JPH10284065A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPH10284065A
JPH10284065A JP9121398A JP12139897A JPH10284065A JP H10284065 A JPH10284065 A JP H10284065A JP 9121398 A JP9121398 A JP 9121398A JP 12139897 A JP12139897 A JP 12139897A JP H10284065 A JPH10284065 A JP H10284065A
Authority
JP
Japan
Prior art keywords
active material
battery
material layer
electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9121398A
Other languages
Japanese (ja)
Inventor
Toru Nagaura
亨 永浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAIBARU KK
Original Assignee
HAIBARU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAIBARU KK filed Critical HAIBARU KK
Priority to JP9121398A priority Critical patent/JPH10284065A/en
Publication of JPH10284065A publication Critical patent/JPH10284065A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive separator without using a porous film. SOLUTION: In a nonaqueous electrolyte battery composed of a positive electrode, a negative electrode and nonaqueous electrolyte, either one of the electrodes has a conductive active material layer 2 formed on a collector of metal foil, and furthermore, an electronically insulating porous layer 3 is formed on the active material layer 2. The porous layer 3 is made by removing and drying solvent after coating the active material layer 2 on metal foil 1 first and then sprinkling electronically insulating powder bodies on it. Since the electronically insulating porous material layer performs function of a separator in the past, expensive porous film is not required to be used for the separator.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、非水電解液電池のた
めの安価なセパレーターを提供しようとするものであ
る。。
BACKGROUND OF THE INVENTION The present invention aims to provide an inexpensive separator for a non-aqueous electrolyte battery. .

【0002】[0002]

【従来の技術】自動車の排ガスが地球環境破壊の大きな
原因の一つに考えられ、1998年から米国カリフォル
ニア州で新しい排ガス規制法案が始まる予定である。こ
の規制では自動車メーカーごとに総販売台数の2%を排
ガスを全く出さない電気自動車等にすることを義務づけ
ている。電気自動車を構成する主要な技術の一つは二次
電池であり、二次電池の性能が自動車の基本性能、すな
わち加速性能や一回の充電での走行距離を決めてしまう
ので、高性能な二次電池の早急な開発が求められてい
る。
2. Description of the Related Art Exhaust gas from automobiles is considered to be one of the major causes of global environmental destruction, and a new exhaust gas regulation bill will be started in California, USA, in 1998. This regulation requires that each automaker make 2% of its total sales from electric vehicles that emit no exhaust gas. One of the main technologies that make up an electric vehicle is a secondary battery, and the performance of the secondary battery determines the basic performance of the vehicle, that is, the acceleration performance and the mileage per charge, so high performance Urgent development of secondary batteries is required.

【0003】高性能な二次電池の開発としては、非水電
解液二次電池が長い間研究され、最近になってようやく
実用の段階に入った。実用段階に入った非水電解液二次
電池はリチウムイオン二次電池と呼ばれるもので、代表
的には電解液には有機溶媒にリチウム塩を溶解させた、
いわゆる有機電解液を使用し、負極にはリチウム層間化
合物を形成しやすい特殊な炭素材を活物質とし、正極に
はリチウムコバルト酸化物(LiCoO)を活物質と
する非水電解液二次電池である。この電池は原材料費が
高いため、電池の製造原価が非常に高い。このため現在
実用されているリチウムイオン二次電池は使用原材料の
少ない小型電池に限られている。
As for the development of high performance secondary batteries, non-aqueous electrolyte secondary batteries have been studied for a long time, and have only recently entered the practical stage. The nonaqueous electrolyte secondary battery that has entered the practical stage is called a lithium ion secondary battery, and typically, a lithium salt is dissolved in an organic solvent in the electrolyte,
A non-aqueous electrolyte secondary battery in which a so-called organic electrolyte is used, a negative electrode is made of a special carbon material that easily forms a lithium intercalation compound as an active material, and a positive electrode is lithium cobalt oxide (LiCoO 2 ). It is. Due to the high raw material costs, this battery has a very high manufacturing cost. Therefore, currently used lithium ion secondary batteries are limited to small batteries that use little raw material.

