WO2015065090A1 - 전극-분리막 복합체의 제조방법, 그 제조방법에 의해 제조된 전극-분리막 복합체 및 그를 포함하는 리튬 이차전지 - Google Patents

전극-분리막 복합체의 제조방법, 그 제조방법에 의해 제조된 전극-분리막 복합체 및 그를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2015065090A1
WO2015065090A1 PCT/KR2014/010346 KR2014010346W WO2015065090A1 WO 2015065090 A1 WO2015065090 A1 WO 2015065090A1 KR 2014010346 W KR2014010346 W KR 2014010346W WO 2015065090 A1 WO2015065090 A1 WO 2015065090A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
separator
polymer particles
composite
separation film
Prior art date
Application number
PCT/KR2014/010346
Other languages
English (en)
French (fr)
Inventor
유형균
진선미
이주성
유보경
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US14/772,321 priority Critical patent/US11450925B2/en
Priority to JP2016521323A priority patent/JP6306168B2/ja
Priority to CN201480018763.7A priority patent/CN105074989B/zh
Priority to EP14858676.1A priority patent/EP2953201B1/en
Publication of WO2015065090A1 publication Critical patent/WO2015065090A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a method for producing an electrode-membrane composite, an electrode-membrane composite prepared by the method and a lithium secondary battery comprising the same, and more particularly, to directly coat a polymer solution including polymer particles on an electrode.
  • the present invention relates to a method for producing an electrode-membrane composite, an electrode-membrane composite prepared by the method and a lithium secondary battery comprising the same.
  • the electrochemical device is the area that is receiving the most attention in this respect, and the development of a secondary battery capable of charging and discharging has been the focus of attention, and in recent years in the development of such a battery in order to improve the capacity density and specific energy R & D on the design of electrodes and batteries is underway.
  • lithium secondary batteries developed in the early 1990s have a higher operating voltage and greater energy density than conventional batteries such as Ni-MH, Ni-Cd, and sulfuric acid-lead batteries that use an aqueous electrolyte solution. I am in the spotlight.
  • lithium ion batteries have safety problems such as ignition and explosion due to the use of the organic electrolyte, and are difficult to manufacture.
  • the lithium ion polymer battery has been considered as one of the next generation batteries by improving the weakness of the lithium ion battery, but the capacity of the battery is still relatively low compared to the lithium ion battery, and the discharge capacity is improved due to insufficient discharge capacity at low temperatures. This is urgently needed.
  • the porous separator of the lithium secondary battery has a problem of causing a short circuit between the positive electrode and the negative electrode due to the extreme heat shrinkage behavior at a temperature of about 100 °C or more due to the characteristics of the manufacturing process including the material properties and stretching.
  • the battery is overcharged due to a charger malfunction or the like, and the voltage rises rapidly, excess lithium is precipitated at the positive electrode and excess lithium is inserted at the negative electrode, resulting in thermal instability of the positive electrode and the negative electrode.
  • the organic solvent of the electrolyte is decomposed to cause a rapid exothermic reaction, a situation such as thermal runaway occurs suddenly, causing a serious damage to the stability of the battery.
  • the separator of the lithium secondary battery should have excellent heat resistance at high temperature in order to prevent an internal short circuit, and in particular, shrinkage at high temperature should be minimized.
  • the conventional lithium secondary battery is manufactured by being assembled in a state in which a polyolefin-based separator is interposed between the positive electrode and the negative electrode through a physical partition, the polyolefin-based separator has a problem that the thermal stability such as thermal shrinkage is weak.
  • a lithium secondary battery including a separator having improved safety by forming a porous coating layer including inorganic particles on the upper surface of the polyolefin-based separator has been proposed.
  • the separator having the porous coating layer including the inorganic particles and the electrode are assembled after being manufactured in a separate process, and thus, the efficiency of the process is somewhat reduced. have.
  • the problem to be solved by the present invention is a method for producing an electrode-separation membrane composite, the electrode-manufactured by the manufacturing method of the present invention, which simplifies the manufacturing process by directly coating and drying a polymer solution containing polymer particles on the electrode. It is to provide a separator composite and a lithium secondary battery comprising the same.
  • (S1) after applying the electrode active material slurry on at least one surface of the electrode current collector, and drying to form an electrode; (S2) coating a polymer solution including polymer particles on at least one surface of the electrode to form a separator coating layer; And (S3) drying the separator coating layer to form a porous separator.
  • a method of manufacturing an electrode- separator composite is provided.
  • the polymer particles may be an anionic polyelectrolyte.
  • the polymer particles may be any one selected from the group consisting of polymethyl methacrylate, polystyrene, a copolymer containing methyl methacrylate as a monomer, and a copolymer containing styrene as a monomer, or two or more thereof. It may be a mixture.
  • the size of the polymer particles may be 100 nm to 1 ⁇ m.
  • the polymer particles may be a mixture of first polymer particles having a particle size of 100 nm to 300 nm and second polymer particles having a particle size of 500 nm to 1,000 nm at a weight ratio of 2: 8 to 3: 7. have.
  • the polymer particles may have a functional group capable of collecting manganese on the surface thereof.
  • the polymer solution acetone (acetone), methanol (methanol), ethanol (ethanol), tetra hydrofuran (tetra hydrofuran), methylene chloride (methylene chloride), chloroform (chloroform), dimethylform amide (dimethylform amide), N-methyl-2-pyrrolidone (N-methyl-2-pyrrolidone, NMP), cyclohexane (cyclohexane) and may include a solvent which is any one selected from the group consisting of water or a mixture of two or more thereof. .
  • the polymer solution may further include a binder.
  • the solvent contained in the electrode active material slurry and the solvent contained in the polymer solution may be the same.
  • the (S3) step may be performed through heat treatment or ultraviolet irradiation, in this case, the heat treatment temperature may be 70 to 120 °C.
  • the pore size formed in the porous separator may be 50 nm to 500 nm.
  • an electrode including an electrode current collector and an electrode active material layer formed on at least one surface of the electrode current collector; And a porous separator formed on at least one surface of the electrode and formed as a result of drying the separator coating layer including the polymer particles.
  • An electrode- separator composite including a lithium secondary battery is provided.
  • the polymer particles are coated on the electrode to form a porous separator, it is possible to effectively control the uniformity and flexibility of the pores.
  • Method for producing an electrode-membrane composite according to the present invention is as follows.
  • the electrode current collector may be any metal as long as it is a highly conductive metal used for a positive electrode or a negative electrode and is a metal to which an electrode active material slurry can easily adhere, and is not reactive in a voltage range of a lithium secondary battery.
  • a non-limiting example of a positive electrode current collector is a foil prepared by aluminum, nickel or a combination thereof
  • a non-limiting example of a negative electrode current collector is copper, gold, nickel or a copper alloy or a combination thereof
  • the current collector may be used by stacking substrates made of the materials.
  • the electrode active material slurry may be prepared by kneading using an electrode active material, a conductive material, a binder, and a solvent.
  • an electrode After apply
  • the electrode active material may be a positive electrode active material and a negative electrode active material commonly used in a lithium secondary battery.
  • the conductive material is not particularly limited as long as it is an electronic conductive material that does not cause chemical change in the lithium secondary battery.
  • carbon black, graphite, carbon fiber, carbon nanotubes, metal powder, conductive metal oxide, organic conductive materials, and the like can be used, and currently commercially available products as acetylene black series (Chevron Chemical) Chevron Chemical Company or Gulf Oil Company, etc., Ketjen Black EC series (Armak Company), Vulcan XC-72 (Cabot Company) (Cabot Company) and Super P (MMM).
  • acetylene black, carbon black, graphite, etc. are mentioned.
  • the binder may have a function of maintaining a positive electrode active material and a negative electrode active material in each current collector and connecting the active materials, and a binder commonly used may be used without limitation.
  • a binder commonly used may be used without limitation.
  • PVDF-co-HFP polyvinylidene fluoride-hexafluorofluoropropylene
  • PVDF polyvinylidene fluoride
  • PVDF polyacrylonitrile
  • polymethyl methacrylate Various kinds of binders may be used, such as (polymethyl methacrylate), styrene-butadiene rubber (SBR), and carboxyl methyl cellulose (CMC).
  • methanol ethanol
  • ethanol ethanol
  • N-methyl-2-pyrrolidone N-methyl-2-pyrrolidone
  • acetone acetone
