WO2010119595A1 - 液封入式防振装置 - Google Patents

液封入式防振装置 Download PDF

Info

Publication number
WO2010119595A1
WO2010119595A1 PCT/JP2010/000147 JP2010000147W WO2010119595A1 WO 2010119595 A1 WO2010119595 A1 WO 2010119595A1 JP 2010000147 W JP2010000147 W JP 2010000147W WO 2010119595 A1 WO2010119595 A1 WO 2010119595A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
elastic membrane
liquid chamber
chamber
membrane
Prior art date
Application number
PCT/JP2010/000147
Other languages
English (en)
French (fr)
Inventor
山本健太郎
齋藤克志
伊澤現
増田辰典
櫻井勝弘
Original Assignee
東洋ゴム工業株式会社
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋ゴム工業株式会社, トヨタ自動車株式会社 filed Critical 東洋ゴム工業株式会社
Priority to EP10764182.1A priority Critical patent/EP2420697B1/en
Priority to CN2010800171626A priority patent/CN102395811B/zh
Priority to US13/258,937 priority patent/US8807544B2/en
Publication of WO2010119595A1 publication Critical patent/WO2010119595A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/10Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like
    • F16F13/105Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like characterised by features of partitions between two working chambers
    • F16F13/106Design of constituent elastomeric parts, e.g. decoupling valve elements, or of immediate abutments therefor, e.g. cages

Definitions

  • the present invention relates to a liquid-filled vibration isolator.
  • an anti-vibration device such as an engine mount that supports the vibration of a vibration source such as an automobile engine so as not to be transmitted to the vehicle body side, a first fixture that is attached to one of the vibration source side and the support side, and the vibration source side and the support side
  • a second fixture attached to the other of the first, a vibration-isolating base made of a rubber-like elastic body interposed between the fixtures, a diaphragm made of a flexible rubber film, and the vibration-proofing base is one of the chamber walls.
  • a main liquid chamber forming a part, a sub-liquid chamber whose diaphragm forms a part of the chamber wall, and an orifice channel communicating between these liquid chambers.
  • Patent Document 2 an abnormal noise when the elastic membrane collides with the displacement regulating member is reduced by providing a thin-film buffer rubber having viscoelasticity on the surface of the displacement regulating member facing the elastic membrane. It is disclosed. However, in this case, a process for providing the buffer rubber is separately required, and the number of parts is increased, leading to an increase in cost.
  • Patent Document 3 discloses that noise is reduced by using a damping alloy as the material of the displacement regulating member.
  • the material of the displacement regulating member is not general-purpose, leading to an increase in cost.
  • Patent Document 4 listed below discloses reducing abnormal noise by setting a deformable leaf spring region on a displacement restricting member and reducing the impact load entering the displacement restricting member by the leaf spring deformation.
  • the shape of the displacement restricting member becomes complicated, resulting in an increase in cost.
  • the deformation of the displacement regulating member lowers the hydraulic pressure in the main liquid chamber, which may be accompanied by a reduction in the originally expected attenuation performance.
  • the present invention has been made in view of the above points, and provides a liquid-filled vibration isolator capable of reducing abnormal noise caused by elastic membrane collision while suppressing an increase in cost and a decrease in performance. With the goal.
  • the liquid-filled vibration isolator includes a first fixture that is attached to one of the vibration source side and the support side, a second fixture that is attached to the other of the vibration source side and the support side, and the first attachment.
  • An anti-vibration base made of a rubber-like elastic body interposed between the fixture and the second fixture, a main liquid chamber in which a liquid forming a part of a chamber wall of the anti-vibration base is enclosed, and rubber-like elasticity
  • At least one sub liquid chamber in which a liquid whose body diaphragm forms a part of the chamber wall, a partition body that partitions the main liquid chamber from any one of the sub liquid chambers, and the main liquid chamber
  • the partition body includes an elastic membrane
  • the elastic membrane includes a butyl rubber or a halogenated butyl rubber. It is formed by a thing.
  • the first fixture, the second fixture, the anti-vibration base, the main liquid chamber, at least one sub liquid chamber, the partition, and the orifice flow.
  • the partition body restricts the displacement amount of the elastic membrane from both sides of the elastic membrane and the elastic membrane that partitions the main liquid chamber and the sub liquid chamber.
  • the elastic membrane is formed from a rubber composition containing butyl rubber or halogenated butyl rubber.
  • a liquid-filled vibration isolator includes the first fixture, the second fixture, the vibration isolator base, the main liquid chamber, and at least one sub liquid chamber.
  • a first orifice channel that communicates the main liquid chamber with any one of the sub-liquid chambers, and any one of the main liquid chamber and the sub-liquid chamber that is tuned to a higher frequency range than the first orifice channel.
  • a second orifice channel that communicates between the two liquid chambers, a partition body that partitions the main liquid chamber and any one of the sub-liquid chambers, and is formed with the second orifice channel; and the second An elastic membrane as a valve member for opening and closing the orifice channel, and a valve accommodating chamber for accommodating and holding the elastic membrane in a part of the second orifice channel so as to be orthogonal to the flow direction of the channel.
  • the elastic membrane provided on the partition body The valve housing provided in the partition body is sandwiched by the wall surface of the valve housing chamber and is deformed by the liquid flow in the second orifice channel inside the outer circumferential portion.
  • a flexible membrane portion that closes the opening of the second orifice channel to the chamber, the membrane portion communicating with the second orifice channel at a position that does not overlap the opening of the partition A communication hole is provided, the second orifice channel is opened in a state where the membrane portion is spaced from the opening, and the elastic membrane is formed of a rubber composition containing butyl rubber or halogenated butyl rubber. It is.
  • the elastic membrane is formed of butyl rubber or halogenated butyl rubber, it is possible to reduce noise caused by collision between the elastic membrane and a member made of a rigid material.
  • Butyl rubber and halogenated butyl rubber generally have a low tensile strength, and therefore, it is considered that they are not suitable for use as a film-like elastic membrane incorporated in a liquid chamber of a liquid-filled vibration isolator. Since the displacement amount of the elastic membrane is regulated by the displacement regulating member, and the excessive deformation of the elastic membrane is suppressed, the above-mentioned drawbacks of butyl rubber and halogenated butyl rubber can be compensated, and durability can be ensured. Therefore, it is possible to reduce noise caused by the collision of the elastic membrane while suppressing an increase in cost and a decrease in performance.
  • the second aspect similar to the first aspect, it is possible to reduce noise caused by the collision of the elastic membrane while suppressing an increase in cost and a decrease in performance.
  • the liquid in the second orifice channel flows through the communication hole provided in the elastic membrane without the second orifice channel being blocked by the elastic membrane. Since it is possible to go back and forth between the liquid chambers, it is possible to realize characteristics using the second orifice channel on the high frequency side.
  • the liquid flow in the second orifice channel increases, so that the elastic membrane is bent and deformed, and the second orifice channel on the high frequency side is closed.
  • the liquid flows between the liquid chambers only through the first orifice channel on the low frequency side, higher attenuation performance can be ensured on the low frequency side.
  • the second orifice channel is closed by the deformation of the elastic membrane, when the liquid flow to the elastic membrane is reduced, the elastic membrane has a restoring force.
  • the second orifice channel can be returned to the open state. Therefore, an urging means such as a spring or a switching chamber for negative pressure is not required, and the characteristics of the two orifice channels can be switched with an inexpensive structure.
  • FIG. 1 is a longitudinal sectional view of a liquid-filled vibration isolator according to a first embodiment.
  • FIG. 2 shows a partition body according to the embodiment, where (a) is a plan view and (b) is a sectional view taken along line IIb-IIb.
  • the orifice member which comprises the partition is shown, (a) is a top view, (b) is a side view
  • the partition plate member which comprises the partition body is shown, (a) is a top view, (b) is a side view 1 shows an elastic membrane constituting the partition, wherein (a) is a plan view, (b) is a side view, and (c) is a cross-sectional view taken along line Vc-Vc.
  • FIG. 2 illustrates an elastic membrane according to the embodiment, where (a) is a perspective view, (b) is a plan view, and (c) is a cross-sectional view taken along line IXc-IXc. It represents the partition body main body of the embodiment, (a) is a perspective view, (b) is a plan view, (c) is a bottom view.
  • Bottom view of the lid member of the same embodiment It is a perspective sectional view of the periphery including the elastic membrane of the same embodiment (the cover member is omitted), (a) is a view at the neutral position of the elastic membrane (open state of the second orifice channel), ( b) is a diagram when the elastic membrane is deformed (closed state of the second orifice channel). It is a graph showing the vibration proof characteristic of the liquid filled type vibration isolator of the embodiment, (a) is a graph at a relatively small amplitude, (b) is a graph at a relatively large amplitude.
  • Liquid-filled vibration isolator 140 Partition body, 150 ... Second diaphragm, 156 ... First orifice channel 160 ... Second orifice channel, 160C, 160D ... Opening 166 ... Elastic membrane, 166A ... Outer periphery 166B ... Flexible membrane portion 168 ... Valve housing chamber, 176 ... Communication hole, 178 ... Projection
  • the vibration isolator 10 is an engine mount that supports an automobile engine, and includes an upper first fixture 12 that is attached to the engine that is a vibration source, and a cylindrical lower portion that is attached to a support-side vehicle body.
  • the second fixture 14 is provided with a vibration-proof base 16 made of a rubber elastic body that is interposed between the fixtures 12 and 14 and connects them.
  • the first fixture 12 is a boss fitting disposed above the axial center portion of the second fixture 14, and is formed with a stopper portion 18 that protrudes in a flange shape outward in the radial direction.
  • a bolt hole 20 into which a bolt (not shown) is screwed is provided at the upper end portion, and is configured to be attached to the engine side via the bolt.
  • the second fixture 14 is a main body metal fitting composed of a cylindrical body portion 22 in which the vibration-isolating base 16 is vulcanized and a bottomed cylindrical portion 24 connected to the lower end portion thereof.
  • a downward-facing bolt 26 projects from the bottom surface of 24 and is configured to be attached to the vehicle body via the bolt 26.
  • the lower end portion of the cylindrical body portion 22 is fixed by caulking to the upper end opening of the bottomed cylindrical portion 24 by a caulking portion 28.
  • Reference numeral 30 is a stopper fitting fixed by caulking to the upper end portion of the cylindrical body portion 22, and exerts a stopper action with the stopper portion 18 of the first fixture 12.
  • the anti-vibration base 16 is formed in a substantially umbrella shape, vulcanized and bonded in a state where the first fixture 12 is embedded in the upper portion thereof, and a lower end outer peripheral portion is vulcanized and bonded to an upper end opening of the cylindrical body portion 22. ing.
  • a seal rubber layer 32 that covers the inner peripheral surface of the cylindrical body portion 22 is connected to the lower end portion of the vibration isolation base 16.
  • a diaphragm 36 made of a flexible rubber film is disposed on the second fixture 14 so as to be opposed to the lower surface of the vibration isolating base 16 in the axial direction X and form a liquid sealing chamber 34 with the vibration isolating base 16. A liquid is enclosed in the liquid enclosure chamber 34.
