JPH07153490A - Battery - Google Patents

Battery

Info

Publication number
JPH07153490A
JPH07153490A JP5340306A JP34030693A JPH07153490A JP H07153490 A JPH07153490 A JP H07153490A JP 5340306 A JP5340306 A JP 5340306A JP 34030693 A JP34030693 A JP 34030693A JP H07153490 A JPH07153490 A JP H07153490A
Authority
JP
Japan
Prior art keywords
active material
electrode
battery
material layer
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5340306A
Other languages
Japanese (ja)
Inventor
Toru Nagaura
亨 永浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAIBARU KK
Original Assignee
HAIBARU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAIBARU KK filed Critical HAIBARU KK
Priority to JP5340306A priority Critical patent/JPH07153490A/en
Publication of JPH07153490A publication Critical patent/JPH07153490A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To provide a battery having excellent performance by using band-like electrodes formed with many active material layers into a square pattern on a current collector, and winding them into a wound body to form an electrode body so that the current collector portion formed with no active material layer is arranged at the bent portion had a small radius of curvature, CONSTITUTION:Band-like electrodes formed with many active material layers into a square pattern on a current collector are used, and they are wound into a bound body to form an electrode body so that the active material layers are arranged on a pair of parallel sides. They are wound into the wound body to form the electrode body so that a current collector portion 22 formed with no active material layer is arranged. The electrode body is arranged with electrode presser plates 5 in parallel on both sides of the active material layers, and it is stored in an angular iron battery can 4 applied with Ni plating. Negative electrode leads 6 guided from negative electrodes 2 are welded on the upper inner wall of a battery can 4. Positive leads 7 guided from positive electrodes 2 are welded to a positive electrode external terminal 9 fitted to a cover body 8 via a polypropylene packing 10 in advance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、角型電池の製造方法
に関するものであり、特に発電素子である積層電極体の
組立方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a prismatic battery, and more particularly to a method for assembling a laminated electrode body which is a power generating element.

【0002】[0002]

