WO2011002097A1 - リチウム二次電池の電極合剤用スラリー、該スラリーを用いた電極およびリチウム二次電池 - Google Patents

リチウム二次電池の電極合剤用スラリー、該スラリーを用いた電極およびリチウム二次電池 Download PDF

Info

Publication number
WO2011002097A1
WO2011002097A1 PCT/JP2010/061387 JP2010061387W WO2011002097A1 WO 2011002097 A1 WO2011002097 A1 WO 2011002097A1 JP 2010061387 W JP2010061387 W JP 2010061387W WO 2011002097 A1 WO2011002097 A1 WO 2011002097A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
electrode
electrode mixture
binder
vdf
Prior art date
Application number
PCT/JP2010/061387
Other languages
English (en)
French (fr)
Inventor
明天 高
博之 有馬
英郎 坂田
瞳 中澤
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to JP2011521002A priority Critical patent/JP5382120B2/ja
Priority to KR1020127000125A priority patent/KR101397774B1/ko
Priority to CN2010800262748A priority patent/CN102473916A/zh
Publication of WO2011002097A1 publication Critical patent/WO2011002097A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a slurry for an electrode mixture of a lithium secondary battery that provides a flexible electrode, an electrode using the slurry, and a lithium secondary battery with improved battery characteristics.
  • Lithium secondary batteries are widely used as power sources for various portable electric and electronic devices or as batteries for electric vehicles.
  • a lithium secondary battery is equipped with a positive electrode, a negative electrode, a non-aqueous electrolyte, and usually a separator, and development and improvement of each member is actively performed.
  • the positive electrode is usually prepared by, for example, dispersing a positive electrode active material in a binder, and if necessary, a conductive material together with an organic solvent to prepare a slurry for a positive electrode mixture. After applying to a positive electrode current collector, the solvent is removed by drying. It is produced by rolling.
  • PVdF polyvinylidene fluoride
  • a positive electrode mixture prepared by mixing lithium-containing oxide such as LiCoO 2 as a positive electrode active material and graphite as a conductive agent with PVdF is dispersed in N-methylpyrrolidone to form a slurry.
  • a negative electrode mixture prepared by mixing a carbonaceous material as a negative electrode active material and PVdF is dispersed in N-methylpyrrolidone to form a slurry.
  • the electrode sheet using PVdF as a binder is poor in flexibility, and the electrode sheet used in the production of the square battery is folded at 180 degrees, or the electrode sheet used in the production of the cylindrical battery is used in the process of rounding the electrode sheet small.
  • the problem that the electrode mixture is peeled off from the sheet is likely to occur, and the production yield becomes difficult.
  • Patent Document 2 discloses vinylidene fluoride (VdF) -hexafluoropropylene (HFP) for the purpose of imparting binding properties to the expansion and contraction of the positive electrode active material during charge and discharge in a non-aqueous electrolyte secondary battery.
  • a material having rubber elasticity which is mainly composed of a fluorine-based binary copolymer such as a copolymer, a VdF-3 fluoroethylene chloride (CTFE) copolymer, is described as a binder.
  • Patent Document 3 describes that a fluorine-based polymer copolymer mainly composed of VdF, tetrafluoroethylene (TFE) and HFP is used as a binder instead of PVdF.
  • TFE tetrafluoroethylene
  • HFP tetrafluoroethylene
  • HFP tetrafluoroethylene
  • HFP tetrafluoroethylene
  • HFP tetrafluoroethylene
  • HFP tetrafluoroethylene
  • Patent Document 4 describes a binder that is soluble in a general-purpose solvent but hardly swells in an organic solvent of an electrolytic solution.
  • the binder disclosed in Patent Document 4 includes VdF 50 to 80 mol% and TFE 20 to 50 mol% binary fluorine-containing copolymer, VdF 50 to 80 mol%, TFE 17 to 50 mol%, and other copolymerization monomers. It is a ternary fluorine-containing copolymer of less than 3 mol%, and VdF / TFE copolymer and VdF / TFE / HFP copolymer are described as VdF / TFE copolymer used in the examples. Yes.
  • the content of resin such as polymethacrylate, polymethyl methacrylate, polyacrylonitrile, polyimide, polyamide, polyamideimide, polycarbonate, etc. in the binder is about 20% by volume. It is described that it may be included below.
  • Patent Document 5 proposes to use a polyimide on the positive electrode side and an aromatic polyamide on the negative electrode side in addition to PVdF as a binder in order to improve the cycle characteristics at high temperature. .
  • Patent Document 6 proposes a method of treating the surface of the current collector with an acrylic polymer in order to improve the adhesion between the current collector and the binder. Further, it is described that a mixture of 50 to 95% by weight of PVdF and a copolymer of VdF and another polymer (for example, TFE, HFP, CTFE, etc.) can be used.
  • Patent Documents 7 and 8 Although various proposals have been made to improve the adhesion to the current collector as described above, many have sacrificed the flexibility of the electrodes. In order to improve the flexibility of the electrode, it has been proposed to contain fine rubber particles of acrylic rubber or styrene-butadiene rubber (Patent Documents 7 and 8).
  • Japanese Unexamined Patent Publication No. 04-249859 Japanese Patent Laid-Open No. 04-095363 Japanese Patent Publication No. 08-004007 Japanese Patent Laid-Open No. 10-233217 Japanese Patent Laid-Open No. 11-031513 JP 09-199133 A JP 2003-331825 A JP 2006-185887 A
  • Patent Documents 7 and 8 which improve the flexibility of the electrode, acrylic rubber and styrene butadiene rubber are blended, but the swelling of the electrode with respect to the electrolytic solution increases and the high-temperature characteristics and cycle characteristics deteriorate, and the oxidation resistance is low. Therefore, there is a problem that gas generation increases and cycle characteristics deteriorate.
  • An object of the present invention is to improve the adhesiveness with a current collector and increase the flexibility of an electrode without impairing battery characteristics.
  • the present invention relates to a slurry for an electrode mixture of a lithium secondary battery containing an electrode active material (A), a binder (B), and fluorine rubber particles (C).
  • the present invention also provides an electrode for a lithium secondary battery obtained by applying the slurry for electrode mixture of the present invention to a current collector and drying, and further using the electrode of the present invention as a positive electrode and / or a negative electrode.
  • the present invention also relates to a lithium secondary battery having a liquid.
  • the present invention it is possible to provide a homogeneous and stable slurry for an electrode mixture, and further excellent adhesion to a current collector formed using this slurry for an electrode mixture, and also having resistance to swelling to an electrolytic solution. It is possible to provide a lithium secondary battery excellent in battery characteristics by using a flexible electrode without damaging and further using this electrode mixture.
  • the electrode mixture slurry of the lithium secondary battery of the present invention includes an electrode active material (A), a binder (B), and fluororubber particles (C).
  • A electrode active material
  • B binder
  • C fluororubber particles
  • Electrode active material In this invention, a positive electrode active material (A1) or a negative electrode active material (A2) may be sufficient.
  • (A1) Cathode Active Material As the cathode active material (A1), the formula (A1): Li x M 1 y M 2 1-y O 2 (Wherein 0.4 ⁇ x ⁇ 1; 0.3 ⁇ y ⁇ 1; M 1 is at least one selected from the group consisting of Ni and Mn; M 2 is selected from the group consisting of Co, Al and Fe) A lithium-containing composite metal oxide represented by at least one).
  • Formula (A1-1) LiNi x Co y Al z O 2 (Wherein 0.7 ⁇ x ⁇ 1; 0 ⁇ y ⁇ 0.3; 0 ⁇ z ⁇ 0.03; 0.9 ⁇ x + y + z ⁇ 1.1),
  • lithium-containing composite metal oxide represented by the formula (A1-1) include, for example, LiNi 0.8 Co 0.2 O 2 , LiNi 0.7 Co 0.3 O 2 , LiNi 0.82 Co 0.15 Al 0.03 O 2 , LiNi 0.7 Co 0.2 Al Examples thereof include 0.1 O 2 and LiNi 0.85 Co 0.1 Al 0.5 O 2. Among them, LiNi 0.82 Co 0.15 Al 0.03 O 2 (NCA) is preferable.
  • lithium-containing composite metal oxide represented by the formula (A1-2) include, for example, LiNi 0.5 Mn 0.5 O 2 , LiNi 0.75 Mn 0.25 O 2 , LiNi 0.25 Mn 0.75 O 2 , LiNi 1/3 Co 1 / 3 Mn 1/3 O 2 , LiNi 0.4 Co 0.2 Mn 0.4 O 2 , LiNi 0.3 Co 0.5 Mn 0.2 O 2, etc., among which LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM) preferable.
  • NCM LiNi 1/3 Co 1/3 Mn 1/3 O 2
  • lithium-containing composite metal oxide represented by the formula (A1-3) include Li 0.5 MnO 2 (spinel manganese), LiMnO 2 and the like.
  • lithium-containing composite metal oxide represented by the formula (A1-4) include, for example, LiFe 1/3 Co 1/3 Mn 1/3 O 2 , Li 0.5 Fe 1/3 Co 1/3 Mn 1 / 3 O 2 , LiFe 0.4 Co 0.3 Mn 0.3 O 2 , Li 0.5 Fe 0.4 Co 0.3 Mn 0.3 O 2 and the like can be mentioned.
  • LiCoO 2 , LiNiO 2 , LiMn 2 O 4 and the like can also be used.
  • Negative electrode active material examples include known basic materials such as a basic material containing Si and / or Sn. Specifically, metal compounds capable of inserting lithium ions, such as metal oxides and metal nitrides, Si, SiCuAl, SiNiAg, and CoSn 2 can also be used. Examples of the metal oxide include metal oxides containing Si and Sn, and examples of the metal nitride include Li 2.6 Co 0.4 N.
  • PVdF As PVdF, those conventionally used for electrodes of lithium secondary batteries can be used as they are. PVdF may be used alone or in combination with other binder components.
  • the molecular weight of PVdF is preferably such that the number average molecular weight measured by GPC (gel permeation chromatography) is 10,000 to 500,000 in terms of polystyrene.
  • the positive electrode active material has also been variously developed from the viewpoints of battery characteristics, safety, resource (rare metal) depletion, etc.
  • a positive electrode active material in which Co, which is a rare metal, is reduced has appeared.
  • these positive electrode materials containing Ni and Mn have high basicity, so that the slurry is easily gelled.
  • an active material made of a basic material has appeared in addition to the carbon-based material that has been used conventionally.
  • Lithium-containing composite oxides including these LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 are basically basic, and the reason has not been confirmed, but they were coexisted with PVdF and many VdF-based copolymers.
  • gelation may occur, and the stability of the slurry may be impaired.
  • negative electrode when a basic material is used as the negative electrode active material, there is a similar tendency.
  • VdF / TFE copolymer obtained by copolymerizing TFE with a specific amount of VdF is surprisingly stable against a basic electrode active material.
  • the slurry for electrode mixture prepared by mixing was found to be homogeneous and stable.
  • Such excellent base resistance is specifically seen in VdF / TFE copolymers not found in other VdF copolymers such as VdF / HFP copolymers and VdF / CTFE copolymers. Is a characteristic.
  • the binder (B2) is preferably a fluorine-containing polymer represented by the composition formula (B2).
  • VdF / TFE fluorine-containing copolymer is preferred from the viewpoint of good flexibility and alkali resistance.
  • VdF / TFE binary fluorine-containing copolymer A polymer is preferable from the viewpoint of good flexibility and alkali resistance.