【0004】莫大な量の電池を搭載しなければならない
電気自動車用の二次電池に至っては、その原材料費は十
分に安価でなければ、電気自動車の価格を実用可能な範
囲に設定することが非常に難しいものとなる。リチウム
イオン二次電池の原材料費が高い原因は、特に正極活物
質と負極活物質及びセパレーターが高価なためである。
具体的には正極活物質と負極活物質及びセパレーターの
3点で全材料費の70%に達する。正極活物質について
は、安価なスピネル系リチウムマンガン複合酸化物(L
iMn)がリチウムコバルト酸化物(LiCoO
)に代わる有望な候補であり、盛んに研究開発が進め
られ、最近では一部商品化される段階まで来ている。し
かし正極活物質の変更だけでは充分な製造原価の低減に
は至らず、負極材料及びセパレーターを安価な材料に置
き換える必要がある。
[0004] In the case of a secondary battery for an electric vehicle in which an enormous amount of batteries must be mounted, the price of the electric vehicle can be set to a practicable range unless the raw material costs are sufficiently low. It will be very difficult. The reason why the raw material cost of the lithium ion secondary battery is high is that the positive electrode active material, the negative electrode active material, and the separator are particularly expensive.
Specifically, the positive electrode active material, the negative electrode active material, and the separator account for 70% of the total material cost. For the positive electrode active material, an inexpensive spinel-based lithium manganese composite oxide (L
iMn 2 O 4 ) is lithium cobalt oxide (LiCoO)
It is a promising alternative to 2 ), and has been actively researched and developed, and has recently reached the stage of commercialization. However, the change of the positive electrode active material alone does not lead to a sufficient reduction in manufacturing cost, and it is necessary to replace the negative electrode material and the separator with inexpensive materials.

【0005】負極材料としては、高価な特殊炭素材料に
替えて、極一般的な黒鉛を使用する試みがなされ、特殊
な電解液との組み合わせにおいて良好な結果が得られて
いる。
[0005] Attempts have been made to use extremely general graphite in place of expensive specialty carbon materials as negative electrode materials, and good results have been obtained in combination with special electrolytes.

【0006】しかしセパーターに関しては今のところ候
補が見当たらない。非水電解液電池の場合では、電解液
の抵抗が高いため、正極と負極の電極間距離を出来るだ
け少なくする必要があり、セパレーターにはわずか20
〜30ミクロンという極めて薄い多孔質膜を使用する。
セパレーターとする多孔質膜は電池の性能上からは出来
るだけ気孔率が高いことが要求され、電池を組み立てる
上からは、ある程度の機械的強度が要求される。気孔率
の高さと機械的強度は相反する要求であり、両要求を満
たす安価なものは今のところ見当たらない。
However, no candidate has been found for the separator at present. In the case of a non-aqueous electrolyte battery, since the resistance of the electrolyte is high, it is necessary to reduce the distance between the positive electrode and the negative electrode as much as possible.
An extremely thin porous membrane of 3030 microns is used.
The porous membrane used as the separator is required to have a porosity as high as possible from the viewpoint of battery performance, and a certain degree of mechanical strength is required from the viewpoint of assembling the battery. High porosity and mechanical strength are conflicting requirements, and there is no inexpensive material that satisfies both requirements.

【0007】[0007]

【発明が解決しようとする課題】本発明は安価な非水電
解液電池を得るために、高価な多孔質膜をセパレーター
として使用せずに非水電解液電池を作成しようとするも
のである。
SUMMARY OF THE INVENTION The present invention aims at producing a nonaqueous electrolyte battery without using an expensive porous membrane as a separator in order to obtain an inexpensive nonaqueous electrolyte battery.

【0008】[0008]

【課題を解決するための手段】正極と負極と非水電解液
で構成される電池において、前記正極と負極の少なくと
も何れかの電極は活物質層の上に電子絶縁性の多孔質層
が形成された電極を使用する。斯かる電子絶縁性の多孔
質層を活物質層の上に形成する方法としては、前記活物
質層を構成する固形物を結着材と共に適切な溶剤又は液
体と湿式混合して作成されるペーストを金属箔の上に塗
布して塗布膜を形成し、当該塗布膜が未乾燥の状態で当
該塗布膜の上に電子絶縁性の粉末体を振りかけ、その後
前記塗布膜中の溶剤又は液体を乾燥除去することによっ
て、活物質層の上に電子絶縁性の多孔質層を形成する。
In a battery comprising a positive electrode, a negative electrode and a non-aqueous electrolyte, at least one of the positive electrode and the negative electrode has an electronically insulating porous layer formed on an active material layer. Use the electrode provided. As a method of forming such an electronically insulating porous layer on the active material layer, a paste prepared by wet mixing a solid material constituting the active material layer with a binder and a suitable solvent or liquid is used. Is applied on a metal foil to form a coating film, and in a state where the coating film is not dried, an electronic insulating powder is sprinkled on the coating film, and then the solvent or liquid in the coating film is dried. By removing, an electronically insulating porous layer is formed on the active material layer.

【0009】[0009]

【作用】従来の非水電解液電池では通常正極と負極の間
に多孔質のフィルム状のセパレーターを挟んで構成す
る。例えば円筒形非水電解液電池では、発電素子である
電池素子は、図7に示したように帯状の負極(11)と
帯状の正極(12)の間に多孔質のフィルム状のセパレ
ーター(13)を挟んで渦巻き状に、出来るだけ固く巻
上げて巻回体として作成される。巻回体を固く巻上げる
ためには、竃極とセパレーターにある程度の張力をかけ
て巻き込まなくてはならない。機械的強度の弱い材料を
セパレーターとして使用すれば、セパレーターに充分な
張力がかけられないため、巻回体を固く巻上げることが
出来ない。このようにセパレーターにはある程度の機械
的強度が要求され、且つ電池のセパレーターとしての機
能を充分果たすためには、充分な気孔率が要求される。
現在、この両方の要求を満たした入手可能な多孔質薄膜
製品は非常に値段が高い。
In a conventional non-aqueous electrolyte battery, a porous film-shaped separator is usually sandwiched between a positive electrode and a negative electrode. For example, in a cylindrical non-aqueous electrolyte battery, a battery element as a power generating element has a porous film-like separator (13) between a strip-shaped negative electrode (11) and a strip-shaped positive electrode (12) as shown in FIG. ) Is sandwiched between them and wound up as tightly as possible to create a wound body. In order to wind the wound body firmly, it is necessary to apply a certain amount of tension to the electrode and the separator. If a material having low mechanical strength is used as the separator, sufficient tension cannot be applied to the separator, so that the wound body cannot be wound up firmly. As described above, the separator is required to have a certain level of mechanical strength, and a sufficient porosity is required to sufficiently fulfill the function as a battery separator.
At present, available porous thin film products that meet both requirements are very expensive.

【0010】本発明による電池は、正極と負極の少なく
とも何れかの電極は活物質層の上に電子絶縁性の多孔質
層を形成した電極を使用する。本発明による電池では前
記活物質層の上に形成した多孔質層が従来のセパレータ
ーの機能を果たすため、多孔質のフィルム状セパレター
を使用しないでも非水電解液電池が作成可能となる。
In the battery according to the present invention, at least one of the positive electrode and the negative electrode uses an electrode having an electronically insulating porous layer formed on an active material layer. In the battery according to the present invention, since the porous layer formed on the active material layer functions as a conventional separator, a non-aqueous electrolyte battery can be prepared without using a porous film separator.

【0011】[0011]

【実施例】以下実施例により本発明をさらに詳しく説明
する。
The present invention will be described in more detail with reference to the following examples.

【0012】実施例1 電極の作成方法 活物質とする固形の材料に必要に応じて導電剤(例えば
アセチレンブラックやグラファイト)を少量混ぜ、さら
に結着剤(例えばPVDF)を溶解した溶剤(例えぱN
−メチル−2−ピロリドン)と湿式混合してスラリーを
準備する。次にこのスラリーを集電体とする金属箔の上
に塗布する。図5はスラリーを金属箔の上に塗付するた
めの塗工装置を示す図である。塗工装置は塗工ヘッドと
乾燥機(25)及び粉体振りかけ機(26)より構成さ
れている。さらに塗工ヘッドはバックロール(21)、
コーティングロール(22)、ナイフロール(23)及
び塗料溜め(24)で構成されている。図5において金
属箔(1)はバックロール(21)とコーティングロー
ル(22)の間を通して乾燥機に導かれる。
Example 1 Method for Producing Electrode A solid material used as an active material is mixed with a small amount of a conductive agent (eg, acetylene black or graphite) as necessary, and a solvent (eg, PVDF) is dissolved in a binder (eg, PVDF). N
-Methyl-2-pyrrolidone) to prepare a slurry. Next, this slurry is applied on a metal foil serving as a current collector. FIG. 5 is a view showing a coating apparatus for applying a slurry onto a metal foil. The coating device includes a coating head, a dryer (25), and a powder sprinkler (26). Further, the coating head is a back roll (21),
It comprises a coating roll (22), a knife roll (23) and a paint reservoir (24). In FIG. 5, the metal foil (1) is led to a dryer between the back roll (21) and the coating roll (22).

【0013】準備された前記スラリーは塗料溜め(2
4)に満たす。コーティングロール(22)とナイフロ
ール(23)の隙間を適切に調整し、バックロール(2
1)とコーティングロール(22)を矢印の方向に回転
すると、スラリーは適切な厚さで、まずコーティングロ
ール(22)上に塗付され、続いてバックロール(2
1)の上の金属箔(1)に転写され、金属箔の上にスラ
リーの塗付膜が適切な厚さで塗工される。乾燥前の塗付
膜は当然その表面には結着剤を溶解した状態の溶剤が存
在している。そこで、塗工ヘッドと乾燥機の間に設置し
た粉体振りかけ機(26)に電子絶縁性粉体(28)を
充填し、電子絶縁性粉体を均一に前記塗付膜の表面に振
りかける。粉体振りかけ機(26)は底にメッシュを張
った容器にバイブレーターを固定したものであり、バイ
ブレーターの振動量を調節することによって、容器内の
電子絶縁性粉体は底のメッシュを通過して一定量が塗付
膜の表面に振りかけられる。塗付膜の表面に振りかけら
れた電子絶縁性粉末は塗付膜表面に存在する結着剤を溶
解した溶剤を吸収して湿潤する。その後乾燥機(25)
を通過して、塗付膜及び塗付膜表面上の電子絶縁性粉末
層は完全に溶剤が除去される。乾燥後ロールプレス機で
加圧成型すると、図1に示す断面を有する電極となる。
図1は電極の幅方向の断面図を示したもので、金属箔の
集電体(1)の上に導電性の活物質層(2)が形成さ
れ、さらにその活物質層の上には前記電子絶縁性粉末が
固められて形成された多孔質層(3)が形成されている
電極となる。
The prepared slurry is stored in a paint reservoir (2).
Meet 4). The gap between the coating roll (22) and the knife roll (23) is appropriately adjusted, and the back roll (2) is adjusted.
When 1) and the coating roll (22) are rotated in the direction of the arrow, the slurry is first applied to a suitable thickness on the coating roll (22) and then the back roll (2).
The slurry is transferred to the metal foil (1) above 1), and a slurry coating film is applied on the metal foil with an appropriate thickness. The coating film before drying naturally has a solvent in which a binder is dissolved on its surface. Then, the electronic insulating powder (28) is filled in a powder sprinkler (26) installed between the coating head and the dryer, and the electronic insulating powder is uniformly sprinkled on the surface of the coating film. The powder sprinkler (26) is a device in which a vibrator is fixed to a container having a mesh at the bottom. By adjusting the vibration amount of the vibrator, the electronic insulating powder in the container passes through the mesh at the bottom. A certain amount is sprinkled on the surface of the coating film. The electronic insulating powder sprinkled on the surface of the coating film absorbs and wets the solvent in which the binder present on the coating film surface is dissolved. Then dryer (25)
And the solvent is completely removed from the coating film and the electronic insulating powder layer on the coating film surface. After the drying, the electrode is press-molded by a roll press to form an electrode having a cross section shown in FIG.
FIG. 1 is a cross-sectional view in the width direction of an electrode, in which a conductive active material layer (2) is formed on a metal foil current collector (1), and further, on the active material layer. The electrode has a porous layer (3) formed by solidifying the electronic insulating powder.

【0014】 負極の作成 負極活物質とする2800℃で黒鉛化処理を施したメソ
カーボンマイクロビーズにアセチレンブラックを加え、
結着剤(PVDF)を溶解した溶剤(N−メチル−2−
ピロリドン)と湿式混合してスラリーにする。金属箔に
は厚さ0.01mmの銅箔を使用し、また電子絶縁性粉
末としてはアルミナの粉末を使用し、前述の電極作成方
法に従って帯状の負極(11)を作成する。図2に負極
(11)の平面図並びにその長さ方向の断面図を示し
た。銅箔の集電体(1a)の両面にメソカーボンマイク
ロビーズを活物質とする活物質層(2a)が形成され、
さらにその活物質層(2a)の上にはアルミナの粉末が
固められて形成された多孔質層(3)が形成されてい
る。帯状負極(11)は幅56mm、長さLa=560
mmとし、片側の電極端ではその片面は活物質層が形成
されておらず、集電体(1a)を露出させてある。
Preparation of Negative Electrode Acetylene black was added to mesocarbon microbeads that had been graphitized at 2800 ° C. as an anode active material,
Solvent (N-methyl-2-) in which binder (PVDF) is dissolved
Pyrrolidone) to form a slurry. A copper foil having a thickness of 0.01 mm is used for the metal foil, and alumina powder is used as the electronic insulating powder, and a strip-shaped negative electrode (11) is formed according to the above-described electrode forming method. FIG. 2 shows a plan view of the negative electrode (11) and a sectional view in the length direction thereof. An active material layer (2a) having mesocarbon microbeads as an active material is formed on both surfaces of the copper foil current collector (1a),
Further, a porous layer (3) formed by solidifying alumina powder is formed on the active material layer (2a). The strip-shaped negative electrode (11) has a width of 56 mm and a length La = 560.
mm, the active material layer is not formed on one side at one electrode end, and the current collector (1a) is exposed.

