is generally a nano-size inorganic fiber having a diameter between 1 and 100 nm, however in view of the recent technology trend, it may be a submicron-size inorganic fiber having a diameter between 1 and 1000 nm.
  • The inorganic non-woven fabric formed by electrospinning is comprised of a relatively long inorganic fiber, an inorganic non-woven fabric formed by electrospraying is comprised of a relatively short inorganic fiber, and they are connected to each other to form a mesh-type non-woven fabric. In particular, a porous non-woven coating layer of an ultra-fine inorganic fiber formed by electroemitting may have a reduced thickness, and may be used to manufacture a high capacity electrochemical device.
  • In the electrode according to the present invention, the porous non-woven coating layer may preferably have a thickness between 0.1 and 100 um, and the non-woven fabric may preferably have an average pore size between 0.01 and 10 um and a porosity between 1 and 80%.
  • The electrode of the present invention may be applied to either or both a cathode and an anode. The porous non-woven coating layer of the inorganic fiber interposed between a cathode and an anode may replace a conventional separator. Also, a conventional separator may be interposed between a cathode and an anode, and in this instance, even though the conventional separator thermally shrinks or melts due to overheat, the porous non-woven coating layer of the inorganic fiber may prevent a short circuit between the cathode and the anode.
  • An electrochemical device of the present invention may be any device in which an electrochemical reaction may occur, and include all kinds of batteries, for example, primary batteries, secondary batteries, fuel cells, solar cells or capacitors such as super capacitors. In particular, among the secondary batteries, lithium secondary batteries are preferred, for example, including lithium metal secondary batteries, lithium ion secondary batteries, lithium polymer secondary batteries, or lithium ion polymer secondary batteries.
  • An electrolyte useable in the present invention includes a salt represented by the formula of A+B-, wherein A+ represents an alkali metal cation such as Li+, Na+, K+, or combinations thereof, and B- represents a salt containing an anion such as PF6 -, BF4 -, Cl-, Br-, I-, Cl04 -, AsF6 -, CH3CO2 -, CF3SO3 -, N(CF3SO2)2 -, C(CF2SO2)3 -, or combinations thereof. The salt may be dissolved in an organic solvent such as propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), dimethyl sulfoxide, acetonitrile, dimethoxyethane, diethoxyethane, tetrahydrofuran, N-methyl-2-pyrrolidone (NMP), ethylmethyl carbonate (EMC), gamma-butyrolactone (γ-butyrolactone), or their mixtures, however, the present invention is not limited thereto.
  • The electrolyte may be injected in a suitable step of a battery manufacturing process, depending on a manufacturing process and desired properties of a final product. In other words, the electrolyte may be injected before a battery assembly process, during a final step of the battery assembly process, or the like.
  • MODE FOR INVENTION
  • Hereinafter, various preferred examples of the present invention will be described in detail for better understandings. However, the examples of the present invention may be modified in various ways, and they should not be interpreted as limiting the scope of the invention. The examples of the present invention are just for better understandings of the invention to persons having ordinary skill in the art.
  • Example 1
  • 5 g of aluminum tri-sec-butoxide was mixed with 18.98 ml of ethanol and 0.22 ml of water, and was matured while agitating at 60□ for 3 hours, followed by cooling at room temperature, to prepare a sol solution. Subsequently, the prepared sol solution was transferred through a pipe having an inner diameter of 0.5 mm at a flow rate of 100 uL/min using a syringe pump, and was electrosprayed onto an electrode (having a cathode active material layer formed on the outer surface of a current collector) while applying 10 kV, to form a coating layer.
  • An SEM image of the formed coating layer is illustrated in FIG. 1. It was observed that a diameter of an inorganic fiber of Al2O3 comprising the coating layer was generally 100 nm or less.
  • Example 2
