JP6551878B2 - Method for producing positive electrode material for lithium ion battery and electrode material produced by this method - Google Patents

Method for producing positive electrode material for lithium ion battery and electrode material produced by this method Download PDF

Info

Publication number
JP6551878B2
JP6551878B2 JP2015025824A JP2015025824A JP6551878B2 JP 6551878 B2 JP6551878 B2 JP 6551878B2 JP 2015025824 A JP2015025824 A JP 2015025824A JP 2015025824 A JP2015025824 A JP 2015025824A JP 6551878 B2 JP6551878 B2 JP 6551878B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
ion battery
lithium ion
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015025824A
Other languages
Japanese (ja)
Other versions
JP2016149270A5 (en
JP2016149270A (en
Inventor
貴志 寺西
貴志 寺西
昭 岸本
昭 岸本
祐未 吉川
祐未 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okayama University NUC
Original Assignee
Okayama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okayama University NUC filed Critical Okayama University NUC
Priority to JP2015025824A priority Critical patent/JP6551878B2/en
Publication of JP2016149270A publication Critical patent/JP2016149270A/en
Publication of JP2016149270A5 publication Critical patent/JP2016149270A5/ja
Application granted granted Critical
Publication of JP6551878B2 publication Critical patent/JP6551878B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン電池の正極材料の製造方法及びこの方法で製造した電極材料に関するものである。   The present invention relates to a method for producing a positive electrode material for a lithium ion battery and an electrode material produced by this method.

従来、リチウムイオン電池では、正極として活物質の粒子表面に強誘電体を担持させ、焼結させている複合正極を用いている。   Conventionally, in a lithium ion battery, a composite positive electrode in which a ferroelectric is supported on the particle surface of an active material and sintered is used as a positive electrode.

このような複合正極として、LiCoO2系の正極粉末の粒子表面に、強誘電体であるチタン酸バリウムBaTiO3を0.1mol%〜5mol%の添加量範囲であって、100nm〜5μm以下の粒子径範囲で担持させ、なおかつ400℃〜750℃の温度範囲で焼結させた複合正極が提案されている(例えば、特許文献1参照。)。この複合正極は、低温での出力特性の改善を目的としており、具体的には、活物質であるLi1.1Ni0.5Co0.2Mn0.3O2粒子に、1mol%のBaTiO3を700℃においてメカニカルに混合することで担持させた複合正極とし、この複合正極において-30℃の低温での出力特性が未処理品に対して139.5%改善されたとの報告がある。 As such a composite positive electrode, a particle size of 100 nm to 5 μm or less in an additive amount range of 0.1 mol% to 5 mol% of barium titanate BaTiO 3 which is a ferroelectric substance on the particle surface of LiCoO 2 -based positive electrode powder. A composite positive electrode supported in a range and sintered in a temperature range of 400 ° C. to 750 ° C. has been proposed (see, for example, Patent Document 1). The purpose of this composite positive electrode is to improve the output characteristics at low temperature. Specifically, 1 mol% of BaTiO 3 is mechanically added at 700 ° C. to Li 1.1 Ni 0.5 Co 0.2 Mn 0.3 O 2 particles which are active materials. There is a report that the output characteristics at a low temperature of -30.degree. C. are improved by 139.5% with respect to the untreated product by using the composite positive electrode supported by mixing and making the composite positive electrode into a supported composite.

上記の複合正極は、リチウムイオン電池の電解質として非水系電解液を用いたものであるが、電解質を硫化物系固体とした全固体リチウムイオン電池の複合正極とし、活物質に対して1wt%量で、平均粒径50nmの強誘電体チタン酸バリウムBaTiO3を液相中分散させることで複合化させた複合正極も提案されている(例えば、特許文献2参照。)。この複合正極は、放電容量の向上を目的としており、固体電解質と活物質との界面での抵抗を約20%減少させ,放電容量を約5%向上可能であることが報告されている。 The above composite positive electrode uses a non-aqueous electrolyte as an electrolyte of a lithium ion battery, but is a composite positive electrode of an all solid lithium ion battery in which the electrolyte is a sulfide solid, and the amount is 1 wt% with respect to the active material. There has also been proposed a composite positive electrode in which a ferroelectric barium titanate BaTiO 3 having an average particle diameter of 50 nm is combined in a liquid phase (see, for example, Patent Document 2). This composite positive electrode is intended to improve the discharge capacity, and it has been reported that the resistance at the interface between the solid electrolyte and the active material can be reduced by about 20% and the discharge capacity can be improved by about 5%.