  • n (TFE) is preferably from 0.10 to 0.40, particularly preferably from 0.15 to 0.40 because of good base resistance and flexibility.
  • a polymer is preferable from the viewpoint of good flexibility and alkali resistance.
  • a copolymer of 0.60 ⁇ m ⁇ 0.90 and 0.09 ⁇ n ⁇ 0.45 and 0.01 ⁇ l ⁇ 0.04 is obtained.
  • a copolymer satisfying 0.60 ⁇ m ⁇ 0.70, 0.30 ⁇ n ⁇ 0.40 and 0.02 ⁇ l ⁇ 0.04 is preferable.
  • the molecular weight of the VdF / TFE copolymer preferably has a number average molecular weight of 10,000 to 500,000 in terms of polystyrene as measured by GPC (gel permeation chromatography). If it is less than 10,000, the molecular weight is too low to form a film, and if it exceeds 500,000, the thixotropy of the electrode mixture becomes very large and it tends to be difficult to apply to the electrode current collector. . In order to improve the cycle characteristics, it is preferable that the molecular weight is relatively high. From this point, for example, in the case of a terpolymer, 150,000 to 500,000 are preferable.
  • the VdF / TFE copolymer used as the binder (B2) in the present invention can be polymerized by a known polymerization method, and among them, the radical copolymerization method is mainly preferred. That is, the polymerization method is not limited as long as it proceeds radically, but is initiated by, for example, an organic or inorganic radical polymerization initiator, heat, light, ionizing radiation, or the like.
  • the polymerization mode solution polymerization, bulk polymerization, suspension polymerization, emulsion polymerization and the like can be used.
  • This VdF / TFE copolymer (B2) has excellent base resistance and is not limited to nitrogen-containing organic solvents such as N-methylpyrrolidone, dimethylformamide, and dimethylacetamide, which are used as solvents for PVdF. It is also soluble in low-boiling general-purpose organic solvents that are commonly used, does not cause gelation even when mixed with an electrode active material, can impart flexibility to the electrode, and swells in non-aqueous electrolytes Is also small.
  • nitrogen-containing organic solvents such as N-methylpyrrolidone, dimethylformamide, and dimethylacetamide
  • VdF / TFE copolymer (B2) may be used alone or in combination with PVdF (B1) or other binder component (B3).
  • the VdF / TFE copolymer (B2) When used in combination with PVdF (B1), the VdF / TFE copolymer (B2) is 20 to 80% by mass of the total amount of (B1) and (B2) to maintain flexibility and adherence. From the viewpoint of good properties.
  • binder components examples include solvent-soluble thermoplastic resins, VdF / HFP copolymers, and VdF / CTFE copolymers. Among these, a solvent-soluble thermoplastic resin that functions to improve the adhesion to the current collector is preferable.
  • the “solvent-soluble thermoplastic resin” is a thermoplastic resin that dissolves in an organic solvent at 25 ° C. at 5% by mass or more to form a uniform solution.
  • a polyacrylic acid polymer A polymethacrylic acid polymer, polyimide, polyamide, polyamideimide and the like are preferable.
  • polyacrylic acid polymers include polyacrylic acid, ammonium salts and sodium salts thereof; polyacrylic acid alkyl esters; polyacrylic acid amides; alkoxysilyl-modified polyacrylic acid esters.
  • polymethacrylic acid polymer examples include polymethacrylic acid, ammonium salts and sodium salts thereof; polymethacrylic acid alkyl esters; polymethacrylic acid amides; alkoxysilyl-modified polymethacrylic acid esters.
  • the binder (B3) When at least one selected from the group consisting of polyacrylic acid polymers, polymethacrylic acid polymers, polyimides, polyamides and polyamideimides is used as the binder (B3), the entire binder (B) From 5 to 50% by mass, it is preferable from the standpoint of maintaining flexibility and good adhesion.
  • the fluororubber particles (C) have a role of imparting flexibility, particularly elongation, and properties such as rubber elasticity to the electrode mixture.
  • fluoro rubber of the fluoro rubber particles (C) conventionally known fluoro rubber can be used.
  • fluoro rubber non-perfluoro fluoro rubber and perfluoro fluoro rubber are preferable.
  • Non-perfluorofluorororubbers include vinylidene fluoride (VdF) fluorine rubber, tetrafluoroethylene (TFE) / propylene fluorine rubber, tetrafluoroethylene (TFE) / propylene / vinylidene fluoride (VdF) fluorine rubber, ethylene / Hexafluoropropylene (HFP) fluorine rubber, Ethylene / Hexafluoropropylene (HFP) / Vinylidene fluoride (VdF) fluorine rubber, Ethylene / Hexafluoropropylene (HFP) / Tetrafluoroethylene (TFE) fluorine rubber, Fluoro Examples thereof include silicone-based fluororubber, fluorophosphazene-based fluororubber, and the like, which can be used alone or in any combination as long as the effects of the present invention are not impaired.
  • VdF / HFP copolymer rubber VdF / HFP / TFE copolymer rubber, TFE / propylene copolymer rubber, TFE / HFP / propylene copolymer rubber, and TFE / PAVE copolymer rubber are suitable. is there.
  • VdF rubbers (VdF / HFP copolymer rubber, VdF / HFP / TFE copolymer rubber, etc.) have repeating VdF repeating units derived from VdF repeating units and other comonomers. 20 mol% or more and 90 mol% or less of the total number of moles with the unit is preferable, and 40 mol% or more and 85 mol% or less is more preferable. A more preferred lower limit is 45 mol%, a particularly preferred lower limit is 50 mol%, and a more preferred upper limit is 80 mol%.
  • the other monomer in the VdF rubber is not particularly limited as long as it is copolymerizable with VdF.
  • TFE, HFP, PAVE, CTFE trifluoroethylene, trifluoropropylene, tetrafluoropropylene, penta Fluorine-containing monomers such as fluoropropylene, trifluorobutene, tetrafluoroisobutene, vinyl fluoride, iodine-containing fluorinated vinyl ether; fluorine-free monomers such as ethylene (Et), propylene (Pr), and alkyl vinyl ether These fluorine-containing monomers and non-fluorine-containing monomers can be used alone or in combination of two or more.
  • PAVE perfluoro (methyl vinyl ether) and perfluoro (propyl vinyl ether) are preferable, and perfluoro (methyl vinyl ether) is particularly preferable.
  • VdF rubber examples include VdF / HFP copolymer, VdF / HFP / TFE copolymer, VdF / CTFE copolymer, VdF / CTFE / TFE copolymer, VdF / PAVE copolymer, VdF / TFE copolymer, PAVE copolymer, VdF / HFP / PAVE copolymer, VdF / HFP / TFE / PAVE copolymer, VdF / TFE / Pr copolymer, or VdF / Et / HFP copolymer are preferred, and other More preferably, the monomer has TFE, HFP, and / or PAVE, in particular, VdF / HFP copolymer, VdF / HFP / TFE copolymer, VdF / PAVE copolymer, VdF. / TFE / PAVE copolymer, VdF / HFP /
  • the VdF / HFP copolymer preferably has a VdF / HFP composition of (45 to 85) / (55 to 15) (mol%), more preferably (50 to 80) / (50 to 20). (Mol%), more preferably (60 to 80) / (40 to 20) (mol%).
  • the VdF / HFP / TFE copolymer preferably has a VdF / HFP / TFE composition of (30 to 80) / (10 to 35) / (4 to 35) (mol%).
  • the VdF / PAVE copolymer preferably has a VdF / PAVE composition of (65 to 90) / (35 to 10) (mol%).
  • the VdF / TFE / PAVE copolymer preferably has a VdF / TFE / PAVE composition of (40-80) / (3-40) / (15-35) (mol%).
  • VdF / HFP / TFE / PAVE copolymerization the composition of VdF / HFP / TFE / PAVE is (40 to 90) / (0 to 25) / (0 to 40) / (3 to 35) (mol%). (40 to 80) / (3 to 25) / (3 to 40) / (3 to 25) (mol%) is more preferable.
  • the TFE / propylene-based fluororubber is a fluorine-containing copolymer comprising TFE 45 to 70 mol% and propylene 55 to 30 mol%.
  • a specific third component for example, PAVE may be contained in an amount of 0 to 40 mol%.
  • perfluoro fluorine rubber examples include those made of TFE / PAVE.
  • the composition of TFE / PAVE is preferably (50 to 90) / (50 to 10) (mol%), more preferably (50 to 80) / (50 to 20) (mol%). More preferred is (55 to 75) / (45 to 25) (mol%).
  • PAVE examples include perfluoro (methyl vinyl ether), perfluoro (propyl vinyl ether), and the like, and these can be used alone or in any combination.
  • the fluororubber preferably has a number average molecular weight of 1,000 to 1,200,000, more preferably 5,000 to 900,000.
  • the non-perfluorofluorororubber and perfluorofluorororubber described above can be produced by conventional methods such as emulsion polymerization, suspension polymerization, and solution polymerization.
  • a fluororubber having a narrow molecular weight distribution can be produced according to a polymerization method using an iodine compound known as iodine (bromine) transfer polymerization.
  • fluororubber containing VdF / HFP copolymer rubber, VdF / HFP / TFE copolymer rubber or TFE / propylene copolymer rubber as a unit is preferable.
  • the fluororubber particles may be uncrosslinked rubber (raw rubber) particles or crosslinked rubber particles, but crosslinked rubber particles are preferred from the viewpoint of good solvent resistance (swelling resistance).
  • the cross-linking of the fluororubber may be performed according to a known standard method.
  • the particle diameter of the fluororubber particles (C) is about 0.1 to 2.0 ⁇ m, more preferably about 0.15 to 1.5 ⁇ m, particularly about 0.2 to 1.0 ⁇ m in terms of average primary particle diameter. It is preferable from the viewpoint that both the dispersibility of the film and the improvement of the strength of the film can be achieved.
  • the blending amount of the fluororubber particles (C) is 0.1% by mass or more, preferably 0.5% by mass or more, particularly preferably 1% by mass of the total amount of the binder (B) and the fluororubber particles (C). That's it. If the amount is too small, the effect of improving the flexibility of the electrode mixture, particularly the elongation, tends to be small.
  • the upper limit is preferably 50% by mass, and more preferably 30% by mass. If the amount is too large, dispersibility in the binder (B) tends to be poor, and swelling at high temperatures tends to increase. A particularly preferred upper limit is 20% by mass.
  • the electrode mixture slurry of the present invention is obtained by mixing and dispersing an electrode active material (A), a binder (B), rubber particles (C), and an electrode material such as a conductive material described later in a solvent (D). It is obtained with.
  • the solvent (D) may be an organic solvent (D1) or an aqueous solvent (D2), but an organic solvent (D1) is preferred from the viewpoint of slurry stability and coating properties.
  • Examples of the organic solvent (D1) include nitrogen-containing organic solvents such as N-methylpyrrolidone, dimethylformamide, and dimethylacetamide, and ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone, and methyl isobutyl ketone; ethyl acetate, butyl acetate, and the like.
  • Examples include ester solvents; ether solvents such as tetrahydrofuran and dioxane; and low-boiling general-purpose organic solvents such as mixed solvents thereof.
  • N-methylpyrrolidone is particularly preferred because of its excellent slurry stability and coating properties.
  • the water content of the organic solvent (D1) is important. That is, when the water content is 100 ppm or less, further 40 ppm or less, particularly 35 ppm or less, the basic expression due to the basic electrode active material is small, and gelation can be suppressed.
  • Water is a representative example of the aqueous solvent (D2), and can be employed when safety and cost are emphasized.
  • a conductive material As another electrode material, for example, a conductive material is exemplified.
  • the conductive material include carbon blacks such as acetylene black and ketjen black, and carbon materials such as graphite.