  • 5.1 g of barium acetate was dissolved in 12 ml of acetic acid, and was agitated for 2 hours. While being kept agitated, 5.9 mL of titanium isopropoxide was slowly added thereto, followed by 5 hour-agitation, to prepare a sol solution. Subsequently, the prepared sol solution was transferred through a pipe having an inner diameter of 0.5 mm at a flow rate of 100 uL/min using a syringe pump, and was electrosprayed onto an electrode (having a cathode active material layer formed on the outer surface of a current collector) while applying 10 kV, to form a coating layer.
  • An SEM image of the formed coating layer is illustrated in FIG. 2. It was observed that a diameter of an inorganic fiber of BaTiO3 comprising the coating layer was generally 800 nm or less.
  • Example 3
  • Aluminum tri-sec-butoxide, ethanol, and water were mixed at a mole ratio of 1:16:0.6, and were matured while agitating at 60□ for 1 hour, followed by cooling at room temperature, to prepare a sol solution. Subsequently, the sol solution, methanol, and water were mixed at a weight ratio of 1:0.2:0.003, were added with 3 volume% of acetic acid, and were agitated at room temperature for 30 minutes. Next, a 5 weight% aqueous solution of polyvinylalcohol was added thereto, followed by agitation at room temperature for 2 hours, to prepare a sol solution for electrospraying.
  • The prepared sol solution was transferred through a pipe having an inner diameter of 0.5 mm at a flow rate of 100 uL/min using a syringe pump, and was electrospun onto an electrode (having a cathode active material layer formed on the outer surface of a current collector) while applying 20 kV, to form a coating layer.
  • It was observed that a diameter of an inorganic fiber of Al2O3 comprising the coating layer was generally 300 nm or less.
  • Example 4
  • 1.275 g of barium acetate was dissolved in 3 ml of acetic acid, and was agitated for 2 hours. While being kept agitated, 1.475 mL of titanium isopropoxide was slowly added thereto. A solution of 10 weight% polyvinylpyrrolidone in ethanol was added thereto, followed by agitation at room temperature for 2 hours, to prepare a sol solution.
  • The prepared sol solution was transferred through a pipe having an inner diameter of 0.5 mm at a flow rate of 100 uL/min using a syringe pump, and was electrospun onto an electrode (having a cathode active material layer formed on the outer surface of a current collector) while applying 15 kV, to form a coating layer.
  • It was observed that a diameter of an inorganic fiber of BaTiO3 comprising the coating layer was generally 300 nm or less.
  • Comparative Example 1
  • After aramide was dissolved in dimethylacetamide to prepare a polymer solution, Al2O3 inorganic oxide particles having an average particle diameter of about 500 nm were added thereto such that a weight ratio of polymer: inorganic oxide is 8:2, followed by 6 hour-dispersion using a mixer.
  • Subsequently, the polymer solution having the inorganic oxide particles dispersed therein was transferred through a pipe having an inner diameter of 2 mm at a flow rate of 5 L/min using a syringe pump, and was electrospun onto an electrode (having a cathode active material layer formed on the outer surface of a current collector) for 5 minutes while applying 23 kV, to form a coating layer.
  • An SEM image of the formed coating layer is illustrated in FIG. 3. It was observed that a diameter of a fiber comprising the coating layer was generally 500 nm or less, but that the inorganic oxide particles were agglomerated rather than effectively dispersed.
  • Comparative Example 2
  • After aramide was dissolved in dimethylacetamide to prepare a polymer solution, Al2O3 inorganic oxide particles having an average particle diameter of about 50 nm were added thereto such that a weight ratio of polymer: inorganic oxide is 2:1, followed by 6 hour-dispersion using a mixer.
  • Subsequently, the polymer solution having the inorganic oxide particles dispersed therein was transferred through a pipe having an inner diameter of 0.5 mm at a flow rate of 0.8 L/min using a syringe pump, and was electrospun onto an electrode (having a cathode active material layer formed on an outer surface of a current collector) for 20 minutes while applying 23 kV, to form a coating layer.
  • An SEM image of the formed coating layer is illustrated in FIG. 4. It was observed that a diameter of a fiber comprising the coating layer was generally 100 nm or less, but that the inorganic oxide particles were agglomerated rather than effectively dispersed.