  • tetra hydrofuran tetra hydrofuran
  • Chloroform methylene chloride, dimethylform amide, water, cyclohexane and the like
  • a polymer solution containing polymer particles is coated on at least one surface of the electrode to form a separator coating layer (S2).
  • the polymer particles may be an anionic polyelectrolyte, wherein the anionic polyelectrolyte is polymethacrylate (PMA), polyacrylate (PA), polystyrenesulfonate (PSS), hyaluronic acid (HA) ) And a copolymer comprising a monomer constituting the polyelectrolyte.
  • the copolymer may include polymethyl methacrylate, polystyrene, and methyl methacrylate as monomers. And it may be selected from the group consisting of a copolymer comprising styrene as a monomer.
  • ions having positively charged functional groups such as manganese ions can be adsorbed, thereby preventing poisoning of manganese ions or the like at the cathode interface.
  • a uniform micro level crystal lattice may be formed.
  • the polymer particles may have a size of 100 nm to 1 ⁇ m, and when the numerical value is satisfied, the pore size of the porous separator formed by the polymer particles is 500 nm or less, more preferably 50 nm to 100 ⁇ m. It can be controlled at the level of nm.
  • the polymer particles may be mixed with a first polymer particle having a particle size of 100 nm to 300 nm and a second polymer particle having a particle size of 500 nm to 1,000 nm at a weight ratio of 2: 8 to 3: 7. .
  • the first polymer particles may be uniformly disposed between the second polymer particles, such that uniformity and degree of curvature may be uniform.
  • the polymer particles may be attached to a functional group capable of collecting manganese on the surface. As a result, deterioration of battery performance can be prevented through the removal of manganese ions that can be poisoned to the negative electrode during the operation of the battery.
  • the polymer solution is a solvent for dispersing the polymer particles, acetone (acetone), methanol (methanol), ethanol (ethanol), tetra hydrofuran (tetra hydrofuran), methylene chloride (chloroform), Dimethylform amide, N-methyl-2-pyrrolidone (NMP), cyclohexane and water, any one selected from the group consisting of or a mixture of two or more thereof Phosphorus solvents.
  • the polymer solution may further include a binder.
  • the binder used may be the same kind of binder as that used for the electrode active material slurry described above.
  • a solvent included in the positive electrode and the negative electrode active material slurry, and the polymer solution may be those of the same system as each other.
  • a solvent used in the cathode active material slurry may be used as the solvent of the polymer solution
  • the anode active material The solvent used in the slurry (generally NMP, water, etc.) may be used as the solvent of the polymer solution.
  • the separator coating layer is dried to form a porous separator (S3).
  • heat treatment or ultraviolet irradiation may be performed, and through this process, the porosity of the porous separator may be appropriately adjusted, and the heat treatment temperature may be adjusted to obtain an appropriate porosity (40 to 60% level). It may be 70 to 120 °C.
  • an electrode including an electrode current collector and an electrode active material layer formed on at least one surface of the electrode current collector; And a porous separator formed on at least one surface of the electrode and resulting from drying the separator coating layer including the polymer particles.
  • the present invention there is no need to use a separate separator, and since the polymer particles are coated on the electrode to form a porous separator, the uniformity and flexibility of the pores can be effectively controlled.
  • a lithium secondary battery comprising an electrode-separator composite according to the present invention.
  • the electrode When the electrode-membrane composite is an anode-membrane composite, the electrode may be formed as an electrode assembly by further comprising a negative electrode, and in the case of a cathode-membrane composite, the electrode-membrane composite may be formed as an electrode assembly.
  • the electrode assembly may be manufactured as a lithium secondary battery by being embedded in a battery case together with a nonaqueous electrolyte impregnating the electrode assembly.
  • the electrolyte salt included in the nonaqueous electrolyte solution that can be used in the present invention is a lithium salt, and those lithium salts may be used without limitation, those conventionally used in a lithium secondary battery electrolyte.
  • lithium salt anion F -, Cl -, Br - , I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, CF 3 CF 2 SO 3 - , (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2) 2 CH -, (SF 5) 3 C -, ( CF 3 SO 2) 3 C - , CF 3 ,
  • organic solvent included in the nonaqueous electrolyte solution those conventionally used in a lithium secondary battery electrolyte solution may be used without limitation, and for example, ether, ester, amide, linear carbonate, cyclic carbonate, etc. may be used alone or two kinds. It can mix and use the above.
  • carbonate compounds which are typically cyclic carbonates, linear carbonates, or mixtures thereof may be included.
  • cyclic carbonate compound examples include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, vinylene carbonate, vinylethylene carbonate and any one selected from the group consisting of halides thereof or mixtures of two or more thereof.
  • halides include, for example, fluoroethylene carbonate (FEC), but are not limited thereto.
  • linear carbonate compound may be any one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethylmethyl carbonate (EMC), methylpropyl carbonate and ethylpropyl carbonate. Mixtures of two or more of them may be representatively used, but are not limited thereto.
  • ethylene carbonate and propylene carbonate which are cyclic carbonates among the carbonate-based organic solvents, are high viscosity organic solvents and have a high dielectric constant, so that they can dissociate lithium salts in the electrolyte better, and cyclic carbonates such as dimethyl carbonate and diethyl carbonate
  • cyclic carbonates such as dimethyl carbonate and diethyl carbonate
  • any one selected from the group consisting of dimethyl ether, diethyl ether, dipropyl ether, methylethyl ether, methylpropyl ether, and ethylpropyl ether, or a mixture of two or more thereof may be used. It is not limited to this.
  • esters in the organic solvent include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -valerolactone and One or a mixture of two or more selected from the group consisting of ⁇ -caprolactone may be used, but is not limited thereto.
  • the injection of the nonaqueous electrolyte may be performed at an appropriate step in the manufacturing process of the lithium secondary battery according to the manufacturing process and required physical properties of the final product. That is, before the assembly of the lithium secondary battery or at the final stage of assembling the lithium secondary battery.
  • the external shape of the lithium secondary battery according to the present invention is not particularly limited, but may be cylindrical, square, pouch type or coin type using a can.
  • a polymer solution was prepared by dispersing 500 nm polystyrene particles in an aqueous solution to 20 wt%. Subsequently, the polymer solution was coated on the negative electrode at room temperature, and then the negative electrode coated with the polymer solution was dried in an oven at 70 to 120 ° C., and the polystyrene particles were fixed on the negative electrode to separate the negative electrode-membrane composite.
  • the polymer solution was prepared by dispersing 500 nm polystyrene particles in an aqueous solution to 20 wt%. Subsequently, the polymer solution was coated on the negative electrode at room temperature, and then the negative electrode coated with the polymer solution was dried in an oven at 70 to 120 ° C., and the polystyrene particles were fixed on the negative electrode to separate the negative electrode-membrane composite.
  • anode and the cathode-membrane composite were laminated to prepare an electrode assembly.
  • Polystyrene particles of 500 nm and 100 nm were mixed at a ratio of 8: 2, and the polymer solution was prepared by dispersing the mixed polystyrene particles in an aqueous solution to 20% by weight. Subsequently, the polymer solution was coated on the negative electrode at room temperature, and then the negative electrode coated with the polymer solution was dried in an oven at 70 to 120 ° C., and the polystyrene particles were fixed on the negative electrode to separate the negative electrode-membrane composite.
  • the polymer solution was prepared by dispersing the mixed polystyrene particles in an aqueous solution to 20% by weight. Subsequently, the polymer solution was coated on the negative electrode at room temperature, and then the negative electrode coated with the polymer solution was dried in an oven at 70 to 120 ° C., and the polystyrene particles were fixed on the negative electrode to separate the negative electrode-membrane composite.
  • the polymer solution was prepared by dispersing the mixed polysty
  • anode and the cathode-membrane composite were laminated to prepare an electrode assembly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 (S1) 전극 집전체의 적어도 일면에, 전극 활물질 슬러리를 도포한 후, 건조시켜 전극을 형성하는 단계; (S2) 고분자 입자를 포함하는 고분자 용액을 상기 전극의 적어도 일면에 코팅하여, 분리막 코팅층을 형성하는 단계; 및 (S3) 상기 분리막 코팅층을 건조시켜 다공성의 분리막을 형성하는 단계;를 포함하는 전극-분리막 복합체의 제조방법, 그 제조방법에 의해 제조된 전극-분리막 복합체 및 그를 포함하는 리튬 이차전지에 관한 것이다. 본 발명에 따르면, 고분자 입자가 전극에 코팅되어 다공성 분리막으로 형성됨으로써, 기공의 균일성과 굴곡성을 효과적으로 제어할 수 있고, 분리막을 별도로 제조하지 않고, 전극 상에 고분자 용액을 직접 코팅하여, 다공성의 분리막을 제조함으로써 공정 비용 및 시간의 절약이 가능하며, 나아가 분리막을 구성하는 고분자 입자의 표면에 망간 포집이 가능한 관능기가 부착되어 있는 경우, 전지의 작동과정에서 음극에 피독될 수 있는 망간 이온의 제거를 통해 전지성능의 저하를 방지할 수 있다.