  • the diaphragm 36 includes an annular reinforcing bracket 36A on the outer peripheral portion, and is fixed to the caulking portion 28 via the reinforcing bracket 36A.
  • the liquid sealing chamber 34 is formed between the lower surface of the vibration isolation base 16 and the diaphragm 36 inside the cylindrical body portion 22, and the vibration isolation base 16 side, that is, the vibration isolation base 16 is formed by the partition body 38.
  • the upper main liquid chamber 34A forming a part of the chamber wall and the diaphragm 36 side, that is, the lower sub-liquid chamber 34B forming a part of the chamber wall are partitioned.
  • the main liquid chamber 34 ⁇ / b> A and the sub liquid chamber 34 ⁇ / b> B are communicated with each other by a single orifice channel 40.
  • the partition body 38 is fitted inside the cylindrical body portion 22 via a seal rubber layer 32, and extends in the axial direction X between a step portion 32 ⁇ / b> A provided on the seal rubber layer 32 and a reinforcing bracket 36 ⁇ / b> A of the diaphragm 36. It is held in a sandwiched state.
  • the partition body 38 includes an elastic membrane 42 made of a rubber elastic body that partitions the main liquid chamber 34A and the sub liquid chamber 34B, and a pair of upper and lower displacement restriction members 44 that restrict the amount of displacement of the elastic membrane 42 from both sides of the film surface. , 46.
  • the partition 38 includes the elastic membrane 42, an orifice member 48 that accommodates the elastic membrane 42 on the inner peripheral surface side and is integrally formed with the upper displacement regulating member 44, and an orifice member
  • the partition plate member 50 is fitted to the inner peripheral surface 48 of the lower plate 48 and constitutes the lower displacement regulating member 46.
  • the orifice member 48 is an annular member made of a rigid material (in this example, a thermoplastic resin) such as aluminum or resin, and has a U-shaped cross section opened outward as shown in FIG.
  • the orifice channel 40 extending along the circumferential direction is formed between the inner circumferential surface of the cylindrical body portion 22 and the inner circumferential surface.
  • the orifice member 48 includes a notch-shaped main liquid chamber side opening 40 ⁇ / b> A that opens to the main liquid chamber 34 ⁇ / b> A at one end in the circumferential direction C, and a secondary liquid at the other end in the circumferential direction C.
  • An auxiliary liquid chamber side opening 40B that opens to the chamber 34B is provided, and the orifice channel 40 communicates between the main liquid chamber 34A and the auxiliary liquid chamber 34B through the openings 40A and 40B.
  • a displacement regulating member 44 is integrally formed on the inner peripheral surface of the orifice member 48.
  • the displacement regulating member 44 is a member located on the main liquid chamber 34 ⁇ / b> A side with respect to the elastic membrane 42, and protrudes inward from the inner peripheral surface of the orifice member 48 to sandwich the outer peripheral portion 42 ⁇ / b> A of the elastic membrane 42.
  • the displacement regulating member 44 has an opening 52 for passing through the axial direction X and transmitting the hydraulic pressure fluctuation in the main fluid chamber 34A to the elastic membrane 42.
  • a total of five are provided, and four arcuate objects surrounding it.
  • the partition plate member 50 is a plate-like member made of a rigid material such as aluminum or resin (in this example, a thermoplastic resin), and constitutes a lower displacement regulating member 46.
  • the displacement regulating member 46 is a member that is positioned on the side of the secondary liquid chamber 34B with respect to the elastic membrane 42 and sandwiches the outer peripheral portion 42A of the elastic membrane 42 together with the upper displacement regulating member 44. As shown in FIG. 4, the displacement regulating member 46 has an annular ring plate-like outer circumferential clamping portion 46 ⁇ / b> A that sandwiches the outer circumferential portion 42 ⁇ / b> A of the elastic membrane 42 and an annular arrangement that is annularly arranged with respect to the axis of the displacement regulating member 46.
  • the rib 46B includes a plurality of connecting ribs 46C that extend in the radial direction by connecting the outer peripheral clamping portion 46A and the annular rib 46B.
  • the inner diameter of the outer peripheral clamping portion 46A and the positions, shapes, and sizes of the annular rib 46B and the connecting rib 46C are respectively the inner diameter of the outer peripheral clamping portion 44A in the upper displacement regulating member 44, and the positions of the annular rib 46B and the connecting rib 46C.
  • the shape and size are set to be the same, and the description is omitted.
  • the lower displacement regulating member 46 also has an opening 54 for penetrating in the axial direction X and transmitting the hydraulic pressure fluctuation in the auxiliary liquid chamber 34B to the elastic membrane 42, similarly to the upper displacement regulating member 44. Is formed.
  • the elastic membrane 42 is a disc-shaped rubber film as shown in FIG.
  • the elastic membrane 42 has a thick outer peripheral portion 42A, and the thick outer peripheral portion 42A is clamped and held from both sides by the outer peripheral clamping portions 44A and 46A of the pair of displacement regulating members 44 and 46. That is, when the upper and lower displacement regulating members 44 and 46 are in close contact with the outer peripheral portion 42A, liquid leakage at the portions is prevented.
  • the elastic membrane 42 has a flexible range 42B whose inner side is thinner than the outer peripheral portion 42A, and a displacement regulating projection 56 is provided in a part of the flexible range 42B.
  • the displacement restricting projections 56 are provided on the film surfaces on both the front and back sides, and are provided in a concentric annular shape with respect to the axis as shown in FIG. Specifically, it is provided in an annular shape at a position corresponding to the annular ribs 44B and 46B so as to contact the annular ribs 44B and 46B of the displacement regulating members 44 and 46.
  • the displacement restricting protrusion 56 is a ridge that has a substantially mountain-shaped cross section and extends in the circumferential direction C, and the height thereof is the same as the film surface of the outer peripheral portion 42A having a thick top surface. Is set. Accordingly, the elastic membrane 42 is configured to be held in close contact by the pair of upper and lower displacement regulating members 44 and 46 at the position where the displacement regulating projection 56 is provided.
  • the flexible range 42B is a thin main body film portion provided inside the outer peripheral portion 42A, and is configured to be able to bend and deform in the axial direction X due to the fluid pressure fluctuations in the main liquid chamber 34A and the sub liquid chamber 34B. Yes.
  • auxiliary projections 58 made of rib-like projections are provided on both surfaces in order to prevent damage such as film tearing.
  • the auxiliary protrusions 58 are formed radially at equal intervals from the axial center to the outer peripheral portion 42A. In this example, 12 lines are provided at 30 ° intervals. As shown in FIG.
  • the auxiliary protrusion 58 is set to have a height smaller than that of the displacement restricting protrusion 56, thereby suppressing an increase in rigidity of the elastic membrane 42 as a whole, and a small amplitude. Maintains low dynamic spring characteristics during input.
  • the auxiliary protrusions 58 are arranged symmetrically on the upper and lower surfaces of the elastic membrane 42.
  • the elastic membrane 42 is formed of a rubber composition containing butyl rubber or halogenated butyl rubber. That is, the rubber composition constituting the elastic membrane 42 uses butyl rubber (IIR) or halogenated butyl rubber as a rubber component, and butyl rubber and halogenated butyl rubber may be used in combination.
  • the halogenated butyl rubber include brominated butyl rubber (Br-IIR) and chlorinated butyl rubber (Cl-IIR).
  • the rubber component (polymer component) is preferably composed only of butyl rubber or halogenated butyl rubber, but a diene rubber such as natural rubber may be used in combination as long as these effects are not impaired.
  • the rubber composition includes fillers such as carbon black and silica, zinc white, stearic acid, softeners, anti-aging agents, vulcanizing agents such as sulfur, and vulcanization accelerators.
  • fillers such as carbon black and silica, zinc white, stearic acid, softeners, anti-aging agents, vulcanizing agents such as sulfur, and vulcanization accelerators.
  • Various additives commonly used in can be blended. These blending amounts are not particularly limited.
  • the filler is preferably blended at 20 to 80 parts by weight with respect to 100 parts by weight of the rubber component.
  • the rubber composition is obtained by kneading using a kneading machine such as a Banbury mixer, a kneader, or an open roll, for example, and the elastic membrane 42 can be obtained by vulcanization molding into a predetermined shape. it can.
  • a kneading machine such as a Banbury mixer, a kneader, or an open roll, for example, and the elastic membrane 42 can be obtained by vulcanization molding into a predetermined shape. it can.
  • the elastic membrane 42 may collide with the displacement restricting members 44 and 46, which may cause abnormal noise. More specifically, the auxiliary protrusion 58 of the elastic membrane 42 collides with the connecting rib 46C of the opposing displacement restricting members 44, 46, or the displacement restricting protrusion 56 sandwiched between the annular ribs 44B, 46B is instantaneously caused by a large amplitude input.
  • the noise may be generated by separating and then colliding with each other.
  • the elastic membrane 42 is made of butyl rubber or halogenated butyl rubber, the rate at which the elastic membrane 42 is deformed with respect to a change in hydraulic pressure due to the high damping performance of these polymers. This is smaller than conventional natural rubber-based elastic membranes. Thereby, the kinetic energy which the elastic membrane 42 at the time of colliding with the displacement control members 44 and 46 has becomes small.
  • butyl rubber or halogenated butyl rubber has a larger hysteresis loss than natural rubber.
  • butyl rubber and halogenated butyl rubber generally have low tensile strength, so it is considered that it is not suitable for use for a film-like elastic membrane incorporated in a liquid chamber of a liquid-sealed vibration isolator, but in this embodiment, Since the displacement amount of the elastic membrane 42 is regulated by the pair of displacement regulating members 44 and 46 and the excessive bending deformation thereof is suppressed, the above-mentioned drawbacks of butyl rubber and halogenated butyl rubber can be compensated.
  • the elastic membrane 42 is provided with the displacement restricting projection 56 having a height substantially equal to the gap between the displacement restricting members 44 and 46 in the annular shape, that is, concentric as described above. Further, since the amount of bending of the elastic membrane 42 can be suppressed and local distortion due to deformation can be suppressed, durability can be ensured.
  • a liquid-filled vibration isolator 100 according to the second embodiment will be described with reference to FIGS.
  • This liquid-filled vibration isolator 100 is an engine mount, as in the first embodiment, and the configurations of the first fixture 12, the second fixture 14, and the vibration isolator base 16 are the same as those in the first embodiment. Yes, the same reference numerals are given and the description is omitted.
  • the diaphragm 36 is used as a first diaphragm, and the liquid sealing chamber 34 formed between the first diaphragm 36 and the vibration isolating base 16 is separated by a partition 140 so that the vibration isolating base 16 is a chamber wall.
  • the upper main liquid chamber 34A that forms part of the first sub-liquid chamber 34B and the lower first sub liquid chamber 34B that forms part of the chamber wall are partitioned.
  • the partition body 140 includes a partition body main body 146 made of a rigid material such as a metal and having a circular shape in plan view and fitted inside the cylindrical body portion 22 via a seal rubber layer 32, and a lower surface of the partition body main body 146. And a partition receiving plate 148 disposed in contact with the side.