  • the electrode active material (A), the fluororubber particles (C), and the conductive material (E) are dissolved in a solution obtained by dissolving the binder (B) in the solvent (D).
  • a method of dispersing and mixing these is generally used.
  • the powders of the binder (B), the fluororubber particles (C), the electrode active material (A), and the conductive material (E) are first mixed together, and then the solvent (D) is added to prepare a slurry. May be.
  • the amount of electrode active material (A) is as follows: solid content (electrode active material (A), binder (B), fluororubber particles (C), conductive material (E). Etc.) is 70 to 98% by mass, preferably 90 to 97% by mass.
  • the blending ratio of the binder (B) is 0.1 to 20% by mass, preferably 1 to 10% by mass in the solid content regardless of whether it is a positive electrode or a negative electrode.
  • the blending amount of the fluororubber particles (C) is 0.1 to 20% by mass, preferably 0.5 to 10% by mass in the solid content.
  • the blending amount of the conductive material (E) is 1 to 20% by mass, preferably 2 to 10% by mass in the solid content.
  • the solid content concentration of the slurry is preferably 40 to 70% by mass from the viewpoint of good workability, coating property, and slurry stability.
  • the slurry for electrode mixture of the present invention is a stable and homogeneous fluid that does not gel, and can be applied to a current collector, dried, rolled, and cut into a predetermined size to produce an electrode. Conventional methods and conditions can be adopted as the method and conditions for producing the positive electrode and the negative electrode.
  • Examples of the current collector on which the electrode mixture slurry is applied include aluminum foil, etched aluminum foil, and aluminum foil coated with a conductive paste.
  • the electrode of the present invention does not cause cracking or peeling of the electrode mixture layer even if it is processed into a spiral type or a folded type electrode by blending the fluororubber particles (C) that give flexibility.
  • the battery since the battery hardly swells with respect to the non-aqueous electrolyte, the battery characteristics are not greatly deteriorated even if the charge and discharge are repeated.
  • the present invention also relates to a lithium secondary battery in which the electrode of the present invention is used as a positive electrode and / or a negative electrode and provided with a non-aqueous electrolyte.
  • the negative electrode may include an electrode of the present invention containing a negative electrode active material made of a basic material such as an alloy, or a negative electrode using a known carbon material as a negative electrode active material. It may be.
  • a negative electrode using a carbon material is prepared using a negative electrode active material and a negative electrode binder by a known material and method, and is applied or adhered to a negative electrode current collector such as a copper foil. Can be produced.
  • a carbonaceous material that can be doped / undoped with lithium or the like is used.
  • a conductive polymer such as polyacene or polypyrrole, coke, polymer charcoal, carbon fiber, or the like per unit volume.
  • a conductive polymer such as polyacene or polypyrrole, coke, polymer charcoal, carbon fiber, or the like per unit volume.
  • pyrolytic carbons such as polyacene or polypyrrole, coke, polymer charcoal, carbon fiber, or the like per unit volume.
  • cokes petroleum coke, pitch coke, coal coke, etc.
  • carbon black acetylene black, etc.
  • glassy carbon organic polymer material fired bodies
  • organic polymer materials Preferred are those fired in an inert gas stream or in vacuum at a temperature of 500 ° C. or higher.
  • non-aqueous electrolyte a solution obtained by dissolving a known electrolyte salt in a known electrolyte salt dissolving organic solvent can be used.
  • the organic solvent for dissolving the electrolyte is not particularly limited, but propylene carbonate, ethylene carbonate, butylene carbonate, ⁇ -butyrolactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, dimethyl carbonate, diethyl carbonate
  • Known hydrocarbon solvents such as fluorinated solvents such as fluoroethylene carbonate, fluoroether, and fluorinated carbonate can be used.
  • electrolyte salt examples include LiClO 4 , LiAsF 6 , LiBF 4 , LiPF 6 , LiN (SO 2 CF 3 ) 2 , and LiN (SO 2 C 2 F 5 ) 2.
  • LiPF 6 , LiBF 4 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 or combinations thereof are preferred.
  • the concentration of the electrolyte salt is required to be 0.8 mol / liter or more, and further 1.0 mol / liter or more. Although the upper limit depends on the organic solvent for dissolving the electrolyte salt, it is usually 1.5 mol / liter.
  • the lithium secondary battery of the present invention can be produced by enclosing these members in a battery case and sealing them.
  • a separator may be interposed between the positive electrode and the negative electrode.
  • Example 1 (Preparation of slurry for positive electrode mixture) The ratio of each of the electrode materials shown in Table 1 is the positive electrode active material (A1): binder (B1) + (B2): fluoro rubber particles (C): conductive material (E) in a mass ratio of 92: 4. 1: Weighed to be 1: 3.
  • NMP N-methylpyrrolidone
  • a predetermined amount of the positive electrode active material (A1) and fluororubber particles are added to the NMP solution of the binder.
  • C) and conductive material (E) were added and mixed thoroughly with a stirrer. While stirring, NMP was sequentially added so that the solid content concentration was 50% by mass to prepare a slurry for positive electrode mixture.
  • the prepared slurry for positive electrode mixture was filtered through a Ni mesh (200 mesh) sieve to uniformize the particle size of the solid content. Subsequently, the positive electrode mixture slurry after filtration was vacuum defoamed. After the defoaming of the positive electrode mixture slurry is completed, the positive electrode mixture slurry is applied to an Al foil having a thickness of 22 ⁇ m, which is a current collector plate, by an applicator (amount that the dry mass of the positive electrode coating film is 18 mg / cm 2 ). ) After the application, NMP was completely volatilized while drying at 100 to 120 ° C. using a blast dryer or a hot plate to produce a strip-shaped positive electrode.
  • Each component for preparing the positive electrode mixture slurry was as follows.
  • Positive electrode active material (A1) (A1-1): LiNi 0.82 Co 0.15 Al 0.03 O 2 (manufactured by Toda Kogyo Co., Ltd.)
  • A1-2 LiNi 1/3 Co 1/3 Mn 1/3 O 2 (manufactured by Nippon Chemical Industry Co., Ltd.)
  • Binder (B1) (B1-1): PVdF (KF1120 manufactured by Kureha Chemical Co., Ltd.)
  • Fluoro rubber particles (C) (C-1): Cross-linked VdF / HFP (78/22 mol% ratio) copolymer rubber. (Average primary particle size 0.3 ⁇ m) (C-2): Cross-linked TFE / VdF / HFP (30/48/22 mol% ratio) copolymer rubber.
  • C-3 Rubber particles having a core of acrylic rubber and a shell of polymethyl methacrylate (cross-linked) (EXL2313 manufactured by Rohm and Haas Japan Co., Ltd., average primary particle size 0.6 ⁇ m)
  • C-4 Rubber particles having a styrene-butadiene rubber core and a polymethyl methacrylate shell (cross-linked) (BTA772 manufactured by Rohm and Haas Japan Co., Ltd.) 8 ⁇ m)
  • Example 2 A positive electrode was produced in the same manner as in Example 1 except that (C-1) and (C-5) were used in the amounts shown in Table 2 as the fluororubber particles (C), and the density and crack presence were examined. The results are shown in Table 2.
  • Fluorine rubber particles (C-5): Cross-linked TFE / propylene (50/50 mol% ratio) copolymer rubber. (Average primary particle size 0.3 ⁇ m)
  • Example 3 A positive electrode was prepared in the same manner as in Example 1 except that the resin shown in Table 3 was used as the binder (B3) in the ratio shown in Table 3, and the density and the presence or absence of cracks were examined. The results are shown in Table 3.
  • Example 4 Using the positive electrode shown in Table 4, a lithium secondary battery (laminated cell) was produced by the following method. For these lithium secondary batteries, rate characteristics and cycle characteristics were examined as follows.
  • the strip-shaped positive electrode was cut to 40 mm ⁇ 72 mm (with a positive electrode terminal of 10 mm ⁇ 10 mm), the strip-shaped negative electrode was cut to 42 mm ⁇ 74 mm (with a negative electrode terminal of 10 mm ⁇ 10 mm), and a lead body was welded to each terminal. Further, a microporous polyethylene film having a thickness of 20 ⁇ m was cut into a size of 78 mm ⁇ 46 mm to form a separator, and a positive electrode and a negative electrode were set so as to sandwich the separator, and these were put in an aluminum laminate packaging material.
  • Rate characteristic (%) 5C discharge capacity (mAh) /0.2C discharge capacity (mAh) ⁇ 100
  • Capacity retention rate (%) 100 cycle discharge capacity (mAh) / 1 cycle discharge capacity (mAh) ⁇ 100
  • Example 5 Disperse Si (negative electrode active material; manufactured by Fuji Silysia Chemical Co., Ltd.), acetylene black (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd.) and the mixture shown in Table 5 at a mass ratio of 45:45:10.
  • a slurry for negative electrode mixture was prepared by dispersing and mixing in N-methylpyrrolidone (water content: 30 ppm) with a mixer. This slurry was uniformly applied onto a negative electrode current collector (copper foil having a thickness of 10 ⁇ m) and dried to form a negative electrode mixture layer, then compression-molded with a roll press machine, cut, and then dried. The lead body was welded to produce a strip-shaped negative electrode.
  • the positive electrode was produced in the same manner as in Example 1 except that A1-2 (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) was used as the positive electrode active material.
  • a lithium secondary battery (laminate cell) was produced in the same manner as in Example 4, and the cycle characteristics were measured in the same manner as in Example 4. The results are shown in Table 5.
  • Example 6 A positive electrode was prepared in the same manner as in Example 1 except that a mixture slurry having the components shown in Table 6 was used, and the density, the presence or absence of cracks, and the swelling ratio into the electrolyte were examined. The results are shown in Table 6.
  • Positive electrode active material (A1) (A1-3): Li 2 Mn 2 O 4 (A1-4): LiNi 0.8 Mn 0.2 O 2 (A1-5): LiFe 1/3 Co 1/3 Mn 1/3 O 2
  • Fluoro rubber particles (C) (C-1): Cross-linked VdF / HFP (78/22 mol% ratio) copolymer rubber. (Average primary particle size 0.3 ⁇ m)
  • Example 7 In Example 4, the mixture No. A lithium secondary battery (laminate cell) is similarly used except that NMP having a water content of 100 ppm, 500 ppm NMP and 1000 ppm NMP, and water are used as NMP to prepare the slurry 1-1. Fabricated and examined for rate characteristics and cycle characteristics. The results are shown in Table 7.
  • Example 8 A negative electrode was produced in the same manner as in Example 5 except that SiO 2 or Sn was used as the negative electrode active material instead of Si.
  • the positive electrode was produced in the same manner as in Example 1 except that A1-2 (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) was used as the positive electrode active material.
  • a lithium secondary battery (laminate cell) was produced in the same manner as in Example 4, and the cycle characteristics were measured in the same manner as in Example 4. The results are shown in Table 8.