Description

전극-분리막 복합체의 제조방법, 그 제조방법에 의해 제조된 전극-분리막 복합체 및 그를 포함하는 리튬 이차전지
본 발명은 전극-분리막 복합체의 제조방법, 그 제조방법에 의해 제조된 전극-분리막 복합체 및 그를 포함하는 리튬 이차전지에 관한 것으로서, 더욱 상세하게는 전극 위에 고분자 입자를 포함하는 고분자 용액을 직접 코팅하는 것을 특징으로 하는 전극-분리막 복합체의 제조방법, 그 제조방법에 의해 제조된 전극-분리막 복합체 및 그를 포함하는 리튬 이차전지에 관한 것이다.
본 출원은 2013년 10월 31일에 출원된 한국특허출원 제10-2013-0131433호에 기초한 우선권을 주장하며, 해당 출원의 명세서에 개시된 모든 내용은 본 출원에 원용된다.
또한, 본 출원은 2014년 10월 31일에 출원된 한국특허출원 제10-2014-0149925호에 기초한 우선권을 주장하며, 해당 출원의 명세서에 개시된 모든 내용은 본 출원에 원용된다.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용분야가 확대되면서 전기화학소자의 연구와 개발에 대한 노력이 점점 구체화되고 있다. 전기화학소자는 이러한 측면에서 가장 주목을 받고 있는 분야이고 그 중에서도 충방전이 가능한 이차전지의 개발은 관심의 초점이 되고 있으며, 최근에는 이러한 전지를 개발함에 있어서 용량 밀도 및 비에너지를 향상시키기 위하여 새로운 전극과 전지의 설계에 대한 연구개발로 진행되고 있다.
현재 적용되고 있는 이차전지 중에서 1990 년대 초에 개발된 리튬 이차전지는 수용액 전해액을 사용하는 Ni-MH, Ni-Cd, 황산-납 전지 등의 재래식 전지에 비해서 작동 전압이 높고 에너지 밀도가 월등히 크다는 장점으로 각광을 받고 있다. 그러나 이러한 리튬 이온 전지는 유기 전해액을 사용하는 데 따르는 발화 및 폭발 등의 안전 문제가 존재하고, 제조가 까다로운 단점이 있다. 최근의 리튬 이온 고분자 전지는 이러한 리튬 이온 전지의 약점을 개선하여 차세대 전지의 하나로 꼽히고 있으나 아직까지 전지의 용량이 리튬 이온 전지와 비교하여 상대적으로 낮고, 특히 저온에서의 방전 용량이 불충분하여 이에 대한 개선이 시급히 요구되고 있다.
한편, 리튬 이차전지의 다공성 분리막은 재료적 특성과 연신을 포함하는 제조공정 상의 특성으로 인하여 약 100 ℃ 이상의 온도에서 극심한 열 수축 거동을 보임으로써 양극과 음극 사이의 단락을 일으키는 문제점이 있다. 또한, 충전기 오작동 등의 원인에 의하여 전지가 과충전되어 전압상승이 급격하게 진행될 경우 충전상태에 따라 양극에서는 과잉의 리튬이 석출되고 음극에서는 과잉의 리튬이 삽입되어 양극과 음극이 열적으로 불안정하게 된다. 이러한 경우 전해액의 유기 용매가 분해되어 급격한 발열반응을 일으키기 때문에 열폭주와 같은 사태가 급격하게 일어나 전지의 안정성에 심각한 손상을 일으키는 문제가 발생한다. 이처럼 과충전에 의하여 국부적인 내부단락이 일어날 수 있는데, 내부단락이 발생하는 부분에 집중적으로 온도가 상승하게 된다. 따라서, 리튬 이차전지의 분리막은 내부단락을 방지하기 위해 고온에서의 내열 특성이 우수하여야 하며, 특히 고온에서 수축율이 최소화되어야 한다.
한편, 종래의 일반적인 리튬 이차전지는, 양극과 음극 사이에 폴리올레핀 계열의 분리막이 물리적 격벽으로 개재된 상태에서 조립되어 제조되었으나, 상기 폴리올레핀 계열의 분리막은 열수축율 등 열적 안전성이 약하다는 문제가 있었다. 이러한 열적 안전성을 개선하기 위해, 무기물 입자를 포함하는 다공성 코팅층을 상기 폴리올레핀 계열의 분리막의 상면에 형성시킴으로써 안전성이 향상된 분리막을 포함하는 리튬 이차전지가 제안되었다.
하지만, 상기 안전성이 향상된 분리막을 포함하는 리튬 이차전지의 경우, 무기물 입자를 포함하는 다공성 코팅층이 형성된 분리막과, 전극이 별도의 공정으로 제조된 후 조립되기 때문에, 공정의 효율성이 다소 떨어지게 되는 문제가 있다.
따라서, 본 발명이 해결하고자 하는 과제는, 전극 상에 고분자 입자를 포함하는 고분자 용액을 직접 코팅하여, 건조시킴으로써 제조공정을 단순화한 전극-분리막 복합체의 제조방법, 그 제조방법에 의해 제조된 전극-분리막 복합체 및 그를 포함하는 리튬 이차전지를 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명의 일 측면에 따르면, (S1) 전극 집전체의 적어도 일면에, 전극 활물질 슬러리를 도포한 후, 건조시켜 전극을 형성하는 단계; (S2) 고분자 입자를 포함하는 고분자 용액을 상기 전극의 적어도 일면에 코팅하여, 분리막 코팅층을 형성하는 단계; 및 (S3) 상기 분리막 코팅층을 건조시켜 다공성의 분리막을 형성하는 단계;를 포함하는 전극-분리막 복합체의 제조방법이 제공된다.
이때, 상기 고분자 입자는, 음이온성 폴리전해질일 수 있다.
그리고, 상기 고분자 입자는, 폴리메틸메타크릴레이트, 폴리스타이렌, 메틸메타크릴레이트를 단량체로 포함하는 공중합체 및 스타이렌을 단량체로 포함하는 공중합체로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
그리고, 상기 고분자 입자의 크기는, 100 nm 내지 1 ㎛일 수 있다.
그리고, 상기 고분자 입자는, 입자크기가 100 nm 내지 300 nm인 제1 고분자 입자와, 입자크기가 500 nm 내지 1,000 nm인 제2 고분자 입자가 2:8 내지 3:7의 중량비로 혼합된 것일 수 있다.
그리고, 상기 고분자 입자는, 표면에 망간 포집이 가능한 관능기가 부착된 것일 수 있다.
한편, 상기 고분자 용액은, 아세톤(acetone), 메탄올(methanol), 에탄올(ethanol), 테트라 하이드로퓨란(tetra hydrofuran), 메틸렌 클로라이드(methylene chloride), 클로로포름(chloroform), 디메틸포름 아미드(dimethylform amide), N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone, NMP), 시클로헥산(cyclohexane) 및 물로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 용매를 포함하는 것일 수 있다.
그리고, 상기 고분자 용액은, 바인더를 더 포함할 수 있다.
그리고, 상기 전극 활물질 슬러리에 포함된 용매와, 상기 고분자 용액에 포함된 용매는 서로 동일한 것일 수 있다.
한편, 상기 (S3) 단계는, 열처리 또는 자외선 조사를 통해 수행되는 것일 수 있으며, 이때, 상기 열처리 온도는, 70 내지 120 ℃일 수 있다.
그리고, 상기 다공성의 분리막에 형성된 기공의 크기는, 50 nm 내지 500 nm일 수 있다.
한편, 본 발명의 다른 측면에 따르면, 전극 집전체 및 전극 집전체의 적어도 일면에 형성된 전극 활물질층을 포함하는 전극; 및 상기 전극의 적어도 일면에 형성되며, 고분자 입자를 포함하는 분리막 코팅층의 건조 결과물인 다공성의 분리막;을 포함하는 전극-분리막 복합체 및 이러한 전극-분리막 복합체를 포함하는 리튬 이차전지가 제공된다.