【従来の技術】電子機器の小型化が進められる中、その
電源として小型高容量電池の要望がさらに強まってい
る。その要望に答えるべく、これまでの殆どの電池に共
通な筒型に代えて、占有体積効率において有利な角型電
池の実用化が試みられている。実際にはニッケルカドミ
ウム二次電池においては、角型のいわゆるガム型二次電
池が実用化された。さらに、電池システムとして高エネ
ルギー密度が期待できるリチウム電池等の非水電解液電
池の開発も盛んに行われ、高性能な非水電解液電池が筒
型電池としては既に実用されている。今後は、角型非水
電解液電池の実現が最も望まれるところである。一方、
地球環境破壊はその止まる気配もなく、化石燃料に替わ
る風力発電や太陽光発電の本格的な実現やさらには電気
自動車の実現等が強く望まれる。これらの実現には、電
力貯蔵用として、あるいは電気自動車駆動用電源とし
て、やはり高エネルギー密度の二次電池の完成が不可欠
である。したがって電子機器の要望から来る小型高容量
電池のみならず、大型の高エネルギー密度電池の必要性
からも角型非水電解液二次電池の開発が最も望まれると
ころである。非水電解液二次電池としては、カーボンへ
のリチウムイオンの出入りを利用するカーボン電極を負
極とする非水電解液二次電池が、筒型電池としては既に
実用化され、ビデオカメラ等に使用され始めた。この電
池はリチウムイオン二次電池と言われ、代表的には正極
材料にLiCoO, やLiMnなどを用い、
負極にはコークスやグラファイトなどの炭素質材料が用
いられる。この電池では充電においては電極中のカーボ
ンヘリチウムイオンがドープされ、放電ではそのカーボ
ンからリチウムイオンが脱ドープされるだけで、カーボ
ン自身は充放電に際して大きな結晶構造の変化を伴わな
いので、極めて安定した充放電特性を示し、充放電に伴
う特性劣化が少なく、具体的には1000回以上の充放
電の繰り返しも可能である。しかし、非水電解液電池の
角型化の難点は、その量産性である。角型電池を組み立
てるこれまでの方法は、何枚もの短冊状の電極を正極と
負極を交互にセパレータを挟んで積み重ねて、角型積層
電極体を作成し、角型の電池ケースへ納めて組み立て
る。特に非水電解液電池の場合は既存のニッケルカドミ
ウム電池等の水溶液系電池と異なり、電解液抵抗が高い
ため、充分な特性を得るためには、薄い電極をかなり多
くの枚数重ねて電極面積を増やしてやる必要がある。従
って非水電解液系の角型電池では積層枚数が非常に多い
ことがさらに電極の積層体を組み立てることを難しくし
ている。現在のところこの作業は人の手作業によるとこ
ろが大きく、量産化のための機械化は極めて難しい。筒
型電池であれば、電池素子は帯状の電極をロール状に巻
き上げて巻回体として作成し、これを筒型電池缶に納め
て作られる。巻回体の作成は従来のニッケルカドミウム
電池やアルミ電解コンデンサー等の製造技術で相当進歩
しており、当然筒型非水電解液電池の製造にも応用さ
れ、量産化における電池組立方法に大きな問題はない。
筒型電池の技術を応用して、角型巻回体で角型電池用の
電池素子を作る試みが成されたが、角型巻回体には極率
半径の極めて小さい曲げ部分の生じる点が、円柱形巻回
体との大きな違いであり、これまでの角型巻回体作成の
試みにおいては活物質層に極率半径の極めて小さい曲げ
が施されるため、活物質は集電体から剥がれてしまい、
それによって生じる活物質の紛がセパレータを貫通して
電池は内部ショートしてしまい、極めて歩留りが悪いも
のであった。特にリチウムイオン二次電池の場合、活物
質材料としてLiCoOやLiMnなどを用い
る正極では加圧成型された活物質層が固くてもろいた
め、正極活物質層に極率半径の極めて小さい曲げが施さ
れると、活物質層は集電体から剥がれてしまい、内部シ
ョートを引き起こす原因となる。
2. Description of the Related Art With the progress of miniaturization of electronic equipment, there is an increasing demand for small high-capacity batteries as a power source. In order to meet the demand, attempts have been made to put into practical use a prismatic battery, which is advantageous in terms of occupied volume efficiency, instead of the cylindrical battery which is common to most batteries up to now. In fact, as the nickel-cadmium secondary battery, a prismatic so-called gum-type secondary battery has been put into practical use. Furthermore, non-aqueous electrolyte batteries such as lithium batteries, which are expected to have high energy density as a battery system, have been actively developed, and high-performance non-aqueous electrolyte batteries have already been put into practical use as cylindrical batteries. In the future, the realization of a prismatic non-aqueous electrolyte battery is most desired. on the other hand,
There is no sign of global environmental destruction, and there is a strong demand for full-scale realization of wind power generation and solar power generation that will replace fossil fuels, as well as realization of electric vehicles. In order to realize these, it is indispensable to complete a high energy density secondary battery as a power storage or a power source for driving an electric vehicle. Therefore, the development of a prismatic non-aqueous electrolyte secondary battery is most desired not only from the small high-capacity battery demanded by electronic devices but also from the need for large high energy density batteries. As a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery using a carbon electrode as a negative electrode, which utilizes the inflow / outflow of lithium ions from / to carbon, has already been put into practical use as a cylindrical battery and used in video cameras and the like. Started to be. This battery is called a lithium ion secondary battery, and typically uses LiCoO 2 , LiMn 2 O 4 , or the like as a positive electrode material,
A carbonaceous material such as coke or graphite is used for the negative electrode. In this battery, the carbon helium ion in the electrode is doped during charging, and the lithium ion is dedoped from the carbon during discharging, and the carbon itself does not undergo a large change in the crystal structure during charging and discharging, which is extremely stable. It exhibits charge / discharge characteristics and shows little deterioration in characteristics due to charge / discharge, and specifically, it is possible to repeat charge / discharge 1000 times or more. However, the difficulty in making the non-aqueous electrolyte battery square is its mass productivity. The conventional method of assembling a prismatic battery is to stack a number of strip-shaped electrodes with positive and negative electrodes alternately sandwiching a separator to create a prismatic laminated electrode body, and place it in a prismatic battery case for assembly. . In particular, in the case of non-aqueous electrolyte batteries, unlike aqueous solution batteries such as existing nickel-cadmium batteries, the electrolyte resistance is high, so in order to obtain sufficient characteristics, stack a large number of thin electrodes and increase the electrode area. We need to increase it. Therefore, in the non-aqueous electrolyte type prismatic battery, the number of laminated layers is very large, which further makes it difficult to assemble a laminated body of electrodes. At present, this work is largely done manually, and mechanization for mass production is extremely difficult. In the case of a cylindrical battery, the battery element is manufactured by winding a strip-shaped electrode in a roll shape to form a wound body, which is housed in a cylindrical battery can. The creation of the wound body has made considerable progress in the manufacturing technology of conventional nickel-cadmium batteries and aluminum electrolytic capacitors, and of course it is also applied to the manufacture of cylindrical non-aqueous electrolyte batteries, which is a big problem in the battery assembly method in mass production. There is no.
An attempt was made to apply the technology of the cylindrical battery to make a battery element for a rectangular battery with a rectangular winding body. However, in the rectangular winding body, a point where a bent portion with an extremely small radius of curvature occurs However, this is a big difference from the cylindrical wound body, and in an attempt to make a square wound body up to now, the active material layer is bent with an extremely small radius of curvature, so that the active material is a collector. Peeled off from the
The powder of the active material thus generated penetrates the separator and causes an internal short circuit in the battery, resulting in a very low yield. Particularly in the case of a lithium-ion secondary battery, the positive electrode using LiCoO 2 , LiMn 2 O 4, etc. as the active material has a pressure-molded active material layer that is hard and brittle, and therefore has a very small polar radius in the positive electrode active material layer. When bent, the active material layer peels off from the current collector, which causes an internal short circuit.