Claims (21)

  1. A method for manufacturing an electrode, the method comprising:
    (S1) preparing a sol solution containing a metal alkoxide compound; and
    (S2) forming a porous non-woven coating layer of an inorganic fiber by electroemitting the sol solution onto an outer surface of an electrode active material layer formed on at least one surface of a current collector.
  2. The method for manufacturing an electrode according to claim 1,
    wherein a metal of the metal alkoxide compound includes at least one selected from the group consisting of an alkali metal, an alkaline earth metal, and a transition metal.
  3. The method for manufacturing an electrode according to claim 2,
    wherein the alkaline metal is lithium.
  4. The method for manufacturing an electrode according to claim 1,
    wherein the metal alkoxide compound includes at least one selected from the group consisting of silicone-containing alkoxide, aluminum-containing alkoxide, and titanium-containing alkoxide.
  5. The method for manufacturing an electrode according to claim 4,
    wherein the silicone-containing alkoxide is tetra-alkyl(having 1 to 4 carbon atoms)-ortho-silicate, the aluminum-containing alkoxide is at least one selected from the group consisting of aluminum-sec-butoxide, aluminum isoprotoxide, and aluminum ethoxide, and the titanium-containing alkoxide is titanium isopropoxide or titanium alkyl(having 1 to 4 carbon atoms) alkoxide.
  6. The method for manufacturing an electrode according to claim 1,
    wherein the sol solution further contains a binder.
  7. The method for manufacturing an electrode according to claim 6,
    wherein the binder is at least one selected from the group consisting of polyvinylidene fluoride-co-hexafluoropropylene, polyvinylidene fluoride-co-trichloroethylene, polymethylmethacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate, polyvinylalcohol, polyethylene-co-vinyl acetate, polyethylene oxide, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cyanoethylpullulan, cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, pullulan, carboxyl methyl cellulose, and a low-molecular-weight compound having a molecular weight of 10,000 g/mol or less.
  8. The method for manufacturing an electrode according to claim 6, further comprising:
    after the (S2) step,
    performing a thermal treatment to decompose an organic component in the porous non-woven coating layer.
  9. The method for manufacturing an electrode according to claim 1,
    wherein the electroemitting is electrospraying or electrospinning.
  10. An electrode, comprising:
    (a) a current collector and an electrode active material layer formed on at least one surface of the current collector; and
    (b) a porous non-woven coating layer of an inorganic fiber formed on an outer surface of the electrode active material layer.
  11. The electrode according to claim 10.
    wherein the inorganic fiber includes an inorganic oxide of which a metal is at least one selected from the group consisting of an alkali metal, an alkaline earth metal, and a transition metal.
  12. The electrode according to claim 11,
    wherein the alkaline metal is lithium.
  13. The electrode according to claim 10,
    wherein the inorganic fiber includes at least one selected from the group consisting of SiO2, Al2O3, BaTiO3, and TiO2.
  14. The electrode according to claim 10,
    wherein the inorganic fiber is formed by electroemitting.
  15. The electrode according to claim 14,
    wherein the electroemitting is electrospraying or electrospinning.
  16. The electrode according to claim 10,
    wherein the inorganic fiber has an average diameter between 0.001 and 1000 nm.
  17. The electrode according to claim 10,
    wherein the porous non-woven coating layer has a thickness between 0.1 and 100 um.
  18. The electrode according to claim 10,
    wherein the porous non-woven coating layer has an average pore size between 0.01 and 10 um.
  19. The electrode according to claim 10,
    wherein the non-woven fabric has a porosity between 1 and 80%.
  20. An electrochemical device, comprising:
    a cathode; and
    an anode,
    wherein either or both of the cathode and the anode is an electrode defined in claim 10.
  21. The electrochemical device according to claim 20,
    wherein the electrochemical device is a lithium secondary battery.
EP10794340.9A 2009-06-30 2010-06-29 Method for manufacturing an electrode having a porous coating layer Active EP2461395B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL10794340T PL2461395T3 (en) 2009-06-30 2010-06-29 Method for manufacturing an electrode having a porous coating layer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20090058977 2009-06-30
KR1020100061845A KR101032214B1 (en) 2009-06-30 2010-06-29 Method for manufacturing an electrode having a porous coating layer, an electrode formed therefrom and an electrochemical device having the same
PCT/KR2010/004215 WO2011002205A2 (en) 2009-06-30 2010-06-29 Method for manufacturing an electrode having a porous coating layer, electrode manufactured by same, and electrochemical device comprising same

Publications (3)