본 발명의 일 실시예에 따르면, 고분자 입자가 전극에 코팅되어 다공성 분리막으로 형성됨으로써, 기공의 균일성과 굴곡성을 효과적으로 제어할 수 있다.
그리고, 분리막을 별도로 제조하지 않고, 전극 상에 고분자 용액을 직접 코팅하여, 다공성의 분리막을 제조함으로써 공정 비용 및 시간의 절약이 가능하다.
나아가, 분리막을 구성하는 고분자 입자의 표면에 망간 포집이 가능한 관능기가 부착되어 있는 경우, 전지의 작동과정에서 음극에 피독될 수 있는 망간 이온의 제거를 통해 전지성능의 저하를 방지할 수 있다.
이하, 본 발명을 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에 따른 전극-분리막 복합체의 제조방법은 다음과 같다.
우선, 전극 집전체의 적어도 일면에, 전극 활물질 슬러리를 도포한 후, 건조시켜 전극을 형성한다(S1).
여기서, 상기 전극 집전체는, 양극 또는 음극에 사용되는 전도성이 높은 금속으로, 전극 활물질 슬러리가 용이하게 접착할 수 있는 금속이면서, 리튬 이차전지의 전압 범위에서 반응성이 없는 것이면 어느 것이라도 사용할 수 있다. 구체적으로 양극용 집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있으며, 음극용 집전체의 비제한적인 예로는 구리, 금, 니켈 또는 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등이 있다. 또한, 상기 집전체는 상기 물질들로 이루어진 기재들을 적층하여 사용할 수도 있다.
그리고, 상기 전극 활물질 슬러리는, 전극 활물질, 도전재, 바인더 및 용매를 이용해 혼련하여 제조될 수 있다.
상기 전극 활물질 슬러리를, 전극 집전체에 도포한 후, 50 내지 250 ℃ 정도의 온도로 2 시간 정도 진공 하에서 가열 처리함으로써 전극을 제조할 수 있다.
여기서, 상기 전극 활물질은 리튬 이차전지에서 통상적으로 사용되는 양극 활물질과 음극 활물질이 사용될 수 있다.
그리고, 상기 도전재는, 리튬 이차전지에서 화학변화를 일으키지 않는 전자 전도성 물질이면 특별한 제한이 없다. 일반적으로 카본블랙(carbon black), 흑연, 탄소섬유, 카본 나노튜브, 금속분말, 도전성 금속산화물, 유기 도전재 등을 사용할 수 있고, 현재 도전재로 시판되고 있는 상품으로는 아세틸렌 블랙계열 (쉐브론 케미컬 컴퍼니(Chevron Chemical Company) 또는 걸프 오일 컴퍼니 (Gulf Oil Company) 제품 등), 케트젠블랙 (Ketjen Black) EC 계열(아르막 컴퍼니 (Armak Company) 제품), 불칸 (Vulcan) XC-72(캐보트 컴퍼니(Cabot Company) 제품) 및 수퍼 P (엠엠엠(MMM)사 제품)등이 있다. 예를 들면 아세틸렌블랙, 카본블랙, 흑연 등을 들 수 있다.
그리고, 상기 바인더는, 양극 활물질 및 음극 활물질을 각각의 집전체에 유지시키고, 또 활물질들 사이를 이어주는 기능을 갖는 것으로서, 통상적으로 사용되는 바인더가 제한 없이 사용될 수 있다. 예를 들면, 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌 (PVDF-co-HFP), 폴리비닐리덴 풀루오라이드 (polyvinylidene fluoride, PVDF), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리메틸 메타크릴레이트 (polymethyl methacrylate), 스티렌-부타디엔 고무 (SBR, styrene butadiene rubber), 카르복실 메틸 셀룰로오스 (CMC, carboxyl methyl cellulose) 등의 다양한 종류의 바인더가 사용될 수 있다.
그리고, 상기 용매로서, 메탄올(methanol), 에탄올(ethanol), N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone, NMP), 아세톤(acetone), 테트라 하이드로퓨란(tetra hydrofuran), 클로로포름(chloroform), 메틸렌 클로라이드(methylene chloride), 디메틸포름 아미드(dimethylform amide), 물, 시클로헥산(cyclohexane) 등이 사용될 수 있다.
이어서, 고분자 입자를 포함하는 고분자 용액을 상기 전극의 적어도 일면에 코팅하여, 분리막 코팅층을 형성한다(S2).
이때, 상기 고분자 입자는, 음이온성 폴리전해질일 수 있으며, 이때, 상기 음이온성 폴리전해질은, 폴리메타크릴레이트(PMA), 폴리아크릴레이트(PA), 폴리스타이렌설포네이트(PSS), 히알루론산(HA) 및 상기 폴리전해질을 구성하는 단량체를 포함하는 공중합체로 이루어진 군에서 선택된 어느 하나로 이루어진 것일 수 있고, 더욱 바람직하게는, 폴리메틸메타크릴레이트, 폴리스타이렌, 메틸메타크릴레이트를 단량체로 포함하는 공중합체 및 스타이렌을 단량체로 포함하는 공중합체로 이루어진 군으로부터 선택되는 것일 수 있다.
고분자 입자로서, 음이온성 폴리전해질을 사용하게 되면, 망간 이온과 같은 양전하 관능기를 가진 이온을 흡착할 수 있기 때문에, 음극 계면에 망간 이온 등이 피독되는 것을 방지할 수 있다.
이때, 상기 고분자 입자의 크기가 10 % 미만의 편차를 가지는 입자 군을 사용함으로써 균일한 마이크로 수준의 결정 격자를 형성할 수 있다.
상기 고분자 입자의 크기는, 100 nm 내지 1 ㎛일 수 있으며, 이와 같은 수치를 만족하게 되면, 상기 고분자 입자에 의해 형성되는 다공성의 분리막의 기공 크기를 500 nm 이하, 더욱 바람직하게는 50 nm 내지 100 nm 정도의 수준으로 제어할 수 있다.
그리고, 상기 고분자 입자는, 입자크기가 100 nm 내지 300 nm인 제1 고분자 입자와, 입자크기가 500 nm 내지 1,000 nm인 제2 고분자 입자가 2:8 내지 3:7의 중량비로 혼합될 수 있다.
이와 같이 수치범위가 서로 상이한 두 종류의 고분자 입자를 적절히 혼합하여 사용함으로써, 상기 제2 고분자 입자 사이에 상기 제1 고분자 입자가 균일하게 배치되어, 전체적으로 균일성과 굴곡도가 일정하게 될 수 있다.
나아가, 상기 고분자 입자는, 표면에 망간 포집이 가능한 관능기가 부착된 것일 수 있다. 이로써, 전지의 작동과정에서 음극에 피독될 수 있는 망간 이온의 제거를 통해 전지성능의 저하를 방지할 수 있다.
한편, 상기 고분자 용액은, 고분자 입자를 분산시키는 용매로서, 아세톤(acetone), 메탄올(methanol), 에탄올(ethanol), 테트라 하이드로퓨란(tetra hydrofuran), 메틸렌 클로라이드(methylene chloride), 클로로포름(chloroform), 디메틸포름 아미드(dimethylform amide), N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone, NMP), 시클로헥산(cyclohexane) 및 물로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 용매를 포함할 수 있다.