【0003】[0003]

【発明が解決しようとする課題】本発明は角型電池、特
に角型非水電解液電池の大量生産のために、生産性の良
い角型積層電極体の組立方法を提供しようとするもので
ある。
SUMMARY OF THE INVENTION The present invention is intended to provide a method for assembling a prismatic laminated electrode body having high productivity for mass production of a prismatic battery, especially a prismatic nonaqueous electrolyte battery. is there.

【0004】[0004]

【課題を解決するための手段】上記課題を解決する本発
明の手段は、まず金属箔もしくは金属メッシュを集電体
とし、その集電体の上に四角形パターン状で活物質層を
形成した帯状電極を準備し、この帯状電極を対極との間
にセパレータを挟んで、一対の辺に前記活物質層が、ま
た活物質層を形成しない集電体の部分が曲げの生じる部
分へ配置するように巻き上げて、少なくとも1対の平行
な辺を持つ巻回体として積層電極体を作成する。
Means for Solving the Problems According to the means of the present invention for solving the above problems, first, a metal foil or a metal mesh is used as a current collector, and a strip shape in which an active material layer is formed in a square pattern on the current collector. Prepare an electrode, sandwich the separator between the strip electrode and the counter electrode, and arrange the active material layer on a pair of sides, and arrange the portion of the current collector that does not form the active material layer to the portion where bending occurs. Then, the laminated electrode body is prepared as a wound body having at least one pair of parallel sides.

【0005】[0005]

【作用】本発明による電池素子の作成方法は、図2に示
すように集電体の上に四角形パターン(21)で多数個
の活物質層を形成した帯状電極を使用し、図3(b)に
示すように一対の平行な辺に活物質層(21)が配置す
るように巻き上げて巻回体として電極体を作成するもの
であり、従来の筒型電池の場合の円柱形巻回体を作成す
る場合と同様な原理の機械で作成することが出来る。少
なくとも一対の平行な辺を持つ前記巻回体には極率半径
の極めて小さい曲げの生じる点が、円柱形巻回体との大
きな違いであり、これまでの角型電池用巻回体作成の試
みでは、極率半径の極めて小さい曲げが施された部分の
活物質層は集電体から剥がれてしまい、それによって生
じる活物質の紛がセパレータを貫通して、電池は内部シ
ョートしてしまい、極めて歩留りが悪いものであった。
ところが本発明では、従来の円形巻回体用の帯状電極、
つまり活物質層が連続して形成された帯状電極と異な
り、少なくとも曲げに対して活物質層が剥離しやすい方
の電極は、集電体の上に四角形パターンで多数個の活物
質層を形成した帯状電極として準備し、一対の平行な辺
にその活物質層は配置し、極率半径の小さい曲げの生じ
る部分には活物質層を形成していない集電体部分が配置
するように巻き上げて巻回体が作成されるため、活物質
剥離による内部ショートは起こらない。
The method for producing a battery element according to the present invention uses a strip electrode having a plurality of active material layers formed in a square pattern (21) on a current collector as shown in FIG. ), The electrode material is formed as a wound body by winding up so that the active material layer (21) is arranged on a pair of parallel sides, and a cylindrical wound body in the case of a conventional cylindrical battery. Can be created with a machine of the same principle as that of creating. The point at which the wound body having at least one pair of parallel sides is bent with an extremely small radius of curvature is a big difference from the cylindrical wound body. In an attempt, the active material layer in the bent portion having an extremely small radius of curvature is peeled off from the current collector, the powder of the active material thus generated penetrates the separator, and the battery is internally short-circuited. The yield was extremely poor.
However, in the present invention, a strip electrode for a conventional circular winding body,
That is, unlike the strip-shaped electrode in which the active material layer is continuously formed, at least the electrode in which the active material layer is easily peeled off by bending is formed with a large number of active material layers in a square pattern on the current collector. Prepared as a strip-shaped electrode, and the active material layer is arranged on a pair of parallel sides, and rolled up so that the current collector part not forming the active material layer is arranged on the part where bending with a small radius of curvature occurs. Since the wound body is produced by the above method, no internal short circuit due to peeling of the active material occurs.