Publication Number Publication Date
EP2461395A2 true EP2461395A2 (en) 2012-06-06
EP2461395A4 EP2461395A4 (en) 2014-07-16
EP2461395B1 EP2461395B1 (en) 2019-01-23

Family

ID=43610393

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10794340.9A Active EP2461395B1 (en) 2009-06-30 2010-06-29 Method for manufacturing an electrode having a porous coating layer

Country Status (7)

Country Link
US (2) US20120003545A1 (en)
EP (1) EP2461395B1 (en)
JP (1) JP5841936B2 (en)
KR (1) KR101032214B1 (en)
CN (1) CN102473894B (en)
PL (1) PL2461395T3 (en)
WO (1) WO2011002205A2 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101880603B1 (en) * 2012-08-22 2018-07-23 동국대학교 산학협력단 Method for preparing of silicon oxide-carbon composite for negative electrode of lithium secondary battery
KR101451899B1 (en) 2012-10-05 2014-10-21 동국대학교 산학협력단 Method for preparing of spinel lithium titanium oxide nanofiber for negative electrode of lithium secondary battery
JP6409574B2 (en) * 2013-01-28 2018-10-24 ソニー株式会社 Impedance measuring apparatus for biological sample and impedance measuring system for biological sample
CN105074972B (en) * 2013-03-12 2018-01-12 塞克姆公司 It is deposited on via the polyoxy anion salt of oxidation in inorganic substrates and forms oxide shell
US9363291B2 (en) 2013-08-01 2016-06-07 Connectwise, Inc. Systems and methods for managing lost devices of multiple types with multiple policies using melded profiles associated with groups
WO2015026110A1 (en) * 2013-08-19 2015-02-26 동국대학교 산학협력단 Method for preparing graphite-titanium oxide composite
KR101628729B1 (en) 2013-08-19 2016-06-10 동국대학교 산학협력단 Method for preparing of graphite-lithium titanium oxide complex
CN105336916A (en) * 2014-06-20 2016-02-17 东莞新能源科技有限公司 Lithium ion battery pole piece and preparation method thereof
JP6551878B2 (en) * 2015-02-12 2019-07-31 国立大学法人 岡山大学 Method for producing positive electrode material for lithium ion battery and electrode material produced by this method
JP7062954B2 (en) * 2016-02-10 2022-05-09 ソニーグループ株式会社 Blood coagulation analyzer and blood coagulation analysis method
CN107681113B (en) * 2016-08-01 2020-07-28 宁德时代新能源科技股份有限公司 Positive plate, preparation method thereof and secondary battery
KR102654826B1 (en) * 2016-09-30 2024-04-05 주식회사 아모그린텍 Electrode and Secondary Battery Using the Same, and Method for Manufacturing the Electrode
KR20180049401A (en) * 2016-11-01 2018-05-11 주식회사 아모그린텍 Electrode and Secondary Battery Using the Same, and Method for Manufacturing the Electrode
KR102122296B1 (en) * 2017-04-20 2020-06-12 주식회사 아모그린텍 Battery and mobile electro device including the same
KR102164252B1 (en) * 2017-05-04 2020-10-12 주식회사 엘지화학 Negative electrode active material, negative electrode comprising the negative electrode active material, lithium secondarty battery comprising the negative electrode and method for preparing the negative electrode active material
US11489165B2 (en) 2017-08-28 2022-11-01 Amogreentech Co., Ltd. Secondary battery having short-circuit preventing film
US20190198837A1 (en) * 2017-12-22 2019-06-27 Sila Nanotechnologies, Inc. Separator with a ceramic-comprising separator layer
US20190255223A1 (en) 2018-02-16 2019-08-22 American Nano, LLC Silica fiber compositions and methods of use
US11135806B2 (en) 2018-02-16 2021-10-05 American Nano Llc. Compositions incorporating silica fibers
US10111783B1 (en) 2018-02-16 2018-10-30 American Nano, LLC Silica fiber composition and method of use
US11759473B2 (en) 2018-02-16 2023-09-19 American Nano, LLC Topical compositions incorporating silica fibers
JP6876648B2 (en) * 2018-03-22 2021-05-26 株式会社東芝 Rechargeable batteries, battery packs and vehicles
CN110660955B (en) * 2018-06-29 2021-11-23 宁德时代新能源科技股份有限公司 Negative pole piece, preparation method thereof and electrochemical device
CN112615052B (en) * 2020-12-14 2024-04-26 江苏纳盾科技有限公司 Composite electrolyte material and preparation method thereof
CN113328205A (en) * 2021-05-28 2021-08-31 安徽壹石通新能源材料有限公司 Composition, electrode containing composition and application of composition
JP2023134867A (en) * 2022-03-15 2023-09-28 株式会社リコー Electrode manufacturing device, electrode manufacturing method, manufacturing device for electrochemical element, and manufacturing method for electrochemical element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6200706B1 (en) * 1995-03-31 2001-03-13 Mitsubishi Paper Mills Limited Nonwoven fabric for separator of non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
US20040224234A1 (en) * 1999-04-09 2004-11-11 Stephan Bauer Wet-on-wet coating method for producing composite bodies that are suitable for use in lithium ion batteries
US20090092900A1 (en) * 2007-10-03 2009-04-09 Sony Corporation Heat-resistant insulating layer-provided separator and non-aqueous electrolyte secondary battery