特開2011−210694号公報JP, 2011-210694, A 特開2014−116129号公報JP, 2014-116129, A

リチウムイオン電池では、低温での出力特性の改善や、放電容量の向上も重要な性能向上の項目ではあるが、高速充放電レートにおける容量特性の向上も重要な項目であるものの、従来の複合正極では、高速充放電レートにおける容量特性の向上が期待できなかった。   For lithium-ion batteries, improvement of output characteristics at low temperatures and improvement of discharge capacity are important performance improvement items, but improvement of capacity characteristics at high-speed charge / discharge rates is also an important item, but conventional composite positive electrodes Thus, improvement in capacity characteristics at a high-speed charge / discharge rate could not be expected.

リチウムイオン電池の正極では、正極を構成している活物質と電解液との界面でのLiイオンの挿入脱離反応が生じているが、活物質の粒子表面に強誘電体を担持させた複合正極では、強誘電体の分極を利用することによりLiイオンの挿入脱離反応を促進させる効果を狙いとしており、強誘電体はできるだけ微粒子状態で活物質に担持させることで、特に高速充放電レートにおける容量特性の向上が期待できる可能性があった。   In the positive electrode of a lithium ion battery, an insertion / release reaction of Li ions occurs at the interface between the active material constituting the positive electrode and the electrolytic solution, but a composite in which a ferroelectric material is supported on the particle surface of the active material. The positive electrode aims at the effect of promoting the intercalation / desorption reaction of Li ions by utilizing the polarization of the ferroelectric substance, and the ferroelectric substance is supported on the active material in the form of fine particles as much as possible. There is a possibility that improvement in capacity characteristics can be expected.

しかし、従来の強誘電体をメカニカルに活物質に被覆させて加熱処理する方法では、加熱にともなって強誘電体の粒成長が生じることで、強誘電体をできるだけ微粒子状態で活物質に担持させることが困難となっていた。   However, in the conventional method of mechanically coating an active material with a ferroelectric substance and performing heat treatment, the grain growth of the ferroelectric substance occurs as it is heated, so that the ferroelectric substance is supported on the active material as fine particles as possible. It was difficult.

本発明者らは、このような現状に鑑み、強誘電体をできるだけ微粒子状態で活物質に担持させた複合正極とすることで、高速充放電レートにおける容量特性を向上させるべく研究を行って、本発明を成すに至ったものである。   In view of such a current situation, the present inventors have studied to improve the capacity characteristics at a high-speed charge and discharge rate by using a composite positive electrode in which the active material is supported on the active material in fine particles as much as possible. The present invention has been achieved.

本発明のリチウムイオン電池の正極材料の製造方法は、リチウムイオン電池の正極を構成する活物質の粉末状とした活物質原料と、第1元素と第2元素とを含有した強誘電体を構成するための第1元素を含有する粉末状とした第1元素原料と、第2元素を含有する粉末状とした第2元素原料とを溶液に分散させて分散液を作製する分散液作製工程と、分散液をゲルとするゲル化工程と、ゲルを加熱して活物質原料に強誘電体を担持させる加熱工程とを有するものである。特に、活物質原料はコバルト酸リチウムとし、第1元素原料は酢酸バリウムとし、第2元素原料はチタンブトキシドとして、リチウムイオン電池の正極を構成する活物質にチタン酸バリウムを担持させ、ゲル化工程では、分散液を70℃において6時間撹拌しながら乾燥させることでゲル化させ、加熱工程では、600℃で20時間加熱しているものである。
The method for producing a positive electrode material for a lithium ion battery according to the present invention comprises an active material raw material in powder form of an active material constituting a positive electrode of a lithium ion battery, and a ferroelectric containing a first element and a second element. A dispersion preparation step for preparing a dispersion by dispersing a powdered first element material containing a first element and a powdered second element material containing a second element in a solution And a heating step of forming a dispersion liquid into a gel, and a heating step of heating the gel to cause the active material material to carry a ferroelectric. In particular, the active material raw material is lithium cobaltate, the first element raw material is barium acetate, the second element raw material is titanium butoxide, and the active material constituting the positive electrode of the lithium ion battery is loaded with barium titanate to form a gelation process. In this case, the dispersion is gelled by drying while being stirred at 70 ° C. for 6 hours, and in the heating step, it is heated at 600 ° C. for 20 hours.

さらに、本発明のリチウムイオン電池の正極材料の製造方法では、第1元素原料と第2元素原料は、加熱工程で強誘電体となった場合に、活物質原料に対して5mol%以下としていることにも特徴を有するものである。
Furthermore, in the method for producing a positive electrode material for a lithium ion battery of the present invention, the first element material and the second element material are 5 mol% or less with respect to the active material material when the first element material and the second element material become a ferroelectric in the heating process. It also has a feature.

本発明によれば、ソフトケミカルな液相法により活物質表面に強誘電体をナノ粒子状として合成・付着させることができ、強誘電体の均質化・均一膜厚化が可能となることで、Liイオンの活物質内への挿入脱離をよりスムーズに生じさせることができ、高速充放電レートにおける容量特性を改善できる.   According to the present invention, it is possible to synthesize and adhere a ferroelectric substance in the form of nanoparticles to the active material surface by a soft chemical liquid phase method, and to enable homogenization and uniform film thickness of the ferroelectric substance. In addition, the insertion and release of Li ions into the active material can occur more smoothly, and the capacity characteristics at a high-speed charge / discharge rate can be improved.