  • the partition receiving plate 148 is a disc-shaped metal fitting having a circular opening at the center, and a second diaphragm 150 made of a flexible rubber film is integrally provided at the center opening by vulcanization molding.
  • the partition body main body 146 has a stepped portion 32 ⁇ / b> A provided on the seal rubber layer 32 and the partition receiving plate 148. Is held in the axial direction X.
  • a second sub-liquid chamber 34C that is partitioned from the first sub-liquid chamber 34B by the second diaphragm 150 is provided on the first sub-liquid chamber 34B side of the partition 140.
  • a circular recess 154 is provided at the center of the lower surface of the partition body 146, and the recess 154 is liquid-tightened by the second diaphragm 150 from below.
  • the second diaphragm 150 is formed in a circular shape in plan view in which the second diaphragm 150 forms part of the chamber wall.
  • the second sub liquid chamber 34C is provided in the central portion of the partition 140 on the first sub liquid chamber 34B side.
  • the second sub liquid chamber 34C is shown in FIGS. 7 and 10B. as shown, the center O L of the second auxiliary liquid chamber 34C are arranged so slightly biased from the center (axis) O P of the partition member 140 in the radially outward side.
  • the main liquid chamber 34A and the first sub liquid chamber 34B are communicated with each other via a first orifice channel 156 which is a throttle channel.
  • the first orifice channel 156 is a low frequency side orifice tuned to a low frequency range (for example, about 5 to 15 Hz) corresponding to the shake vibration in order to attenuate the shake vibration during vehicle travel. That is, tuning is performed by adjusting the cross-sectional area and length of the flow path so that the damping effect based on the resonance action of the liquid flowing through the first orifice flow path 156 is effectively exhibited when the shake vibration is input. .
  • the first orifice channel 156 is provided on the outer peripheral side of the partition 140. Specifically, a circumferential direction C (see FIG. 10 (FIG. 10 (B)) is formed between the first orifice forming groove 158 (see FIG. 10) provided outward on the outer periphery of the partition body 146 and the seal rubber layer 32. A first orifice channel 156 extending in b) is formed. As shown in FIG. 10A, the first orifice passage 156 includes a main liquid chamber side opening 156A that opens to the main liquid chamber 34A at one end in the circumferential direction C, and the other end in the circumferential direction C. , A sub liquid chamber side opening 156B that opens to the first sub liquid chamber 34B is provided.
  • the main liquid chamber 34A and the second sub liquid chamber 34C are communicated with each other through a second orifice channel 160 which is a throttle channel.
  • the second orifice flow channel 160 is a high frequency side orifice tuned to a higher frequency range than the first orifice flow channel 156.
  • idle vibration is performed. Is tuned to a high frequency range (for example, about 15 to 50 Hz). That is, it is tuned by adjusting the cross-sectional area and length of the flow path so that the low dynamic spring effect based on the resonance action of the liquid flowing through the second orifice flow path 160 is effectively exhibited when the idle vibration is input. ing.
  • the second orifice channel 160 is provided on the inner peripheral side of the partition 140, and extends in the thickness direction of the partition 140 (in this example, the same as the axial direction X), and the first channel 160A.
  • the first sub liquid chamber 34B side of the body 140 is connected to the first flow path portion 160A and is configured by a second flow path portion 160B extending along the second sub liquid chamber 34C.
  • the second orifice flow channel 160 includes a first flow channel portion 160A that penetrates the partition body main body 146 in the axial direction X on the inner peripheral side with respect to the first orifice forming groove 158, and It consists of an arc-shaped second flow path portion 160B extending in the circumferential direction C provided on the lower surface of the partition body main body 146 in the radial direction of the second sub liquid chamber 34C (see FIG. 10).
  • the second flow path portion 160B has a second orifice forming groove 162 recessed in the lower surface of the partition body main body 146, and a seal rubber portion integrally connected to the upper surface of the partition receiving plate 148 from the outer peripheral portion of the second diaphragm 150. It is formed by liquid-tight sealing at 164.
  • the vibration isolator 100 includes an elastic membrane 166 as a valve member that opens and closes the second orifice channel 160.
  • the elastic membrane 166 is a disc-shaped (circular film-shaped) rubber member, and is formed of a rubber composition containing butyl rubber or halogenated butyl rubber. Details of the rubber composition are the same as those of the elastic membrane 42 of the first embodiment, and a description thereof will be omitted.
  • the partition 140 is provided with a valve accommodating chamber 168 in a part of the second orifice channel 160, and an elastic membrane 166 is orthogonal to the flow direction of the second orifice channel 160 in the valve accommodating chamber 168. Is housed and held. As shown in FIGS. 6 to 8, the elastic membrane 166 is in the posture in which the film surface is orthogonal to the axial direction X that is the flow direction in the middle of the first flow path portion 160A of the second orifice flow path 160. It is arranged.
  • a stepped recess 170 having a circular shape in plan view is provided on the upper surface of the partition body 146, and a metal is formed on the opening side of the stepped recess 170.
  • a space formed by the stepped recess 170 and the lid member 172 is defined as the valve accommodating chamber 168 by internally fitting and fixing the disc-shaped lid member 172 made of a rigid material such as the above.
  • a circular opening 160 ⁇ / b> C of the second orifice channel 160 is provided at the center of the stepped recess 170, and the center of the lid member 172 facing this in the axial direction X is provided.
  • a circular opening 160 ⁇ / b> D is provided in the part, and these openings 160 ⁇ / b> C and 160 ⁇ / b> D are openings of the second orifice channel 160 to the valve storage chamber 168.
  • the elastic membrane 166 is mounted in the stepped recess 170 and the lid member 172 is fixed, so that the outer peripheral portion 166A is stepped with the upper and lower wall surfaces 168A and 168B of the valve storage chamber 168 (ie, the lower surface of the lid member 172). It is held in the valve housing chamber 168 in a state of being liquid-tightly held by the bottom surface of the recess 170.
  • the elastic membrane 166 includes a flexible membrane portion 166B that has a thick outer peripheral portion 166A and a thin film inside the thick outer peripheral portion 166A. It becomes.
  • the film portion 166B is formed so as to block between the inner peripheral surfaces at an intermediate position in the thickness direction (axial direction X) of the thick outer peripheral portion 166A.
  • the membrane portion 166B is bent and deformed (elastically deformed) in the axial direction X from the neutral position shown in FIG. 12A due to the liquid flow in the second orifice channel 160, and as a result, shown in FIG. 12B.
  • the openings 160C and 160D of the second orifice channel 160 are configured to be closed. Accordingly, in the membrane portion 166B, the central portion facing the openings 160C and 160D serves as a plug portion 166C that closes the openings.
  • the membrane portion 166B has a plurality of communication holes 176 that allow the second orifice channel 160 to communicate with each other so as not to overlap with the openings 160C and 160D, that is, when viewed from the axial direction X.
  • the communication holes 176 are arranged in parallel at a plurality of locations on the circumference surrounding the plug portion 166C located at the center of the membrane portion 166B. In this example, four circular communication holes 176 are provided at equal intervals. It has been.
  • the communication hole 176 passes through the communication hole 176 and the second orifice channel 160 when the membrane portion 166B is separated from the openings 160C and 160D, that is, when the plug portion 166C opens these openings (see FIG. 8).
  • the total opening area of the communication holes 176 is set to be larger than the cross-sectional area of the second orifice channel 160, that is, the areas of the openings 160C and 160D so that the throttling effect is not exhibited in the communication holes 176. .
  • the membrane portion 166B is also compressed between the opposing wall surfaces 168A and 168B of the valve accommodating chamber 168 by bending and deforming the membrane portion 166B on the membrane surface at a position that does not overlap the openings 160C and 160D.
  • a plurality of projections 178 are provided. As shown in FIG. 9, the protrusions 178 have a conical shape, in this example, a conical shape, and are provided alternately with the communication holes 176 on the same circumference as the communication holes 176. Further, the protrusions 178 are provided on the upper and lower film surfaces of the film portion 166B and are formed symmetrically.
  • the protrusion 178 is formed so that the tip, that is, the top of the cone, substantially contacts the wall surfaces 168A and 168B of the valve accommodating chamber 168 at the neutral position of the elastic membrane 166. It can also set so that it may not contact.
  • the upper and lower wall surfaces 168A and 168B of the valve storage chamber 168 are in contact with the inner peripheral surface 166A1 (see FIG. 9C) of the thick outer peripheral portion 166A of the elastic membrane 166.
  • a ring-shaped restricting protrusion 180 for restricting the inward displacement of the portion 166A is provided. That is, as shown in FIG. 10A and FIG. 11, the regulation protrusion 180 is formed so as to protrude vertically from the bottom surface of the stepped recess 170 and the lower surface of the lid member 172.
  • the peripheral portions of the openings 160C and 160D are provided as annular convex portions 182 protruding in the axial direction X (see FIGS. 10 and 11), and the wall surface around which the projection 178 hits. 168A and 168B are formed so as to protrude to the film portion 166B side.
  • the annular convex portion 182 has a circular shape in a plan view surrounding the circular openings 160C and 160D over the entire circumference.
  • the front end surface of the annular convex portion 182 is flat, and a predetermined clearance is secured in the axial direction X between the flat front end surface and the plug portion 166C at the central portion of the elastic membrane 166 facing the front end surface. .
  • the elastic membrane 166 has its center O V is, relative to the center O P of the partitioning member 140, the center O L of the second auxiliary liquid chamber 34C on the opposite side, arranged by offsetting ing. That is, the elastic membrane 166 has the center O V of the elastic membrane 166 at the second sub liquid chamber so that the first flow path portion 160A that opens and closes does not overlap the second sub liquid chamber 34C in the thickness direction X of the partition 140. to bias the center O L of 34C are arranged. 7 and 10 (b), the elastic membrane 166 itself (see the valve accommodating chamber 168 in FIG. 10 (b)) is partly connected to the second sub liquid chamber 34C as viewed from the thickness direction X.
  • the elastic membrane 166 partition body 140 is provided so as to be shifted from the center part to the peripheral part side.
  • the center O V of the elastic membrane 166, from the center O P of the partitioning member 140 are offset above the radius value of the elastic membrane 166.
  • the liquid-filled vibration isolator 100 configured as described above has a small liquid flow in the second orifice channel 160 when high-frequency vibration is input with a relatively small amplitude, such as when the vehicle is idle.
  • the membrane portion 166B of the elastic membrane 166 is hardly bent and deformed. Therefore, as shown in FIG. 12A, the second orifice channel 160 is not blocked by the elastic membrane 166, and the liquid in the second orifice channel 160 passes through the communication hole 176 provided in the elastic membrane 166. It is possible to go back and forth between the main liquid chamber 34A and the second sub liquid chamber 34C. Therefore, an excellent vibration-proofing effect against idle vibration is exhibited by the resonance action of the liquid through the second orifice channel 160 on the high frequency side.