그리고, 상기 고분자 용액은, 바인더를 더 포함할 수 있다. 이때 사용되는 바인더는 전술한 전극 활물질 슬러리에 사용되는 바인더의 종류와 동일한 종류의 것이 사용될 수 있다. 이와 같이 바인더가 포함됨으로써, 상기 고분자 입자와 전극간의 접착력이 더욱 강화될 수 있기 때문에, 전극-분리막 복합체의 기계적 안정성을 향상시킬 수 있다. 나아가, 전극-분리막 복합체가 전지에 적용될 경우, 전지의 내부저항 증가를 방지할 수 있다.
한편, 상기 분리막 코팅층을 형성함에 있어서, 코팅 공정 또는 추후의 건조 공정 중에 발생할 수 있는 디웨팅(dewetting) 현상 또는 상분리 현상을 최소화하기 위해, 양극 및 음극 활물질 슬러리에 포함된 용매와, 상기 고분자 용액에 포함된 용매는 서로 동일한 시스템의 것을 사용할 수 있다.
즉, 양극 위에 분리막 코팅층을 형성하고자 하는 경우, 양극 활물질 슬러리에 사용되었던 용매(일반적으로, NMP 등)가 상기 고분자 용액의 용매로 사용될 수 있고, 음극 위에 분리막 코팅층을 형성하고자 하는 경우에는, 음극 활물질 슬러리에 사용되었던 용매(일반적으로, NMP, 물 등)가 상기 고분자 용액의 용매로 사용될 수 있다.
이어서, 상기 분리막 코팅층을 건조시켜 다공성의 분리막을 형성한다(S3). 상기 건조를 위해, 열처리 또는 자외선 조사를 수행할 수 있고, 이러한 과정을 통해 상기 다공성의 분리막의 기공도를 적절히 조절할 수 있으며, 이때 상기 열처리 온도는, 적절한 기공도(40 내지 60 % 수준)를 위해 70 내지 120 ℃일 수 있다.
한편, 본 발명의 다른 측면에 따르면, 전극 집전체 및 전극 집전체의 적어도 일면에 형성된 전극 활물질층을 포함하는 전극; 및 상기 전극의 적어도 일면에 형성되며, 고분자 입자를 포함하는 분리막 코팅층의 건조 결과물인 다공성의 분리막;을 포함하는 전극-분리막 복합체가 제공된다.
본 발명에 따르면, 별도의 분리막을 사용할 필요가 없고, 고분자 입자가 전극에 코팅되어 다공성의 분리막으로 형성됨으로써, 기공의 균일성과 굴곡성을 효과적으로 제어할 수 있다.
한편, 본 발명의 또 다른 측면에 따르면, 본 발명에 따른 전극-분리막 복합체를 포함하는 리튬 이차전지가 제공된다.
상기 전극-분리막 복합체가 양극-분리막 복합체인 경우, 음극을 더 구비함으로써 전극 조립체로 형성될 수 있고, 음극-분리막 복합체인 경우, 양극을 더 구비함으로써 전극 조립체로 형성될 수 있다.
상기 전극 조립체는, 상기 전극 조립체를 함침시키는 비수 전해액과 함께 전지케이스에 내장됨으로써, 리튬 이차전지로 제조될 수 있다.
본 발명에서 사용될 수 있는 비수 전해액에 포함되는 전해질염은 리튬염이고, 상기 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있다. 예를 들어 상기 리튬염의 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N- , CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군에서 선택된 어느 하나일 수 있다.
그리고, 상기 비수 전해액에 포함되는 유기 용매로는 리튬 이차전지용 전해액에 통상적으로 사용되는 것들을 제한 없이 사용할 수 있으며, 예를 들면 에테르, 에스테르, 아미드, 선형 카보네이트, 환형 카보네이트 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다.
그 중에서 대표적으로는 환형 카보네이트, 선형 카보네이트, 또는 이들의 혼합물인 카보네이트 화합물을 포함할 수 있다.
상기 환형 카보네이트 화합물의 구체적인 예로는 에틸렌 카보네이트(ethylene carbonate, EC), 프로필렌 카보네이트(propylene carbonate, PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트, 비닐에틸렌 카보네이트 및 이들의 할로겐화물로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물이 있다. 이들의 할로겐화물로는 예를 들면, 플루오로에틸렌 카보네이트(fluoroethylene carbonate, FEC) 등이 있으며, 이에 한정되는 것은 아니다.
또한 상기 선형 카보네이트 화합물의 구체적인 예로는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있으나, 이에 한정되는 것은 아니다.
특히, 상기 카보네이트계 유기용매 중 환형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기용매로서 유전율이 높아 전해질 내의 리튬염을 보다 더 잘 해리시킬 수 있으며, 이러한 환형 카보네이트에 디메틸 카보네이트 및 디에틸 카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 보다 높은 전기 전도율을 갖는 전해액을 만들 수 있다.
또한, 상기 유기 용매 중 에테르로는 디메틸 에테르, 디에틸 에테르, 디프로필 에테르, 메틸에틸 에테르, 메틸프로필 에테르 및 에틸프로필 에테르로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
그리고 상기 유기 용매 중 에스테르로는 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤 및 ε-카프로락톤으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 비수 전해액의 주입은 최종 제품의 제조 공정 및 요구 물성에 따라, 리튬 이차전지의 제조 공정 중 적절한 단계에서 행해질 수 있다. 즉, 리튬 이차전지의 조립 전 또는 리튬 이차전지의 조립 최종 단계 등에서 적용될 수 있다.
본 발명에 따른 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
실시예 1
500 nm의 폴리스타이렌 입자를 20 중량%가 되도록 수용액상에 분산시켜 고분자 용액을 제조하였다. 이어서, 상온 하에서 상기 고분자 용액을 음극 상에 코팅하였고, 그 후, 고분자 용액이 코팅된 음극을 70 내지 120 ℃의 오븐 내에서 건조시킴과 동시에, 상기 폴리스타이렌 입자를 음극 상에 고정시켜 음극-분리막 복합체를 제조하였다.
이어서, 양극과 상기 음극-분리막 복합체를 라미네이션 하여, 전극 조립체를 제조하였다.
실시예 2
500 nm 및 100 nm의 폴리스타이렌 입자를 8:2의 비율로 혼합하였고, 혼합된 폴리스타이렌 입자를 20 중량%가 되도록 수용액상에 분산시켜 고분자 용액을 제조하였다. 이어서, 상온 하에서 상기 고분자 용액을 음극 상에 코팅하였고, 그 후, 고분자 용액이 코팅된 음극을 70 내지 120 ℃의 오븐 내에서 건조시킴과 동시에, 상기 폴리스타이렌 입자를 음극 상에 고정시켜 음극-분리막 복합체를 제조하였다.
이어서, 양극과 상기 음극-분리막 복합체를 라미네이션 하여, 전극 조립체를 제조하였다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (22)