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1156034A (en) * 1913-01-02 1915-10-05 James K Lanning Hand-threading shuttle.
US3447875A (en) * 1965-06-21 1969-06-03 American Optical Corp Temperature compensating refractometers
JPS57191962A (en) * 1981-05-20 1982-11-25 Hitachi Ltd Fuel cell
US5326598A (en) 1992-10-02 1994-07-05 Minnesota Mining And Manufacturing Company Electrospray coating apparatus and process utilizing precise control of filament and mist generation
JP3371301B2 (en) * 1994-01-31 2003-01-27 ソニー株式会社 Non-aqueous electrolyte secondary battery
EP0836238B1 (en) * 1995-06-28 2005-11-16 Ube Industries, Ltd. Nonaqueous secondary battery
JPH10284065A (en) * 1997-04-05 1998-10-23 Haibaru:Kk Nonaqueous electrolyte battery
US6280871B1 (en) * 1999-10-12 2001-08-28 Cabot Corporation Gas diffusion electrodes containing modified carbon products
JP3917853B2 (en) * 2001-12-18 2007-05-23 日本バイリーン株式会社 Circuit board base material and circuit board using the same
JP3891484B2 (en) * 2002-09-05 2007-03-14 株式会社ノリタケカンパニーリミテド Electrolyte membrane and fuel cell comprising the membrane
TWI245079B (en) * 2002-12-30 2005-12-11 Ind Tech Res Inst Method for growing highly-ordered nanofibers
JP4593566B2 (en) * 2003-06-17 2010-12-08 ナノフィル カンパニー リミテッド COMPOSITE MEMBRANE FOR ELECTROCHEMICAL DEVICE, PROCESS FOR PRODUCING THE SAME AND ELECTROCHEMICAL DEVICE HAVING THE SAME
JP4781263B2 (en) * 2004-06-22 2011-09-28 パナソニック株式会社 Secondary battery and manufacturing method thereof
KR100596543B1 (en) 2004-12-06 2006-07-04 박원호 Ag-Containing Silica Nano-Fibers and Method for Producing the Same
US7575707B2 (en) * 2005-03-29 2009-08-18 University Of Washington Electrospinning of fine hollow fibers
EP1878482B1 (en) * 2005-04-26 2011-07-06 Nitto Denko Corporation Filter medium, process for producing the same, method of use thereof, and filter unit
JP4664790B2 (en) * 2005-09-28 2011-04-06 帝人株式会社 Manufacturing method and manufacturing apparatus for fiber structure
US7771880B2 (en) * 2005-11-21 2010-08-10 University Of Dayton Solid composite electrolyte membrane and method of making
CN101326658B (en) * 2005-12-06 2010-09-29 Lg化学株式会社 Organic/ inorganic composite separator having morphology gradient, manufacturing method thereof and electrochemical device containing the same
US9267220B2 (en) * 2006-03-31 2016-02-23 Cornell University Nanofibers, nanotubes and nanofiber mats comprising crystaline metal oxides and methods of making the same