  • the liquid-filled vibration isolator 100 has a structure in which the second orifice flow channel 160 is closed by the bending deformation of the elastic membrane 166. Therefore, when the liquid flow to the elastic membrane 166 becomes small, the elastic vibration isolator 100 is elastic. The second orifice channel 160 can be returned to the open state by the restoring force of the membrane 166. Therefore, it is possible to switch the characteristics of the two orifice channels 156 and 160 without separately providing a biasing means such as a spring, and to provide a switchable liquid-filled vibration isolator with an inexpensive and compact structure. Can do.
  • the elastic membrane 166 contacts the wall surfaces 168A and 168B of the valve accommodating chamber 168 when closing the second orifice channel 160, there is a possibility that abnormal noise may be generated.
  • the elastic membrane 166 is made of butyl rubber or halogenated butyl rubber, as in the first embodiment, the kinetic energy at the time of collision is reduced, and the heat generation energy is increased to provide a displacement regulating member. The impact energy transmitted to the wall surfaces 168A and 168B can be reduced. Therefore, similar to the first embodiment, it is possible to effectively reduce abnormal noise caused by the collision of the elastic membrane 166.
  • the film portion 166B of the elastic membrane 166 is provided with the protrusion 178 as described above.
  • the repulsive force of the compressed protrusion 178 makes it possible to increase the restoring force of the elastic membrane 166 after the bending deformation, so that the elastic membrane 166 after the bending deformation is more reliably restored, and the second orifice The flow path 160 can be reliably and smoothly opened.
  • the restoring force of the elastic membrane 166 after bending deformation can be increased, and the wall surface 168A , 168B is also excellent in noise reduction effect due to the reduction of the contact area.
  • restriction projections 180 are provided on the upper and lower wall surfaces 168A and 168B of the valve storage chamber 168, when the elastic membrane 166 is bent and deformed, the restriction projections 180 come into contact with the inner peripheral surface of the outer peripheral portion 166A of the elastic membrane 166. Since the inward displacement is restricted, the elastic membrane 166 is less likely to be displaced inward in the radial direction (is difficult to move), and the performance of the elastic membrane 166 can be maintained.
  • the wall surfaces 168A and 168B at the periphery of the openings 160C and 160D facing the plug portion 166C of the elastic membrane 166 are formed as annular convex portions 182 that are more convex than the periphery thereof, the plug portion 166C and the openings 160C and 160D in which the plug portions 166C are closed This clearance can be easily adjusted by setting the height of the annular projection 182. Therefore, it is easy to adjust a region (input amplitude or the like) where the second orifice channel 160 is closed.
  • the stroke until the plug portion 166C closes the openings 160C and 160D is reduced, and the impact at the time of contact can be reduced.
  • the contact between the elastic membrane 166 and the wall surfaces 168 ⁇ / b> A and 168 ⁇ / b> B can be limited to the annular protrusion 182, and the noise level can be reduced by reducing the contact area. .
  • the elastic membrane 166 is provided offset to the partition body 140, the second orifice channel 160 is provided in the second portion after the second sub liquid chamber 34C is provided in the central portion of the partition body 140. It becomes easy to set the sub liquid chamber 34C outside in the radial direction. That is, the first flow path portion 160A extending in the thickness direction X of the second orifice flow path 160 opened and closed by the elastic membrane 166 does not overlap the second sub liquid chamber 34C in the thickness direction X of the partition 140. Since the elastic membrane 166 is disposed, the lower end of the first flow path portion 160A can be directly connected to the second flow path portion 160B around the second sub liquid chamber 34C.
  • the second orifice channel 160 it is possible to ensure the length of the second orifice channel 160 while keeping the thickness of the partition 140 small.
  • the first flow path portion is disposed so as to overlap the second sub liquid chamber, the second flow around the second sub liquid chamber is secured in order to ensure a large length of the second orifice flow path.
  • it is intended to provide the passage portion it is necessary to pull out the first flow passage portion radially outward so as not to overlap with the second sub liquid chamber in order to connect to the second flow passage portion, and the radial passage extends in this radial direction.
  • the thickness of the partition body is required by the amount corresponding to the flow path, and the structure thereof is complicated, but such a drawback can be solved by offsetting as described above.
  • FIG. 13 is a graph showing the anti-vibration characteristics of the liquid filled type anti-vibration device 100 according to the second embodiment, and the elastic membrane 166 is omitted as a reference example for comparison, and the rest has the same orifice configuration as in the embodiment. The characteristics of the liquid-filled vibration isolator are also shown.
  • the characteristics of the embodiment (storage spring constant Kd and damping coefficient C) and the characteristics of the reference example (storage spring constant Kd ′ and The damping coefficient C ′) was the same.
  • the characteristic (Kd ′, C ′) of the reference example represented by a thin line is the characteristic of the embodiment represented by a thick line ( As for Kd, C), a higher attenuation performance C was secured on the low frequency side.
  • FIG. 14 shows (a) pressure fluctuation in the main liquid chamber 34A and (b) high-frequency orifice (second) at a relatively large amplitude ( ⁇ 0.5 mm) for the liquid-filled vibration isolator 100 of the second embodiment. It is a graph which shows the relationship with the frequency of the liquid flow in the orifice flow path 160).