  1. (S1) 전극 집전체의 적어도 일면에, 전극 활물질 슬러리를 도포한 후, 건조시켜 전극을 형성하는 단계;
    (S2) 고분자 입자를 포함하는 고분자 용액을 상기 전극의 적어도 일면에 코팅하여, 분리막 코팅층을 형성하는 단계; 및
    (S3) 상기 분리막 코팅층을 건조시켜 다공성의 분리막을 형성하는 단계;를 포함하는 전극-분리막 복합체의 제조방법.
  2. 제1항에 있어서,
    상기 고분자 입자는, 음이온성 폴리전해질인 것을 특징으로 하는 전극-분리막 복합체의 제조방법.
  3. 제1항에 있어서,
    상기 고분자 입자는, 폴리메틸메타크릴레이트, 폴리스타이렌, 메틸메타크릴레이트를 단량체로 포함하는 공중합체 및 스타이렌을 단량체로 포함하는 공중합체로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 전극-분리막 복합체의 제조방법.
  4. 제1항에 있어서,
    상기 고분자 입자의 크기는, 100 nm 내지 1 ㎛인 것을 특징으로 하는 전극-분리막 복합체의 제조방법.
  5. 제1항에 있어서,
    상기 고분자 입자는, 입자크기가 100 nm 내지 300 nm인 제1 고분자 입자와, 입자크기가 500 nm 내지 1,000 nm인 제2 고분자 입자가 2:8 내지 3:7의 중량비로 혼합된 것을 특징으로 하는 전극-분리막 복합체의 제조방법.
  6. 제1항에 있어서,
    상기 고분자 입자는, 표면에 망간 포집이 가능한 관능기가 부착된 것을 특징으로 하는 전극-분리막 복합체의 제조방법.
  7. 제1항에 있어서,
    상기 고분자 용액은, 아세톤(acetone), 메탄올(methanol), 에탄올(ethanol), 테트라 하이드로퓨란(tetra hydrofuran), 메틸렌 클로라이드(methylene chloride), 클로로포름(chloroform), 디메틸포름 아미드(dimethylform amide), N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone, NMP), 시클로헥산(cyclohexane) 및 물로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 용매를 포함하는 것을 특징으로 하는 전극-분리막 복합체의 제조방법.
  8. 제1항에 있어서,
    상기 고분자 용액은, 바인더를 더 포함하는 것을 특징으로 하는 전극-분리막 복합체의 제조방법.
  9. 제1항에 있어서,
    상기 전극 활물질 슬러리에 포함된 용매와, 상기 고분자 용액에 포함된 용매는 서로 동일한 것을 특징으로 하는 전극-분리막 복합체의 제조방법.
  10. 제1항에 있어서,
    상기 (S3) 단계는, 열처리 또는 자외선 조사를 통해 수행되는 것을 특징으로 하는 전극-분리막 복합체의 제조방법.
  11. 제10항에 있어서,
    상기 열처리 온도는, 70 내지 120 ℃인 것을 특징으로 하는 전극-분리막 복합체의 제조방법.
  12. 제1항에 있어서,
    상기 다공성의 분리막에 형성된 기공의 크기는, 50 nm 내지 500 nm인 것을 특징으로 하는 전극-분리막 복합체의 제조방법.
  13. 제1항 내지 제12항 중 어느 한 항의 제조방법에 의해 제조된 전극-분리막 복합체.
  14. 전극 집전체 및 전극 집전체의 적어도 일면에 형성된 전극 활물질층을 포함하는 전극; 및
    상기 전극의 적어도 일면에 형성되며, 고분자 입자를 포함하는 분리막 코팅층의 건조 결과물인 다공성의 분리막;을 포함하는 전극-분리막 복합체.
  15. 제14항에 있어서,
    상기 고분자 입자는, 음이온성 폴리전해질인 것을 특징으로 하는 전극-분리막 복합체.
  16. 제14항에 있어서,
    상기 고분자 입자는, 폴리메틸메타크릴레이트, 폴리스타이렌, 메틸메타크릴레이트를 단량체로 포함하는 공중합체 및 스타이렌을 단량체로 포함하는 공중합체로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 전극-분리막 복합체.
  17. 제14항에 있어서,
    상기 고분자 입자의 크기는, 100 nm 내지 1 ㎛인 것을 특징으로 하는 전극-분리막 복합체.
  18. 제14항에 있어서,
    상기 고분자 입자는, 입자크기가 100 nm 내지 300 nm인 제1 고분자 입자와, 입자크기가 500 nm 내지 1,000 nm인 제2 고분자 입자가 2:8 내지 3:7의 중량비로 혼합된 것을 특징으로 하는 전극-분리막 복합체.
  19. 제14항에 있어서,
    상기 고분자 입자는, 표면에 망간 포집이 가능한 관능기가 부착된 것을 특징으로 하는 전극-분리막 복합체.
  20. 제14항에 있어서,
    상기 분리막 코팅층은, 바인더를 더 포함하는 것을 특징으로 하는 전극-분리막 복합체.
  21. 제14항에 있어서,
    상기 다공성의 분리막에 형성된 기공의 크기는, 50 nm 내지 500 nm인 것을 특징으로 하는 전극-분리막 복합체.
  22. 제14항 내지 제21항 중 어느 한 항의 전극-분리막 복합체를 포함하는 리튬 이차전지.
PCT/KR2014/010346 2013-10-31 2014-10-31 전극-분리막 복합체의 제조방법, 그 제조방법에 의해 제조된 전극-분리막 복합체 및 그를 포함하는 리튬 이차전지 WO2015065090A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/772,321 US11450925B2 (en) 2013-10-31 2014-10-31 Method of manufacturing electrode-separator composite, electrode-separator composite manufactured by the manufacturing method and lithium secondary battery comprising the same
JP2016521323A JP6306168B2 (ja) 2013-10-31 2014-10-31 電極−分離膜複合体の製造方法、その製造方法によって製造された電極−分離膜複合体及びそれを含むリチウム二次電池
CN201480018763.7A CN105074989B (zh) 2013-10-31 2014-10-31 电极-隔膜复合物的制造方法、由该制造方法制造的电极-隔膜复合物及包含其的锂二次电池
EP14858676.1A EP2953201B1 (en) 2013-10-31 2014-10-31 Method for manufacturing electrode-separation film complex, electrode-separation film complex manufactured by manufacturing method therefor and lithium secondary battery comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0131433 2013-10-31
KR20130131433 2013-10-31
KR1020140149925A KR101676408B1 (ko) 2013-10-31 2014-10-31 전극-분리막 복합체의 제조방법, 그 제조방법에 의해 제조된 전극-분리막 복합체 및 그를 포함하는 리튬 이차전지
KR10-2014-0149925 2014-10-31