CN101479877B (en) * 2006-05-04 2013-07-31 株式会社Lg化学 Lithium secondary battery and method for producing the same
JP2007327148A (en) * 2006-06-06 2007-12-20 Tokyo Institute Of Technology Polyelectrolyte fiber and method for producing the same
EP2086877A4 (en) * 2006-09-29 2011-01-05 Univ Akron Metal oxide fibers and nanofibers, method for making same, and uses thereof
EP1923934A1 (en) * 2006-11-14 2008-05-21 Fortu Intellectual Property AG Rechargeable electrochemical battery
KR100879767B1 (en) * 2007-01-12 2009-01-21 한국과학기술연구원 Electrode for supercapacitor having heat-treated titanium dioxide layer and the fabrication method thereof
US7709139B2 (en) * 2007-01-22 2010-05-04 Physical Sciences, Inc. Three dimensional battery
JP4539658B2 (en) * 2007-01-23 2010-09-08 ソニー株式会社 battery
JP2008198506A (en) * 2007-02-14 2008-08-28 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
KR100868290B1 (en) * 2007-05-04 2008-11-12 한국과학기술연구원 Anode for secondary battery having negative active material with nano-fiber network structure and secondary battery using the same, and fabrication method of negative active material for secondary battery
US8211496B2 (en) * 2007-06-29 2012-07-03 Johnson Ip Holding, Llc Amorphous lithium lanthanum titanate thin films manufacturing method
CN101849306B (en) * 2007-09-06 2013-06-12 佳能株式会社 Method for producing lithium ion storage/release material, lithium ion storage/release material, electrode structure using the material, and electricity storage device
KR101007887B1 (en) 2007-11-26 2011-01-14 주식회사 두본 METHOD FOR PREPARING SiO2-TiO2-BASED COMPOSITE INORGANIC FIBERS USING TWO-STEP HEAT-TREATMENT
KR20100137530A (en) * 2008-03-25 2010-12-30 에이일이삼 시스템즈 인코포레이티드 High energy high power electrodes and batteries
US20100330419A1 (en) * 2009-06-02 2010-12-30 Yi Cui Electrospinning to fabricate battery electrodes
KR100995154B1 (en) 2010-02-11 2010-11-18 전남대학교산학협력단 Method of preparing porous carbon nanofibers, porous carbon nanofibers thereby and applications including the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6200706B1 (en) * 1995-03-31 2001-03-13 Mitsubishi Paper Mills Limited Nonwoven fabric for separator of non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
US20040224234A1 (en) * 1999-04-09 2004-11-11 Stephan Bauer Wet-on-wet coating method for producing composite bodies that are suitable for use in lithium ion batteries
US20090092900A1 (en) * 2007-10-03 2009-04-09 Sony Corporation Heat-resistant insulating layer-provided separator and non-aqueous electrolyte secondary battery