  • the pressure fluctuation in the main liquid chamber 34A can be regarded as the pressure difference between the main liquid chamber 34A and the second sub liquid chamber 34C, and in the embodiment as shown in FIG. 14 (a), it exceeds 15 Hz.
  • the fluid pressure fluctuation was the maximum near, and the pressure fluctuation was smaller on the lower frequency side.
  • the switching characteristics of the orifice can be expected at a lower frequency in the present embodiment that is operated by the liquid flow in the second orifice channel than in the case of operating by the pressure difference between the liquid chambers.
  • the liquid flow of the second orifice channel 160 when operated as in the elastic membrane 166 of the present embodiment, the liquid flow becomes more active from a lower frequency range than the pressure difference.
  • the flow path 160 can be closed, which is advantageous for attenuation of shake vibration in a low frequency range.
  • the first embodiment only one sub liquid chamber is provided, and in the second embodiment, two sub liquid chambers are provided.
  • the number of sub liquid chambers is not particularly limited as long as there is at least one sub liquid chamber in the present invention.
  • the second orifice channel 160 is the same as the first orifice channel 156 in the main liquid chamber 34A and the first sub-liquid chamber 34B. May be provided in communication with each other.
  • the second sub liquid chamber is provided on the main liquid chamber side of the partitioning body, and the second diaphragm is separated from the main liquid chamber by the second diaphragm, and then the second orifice channel is formed in the second sub liquid chamber. You may comprise so that a chamber and a 1st subliquid chamber may be connected.
  • the second orifice channel has a first channel portion that extends in the thickness direction of the partition body and opens to the first sub-liquid chamber side, and a second channel portion that extends around the second sub-liquid chamber. It is provided on the main liquid chamber side of the partition and is connected to the second sub liquid chamber.
  • the second orifice flow path may be, for example, a communication between the main liquid chamber and one of the sub liquid chambers as long as it allows communication between different liquid chambers.
  • the two sub liquid chambers may be communicated with each other.
  • the elastic membrane 42 employs a configuration in which the outer peripheral portion 42A is sandwiched between the pair of displacement regulating members 44 and 46 to prevent liquid leakage, but the outer peripheral portion 42A is sandwiched. Instead, the entire elastic membrane 42 is configured to move in the axial direction X between the pair of displacement regulating members 44 and 46 so that the liquid flows between the main liquid chamber 34A and the sub liquid chamber 34B in this portion. May be.
  • a butyl rubber rubber composition according to the example was prepared according to the formulation shown in Table 1 below. Further, according to the formulation shown in Table 2 below, a natural rubber-based rubber composition according to a comparative example was prepared.
  • the elastic membrane 42 of the first embodiment is vulcanized and molded according to a conventional method, and this is incorporated into the liquid-filled vibration isolator 10 of the first embodiment, so that the noise performance is improved. evaluated.
  • the present invention can be used for various vibration isolators such as body mounts and differential mounts in addition to engine mounts.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combined Devices Of Dampers And Springs (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

 防振基体16が室壁の一部をなす主液室34Aと、ダイヤフラム36が室壁の一部をなす副液室34Bと、主液室34Aと副液室34Aを仕切る仕切り体38と、主液室34Aと副液室34Bとを連通させるオリフィス流路40と、を備えた液封入式防振装置10において、前記仕切り体38に弾性メンブレン42を設け、前記弾性メンブレン42をブチルゴム又はハロゲン化ブチルゴムを含むゴム組成物により形成する。これにより、弾性メンブレン42の衝突に起因する異音を低減する。

Description

液封入式防振装置
 本発明は、液封入式防振装置に関するものである。
 自動車エンジン等の振動源の振動を車体側に伝達しないように支承するエンジンマウント等の防振装置として、振動源側と支持側の一方に取り付けられる第1取付具と、振動源側と支持側の他方に取り付けられる第2取付具と、これら取付具の間に介設されたゴム状弾性体からなる防振基体と、可撓性ゴム膜からなるダイヤフラムと、防振基体が室壁の一部をなす主液室と、ダイヤフラムが室壁の一部をなす副液室と、これら液室間を連通させるオリフィス流路とを備え、オリフィス流路での液流動による液柱共振作用や防振基体の制振効果により、振動減衰機能と振動絶縁機能が果たすよう構成された液封入式防振装置が知られている。
 また、下記特許文献1のように、オリフィス流路での液体流動効果による比較的大きな振幅入力時の高減衰性能とともに、微振幅入力時の低動ばね特性を発揮するために、仕切り体を、主液室と副液室を仕切る弾性メンブレンと、該弾性メンブレンの変位量をその膜面の両側から規制する一対の変位規制部材とで構成したものが知られている。
 この種の液封入式防振装置においては、弾性メンブレンと変位規制部材との衝突による衝撃が異音となって車室内に伝わることがあり、かかる異音を防止するための方策が種々提案されている。
 例えば、下記特許文献2には、変位規制部材における弾性メンブレンとの対向面に粘弾性を有する薄膜状の緩衝ゴムを設けることで、弾性メンブレンが変位規制部材に衝突する際の異音を低減することが開示されている。しかしながら、この場合、緩衝ゴムを設けるための工程が別途必要であり、また部品点数の増加を伴うので、コスト増加に繋がる。
 下記特許文献3には、変位規制部材の素材を制振合金とすることにより異音を低減することが開示されている。しかしながら、この場合、変位規制部材の素材が汎用でなくなるので、コスト増加に繋がる。
 下記特許文献4には、変位規制部材に変形可能な板バネ領域を設定し、変位規制部材に入る衝撃荷重を板バネ変形により和らげることにより、異音を低減することが開示されている。しかしながら、この場合、変位規制部材の形状が複雑となってコスト増加を伴う。また、変位規制部材の変形により主液室の液圧を低下させることになり、本来期待される減衰性能の低下を伴うおそれがある。
特開2006-057727号公報 特開2006-038017号公報 特開2007-177975号公報 特開2007-177973号公報
 本発明は、以上の点に鑑みてなされたものであり、コスト増加や性能低下を抑えながら、弾性メンブレンの衝突に起因する異音を低減することができる液封入式防振装置を提供することを目的とする。
 本発明に係る液封入式防振装置は、振動源側と支持側の一方に取り付けられる第1取付具と、振動源側と支持側の他方に取り付けられる第2取付具と、前記第1取付具と第2取付具との間に介設されたゴム状弾性体からなる防振基体と、前記防振基体が室壁の一部をなす液体が封入された主液室と、ゴム状弾性体からなるダイヤフラムが室壁の一部をなす液体が封入された少なくとも1つの副液室と、前記主液室といずれかの前記副液室とを仕切る仕切り体と、前記主液室といずれかの前記副液室とを連通させるオリフィス流路と、を備えた液封入式防振装置において、前記仕切り体が弾性メンブレンを備えてなり、前記弾性メンブレンがブチルゴム又はハロゲン化ブチルゴムを含むゴム組成物により形成されたものである。
 好ましい第1の態様では、前記第1取付具と、前記第2取付具と、前記防振基体と、前記主液室と、少なくとも1つの前記副液室と、前記仕切り体と、前記オリフィス流路と、を備えた液封入式防振装置において、前記仕切り体が、前記主液室と副液室を仕切る弾性メンブレンと、前記弾性メンブレンの変位量を当該弾性メンブレンの膜面の両側から規制する一対の変位規制部材とを備えてなり、前記弾性メンブレンがブチルゴム又はハロゲン化ブチルゴムを含むゴム組成物により形成されたものである。
 好ましい第2の態様に係る液封入式防振装置は、前記第1取付具と、前記第2取付具と、前記防振基体と、前記主液室と、少なくとも1つの前記副液室と、前記主液室といずれかの前記副液室とを連通させる第1オリフィス流路と、前記第1オリフィス流路よりも高周波数域にチューニングされて前記主液室と副液室のうちのいずれか2つの液室間を連通させる第2オリフィス流路と、前記主液室といずれかの前記副液室とを仕切るとともに、前記第2オリフィス流路が形成された仕切り体と、前記第2オリフィス流路を開閉する弁部材としての弾性メンブレンと、を備え、前記第2オリフィス流路の一部に当該流路の流れ方向に直交するように前記弾性メンブレンを収容保持する弁収容室が前記仕切り体に設けられ、前記弾性メンブレンは、外周部が前記弁収容室の壁面で挟持されるとともに、該外周部の内側に、前記第2オリフィス流路内の液流動によって撓み変形することで、前記仕切り体に設けられた前記弁収容室への第2オリフィス流路の開口を閉塞する可撓性の膜部分を備え、前記膜部分は、前記仕切り体の前記開口に対して重ならない位置に、前記第2オリフィス流路を連通させる連通穴を有して、前記膜部分が前記開口から離間した状態で前記第2オリフィス流路を開放させるよう構成され、前記弾性メンブレンがブチルゴム又はハロゲン化ブチルゴムを含むゴム組成物により形成されたものである。
 本発明によれば、弾性メンブレンをブチルゴム又はハロゲン化ブチルゴムで形成したことにより、弾性メンブレンと剛性材料からなる部材との衝突による異音を低減することができる。
 上記第1の態様によれば、弾性メンブレンと変位規制部材との衝突による異音を低減することができる。ブチルゴムやハロゲン化ブチルゴムは一般に引張強度が低く、そのため液封入式防振装置の液室内に組み込まれる膜状の弾性メンブレンに対しては使用に適さないとも考えられるが、第1の態様では、一対の変位規制部材によって弾性メンブレンの変位量が規制されて、その過大な撓み変形が抑制されるので、ブチルゴムやハロゲン化ブチルゴムの上記欠点を補うことができ、耐久性を確保することができる。従って、コスト増加や性能低下を抑えながら、弾性メンブレンの衝突に起因する異音を低減することができる。
 上記第2の態様によれば、第1の態様と同様に、コスト増加や性能低下を抑えながら、弾性メンブレンの衝突に起因する異音を低減することができる。しかも、第2の態様であると、比較的振幅が小さい入力では、弾性メンブレンにより第2オリフィス流路が閉塞されることなく、弾性メンブレンに設けた連通穴を通じて第2オリフィス流路内の液体が液室間を行き来可能であるため、高周波側の第2オリフィス流路を利用した特性の実現が可能である。一方、比較的振幅が大きい入力では、第2オリフィス流路内の液流動が大きくなることで、弾性メンブレンが撓み変形し、高周波側の第2オリフィス流路が閉塞される。これにより、低周波側の第1オリフィス流路のみを介して液体が液室間を行き来するので、低周波側でより高い減衰性能の確保が可能となる。また、この第2の態様であると、弾性メンブレンの撓み変形により第2オリフィス流路の閉塞を行う構造であるため、弾性メンブレンへの液流動が小さくなったときには、弾性メンブレンが有する復元力により第2オリフィス流路を開放状態に復帰させることができる。そのため、スプリング等の付勢手段や負圧のための切替室などが不要であり、安価な構造で2つのオリフィス流路の特性を切り替えることができる。
第1実施形態に係る液封入式防振装置の縦断面図 同実施形態の仕切り体を示すものであり、(a)は平面図、(b)はそのIIb-IIb線断面図 同仕切り体を構成するオリフィス部材を示すものであり、(a)は平面図、(b)は側面図 同仕切り体を構成する仕切り板部材を示すものであり、(a)は平面図、(b)は側面図 同仕切り体を構成する弾性メンブレンを示すものであり、(a)は平面図、(b)は側面図、(c)はVc-Vc線断面図 第2実施形態に係る液封入式防振装置の縦断面図 同実施形態の仕切り体の断面図 同仕切り体の要部拡大断面図 同実施形態の弾性メンブレンを表すものであり、(a)は斜視図、(b)は平面図、(c)はIXc-IXc断面図 同実施形態の仕切り体本体を表すものであり、(a)は斜視図、(b)は平面図、(c)は底面図 同実施形態の蓋部材の底面図 同実施形態の弾性メンブレンを含むその周辺の斜視断面図(蓋部材は省略して示す)であり、(a)は弾性メンブレンの中立位置での図(第2オリフィス流路の開放状態)、(b)は弾性メンブレンの撓み変形時での図(第2オリフィス流路の閉塞状態) 同実施形態の液封入式防振装置の防振特性を表すグラフであり、(a)は比較的小振幅時のグラフ、(b)は比較的大振幅時のグラフ (a)同実施形態の防振装置の主液室の圧力変動を示すグラフ、(b)は同防振装置の第2オリフィス流路内の液流れを示すグラフ 大振幅時における異音低減効果を示すグラフであり、(a)実施例に係る防振装置の動荷重データ、(b)は比較例に係る防振装置の動荷重データ
10…液封入式防振装置
12…第1取付具、14…第2取付具、16…防振基体
34A…主液室、34B…副液室(第1副液室)、34C…第2副液室
36…ダイヤフラム(第1ダイヤフラム)
38…仕切り体、40…オリフィス流路
42…弾性メンブレン、42A…外周部、42B…可撓範囲
44,46…変位規制部材、44A,46A…外周挟持部、44B,46B…環状リブ
56…変位規制突起
100…液封入式防振装置
140…仕切り体、150…第2ダイヤフラム、156…第1オリフィス流路
160…第2オリフィス流路、160C,160D…開口
166…弾性メンブレン、166A…外周部、166B…可撓性の膜部分
168…弁収容室、176…連通穴、178…突起
[第1実施形態]
(液封入式防振装置の構造について)
 図1~5を参照して第1実施形態に係る液封入式防振装置10について説明する。この防振装置10は、自動車のエンジンを支承するエンジンマウントであり、振動源であるエンジン側に取り付けられる上側の第1取付具12と、支持側の車体に取り付けられる筒状をなす下側の第2取付具14と、これら両取付具12,14の間に介設されて両者を連結するゴム弾性体からなる防振基体16とを備えてなる。
 第1取付具12は、第2取付具14の軸芯部上方に配されたボス金具であり、径方向外方に向けてフランジ状に突出するストッパ部18が形成されている。また、上端部には不図示のボルトが螺合するボルト穴20が設けられており、該ボルトを介してエンジン側に取り付けられるよう構成されている。
 第2取付具14は、防振基体16が加硫成形される筒状胴部22と、その下端部に連結される有底筒状部24とからなる本体金具であり、有底筒状部24の底面に下向きのボルト26が突設され、このボルト26を介して車体側に取り付けられるように構成されている。筒状胴部22は、その下端部が有底筒状部24の上端開口部に対し、かしめ部28によりかしめ固定されている。符号30は、筒状胴部22の上端部にかしめ固定されたストッパ金具であり、第1取付具12のストッパ部18との間でストッパ作用を発揮する。
 防振基体16は、略傘状に形成され、その上部に第1取付具12が埋設された状態に加硫接着され、下端外周部が筒状胴部22の上端開口部に加硫接着されている。防振基体16の下端部には、筒状胴部22の内周面を覆うシールゴム層32が連なっている。
 第2取付具14には、防振基体16の下面に対して軸方向Xに対向配置されて防振基体16との間に液体封入室34を形成する可撓性ゴム膜からなるダイヤフラム36が取り付けられ、液体封入室34に液体が封入されている。ダイヤフラム36は、外周部に環状の補強金具36Aを備え、該補強金具36Aを介して上記かしめ部28に固定されている。
 液体封入室34は、筒状胴部22の内側において、防振基体16の下面とダイヤフラム36との間に形成されており、仕切り体38によって、防振基体16側、即ち防振基体16が室壁の一部をなす上側の主液室34Aと、ダイヤフラム36側、即ちダイヤフラム36が室壁の一部をなす下側の副液室34Bとに仕切られている。主液室34Aと副液室34Bは、単一のオリフィス流路40により互いに連通されている。
 仕切り体38は、筒状胴部22の内側にシールゴム層32を介して嵌着されており、シールゴム層32に設けられた段部32Aとダイヤフラム36の補強金具36Aとの間で軸方向Xに挟まれた状態に保持されている。
 仕切り体38は、主液室34Aと副液室34Bとを仕切るゴム弾性体からなる弾性メンブレン42と、該弾性メンブレン42の変位量をその膜面の両側から規制する上下一対の変位規制部材44,46とを備えてなる。詳細には、この例では、仕切り体38は、上記弾性メンブレン42と、弾性メンブレン42を内周面側に収容するとともに上側の変位規制部材44が一体に形成されたオリフィス部材48と、オリフィス部材48の内周面に嵌着されて下側の変位規制部材46を構成する仕切り板部材50とからなる。
 オリフィス部材48は、アルミニウムや樹脂等の剛性材料(この例では熱可塑性樹脂)からなる環状部材であり、図1に示すように外向きに開かれた断面コの字状をなし、シールゴム層32を介して筒状胴部22の内周面に嵌合されることで、当該内周面との間に、周方向に沿って延びる上記オリフィス流路40を形成する。図3に示すように、オリフィス部材48は、周方向Cの一端に主液室34Aに対して開口する切り欠き状の主液室側開口40Aを備えるとともに、周方向Cの他端に副液室34Bに対して開口する副液室側開口40Bを備え、これら開口40A,40Bを介して、オリフィス流路40は主液室34Aと副液室34Bの間を連通している。
 図2に示すように、オリフィス部材48の内周面には変位規制部材44が一体に形成されている。変位規制部材44は、弾性メンブレン42に関して主液室34A側に位置する部材であり、オリフィス部材48の内周面から内向きに突設されて弾性メンブレン42の外周部42Aを挟持する円形リング板状の外周挟持部44Aと、変位規制部材44の軸芯に対して環状に配置された環状リブ44Bと、外周挟持部44Aと環状リブ44Bを連結して放射方向に延びる複数の連結リブ44Cとからなる。連結リブ44Cは、この例では周方向Cに等間隔に4本設けられている。これにより、図3に示すように、変位規制部材44には、軸方向Xに貫通して主液室34Aの液圧変動を弾性メンブレン42に伝達するための開口部52が、中央の円形のものと、それを取り囲む4個の円弧状のものとの、合計5個設けられている。
 仕切り板部材50は、アルミニウムや樹脂等の剛性材料(この例では熱可塑性樹脂)からなる板状部材であり、下側の変位規制部材46を構成している。変位規制部材46は、弾性メンブレン42に関して副液室34B側に位置して、上側の変位規制部材44とともに弾性メンブレン42の外周部42Aを挟持する部材である。図4に示すように、変位規制部材46は、弾性メンブレン42の外周部42Aを挟持する円形リング板状の外周挟持部46Aと、変位規制部材46の軸芯に対して環状に配置された環状リブ46Bと、外周挟持部46Aと環状リブ46Bを連結して放射方向に延びる複数の連結リブ46Cとからなる。外周挟持部46Aの内径と、環状リブ46B及び連結リブ46Cの位置、形状及び大きさは、それぞれ、上側の変位規制部材44における外周挟持部44Aの内径と、環状リブ46B及び連結リブ46Cの位置、形状及び大きさと同一に設定されており、説明は省略する。これにより、下側の変位規制部材46にも、軸方向Xに貫通して副液室34Bの液圧変動を弾性メンブレン42に伝達するための開口部54が、上側の変位規制部材44と同様に形成されている。
 弾性メンブレン42は、図5に示すように円板状のゴム膜である。弾性メンブレン42は、外周部42Aが厚肉状をなしており、この厚肉の外周部42Aが、上記一対の変位規制部材44,46の外周挟持部44A,46Aによって両面側から挟圧保持され、すなわち、上下の変位規制部材44,46が外周部42Aに密着することで、その部分での液体のリークが防止されている。
 弾性メンブレン42は、上記外周部42Aよりも内側が薄肉状の可撓範囲42Bとされ、この可撓範囲42Bの一部に変位規制突起56が設けられている。変位規制突起56は、表裏両側の膜面に設けられており、図5(a)に示すように、その軸芯に対して同芯状の環状に設けられている。詳細には、上記変位規制部材44,46の環状リブ44B,46Bに当接するように当該環状リブ44B,46Bに対応する位置に環状に設けられている。変位規制突起56は、断面略山形状をなして周方向Cに延びる凸条であり、その高さは、頂面が厚肉状をなす外周部42Aの膜面と同じ高さになるように設定されている。これにより、弾性メンブレン42は、変位規制突起56が設けられた位置で上下一対の変位規制部材44,46により密着状態に挟持されるよう構成されている。
 上記可撓範囲42Bは、外周部42Aの内側に設けられた薄肉状の本体膜部であり、主液室34A及び副液室34Bの液圧変動により軸方向Xに撓み変形可能に構成されている。可撓範囲42Bには、膜破れ等の破損を防止するために、両面にリブ状突起からなる補助突起58が設けられている。補助突起58は、図5(a)に示すように、軸芯から外周部42Aにかけて放射状に等間隔で形成されている。この例では30°間隔で12本が設けられている。図5(c)に示すように、補助突起58は、変位規制突起56よりも高さが小さく設定されており、これにより、弾性メンブレン42全体としての剛性が上昇するのを抑制し、微振幅入力時の低動ばね特性を維持している。なお、補助突起58は、弾性メンブレン42の上下両面で対称に配置されている。
(弾性メンブレンのゴム組成物について)
 以上の構造において、本実施形態のものでは、弾性メンブレン42が、ブチルゴム又はハロゲン化ブチルゴムを含むゴム組成物により形成されている。すなわち、弾性メンブレン42を構成するゴム組成物は、ブチルゴム(IIR)又はハロゲン化ブチルゴムをゴム成分とするものであり、ブチルゴムとハロゲン化ブチルゴムは併用してもよい。ハロゲン化ブチルゴムとしては、臭素化ブチルゴム(Br-IIR)、塩素化ブチルゴム(Cl-IIR)が挙げられる。なお、ゴム成分(ポリマー成分)は、ブチルゴム又はハロゲン化ブチルゴムのみで構成されることが好ましいが、これらの効果を損なわない範囲内で、天然ゴムなどのジエン系ゴムを併用してもよい。
 該ゴム組成物には、上記ゴム成分の他に、カーボンブラックやシリカなどのフィラー、亜鉛華、ステアリン酸、軟化剤、老化防止剤、硫黄などの加硫剤、加硫促進剤など、ゴム業界において通常に用いられる各種添加剤を配合することができる。これらの配合量は特に限定されるものではないが、例えば、フィラーは、ゴム成分100重量部に対して20~80重量部にて配合されることが好ましい。
 該ゴム組成物は、通常の方法、例えば、バンバリーミキサー、ニーダー、オープンロールなどの混練機を用いて混練りすることにより得られ、所定形状に加硫成形することにより弾性メンブレン42を得ることができる。
(作用効果について)
 以上よりなる第1実施形態の液封入式防振装置10であると、次の作用効果が奏される。すなわち、微振幅入力時には、主液室34Aと副液室34Bの間の液圧差を弾性メンブレン42が有効に緩和して、動ばね定数を低減することができる。一方、大振幅入力時には、弾性メンブレン42の変位が変位規制部材44,46により規制されるので、弾性メンブレン42全体としての剛性を上げて、その分オリフィス流路40による減衰性能の向上を図ることができる。
 そして、大振幅入力時には、弾性メンブレン42が変位規制部材44,46に衝突することにより、異音が生ずるおそれがある。より詳細には、弾性メンブレン42の補助突起58が対向する変位規制部材44,46の連結リブ46Cに衝突したり、環状リブ44B,46Bに挟持された変位規制突起56が大振幅入力により瞬間的に離間しその後衝突することにより、異音が生ずるおそれがある。その場合に、本実施形態であると、弾性メンブレン42がブチルゴム又はハロゲン化ブチルゴムよりなるため、これらのポリマーが持つ減衰性能の高さにより、弾性メンブレン42が液圧変化に対して変形する速度が、従来の一般的な天然ゴム系の弾性メンブレンに対して小さくなる。これにより、変位規制部材44,46に衝突する際の弾性メンブレン42が持つ運動エネルギーが小さくなる。
 また、ブチルゴム又はハロゲン化ブチルゴムは、天然ゴムに対してヒステリシスロスが大きい。これにより、弾性メンブレン42が変位規制部材44,46に接触した際に内部発熱としてエネルギーを大きく消費させられる。そのため、変位規制部材44,46に伝達する衝撃エネルギーを低減できる。すなわち、弾性メンブレン42が持つ運動エネルギーをα、弾性メンブレン42の発熱エネルギーをβとして、変位規制部材44,46に伝達される衝撃エネルギーγは、γ=α-βであるため、βが大きくなることで、衝撃エネルギーγを小さくすることができ、衝突による異音を低減することができる。
 ところで、ブチルゴムやハロゲン化ブチルゴムは一般に引張強度が低く、そのため液封入式防振装置の液室内に組み込まれる膜状の弾性メンブレンに対しては使用に適さないとも考えられるが、本実施形態では、一対の変位規制部材44,46によって弾性メンブレン42の変位量が規制されて、その過大な撓み変形が抑制されるので、ブチルゴムやハロゲン化ブチルゴムの上記欠点を補うことができる。また、特に、本実施形態では、弾性メンブレン42に変位規制部材44,46との隙間と略同等の高さを持つ変位規制突起56を、上記のように環状、即ち同芯状に設けたので、弾性メンブレン42の撓み量を抑え、かつ変形による局部的な歪みを抑えることができるので、耐久性を確保することができる。
 以上より、本実施形態であると、コスト増加や性能低下を抑えながら、弾性メンブレン42の変位規制部材44,46に対する衝突に起因する異音を効果的に低減することができる。
[第2実施形態]
 図6~14を参照して第2実施形態に係る液封入式防振装置100について説明する。この液封入式防振装置100は、第1実施形態と同様、エンジンマウントであり、第1取付具12と第2取付具14と防振基体16の各構成は、第1実施形態と同じであり、同じ符号を付して説明は省略する。第2実施形態では、上記ダイヤフラム36を第1ダイヤフラムとして、該第1ダイヤフラム36と防振基体16との間に形成される液体封入室34を、仕切り体140によって、防振基体16が室壁の一部をなす上側の主液室34Aと、第1ダイヤフラム36が室壁の一部をなす下側の第1副液室34Bに仕切り構成している。
 仕切り体140は、平面視円形状をなして筒状胴部22の内側にシールゴム層32を介して嵌着された金属等の剛性材料からなる仕切り体本体146と、該仕切り体本体146の下面側に当接配置された仕切り受板148とで構成されている。仕切り受板148は、中央部に円形の開口を持つ円板状の金具であり、該中央開口部に可撓性ゴム膜からなる第2ダイヤフラム150が加硫成形により一体に設けられている。そして、該仕切り受板148を、第1ダイヤフラム36の補強金具36Aとともに、上記かしめ部28で固定することにより、仕切り体本体146は、シールゴム層32に設けられた段部32Aと仕切り受板148との間で軸方向Xに挟まれた状態に保持されている。
 仕切り体140の第1副液室34B側には、第2ダイヤフラム150によって第1副液室34Bから仕切られた第2副液室34Cが設けられている。詳細には、仕切り体本体146の下面中央部には、図10(c)にも示されるように、円形の凹所154が設けられ、該凹所154を下方から第2ダイヤフラム150で液密に塞ぐことにより、第2ダイヤフラム150が室壁の一部をなす平面視円形状の第2副液室34Cが形成されている。このようにして第2副液室34Cは、仕切り体140における第1副液室34B側の中央部に設けられているが、厳密には、この例では、図7及び図10(b)に示すように、第2副液室34Cの中心Oが、仕切り体140の中心(軸心)Oから径方向外方側にわずかに偏らせて配置されている。
 上記主液室34Aと第1副液室34Bは、絞り流路である第1オリフィス流路156を介して互いに連通されている。第1オリフィス流路156は、この例では車両走行時のシェイク振動を減衰するために、シェイク振動に対応した低周波数域(例えば、5~15Hz程度)にチューニングされた低周波側オリフィスである。すなわち、第1オリフィス流路156を通じて流動する液体の共振作用に基づく減衰効果がシェイク振動の入力時に有効に発揮されるように、流路の断面積及び長さを調整することによってチューニングされている。
 第1オリフィス流路156は、仕切り体140の外周側に設けられている。詳細には、仕切り体本体146の外周部に設けられた外向きに開かれた第1オリフィス形成溝158(図10参照)と、上記シールゴム層32との間で、周方向C(図10(b)参照)に延びる第1オリフィス流路156が形成されている。第1オリフィス通路156は、図10(a)に示すように、周方向Cの一端に、主液室34Aに対して開口する主液室側開口156Aを備えるとともに、周方向Cの他端に、第1副液室34Bに対して開口する副液室側開口156Bを備える。
 上記主液室34Aと第2副液室34Cは、絞り流路である第2オリフィス流路160を介して互いに連通されている。第2オリフィス流路160は、第1オリフィス流路156よりも高周波数域にチューニングされた高周波側オリフィスであり、この例ではアイドル時(車両停止時)のアイドル振動を低減するために、アイドル振動に対応した高周波数域(例えば、15~50Hz程度)にチューニングされている。すなわち、第2オリフィス流路160を通じて流動する液体の共振作用に基づく低動ばね効果がアイドル振動の入力時に有効に発揮されるように、流路の断面積及び長さを調整することによってチューニングされている。
 第2オリフィス流路160は、仕切り体140の内周側に設けられており、仕切り体140の厚み方向(この例では上記軸方向Xと同じ。)に延びる第1流路部160Aと、仕切り体140の第1副液室34B側において第1流路部160Aに接続されて第2副液室34Cの周りに沿って延びる第2流路部160Bとで構成されている。
 詳細には、第2オリフィス流路160は、図7に示すように、第1オリフィス形成溝158よりも内周側において仕切り体本体146を軸方向Xに貫通する第1流路部160Aと、仕切り体本体146の下面において第2副液室34Cの径方向外側に設けられた周方向Cに延びる円弧状の第2流路部160Bとからなる(図10参照)。そして、第1流路部160Aの上端で主液室34Aに開口し、第1流路部160Aの下端に第2流路部160Bの一端が接続され、第2流路部160Bの他端が第2副液室34Cに接続されることで、主液室34Aと第2副液室34Cとの間を連通している。第2流路部160Bは、仕切り体本体146の下面に凹設された第2オリフィス形成溝162を、仕切り受板148の上面に第2ダイヤフラム150の外周部から一体に連設されたシールゴム部164で液密にシールすることで形成されている。
 この防振装置100は、第2オリフィス流路160を開閉する弁部材としての弾性メンブレン166を備える。弾性メンブレン166は、円板状(円形膜状)のゴム部材であり、ブチルゴム又はハロゲン化ブチルゴムを含むゴム組成物により形成されている。該ゴム組成物の詳細は、第1実施形態の弾性メンブレン42と同様であり、説明は省略する。
 仕切り体140には、第2オリフィス流路160の一部に弁収容室168が設けられており、該弁収容室168内に、弾性メンブレン166が、第2オリフィス流路160の流れ方向に直交するように収容保持されている。弾性メンブレン166は、図6~8に示すように、第2オリフィス流路160の第1流路部160Aの途中において、その流れ方向である軸方向Xに対して、膜面が直交する姿勢に配されている。
 詳細には、仕切り体本体146の上面には、図10(a)及び(b)に示すように平面視円形状の段付き凹部170が設けられ、該段付き凹部170の開口側に、金属等の剛性材料からなる円板状の蓋部材172を内嵌固定することで、段付き凹部170と蓋部材172により形成される空間が上記弁収容室168とされる。図10(b)に示すように、段付き凹部170の中央部には、第2オリフィス流路160の円形の開口160Cが設けられ、また、これに軸方向Xで対向する蓋部材172の中央部には、図11に示すように円形の開口160Dが設けられ、これらの開口160C,160Dが弁収容室168への第2オリフィス流路160の開口となっている。
 弾性メンブレン166は、段付き凹部170内に装着し、上記蓋部材172を固定することで、外周部166Aが弁収容室168の上下の壁面168A,168B(即ち、蓋部材172の下面と段付き凹部170の底面)で液密に挟持された状態にて、弁収容室168内に保持されている。図9に示すように、弾性メンブレン166は、外周部166Aが全周にわたって厚肉状をなすとともに、該厚肉の外周部166Aの内側に薄肉膜状をなす可撓性の膜部分166Bを備えてなる。膜部分166Bは、厚肉の外周部166Aの厚み方向(軸方向X)の中間位置において、その内周面間を塞ぐように形成されている。
 上記膜部分166Bは、第2オリフィス流路160内の液流動によって、図12(a)に示す中立位置から軸方向Xに撓み変形(弾性変形)し、これにより、図12(b)に示すように、第2オリフィス流路160の上記開口160C,160Dを閉塞するように構成されている。従って、膜部分166Bは、これら開口160C,160Dに対向する中央部が、当該開口を閉塞する栓部分166Cとなっている。
 膜部分166Bは、図9に示すように、上記開口160C,160Dに対して重ならない位置、即ち軸方向Xからみてラップしないように、第2オリフィス流路160を連通させる複数の連通穴176を備える。連通穴176は、膜部分166Bの中央に位置する上記栓部分166Cを取り囲む円周上の複数箇所に並設されており、この例では、等間隔にて4個の円形の連通穴176が設けられている。連通穴176は、膜部分166Bが上記開口160C,160Dから離間した状態、即ち栓部分166Cがこれら開口を開放した状態(図8参照)で、該連通穴176を通って第2オリフィス流路160内に液体が流動し、これにより第2オリフィス流路160を開放させるよう構成されている。連通穴176の開口面積は、連通穴176において絞り効果が発揮されないように、その総面積が、第2オリフィス流路160の断面積、即ち上記開口160C,160Dの面積よりも大きく設定されている。
 膜部分166Bには、また、上記開口160C,160Dに対して重ならない位置の膜面に、膜部分166Bが撓み変形することで、弁収容室168の対向する壁面168A,168Bとの間で圧縮される複数の突起178が設けられている。突起178は、図9に示すように、錐体状、この例では円錐状をなしており、上記連通穴176と同じ円周上において、連通穴176と交互に設けられている。また、突起178は、膜部分166Bの上下両側の膜面に突設されており、上下対称に形成されている。突起178は、この例では、弾性メンブレン166の中立位置において、その先端、即ち錐体の頂部が弁収容室168の壁面168A,168Bに、略当接するように形成されているが、中立位置では当接しないように設定することもできる。
 図8に示すように、弁収容室168の上下の壁面168A,168Bには、弾性メンブレン166の厚肉の外周部166Aの内周面166A1(図9(c)参照)に当接して当該外周部166Aの内方への変位を規制するリング状の規制突起180が設けられている。すなわち、規制突起180は、図10(a)及び図11に示すように、段付き凹部170の底面と蓋部材172の下面とに上下に対向して突出形成されている。
 また、図8に示すように、前記開口160C,160Dの周縁部は、軸方向Xに突出する環状凸部182として設けられており(図10,11参照)、上記突起178が当たる周りの壁面168A,168Bに対して膜部分166B側に突出するように形成されている。環状凸部182は、円形の上記開口160C,160Dを全周にわたって取り囲む平面視円形状をなしている。環状凸部182の先端面は平坦であり、この平坦な先端面と該先端面に対向する弾性メンブレン166中央部の栓部分166Cとの間に、軸方向Xで所定のクリアランスが確保されている。
 図7に示すように、弾性メンブレン166は、その中心Oが、仕切り体140の中心Oに対して、第2副液室34Cの中心Oとは反対側に、オフセットさせて配されている。すなわち、弾性メンブレン166は、これが開閉する第1流路部160Aが仕切り体140の厚み方向Xにおいて第2副液室34Cに重ならないように、弾性メンブレン166の中心Oが第2副液室34Cの中心Oから偏らせて配置されている。図7及び図10(b)に示されるように、弾性メンブレン166自体(図10(b)では弁収容室168を参照)は、上記厚み方向Xから見て第2副液室34Cと一部重なり合っているものの、その中心Oに位置する第1流路部160Aは第2副液室34C(図10(b)では凹所154を参照)に重ならないように、弾性メンブレン166が仕切り体140の中央部から周縁部側にずらして設けられている。この例では、弾性メンブレン166の中心Oは、仕切り体140の中心Oから、弾性メンブレン166の半径の値以上にオフセットされている。