加熱工程後の粉末のSTEM像及びSTEM-EDS像である。It is the STEM image and STEM-EDS image of the powder after a heating process. 加熱工程後の粉末のXRDパターンである。It is a XRD pattern of the powder after a heating process. 加熱工程で600℃にて熱処理した試料のSTEM像である。It is a STEM image of the sample heat-processed at 600 degreeC by the heating process. 高速充放電レートにおける容量特性のグラフである。It is a graph of the capacity | capacitance characteristic in a high speed charging / discharging rate. 加熱工程(600℃)後の粉末のXRDパターンである。It is the XRD pattern of the powder after a heating process (600 degreeC). 加熱工程(600℃)後のSTEM像及びSTEM-EDS像である。It is the STEM image and STEM-EDS image after a heating process (600 degreeC). 高速充放電レートにおける容量特性のグラフである。It is a graph of the capacity | capacitance characteristic in a high speed charging / discharging rate.

本発明では、活物質表面にメカニカルな方法で強誘電体粒子を付着させるのではなく、ソフトケミカルな液相法により、活物質表面に強誘電体をナノ粒子状として合成・付着させているものである。   In the present invention, the ferroelectric particles are synthesized and attached to the active material surface as nano-particles by the soft chemical liquid phase method, rather than attaching the ferroelectric particles to the active material surface by a mechanical method. It is.

すなわち、本発明のリチウムイオン電池の正極材料の製造方法は、リチウムイオン電池の正極を構成する活物質の粉末状とした活物質原料と、第1元素と第2元素とを含有した強誘電体を構成するための第1元素を含有する粉末状とした第1元素原料と、第2元素を含有する粉末状とした第2元素原料とを溶液に分散させて分散液を作製する分散液作製工程と、分散液をゲルとするゲル化工程と、ゲルを加熱して活物質原料に強誘電体を担持させる加熱工程とを有している。   That is, the method for producing a positive electrode material for a lithium ion battery according to the present invention includes a ferroelectric material containing an active material raw material in powder form of an active material constituting a positive electrode of a lithium ion battery, and a first element and a second element. Preparation of a dispersion by dispersing a first element material in powder form containing the first element and a second element material in powder form containing the second element in a solution It has a process, a gelation process which makes a dispersion liquid a gel, and a heating process which heats a gel and makes an active material raw material carry a ferroelectric.

以下において実施例を示しながら、具体的に説明する。   Hereinafter, specific examples will be described with reference to examples.

<正極材料の製造>
使用した活物質は、リチウムイオン電池に実用化されているコバルト酸リチウム(LiCoO2)とした。コバルト酸リチウムは粉末状としており、平均粒径3μmであった。コバルト酸リチウムに担持させる強誘電体はチタン酸バリウム(BaTiO3)とし、第1元素原料はBa源としての酢酸バリウムとし、第2元素原料はTi源としてのチタンブトキシドとした。
<Manufacture of positive electrode material>
The active material used was lithium cobaltate (LiCoO 2 ) that has been put to practical use in lithium ion batteries. Lithium cobaltate was powdered and had an average particle size of 3 μm. The ferroelectric substance supported on lithium cobaltate was barium titanate (BaTiO 3 ), the first element source was barium acetate as a Ba source, and the second element source was titanium butoxide as a Ti source.

コバルト酸リチウムは、エタノールに分散させたコバルト酸リチウム溶液とし、酢酸バリウムは、酢酸に溶解させた酢酸溶液とし、チタンブトキシドは、2−メトキシエタノールに溶解させたメトキシエタノール溶液とし、コバルト酸リチウム溶液に所定量の酢酸溶液とメトキシエタノール溶液を加えて、超音波分散させて分散液とした。これが分散液作製工程である。ここで、コバルト酸リチウム溶液は、5gのコバルト酸リチウムを40mLのエタノールに分散させた溶液とし、酢酸溶液は、20mlの酢酸に1.31gの酢酸バリウムを溶解させた溶液とし、メトキシエタノール溶液は、20mlの2−メトキシエタノールに1.76gのチタンブトキシドを溶解させた溶液として、コバルト酸リチウムに対してチタン酸バリウムが10mol%となるように調整した。   Lithium cobaltate is a lithium cobaltate solution dispersed in ethanol, barium acetate is an acetic acid solution dissolved in acetic acid, titanium butoxide is a methoxyethanol solution dissolved in 2-methoxyethanol, lithium cobaltate solution A predetermined amount of an acetic acid solution and a methoxyethanol solution were added to the solution and ultrasonically dispersed to obtain a dispersion. This is the dispersion preparation process. Here, the lithium cobaltate solution is a solution of 5 g of lithium cobaltate dispersed in 40 mL of ethanol, the acetic acid solution is a solution of 1.31 g of barium acetate in 20 ml of acetic acid, and the methoxyethanol solution is A solution in which 1.76 g of titanium butoxide was dissolved in 20 ml of 2-methoxyethanol was adjusted so that barium titanate was 10 mol% with respect to lithium cobaltate.