Abstract

 安定性や電池特性を損なうことなく電極の柔軟性を高めることができる、電極活物質と結着剤とフッ素ゴム粒子を含むリチウム二次電池の電極合剤スラリーを提供し、ひいては合剤と集電体との接着性が向上し柔軟性に富む電極、さらには電池特性に優れたリチウム二次電池を提供する。

Description

リチウム二次電池の電極合剤用スラリー、該スラリーを用いた電極およびリチウム二次電池
 本発明は、柔軟性に富む電極を与えるリチウム二次電池の電極合剤用スラリー、該スラリーを用いた電極、および電池特性が改善されたリチウム二次電池に関する。
 リチウム二次電池は、各種の携帯型の電気電子機器の電源として、あるいは電気自動車のバッテリーなどとして広く使用されている。
 リチウム二次電池は正極と負極と非水電解液、通常はさらにセパレータを備えており、それぞれの部材の開発改良が盛んに行われている。
 このうち正極は、通常、たとえば正極活物質を結着剤、要すれば導電材とともに有機溶剤に分散させて正極合剤用スラリーを調製し、正極集電体に塗布後、溶剤を乾燥除去し圧延することにより作製されている。
 リチウム二次電池の正極用の結着剤としては、従来からポリフッ化ビニリデン(PVdF)がよく使用されている。たとえば特許文献1には、正極活物質としてLiCoO2のようなリチウム含有酸化物と導電剤としてのグラファイトをPVdFと混合し作製した正極合剤をN-メチルピロリドンに分散させてスラリー状にしたものをアルミ箔の正極集電体に塗布し、また負極活物質としての炭素質材料とPVdFとを混合し作製した負極合剤をN-メチルピロリドンに分散させてスラリー状にしたものを負極集電体である銅箔上に塗布し、それぞれ乾燥後、ロールプレス機により圧縮成形して電極シートに加工する技術が開示されている。しかし、PVdFはリチウムイオン二次電池に使用されているプロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、またはそれらの混合物といった非水電解液の有機溶媒に対し膨潤しやすい。そのため、充放電を繰り返していくうちに集電体である金属箔との接着性がわるくなり、その結果電池内部抵抗の上昇が起こり電池性能が低下するという問題が生ずる。さらに、PVdFを結着剤として使用した電極シートは柔軟性に乏しく、角型電池作製での電極シートを180度に折り畳む工程時や、円筒型電池作製での電極シートを小さく丸める工程時に、電極シートから電極合剤が剥離するといった問題が生じやすく、生産の歩留りがわるくなっている。
 また、特許文献2には、非水電解液二次電池における充放電時の正極活物質の膨脹、収縮に対して結着性をもたせる目的でフッ化ビニリデン(VdF)-ヘキサフルオロプロピレン(HFP)共重合体、VdF-3フッ化塩化エチレン(CTFE)共重合体というフッ素系二元共重合体を主成分とするゴム弾性を有する材料が結着剤として記載されている。しかし、このような共重合体はPVdFに比べ結晶性がわるく、そのためPVdF以上に非水電解液の有機溶媒に対して膨潤しやすく、電解液の種類によっては溶出してしまい結着剤としての役目を果たさなくなる。
 同様な結着剤として特許文献3には、PVdFの代わりに主としてVdF、テトラフルオロエレチレン(TFE)およびHFPから構成されるフッ素系高分子共重合体を結着剤に使用するという内容が記載されている。その特許請求の範囲に記載された共重合体の組成範囲は、モル分率で、VdFが0.3~0.9、HFPが0.03~0.5、TFEが0~0.5で、これら3つのモノマーの、モル分率の合計が0.80~1というものである。
 また、特に汎用溶剤に溶解性をもつが電解液の有機溶媒に対しては膨潤しにくい結着剤が特許文献4に記載されている。特許文献4に開示されている結着剤は、VdF50~80モル%とTFE20~50モル%の二元含フッ素共重合体とVdF50~80モル%とTFE17~50モル%と他の共重合モノマー3モル%未満の三元含フッ素共重合体であり、実施例で使用されているVdF/TFE系共重合体としてはVdF/TFE共重合体とVdF/TFE/HFP共重合体が記載されている。また、集電体との接着性を向上させるためには、ポリメタクリレート、ポリメチルメタクリレート、ポリアクリロニトリル、ポリイミド、ポリアミド、ポリアミドイミド、ポリカーボネートなどの樹脂を結着剤中における含有量は約20体積%以下含ませてもよいことが記載されている。
 また、特許文献5には、高温でのサイクル特性を改善するために、結着剤としてPVdFに加えて正極側にはポリイミドを、負極側には芳香族ポリアミドを併用することが提案されている。
 またさらに、特許文献6には、集電体と結着剤との接着性を向上させるために集電体の表面をアクリル系重合体で処理する方法が提案されており、その結着剤として、PVdF50~95重量%とVdFと他のポリマー(たとえばTFE、HFP、CTFEなど)との共重合体との混合物も使用できることが記載されている。
 このように集電体との接着性を向上させる提案は種々なされているが、電極の柔軟性を犠牲にしているものも多い。電極の柔軟性改良のためには、アクリルゴム、スチレン-ブタジエンゴムのゴム微粒子を含有させることが提案されている(特許文献7、8)。
特開平04-249859号公報 特開平04-095363号公報 特公平08-004007号公報 特開平10-233217号公報 特開平11-031513号公報 特開平09-199133号公報 特開2003-331825号公報 特開2006-185887号公報
 電極の柔軟性を向上させる特許文献7および8では、アクリルゴム、スチレンブタジエンゴムを配合しているが、電極の電解液に対する膨潤が大きくなり高温特性やサイクル特性が低下する、耐酸化性が低いためガス発生が多くなりサイクル特性が低下するという問題がある。
 本発明は、集電体との接着性を向上させると共に、電池特性を損なうことなく電極の柔軟性を高めることを目的とする。
 すなわち本発明は、電極活物質(A)と結着剤(B)とフッ素ゴム粒子(C)を含むリチウム二次電池の電極合剤用スラリーに関する。
 また本発明は、本発明の電極合剤用スラリーを集電体に塗工し乾燥して得られるリチウム二次電池の電極、さらには本発明の電極を正極および/または負極とし、非水電解液を備えるリチウム二次電池にも関する。
 本発明によれば、均質かつ安定な電極合剤用スラリーを提供でき、さらにこの電極合剤用スラリーを用いて形成した集電体との接着性に優れ、かつ電解液への耐膨潤性を損なうことなく柔軟性に富む電極、またさらにこの電極合剤を用いて電池特性に優れたリチウム二次電池を提供することができる。
 本発明のリチウム二次電池の電極合剤用スラリーは、電極活物質(A)と結着剤(B)とフッ素ゴム粒子(C)を含む。以下、各成分について説明する。
(A)電極活物質
 本発明においては、正極活物質(A1)でも負極活物質(A2)でもよい。
(A1)正極活物質
 正極活物質(A1)としては、式(A1):
Lix1 y2 1-y2
(式中、0.4≦x≦1;0.3≦y≦1;M1はNiおよびMnよりなる群から選ばれる少なくとも1種;M2はCo、AlおよびFeよりなる群から選ばれる少なくとも1種)で示されるリチウム含有複合金属酸化物である。
 具体的には、
式(A1-1):
LiNixCoyAlz2
(式中、0.7≦x≦1;0≦y≦0.3;0≦z≦0.03;0.9≦x+y+z≦1.1)、
式(A1-2):
LiNixCoyMnz2
(式中、0.3≦x≦0.6;0≦y≦0.4;0.3≦z≦0.6;0.9≦x+y+z≦1.1)、
式(A1-3):
LixMnz2
(式中、0.4≦x≦0.6;0.9≦z≦1)、または
式(A1-4):
LiFexCoyMnz2
(式中、0.3≦x≦0.6;0.1≦y≦0.4;0.3≦z≦0.6;0.9≦x+y+z≦1.1)
で示されるリチウム含有複合金属酸化物が好ましい。
 式(A1-1)で示されるリチウム含有複合金属酸化物の具体例としては、たとえばLiNi0.8Co0.22、LiNi0.7Co0.32、LiNi0.82Co0.15Al0.032、LiNi0.7Co0.2Al0.12、LiNi0.85Co0.1Al0.52などがあげられ、なかでもLiNi0.82Co0.15Al0.032(NCA)が好ましい。
 式(A1-2)で示されるリチウム含有複合金属酸化物の具体例としては、たとえばLiNi0.5Mn0.52、LiNi0.75Mn0.252、LiNi0.25Mn0.752、LiNi1/3Co1/3Mn1/32、LiNi0.4Co0.2Mn0.42、LiNi0.3Co0.5Mn0.22などがあげられ、なかでもLiNi1/3Co1/3Mn1/32(NCM)が好ましい。
 式(A1-3)で示されるリチウム含有複合金属酸化物の具体例としては、たとえばLi0.5MnO2(スピネルマンガン)、LiMnO2などがあげられる。
 式(A1-4)で示されるリチウム含有複合金属酸化物の具体例としては、たとえばLiFe1/3Co1/3Mn1/32、Li0.5Fe1/3Co1/3Mn1/32、LiFe0.4Co0.3Mn0.32、Li0.5Fe0.4Co0.3Mn0.32などがあげられる。
 そのほか、LiCoO2、LiNiO2、LiMn24なども使用できる。
(A2)負極活物質
 負極活物質(A2)としては、公知の塩基性材料、たとえばSiおよび/またはSnを含有する塩基性を呈する材料が例示できる。具体的には、リチウムイオンを挿入可能な金属化合物、たとえば金属酸化物や金属窒化物、Si、SiCuAl、SiNiAg、CoSn2なども使用できる。金属酸化物としてはSiやSnを含む金属酸化物が、金属窒化物としてはLi2.6Co0.4Nなどがあげられる。
(B)結着剤
 本発明で使用する結着剤(B)としては、ポリフッ化ビニリデン(B1)、および/または組成式(B2):
(VDF)m(TFE)n(HFP)l
(式中、VDFはフッ化ビニリデン由来の構造単位;TFEはテトラフルオロエチレン由来の構造単位;HFPはヘキサフルオロプロピレン由来の構造単位;0.45≦m<1;0<n≦0.5;0≦l≦0.1。ただし、m+n+l=1)で示されるVdF/TFE系含フッ素重合体(B2)を含むものが好ましい。
(B1)PVdF
 PVdFとしては従来からリチウム二次電池の電極に使用されているものがそのまま使用できる。PVdFは単独で使用しても、他の結着剤成分と併用してもよい。
 PVdFの分子量は、GPC(ゲル透過クロマトグラフィー)測定での数平均分子量がポリスチレン換算値で10,000~500,000のものが好ましい。
(B2)VdF/TFE系含フッ素重合体
 上記のように、正極活物質についても、電池特性や安全性、資源(希少金属)枯渇などの観点から種々開発が進められ、最近ではNiやMnを含み希少金属であるCoを少なくした正極活物質が出現している。しかし、これらNiやMnを含有する正極材料では塩基性が高いためスラリーがゲル化しやすくなる。また、負極活物質についても、従来から使用されている炭素系材料に加えて、塩基性の材料からなる活物質が出現している。
 これらのLiCoO2、LiNiO2、LiMn24も含めリチウム含有複合酸化物は基本的に塩基性であり、その理由は確認されていないが、PVdFや多くのVdF系共重合体と共存させた正極合剤用スラリーではゲル化が起こり、スラリーの安定性が損なわれることがある。負極においても塩基性の材料を負極活物質として用いる場合には、同様の傾向がある。
 かかる傾向に対応するには、VdF系共重合体のうちで、VdFにTFEを特定量で共重合したVdF/TFE系共重合体が意外にも塩基性の電極活物質に対して安定であり、混合して調製した電極合剤用スラリーも均質かつ安定なものになることを見出した。このような優れた耐塩基性は、VdF/HFP系共重合体やVdF/CTFE系共重合体などの他のVdF系共重合体では認められないVdF/TFE系共重合体に特異的に見られる特性である。
 この観点から、結着剤(B2)としては、前記組成式(B2)で示される含フッ素重合体が好ましい。
 これらのうち、含フッ素重合体としては、式(B2)において、0.50≦m≦0.90、0.09≦n≦0.40および0≦l≦0.04(ただし、m+n+l=1)であるVdF/TFE系含フッ素共重合体が、柔軟性および耐アルカリ性が良好な点から好ましい。
 なかでも、式(B2)において、l=0で、0.50≦m≦0.90および0.10≦n≦0.50(ただし、m+n=1)であるVdF/TFE二元含フッ素共重合体が、柔軟性および耐アルカリ性が良好な点から好ましい。さらには耐塩基性や柔軟性が良好なことからn(TFE)が0.10~0.40、特に0.15~0.40であるものが好ましい。
 また、0.50≦m≦0.90、0.09≦n≦0.49および0.01≦l≦0.04(ただし、m+n+l=1)であるVdF/TFE/HFP三元含フッ素共重合体が、柔軟性および耐アルカリ性が良好な点から好ましい。さらには耐塩基性や柔軟性が良好なことから、0.60≦m≦0.90で0.09≦n≦0.45で0.01≦l≦0.04である共重合体が、さらには0.60≦m≦0.70で0.30≦n≦0.40で0.02≦l≦0.04である共重合体が好ましい。
 二元系または三元系にかかわらず、TFEの含有量が上記の範囲より多くなりすぎると有機溶媒に溶解しにくくなり、一方、少なくなりすぎると耐塩基性が低く柔軟性が低くなりやすく、本発明の効果が充分には奏されないことがある。
 VdF/TFE系共重合体の分子量は、GPC(ゲル透過クロマトグラフィー)測定での数平均分子量がポリスチレン換算値で10,000~500,000のものが好ましい。10,000より小さいと分子量が低すぎて成膜できず、また500,000を超えると電極合剤のチキソ性が非常に大きくなり、電極集電体に塗布するのが困難となる傾向がある。また、サイクル特性を向上させるためには比較的分子量が高い方が好ましく、この点からたとえば三元共重合体の場合、150,000~500,000のものが好ましい。