【0006】[0006]

【実施例】以下、実施例により本発明をさらに詳しく説
明する。
The present invention will be described in more detail with reference to the following examples.

【0007】実施例 図1、図2および図3を参照しながら本発明の具体的な
電池について説明する。図1は本発明による電池の構造
を示す模式的縦断面図であり、図2は帯状電極の平面
図、図3は電極巻回体の巻始め(a)および巻回終了体
(b)の断面図である。まず本発明を実施した電極巻回
体は次のようにして用意する。負極活物質としてメソカ
ーボンマイクロビーズを使用する場合は、曲げに対する
剥離は生じにくいので、負極体の作成はまったく従来の
方法で行う。つまり、従来の円形巻回体用の帯状電極と
同じように、活物質層が連続して形成された帯状電極と
して作成する。窒素気流中2800℃で熱処理したメソ
カーボンマイクロビーズ(BET比表面積=0.8m
/g、d002=3.37Å)の90重量部と結着剤と
してポリフッ化ビニリデン(PVDF)10重量部を溶
剤N−メチル−2−ピロリドンと湿式混合してペースト
にする。次に、このペ−ストを集電体とする0.01m
mの銅箔の両面に活物質層を連続層として塗布し、乾燥
後加圧成型して帯状の負極体(1)を作成する。成型後
の活物質層の密度は約1.28〜1.35g/ccとす
るのがよい。正極体は次のようにして用意する。市販の
二酸化マンガン(MnO) と炭酸リチウム(Li
CO)のモル比1:0.25からなる混合物を空気中
800℃で8時間焼成し、紛砕後、空気中800℃でさ
らに8時間再度焼成する。この再焼成工程を数回繰り返
し、LiMnを調整する。次に、LiMn
を89重量部、導電剤としてアセチレンブラックを3重
量部、グラファイトを4重量部、結合剤としてポリフッ
化ビニリデン5重量部をN−メチル−2−ピロリドンと
湿式混合し、ペーストを作成する このペ−ストを集電
体とする0.02mmのアルミニウム箔の両面に、図2
に示すように四角形パターン(21)で、一部未塗布部
(22)を残して塗布し、乾燥後加圧成型して帯状の正
極体(2)を作成する。尚、加圧成型後の活物質層の密
度は約2.8〜3.2g/ccとするのがよい。ここで
の活物質層のパターン塗布は既存の印刷技術等の塗布技
術で行うことが出来る。活物質層のパターンはW×Ln
の四角形パターンで本実施例における具体的な寸法は、
Wは負極の場合Wa=40.5mm、正極の場合Wc=
38.5mmで実施する。LnはL=34mmから始
まり16番目のパターンではL16=36mmへとnの
増えるに従って増やしておく。また活物質層のパターン
とパターンの間の活物質未塗布部の幅HnもH
2. 5mmからH15=9.5mmへとnの増えるに
従って増やしておく 次に帯状負極体(1)と正極体(2)はポリプロピレン
製の多孔質膜(3)をセパレータとして、図3(a)に
電極体の巻初めを模式図で示すように、2枚の芯板(3
3)にセパレータ(3)を挟み、芯板(33)とセパレ
ータ(3b)との間に負極体(1)を、芯板(33)と
セパレータ(3a)との間に正極体(2)をそれぞれ挟
んで矢印の方向へ巻き込んで巻回体を作成する。電極の
巻き込みが終了すると巻回体を芯板(33)から抜取
る。抜き取った巻回体は、側面から押さえることにより
芯板の抜き取られた後の隙間は密着し、その断面は図3
(b)に示したようになる。正極体の活物質層(21)
は一対の平行な辺に配置し、極率半径の小さい曲げの生
じる部分には活物質層を形成していない集電体部分(2
2)が配置された巻回体として角型電池用の積層電極体
が完成する。本実施例では正極活物質としてLiMn
を使用しているので正極活物質層は固くてもろく、
曲げに対して集電体から剥がれやすいものであるが、本
実施例の巻回体では極率半径の小さい曲げの生じる部分
には、活物質層を形成していない部分(22)が配置さ
れているので、活物質層の剥がれの心配はない。さらに
前記電極体は図1に示すように、活物質層に平行に両側
に電極押さえ板(厚さ0.2mmのステンレス板)
(5)を配置して、ニッケルメッキを施した鉄製の角型
電池缶(4)に収納する。負極(1)より取り出した負
極リード(6)は電池缶の上部の内壁に溶接する・正極
(2)より取り出した正極リード(7)は、あらかじめ
ポリプロピレン製パッキン(10)を挟んで蓋体(8)
に取り付けられた正極外部端子(9)に溶接する。蓋体
(8)は電池缶(4)の開口部に設置し、電池缶と蓋体
をレーザー溶接して電池缶を封じる。溶接作業の終了し
たところで、電解液を電池缶(4)の底に儲けた小穴
(11)を通して、電池缶の中に注入する。本実施例で
使用する正極材料及び負極材料の組合せでは、電解液と
してはエチレンカーボネート(EC)とジエチルカーボ
ネート(DEC)の混合溶媒に1.5モル/リットルの
LiPFを溶解したものが最適である。具体的な電解
液注入は次のように行う。上記電解液中に電池缶底の小
穴(11)を下にして電池缶を約半分まで浸せきし、真
空チャンバーの中で減圧にする。このとき電池缶底の小
穴(11)から電池缶内のガスが吸引排出され、その後
真空チャンバーを常圧に戻すことによって電解液が電池
缶内に入る。電解液注入後は鉄製の金属ポール(12)
を電池缶底の小穴(11)に接触させ電流を通し、双方
の金属の接触抵抗により発熱させて溶接して小穴を塞
ぎ、図1に示す電池構造で、外形寸法50mm×40m
m×7.8mmの角型非水電解液二次電池(A)が完成
する。本実施例では電極巻回体で曲げの生じる部分には
活物質層を形成していない集電体部分が配置するように
巻き上げて巻回体が作成されるため、活物質剥離による
内部ショートは起こらなかった。
EXAMPLE A specific battery of the present invention will be described with reference to FIGS. 1, 2 and 3. FIG. 1 is a schematic vertical cross-sectional view showing the structure of a battery according to the present invention, FIG. 2 is a plan view of a strip-shaped electrode, and FIG. 3 shows a winding start (a) and a winding end (b) of an electrode winding body. FIG. First, an electrode winding body embodying the present invention is prepared as follows. When mesocarbon microbeads are used as the negative electrode active material, peeling due to bending is unlikely to occur, so the negative electrode body is prepared by a conventional method. That is, like the conventional strip-shaped electrode for a circularly wound body, it is formed as a strip-shaped electrode in which an active material layer is continuously formed. Mesocarbon microbeads heat-treated at 2800 ° C. in a nitrogen stream (BET specific surface area = 0.8 m 2
/ G, d002 = 3.37Å) 90 parts by weight and 10 parts by weight of polyvinylidene fluoride (PVDF) as a binder are wet-mixed with a solvent N-methyl-2-pyrrolidone to form a paste. Next, 0.01 m using this paste as a current collector
An active material layer is applied as a continuous layer on both sides of the copper foil of m, dried and pressure-molded to prepare a strip-shaped negative electrode body (1). The density of the active material layer after molding is preferably about 1.28 to 1.35 g / cc. The positive electrode body is prepared as follows. Commercially available manganese dioxide (MnO 2 ) and lithium carbonate (Li 2
A mixture having a CO 3 ) molar ratio of 1: 0.25 is calcined in air at 800 ° C. for 8 hours, ground, and then calcined again in air at 800 ° C. for another 8 hours. This re-baking step is repeated several times to adjust LiMn 2 O 4 . Next, LiMn 2 O 4
89 parts by weight, 3 parts by weight of acetylene black as a conductive agent, 4 parts by weight of graphite, and 5 parts by weight of polyvinylidene fluoride as a binder are wet mixed with N-methyl-2-pyrrolidone to prepare a paste. On both sides of 0.02mm aluminum foil using the strike as a current collector,