分散液を70℃において6時間撹拌・乾燥させることでゲルを得た。これがゲル化工程である。   The dispersion was stirred and dried at 70 ° C. for 6 hours to obtain a gel. This is the gelation process.

得られたゲルを400℃、500℃、600℃、700℃、800℃でそれぞれ20時間熱処理した。これが加熱工程である。加熱工程後の各粉末のSTEM像及びSTEM-EDS像を図1に示す。図1において、「LC-BT-400」が400℃の場合、「LC-BT-500」が500℃の場合、「LC-BT-600」が600℃の場合、「LC-BT-700」が700℃の場合、「LC-BT-800」が800℃の場合を示している。後述する図2及び図4においても同じである。「bare LC」は、未処理LC、すなわちBaTiO3を担持していないLiCoO2のみの状態である。 The obtained gel was heat-treated at 400 ° C, 500 ° C, 600 ° C, 700 ° C and 800 ° C for 20 hours, respectively. This is the heating process. The STEM image and STEM-EDS image of each powder after a heating process are shown in FIG. In Fig. 1, "LC-BT-400" is 400 ° C, "LC-BT-500" is 500 ° C, "LC-BT-600" is 600 ° C, "LC-BT-700" In the case of 700 ° C, “LC-BT-800” shows the case of 800 ° C. The same applies to FIGS. 2 and 4 described later. “Bare LC” is the state of untreated LC, ie, only LiCoO 2 not carrying BaTiO 3 .

得られた粉末のXRDパターンを図2に示す。図2より、熱処理温度が500℃以下では、BaTiO3(BT)が十分には形成されておらず、BaCO3(BC)が主成分であり、600℃以上で主成分としてBaTiO3(BT)が得られることが分かる。 The XRD pattern of the obtained powder is shown in FIG. According to FIG. 2, when the heat treatment temperature is 500 ° C. or less, BaTiO 3 (BT) is not sufficiently formed, and BaCO 3 (BC) is a main component, and at 600 ° C. or more, BaTiO 3 (BT) as a main component It can be seen that

特に、図1のSTEM-EDS像からも明らかなように、全ての熱処理温度においてLC相とBT相(またはBC相)ナノ粒子の2相コンポジット構造となっていることが確認できた。   In particular, as can be seen from the STEM-EDS image in FIG. 1, it was confirmed that a two-phase composite structure of LC phase and BT phase (or BC phase) nanoparticles was obtained at all heat treatment temperatures.

さらに、熱処理温度の増大に伴い、BaTiO3粒子の粒成長が見られた。BaTiO3粒子が形成されているもののうち、もっとも粒径が小さくなったものは600℃にて熱処理した試料であった。そのSTEM像を図3に示す。図3より、均一粒径のナノ粒子が活物質の表面に被覆されていることが分かる。BaTiO3粒子の粒径を確認したところ、平均粒径65nmであった。 Furthermore, BaTiO 3 particle growth was observed as the heat treatment temperature increased. Among those in which the BaTiO 3 particles were formed, the one with the smallest particle size was the sample heat-treated at 600 ° C. The STEM image is shown in FIG. As can be seen from FIG. 3, the surface of the active material is coated with nanoparticles having a uniform particle diameter. When the particle size of the BaTiO 3 particles was confirmed, the average particle size was 65 nm.

<正極材料の性能評価方法>
上記の方法で製造したコンポジット粉末が正極材料としての性能を有しているかを評価すべく、以下の方法で性能評価を行った。
<Performance evaluation method of positive electrode material>
In order to evaluate whether the composite powder manufactured by the above method has the performance as a positive electrode material, the performance evaluation was performed by the following method.

まず、コンポジット粉末と、導電助剤(アセチレンブラック)と、結着ポリマー(PVDF)を7:2:1の質量比の割合で混合して正極シートを作製した。   First, a composite sheet, a conductive additive (acetylene black), and a binder polymer (PVDF) were mixed at a mass ratio of 7: 2: 1 to prepare a positive electrode sheet.