【0015】 正極の作成 市販の二酸化マンガン(MnO2)と炭酸リチウム(L
i2CO3)を1モル:0.27モルの比で良く混合
し、これを空気中800℃で約12時間焼成し、スピネ
ル型リチウムマンガン複合酸化物を合成する。このスピ
ネル型リチウムマンガン複合酸化物は平均粒径0.01
0mm程度の粉末とし、これに導電剤としてグラファイ
トを加え結着剤(PVDF)を溶解した溶剤(N−メチ
ル−2−ピロリドン)と湿式混合してスラリーにする。
金属箔には厚さ0.02mmのアルミニウム箔を使用
し、また電子絶縁性粉末としてはアルミナの粉末を使用
し、前述の電極作成方法に従って帯状の正極(12)を
作成する。図3に正極(12)の平面図並びにその長さ
方向の断面図を示した。アルミニウム箔の集電体(1
c)の両面にリチウムマンガン複合酸化物を活物質とす
る活物質層(2c)が形成され、さらにその活物質層
(2c)の上にはアルミナの粉末が固められて形成され
た多孔質層(3)が形成されている。帯状の正極(1
2)は幅55mm、長さLc=520mmとし、片側の
電極端には集電体(1c)の露出部分を設けて、そこに
アルミニウムの正極リード(5)を溶接し、当該集電体
露出部分は幅58mmの絶縁性粘着テープ(40)を図
3の平面図に示すように正極リードを取り出した方へ張
り出して接着しておく。
Preparation of Positive Electrode Commercially available manganese dioxide (MnO 2) and lithium carbonate (L
i2CO3) is mixed well at a ratio of 1 mol: 0.27 mol, and calcined in air at 800 ° C. for about 12 hours to synthesize a spinel-type lithium manganese composite oxide. This spinel-type lithium manganese composite oxide has an average particle size of 0.01.
A powder of about 0 mm is added, graphite is added thereto as a conductive agent, and the mixture is wet-mixed with a solvent (N-methyl-2-pyrrolidone) in which a binder (PVDF) is dissolved to form a slurry.
An aluminum foil having a thickness of 0.02 mm is used as the metal foil, and an alumina powder is used as the electronic insulating powder, and a strip-shaped positive electrode (12) is formed according to the above-described electrode forming method. FIG. 3 shows a plan view of the positive electrode (12) and a cross-sectional view in the length direction thereof. Aluminum foil current collector (1
An active material layer (2c) using a lithium manganese composite oxide as an active material is formed on both surfaces of (c), and a porous layer formed by solidifying alumina powder on the active material layer (2c) (3) is formed. Strip-shaped positive electrode (1
2) The width is 55 mm and the length Lc is 520 mm. An exposed portion of the current collector (1c) is provided at one electrode end, and a positive electrode lead (5) made of aluminum is welded thereto to expose the current collector. As for the portion, an insulating adhesive tape (40) having a width of 58 mm is protruded and adhered to the direction from which the positive electrode lead is taken out as shown in the plan view of FIG.

【0016】 リチウムイオン二次電池の作成 前述のようにして作成した帯状負極(11)と帯状正極
(12)を重ねて渦巻き状に巻回して、図4に示すよう
な電極素子を作成する。巻回に際しては、正極は正極リ
ード(5)を付けた方から、負極は集電体露出部分と反
対のほうからそれぞれ巻始めるので、図4に示すよう
に、正極に付した電極リード(5)は巻回体の中心部に
位置され、巻回体の最外周には負極集電体(1a)が配
置されている。図4にはさらに電極の配列状態を拡大し
て示しているように、負極活物質層(2a)と正極活物
質層(2c)がアルミナの粉末が固められて形成された
多孔質層(3)を挟んで対向している。つまり多孔質層
(3)は従来電池におけるセパレーターの役割をするこ
とがわかる。
Preparation of Lithium Ion Secondary Battery The strip-shaped negative electrode (11) and the strip-shaped positive electrode (12) prepared as described above are superposed and spirally wound to form an electrode element as shown in FIG. At the time of winding, the positive electrode starts to be wound from the side where the positive electrode lead (5) is attached, and the negative electrode starts from the side opposite to the exposed portion of the current collector. Therefore, as shown in FIG. ) Is located at the center of the wound body, and a negative electrode current collector (1a) is arranged on the outermost periphery of the wound body. As shown in FIG. 4 in which the arrangement of the electrodes is further enlarged, the negative electrode active material layer (2a) and the positive electrode active material layer (2c) are formed of a porous layer (3) formed by solidifying alumina powder. ). That is, it can be seen that the porous layer (3) functions as a separator in a conventional battery.

【0017】次に、図6に示すように用意した外径1
8.0mmの金属缶(4)の缶底に絶縁シート(7)を
設置し、前記電池素子を金属缶(4)に収納し、電池素
子の上部にも絶縁シート(7)を設置し、金属缶の開口
部にガスケット(8)を填める。電極素子より突き出た
正極リード(5)は防爆機能を持つ閉塞蓋体(9)に溶
接しておく。その後、金属缶には電解液(エチレンカー
ボネートとジエチルカーボネートの混合溶媒に1モル/
リットルのLiPF6を溶解した電解液)を5.2g注
入する。電解液注入後、図6に示すように正極リード
(5)はを溶接している閉塞蓋体(9)をガスケット
(8)の内側に設置し、正極外部端子(10)を閉塞蓋
体(9)に接触させて重ね、電池缶の外径を約0.5m
m縮め、最後に金属缶の縁をかしめて密閉して、図6に
示す電池構造で外径17.5mm、高さ65mmのリチ
ウムイオン二次電池を作成した。なお最終完成電池にお
いては巻回体電池素子の最外周に配置された負極の電極
端(集電体が露出している)が電池缶内壁と接触して電
気的に導通しているので、電池缶が負極外部端子となっ
ている。
Next, as shown in FIG.
An insulating sheet (7) is placed on the bottom of a 8.0 mm metal can (4), the battery element is housed in the metal can (4), and an insulating sheet (7) is placed on the top of the battery element. The gasket (8) is inserted into the opening of the metal can. The positive electrode lead (5) protruding from the electrode element is welded to a closing lid (9) having an explosion-proof function. Then, an electrolytic solution (1 mol / l in a mixed solvent of ethylene carbonate and diethyl carbonate) was placed in the metal can.
5.2 g of an electrolyte solution in which 1 liter of LiPF6 is dissolved). After injecting the electrolytic solution, as shown in FIG. 6, a closing lid (9) to which the positive electrode lead (5) is welded is set inside the gasket (8), and the positive external terminal (10) is closed with the closing lid ( 9) Overlap the battery can to make the outer diameter of the battery can about 0.5m
m, and finally the edges of the metal can were caulked and sealed to form a lithium ion secondary battery having an outer diameter of 17.5 mm and a height of 65 mm with the battery structure shown in FIG. In the final completed battery, the electrode end of the negative electrode (exposed current collector) arranged at the outermost periphery of the wound battery element is in contact with the inner wall of the battery can and is electrically connected. The can is the negative electrode external terminal.

【0018】試作電池の性能試験 試作した電池は充電電圧を4.2Vに設定し、充電電流
1000mAで2.5時間充電し、放電は放電電流50
0mAで終止電圧2.7Vまで行なう方法で充放電を繰
り返し、サイクル試験を行なった。又試作電池と性能比
較を行なうため、試作電池と同サイズの市販のリチウム
イオン二次電池を購入し、この電池についても試作電池
と同一の条件でサイクル試験を行なった。この試験結果
は表1に示すとおりであった。なお、購入した市販のリ
チウムイオン二次電池はリチウムコバルト酸化物を正極
活物質とし、ポリプロピレン製の多孔質膜をセパレータ
ーとして使用していることを確認した。 表1に示すとおり、本発明により試作したリチウムイオ
ン二次電池は放電容量も又サイクル特性に於ても、市販
のリチウムイオン二次電池以上の性能であった。
Performance test of prototype battery The prototype battery was charged at a charging voltage of 4.2 V, charged at a charging current of 1000 mA for 2.5 hours, and discharged at a discharging current of 50 mA.
The charge / discharge was repeated by a method of performing the operation at 0 mA to a final voltage of 2.7 V, and a cycle test was performed. In order to compare the performance with the prototype battery, a commercially available lithium ion secondary battery of the same size as the prototype battery was purchased, and this battery was also subjected to a cycle test under the same conditions as the prototype battery. The test results are as shown in Table 1. In addition, it was confirmed that the purchased commercially available lithium ion secondary battery uses lithium cobalt oxide as a positive electrode active material and a porous film made of polypropylene as a separator. As shown in Table 1, the lithium-ion secondary battery prototyped according to the present invention was superior to a commercially available lithium-ion secondary battery in discharge capacity and cycle characteristics.

【0019】以上の実施例から本発明によれば、正極活
物質には安価なスピネル系リチウムマンガン複合酸化物
(LiMn)を使用し、且つセパレーターには高
価な多孔質膜は使用せず、従来のリチウムコバルト酸化
物を正極活物質としたものと同等以上で、十分満足な特
性のリチウムイオン二次電池が作成可能となることがわ
かる。
According to the present invention, an inexpensive spinel-based lithium manganese composite oxide (LiMn 2 O 4 ) is used for the positive electrode active material, and an expensive porous film is used for the separator. However, it can be seen that a lithium-ion secondary battery having a characteristic that is equal to or higher than that of a conventional lithium cobalt oxide as a positive electrode active material and has sufficiently satisfactory characteristics can be produced.

【0020】上記実施例では、スピネル系リチウムマン
ガン複合酸化物を正極活物質とするリチウムイオン二次
電池について示したが、本発明は他の非水電解液電池に
も当然適用で来ることは勿論である。また活物質層の上
に電子絶縁性の多孔質層を形成するに当たり、電子絶縁
性粉末体としてアルミナの粉末を使用したが、これに限
定されるものではなく、その他の電子絶縁性の無機材料
(酸化物、炭酸塩等)及び有機材料(ポリエチレン、P
VDF等)が使用出来るし、電子絶縁性であればイオン
導電性材料(例えばβ−アルミナ)であってもよい。
In the above embodiment, a lithium ion secondary battery using a spinel-based lithium manganese composite oxide as a positive electrode active material has been described. However, the present invention can of course be applied to other non-aqueous electrolyte batteries. It is. In forming the electronically insulating porous layer on the active material layer, alumina powder was used as the electronically insulating powder. However, the present invention is not limited to this, and other electronically insulating inorganic materials may be used. (Oxides, carbonates, etc.) and organic materials (polyethylene, P
VDF) can be used, and an ion conductive material (for example, β-alumina) may be used as long as it is electronically insulating.

【0021】[0021]

【発明の効果】本発明による電池では活物質層の上に形
成した電子絶縁性の多孔質層がセパレーターの機能を持
ち、しかも電極の表面に接合された状態なので電池を組
み立て工程においても、セパレーターが切れたり、裂け
たり、伸びたりすることがない。また活物質層の上に形
成する電子絶縁性の多孔質層は、活物質層を構成する固
形物と結着材及び溶剤からなるスラリーを金属箔の上に
塗布して塗布膜を形成し、当該塗布膜の上に電子絶縁性
の粉末体を振りかけた後溶剤を乾燥除去するという方法
で作成出来るので、極めて安価に作成することができ
る。従って高価な市販の多孔質フィルムをセパレーター
とする従来の非水電解液二次電池に比べ、大きく製造原
価を低減することが出来る。この結果、広範囲の用途に
使用出来る安価で高性能な非水電解液電池が提供出来る
ようになり、その工業的価値は大である。
In the battery according to the present invention, the electronically insulating porous layer formed on the active material layer has the function of a separator and is joined to the surface of the electrode. It does not break, tear or stretch. In addition, the electronically insulating porous layer formed on the active material layer forms a coating film by applying a slurry comprising a solid material, a binder, and a solvent constituting the active material layer on a metal foil, Since it can be formed by a method of sprinkling an electronically insulating powder on the coating film and then drying and removing the solvent, it can be formed at extremely low cost. Therefore, the manufacturing cost can be greatly reduced as compared with a conventional nonaqueous electrolyte secondary battery using an expensive commercially available porous film as a separator. As a result, an inexpensive and high-performance nonaqueous electrolyte battery that can be used for a wide range of applications can be provided, and its industrial value is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電極の断面図FIG. 1 is a sectional view of an electrode.

【図2】帯状負極の平面図及び断面図FIG. 2 is a plan view and a cross-sectional view of a strip-shaped negative electrode.

【図3】帯状正極の平面図及び断面図FIG. 3 is a plan view and a cross-sectional view of a belt-shaped positive electrode.

【図4】巻回体電池素子の断面図FIG. 4 is a cross-sectional view of a wound battery element.

【図5】電極塗工装置の略図FIG. 5 is a schematic diagram of an electrode coating apparatus.

【図6】電池の断面図FIG. 6 is a sectional view of a battery.

【図7】従来巻回体電池素子の模写図FIG. 7 is a schematic view of a conventional wound battery element.

【符号の説明】[Explanation of symbols]

1は金属箔、2は活物質層、3は絶縁体多孔質層、4は
金属缶、5は正極リード、6は負極リード、7は絶縁シ
ート8はガスケット、9は防爆弁(閉塞蓋体)、10は
正極外部端子、11は負極、12は正極、13はセパレ
ーター、21はバックロール、22はコーティングロー
ル、23はナイフロール、24は塗料溜め、25は乾燥
機、26は粉体振りかけ機、27は塗料、28は粉体、
40は絶縁テープである。
1 is a metal foil, 2 is an active material layer, 3 is an insulator porous layer, 4 is a metal can, 5 is a positive electrode lead, 6 is a negative electrode lead, 7 is an insulating sheet 8 is a gasket, 9 is an explosion-proof valve (blocking lid) ) 10 is a positive electrode external terminal, 11 is a negative electrode, 12 is a positive electrode, 13 is a separator, 21 is a back roll, 22 is a coating roll, 23 is a knife roll, 24 is a paint pool, 25 is a dryer, and 26 is powder sprinkling. Machine, 27 is paint, 28 is powder,
40 is an insulating tape.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】正極と負極と非水電解液で構成される電池
において、前記正極又は負極の少なくとも何れかの電極
は金属箔の集電体上に導電性の活物質層が形成され、さ
らに当該活物質層の上には電子絶縁性の多孔質層が形成
されている電極であることを特徴とする非水電解液電
池。
1. A battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein at least one of the positive electrode and the negative electrode has a conductive active material layer formed on a current collector of a metal foil. A non-aqueous electrolyte battery, comprising an electrode having an electronically insulating porous layer formed on the active material layer.
【請求項2】活物質層の上に電子絶縁性の多孔質層を形
成した電極の作成行程において、前記活物質層を構成す
る固形物を結着材と共に適切な溶剤又は液体と湿式混合
して作成されたペーストを金属箔の上に塗布して塗布膜
を形成し、当該塗布膜の上に電子絶縁性の粉末体を振り
かけた後、前記塗布膜中の溶剤又は液体を乾燥除去する
ことを特徴とする電池用電極の作成方法。
2. A process for producing an electrode having an electronically insulating porous layer formed on an active material layer, wherein a solid material constituting the active material layer is wet-mixed with a binder or a suitable solvent or liquid together with a binder. Applying the paste thus prepared on a metal foil to form a coating film, and sprinkling an electronic insulating powder on the coating film, and then drying and removing the solvent or liquid in the coating film. A method for producing an electrode for a battery, comprising:
JP9121398A 1997-04-05 1997-04-05 Nonaqueous electrolyte battery Pending JPH10284065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9121398A JPH10284065A (en) 1997-04-05 1997-04-05 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9121398A JPH10284065A (en) 1997-04-05 1997-04-05 Nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JPH10284065A true JPH10284065A (en) 1998-10-23