As shown in (4), a strip-shaped positive electrode body (2) is prepared by applying a square pattern (21) while leaving a part of the uncoated portion (22), drying and pressing. The density of the active material layer after pressure molding is preferably about 2.8 to 3.2 g / cc. The pattern coating of the active material layer here can be performed by a coating technique such as an existing printing technique. The pattern of the active material layer is W × Ln
The specific dimensions in this embodiment in the square pattern are
W is 40.5 mm for the negative electrode and Wc = for the positive electrode.
Implement at 38.5 mm. Ln starts from L 1 = 34 mm and is increased to L 16 = 36 mm in the 16th pattern as n increases. In addition, the width Hn of the active material uncoated portion between the patterns of the active material layer is H 1 =
2. The number is increased from 5 mm to H 15 = 9.5 mm as n increases. Next, the strip negative electrode body (1) and the positive electrode body (2) have a polypropylene porous film (3) as a separator, and FIG. As shown in the schematic diagram of the beginning of winding of the electrode body, two core plates (3
3) sandwiching the separator (3), the negative electrode body (1) between the core plate (33) and the separator (3b), and the positive electrode body (2) between the core plate (33) and the separator (3a). Each is sandwiched and wound in the direction of the arrow to form a wound body. When the winding of the electrodes is completed, the wound body is removed from the core plate (33). By pressing the wound body from the side surface, the gap after the core plate is pulled out comes into close contact, and its cross section is shown in FIG.
It becomes as shown in (b). Active material layer of positive electrode body (21)
Are arranged on a pair of parallel sides, and a current collector part (2
A laminated electrode body for a prismatic battery is completed as a wound body in which 2) is arranged. In this example, LiMn 2 was used as the positive electrode active material.
Since O 4 is used, the positive electrode active material layer is hard and brittle,
Although it is easily peeled off from the current collector upon bending, in the wound body of the present embodiment, the portion (22) where the active material layer is not formed is arranged at the portion where bending with a small radius of curvature occurs. Therefore, there is no need to worry about peeling of the active material layer. Further, as shown in FIG. 1, the electrode body has electrode holding plates (stainless steel plate having a thickness of 0.2 mm) on both sides in parallel with the active material layer.
(5) is placed and housed in a nickel-plated iron square battery can (4). The negative electrode lead (6) taken out from the negative electrode (1) is welded to the inner wall of the upper part of the battery can. The positive electrode lead (7) taken out from the positive electrode (2) has a polypropylene packing (10) sandwiched in advance to cover the lid ( 8)
Weld to the positive electrode external terminal (9) attached to. The lid (8) is installed in the opening of the battery can (4), and the battery can and the lid are laser-welded to seal the battery can. At the end of the welding operation, the electrolytic solution is injected into the battery can through the small hole (11) made in the bottom of the battery can (4). In the combination of the positive electrode material and the negative electrode material used in this example, an electrolytic solution in which 1.5 mol / liter of LiPF 6 is dissolved in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) is optimal. is there. The specific injection of the electrolytic solution is performed as follows. The battery can is soaked in the above-mentioned electrolytic solution with the small hole (11) at the bottom of the battery down, and the battery can is soaked up to about half, and the pressure is reduced in the vacuum chamber. At this time, the gas in the battery can is sucked and discharged from the small hole (11) at the bottom of the battery can, and then the vacuum chamber is returned to normal pressure, so that the electrolytic solution enters the battery can. After injection of electrolyte, iron metal pole (12)
To the small hole (11) at the bottom of the battery can and pass an electric current, heat is generated by the contact resistance of both metals and welded to close the small hole. With the battery structure shown in FIG. 1, the external dimensions are 50 mm x 40 m.
A square non-aqueous electrolyte secondary battery (A) of m × 7.8 mm is completed. In this embodiment, since the wound body is formed by winding so that the current collector portion where the active material layer is not formed is arranged at the portion where the electrode winding body is bent, the internal short circuit due to the peeling of the active material is prevented. It didn't happen.