対極は金属Liとし、電解液はエチレンカーボネートとジエチルカーボネートを3:7の体積比の溶媒中に溶解させた1mol/Lのフッ化リン酸リチウムLiPF6とした。そして、2023型コインセルを用いて3.3V−4.5Vの電位範囲において充放電試験を行った。充放電レートは、電流密度を0.1Cから最大5Cまたは10C [1C = 160 mA/g (LC理論容量換算)]の範囲において、各レート5サイクルずつ段階的にレートを引き上げることで制御した。 The counter electrode was Li metal, and the electrolyte was 1 mol / L lithium fluorophosphate LiPF 6 in which ethylene carbonate and diethyl carbonate were dissolved in a solvent having a volume ratio of 3: 7. Then, a charge / discharge test was performed in a potential range of 3.3 V to 4.5 V using a 2023 type coin cell. The charge / discharge rate was controlled by stepping up the rate in 5 cycles for each rate in the range of current density from 0.1C to 5C or 10C [1C = 160 mA / g (LC theoretical capacity conversion)].

高速充放電レートにおける容量特性の結果を図4に示す。400℃及び500℃で熱処理した試料については、初期容量及び高速充放電レートでの放電容量は、コバルト酸リチウムのみ(未処理品)に比べ極端に低くかった。これはBaCO3(BC)が強誘電体ではない不純物相となっていることが起因していると考えられる。一方、熱処理温度が600℃以上の場合には,ほぼ単相のBaTiO3粒子が形成されていることから、BaTiO3粒子による効果が期待できるので、熱処理温度600℃以上のものについて比較した。 The result of the capacity characteristic at the high speed charge and discharge rate is shown in FIG. For the samples heat-treated at 400 ° C. and 500 ° C., the discharge capacity at the initial capacity and the high-speed charge and discharge rate was extremely lower than that of lithium cobaltate alone (untreated product). This is probably because BaCO 3 (BC) is an impurity phase that is not a ferroelectric substance. On the other hand, when the heat treatment temperature is 600 ° C. or higher, almost single-phase BaTiO 3 particles are formed, so the effect of BaTiO 3 particles can be expected.

上表の「0.1C-1サイクル目の容量」を「初期容量」とし、「10C-5サイクル目(計35サイクル目)における初期容量に対する容量保持率」を算出している。
また、「未処理品に対する改善割合」は、「5C-5サイクル目(計30サイクル目)の容量」での未処理品の容量と600℃加熱品の容量との比較、及び未処理品の容量と800℃加熱品の容量との比較である。
The “capacity of 0.1 C-1 cycle” in the above table is defined as “initial capacity”, and “capacity retention ratio to initial capacity in 10 C-5 cycle (total 35 cycles)” is calculated.
In addition, “the improvement ratio to the untreated product” is the comparison of the untreated product volume and the 600 ° C. heated product volume in the “5C-5th cycle (total 30th cycle) capacity” and the untreated product It is a comparison of the capacity and the capacity of 800 ° C heating goods.

表1に示されるように、初期容量は、600℃加熱品と800℃加熱品で、いずれも未処理品に比べ少し低下したが、これは容量に寄与しないBaTiO3の質量分率の効果である。 As shown in Table 1, the initial capacities of the 600 ° C and 800 ° C heated products were both slightly lower than the untreated products, but this was due to the effect of the mass fraction of BaTiO 3 that did not contribute to the capacity. is there.

高速充放電レートでの容量は、5C-5サイクル目の計30サイクル後では、600℃加熱品で優れた容量(122mAh/g)を示しており、平均粒径158nmとなっている800℃加熱品と比較して大幅に改善していることが分かる。特に、「122mAh/g」という値は、未処理品の放電容量(78mAh/g)を大きく逆転しており、改善割合は158%となっている。このことから、強誘電体の粒子径を100nm未満まで微粒子化することで、高速充放電レートの特性がより改善されることが分かる。   The capacity at the high-speed charge / discharge rate shows excellent capacity (122 mAh / g) with a product heated at 600 ° C after 30 cycles of 5C-5th cycle, and heating at 800 ° C with an average particle size of 158 nm It can be seen that there is a significant improvement compared to the product. In particular, the value of “122 mAh / g” largely reverses the discharge capacity (78 mAh / g) of the untreated product, and the improvement ratio is 158%. From this, it is understood that the characteristics of the high-speed charge and discharge rate are further improved by micronizing the particle diameter of the ferroelectric to less than 100 nm.

このように、実施例1では、最適熱処理温度を600℃とすることでBaTiO3粒子の粒径を最小化できることを確認したが、BaTiO3粒子のLiCoO2に対する最適量についての検討が必要であり、下記の実施例2を実施した。 Thus, in Example 1, it was confirmed that the particle diameter of BaTiO 3 particles can be minimized by setting the optimum heat treatment temperature to 600 ° C. However, it is necessary to study the optimum amount of BaTiO 3 particles for LiCoO 2 . The following Example 2 was carried out.