 本発明で結着剤(B2)として用いるVdF/TFE系共重合体は公知の重合方法により重合することができ、そのうちでも主としてラジカル共重合法が好ましい。すなわち重合方法としては、ラジカル的に進行するものであれば手段は何ら制限されないが、たとえば有機もしくは無機のラジカル重合開始剤、熱、光または電離放射線などによって開始される。重合の形態も溶液重合、バルク重合、懸濁重合、乳化重合などを用いることができる。
 このVdF/TFE系共重合体(B2)は、耐塩基性に優れており、PVdFの溶剤として使用されているN-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミドなどの含窒素系有機溶媒はもちろん、一般的によく使用される低沸点の汎用有機溶媒にも可溶であり、電極活物質と混合してもゲル化を起こさず、また電極に柔軟性を付与でき、しかも非水電解液に対する膨潤性も小さい。
 VdF/TFE系共重合体(B2)は単独で使用してもよいし、PVdF(B1)や他の結着剤成分(B3)と併用してもよい。
 PVdF(B1)と併用するときは、VdF/TFE系共重合体(B2)は、(B1)と(B2)の合計量の20~80質量%であることが、柔軟性を維持し、密着性が良好な点から好ましい。
(B3)他の結着剤成分
 他の結着剤成分としては、溶剤可溶型熱可塑性樹脂、VdF/HFP系共重合体やVdF/CTFE系共重合体などが例示できる。なかでも、集電体との接着性を向上させる働きをする溶剤可溶型熱可塑性樹脂が好ましい。
 本発明において「溶剤可溶型熱可塑性樹脂」とは、有機溶媒に対して25℃において5質量%以上溶解して均一な溶液を形成する熱可塑性樹脂であり、たとえばポリアクリル酸系重合体、ポリメタクリル酸系重合体、ポリイミド、ポリアミド、ポリアミドイミドなどが好ましい。
 ポリアクリル酸系重合体としては、たとえばポリアクリル酸、そのアンモニウム塩、ナトリウム塩;ポリアクリル酸アルキルエステル;ポリアクリル酸アミド;アルコキシシリル変性ポリアクリル酸エステルなどが例示できる。
 ポリメタクリル酸系重合体としては、たとえばポリメタクリル酸、そのアンモニウム塩、ナトリウム塩;ポリメタクリル酸アルキルエステル;ポリメタクリル酸アミド;アルコキシシリル変性ポリメタクリル酸エステルなどが例示できる。
 結着剤(B3)としてポリアクリル酸系重合体、ポリメタクリル酸系重合体、ポリイミド、ポリアミドおよびポリアミドイミドよりなる群から選ばれる少なくとも1種を使用するときは、結着剤(B)の全体の5~50質量%であることが、柔軟性を維持し、密着性が良好な点から好ましい。
 VdF/HFP系共重合体やVdF/CTFE系共重合体を使用するときは、結着剤(B)の全体の5~50質量%であることが、柔軟性を維持し、密着性が良好な点から好ましい。
(C)フッ素ゴム粒子
 本発明において、フッ素ゴム粒子(C)は電極合剤に柔軟性、特に伸びを与え、さらにゴム弾性などの性質を付与する役割をもっている。
 フッ素ゴム粒子(C)のフッ素ゴムとしては、従来公知のフッ素ゴムが使用できる。
 好適なフッ素ゴムとしては、たとえばテトラフルオロエチレン、フッ化ビニリデンおよび式(1):
 CF2=CF-Rf 1      (1)
(式中、Rf 1は-CF3または-ORf 2(Rf 2は炭素数1~5のパーフルオロアルキル基))で表されるパーフルオロエチレン性不飽和化合物よりなる群から選ばれる少なくとも1種の単量体に由来する構造単位を含むことが、ゴム弾性体としての性質をもつ粒子が得られる点から好ましい。
 フッ素ゴムとしてはまた、非パーフルオロフッ素ゴムおよびパーフルオロフッ素ゴムが好ましい。
 非パーフルオロフッ素ゴムとしては、フッ化ビニリデン(VdF)系フッ素ゴム、テトラフルオロエチレン(TFE)/プロピレン系フッ素ゴム、テトラフルオロエチレン(TFE)/プロピレン/フッ化ビニリデン(VdF)系フッ素ゴム、エチレン/ヘキサフルオロプロピレン(HFP)系フッ素ゴム、エチレン/ヘキサフルオロプロピレン(HFP)/フッ化ビニリデン(VdF)系フッ素ゴム、エチレン/ヘキサフルオロプロピレン(HFP)/テトラフルオロエチレン(TFE)系フッ素ゴム、フルオロシリコーン系フッ素ゴム、またはフルオロホスファゼン系フッ素ゴムなどがあげられ、これらをそれぞれ単独で、または本発明の効果を損なわない範囲で任意に組合わせて用いることができる。これらの中でも、VdF/HFP共重合体ゴム、VdF/HFP/TFE共重合体ゴム、TFE/プロピレン共重合体ゴム、TFE/HFP/プロピレン共重合体ゴム、TFE/PAVE共重合体ゴムが好適である。
 具体的には、上記VdF系ゴム(VdF/HFP共重合体ゴム、VdF/HFP/TFE共重合体ゴムなど)は、VdF繰り返し単位が、VdF繰り返し単位とその他の共単量体に由来する繰り返し単位との合計モル数の20モル%以上、90モル%以下が好ましく、40モル%以上、85モル%以下であることがより好ましい。さらに好ましい下限は45モル%、特に好ましい下限は50モル%であり、さらに好ましい上限は80モル%である。
 そして、上記VdF系ゴムにおけるその他の単量体としてはVdFと共重合可能であれば特に限定されず、たとえば、TFE、HFP、PAVE、CTFE、トリフルオロエチレン、トリフルオロプロピレン、テトラフルオロプロピレン、ペンタフルオロプロピレン、トリフルオロブテン、テトラフルオロイソブテン、フッ化ビニル、ヨウ素含有フッ素化ビニルエーテルなどのフッ素含有単量体;エチレン(Et)、プロピレン(Pr)、アルキルビニルエーテル等のフッ素非含有単量体などがあげられ、これらのフッ素含有単量体およびフッ素非含有単量体のなかから1種または2種以上を組み合わせて用いることができる。前記PAVEとしては、パーフルオロ(メチルビニルエーテル)、パーフルオロ(プロピルビニルエーテル)が好ましく、特にパーフルオロ(メチルビニルエーテル)が好ましい。
 上記VdF系ゴムとしては、VdF/HFP共重合体、VdF/HFP/TFE共重合体、VdF/CTFE共重合体、VdF/CTFE/TFE共重合体、VdF/PAVE共重合体、VdF/TFE/PAVE共重合体、VdF/HFP/PAVE共重合体、VdF/HFP/TFE/PAVE共重合体、VdF/TFE/Pr共重合体、またはVdF/Et/HFP共重合体が好ましく、また、その他の単量体として、TFE、HFP、および/またはPAVEを有するものであることがより好ましく、特には、VdF/HFP共重合体、VdF/HFP/TFE共重合体、VdF/PAVE共重合体、VdF/TFE/PAVE共重合体、VdF/HFP/PAVE共重合体、またはVdF/HFP/TFE/PAVE共重合が好ましい。
 VdF/HFP共重合体は、VdF/HFPの組成が、(45~85)/(55~15)(モル%)であることが好ましく、より好ましくは(50~80)/(50~20)(モル%)であり、さらに好ましくは(60~80)/(40~20)(モル%)である。
 VdF/HFP/TFE共重合体は、VdF/HFP/TFEの組成が(30~80)/(10~35)/(4~35)(モル%)のものが好ましい。
 VdF/PAVE共重合体としては、VdF/PAVEの組成が(65~90)/(35~10)(モル%)のものが好ましい。
 VdF/TFE/PAVE共重合体としては、VdF/TFE/PAVEの組成が(40~80)/(3~40)/(15~35)(モル%)のものが好ましい。
 VdF/HFP/TFE/PAVE共重合としては、VdF/HFP/TFE/PAVEの組成が(40~90)/(0~25)/(0~40)/(3~35)(モル%)のものが好ましく、(40~80)/(3~25)/(3~40)/(3~25)(モル%)のものがより好ましい。
 TFE/プロピレン系フッ素ゴムとは、TFE45~70モル%、プロピレン55~30モル%からなる含フッ素共重合体をいう。これら2成分に加えて、特定の第3成分(たとえばPAVE)を0~40モル%含んでいてもよい。
 パーフルオロフッ素ゴムとしては、TFE/PAVEからなるものなどがあげられる。TFE/PAVEの組成は、(50~90)/(50~10)(モル%)であることが好ましく、より好ましくは、(50~80)/(50~20)(モル%)であり、さらに好ましくは、(55~75)/(45~25)(モル%)である。
 この場合のPAVEとしては、たとえばパーフルオロ(メチルビニルエーテル)、パーフルオロ(プロピルビニルエーテル)などがあげられ、これらをそれぞれ単独で、または任意に組み合わせて用いることができる。
 また、フッ素ゴムは数平均分子量1,000~1,200,000のものが好ましく、5,000~900,000のものがさらに好ましい。
 以上説明した非パーフルオロフッ素ゴムおよびパーフルオロフッ素ゴムは、乳化重合、懸濁重合、溶液重合などの常法により製造することができる。特にヨウ素(臭素)移動重合として知られるヨウ素化合物を使用した重合法によれば、分子量分布が狭いフッ素ゴムを製造できる。
 なかでも、VdF/HFP共重合体ゴム、VdF/HFP/TFE共重合体ゴムまたはTFE/プロピレン共重合体ゴムをユニットとして含むフッ素ゴムが好ましい。
 また、フッ素ゴム粒子は未架橋ゴム(生ゴム)粒子でもよいし、架橋されたゴム粒子でもよいが、耐溶剤性(耐膨潤性)が良好な点から、架橋ゴム粒子が好ましい。フッ素ゴムの架橋は公知の定法に従って行えばよい。
 フッ素ゴム粒子(C)の粒子径は、平均一次粒子径で0.1~2.0μm、さらには0.15~1.5μm、特に0.2~1.0μm程度であることが、樹脂への分散性とフィルムの強度向上を両立させることができる点から好ましい。
 フッ素ゴム粒子(C)の配合量は、結着剤(B)とフッ素ゴム粒子(C)の合計量の0.1質量%以上、好ましくは0.5質量%以上、特に好ましくは1質量%以上である。少なすぎると電極合剤の柔軟性、特に伸びの向上効果が小さくなる傾向にある。上限は50質量%、さらには30質量%が好ましい。多くなりすぎると結着剤(B)への分散性が不良となる傾向にあるほか、高温での膨潤が大きくなる傾向にある。特に好ましい上限は20質量%である。
 本発明の電極合剤用スラリーは、電極活物質(A)と結着剤(B)とゴム粒子(C)、さらには後述する導電材などの電極材料を溶媒(D)に混合分散させることで得られる。
 溶媒(D)としては有機溶媒(D1)でも水性溶媒(D2)でもよいが、スラリーの安定性、塗工性の観点から有機溶媒(D1)が好ましい。
 有機溶媒(D1)としては、N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミドなどの含窒素系有機溶媒のほか、アセトン、メチルエチルケトン、シクロヘキサノン、メチルイソブチルケトンなどのケトン系溶剤;酢酸エチル、酢酸ブチルなどのエステル系溶剤;テトラヒドロフラン、ジオキサンなどのエーテル系溶剤;さらにそれらの混合溶剤などの低沸点の汎用有機溶媒をあげることができる。これらのなかで特に、スラリーの安定性、塗工性に優れている点からN-メチルピロリドンが好ましい。
 さらに、安定な電極合剤用スラリーを製造するためには、有機溶媒(D1)の水分含有量が重要である。すなわち、水分含有量を100ppm以下、さらには40ppm以下、特に35ppm以下とするときには、塩基性電極活物質に起因する塩基性の発現が少なく、ゲル化を抑制することができる。
 水性溶媒(D2)としては水が代表例であり、安全性やコストの点を重視した場合に採用可能である。
(E)その他の電極材料
 本発明において、本発明の効果を損なわない範囲で、必要に応じて、他の電極材料を配合することができる。
 他の電極材料としては、たとえば導電材などが例示される。導電材としては、たとえばアセチレンブラック、ケッチェンブラックなどのカーボンブラック類やグラファイトなどの炭素材料などがあげられる。
 本発明の電極合剤用スラリーの調製法としては、結着剤(B)を溶媒(D)に溶解させた溶液に電極活物質(A)やフッ素ゴム粒子(C)、導電材(E)などを分散混合させるといった方法が一般的である。そのほか、たとえば結着剤(B)やフッ素ゴム粒子(C)、電極活物質(A)、導電材(E)の粉末同士を先に混合した後、溶媒(D)を添加しスラリーを調製してもよい。
 本発明の電極合剤用スラリーにおいて、電極活物質(A)の配合量は、固形分(電極活物質(A)、結着剤(B)、フッ素ゴム粒子(C)、導電材(E)など)中の70~98質量%、好ましくは90~97質量%である。結着剤(B)の配合割合は、正極であるか負極であるかを問わず、固形分中の0.1~20質量%、好ましくは1~10質量%である。フッ素ゴム粒子(C)の配合量は、固形分中の0.1~20質量%、好ましくは0.5~10質量%である。導電材(E)を配合する場合の導電材(E)の配合量は、固形分中の1~20質量%、好ましくは2~10質量%である。スラリーの固形分濃度としては、作業性や塗工性、スラリーの安定性が良好な点から、40~70質量%が好ましい。
 本発明の電極合剤用スラリーはゲル化せず安定で均質な流動物であり、集電体に塗布し、乾燥、圧延し、所定の大きさに切断することにより電極を作製できる。正極および負極の作製方法や条件は通常の方法と条件が採用できる。
 電極合剤用スラリーを塗布する集電体としては、たとえばアルミニウム箔、エッチドアルミ箔、導電ペーストを塗布したアルミ箔などがあげられる。
 本発明の電極は、柔軟性を与えるフッ素ゴム粒子(C)を配合することにより、巻回(スパイラル)型や折畳み型の電極に加工しても、電極合剤層の割れや剥離は生じず、また、非水電解液に対して膨潤しにくいので充放電を繰り返しても電池特性が大きく低下することはない。
 本発明はまた、本発明の電極を正極および/または負極とし、非水電解液を備えたリチウム二次電池にも関する。
 本発明の電極を正極として用いる場合、負極としては、合金などの塩基性材料からなる負極活物質を含む本発明の電極を用いてもよいし、公知の炭素材料を負極活物質として用いた負極であってもよい。炭素材料を用いた負極は、公知の材料と方法により、負極活物質と負極用の結着剤とを用いて負極合剤を調製し、銅箔などの負極集電体に塗布または接着させることで作製できる。炭素材料の負極活物質としては、リチウムなどをドープ/脱ドープ可能な炭素質材料が用いられ、たとえばポリアセン、ポリピロールなどの導電性ポリマーあるいはコークス、ポリマー炭、カーボンファイバーなどのほか、単位体積当たりのエネルギー密度が大きいことから、熱分解炭素類、コークス類(石油コークス、ピッチコークス、石炭コークスなど)、カーボンブラック(アセチレンブラックなど)、ガラス状炭素、有機高分子材料焼成体(有機高分子材料を500℃以上の温度で不活性ガス気流中、あるいは真空中で焼成したもの)などが好ましい。
 非水電解液としては、公知の電解質塩を公知の電解質塩溶解用有機溶媒に溶解したものが使用できる。
 電解質溶解用有機溶媒としては、特に限定されるものではないが、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ-ブチロラクトン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジメチルカーボネート、ジエチルカーボネートなどの公知の炭化水素系溶媒;フルオロエチレンカーボネート、フルオロエーテル、フッ素化カーボネートなどのフッ素系溶媒の1種もしくは2種以上が使用できる。
 電解質塩としては、たとえばLiClO4、LiAsF6、LiBF4、LiPF6、LiN(SO2CF32、LiN(SO2252などがあげられ、サイクル特性が良好な点から特にLiPF6、LiBF4、LiN(SO2CF32、LiN(SO2252またはこれらの組合せが好ましい。
 電解質塩の濃度は、0.8モル/リットル以上、さらには1.0モル/リットル以上が必要である。上限は電解質塩溶解用有機溶媒にもよるが、通常1.5モル/リットルである。
 本発明のリチウム二次電池は、これらの各部材を電池ケースに収め封止することで作製できる。なお、正極と負極の間にセパレータを介在させてもよい。
 つぎに、本発明を実施例に基づいてさらに具体的に説明するが、本発明はこれらのみに限定されるものではない。
実施例1
(正極合剤用スラリーの調製)
 目的とする表1に示す各電極材料の割合を正極活物質(A1):結着剤(B1)+(B2):フッ素ゴム粒子(C):導電材(E)が質量比で92:4:1:3となるように秤量した。結着剤(B)を濃度が10質量%になるようにN-メチルピロリドン(NMP)に溶解させたのち、この結着剤のNMP溶液に所定量の正極活物質(A1)とフッ素ゴム粒子(C)と導電材(E)を加え、攪拌機で充分に混合した。撹拌しながら固形分濃度が50質量%になるようにNMPを逐次追加し、正極合剤用スラリーを調製した。
(正極の作製)
 調製した上記正極合剤用スラリーをNiメッシュ(200メッシュ)の篩を通してろ過して固形分の粒径を均一化した。つづいて、ろ過後の正極合剤用スラリーに真空脱泡処理を施した。正極合剤用スラリーの脱泡が完了した後、集電板である厚さ22μmのAl箔上に正極合剤用スラリーをアプリケーターにより塗布(正極塗膜の乾燥質量が18mg/cm2となる量)を行った。塗布後、送風乾燥機またはホットプレートを用いて100~120℃で乾燥しながらNMPを完全に揮発させ、帯状の正極を作製した。
 正極合剤用スラリー調製用の各成分はつぎのものであった。
正極活物質(A1)
(A1-1):LiNi0.82Co0.15Al0.032(戸田工業(株)製)
(A1-2):LiNi1/3Co1/3Mn1/32(日本化学工業(株)製)
結着剤(B1)
(B1-1):PVdF(呉羽化学(株)製のKF1120)
結着剤(B2)
(B2-1):VdF/TFE共重合体(VdF/TFE=80/20モル%比)
(B2-2):VdF/TFE/HFP共重合体(VdF/TFE/HFP=65/32.5/2.5モル%比)
フッ素ゴム粒子(C)
(C-1):架橋VdF/HFP(78/22モル%比)共重合体ゴム。平均1次粒子径0.3μm)
(C-2):架橋TFE/VdF/HFP(30/48/22モル%比)共重合体ゴム。平均1次粒子径0.2μm)
(C-3):コアがアクリルゴムでシェルがポリメタクリル酸メチルであるゴム粒子(架橋済み)(ローム・アンド・ハース・ジャパン(株)製のEXL2313。平均1次粒子径0.6μm)
(C-4):コアがスチレン-ブタジエンゴムでシェルがポリメタクリル酸メチルであるゴム粒子(架橋済み)(ローム・アンド・ハース・ジャパン(株)社製のBTA772。平均1次粒子径0.8μm)
溶媒(D)
(D-1):N-メチルピロリドン(水分含有量30ppm)
 作製した正極の密度をつぎの要領で測定した。結果を表1に示す。
(密度の測定)
 正極をギャップが75μmのロールプレスに70℃で2回通し、さらにギャップを35μmに変更して2回通した後、正極の面積/膜厚/重量を測定して密度(g/cm3)を算出する。
(割れの有無)
 作製した正極を縦3cm、横6cmに切り取った後、180°折り畳んだ後拡げて、正極の割れの有無を目視で確認した。結果を表1に示す。
(電解液への膨潤率)
 LiPF6の1M濃度のエチレンカーボネート/エチルメチルカーボネート(3/7体積比)電解液に電極を浸漬し、90℃で24時間保持したのち膜厚変化を測定し、電極の膨潤率(%)[=(浸漬後の膜厚-浸漬前の膜厚)/浸漬前の膜厚×100)]を算出する。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、フッ素ゴム粒子を配合しなかった例と比較した場合、フッ素ゴム粒子を配合することにより柔軟性が向上し、正極の割れが抑えられることがわかる。また、非フッ素ゴム粒子であるアクリルゴム粒子(C-3)およびスチレン-ブタジエンゴム粒子(C-4)を用いた場合、電解液への膨潤率が大きいことがわかる。
実施例2
 フッ素ゴム粒子(C)として、(C-1)と(C-5)を表2に示す量用いたほかは実施例1と同様にして正極を作製し、密度および割れの有無を調べた。結果を表2に示す。
フッ素ゴム粒子(C-5):架橋TFE/プロピレン(50/50モル%比)共重合体ゴム。平均1次粒子径0.3μm)
Figure JPOXMLDOC01-appb-T000002
 表2の結果から、フッ素ゴム粒子の種類や量を変えても柔軟性が高く、割れにくいことが分かる。
実施例3
 結着剤(B3)として表3に示す樹脂を表3に示す割合で使用したほかは実施例1と同様にして正極を作製し、密度および割れの有無を調べた。結果を表3に示す。
結着剤(B3)
(B3-1):ポリメチルメタクリレート(PMMA)(Aldrich社製)
(B3-2):メチルメタクリレート(MMA)/メタクリル酸(MA)(MMA/MA=1:0.016モル比)(Aldrich社製)
(B3-3):ポリアミドイミド(PAI)(日立化成工業(株)製のHPC7200)
(B3-4):ポリイミド(PI)(日立化成工業(株)製のHCI-7000)
(B3-5):ポリアクリル酸(Aldrich社製)
Figure JPOXMLDOC01-appb-T000003
 表3の結果から、結着剤(B1)と(B3)を併用したものも柔軟性が高く、割れにくいことが分かる。
実施例4
 表4に示す正極を使用してつぎの方法でリチウム二次電池(ラミネートセル)を作製した。これらのリチウム二次電池について、レート特性およびサイクル特性をつぎの要領で調べた。
結果を表4に示す。
(リチウム二次電池(ラミネートセル)の作製)
 人造黒鉛粉末(日立化成(株)製。商品名MAG-D)に、蒸留水で分散させたスチレン-ブタジエンゴムを固形分で6質量%となるように加え、ディスパーザーで混合してスラリー状としたものを負極集電体(厚さ10μmの銅箔)上に均一に塗布し、乾燥し、負極合剤層を形成し、その後、ローラプレス機により圧縮成形し、切断した後、乾燥し、リード体を溶接して、帯状の負極を作製した。
 帯状の正極を40mm×72mm(10mm×10mmの正極端子付)に切り取り、また帯状の負極を42mm×74mm(10mm×10mmの負極端子付)に切り取り、各端子にリード体を溶接した。また、厚さ20μmの微孔性ポリエチレンフィルムを78mm×46mmの大きさに切ってセパレータとし、セパレータを挟むように正極と負極をセットし、これらをアルミニウムラミネート包装材内に入れた。ついで包装材中に電解液(エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)の体積比3/7の溶媒にLiPF6を1モル/リットルの濃度で溶解したもの)を2mlずつ入れて密封して容量72mAhのラミネートセルを作製した。
(レート特性)
 このラミネートセルを用い、0.5C・4.2Vで充電電流が1/10Cになるまで充電し0.2C相当の電流で3.0Vまで放電し、放電容量を求める。引き続き、0.5C、4.2Vで充電電流が1/10Cになるまで充電し、5C相当の電流で3.0Vになるまで放電し、放電容量を求める。この5Cでの放電容量と、上記の0.2Cでの放電容量との比から、レート特性を評価する。レート特性はつぎの計算式で求められた値をレート特性として記載する。
レート特性(%)=5C放電容量(mAh)/0.2C放電容量(mAh)×100
(サイクル特性)
 充放電電流をCで表示した場合、72mAを1Cとして以下の充放電測定条件で測定を行う。
充放電条件
充電:0.5C、4.2Vにて充電電流が1/10Cになるまでを保持(CC・CV充電)
放電:1C、2.5Vcut(CC放電)。
 サイクル特性についてはこの充放電条件で上記ラミネートセルに対して充放電試験を行い100サイクルの放電容量を測定する。サイクル特性についてはつぎの計算式で求められた値を容量維持率として記載する。
容量維持率(%)=100サイクル放電容量(mAh)/1サイクル放電容量(mAh)×100
Figure JPOXMLDOC01-appb-T000004
 表4の結果から、フッ素ゴム粒子(C)を配合した正極を用いても電池特性が維持されることが分かる。一方、アクリルゴム粒子を配合した合剤(1-10)およびスチレン-ブタジエンゴム粒子を配合した合剤(1-11)を用いた場合は、ガス発生の影響と思われるが、サイクル特性が劣ることがわかる。
実施例5
 Si(負極活物質。富士シリシア化学(株)製)とアセチレンブラック(電気化学工業(株)製のデンカブラック)と表5に示す合剤とを質量比で45:45:10の割合でディスパーザーにてN-メチルピロリドン(水分含有量30ppm)に分散混合して負極合剤用スラリーを調製した。このスラリーを負極集電体(厚さ10μmの銅箔)上に均一に塗布し、乾燥し、負極合剤層を形成し、その後、ロールプレス機により圧縮成形し、切断した後、乾燥し、リード体を溶接して、帯状の負極を作製した。
 正極は、正極活物質としてA1-2(LiNi1/3Co1/3Mn1/32)を用いたほかは実施例1と同様にして作製した。
 この負極と正極とを用いて実施例4と同様にしてリチウム二次電池(ラミネートセル)を作製し、サイクル特性を実施例4と同様にして測定した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5の結果から、負極活物質として塩基性材料を使用した場合にもサイクル特性が維持されることが分かる。
実施例6
 実施例1において、表6に示す成分の合剤スラリーを用いたほかは同様にし正極を作製し、密度、割れの有無および電解液への膨潤率を調べた。結果を表6に示す。
正極活物質(A1)
(A1-3):Li2Mn24
(A1-4):LiNi0.8Mn0.22
(A1-5):LiFe1/3Co1/3Mn1/32
結着剤(B2)
(B2-3):TFE/VdF共重合体(TFE/VdF=33/67モル%比)
(B2-4):TFE/VdF共重合体(TFE/VdF=38/62モル%比)
(B2-5):TFE/VdF共重合体(TFE/VdF=8/92モル%比)
フッ素ゴム粒子(C)
(C-1):架橋VdF/HFP(78/22モル%比)共重合体ゴム。平均1次粒子径0.3μm)
Figure JPOXMLDOC01-appb-T000006
実施例7
 実施例4において、合剤No.1-1のスラリーを調製する際に使用するNMPとして、水分含有量が100ppmのNMP、500ppmのNMPおよび1000ppmのNMP、ならびに水を用いたほかは同様にしてリチウム二次電池(ラミネートセル)を作製し、レート特性およびサイクル特性を調べた。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
実施例8
 実施例5において、負極活物質としてSiに代えてSiO2またはSnを用いたほかは同様にして負極を作製した。
 正極は、正極活物質としてA1-2(LiNi1/3Co1/3Mn1/32)を用いたほかは実施例1と同様にして作製した。
 この負極と正極とを用いて実施例4と同様にしてリチウム二次電池(ラミネートセル)を作製し、サイクル特性を実施例4と同様にして測定した。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008

Claims (17)

  1.  電極活物質(A)と結着剤(B)とフッ素ゴム粒子(C)を含むリチウム二次電池の電極合剤用スラリー。
  2.  フッ素ゴム粒子が、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体ゴムユニット、テトラフルオロエチレンとフッ化ビニリデンとヘキサフルオロプロピレンとの共重合体ゴムユニット、またはテトラフルオロエチレンとプロピレンとの共重合体ゴムユニットを含む請求項1記載の電極合剤用スラリー。
  3.  フッ素ゴム粒子(C)が架橋されたフッ素ゴム粒子である請求項1または2記載の電極合剤用スラリー。
  4.  フッ素ゴム粒子(C)の平均1次粒子径が0.1~2.0μmである請求項1~3のいずれかに記載の電極合剤用スラリー。
  5.  結着剤(B)が、ポリフッ化ビニリデン(B1)、および/または
    組成式(B2):
    (VDF)(TFE)(HFP)
    (式中、VDFはフッ化ビニリデン由来の構造単位;TFEはテトラフルオロエチレン由来の構造単位;HFPはヘキサフルオロプロピレン由来の構造単位;0.45≦m<1;0<n≦0.5;0≦l≦0.1。ただし、m+n+l=1)で示される含フッ素重合体(B2)を含む請求項1~4のいずれかに記載の電極合剤用スラリー。
  6.  結着剤(B2)が、式(B2)において、0.50≦m≦0.90、0.09≦n≦0.50および0≦l≦0.08。ただし、m+n+l=1)である含フッ素共重合体を含む請求項5記載の電極合剤用スラリー。
  7.  結着剤(B2)が、式(B2)において、lが0で、0.50≦m≦0.90および0.10≦n≦0.50。ただし、m+n=1)である二元含フッ素共重合体を含む請求項5記載の電極合剤用スラリー。
  8.  結着剤(B2)が、式(B2)において、0.50≦m≦0.90、0.09≦n≦0.49および0.01≦l≦0.04。ただし、m+n+l=1)である含フッ素共重合体を含む請求項5記載の電極合剤用スラリー。
  9.  結着剤(B)が、さらに、ポリフッ化ビニリデン(B1)および含フッ素重合体(B2)以外の溶剤可溶型熱可塑性樹脂(B3)を含む請求項5~8のいずれかに記載の電極合剤用スラリー。
  10.  結着剤(B3)が、ポリアクリル酸系重合体、ポリメタクリル酸系重合体、ポリイミド、ポリアミドおよびポリアミドイミドよりなる群から選ばれる少なくとも1種である請求項9記載の電極合剤用スラリー。
  11.  電極活物質(A)が正極活物質(A1)であり、式(A1):
    Li 1-y
    (式中、0.4≦x≦1;0.3≦y≦1;MはNiおよびMnよりなる群から選ばれる少なくとも1種;MはCo、AlおよびFeよりなる群から選ばれる少なくとも1種)で示されるリチウム含有複合金属酸化物を含む請求項1~10のいずれかに記載の電極合剤用スラリー。
  12.  電極活物質(A)がSiおよび/またはSnを含有する塩基性材料を含む負極活物質(A2)である請求項1~10のいずれかに記載の電極合剤用スラリー。
  13.  さらに有機溶媒を含む請求項1~12のいずれかに記載の電極合剤用スラリー。
  14.  有機溶媒が、水分含有量が100ppm以下の有機溶媒である請求項13記載の電極合剤用スラリー。
  15.  固形分中に電極活物質(A)を70~98質量%、結着剤(B)を0.1~20質量%、およびフッ素ゴム粒子(C)を0.1~20質量%含む請求項1~14のいずれかに記載の電極合剤用スラリー。
  16.  請求項1~15のいずれかに記載の電極合剤用スラリーを集電体に塗工し乾燥して得られるリチウム二次電池の電極。
  17.  請求項16記載の電極を正極および/または負極とし、非水電解液を備えるリチウム二次電池。
PCT/JP2010/061387 2009-07-03 2010-07-05 リチウム二次電池の電極合剤用スラリー、該スラリーを用いた電極およびリチウム二次電池 WO2011002097A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011521002A JP5382120B2 (ja) 2009-07-03 2010-07-05 リチウム二次電池の電極合剤用スラリー、該スラリーを用いた電極およびリチウム二次電池
KR1020127000125A KR101397774B1 (ko) 2009-07-03 2010-07-05 리튬 이차 전지의 전극 합제용 슬러리, 상기 슬러리를 사용한 전극 및 리튬 이차 전지
CN2010800262748A CN102473916A (zh) 2009-07-03 2010-07-05 锂二次电池的电极合剂用浆料、使用了该浆料的电极和锂二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-158949 2009-07-03
JP2009158949 2009-07-03

Publications (1)

Publication Number Publication Date
WO2011002097A1 true WO2011002097A1 (ja) 2011-01-06

Family

ID=43411165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061387 WO2011002097A1 (ja) 2009-07-03 2010-07-05 リチウム二次電池の電極合剤用スラリー、該スラリーを用いた電極およびリチウム二次電池

Country Status (4)

Country Link
JP (1) JP5382120B2 (ja)
KR (1) KR101397774B1 (ja)
CN (1) CN102473916A (ja)
WO (1) WO2011002097A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011228073A (ja) * 2010-04-19 2011-11-10 Hitachi Maxell Energy Ltd リチウム二次電池用正極およびリチウム二次電池
JP2012190731A (ja) * 2011-03-14 2012-10-04 Hitachi Maxell Energy Ltd 非水電解液二次電池およびその製造方法
WO2013128521A1 (ja) * 2012-03-02 2013-09-06 株式会社豊田自動織機 二次電池
WO2013176092A1 (ja) * 2012-05-21 2013-11-28 ダイキン工業株式会社 電極合剤
WO2013176093A1 (ja) * 2012-05-21 2013-11-28 ダイキン工業株式会社 電極合剤
JP2015207417A (ja) * 2014-04-18 2015-11-19 トヨタ自動車株式会社 非水電解質二次電池用の正極とその製造方法
JP2017147206A (ja) * 2016-02-19 2017-08-24 三星エスディアイ株式会社Samsung SDI Co., Ltd. 非水電解質二次電池用正極、非水電解質二次電池用巻回素子、及び非水電解質二次電池
WO2018211363A1 (en) * 2017-05-15 2018-11-22 3M Innovative Properties Company Materials for lithium-ion electrochemical cells and methods of making and using same
JP2020013867A (ja) * 2018-07-18 2020-01-23 旭化成株式会社 正極前駆体
WO2020021204A1 (fr) 2018-07-27 2020-01-30 Arkema France Anode pour batterie li-ion
WO2020071336A1 (ja) * 2018-10-03 2020-04-09 ダイキン工業株式会社 正極構造体および二次電池
WO2021039539A1 (ja) * 2019-08-30 2021-03-04 株式会社村田製作所 二次電池
WO2022039260A1 (ja) 2020-08-20 2022-02-24 ダイキン工業株式会社 電池用結着剤、電極合剤、電極および二次電池
WO2022070891A1 (ja) * 2020-09-30 2022-04-07 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極および非水電解質二次電池
US11978907B2 (en) 2016-02-19 2024-05-07 Samsung Sdi Co., Ltd. Positive electrode for lithium secondary battery, winding element for lithium secondary battery, and lithium secondary battery

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013147077A1 (ja) 2012-03-28 2013-10-03 旭硝子株式会社 蓄電デバイス用バインダー
KR101323269B1 (ko) * 2013-04-25 2013-10-30 한밭대학교 산학협력단 고온 특성 향상을 위한 전극용 바인더 조성물 및 이를 포함하는 리튬이차전지
JP6477329B2 (ja) 2015-07-28 2019-03-06 株式会社村田製作所 負極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
CN109585704A (zh) * 2017-09-29 2019-04-05 辉能科技股份有限公司 可挠电池
KR102564970B1 (ko) * 2019-03-12 2023-08-09 주식회사 엘지에너지솔루션 음극 및 이를 포함하는 이차전지
KR20230149677A (ko) * 2022-04-20 2023-10-27 주식회사 엘지에너지솔루션 전극, 이를 포함하는 이차전지, 및 이의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121262A (ja) * 1986-11-08 1988-05-25 Asahi Chem Ind Co Ltd 非水系電池用電極
JPH0495363A (ja) * 1990-07-31 1992-03-27 Sanyo Electric Co Ltd 非水系二次電池
JP2006169503A (ja) * 2004-11-19 2006-06-29 Du Pont Mitsui Fluorochem Co Ltd 含フッ素重合体水性分散液
JP2006185887A (ja) * 2004-11-30 2006-07-13 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2008293719A (ja) * 2007-05-23 2008-12-04 Sony Corp ゲル状電解質二次電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998027605A1 (en) * 1996-12-16 1998-06-25 Daikin Industries, Ltd. Binder for rechargeable battery with nonaqueous electrolyte and battery electrode depolarizing mix prepared using the same
JP3188853B2 (ja) * 1997-04-01 2001-07-16 セイコーインスツルメンツ株式会社 非水電解質二次電池
JP2000058067A (ja) * 1998-08-06 2000-02-25 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2000228197A (ja) * 1998-11-30 2000-08-15 Hitachi Maxell Ltd 非水二次電池
JP4683527B2 (ja) * 2004-07-22 2011-05-18 日本化学工業株式会社 改質リチウムマンガンニッケル系複合酸化物、その製造方法、リチウム二次電池正極活物質及びリチウム二次電池
JP5636681B2 (ja) * 2010-01-22 2014-12-10 ダイキン工業株式会社 リチウム二次電池の電極用バインダー組成物
KR101277996B1 (ko) * 2010-06-30 2013-06-27 다이킨 고교 가부시키가이샤 전극용 바인더 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121262A (ja) * 1986-11-08 1988-05-25 Asahi Chem Ind Co Ltd 非水系電池用電極
JPH0495363A (ja) * 1990-07-31 1992-03-27 Sanyo Electric Co Ltd 非水系二次電池
JP2006169503A (ja) * 2004-11-19 2006-06-29 Du Pont Mitsui Fluorochem Co Ltd 含フッ素重合体水性分散液
JP2006185887A (ja) * 2004-11-30 2006-07-13 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2008293719A (ja) * 2007-05-23 2008-12-04 Sony Corp ゲル状電解質二次電池

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011228073A (ja) * 2010-04-19 2011-11-10 Hitachi Maxell Energy Ltd リチウム二次電池用正極およびリチウム二次電池
JP2012190731A (ja) * 2011-03-14 2012-10-04 Hitachi Maxell Energy Ltd 非水電解液二次電池およびその製造方法
WO2013128521A1 (ja) * 2012-03-02 2013-09-06 株式会社豊田自動織機 二次電池
JP2013182807A (ja) * 2012-03-02 2013-09-12 Toyota Industries Corp 二次電池およびそれを搭載した車両
US9444103B2 (en) 2012-05-21 2016-09-13 Daikin Industries, Ltd. Electrode mixture
CN104285320A (zh) * 2012-05-21 2015-01-14 大金工业株式会社 电极合剂
CN104350635A (zh) * 2012-05-21 2015-02-11 大金工业株式会社 电极合剂
JPWO2013176092A1 (ja) * 2012-05-21 2016-01-14 ダイキン工業株式会社 電極合剤
JPWO2013176093A1 (ja) * 2012-05-21 2016-01-14 ダイキン工業株式会社 電極合剤
US9444104B2 (en) 2012-05-21 2016-09-13 Daikin Industries, Ltd. Electrode mixture
WO2013176092A1 (ja) * 2012-05-21 2013-11-28 ダイキン工業株式会社 電極合剤
WO2013176093A1 (ja) * 2012-05-21 2013-11-28 ダイキン工業株式会社 電極合剤
JP2015207417A (ja) * 2014-04-18 2015-11-19 トヨタ自動車株式会社 非水電解質二次電池用の正極とその製造方法
US11978907B2 (en) 2016-02-19 2024-05-07 Samsung Sdi Co., Ltd. Positive electrode for lithium secondary battery, winding element for lithium secondary battery, and lithium secondary battery
JP2017147206A (ja) * 2016-02-19 2017-08-24 三星エスディアイ株式会社Samsung SDI Co., Ltd. 非水電解質二次電池用正極、非水電解質二次電池用巻回素子、及び非水電解質二次電池
WO2018211363A1 (en) * 2017-05-15 2018-11-22 3M Innovative Properties Company Materials for lithium-ion electrochemical cells and methods of making and using same
JP2020013867A (ja) * 2018-07-18 2020-01-23 旭化成株式会社 正極前駆体
JP7184555B2 (ja) 2018-07-18 2022-12-06 旭化成株式会社 正極前駆体
JP2021533529A (ja) * 2018-07-27 2021-12-02 アルケマ フランス Liイオン電池用アノード
WO2020021204A1 (fr) 2018-07-27 2020-01-30 Arkema France Anode pour batterie li-ion
WO2020071336A1 (ja) * 2018-10-03 2020-04-09 ダイキン工業株式会社 正極構造体および二次電池
JP2020057606A (ja) * 2018-10-03 2020-04-09 ダイキン工業株式会社 正極構造体および二次電池
CN112703619A (zh) * 2018-10-03 2021-04-23 大金工业株式会社 正极结构体和二次电池
WO2021039539A1 (ja) * 2019-08-30 2021-03-04 株式会社村田製作所 二次電池
WO2022039260A1 (ja) 2020-08-20 2022-02-24 ダイキン工業株式会社 電池用結着剤、電極合剤、電極および二次電池
KR20230038563A (ko) 2020-08-20 2023-03-20 다이킨 고교 가부시키가이샤 전지용 결착제, 전극 합제, 전극 및 이차 전지
WO2022070891A1 (ja) * 2020-09-30 2022-04-07 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極および非水電解質二次電池

Also Published As

Publication number Publication date
KR101397774B1 (ko) 2014-05-20
JP5382120B2 (ja) 2014-01-08
KR20120027457A (ko) 2012-03-21
JPWO2011002097A1 (ja) 2012-12-13
CN102473916A (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
JP5382120B2 (ja) リチウム二次電池の電極合剤用スラリー、該スラリーを用いた電極およびリチウム二次電池
JP5625917B2 (ja) リチウム二次電池の電極合剤用スラリー、該スラリーを用いた電極およびリチウム二次電池
JP5494497B2 (ja) リチウム二次電池の正極合剤用スラリー、該スラリーを用いた正極およびリチウム二次電池
US9882216B2 (en) Binder composition for lithium ion secondary battery electrodes, slurry composition for lithium ion secondary battery electrodes, electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP5573980B2 (ja) 結着剤、正極合剤及び負極合剤
JP5366823B2 (ja) 非水系電池用正極構造体
KR101611677B1 (ko) 비수 이차 전지 등의 집전 적층체의 도전성 보호층 형성용 페이스트
WO2011037124A1 (ja) リチウム二次電池の正極集電積層体
JP5949915B2 (ja) 電極合剤
JP3356021B2 (ja) 非水電解液二次電池用結着剤およびそれを用いた電池電極合剤
JP5949914B2 (ja) 電極合剤
JP4253051B2 (ja) 非水系電池用電極合剤および非水系電池
JP7160696B2 (ja) 非水電解質二次電池用電極
CN107408668B (zh) 具有改善的传导性的Li离子电池的电极
JP2005310747A (ja) 非水系電気化学素子電極形成用バインダー、電極合剤、電極構造体および電気化学素子
KR20160076419A (ko) 비수전해질 이차전지용 전극 권회 소자, 이를 포함하는 비수전해질 이차전이지, 및 이의 제조 방법
JP2014132591A (ja) リチウム二次電池の電極合剤用スラリー、電極、その製造方法およびリチウム二次電池
CN114930577A (zh) 负极活性材料、以及包含该负极活性材料的负极和二次电池
JP5412853B2 (ja) リチウム二次電池の正極の製造方法および正極ならびにリチウム二次電池
JP5509644B2 (ja) リチウム二次電池の電極合剤用スラリー、電極、その製造方法およびリチウム二次電池
JP7209420B2 (ja) 非水電解質二次電池用電極
WO2023277055A1 (ja) 電極形成用組成物、電極および二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080026274.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10794265

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011521002

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127000125

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10794265

Country of ref document: EP

Kind code of ref document: A1