【0008】[0008]

【発明の効果】本発明では集電体の上に四角形パターン
で多数個の活物質層を形成した帯状電極を使用し、極率
半径の小さな曲げの部分には活物質層を形成しない集電
体部分が配置するように巻き上げて巻回体として電極体
を作成するものであり、従来の筒型電池の場合の円柱形
巻回体を作成する同様な原理の機械で角型電池用の電池
素子を作成することを可能にするものである。本発明に
おける帯状電極は、活物質層が連続して形成された従来
の帯状電極と異なり、活物質剥離による内部ショートは
起こらない。この結果、広範囲な用途で使用できるエネ
ルギー密度の高い角型電池を大量生産により提供できる
ようになり、その工業的価値は大である。
According to the present invention, a band-shaped electrode in which a large number of active material layers are formed in a rectangular pattern on a current collector is used, and an active material layer is not formed in a bent portion having a small radius of curvature. A battery for a prismatic battery with a machine of the same principle as that for winding a cylindrical body in the case of a conventional cylindrical battery to wind up so that the body part is arranged and to create an electrode body as a wound body. It makes it possible to create a device. Unlike the conventional strip electrode in which the active material layer is continuously formed, the strip electrode in the present invention does not cause internal short circuit due to peeling of the active material. As a result, it becomes possible to provide a prismatic battery with high energy density that can be used in a wide range of applications by mass production, and its industrial value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の電池構造を示した模式的縦断面図FIG. 1 is a schematic vertical sectional view showing a battery structure of an example.

【図2】帯状電極の活物質層パターンを示す電極の平面
FIG. 2 is a plan view of an electrode showing an active material layer pattern of a strip electrode.

【図3】実施例における電極体の巻初めおよび巻回終了
品を示した模式的断面図
FIG. 3 is a schematic cross-sectional view showing the beginning and end of winding of the electrode body in the example.