上述した<正極材料の製造>で、加熱工程の温度を600℃とし、BaTiO3となった際に、LiCoO2に対して1mol%、2.5mol%、5mol%、10mol%、15mol%のBaTiO3が生じるように分散液を調整して、各粉末を作製した。ここで、コバルト酸リチウム溶液に加える酢酸溶液及びメトキシエタノール溶液は、単にコバルト酸リチウム溶液への添加量を調整するのではなく、酢酸溶液のバリウム濃度及びメトキシエタノール溶液のチタン濃度を適宜調整し、コバルト酸リチウム溶液に必要以上に酢酸及び2−メトキシエタノールが加えられることを抑制した。具体的には、酢酸溶液は、2ml〜20mlの酢酸に0.13g〜1.96gの酢酸バリウムを溶解させた溶液とし、メトキシエタノール溶液は、2ml〜20mlの2−メトキシエタノールに0.18g〜2.63gのチタンブトキシドを溶解させた溶液とした。 When the temperature of the heating step is set to 600 ° C. and it becomes BaTiO 3 in <Production of positive electrode material> described above, 1 mol%, 2.5 mol%, 5 mol%, 10 mol%, 15 mol% of BaTiO 3 with respect to LiCoO 2 Each powder was prepared by adjusting the dispersion liquid so as to cause. Here, the acetic acid solution and the methoxyethanol solution to be added to the lithium cobaltate solution do not simply adjust the addition amount to the lithium cobaltate solution, but appropriately adjust the barium concentration of the acetic acid solution and the titanium concentration of the methoxyethanol solution, Addition of acetic acid and 2-methoxyethanol more than necessary to the lithium cobaltate solution was suppressed. Specifically, the acetic acid solution is a solution of 0.13 g to 1.96 g of barium acetate dissolved in 2 ml to 20 ml of acetic acid, and the methoxyethanol solution is 0.18 g to 2.63 g of 2 ml to 20 ml of 2-methoxyethanol. A solution in which titanium butoxide was dissolved was used.

図5に、得られた粉末のXRDパターンを示す。粉末中に含まれるBaTiO3の量の減少にともなって、BaTiO3(BT)のピーク強度が減少しているが、これはLiCoO2に対する相対量の減少の影響であると考えられ、いずれの場合であってもBaTiO3が形成できていると考えてよい。 The XRD pattern of the obtained powder is shown in FIG. Although the peak intensity of BaTiO 3 (BT) decreases with the decrease of the amount of BaTiO 3 contained in the powder, this is considered to be the effect of the decrease of the relative amount to LiCoO 2 , in which case Even so, it can be considered that BaTiO 3 is formed.

図6に、BaTiO3(BT)1mol%の場合の試料と、BaTiO3(BT)5mol%の場合の試料のSTEM-EDS像を示す。図6よりBT相-LC相の2相コンポジット構造をとっていることが確認できる。図示しないが、他の全ての試料において、BT相とLC相の2相コンポジット構造をとっていることが確認できた。 6 shows a sample case of BaTiO 3 (BT) 1mol%, the STEM-EDS image of the sample in the case of BaTiO 3 (BT) 5mol%. It can be confirmed from FIG. 6 that the BT phase-LC phase has a two-phase composite structure. Although not shown, it was confirmed that all other samples had a two-phase composite structure of BT phase and LC phase.

図7に、BaTiO3(BT)1mol%の場合の試料と、BaTiO3(BT)5mol%の場合の試料、及びLiCoO2のみ(未処理品)の試料での、高速充放電レートにおける容量特性の結果を示す。この容量特性に基づき、諸特性の比較を下表に示す。 Figure 7, BaTiO 3 (BT) and 1 mol% in the case of a sample, BaTiO 3 (BT) 5 mol% of the cases the samples, and LiCoO 2 only in samples (untreated), the capacity characteristics in a high-speed charge and discharge rate The results are shown. Based on this capacity characteristic, the comparison of various characteristics is shown in the following table.

上表の「0.1C-1サイクル目の容量」を「初期容量」とし、「10C-5サイクル目(計35サイクル目)における初期容量に対する容量保持率」を算出している。
また、「未処理品に対する改善割合」は、「10C-5サイクル目(計35サイクル目)の容量」での未処理品の容量とBT1mol%品の容量との比較、及び未処理品の容量とBT5mol%品の容量との比較である。
The “capacity of 0.1 C-1 cycle” in the above table is defined as “initial capacity”, and “capacity retention ratio to initial capacity in 10 C-5 cycle (total 35 cycles)” is calculated.
“Improvement ratio relative to untreated products” is the comparison between the capacity of untreated products and the capacity of BT1 mol% products in “capacity of 10C-5th cycle (35th cycle in total)”, and the capacity of untreated products And the volume of the BT 5 mol% product.

表2に示されるように、初期容量は、BaTiO3添加量の増大にともなって減少したが、これは容量に寄与しない強誘電体BaTiO3の質量分率の効果である。 As shown in Table 2, the initial capacity decreased with an increase in the added amount of BaTiO 3 , which is an effect of the mass fraction of the ferroelectric BaTiO 3 that does not contribute to the capacity.