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 200749 Thomson Scientific, London, GB; AN 2007-500935 XP002725134, -& JP 2007 092210 A (TEIJIN LTD) 12 April 2007 (2007-04-12) *
MANEERATANA ET AL: "Continuous hollow alumina gel fibers by direct electrospinning of an alkoxide-based precursor", CHEMICAL ENGINEERING JOURNAL, ELSEVIER SEQUOIA, LAUSANNE, CH, vol. 137, no. 1, 13 February 2008 (2008-02-13), pages 137-143, XP022481094, ISSN: 1385-8947, DOI: 10.1016/J.CEJ.2007.09.013 *
See also references of WO2011002205A2 *

Also Published As

Publication number Publication date
CN102473894A (en) 2012-05-23
US20120003545A1 (en) 2012-01-05
PL2461395T3 (en) 2019-05-31
JP5841936B2 (en) 2016-01-13
WO2011002205A3 (en) 2011-04-21
CN102473894B (en) 2016-12-28
WO2011002205A2 (en) 2011-01-06
KR101032214B1 (en) 2011-05-02
US20120244292A1 (en) 2012-09-27
JP2012531010A (en) 2012-12-06
EP2461395B1 (en) 2019-01-23
KR20110001951A (en) 2011-01-06
EP2461395A4 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
EP2461395B1 (en) Method for manufacturing an electrode having a porous coating layer
US9287545B2 (en) Separator, manufacturing method of the same, and electrochemical device having the same
JP6091742B2 (en) Electrochemical element with improved heat resistance
JP5415609B2 (en) Separator including porous coating layer, method for producing the same, and electrochemical device including the same
CN102770984B (en) Prepare the method for the method of dividing plate, the dividing plate prepared by the method and the electrochemical device of preparation containing this dividing plate
US8426053B2 (en) Method for manufacturing separator including porous coating layers, separator manufactured by the method and electrochemical device including the separator
La Monaca et al. Electrospun ceramic nanofibers as 1D solid electrolytes for lithium batteries
US20160351876A1 (en) Heat resisting separator having ultrafine fibrous layer and secondary battery having the same
EP2648267B1 (en) Lithium secondary battery
JP2015092487A (en) Lithium secondary battery
KR101931874B1 (en) Prepating method for surface coated positive electrode active material
JP2010044935A (en) Compound porous film, battery separator using the same, and nonaqueous electrolyte secondary battery
JP5516529B2 (en) The manufacturing method of the carbon material for lithium ion secondary batteries, the carbon material for lithium ion secondary batteries, the negative mix for lithium ion secondary batteries, the negative electrode for lithium ion secondary batteries, and a lithium ion secondary battery.
WO2013002369A1 (en) Non-aqueous electrolyte secondary cell, and method for producing same
JP5241119B2 (en) Non-aqueous electrolyte battery
CN114128028A (en) Composite separator for electrochemical device and electrochemical device comprising the same
JP2007207654A (en) Negative electrode for lithium ion battery, and lithium ion battery using same
CN114635200B (en) Tubular nanofiber material, negative electrode plate and lithium metal battery

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120104

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: YOON, SU-JIN

Inventor name: KIM, JONG-HUN

Inventor name: KIM, IN-CHUL

Inventor name: PARK, PIL-KYU

Inventor name: SHIN, BYOUNG-JIN

Inventor name: HONG, JANG-HYUK

Inventor name: LEE, JOO-SUNG

Inventor name: JIN, SUN-MI

Inventor name: CHO, BYEONG-GYU

DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: H01G 11/28 20130101ALI20140530BHEP

Ipc: H01M 4/04 20060101AFI20140530BHEP

Ipc: H01G 11/24 20130101ALI20140530BHEP

Ipc: C23C 18/12 20060101ALI20140530BHEP

Ipc: H01G 11/50 20130101ALI20140530BHEP

Ipc: H01M 2/16 20060101ALI20140530BHEP

Ipc: H01M 4/13 20100101ALI20140530BHEP

Ipc: H01M 4/139 20100101ALI20140530BHEP

Ipc: H01M 10/0525 20100101ALI20140530BHEP

Ipc: H01G 11/46 20130101ALI20140530BHEP

A4 Supplementary search report drawn up and despatched

Effective date: 20140616

RIC1 Information provided on ipc code assigned before grant

Ipc: H01M 4/139 20100101ALI20140606BHEP

Ipc: H01M 4/04 20060101AFI20140606BHEP

Ipc: C23C 18/12 20060101ALI20140606BHEP

Ipc: H01G 11/24 20130101ALI20140606BHEP

Ipc: H01M 4/13 20100101ALI20140606BHEP

Ipc: H01G 11/46 20130101ALI20140606BHEP

Ipc: H01G 11/50 20130101ALI20140606BHEP

Ipc: H01G 11/28 20130101ALI20140606BHEP

Ipc: H01M 10/0525 20100101ALI20140606BHEP

Ipc: H01M 2/16 20060101ALI20140606BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171102

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180507

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LG CHEM, LTD.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1092162

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010056755

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190423

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190523

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1092162

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190423

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190523

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010056755

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

26N No opposition filed

Effective date: 20191024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190629

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230408

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602010056755

Country of ref document: DE

Owner name: LG ENERGY SOLUTION, LTD., KR

Free format text: FORMER OWNER: LG CHEM, LTD., SEOUL, KR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230522

Year of fee payment: 14

Ref country code: DE

Payment date: 20230522

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230524

Year of fee payment: 14

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20230824 AND 20230831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230523

Year of fee payment: 14