【符号の説明】[Explanation of symbols]

1は負極、2は正極、3はセパレータ、4は電池缶、5
は電極押さえ板、6は負極リード、7は正極リード、8
は蓋体、9は正極外部端子、10はパッキン、11は小
穴、12は金属ポール、21は活物質層、22は活物質
層を形成しない部分、33は巻取り機の芯板である。
1 is a negative electrode, 2 is a positive electrode, 3 is a separator, 4 is a battery can, 5
Is an electrode pressing plate, 6 is a negative electrode lead, 7 is a positive electrode lead, 8
Is a lid, 9 is a positive electrode external terminal, 10 is packing, 11 is a small hole, 12 is a metal pole, 21 is an active material layer, 22 is a portion where an active material layer is not formed, and 33 is a core plate of a winder.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】正極および負極がセパレータを挟んで積層
されて構成される電極体を角型容器内に収納してなる電
池において、少なくとも負極あるいは正極の何れかの電
極は、金属箔もしくは金属メッシュを集電体とし、その
集電体の上に四角形パターンで複数個の活物質層が形成
された帯状電極であり、この帯状電極を対極との間にセ
パレータを挟んで、一対の平行な辺に前記活物質層が配
置され、活物質層が形成されていない集電体の部分は曲
げの生じる部分に配置するようにして、少なくとも一対
の平行な辺を持つ巻回体として電極体が作成されている
ことを特徴とする角型電池。
1. In a battery in which an electrode body composed of a positive electrode and a negative electrode laminated with a separator sandwiched therebetween is housed in a rectangular container, at least one of the negative electrode and the positive electrode is a metal foil or a metal mesh. Is a band-shaped electrode in which a plurality of active material layers are formed in a rectangular pattern on the current collector, and the band-shaped electrode is sandwiched between a counter electrode and a pair of parallel sides. The active material layer is disposed on the electrode, and the portion of the current collector on which the active material layer is not formed is disposed on the portion where bending occurs, so that the electrode body is formed as a wound body having at least one pair of parallel sides. A prismatic battery characterized by being
JP5340306A 1993-11-26 1993-11-26 Battery Pending JPH07153490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5340306A JPH07153490A (en) 1993-11-26 1993-11-26 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5340306A JPH07153490A (en) 1993-11-26 1993-11-26 Battery

Publications (1)

Publication Number Publication Date
JPH07153490A true JPH07153490A (en) 1995-06-16

Family

ID=18335686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5340306A Pending JPH07153490A (en) 1993-11-26 1993-11-26 Battery

Country Status (1)