また、表2に示されるように、BaTiO3添加量の高速充放電レートにおける容量特性への影響は大きく、BaTiO3添加量は1mol%の方が5mol%よりも効果的であり、特にBaTiO3添加量が1mol%の場合には、35サイクル後(10Cでの5サイクル目)において、比較対象の未処理品、すなわちLiCoO2のみでの容量が62mAh/gであるのに対して、146 mAh/gと238%もの改善が見られた。さらに、高速充放電レートにおける容量保持率についても、BaTiO3添加量が1mol%の場合には、35サイクル目において対初期容量値78%であるのに対して、未処理品、すなわちLiCoO2のみでは33%であり、大幅に向上することが確認できた。 Further, as shown in Table 2, significantly impact on the capacity characteristics in a high-speed charge and discharge rate of the BaTiO 3 additive amount, BaTiO 3 added amount is more effective than 5 mol% is more of 1 mol%, in particular BaTiO 3 When the addition amount is 1 mol%, after 35 cycles (5th cycle at 10C), the untreated product to be compared, that is, LiCoO 2 alone has a capacity of 62 mAh / g, whereas 146 mAh / g and 238% improvement. Furthermore, regarding the capacity retention rate at the high-speed charge / discharge rate, when the addition amount of BaTiO 3 is 1 mol%, the initial capacity value is 78% at the 35th cycle, whereas only the untreated product, that is, LiCoO 2 It is 33%, and it has been confirmed that it improves significantly.

Claims (2)

リチウムイオン電池の正極を構成する活物質の粉末状とした活物質原料と、第1元素と第2元素とを含有した強誘電体を構成するための第1元素を含有する粉末状とした第1元素原料と、第2元素を含有する粉末状とした第2元素原料とを溶液に分散させて分散液を作製する分散液作製工程と、
前記分散液をゲルとするゲル化工程と、
前記ゲルを加熱して前記活物質原料に前記強誘電体を担持させる加熱工程と
を有するリチウムイオン電池の正極材料の製造方法において、
前記活物質原料はコバルト酸リチウムとし、前記第1元素原料は酢酸バリウムとし、前記第2元素原料はチタンブトキシドとして、リチウムイオン電池の正極を構成する活物質にチタン酸バリウムを担持させ、
前記ゲル化工程では、前記分散液を70℃において6時間撹拌しながら乾燥させることでゲル化させ、前記加熱工程では、600℃で20時間加熱しているリチウムイオン電池の正極材料の製造方法。
An active material raw material in powder form of an active material constituting a positive electrode of a lithium ion battery, and a first powder form containing a first element for constituting a ferroelectric containing a first element and a second element A dispersion liquid producing step of producing a dispersion liquid by dispersing a primary element raw material and a powdered second element raw material containing a second element in a solution;
A gelation step using the dispersion as a gel;
And a heating step of heating the gel to support the ferroelectric material on the active material material .
The active material raw material is lithium cobaltate, the first element raw material is barium acetate, the second element raw material is titanium butoxide, and the active material constituting the positive electrode of the lithium ion battery is supported with barium titanate,
In the gelation step, the dispersion is gelled by drying with stirring at 70 ° C. for 6 hours, and in the heating step, the positive electrode material for a lithium ion battery is heated at 600 ° C. for 20 hours .
前記第1元素原料と前記第2元素原料は、前記加熱工程で前記強誘電体となった場合に、前記活物質原料に対して5mol%以下としている請求項1に記載のリチウムイオン電池の正極材料の製造方法。   2. The positive electrode of the lithium ion battery according to claim 1, wherein the first element material and the second element material are 5 mol% or less with respect to the active material material when the ferroelectric material is formed in the heating step. Method of manufacturing material.
JP2015025824A 2015-02-12 2015-02-12 Method for producing positive electrode material for lithium ion battery and electrode material produced by this method Active JP6551878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015025824A JP6551878B2 (en) 2015-02-12 2015-02-12 Method for producing positive electrode material for lithium ion battery and electrode material produced by this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015025824A JP6551878B2 (en) 2015-02-12 2015-02-12 Method for producing positive electrode material for lithium ion battery and electrode material produced by this method

Publications (3)

Publication Number Publication Date
JP2016149270A JP2016149270A (en) 2016-08-18
JP2016149270A5 JP2016149270A5 (en) 2018-01-11
JP6551878B2 true JP6551878B2 (en) 2019-07-31

Family

ID=56691641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015025824A Active JP6551878B2 (en) 2015-02-12 2015-02-12 Method for producing positive electrode material for lithium ion battery and electrode material produced by this method

Country Status (1)

Country Link
JP (1) JP6551878B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6760140B2 (en) 2017-03-06 2020-09-23 トヨタ自動車株式会社 Manufacturing method of positive electrode material for lithium ion secondary battery and positive electrode material for lithium ion secondary battery
JP7103756B2 (en) * 2017-04-13 2022-07-20 トヨタ自動車株式会社 Positive electrode material for lithium-ion secondary batteries
JP2019009252A (en) * 2017-06-23 2019-01-17 国立大学法人 岡山大学 Ferroelectric carbon composite material and method for manufacturing the same
JP6919994B2 (en) 2017-12-12 2021-08-18 トヨタ自動車株式会社 Positive electrode material and lithium secondary battery using it
JP7017392B2 (en) 2017-12-12 2022-02-08 トヨタ自動車株式会社 Positive electrode material and lithium secondary battery using it
JP6791112B2 (en) * 2017-12-25 2020-11-25 日亜化学工業株式会社 Manufacturing method of positive electrode material for non-aqueous secondary batteries
JP6776293B2 (en) 2018-03-22 2020-10-28 株式会社東芝 Electrodes, rechargeable batteries, battery packs and vehicles
JP7085135B2 (en) * 2018-10-12 2022-06-16 トヨタ自動車株式会社 A positive electrode active material and a secondary battery including the positive electrode active material.
US11936036B2 (en) 2019-11-28 2024-03-19 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, secondary battery, and electronic device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3161471B2 (en) * 1991-06-04 2001-04-25 三菱マテリアル株式会社 Method for producing barium titanate thin film
PL2461395T3 (en) * 2009-06-30 2019-05-31 Lg Chemical Ltd Method for manufacturing an electrode having a porous coating layer
JP2012028231A (en) * 2010-07-26 2012-02-09 Samsung Electronics Co Ltd Solid lithium ion secondary battery
JP2014116129A (en) * 2012-12-07 2014-06-26 Samsung R&D Institute Japan Co Ltd Lithium ion secondary battery and method for producing positive electrode active material mixture for lithium secondary battery

Also Published As

Publication number Publication date
JP2016149270A (en) 2016-08-18

Similar Documents

Publication Publication Date Title
JP6551878B2 (en) Method for producing positive electrode material for lithium ion battery and electrode material produced by this method
KR102553596B1 (en) Nickel manganese-containing composite hydroxide and method for producing the same
Jafta et al. Microwave-assisted synthesis of high-voltage nanostructured LiMn1. 5Ni0. 5O4 spinel: tuning the Mn3+ content and electrochemical performance
Wu et al. Flakelike LiCoO2 with exposed {010} facets as a stable cathode material for highly reversible lithium storage
US20200185709A1 (en) Lithium tetraborate glass coating on cathode materials for improving safety and cycling ability
WO2014104466A1 (en) Anode active material coated with manganese potassium oxide for lithium secondary battery and method for manufacturing same
JPWO2010090185A1 (en) Surface-modified lithium-containing composite oxide for positive electrode active material for lithium ion secondary battery and method for producing the same
JP7216059B2 (en) Positive electrode active material composition for lithium secondary battery and lithium secondary battery including the same
Hashigami et al. Effect of lithium silicate addition on the microstructure and crack formation of LiNi0. 8Co0. 1Mn0. 1O2 cathode particles
JP2018168065A (en) Method for preparing titanium and niobium mixed oxide by solvothermal treatment; and electrode and lithium accumulator comprising that mixed oxide
JP2021064598A (en) Positive electrode active material for lithium ion secondary battery, and method for manufacturing the same
JP2003522714A (en) Method for producing lithium manganese spinel composite oxide with improved electrochemical performance
Hsieh et al. Influence of Li addition on charge/discharge behavior of spinel lithium titanate
KR20190091709A (en) Manufacturing method of negative material for rechargeable battery, negative material for rechargeable battery made by the same, and rechargeable battery including the same
JP2002151083A (en) Manufacturing method of positive pole active material for lithium secondary battery
JP2017088437A (en) Method for producing graphite-covered silicon composite body
TW202111987A (en) Positive electrode active material for lithium secondary batteries, and lithium secondary battery
JP7205114B2 (en) Method for producing transition metal composite hydroxide and method for producing positive electrode active material for lithium ion secondary battery
Temeche et al. Improved Electrochemical Properties of Li4Ti5O12 Nanopowders (NPs) via Addition of LiAlO2 and Li6SiON Polymer Electrolytes, Derived from Agricultural Waste
JP7163624B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the positive electrode active material
JP2005038772A (en) Active material for lithium secondary battery, and its manufacturing method
CN113690416B (en) Layered metal oxide/amine composite material, preparation method thereof and application thereof in magnesium ion battery
KR102275898B1 (en) Lithium composite oxide and manufacturing method of the same
JP6975435B2 (en) Non-aqueous electrolyte secondary battery Negative electrode manufacturing method
KR102479545B1 (en) Lithium hydroxide treatment method including cathode material for lithium secondary battery and slurry production method including cathode material to which it is applied

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190624

R150 Certificate of patent or registration of utility model

Ref document number: 6551878

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150