Publications (1)

Publication Number Publication Date
WO2015065090A1 true WO2015065090A1 (ko) 2015-05-07

Family

ID=53388272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010346 WO2015065090A1 (ko) 2013-10-31 2014-10-31 전극-분리막 복합체의 제조방법, 그 제조방법에 의해 제조된 전극-분리막 복합체 및 그를 포함하는 리튬 이차전지

Country Status (7)

Country Link
US (1) US11450925B2 (ko)
EP (1) EP2953201B1 (ko)
JP (1) JP6306168B2 (ko)
KR (1) KR101676408B1 (ko)
CN (1) CN105074989B (ko)
TW (1) TWI570993B (ko)
WO (1) WO2015065090A1 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3494606A4 (en) * 2016-08-03 2020-04-01 MJ3 Industries LLC INTEGRATED ELECTRODE-ELECTROLYTE UNIT
KR102040257B1 (ko) * 2016-09-13 2019-11-04 주식회사 엘지화학 전극의 제조방법
KR102570263B1 (ko) * 2016-10-14 2023-08-24 삼성에스디아이 주식회사 리튬 전지용 전극, 이를 포함하는 리튬 전지, 및 상기 리튬 전지의 제조방법
JP6931280B2 (ja) * 2016-11-08 2021-09-01 東京応化工業株式会社 多孔質膜形成用組成物、セパレータ、電気化学素子、及び電極複合体の製造方法
WO2018170929A1 (zh) * 2017-03-24 2018-09-27 深圳先进技术研究院 一种负极和隔膜一体化结构及其制备方法和电池
KR102314029B1 (ko) * 2017-03-30 2021-10-18 주식회사 엘지에너지솔루션 고로딩 전극의 제조 방법
US11664558B2 (en) 2017-10-30 2023-05-30 Arkema Inc. Lithium ion battery separator
JP7094968B2 (ja) * 2017-12-11 2022-07-04 エルジー エナジー ソリューション リミテッド セパレータ及びそれを含む電気化学素子
KR102278998B1 (ko) 2017-12-26 2021-07-20 주식회사 엘지에너지솔루션 이차전지의 제조시스템 및 제조방법
KR102560825B1 (ko) * 2018-04-30 2023-07-31 현대자동차주식회사 리튬 이차전지 및 그 제조방법
JP6992701B2 (ja) * 2018-08-06 2022-01-13 トヨタ自動車株式会社 セパレータ一体型電極の製造方法、及び、セパレータ一体型電極
CN109802083B (zh) * 2019-03-29 2022-02-01 宁德新能源科技有限公司 电化学装置
KR20210075678A (ko) * 2019-12-13 2021-06-23 주식회사 엘지에너지솔루션 고상-액상 하이브리드 전해질 막, 이의 제조방법 및 이를 포함하는 리튬 이차 전지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010092994A (ko) * 2000-03-28 2001-10-27 김선욱 전기에너지 저장 장치 및 이의 제조 방법
KR20010104150A (ko) * 2000-05-13 2001-11-24 정근창 리튬이온 이차전지
KR20090012134A (ko) * 2007-07-25 2009-02-02 주식회사 엘지화학 전기화학소자 및 그 제조방법
KR20120133288A (ko) * 2011-05-31 2012-12-10 주식회사 코캄 리튬 이차전지
KR20130083211A (ko) * 2012-01-12 2013-07-22 주식회사 엘지화학 다공성 코팅층을 구비한 세퍼레이터 및 이를 구비한 전기화학소자