Country Link
JP (1) JPH07153490A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003523061A (en) * 2000-02-08 2003-07-29 エルジー・ケミカル・カンパニー・リミテッド Multiple superimposed electrochemical cell and method of manufacturing the same
JP2003523059A (en) * 2000-02-08 2003-07-29 エルジー・ケミカル・カンパニー・リミテッド Superimposed electrochemical cell and method of manufacturing the same
KR100614398B1 (en) * 2004-10-28 2006-08-21 삼성에스디아이 주식회사 Prismatic type lithium secondary battery
JP2007026786A (en) * 2005-07-13 2007-02-01 Dainippon Printing Co Ltd Electrode structure for nonaqueous electrolytic solution storage element, manufacturing method of the electrode structure, and nonaqueous electrolytic solution storage element
WO2008002024A1 (en) * 2006-06-26 2008-01-03 Lg Chem, Ltd. Electrode plate for battery cell and process of preparing the same
JP2010080427A (en) * 2008-05-22 2010-04-08 Panasonic Corp Electrode group for secondary battery and secondary battery using the same
JP2011510446A (en) * 2008-01-17 2011-03-31 ネスキャップ カンパニー,リミテッド Electrical energy storage device and manufacturing method thereof
JP2011134685A (en) * 2009-12-25 2011-07-07 Honda Motor Co Ltd Secondary battery
JP2012146480A (en) * 2011-01-12 2012-08-02 Dainippon Screen Mfg Co Ltd Method for producing electrode, battery electrode and battery
US8927127B2 (en) 2011-12-06 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Square lithium secondary battery
CN105324877A (en) * 2013-10-31 2016-02-10 株式会社Lg化学 Secondary battery having jelly roll-type electrode assembly having intermittent blank portion formed on positive electrode collector
JP2017120729A (en) * 2015-12-28 2017-07-06 トヨタ自動車株式会社 Secondary battery
CN114156428A (en) * 2020-09-08 2022-03-08 泰星能源解决方案有限公司 Battery and method for manufacturing same
WO2023242982A1 (en) * 2022-06-15 2023-12-21 TeraWatt Technology株式会社 Secondary battery and secondary battery manufacturing method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003523061A (en) * 2000-02-08 2003-07-29 エルジー・ケミカル・カンパニー・リミテッド Multiple superimposed electrochemical cell and method of manufacturing the same
JP2003523059A (en) * 2000-02-08 2003-07-29 エルジー・ケミカル・カンパニー・リミテッド Superimposed electrochemical cell and method of manufacturing the same
KR100614398B1 (en) * 2004-10-28 2006-08-21 삼성에스디아이 주식회사 Prismatic type lithium secondary battery
JP2007026786A (en) * 2005-07-13 2007-02-01 Dainippon Printing Co Ltd Electrode structure for nonaqueous electrolytic solution storage element, manufacturing method of the electrode structure, and nonaqueous electrolytic solution storage element
WO2008002024A1 (en) * 2006-06-26 2008-01-03 Lg Chem, Ltd. Electrode plate for battery cell and process of preparing the same
JP2011510446A (en) * 2008-01-17 2011-03-31 ネスキャップ カンパニー,リミテッド Electrical energy storage device and manufacturing method thereof
JP2010080427A (en) * 2008-05-22 2010-04-08 Panasonic Corp Electrode group for secondary battery and secondary battery using the same
JP2011134685A (en) * 2009-12-25 2011-07-07 Honda Motor Co Ltd Secondary battery
JP2012146480A (en) * 2011-01-12 2012-08-02 Dainippon Screen Mfg Co Ltd Method for producing electrode, battery electrode and battery
US9595732B2 (en) 2011-12-06 2017-03-14 Semiconductor Energy Laboratory Co., Ltd. Square lithium secondary battery
US8927127B2 (en) 2011-12-06 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Square lithium secondary battery
US9281543B2 (en) 2011-12-06 2016-03-08 Semiconductor Energy Laboratory Co., Ltd. Square lithium secondary battery
KR20190110505A (en) 2011-12-06 2019-09-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Square lithium secondary battery
CN105324877A (en) * 2013-10-31 2016-02-10 株式会社Lg化学 Secondary battery having jelly roll-type electrode assembly having intermittent blank portion formed on positive electrode collector
EP2999041A4 (en) * 2013-10-31 2017-01-04 LG Chem, Ltd. Secondary battery having jelly roll-type electrode assembly having intermittent blank portion formed on positive electrode collector
JP2019003948A (en) * 2013-10-31 2019-01-10 エルジー・ケム・リミテッド Secondary battery having jelly roll-type electrode assembly comprising intermittent blank portion formed on positive electrode collector
JP2016539462A (en) * 2013-10-31 2016-12-15 エルジー・ケム・リミテッド Secondary battery comprising a jelly roll type electrode assembly in which an intermittent plain portion is formed on a positive electrode current collector
JP2017120729A (en) * 2015-12-28 2017-07-06 トヨタ自動車株式会社 Secondary battery
CN114156428A (en) * 2020-09-08 2022-03-08 泰星能源解决方案有限公司 Battery and method for manufacturing same
JP2022044959A (en) * 2020-09-08 2022-03-18 プライムプラネットエナジー&ソリューションズ株式会社 Battery and manufacturing method thereof
WO2023242982A1 (en) * 2022-06-15 2023-12-21 TeraWatt Technology株式会社 Secondary battery and secondary battery manufacturing method

Similar Documents

Publication Publication Date Title
KR100723748B1 (en) Collector sheet and electrochemical device
KR100677020B1 (en) Electrochemical device and method for manufacturing same
US6461762B1 (en) Rechargeable battery structure having a stacked structure of sequentially folded cells
KR100414631B1 (en) Non-aqueous Electrolyte Secondary Battery
US20020119367A1 (en) Lamination type secondary battery
JP2012174411A (en) Battery
JP5214172B2 (en) Electrode manufacturing method and storage device manufacturing method
JPH07153490A (en) Battery
JP4097443B2 (en) Lithium secondary battery
JP3033563B2 (en) Non-aqueous electrolyte secondary battery
JP2002237292A (en) Nonaqueous electrolyte secondary battery
JP2005243455A (en) Electrochemical device
JP3182786B2 (en) Battery
JP2007103295A (en) Non-aqueous electrolyte secondary battery
JP2004253353A (en) Manufacturing method of electrochemical element
JPH10241735A (en) Lithium ion battery
JP4297711B2 (en) Electrochemical element
JPH10284065A (en) Nonaqueous electrolyte battery
JP2004253350A (en) Manufacturing method of electrochemical element
JP2000243427A (en) Solid electrolyte cell and its manufacture
JP4594591B2 (en) Electrochemical element
JP3246553B2 (en) Non-aqueous electrolyte secondary battery
JP2004253343A (en) Electrochemical element
JP3196223B2 (en) Battery pack
JP4501180B2 (en) Non-aqueous polymer secondary battery