Family

ID=14810208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9121398A Pending JPH10284065A (en) 1997-04-05 1997-04-05 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPH10284065A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000188115A (en) * 1998-12-22 2000-07-04 Sony Corp Thin type battery
JP2006196248A (en) * 2005-01-12 2006-07-27 Matsushita Electric Ind Co Ltd Lithium secondary battery and method for manufacturing same
JP2006313736A (en) * 2005-04-05 2006-11-16 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2009211824A (en) * 2008-02-29 2009-09-17 Tdk Corp Electrochemical device and manufacturing method of same
US20090325057A1 (en) * 2006-05-04 2009-12-31 Lg Chem, Ltd. Lithium Secondary Battery and Method for Producing the Same
US20120003545A1 (en) * 2009-06-30 2012-01-05 Lg Chem, Ltd. Method for manufacturing electrode having porous coating layer, electrode manufactured therefrom, and electrochemical device comprising the same
JP2013012327A (en) * 2011-06-28 2013-01-17 Toyota Motor Corp Manufacturing method of lithium ion secondary battery
JP2018181781A (en) * 2017-04-21 2018-11-15 トヨタ自動車株式会社 Electrode plate manufacturing device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000188115A (en) * 1998-12-22 2000-07-04 Sony Corp Thin type battery
JP2006196248A (en) * 2005-01-12 2006-07-27 Matsushita Electric Ind Co Ltd Lithium secondary battery and method for manufacturing same
JP4649993B2 (en) * 2005-01-12 2011-03-16 パナソニック株式会社 Lithium secondary battery and manufacturing method thereof
JP2006313736A (en) * 2005-04-05 2006-11-16 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
US20090325057A1 (en) * 2006-05-04 2009-12-31 Lg Chem, Ltd. Lithium Secondary Battery and Method for Producing the Same
US9825267B2 (en) * 2006-05-04 2017-11-21 Lg Chem, Ltd. Lithium secondary battery and method for producing the same
JP2009211824A (en) * 2008-02-29 2009-09-17 Tdk Corp Electrochemical device and manufacturing method of same
US20120003545A1 (en) * 2009-06-30 2012-01-05 Lg Chem, Ltd. Method for manufacturing electrode having porous coating layer, electrode manufactured therefrom, and electrochemical device comprising the same
JP2013012327A (en) * 2011-06-28 2013-01-17 Toyota Motor Corp Manufacturing method of lithium ion secondary battery
JP2018181781A (en) * 2017-04-21 2018-11-15 トヨタ自動車株式会社 Electrode plate manufacturing device

Similar Documents

Publication Publication Date Title
US20040237290A1 (en) Rechargeable battery
JP3822445B2 (en) Electrochemical devices
US20090169986A1 (en) Non-aqueous secondary battery and method for producing the same
JP2003068278A (en) Electrochemical device
JP4204231B2 (en) Lithium secondary battery
JP2003308842A (en) Nonaqueous electrolyte lithium secondary battery
JP2002237292A (en) Nonaqueous electrolyte secondary battery
JPH07153490A (en) Battery
JPH11121045A (en) Nonaqueous electrolyte secondary battery
JPH10284065A (en) Nonaqueous electrolyte battery
JP2001229970A (en) Cylindrical lithium battery
EP1191618B1 (en) Rechargeable battery using nonaqueous electrolyte
JP2005071640A (en) Flat nonaqueous electrolyte secondary battery
JP2005100955A (en) Winding type lithium ion battery
JP4352654B2 (en) Non-aqueous electrolyte secondary battery
JP4811983B2 (en) Winding electrode, manufacturing method thereof, and battery using the same
JP2001185220A (en) Cylindrical lithium ion battery
JP4649698B2 (en) Secondary battery
JP5198940B2 (en) Lithium secondary battery
JP2000306607A (en) Nonaqueous electrolyte battery
JP4827112B2 (en) Flat non-aqueous electrolyte secondary battery
JP4548070B2 (en) Secondary battery
JP4389398B2 (en) Non-aqueous electrolyte secondary battery
JP2005327521A (en) Manufacturing method of nonaqueous electrolyte secondary battery and using method of the same
JP3620512B2 (en) Non-aqueous electrolyte secondary battery