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195548A (ja) 1998-10-19 2000-07-14 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池
JP2001135359A (ja) 1999-08-24 2001-05-18 Japan Storage Battery Co Ltd 非水電解質電池
LU90901B1 (fr) * 2002-03-20 2003-09-22 Amer Sil Sa Séparateur pour accumulateurs électriques secondaires à recombinaison des gaz
JP2004327183A (ja) * 2003-04-23 2004-11-18 Mitsubishi Electric Corp 電池及びその製造方法
KR100666821B1 (ko) 2004-02-07 2007-01-09 주식회사 엘지화학 유/무기 복합 다공성 코팅층이 형성된 전극 및 이를포함하는 전기 화학 소자
JP2005243303A (ja) * 2004-02-24 2005-09-08 Tomoegawa Paper Co Ltd 電気化学素子用部材及びその製造方法、並びにそれを用いた電気化学素子
KR100647966B1 (ko) 2004-02-24 2006-11-23 가부시키가이샤 도모에가와 세이시쇼 전자부품용 세퍼레이터 및 그 제조방법
JP4827117B2 (ja) * 2004-11-11 2011-11-30 日立マクセルエナジー株式会社 非水電池およびその製造方法
JP5135822B2 (ja) * 2006-02-21 2013-02-06 日産自動車株式会社 リチウムイオン二次電池およびこれを用いた組電池
CN101192681B (zh) * 2006-11-29 2011-09-14 中国科学院理化技术研究所 锂离子电池电极表面直接复合纳米纤维隔膜的方法
US8216712B1 (en) * 2008-01-11 2012-07-10 Enovix Corporation Anodized metallic battery separator having through-pores
JP2010146960A (ja) * 2008-12-22 2010-07-01 Mitsubishi Chemicals Corp 非水系電解液二次電池並びに非水系電解液二次電池用正極及び負極
US20110311855A1 (en) * 2009-09-03 2011-12-22 Shufu Peng Methods and systems for making separators and devices arising therefrom
JP5742717B2 (ja) * 2009-09-30 2015-07-01 日本ゼオン株式会社 二次電池用多孔膜及び二次電池
CN102804475A (zh) 2010-02-22 2012-11-28 丰田自动车株式会社 锂离子二次电池及其制造方法
US20130236791A1 (en) * 2010-11-24 2013-09-12 Shingo Ogane Battery and method for producing battery (as amended)
KR101849975B1 (ko) * 2011-01-17 2018-05-31 삼성전자주식회사 음극, 음극 활물질, 음극의 제조방법 및 이를 채용한 리튬 전지
WO2013005683A1 (ja) * 2011-07-01 2013-01-10 日本ゼオン株式会社 二次電池用多孔膜、製造方法、及び用途
US10096810B2 (en) * 2012-05-10 2018-10-09 Samsung Sdi Co., Ltd. Separator and method of manufacturing the same and rechargeable lithium battery including the same
KR101453646B1 (ko) * 2012-10-10 2014-10-22 포항공과대학교 산학협력단 이온성 액체를 포함하는 고전도성 고분자 전해질 막

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010092994A (ko) * 2000-03-28 2001-10-27 김선욱 전기에너지 저장 장치 및 이의 제조 방법
KR20010104150A (ko) * 2000-05-13 2001-11-24 정근창 리튬이온 이차전지
KR20090012134A (ko) * 2007-07-25 2009-02-02 주식회사 엘지화학 전기화학소자 및 그 제조방법
KR20120133288A (ko) * 2011-05-31 2012-12-10 주식회사 코캄 리튬 이차전지
KR20130083211A (ko) * 2012-01-12 2013-07-22 주식회사 엘지화학 다공성 코팅층을 구비한 세퍼레이터 및 이를 구비한 전기화학소자

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2953201A4 *

Also Published As

Publication number Publication date
JP6306168B2 (ja) 2018-04-04
CN105074989A (zh) 2015-11-18
EP2953201A1 (en) 2015-12-09
KR101676408B1 (ko) 2016-11-15
US20150380706A1 (en) 2015-12-31
TW201533962A (zh) 2015-09-01
KR20150050503A (ko) 2015-05-08
EP2953201B1 (en) 2017-10-04
JP2016532996A (ja) 2016-10-20
TWI570993B (zh) 2017-02-11
CN105074989B (zh) 2018-11-09
EP2953201A4 (en) 2016-07-27
US11450925B2 (en) 2022-09-20

Similar Documents

Publication Publication Date Title
WO2015065090A1 (ko) 전극-분리막 복합체의 제조방법, 그 제조방법에 의해 제조된 전극-분리막 복합체 및 그를 포함하는 리튬 이차전지
WO2015037867A1 (ko) 리튬 전극 및 그를 포함하는 리튬 이차전지
WO2015037868A1 (ko) 리튬 전극 및 그를 포함하는 리튬 이차전지
CN108780915B (zh) 具有在正极上形成的锂金属的锂二次电池及其制造方法
WO2018008953A1 (en) Negative electrode for secondary battery
WO2010016727A2 (en) Method of preparing gel polymer electrolyte secondary battery and gel polymer electrolyte secondary battery
WO2012165758A1 (ko) 리튬 이차전지
WO2011159083A2 (ko) 전기화학소자용 전해질, 그 제조방법 및 이를 구비한 전기화학소자
WO2014157955A1 (ko) 애노드 활물질 슬러리, 그 슬러리를 이용한 애노드 및 그를 포함하는 전기화학소자
WO2011159051A2 (ko) 전기화학소자용 전해질, 그 제조방법 및 이를 구비한 전기화학소자
WO2014204141A1 (ko) 리튬 이차전지용 음극활물질, 이를 포함하는 리튬 이차전지 및 상기 음극활물질의 제조방법
WO2012074300A2 (ko) 리튬 이차전지
WO2019155452A2 (ko) 리튬 금속 이차전지 및 이를 포함하는 전지모듈
WO2014168327A1 (ko) 리튬 이차전지용 음극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2013089428A1 (ko) 전기화학소자용 전극 및 이를 구비한 전기화학소자
WO2018016737A1 (ko) 리튬 코발트 산화물을 합성하기 위한 양극 활물질을 포함하는 리튬 이차전지, 이의 제조방법
KR102488677B1 (ko) 리튬 이차전지의 제조방법
WO2019216713A1 (ko) 안전성이 향상된 리튬 금속 이차전지 및 그를 포함하는 전지모듈
CN113193233A (zh) 一种锂离子电池
WO2019221410A1 (ko) 전극 보호층을 포함하는 음극 및 이를 적용한 리튬 이차전지
WO2019139424A1 (ko) 리튬 전극을 포함하는 리튬 금속 이차전지의 제조방법
KR101841792B1 (ko) 전극-분리막 복합체의 제조방법, 그 제조방법에 의해 제조된 전극-분리막 복합체 및 그를 포함하는 리튬 이차전지
WO2017061807A1 (ko) 전극조립체를 구성하는 분리막의 기공 내에 겔화 전해액 성분을 포함하고 있는 전지셀
WO2018062883A2 (ko) 메쉬 형태의 절연층을 포함하는 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2014116084A1 (ko) 고전압 리튬 이차 전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480018763.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14858676

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014858676

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014858676

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14772321

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016521323

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE