JP2017088437A - Method for producing graphite-covered silicon composite body - Google Patents

Method for producing graphite-covered silicon composite body Download PDF

Info

Publication number
JP2017088437A
JP2017088437A JP2015218410A JP2015218410A JP2017088437A JP 2017088437 A JP2017088437 A JP 2017088437A JP 2015218410 A JP2015218410 A JP 2015218410A JP 2015218410 A JP2015218410 A JP 2015218410A JP 2017088437 A JP2017088437 A JP 2017088437A
Authority
JP
Japan
Prior art keywords
graphite
silicon composite
particles
polymer material
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015218410A
Other languages
Japanese (ja)
Inventor
戸田 健司
Kenji Toda
健司 戸田
峰夫 佐藤
Mineo Sato
峰夫 佐藤
和義 上松
Kazuyoshi Uematsu
和義 上松
福岡 宏文
Hirofumi Fukuoka
宏文 福岡
福田 健
Takeshi Fukuda
健 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Niigata University NUC
Original Assignee
Shin Etsu Chemical Co Ltd
Niigata University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Niigata University NUC filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2015218410A priority Critical patent/JP2017088437A/en
Publication of JP2017088437A publication Critical patent/JP2017088437A/en
Priority to JP2020087415A priority patent/JP6975435B2/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a production method on an industrial scale capable of obtaining a graphite-covered silicon composite body reduced in the variation of battery properties, having high capacity and excellent in cycle properties, also capable of mass production and suppressed in cost.SOLUTION: Provided is a method for producing a graphite-covered silicon composite body comprising: a mixing step (I-1) where (A) particles selected from silicon particles and silicon oxide particles represented by general formula SiOx and (B) a polymer material are mixed to produce a mixture; and a firing step (II-1) where the obtained mixture is fired in an inert atmosphere or in a vacuum atmosphere to produce a fired matter, and further comprising: a mixing step where the fired mater obtained in the (I-2) and (B) a polymer material are mixed to produce a mixture of the fired matter and the polymer material; and a fire step (II-2) where a mixture of the obtained fired matter and the polymer material is fired in an inert atmosphere or in a vacuum atmosphere to produce a fired matter, or the (I-2) and (II-2) steps are repeated for a plurality of times.SELECTED DRAWING: None

Description

本発明は、リチウムイオン二次電池等の非水電解質二次電池の負極活物質として用いた際に、高容量及び優れたサイクル特性を有する、非水電解質二次電池負極材として好適な黒鉛被覆珪素複合体の製造法方法に関する。   The present invention provides a graphite coating suitable as a negative electrode material for a nonaqueous electrolyte secondary battery having high capacity and excellent cycle characteristics when used as a negative electrode active material for a nonaqueous electrolyte secondary battery such as a lithium ion secondary battery. The present invention relates to a method for producing a silicon composite.

近年、携帯型の電子機器、通信機器等の著しい発展に伴い、経済性と機器の小型化、軽量化の観点から、高エネルギー密度の非水電解質二次電池が強く要望されている。従来、この種の二次電池の高容量化策として、例えば、負極材料にV、Si、B、Zr、Sn等の酸化物及びそれらの複合酸化物を用いる方法(特許文献1:特開平5−174818号公報、特許文献2:特開平6−60867号公報他)、溶融急冷した金属酸化物を負極材として適用する方法(特許文献3:特開平10−294112号公報)、負極材料に酸化珪素を用いる方法(特許文献4:特許第2997741号公報)、負極材料にSi22O及びGe22Oを用いる方法(特許文献5:特開平11−102705号公報)、負極材料に炭素質物中に、シリコン及びシリコン酸化物が分散された複合体粒子と粒子の全面を被覆する炭素質物の被覆層を有する材料を用いる方法(特許文献6:特開2006−92969号公報)等が知られている。また、負極材に導電性を付与する目的として、SiOを黒鉛とメカニカルアロイング後、炭化処理する方法(特許文献7:特開2000−243396号公報)、珪素粒子表面に化学蒸着法により炭素層を被覆する方法(特許文献8:特開2000−215887号公報)、酸化珪素粒子表面に化学蒸着法により炭素層を被覆する方法(特許文献9:特開2002−42806号公報)等が挙げられる。 In recent years, with the remarkable development of portable electronic devices, communication devices, etc., there is a strong demand for non-aqueous electrolyte secondary batteries with high energy density from the viewpoints of economy and downsizing and weight reduction of devices. Conventionally, as a measure for increasing the capacity of this type of secondary battery, for example, a method of using an oxide such as V, Si, B, Zr, Sn, or a composite oxide thereof as a negative electrode material (Patent Document 1: Japanese Patent Laid-Open No. Hei 5) -174818, Patent Document 2: JP-A-6-60867, etc., a method of applying a molten and quenched metal oxide as a negative electrode material (Patent Document 3: JP-A-10-294112), oxidation to a negative electrode material A method using silicon (Patent Document 4: Japanese Patent No. 2999741), a method using Si 2 N 2 O and Ge 2 N 2 O as a negative electrode material (Patent Document 5: Japanese Patent Laid-Open No. 11-102705), and a negative electrode material A method of using a composite particle in which silicon and silicon oxide are dispersed in a carbonaceous material and a material having a carbonaceous material coating layer that covers the entire surface of the particle (Patent Document 6: JP-A-2006-92969), etc. It is known. Further, for the purpose of imparting conductivity to the negative electrode material, a method of carbonizing SiO with graphite and then carbonizing (Patent Document 7: Japanese Patent Laid-Open No. 2000-243396), a carbon layer is formed on the surface of silicon particles by chemical vapor deposition. (Patent Document 8: Japanese Patent Laid-Open No. 2000-215887), a method of coating the surface of silicon oxide particles with a carbon layer by chemical vapor deposition (Patent Document 9: Japanese Patent Laid-Open No. 2002-42806), and the like. .

特開平5−174818号公報JP-A-5-174818 特開平6−60867号公報JP-A-6-60867 特開平10−294112号公報JP 10-294112 A 特許第2997741号公報Japanese Patent No. 2999741 特開平11−102705号公報JP-A-11-102705 特開2006−92969号公報JP 2006-92969 A 特開2000−243396号公報JP 2000-243396 A 特開2000−215887号公報JP 2000-215887 A 特開2002−42806号公報JP 2002-42806 A

上記従来の方法では、充放電容量が上がり、エネルギー密度が高くなるものの、市場の要求特性に対し不十分であったり、導電性付与工程が複雑で生産性に劣ったり、コストが高くなったりする課題があり、必ずしも満足でき得るものではなく、さらなるエネルギー密度の向上が望まれていた。特に、特許第2997741号公報では、酸化珪素をリチウムイオン二次電池負極材として用い、高容量の電極を得ているが、酸化珪素は電子伝導性が非常に低いため、単に導電助剤を共存させるだけでは不十分であり、電子伝導性を高める技術が検討されている。従来の負極材に導電性を付与した技術については、特開2000−243396号公報では、固体と固体の融着であるため、均一な炭素皮膜が形成されず、導電性が不十分であるといった問題があり、また特開2000−215887号公報の方法においては、均一な炭素皮膜の形成が可能となるものの、Siを負極材として用いているため、リチウムイオンの吸脱着時の膨張・収縮があまりにも大きすぎて、結果として実用に耐えられず、サイクル性が低下するためにこれを防止するべく充電量の制限を設けなくてはならず、特開2002−42806号公報の方法においては、高容量を維持したままサイクル性の向上は確認されるも、工程が複雑であるため、量産化には不向きであり、コストが高くなるといった問題があった。   In the above conventional method, although the charge / discharge capacity is increased and the energy density is increased, the required characteristics of the market are insufficient, the conductivity imparting process is complicated, the productivity is inferior, and the cost is increased. There is a problem, which is not always satisfactory, and further improvement in energy density has been desired. In particular, in Japanese Patent No. 2999741, silicon oxide is used as a negative electrode material for a lithium ion secondary battery to obtain a high-capacity electrode. However, since silicon oxide has very low electronic conductivity, it simply coexists with a conductive assistant. However, it is not sufficient to do so, and techniques for increasing the electron conductivity are being studied. Regarding the technology for imparting conductivity to a conventional negative electrode material, in Japanese Patent Application Laid-Open No. 2000-243396, since it is a solid-solid fusion, a uniform carbon film is not formed and the conductivity is insufficient. There is a problem, and in the method of Japanese Patent Application Laid-Open No. 2000-215887, although a uniform carbon film can be formed, since Si is used as a negative electrode material, expansion / contraction at the time of adsorption / desorption of lithium ions occurs. In order to prevent this because it is too large and cannot endure practically as a result, and the cycle performance is reduced, it is necessary to provide a limit on the amount of charge, and in the method of JP-A-2002-42806, Although improvement in cycle performance is confirmed while maintaining a high capacity, the process is complicated, so that it is not suitable for mass production, and there is a problem that costs increase.

本発明は上記事情に鑑みなされたもので、電池特性のバラツキが少なく、高容量でサイクル特性に優れた、非水電解質二次電池負極材として好適な黒鉛被覆珪素複合体が得られ、かつ量産化が可能で、コストを抑えた工業的規模の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a graphite-coated silicon composite suitable for a negative electrode material for a non-aqueous electrolyte secondary battery that has little variation in battery characteristics, high capacity, and excellent cycle characteristics, and is mass-produced. An object of the present invention is to provide an industrial-scale manufacturing method that can be manufactured at low cost.

本発明者らは、上記目的を達成するため鋭意検討した結果、充放電容量が現在主流であるグラファイト系のものと比較して、その数倍の容量であることから期待されている半面、繰り返しの充放電による性能低下が大きなネックとなっている珪素系物質に着目した。そして、珪素系物質の表面を黒鉛皮膜で被覆することで著しい電池特性の向上が見られた。しかしながら、従来の黒鉛被覆処理は複雑であり、工業的規模の生産が困難であった。工業的規模の生産に耐えうる黒鉛被覆処理方法について、詳細検討を行った。その結果、高分子材料を黒鉛源として用いることで、量産化が可能なことを確認した。但し、従来技術にあるような単純な混合・焼成では、均一被膜の生成が困難であり、電池特性にバラツキが生じ易いといった課題があった。そこで、高分子材料の混合・焼成を複数回施すことで、黒鉛被膜の均一被覆が可能になり、結果として電池特性が安定することを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have repeatedly expected that the charge / discharge capacity is several times that of the graphite-based one, which is currently the mainstream, and is repeated. Attention was focused on silicon-based materials, which have a major bottleneck in performance degradation due to charging and discharging. And the remarkable battery characteristic improvement was seen by coat | covering the surface of a silicon-type substance with a graphite film. However, the conventional graphite coating treatment is complicated and difficult to produce on an industrial scale. A detailed study was conducted on a graphite coating treatment method capable of withstanding industrial scale production. As a result, it was confirmed that mass production was possible by using a polymer material as a graphite source. However, the simple mixing and firing as in the prior art has a problem that it is difficult to form a uniform film and the battery characteristics tend to vary. Therefore, it has been found that the polymer film can be uniformly coated by mixing and baking the polymer material a plurality of times, and as a result, the battery characteristics are stabilized, and the present invention has been completed.

従って、本発明は、下記の黒鉛被覆珪素複合体の製造方法を提供する。
[1].(I−1)(A)珪素粒子、一般式SiOx(0.5≦x<1.5)で表される酸化珪素粒子、珪素の微粒子が珪素系化合物に分散した微細な構造を有する粒子、及びこれらの混合物から選ばれる粒子と、(B)高分子材料とを混合し、混合物を作製する混合工程、
(II−1)得られた混合物を、不活性雰囲気中又は真空雰囲気中で焼成し、焼成物を作製する焼成工程を含み、さらに下記
(I−2)得られた焼成物と、(B)高分子材料とを混合し、焼成物と高分子材料との混合物を作製する混合工程、及び
(II−2)得られた焼成物と高分子材料との混合物を、不活性雰囲気中又は真空雰囲気中で焼成し、焼成物を作製する焼成工程を含む、又は上記(I−2)及び(II−2)工程を複数回繰り返すことを特徴とする黒鉛被覆珪素複合体の製造方法。
[2].(A)粒子の平均粒子径が0.1〜30μm、BET比表面積が0.1〜30m2/gである[1]記載の黒鉛被覆珪素複合体の製造方法。
[3].(B)高分子材料が、芳香族基含有系熱可塑性ポリマー及びポリオレフィン系熱可塑性ポリマーから選ばれるポリマーである[1]又は[2]記載の黒鉛被覆珪素複合体の製造方法。
[4].(I)混合工程が、(B)高分子材料を有機溶媒に溶解した溶液と、(A)粒子又は焼成物とを混合することを特徴とする[1]〜[3]のいずれかに記載の黒鉛被覆珪素複合体の製造方法。
[5].(II)焼成工程の焼成温度が、600〜1,200℃である[1]〜[3]のいずれかに記載の黒鉛被覆珪素複合体の製造方法。
[6].黒鉛被覆珪素複合体の平均粒子径が0.1〜30μm、BET比表面積が0.1〜30m2/g、黒鉛被覆率が0.5〜40質量%である[1]〜[5]のいずれかに記載の黒鉛被覆珪素複合体の製造方法。
[7].黒鉛被覆珪素複合体が、非水電解質二次電池負極材用である[1]〜[6]のいずれかに記載の黒鉛被覆珪素複合体の製造方法。
Accordingly, the present invention provides the following method for producing a graphite-coated silicon composite.
[1]. (I-1) (A) silicon particles, silicon oxide particles represented by the general formula SiOx (0.5 ≦ x <1.5), particles having a fine structure in which silicon fine particles are dispersed in a silicon-based compound, And a mixing step of mixing particles selected from these mixtures and (B) a polymer material to produce a mixture,
(II-1) The obtained mixture is fired in an inert atmosphere or in a vacuum atmosphere, and includes a firing step for producing a fired product. Further, (I-2) the fired product obtained below and (B) A mixing step of mixing the polymer material to produce a mixture of the fired product and the polymer material; and (II-2) the obtained mixture of the fired product and the polymer material in an inert atmosphere or a vacuum atmosphere. A method for producing a graphite-coated silicon composite comprising a firing step of firing in a fired product to produce a fired product, or repeating the steps (I-2) and (II-2) a plurality of times.
[2]. (A) The method for producing a graphite-coated silicon composite according to [1], wherein the particles have an average particle diameter of 0.1 to 30 μm and a BET specific surface area of 0.1 to 30 m 2 / g.
[3]. (B) The method for producing a graphite-coated silicon composite according to [1] or [2], wherein the polymer material is a polymer selected from an aromatic group-containing thermoplastic polymer and a polyolefin-based thermoplastic polymer.
[4]. (I) A mixing process mixes (B) the solution which melt | dissolved the polymeric material in the organic solvent, and (A) particle | grains or a baked material, It is any one of [1]-[3] characterized by the above-mentioned. A method for producing a graphite-coated silicon composite.
[5]. (II) The method for producing a graphite-coated silicon composite according to any one of [1] to [3], wherein a firing temperature in the firing step is 600 to 1,200 ° C.
[6]. The average particle diameter of the graphite-coated silicon composite is 0.1 to 30 μm, the BET specific surface area is 0.1 to 30 m 2 / g, and the graphite coverage is 0.5 to 40% by mass. A method for producing a graphite-coated silicon composite according to any one of the above.
[7]. The method for producing a graphite-coated silicon composite according to any one of [1] to [6], wherein the graphite-coated silicon composite is used for a non-aqueous electrolyte secondary battery negative electrode material.

本発明の製造方法によれば、リチウムイオン二次電池等の非水電解質二次電池の負極活物質に用いることで、高容量及び優れたサイクル特性を有する、非水電解質二次電池負極材として好適な黒鉛被覆珪素複合体が得られる。この製造方法は、簡便であるため量産が可能であり、コスト低減が図れる。   According to the manufacturing method of the present invention, as a non-aqueous electrolyte secondary battery negative electrode material having high capacity and excellent cycle characteristics by being used as a negative electrode active material of a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery. A suitable graphite-coated silicon composite is obtained. Since this manufacturing method is simple, mass production is possible and cost reduction can be achieved.

以下、本発明の製造方法について、各工程について詳細に説明する。
本発明においては、(I)工程とは、(I−1)工程及び(I−2)工程をいい、(II)工程とは、(II−1)工程及び(II−2)工程をいう。
Hereinafter, each process is demonstrated in detail about the manufacturing method of this invention.
In the present invention, step (I) refers to step (I-1) and step (I-2), and step (II) refers to step (II-1) and step (II-2). .

(I−1)珪素粒子、一般式SiOx(0.5≦x<1.5)で表される酸化珪素粒子、珪素の微粒子が珪素系化合物に分散した微細な構造を有する粒子、及びこれらの混合物から選ばれる粒子と、(B)高分子材料とを混合し、混合物を作製する混合工程 (I-1) silicon particles, silicon oxide particles represented by the general formula SiOx (0.5 ≦ x <1.5), particles having a fine structure in which silicon fine particles are dispersed in a silicon-based compound, and these Mixing step of mixing particles selected from a mixture and (B) a polymer material to produce a mixture

本発明において酸化珪素とは、通常、二酸化珪素と金属珪素との混合物を加熱して生成した一酸化珪素ガスを冷却・析出して得られた非晶質の珪素酸化物の総称であり、本発明においては、一般式SiOx(0.5≦x<1.5)を用いる。xは1.0≦x<1.3が好ましく、1.0≦x≦1.2がより好ましい。   In the present invention, silicon oxide is a general term for amorphous silicon oxide obtained by cooling and precipitating silicon monoxide gas generated by heating a mixture of silicon dioxide and metal silicon. In the invention, the general formula SiOx (0.5 ≦ x <1.5) is used. x is preferably 1.0 ≦ x <1.3, and more preferably 1.0 ≦ x ≦ 1.2.

珪素の微粒子が珪素系化合物に分散した微細な構造を有する粒子は、一般式SiOx(0.5≦x<1.5)で表される酸化珪素粒子を出発原料とし、熱処理を行い不均化反応することによって得ることができる。なお、珪素の微粒子の大きさは1〜500nmであることが好ましい。なお、微粒子の大きさは、銅を対陰極としたX線回折(Cu−Kα)において、2θ=28.4°付近を中心としたSi(111)に帰属される回折ピークが観察され、その回折線の広がりをもとに、シェーラーの式によって求めた珪素の結晶の粒子径である。また、珪素系化合物については、不活性なものが好ましく、製造し易さの点において二酸化珪素が好ましい。   Particles with a fine structure in which silicon fine particles are dispersed in silicon-based compounds are disproportionated by heat treatment using silicon oxide particles represented by the general formula SiOx (0.5 ≦ x <1.5) as a starting material. It can be obtained by reacting. The size of the silicon fine particles is preferably 1 to 500 nm. As for the size of the fine particles, a diffraction peak attributed to Si (111) centered around 2θ = 28.4 ° was observed in the X-ray diffraction (Cu-Kα) using copper as the counter-cathode. This is the particle diameter of the silicon crystal determined by the Scherrer equation based on the broadening of the diffraction lines. Moreover, about a silicon type compound, an inactive thing is preferable and a silicon dioxide is preferable at the point of the ease of manufacture.

(A)粒子の平均粒子径は0.1〜30μmが好ましく、0.3〜25μmがより好ましい。また、BET比表面積は0.1〜30m2/gが好ましく、0.1〜25m2/gがより好ましく、0.2〜20m2/gがさらに好ましい。(A)粒子の平均粒子径及びBET比表面積が、上記範囲外では所望の平均粒子径及びBET比表面積を有する黒鉛被覆珪素複合体が得られない場合がある。なお、平均粒子径は、レーザー光回折法による粒度分布測定における重量平均粒子径であり、BET比表面積は、N2ガス吸着量によって評価するBET1点法にて測定した値である。 (A) 0.1-30 micrometers is preferable and the average particle diameter of particle | grains has more preferable 0.3-25 micrometers. Further, BET specific surface area is preferably 0.1~30m 2 / g, more preferably 0.1~25m 2 / g, more preferably 0.2~20m 2 / g. (A) If the average particle diameter and BET specific surface area of the particles are outside the above ranges, a graphite-coated silicon composite having a desired average particle diameter and BET specific surface area may not be obtained. The average particle diameter is the weight average particle diameter in the particle size distribution measurement by the laser beam diffraction method, and the BET specific surface area is a value measured by the BET one-point method evaluated by the N 2 gas adsorption amount.

(B)高分子材料
黒鉛被覆珪素複合体は、上記(A)粒子の表面を、(B)高分子材料を炭素源として用い、黒鉛皮膜を被覆したものである。高分子材料としては、ポリスチレン、キシレン樹脂、ビフェニル樹脂、ナフチレン樹脂、アントラセン樹脂、ポリ1−ビニルナフタリン、ポリ3−ビニルピレン、ポリアルキルフルオレン系等といった芳香族基含有系熱可塑性ポリマー、ポリエチレン、ポリプロピレン、ポリブテン、ポリペンテン、ポリヘキサン、ポリオクテン、ポリノネン、ポリデセン等といったポリオレフィン系熱可塑性ポリマー、縮合多核芳香族樹脂、フラン樹脂、フェノール樹脂等といった熱可塑性樹脂、ポリトリアジン樹脂、ポリピリダジン樹脂、ポリピリジン樹脂、ポリピペリジン樹脂、ポリトリアゾール樹脂、ポリピラゾール樹脂、ポリピルロリデン樹脂等といった窒素含有樹脂等が挙げられ、これらは1種単独で又は2種以上を適宜組み合わせて用いることができる。中でも、芳香族基含有系熱可塑性ポリマー及びポリオレフィン系熱可塑性ポリマーが、黒鉛被覆効果の点から好ましい。中でも、ポリスチレン、ポリエチレンが、コスト、入手のし易さより好適に用いられる。
(B) Polymer material The graphite-coated silicon composite is obtained by coating the surface of the particle (A) with a graphite film using the polymer material (B) as a carbon source. Examples of the polymer material include polystyrene, xylene resin, biphenyl resin, naphthylene resin, anthracene resin, poly-1-vinylnaphthalene, poly-3-vinylpyrene, polyalkylfluorene-based thermoplastic polymer, polyethylene, polypropylene, Polyolefin thermoplastic polymers such as polybutene, polypentene, polyhexane, polyoctene, polynonene, polydecene, etc., thermoplastic resins such as condensed polynuclear aromatic resins, furan resins, phenol resins, polytriazine resins, polypyridazine resins, polypyridine resins, polypiperidines Nitrogen-containing resins such as resins, polytriazole resins, polypyrazole resins, polypyrrolidene resins, etc. are used, and these may be used alone or in combination of two or more. It can be. Among these, aromatic group-containing thermoplastic polymers and polyolefin-based thermoplastic polymers are preferable from the viewpoint of the graphite coating effect. Among these, polystyrene and polyethylene are preferably used because of cost and availability.

(B)高分子材料は粉末として混合することもでき、予めトルエン、アセトン、ヘキサン、キシレン、エタノール等の有機溶媒に溶解した溶液を(A)粒子と混合することもできるが、より均一な混合が可能となる点から、溶液で混合することが好ましい。混合方法は、特に限定されるものではなく、ボールミル、撹拌型混合器、乳鉢等が挙げられるが、ボールミルが簡便であり、より好適に用いられる。   (B) The polymer material can also be mixed as a powder, and a solution previously dissolved in an organic solvent such as toluene, acetone, hexane, xylene, ethanol, etc. can be mixed with (A) particles, but more uniform mixing Therefore, it is preferable to mix with a solution. The mixing method is not particularly limited, and examples thereof include a ball mill, a stirring mixer, a mortar, and the like, but a ball mill is simple and more preferably used.

(II−1)得られた混合物を、不活性雰囲気中又は真空雰囲気中で焼成し、焼成物を作製する焼成工程
不活性ガスは、アルゴン又は窒素が一般的に用いられ、ガス通気中又は封入し、焼成を行うことができるが、圧力上昇防止及び副生ガスを系外に排出させるため、ガス通気・流入中にて行うことが好ましい。なお、不活性ガスの流量が過剰の場合、炭化水素系ガスが系外に排出され、黒鉛被覆処理速度が低下するおそれがあるため、必要最小限であることが好ましい。
(II-1) Firing step in which the obtained mixture is fired in an inert atmosphere or vacuum atmosphere to produce a fired product. As the inert gas, argon or nitrogen is generally used, and the gas is vented or sealed. However, in order to prevent an increase in pressure and to discharge a by-product gas out of the system, it is preferable to perform the firing while the gas is flowing in / in. In addition, when the flow rate of the inert gas is excessive, the hydrocarbon-based gas is discharged out of the system and there is a possibility that the graphite coating processing speed is lowered, so that it is preferably the minimum necessary.

焼成温度は、600〜1,200℃が好ましく、700〜1,100℃がより好ましい。焼成温度が600℃より低いと黒鉛被覆処理に長時間を要し、生産性が低下するおそれがある。逆に、処理温度が1,200℃を超えると、一般式SiOx(0.5≦x<1.5)で表される酸化珪素を黒鉛被覆処理した場合、不均化反応が進行し過ぎ、本黒鉛被覆珪素複合体を非水電解質二次電池負極材として用いた場合に、サイクル特性が低下してしまう。焼成時間は、適宜選択されるが、0.2〜15時間が好ましく、0.5〜10時間がより好ましい。   The firing temperature is preferably 600 to 1,200 ° C, and more preferably 700 to 1,100 ° C. If the firing temperature is lower than 600 ° C., it takes a long time for the graphite coating treatment, which may reduce the productivity. Conversely, when the treatment temperature exceeds 1,200 ° C., when the silicon oxide represented by the general formula SiOx (0.5 ≦ x <1.5) is coated with graphite, the disproportionation reaction proceeds too much, When this graphite-coated silicon composite is used as a negative electrode material for a non-aqueous electrolyte secondary battery, cycle characteristics are deteriorated. Although baking time is suitably selected, 0.2 to 15 hours are preferable and 0.5 to 10 hours are more preferable.

焼成装置については、不活性ガス雰囲気又は真空雰囲気において、加熱機構を有する反応装置を用いればよく、特に限定されず、連続法、回分法での処理が可能で、具体的には流動層反応炉、回転炉、環状炉、竪型移動層反応炉、トンネル炉、バッチ炉、ロータリーキルン等をその目的に応じ適宜選択することができる。   The baking apparatus may be a reactor having a heating mechanism in an inert gas atmosphere or a vacuum atmosphere, and is not particularly limited, and can be processed by a continuous method or a batch method, specifically, a fluidized bed reactor. A rotary furnace, a ring furnace, a vertical moving bed reaction furnace, a tunnel furnace, a batch furnace, a rotary kiln and the like can be appropriately selected according to the purpose.

(I−2)得られた焼成物と、(B)高分子材料とを混合し、焼成物と高分子材料との混合物を作製する混合工程
本発明においては、上記(I)の工程で得られた焼成物に、さらに(B)高分子材料を混合し、焼成物と高分子材料との混合物を作製する。(B)成分の好適成分、混合方法等については、上記(I−1)工程の記載と同様であり、(B)高分子材料は粉末として混合することもでき、予め有機溶媒に溶解した溶液を(A)粒子と混合することもでき、混合方法は、特に限定されるものではなく、ボールミル、撹拌型混合器、乳鉢等が挙げられるが、ボールミルが簡便であり、より好適に用いられる。(B)高分子材料、混合の方法等その他の条件は、上記(I−1)と同じであっても、違っていてもよい。
(I-2) Mixing step of mixing the obtained fired product and (B) the polymer material to produce a mixture of the fired product and the polymer material In the present invention, it is obtained in the step (I) above. The fired product is further mixed with (B) a polymer material to produce a mixture of the fired product and the polymer material. About the suitable component of (B) component, a mixing method, etc., it is the same as that of the description of the said (I-1) process, (B) The polymeric material can also be mixed as a powder and the solution previously melt | dissolved in the organic solvent (A) can be mixed with the particles, and the mixing method is not particularly limited, and examples thereof include a ball mill, a stirring mixer, and a mortar, but a ball mill is simple and more preferably used. (B) Other conditions such as the polymer material and the mixing method may be the same as or different from the above (I-1).

(II−2)得られた焼成物と高分子材料との混合物を、不活性雰囲気中又は真空雰囲気中で焼成し焼成物を作製する焼成工程
焼成工程の焼成温度等の条件等は、上記(I−2)の工程と同じように選択できるが、上記(I−2)と同じであっても、違っていてもよい。焼成温度は、600〜1,200℃が好ましく、700〜1,100℃がより好ましい。焼成時間は、適宜選択されるが、0.2〜15時間が好ましく、0.5〜10時間がより好ましい。
(II-2) A firing step of firing a mixture of the obtained fired product and the polymer material in an inert atmosphere or a vacuum atmosphere to produce a fired product. Conditions such as a firing temperature in the firing step are the above ( Although it can select like the process of I-2), it may be the same as that of said (I-2), or may differ. The firing temperature is preferably 600 to 1,200 ° C, and more preferably 700 to 1,100 ° C. Although baking time is suitably selected, 0.2 to 15 hours are preferable and 0.5 to 10 hours are more preferable.

本発明においては、上記(I−2)及び(II−2)を含み、さらに(I−2)及び(II−2)工程を複数回繰り返してもよい。このように、高分子材料の混合・焼成を複数回繰返し行うことで、黒鉛被膜の均一被覆が可能となる。(I−2)及び(II−2)工程の回数は特に限定されず、高分子材料の混合比率、焼成温度によって適宜選定されるが、1〜4回が好ましく((I)工程を含めると2〜5回)、1回がより好ましい。(I−2)及び(II−2)工程の回数が4回を超えると本来の目的である量産化、低コスト化が困難になるため、できるだけ少ないほうが好ましい。   In the present invention, the steps (I-2) and (II-2) are included, and the steps (I-2) and (II-2) may be repeated a plurality of times. In this way, the graphite film can be uniformly coated by repeatedly mixing and baking the polymer material a plurality of times. The number of steps (I-2) and (II-2) is not particularly limited and is appropriately selected depending on the mixing ratio of the polymer material and the firing temperature, but preferably 1 to 4 times (including step (I) 2 to 5 times), 1 time is more preferable. When the number of steps (I-2) and (II-2) exceeds 4, it is difficult to achieve mass production and cost reduction, which are the original purposes.

(A)粒子と(B)高分子材料との混合比は、全工程の合計量として、(A)粒子100質量部に対して、(B)高分子材料20〜500質量部が好ましく、より好ましくは30〜400質量部である。各(I)工程の(A)粒子又は焼成物に対する混合量は、上記全工程の量を(I)工程の数で割った数±30質量部等から適宜選定されるが、各(I)工程あたりの混合量は、(A)粒子又は焼成物100質量部に対して、(B)高分子材料5〜300質量部が好ましく、より好ましくは7〜250質量部である。(B)高分子材料が少なすぎると、黒鉛被覆量が少なくなるおそれがあり、一方、多すぎると、黒鉛被覆量が多くなり、非水電解質二次電池負極材として用いた場合、充放電容量が低下するおそれがある。   The mixing ratio of (A) particles to (B) polymer material is preferably 20 to 500 parts by mass of (B) polymer material with respect to 100 parts by mass of particles (A) as the total amount of all steps. Preferably it is 30-400 mass parts. The mixing amount of each step (I) with respect to the particles (A) or the baked product is appropriately selected from ± 30 parts by mass obtained by dividing the amount of all the steps by the number of steps (I). The mixing amount per process is preferably 5 to 300 parts by mass of (B) polymer material, more preferably 7 to 250 parts by mass with respect to 100 parts by mass of (A) particles or fired product. (B) If the polymer material is too small, the graphite coating amount may decrease. On the other hand, if the polymer material is too large, the graphite coating amount will increase, and the charge / discharge capacity will be increased when used as a non-aqueous electrolyte secondary battery negative electrode material. May decrease.

[黒鉛被覆珪素複合体]
上記製造方法で得られた黒鉛被覆珪素複合体は、珪素粒子、一般式SiOx(0.5≦x<1.5)で表される酸化珪素粒子、珪素の微粒子が珪素系化合物に分散した微細な構造を有する粒子、及びこれらの混合物から選ばれる粒子表面が、上記(B)高分子材料を黒鉛源とした黒鉛被覆されたものである。珪素粒子、酸化珪素粒子、珪素の微粒子が珪素系化合物に分散した微細な構造を有する粒子については、(A)粒子で説明した通りである。なお、原料として一般式SiOx(0.5≦x<1.5)で表される酸化珪素粒子を用いた場合に、焼結によって不均化反応が進み、珪素の微粒子が珪素系化合物に分散した微細な構造を有する粒子表面が、(B)高分子材料を黒鉛源とした黒鉛被覆された黒鉛被覆珪素複合体となる場合がある。
[Graphite-coated silicon composite]
The graphite-coated silicon composite obtained by the above production method is fine in that silicon particles, silicon oxide particles represented by the general formula SiOx (0.5 ≦ x <1.5), and silicon fine particles are dispersed in a silicon-based compound. The particle surface selected from particles having a simple structure and a mixture thereof is graphite-coated using the (B) polymer material as a graphite source. The particles having a fine structure in which silicon particles, silicon oxide particles, and silicon fine particles are dispersed in a silicon-based compound are as described in the (A) particles. When silicon oxide particles represented by the general formula SiOx (0.5 ≦ x <1.5) are used as raw materials, disproportionation reaction proceeds by sintering, and silicon fine particles are dispersed in the silicon-based compound. In some cases, the surface of the particles having a fine structure becomes a graphite-coated silicon composite coated with graphite using (B) a polymer material as a graphite source.

黒鉛被覆珪素複合体の黒鉛被覆率(%:黒鉛被覆珪素複合体に対する割合)は、0.5〜40質量%が好ましく、2〜30質量%がより好ましい。黒鉛被覆量が0.5質量%未満では、導電性膜形成といった点で不十分であり、十分な導電性を維持できなくなるおそれがあり、結果として非水電解質二次電池負極材とした場合にサイクル性が低下するおそれがある。一方、黒鉛被覆量が40質量%を超えても、効果の向上が見られないばかりか、負極材に占める黒鉛の割合が多くなり、黒鉛被覆珪素複合体を非水電解質二次電池負極材として用いた場合、充放電容量が低下する。なお、混合・焼成の各回における黒鉛被覆量については、特に限定されるものではなく、全黒鉛被覆量を混合・焼成の各回で除した黒鉛被覆量の±30%程度とすることで、均一な黒鉛被覆処理が可能となる。   The graphite coverage (%: ratio relative to the graphite-coated silicon composite) of the graphite-coated silicon composite is preferably 0.5 to 40% by mass, and more preferably 2 to 30% by mass. If the graphite coating amount is less than 0.5% by mass, it is insufficient in terms of formation of a conductive film, and there is a possibility that sufficient conductivity cannot be maintained. As a result, when a negative electrode material for a nonaqueous electrolyte secondary battery is obtained. Cycle performance may be reduced. On the other hand, even if the graphite coating amount exceeds 40% by mass, the effect is not improved, and the proportion of graphite in the negative electrode material increases, and the graphite-coated silicon composite is used as a negative electrode material for non-aqueous electrolyte secondary batteries. When used, the charge / discharge capacity decreases. In addition, the graphite coating amount in each time of mixing and firing is not particularly limited, and it is uniform by setting the total graphite coating amount to about ± 30% of the graphite coating amount obtained by dividing each time of mixing and firing. Graphite coating treatment is possible.

黒鉛被覆珪素複合体は粒子であり、その平均粒子径は0.1〜30μmが好ましく、0.3〜25μmがより好ましい。平均粒子径が0.1μmより小さいと、表面酸化の影響で純度が低下し、非水電解質二次電池負極材として用いた場合、充放電容量が低下したり、嵩密度が低下し、単位体積あたりの充放電容量が低下するおそれがある。逆に30μmより大きいと、黒鉛被覆処理における黒鉛析出量が減少し、結果として非水電解質二次電池負極材として用いた場合にサイクル性能が低下するおそれがある。また、BET比表面積は0.1〜30m2/gが好ましく、0.1〜25m2/gがより好ましく、0.2〜20m2/gがさらに好ましい。BET比表面積が0.1m2/g未満では、表面活性が小さくなり、結果として非水電解質二次電池負極材とした場合に、充放電容量が低下するおそれがある。逆に、BET比表面積が30m2/gを超えると、電極作製時の結着剤量が多くなり、電極としての容量が低下するおそれがある。 The graphite-coated silicon composite is a particle, and the average particle diameter is preferably 0.1 to 30 μm, and more preferably 0.3 to 25 μm. If the average particle size is smaller than 0.1 μm, the purity decreases due to the effect of surface oxidation, and when used as a non-aqueous electrolyte secondary battery negative electrode material, the charge / discharge capacity decreases, the bulk density decreases, and the unit volume The charge / discharge capacity per unit may be reduced. On the other hand, if it is larger than 30 μm, the amount of graphite deposited in the graphite coating treatment decreases, and as a result, when used as a nonaqueous electrolyte secondary battery negative electrode material, the cycle performance may be lowered. Further, BET specific surface area is preferably 0.1~30m 2 / g, more preferably 0.1~25m 2 / g, more preferably 0.2~20m 2 / g. When the BET specific surface area is less than 0.1 m 2 / g, the surface activity becomes small, and as a result, when a non-aqueous electrolyte secondary battery negative electrode material is used, the charge / discharge capacity may be reduced. On the contrary, if the BET specific surface area exceeds 30 m 2 / g, the amount of the binder at the time of producing the electrode increases, and the capacity as an electrode may be reduced.

[非水電解質二次電池負極材]
黒鉛被覆珪素複合体は、リチウムイオン二次電池等の非水電解質二次電池の負極活物質として好適であり、非水電解質二次電池負極材用として用いられる。上記非水電解質二次電池負極材を用いて負極を作製する場合、非水電解質二次電池負極材に黒鉛等の導電剤を添加することができる。この場合においても導電剤の種類は特に限定されず、構成された電池において、分解や変質を起こさない電子伝導性の材料であればよく、具体的にはAl,Ti,Fe,Ni,Cu,Zn,Ag,Sn,Si等の金属粉末や金属繊維、又は天然黒鉛、人造黒鉛、各種のコークス粉末、メソフェーズ炭素、気相成長炭素繊維、ピッチ系炭素繊維、PAN系炭素繊維、各種の樹脂焼成体等の黒鉛を用いることができる。
[Nonaqueous electrolyte secondary battery negative electrode material]
The graphite-coated silicon composite is suitable as a negative electrode active material for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, and is used for a negative electrode material for a non-aqueous electrolyte secondary battery. When producing a negative electrode using the nonaqueous electrolyte secondary battery negative electrode material, a conductive agent such as graphite can be added to the nonaqueous electrolyte secondary battery negative electrode material. Also in this case, the kind of the conductive agent is not particularly limited, and any electronic conductive material that does not cause decomposition or alteration in the constituted battery may be used. Specifically, Al, Ti, Fe, Ni, Cu, Metal powder and metal fiber such as Zn, Ag, Sn, Si, or natural graphite, artificial graphite, various coke powders, mesophase carbon, vapor-grown carbon fiber, pitch-based carbon fiber, PAN-based carbon fiber, various resin firing Graphite such as a body can be used.

[負極]
負極(成型体)の調製方法としては下記の方法が挙げられる。黒鉛被覆珪素複合体と、必要に応じて導電剤と、結着剤等の他の添加剤とに、N−メチルピロリドン又は水等の溶剤を混練してペースト状の合剤とし、この合剤を集電体のシートに塗布する。この場合、集電体としては、銅箔、ニッケル箔等、通常、負極の集電体として使用されている材料であれば、特に厚さ、表面処理の制限なく使用することができる。なお、合剤をシート状に成形する成形方法は特に限定されず、公知の方法を用いることができる。
[Negative electrode]
Examples of the method for preparing the negative electrode (molded body) include the following methods. A paste-like mixture is prepared by kneading a graphite-coated silicon composite, a conductive agent if necessary, and other additives such as a binder with a solvent such as N-methylpyrrolidone or water. Is applied to the sheet of the current collector. In this case, as the current collector, any material that is usually used as a negative electrode current collector, such as a copper foil or a nickel foil, can be used without any particular limitation on thickness and surface treatment. In addition, the shaping | molding method which shape | molds a mixture into a sheet form is not specifically limited, A well-known method can be used.

[非水電解質二次電池]
リチウムイオン二次電池等の非水電解質二次電池は、上記黒鉛被覆珪素複合体を用いる点に特徴を有し、その他の正極、負極、電解質、セパレータ等の材料及び電池形状等は公知のものを使用することができ、特に限定されない。例えば、正極活物質としてはLiCoO2、LiNiO2、LiMn24、V25、MnO2、TiS2、MoS2等の遷移金属の酸化物、リチウム、及びカルコゲン化合物等が用いられる。電解質としては、例えば、六フッ化リン酸リチウム、過塩素酸リチウム等のリチウム塩を含む非水溶液が用いられ、非水溶媒としてはプロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメトキシエタン、γ−ブチロラクトン、2−メチルテトラヒドロフラン等の1種又は2種類以上を組み合わせて用いられる。また、それ以外の種々の非水系電解質や固体電解質も使用できる。
[Nonaqueous electrolyte secondary battery]
Nonaqueous electrolyte secondary batteries such as lithium ion secondary batteries are characterized by the use of the above graphite-coated silicon composite, and other materials such as positive electrodes, negative electrodes, electrolytes, separators, and battery shapes are known. There is no particular limitation. For example, as the positive electrode active material, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , V 2 O 5 , MnO 2 , TiS 2 , MoS 2 and other transition metal oxides, lithium, chalcogen compounds, and the like are used. As the electrolyte, for example, a non-aqueous solution containing a lithium salt such as lithium hexafluorophosphate and lithium perchlorate is used. As the non-aqueous solvent, propylene carbonate, ethylene carbonate, diethyl carbonate, dimethoxyethane, γ-butyrolactone, One type or a combination of two or more types such as 2-methyltetrahydrofuran is used. Various other non-aqueous electrolytes and solid electrolytes can also be used.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

[実施例1]
平均粒子径5μmの一般式SiOx(x=1.02)で表される酸化珪素粒子50gを、トルエン25gにポリスチレン25gを溶解した溶液に入れて、ボールミルにて1時間混合し、酸化珪素/ポリスチレン混合物を作製した。次にφ120の環状炉内に混合物を全量仕込み、アルゴン(Ar)ガスを0.2L/min流入させながら、1,000℃で1時間焼成を実施した。焼成終了後に降温し、黒色粉末を得た。得られた黒色粉末は、黒鉛被覆率が2.5質量%であった。次に得られた黒色粉末を上記と同様に、ポリスチレンと混合した。つまり、得られた黒色粉末を、トルエン25gにポリスチレン25gを溶解した溶液に入れて、ボールミルにて1時間混合し、黒色粉末/ポリスチレン混合物を作製した。その後上記同様の焼成処理を実施した。最終的に得られた黒色粉末は、平均粒子径5.0μm、BET比表面積4.7m2/g、黒鉛被覆率4.5質量%の黒鉛被覆珪素複合体であった。
[Example 1]
50 g of silicon oxide particles represented by the general formula SiO x (x = 1.02) having an average particle diameter of 5 μm were placed in a solution of 25 g of polystyrene in 25 g of toluene and mixed for 1 hour in a ball mill. A polystyrene mixture was made. Next, the entire amount of the mixture was placed in a φ120 annular furnace, and baked at 1,000 ° C. for 1 hour while flowing argon (Ar) gas at 0.2 L / min. After the firing, the temperature was lowered to obtain a black powder. The obtained black powder had a graphite coverage of 2.5% by mass. Next, the obtained black powder was mixed with polystyrene in the same manner as described above. That is, the obtained black powder was put into a solution of 25 g of polystyrene in 25 g of toluene and mixed for 1 hour by a ball mill to prepare a black powder / polystyrene mixture. Thereafter, the same baking treatment as described above was performed. The black powder finally obtained was a graphite-coated silicon composite having an average particle diameter of 5.0 μm, a BET specific surface area of 4.7 m 2 / g, and a graphite coverage of 4.5% by mass.

○電池評価
次に、以下の方法で、得られた黒鉛被覆珪素複合体を負極活物質として用いた電池評価を行った。
まず、得られた黒鉛被覆珪素複合体にポリイミドを10質量%加え、さらにN−メチルピロリドンを加えてスラリーとし、このスラリーを厚さ20μmの銅箔に塗布し、80℃で1時間乾燥後、ローラープレスにより電極を加圧成形し、この電極を350℃で1時間真空乾燥した後、2cm2に打ち抜き、負極とした。
Battery Evaluation Next, a battery evaluation using the obtained graphite-coated silicon composite as a negative electrode active material was performed by the following method.
First, 10% by mass of polyimide was added to the obtained graphite-coated silicon composite, and further N-methylpyrrolidone was added to form a slurry. This slurry was applied to a copper foil having a thickness of 20 μm, dried at 80 ° C. for 1 hour, The electrode was pressure-formed by a roller press, and this electrode was vacuum-dried at 350 ° C. for 1 hour, and then punched out to 2 cm 2 to obtain a negative electrode.

ここで、得られた負極の充放電特性を評価するために、対極にリチウム箔を使用し、非水電解質として、六フッ化リンリチウムをエチレンカーボネートとジエチルカーボネートの1/1(体積比)混合液に1モル/Lの濃度で溶解した非水電解質溶液を用い、セパレータに厚さ30μmのポリエチレン製微多孔質フィルムを用いた評価用リチウムイオン二次電池を作製した。   Here, in order to evaluate the charge / discharge characteristics of the obtained negative electrode, a lithium foil was used as a counter electrode, and lithium hexafluorophosphate was mixed with ethylene carbonate and diethyl carbonate in 1/1 (volume ratio) as a non-aqueous electrolyte. A lithium ion secondary battery for evaluation using a non-aqueous electrolyte solution dissolved in a liquid at a concentration of 1 mol / L and using a polyethylene microporous film having a thickness of 30 μm as a separator was produced.

作製したリチウムイオン二次電池は、一晩室温で放置した後、二次電池充放電試験装置((株)ナガノ製)を用い、テストセルの電圧が0Vに達するまで0.5mA/cm2の定電流で充電を行い、0Vに達した後は、セル電圧を0Vに保つように電流を減少させて充電を行った。そして、電流値が40μA/cm2を下回った時点で充電を終了した。放電は0.5mA/cm2の定電流で行い、セル電圧が2.0Vを上回った時点で放電を終了し、放電容量を求めた。 The prepared lithium ion secondary battery was allowed to stand at room temperature overnight, and then charged with a secondary battery charge / discharge tester (manufactured by Nagano Co., Ltd.) until the test cell voltage reached 0 V at 0.5 mA / cm 2 . Charging was performed at a constant current, and after reaching 0V, charging was performed by decreasing the current so as to keep the cell voltage at 0V. Then, charging was terminated when the current value fell below 40 μA / cm 2 . Discharging was performed at a constant current of 0.5 mA / cm 2 , and discharging was terminated when the cell voltage exceeded 2.0 V, and the discharge capacity was determined.

以上の充放電試験を繰り返し、評価用リチウムイオン二次電池の50サイクル後の充放電試験を行った。その結果、初回充電容量1,850mAh/g、初回放電容量1,500mAh/g、初回充放電効率81.1%、50サイクル目の放電容量1,350mAh/g、50サイクル後のサイクル保持率90.0%の高容量であり、かつ初回充放電効率及びサイクル性に優れたリチウムイオン二次電池であることが確認された。   The above charge / discharge test was repeated, and a charge / discharge test after 50 cycles of the lithium ion secondary battery for evaluation was performed. As a result, the initial charge capacity 1,850 mAh / g, the initial discharge capacity 1,500 mAh / g, the initial charge / discharge efficiency 81.1%, the 50th cycle discharge capacity 1,350 mAh / g, the cycle retention 90 after 50 cycles It was confirmed that the lithium-ion secondary battery had a high capacity of 0.0% and excellent initial charge / discharge efficiency and cycleability.

[実施例2]
焼成温度を650℃、焼成時間を5時間とした他は実施例1と同様の条件で黒鉛被覆処理を行った。
1回目での混合・焼成処理(I)で得られた黒色粉末の黒鉛被覆量は、2.3質量%であった。最終的に得られた黒色粉末は、平均粒子径5.1μm、BET比表面積9.8m2/g、黒鉛被覆率4.1質量%の黒鉛被覆珪素複合体であった。
[Example 2]
The graphite coating treatment was performed under the same conditions as in Example 1 except that the firing temperature was 650 ° C. and the firing time was 5 hours.
The graphite coating amount of the black powder obtained by the first mixing / firing process (I) was 2.3% by mass. The finally obtained black powder was a graphite-coated silicon composite having an average particle size of 5.1 μm, a BET specific surface area of 9.8 m 2 / g, and a graphite coverage of 4.1% by mass.

この黒鉛被覆珪素複合体を実施例1と同様な方法で電池評価を行った結果、初回充電容量1,920mAh/g、初回放電容量1,520mAh/g、初回充放電効率79.2%、50サイクル目の放電容量1,350mAh/g、50サイクル後のサイクル保持率88.8%の高容量であり、かつ初回充放電効率及びサイクル性に優れたリチウムイオン二次電池であることが確認された。   As a result of battery evaluation of this graphite-coated silicon composite by the same method as in Example 1, the initial charge capacity was 1,920 mAh / g, the initial discharge capacity was 1,520 mAh / g, the initial charge / discharge efficiency was 79.2%, 50 It was confirmed that the lithium ion secondary battery had a high discharge capacity of 1,350 mAh / g at the cycle, a cycle retention of 88.8% after 50 cycles, and excellent initial charge / discharge efficiency and cycleability. It was.

[実施例3]
トルエン80gにポリスチレン80gを溶解した溶液を用いる他は実施例1と同様の条件で黒鉛被覆処理を行った。
[Example 3]
The graphite coating treatment was performed under the same conditions as in Example 1 except that a solution obtained by dissolving 80 g of polystyrene in 80 g of toluene was used.

1回目での混合・焼成処理(I)で得られた黒色粉末の黒鉛被覆量は、3.5%であった。最終的に得られた黒色粉末は、平均粒子径5.1μm、BET比表面積7.3m2/g、黒鉛被覆率6.2質量%の黒鉛被覆珪素複合体であった。 The graphite coating amount of the black powder obtained by the first mixing / firing treatment (I) was 3.5%. The finally obtained black powder was a graphite-coated silicon composite having an average particle size of 5.1 μm, a BET specific surface area of 7.3 m 2 / g, and a graphite coverage of 6.2% by mass.

この黒鉛被覆珪素複合体を実施例1と同様の方法で電池評価を行った結果、初回充電容量1,830mAh/g、初回放電容量1,480mAh/g、初回充放電効率80.9%、50サイクル目の放電容量1,330mAh/g、50サイクル後のサイクル保持率89.9%の高容量であり、かつ初回充放電効率及びサイクル性に優れたリチウムイオン二次電池であることが確認された。   As a result of battery evaluation of this graphite-coated silicon composite by the same method as in Example 1, the initial charge capacity 1,830 mAh / g, the initial discharge capacity 1,480 mAh / g, the initial charge / discharge efficiency 80.9%, 50 It was confirmed that the lithium-ion secondary battery had a high discharge capacity of 1,330 mAh / g at the cycle, a cycle retention of 89.9% after 50 cycles, and excellent initial charge / discharge efficiency and cycleability. It was.

[実施例4]
トルエン25gにポリスチレン5gを溶解した溶液を用い、混合・焼成処理を5回(I:1回、II:4回)繰り返した他は実施例1と同様な条件で黒鉛被覆処理を行った。
1回目(I)での混合・焼成処理で得られた黒色粉末の黒鉛被覆量は、1.2質量%、2回目(II)では、2.1質量%、3回目(II)では3.1質量%、4回目(II)では4.0質量%であり、5回目(II)の最終的に得られた黒色粉末は、平均粒子径5.2μm、BET比表面積5.3m2/g、黒鉛被覆率4.8質量%の黒鉛被覆珪素複合体であった。
[Example 4]
A graphite coating treatment was performed under the same conditions as in Example 1 except that a solution of 5 g of polystyrene in 25 g of toluene was used, and the mixing and baking treatment was repeated 5 times (I: 1 time, II: 4 times).
The graphite coating amount of the black powder obtained by the mixing / firing treatment in the first (I) is 1.2% by mass, 2.1% by mass in the second (II), and 3. in the third (II). 1% by mass and 4.0% by mass in the fourth time (II), and the black powder finally obtained in the fifth time (II) has an average particle size of 5.2 μm and a BET specific surface area of 5.3 m 2 / g. A graphite-coated silicon composite having a graphite coverage of 4.8% by mass.

この黒鉛被覆珪素複合体を実施例1と同様の方法で電池評価を行った結果、初回充電容量1,850mAh/g、初回放電容量1,500mAh/g、初回充放電効率81.1%、50サイクル目の放電容量1,370mAh/g、50サイクル後のサイクル保持率91.3%の高容量であり、かつ初回充放電効率及びサイクル性に優れたリチウムイオン二次電池であることが確認された。   As a result of battery evaluation of this graphite-coated silicon composite by the same method as in Example 1, the initial charge capacity 1,850 mAh / g, the initial discharge capacity 1,500 mAh / g, the initial charge / discharge efficiency 81.1%, 50 It was confirmed that the lithium ion secondary battery had a high discharge capacity of 1,370 mAh / g at the cycle, a cycle retention of 91.3% after 50 cycles, and excellent initial charge / discharge efficiency and cycleability. It was.

[比較例1]
平均粒子径5μmの一般式SiOx(x=1.02)で表される酸化珪素粉末50gをトルエン120gにポリスチレン120gを溶解した溶液に入れて、ボールミルにて時間混合し、酸化珪素/ポリスチレン混合物を作製した。次にφ120の環状炉内に混合物を全量仕込み、Arガスを0.2L/min流入させながら、1,000℃で1時間焼成を実施した。得られた黒色粉末は、平均粒子径5.1μm、BET比表面積5.3m2/g、黒鉛被覆率4.7質量%の黒鉛被覆珪素複合体であった。
[Comparative Example 1]
50 g of silicon oxide powder represented by the general formula SiO x (x = 1.02) having an average particle diameter of 5 μm is placed in a solution of 120 g of polystyrene in 120 g of toluene and mixed for a time with a ball mill to obtain a silicon oxide / polystyrene mixture. Was made. Next, the entire amount of the mixture was charged into a φ120 annular furnace, and calcination was performed at 1,000 ° C. for 1 hour while flowing Ar gas in an amount of 0.2 L / min. The resulting black powder was a graphite-coated silicon composite having an average particle size of 5.1 μm, a BET specific surface area of 5.3 m 2 / g, and a graphite coverage of 4.7% by mass.

この黒鉛被覆珪素複合体を実施例1と同様な方法で電池評価を行った結果、初回充電容量1,840mAh/g、初回放電容量1,480mAh/g、初回充放電効率80.4%、50サイクル目の放電容量1,280mAh/g、50サイクル後のサイクル保持率86.5%であり、実施例に比べ、サイクル性に劣るリチウムイオン二次電池であることが確認された。   As a result of battery evaluation of this graphite-coated silicon composite by the same method as in Example 1, the initial charge capacity 1,840 mAh / g, the initial discharge capacity 1,480 mAh / g, the initial charge / discharge efficiency 80.4%, 50 The discharge capacity at the cycle was 1,280 mAh / g, the cycle retention after 50 cycles was 86.5%, and it was confirmed that the lithium ion secondary battery was inferior in cycle performance as compared with the Examples.

実施例及び比較例の条件及び結果を下記表に示す。   The conditions and results of Examples and Comparative Examples are shown in the following table.

Figure 2017088437
Figure 2017088437

Figure 2017088437
Figure 2017088437

Figure 2017088437
Figure 2017088437

Claims (7)

(I−1)(A)珪素粒子、一般式SiOx(0.5≦x<1.5)で表される酸化珪素粒子、珪素の微粒子が珪素系化合物に分散した微細な構造を有する粒子、及びこれらの混合物から選ばれる粒子と、(B)高分子材料とを混合し、混合物を作製する混合工程、
(II−1)得られた混合物を、不活性雰囲気中又は真空雰囲気中で焼成し、焼成物を作製する焼成工程を含み、さらに下記
(I−2)得られた焼成物と、(B)高分子材料とを混合し、焼成物と高分子材料との混合物を作製する混合工程、及び
(II−2)得られた焼成物と高分子材料との混合物を、不活性雰囲気中又は真空雰囲気中で焼成し、焼成物を作製する焼成工程を含む、又は上記(I−2)及び(II−2)工程を複数回繰り返すことを特徴とする黒鉛被覆珪素複合体の製造方法。
(I-1) (A) silicon particles, silicon oxide particles represented by the general formula SiOx (0.5 ≦ x <1.5), particles having a fine structure in which silicon fine particles are dispersed in a silicon-based compound, And a mixing step of mixing particles selected from these mixtures and (B) a polymer material to produce a mixture,
(II-1) The obtained mixture is fired in an inert atmosphere or in a vacuum atmosphere, and includes a firing step for producing a fired product. Further, (I-2) the fired product obtained below and (B) A mixing step of mixing the polymer material to produce a mixture of the fired product and the polymer material; and (II-2) the obtained mixture of the fired product and the polymer material in an inert atmosphere or a vacuum atmosphere. A method for producing a graphite-coated silicon composite comprising a firing step of firing in a fired product to produce a fired product, or repeating the steps (I-2) and (II-2) a plurality of times.
(A)粒子の平均粒子径が0.1〜30μm、BET比表面積が0.1〜30m2/gである請求項1記載の黒鉛被覆珪素複合体の製造方法。 The method for producing a graphite-coated silicon composite according to claim 1, wherein (A) the particles have an average particle diameter of 0.1 to 30 µm and a BET specific surface area of 0.1 to 30 m 2 / g. (B)高分子材料が、芳香族基含有系熱可塑性ポリマー及びポリオレフィン系熱可塑性ポリマーから選ばれるポリマーである請求項1又は2記載の黒鉛被覆珪素複合体の製造方法。   (B) The method for producing a graphite-coated silicon composite according to claim 1 or 2, wherein the polymer material is a polymer selected from an aromatic group-containing thermoplastic polymer and a polyolefin-based thermoplastic polymer. (I)混合工程が、(B)高分子材料を有機溶媒に溶解した溶液と、(A)粒子又は焼成物とを混合することを特徴とする請求項1〜3のいずれか1項記載の黒鉛被覆珪素複合体の製造方法。   (I) A mixing process mixes the solution which melt | dissolved (B) polymeric material in the organic solvent, and (A) particle | grains or a baked material, The any one of Claims 1-3 characterized by the above-mentioned. A method for producing a graphite-coated silicon composite. (II)焼成工程の焼成温度が、600〜1,200℃である請求項1〜3のいずれか1項記載の黒鉛被覆珪素複合体の製造方法。   (II) The method for producing a graphite-coated silicon composite according to any one of claims 1 to 3, wherein a firing temperature in the firing step is 600 to 1,200 ° C. 黒鉛被覆珪素複合体の平均粒子径が0.1〜30μm、BET比表面積が0.1〜30m2/g、黒鉛被覆率が0.5〜40質量%である請求項1〜5のいずれか1項記載の黒鉛被覆珪素複合体の製造方法。 The graphite-coated silicon composite has an average particle size of 0.1 to 30 µm, a BET specific surface area of 0.1 to 30 m 2 / g, and a graphite coverage of 0.5 to 40% by mass. A process for producing a graphite-coated silicon composite according to item 1. 黒鉛被覆珪素複合体が、非水電解質二次電池負極材用である請求項1〜6のいずれか1項記載の製造方法。   The manufacturing method according to any one of claims 1 to 6, wherein the graphite-coated silicon composite is used for a negative electrode for a nonaqueous electrolyte secondary battery.
JP2015218410A 2015-11-06 2015-11-06 Method for producing graphite-covered silicon composite body Pending JP2017088437A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015218410A JP2017088437A (en) 2015-11-06 2015-11-06 Method for producing graphite-covered silicon composite body
JP2020087415A JP6975435B2 (en) 2015-11-06 2020-05-19 Non-aqueous electrolyte secondary battery Negative electrode manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015218410A JP2017088437A (en) 2015-11-06 2015-11-06 Method for producing graphite-covered silicon composite body

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020087415A Division JP6975435B2 (en) 2015-11-06 2020-05-19 Non-aqueous electrolyte secondary battery Negative electrode manufacturing method

Publications (1)

Publication Number Publication Date
JP2017088437A true JP2017088437A (en) 2017-05-25

Family

ID=58769064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015218410A Pending JP2017088437A (en) 2015-11-06 2015-11-06 Method for producing graphite-covered silicon composite body

Country Status (1)

Country Link
JP (1) JP2017088437A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019069668A1 (en) * 2017-10-05 2019-04-11 昭和電工株式会社 Negative electrode material for lithium ion secondary cell, method for producing same, paste for negative electrode, negative electrode sheet, and lithium ion secondary cell
CN111276677A (en) * 2020-01-13 2020-06-12 湖州金灿新能源科技有限公司 Carbon nano material/amorphous carbon/silicon monoxide composite material and preparation method thereof
EP3726630A4 (en) * 2017-12-12 2021-09-01 Btr New Material Group Co., Ltd. Silicon-based negative electrode material, preparation method therefor and use thereof in lithium-ion battery
CN114335456A (en) * 2021-12-06 2022-04-12 桂林电子科技大学 Fast-charging composite negative electrode material and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998024135A1 (en) * 1996-11-26 1998-06-04 Kao Corporation Negative electrode material for nonaqueous secondary battery and nonaqueous secondary battery
JP2006092969A (en) * 2004-09-24 2006-04-06 Toshiba Corp Anode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2011076742A (en) * 2009-09-29 2011-04-14 Sumitomo Bakelite Co Ltd Lithium secondary battery negative electrode mixture, lithium secondary battery negative electrode, and lithium secondary battery
JP2014156363A (en) * 2013-02-14 2014-08-28 Bridgestone Corp Method for producing fine silicon particle
WO2014158729A1 (en) * 2013-03-13 2014-10-02 Enevate Corporation Silicon particles for battery electrodes
JP2014225347A (en) * 2013-05-15 2014-12-04 信越化学工業株式会社 Negative electrode material for nonaqueous electrolytic secondary batteries, method for manufacturing the same, and lithium ion secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998024135A1 (en) * 1996-11-26 1998-06-04 Kao Corporation Negative electrode material for nonaqueous secondary battery and nonaqueous secondary battery
JP2006092969A (en) * 2004-09-24 2006-04-06 Toshiba Corp Anode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2011076742A (en) * 2009-09-29 2011-04-14 Sumitomo Bakelite Co Ltd Lithium secondary battery negative electrode mixture, lithium secondary battery negative electrode, and lithium secondary battery
JP2014156363A (en) * 2013-02-14 2014-08-28 Bridgestone Corp Method for producing fine silicon particle
WO2014158729A1 (en) * 2013-03-13 2014-10-02 Enevate Corporation Silicon particles for battery electrodes
JP2014225347A (en) * 2013-05-15 2014-12-04 信越化学工業株式会社 Negative electrode material for nonaqueous electrolytic secondary batteries, method for manufacturing the same, and lithium ion secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019069668A1 (en) * 2017-10-05 2019-04-11 昭和電工株式会社 Negative electrode material for lithium ion secondary cell, method for producing same, paste for negative electrode, negative electrode sheet, and lithium ion secondary cell
JPWO2019069668A1 (en) * 2017-10-05 2019-11-14 昭和電工株式会社 Negative electrode material for lithium ion secondary battery, manufacturing method thereof, negative electrode paste, negative electrode sheet, and lithium ion secondary battery
US11777082B2 (en) 2017-10-05 2023-10-03 Showa Denko K.K. Negative electrode material for lithium ion secondary batteries, method for manufacturing the same, paste for negative electrode, negative electrode sheet, and lithium ion secondary
EP3726630A4 (en) * 2017-12-12 2021-09-01 Btr New Material Group Co., Ltd. Silicon-based negative electrode material, preparation method therefor and use thereof in lithium-ion battery
US11515530B2 (en) 2017-12-12 2022-11-29 Btr New Material Group Co., Ltd. Silicon-based negative electrode material, preparation method therefor and use thereof in lithium-ion battery
CN111276677A (en) * 2020-01-13 2020-06-12 湖州金灿新能源科技有限公司 Carbon nano material/amorphous carbon/silicon monoxide composite material and preparation method thereof
CN111276677B (en) * 2020-01-13 2022-09-20 湖州金灿新能源科技有限公司 Preparation method of carbon nano material/amorphous carbon/silicon monoxide composite material
CN114335456A (en) * 2021-12-06 2022-04-12 桂林电子科技大学 Fast-charging composite negative electrode material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP5245592B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, lithium ion secondary battery and electrochemical capacitor
JP5245559B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
KR101746187B1 (en) Positive electrode active material for rechargable lithium battery, and rechargable lithium battery including the same
JP4318313B2 (en) Positive electrode active material powder for lithium secondary battery
JP5184567B2 (en) Anode material for non-aqueous electrolyte secondary battery, lithium ion secondary battery and electrochemical capacitor
JP6193798B2 (en) Method for producing negative electrode material for lithium ion secondary battery
JP6544951B2 (en) Positive electrode active material, method for producing the same, and non-aqueous electrolyte secondary battery
JP2007290919A (en) METHOD FOR PRODUCING SiOx (x&lt;1)
TWI766129B (en) Negative electrode active material and method for producing the same
US20150340695A1 (en) Active material for negative electrodes of nonaqueous secondary batteries, and nonaqueous secondary battery
JP2022550820A (en) Spherical carbon-based negative electrode active material, manufacturing method thereof, negative electrode containing same, and lithium secondary battery
JP2013008696A (en) Method of manufacturing negative electrode material for nonaqueous electrolyte secondary battery
WO2016132662A1 (en) Carbon coating treatment device, negative-electrode active material for nonaqueous electrolyte secondary battery, manufacturing method therefor, lithium-ion secondary battery, and electrochemical capacitor
JP2004323284A (en) Silicon composite and method of manufacturing the same, and negative electrode material for non-aqueous electrolyte secondary battery
JP2022501787A (en) Negative electrode active material for lithium secondary batteries and lithium secondary batteries containing them
JP6727201B2 (en) Method for producing lithiated transition metal oxide
JP2017088437A (en) Method for producing graphite-covered silicon composite body
JP2011249293A (en) Lithium transition metal compound and its manufacturing method, and lithium ion battery
JP5182498B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP2012146650A (en) Negative electrode active material composition, method for manufacturing negative electrode plate using the same, and lithium secondary battery
JP5320890B2 (en) Method for producing negative electrode material
JP2020535602A (en) Manufacturing method of positive electrode active material for secondary battery and secondary battery using this
JP2016106358A (en) Method for manufacturing negative electrode active material for nonaqueous electrolyte secondary battery
CN111668462B (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP6975435B2 (en) Non-aqueous electrolyte secondary battery Negative electrode manufacturing method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20151118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191021

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200310