 以上よりなる液封入式防振装置100であると、停車したアイドル時のように比較的微振幅で高周波数側の振動が入力した時には、第2オリフィス流路160内の液の流れが小さいため、弾性メンブレン166の膜部分166Bはほとんど撓み変形しない。そのため、図12(a)に示すように、弾性メンブレン166によって第2オリフィス流路160が閉塞されることがなく、弾性メンブレン166に設けた連通穴176を通じて第2オリフィス流路160内の液体が主液室34Aと第2副液室34C間を行き来可能である。そのため、高周波側の第2オリフィス流路160を通じての液体の共振作用により、アイドル振動に対する優れた防振効果が発揮される。
 一方、車両走行時においてシェイク振動のように比較的大振幅で低周波数側の振動が入力した時には、第2オリフィス流路160内の液の流れが大きくなり、この液流動によって弾性メンブレン166の膜部分166Bが流れ方向Xに押圧されることで撓み変形する。これにより、図12(b)に示すように、膜部分166Bによって第2オリフィス流路160が閉塞される。そのため、低周波側の第1オリフィス流路156のみを介して液体が主液室34Aと第1副液室34Bの間を行き来するので、第1オリフィス流路156を流動する液体の共振作用に基づき、シェイク振動に対して高い減衰性能が発揮される。
 このように液封入式防振装置100であると、弾性メンブレン166の撓み変形により第2オリフィス流路160の閉塞を行う構造であるため、弾性メンブレン166への液流動が小さくなったときには、弾性メンブレン166が有する復元力により第2オリフィス流路160を開放状態に復帰させることができる。そのため、スプリング等の付勢手段を別途設けなくても、2つのオリフィス流路156,160による特性を切り替えることができ、安価かつコンパクトな構造で切替式の液封入式防振装置を提供することができる。
 また、弾性メンブレン166は、第2オリフィス流路160を閉塞する際、弁収容室168の壁面168A,168Bに接触するので、それによる異音が生ずるおそれがある。しかしながら、本実施形態では、弾性メンブレン166がブチルゴム又はハロゲン化ブチルゴムよりなるため、第1実施形態と同様に、衝突時に持つ運動エネルギーを小さくし、また発熱エネルギーを大きくして、変位規制部材である上記壁面168A,168Bに伝達する衝撃エネルギーを低減できる。そのため、第1実施形態と同様、弾性メンブレン166の衝突に起因する異音を効果的に低減することができる。
 また、弾性メンブレン166の膜部分166Bには上記の通り突起178が設けられており、この突起178は、膜部分166Bが撓み変形したときに、図12(b)に示すように、弁収容室168の壁面168A,168Bとの間で圧縮される。この圧縮された突起178の反発力により、弾性メンブレン166の撓み変形後の復元力をより大きくすることが可能となるので、撓み変形後の弾性メンブレン166の復帰をより確実にして、第2オリフィス流路160を確実かつスムーズに開放状態とすることができる。
 また、弾性メンブレン166の撓み変形時においても、図12(b)に示すように、突起178の周辺の膜部分166Bの変位を抑制して、第2オリフィス流路160の閉塞時における弾性メンブレン166と弁収容室168の壁面168A,168Bとの接触面積を小さくすることができる。そのため、弾性メンブレン166と上記壁面168A,168Bとの衝突による異音の低減に効果を発揮することができる。
 また、上記実施形態においては、弾性メンブレン166において連通穴176と突起178を同一円周上に交互に複数設けたので、撓み変形後の弾性メンブレン166の復元力を高めることができ、また壁面168A,168Bとの接触面積の減少による異音低減効果にも優れる。
 また、弁収容室168の上下の壁面168A,168Bに規制突起180を設けたので、弾性メンブレン166が撓み変形したときに、弾性メンブレン166の外周部166Aの内周面に規制突起180が当接してその内方への変位を規制するので、弾性メンブレン166が径方向内側にずれにくく(移動しにくい)、弾性メンブレン166の性能を維持することができる。
 また、弾性メンブレン166の栓部分166Cに対向する開口160C,160D周縁の壁面168A,168Bをその周りよりも凸の環状凸部182として形成したので、栓部分166Cとこれが閉塞する開口160C,160Dとのクリアランスを、環状凸部182の高さを設定することで、簡単に調整することが可能となる。そのため、第2オリフィス流路160が閉塞される領域(入力振幅等)の調整が容易となる。
 また、環状凸部182を設けたことにより、栓部分166Cが開口160C,160Dを閉塞するまでのストロークが小さくなり、接触時の衝撃を緩和することができる。また、環状凸部182の存在により、弾性メンブレン166と壁面168A,168Bとの接触を、当該環状凸部182に限定することも可能となり、接触面積の低減による異音レベルの低減も可能となる。
 また、この実施形態では、弾性メンブレン166を仕切り体140にオフセットさせて設けたので、第2副液室34Cを仕切り体140の中央部に設けた上で、第2オリフィス流路160を第2副液室34Cの半径方向外側に設定しやすくなる。すなわち、弾性メンブレン166によって開閉される第2オリフィス流路160の上記厚み方向Xに延びる第1流路部160Aが、仕切り体140の厚み方向Xにおいて第2副液室34Cに重ならないように、弾性メンブレン166を配置したので、第2副液室34Cの周りの第2流路部160Bに第1流路部160Aの下端をそのまま接続することができる。そのため、仕切り体140の厚みを小さく抑えつつ、第2オリフィス流路160の長さを確保することができる。ここで仮に、第1流路部が第2副液室に重なるように配置されている場合、第2オリフィス流路の長さを大きく確保するために第2副液室の周りに第2流路部を設けようとすると、当該第2流路部に接続するために一旦第1流路部を第2副液室から重ならないように径方向外側に引き出す必要があり、この径方向に延びる流路分だけ仕切り体の厚みが必要となり、またその構造も複雑となるが、上記のようにオフセットさせることで、このような欠点を解消することができる。
 図13は、第2実施形態の液封入式防振装置100の防振特性を示すグラフであり、比較のための参考例として弾性メンブレン166を省略しその他は実施形態と同様のオリフィス構成を持つ液封入式防振装置の特性も示した。
 図13(a)に示すように、比較的小振幅(±0.05mm)においては、実施形態の特性(貯蔵バネ定数Kd及び減衰係数C)と、参考例の特性(貯蔵バネ定数Kd’及び減衰係数C’)は同じであった。しかしながら、図13(b)に示すように、比較的大振幅(±0.5mm)においては、細線で表す参考例の特性(Kd’,C’)に対し、太線で表す実施形態の特性(Kd,C)は、低周波数側でより高い減衰性能Cが確保されていた。
 図14は、第2実施形態の液封入式防振装置100について、比較的大振幅(±0.5mm)における、(a)主液室34Aの圧力変動と、(b)高周波オリフィス(第2オリフィス流路160)内の液流れの、周波数との関係を示すグラフである。
 主液室34Aの圧力変動は、主液室34Aと第2副液室34Cとの圧力差と同一視できるものであり、図14(a)のように、実施形態のものでは、15Hzを超える付近で液圧変動が最大となり、それよりも低周波数側では圧力変動が小さかった。一方、第2オリフィス流路160内の液流れについては、図14(b)のように、7Hzにおいても大きい液流れが発生していた。このことから、液室間の圧力差で作動するよりも、第2オリフィス流路内の液体流動により作動させる本実施形態の方が、より低周波数にてオリフィスの切り替え特性を期待できる。すなわち、本実施形態の弾性メンブレン166のように第2オリフィス流路160の液流動で作動する方が、液流動は圧力差よりも低周波数域から活発となるため、より低周波数で第2オリフィス流路160を閉塞することができ、低周波数域のシェイク振動の減衰に有利である。
[その他の実施形態]
 上記第1実施形態では副液室を1つのみ設け、第2実施形態では副液室を2つ設けたが、本発明において副液室は少なくとも1つあれば、その数は特に限定されない。
 例えば、第2実施形態において、副液室として第1副液室34Bのみを設け、第2オリフィス流路160を、第1オリフィス流路156と同様、主液室34Aと第1副液室34Bとを連通させて設けてもよい。また、第2実施形態において、第2副液室を仕切り体の主液室側に設けて、第2ダイヤフラムで主液室から仕切り構成した上で、第2オリフィス流路を該第2副液室と第1副液室とを連通させるように構成してもよい。その場合、第2オリフィス流路は、仕切り体の厚み方向に延びる第1流路部が第1副液室側に開口し、第2副液室の周りに沿って延びる第2流路部が仕切り体の主液室側に設けられて第2副液室に接続される。このように、第2実施形態において、第2オリフィス流路は、異なる液室間を連通させるものであれば、例えば、主液室といずれかの副液室とを連通させるものであってもよく、あるいはまた、2つの副液室間を連通させるものであってもよい。
 また、第1実施形態において、弾性メンブレン42は、外周部42Aを一対の変位規制部材44,46で挟持してすることで液体のリークを防止する構成を採用したが、外周部42Aを挟持させずに、弾性メンブレン42の全体が一対の変位規制部材44,46間で軸方向Xに可動するようにして、この部分で主液室34Aと副液室34B間に液体が流動するように構成してもよい。
 その他、一々列挙しないが、本発明の趣旨を逸脱しない限り、種々の変更が可能である。
 バンバリーミキサーを使用し、下記表1に示す配合に従い、実施例に係るブチルゴム系のゴム組成物を調製した。また、下記表2に示す配合に従い、比較例に係る天然ゴム系のゴム組成物を調製した。得られたゴム組成物を用いて、上記第1実施形態の弾性メンブレン42を常法に従い加硫成形し、これを第1実施形態の液封入式防振装置10に組み込んで、異音性能を評価した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 評価は、実施例及び比較例の各防振装置10について、第1取付具12と第2取付具14との間に、大振幅振動に相当する±1.0mmのsin波の振動(10Hz)を入力し、これにより得られた出力をハイパスフィルターをかけて100Hz以上の荷重成分のみを取り出し、得られた動荷重(N)のデータを図15に示した。
 その結果、図15(b)に示す天然ゴム系のゴム組成物を弾性メンブレン42に用いた比較例では、動荷重が大きかったのに対し、図15(a)に示すブチルゴム系のゴム組成物を弾性メンブレン42に用いた実施例では、動荷重はほとんど検出されず、異音低減効果が格段に優れていた。
 本発明は、エンジンマウントの他、例えばボディマウント、デフマウントなど、種々の防振装置に利用することができる。

Claims (7)

  1.  振動源側と支持側の一方に取り付けられる第1取付具と、
     振動源側と支持側の他方に取り付けられる第2取付具と、
     前記第1取付具と第2取付具との間に介設されたゴム状弾性体からなる防振基体と、
     前記防振基体が室壁の一部をなす液体が封入された主液室と、
     ゴム状弾性体からなるダイヤフラムが室壁の一部をなす液体が封入された少なくとも1つの副液室と、
     前記主液室といずれかの前記副液室とを仕切る仕切り体と、
     前記主液室といずれかの前記副液室とを連通させるオリフィス流路と、
     を備えた液封入式防振装置において、
     前記仕切り体が弾性メンブレンを備えてなり、前記弾性メンブレンがブチルゴム又はハロゲン化ブチルゴムを含むゴム組成物により形成されたことを特徴とする液封入式防振装置。
  2.  前記仕切り体が、前記主液室と副液室を仕切る前記弾性メンブレンと、前記弾性メンブレンの変位量を当該弾性メンブレンの膜面の両側から規制する一対の変位規制部材とを備えてなることを特徴とする請求項1記載の液封入式防振装置。
  3.  前記弾性メンブレンは、外周部が前記一対の変位規制部材により挟持されるとともに、該外周部よりも内側の可撓範囲の一部に変位規制突起が設けられて当該変位規制突起が設けられた位置で前記一対の変位規制部材により挟持されたことを特徴とする請求項2記載の液封入式防振装置。
  4.  前記変位規制部材が、当該変位規制部材の軸芯に対して環状に配置された環状リブを備え、前記変位規制突起が、前記環状リブに当接するように当該環状リブに対応する位置に環状に設けられたことを特徴とする請求項3記載の液封入式防振装置。
  5.  前記オリフィス流路を第1オリフィス流路として、前記第1オリフィス流路よりも高周波数域にチューニングされて前記主液室と副液室のうちのいずれか2つの液室間を連通させる第2オリフィス流路を備え、
     前記第2オリフィス流路が前記仕切り体に形成され、
     前記弾性メンブレンが前記第2オリフィス流路を開閉する弁部材として設けられ、
     前記第2オリフィス流路の一部に当該流路の流れ方向に直交するように前記弾性メンブレンを収容保持する弁収容室が前記仕切り体に設けられ、
     前記弾性メンブレンは、外周部が前記弁収容室の壁面で挟持されるとともに、該外周部の内側に、前記第2オリフィス流路内の液流動によって撓み変形することにより、前記仕切り体に設けられた前記弁収容室への第2オリフィス流路の開口を閉塞する可撓性の膜部分を備え、
     前記膜部分は、前記仕切り体の前記開口に対して重ならない位置に、前記第2オリフィス流路を連通させる連通穴を有して、前記膜部分が前記開口から離間した状態で前記第2オリフィス流路を開放させるよう構成された
     ことを特徴とする請求項1記載の液封入式防振装置。
  6.  前記膜部分は、前記仕切り体の前記開口に対して重ならない位置の膜面に、前記膜部分が撓み変形することにより前記弁収容室の対向する壁面との間で圧縮される突起が設けられたことを特徴とする請求項5記載の液封入式防振装置。
  7.  前記連通穴が、前記膜部分の中央に位置する栓部分を取り囲む円周上の複数箇所に並設され、前記突起が、前記円周上の複数箇所において前記連通穴と交互に設けられたことを特徴とする請求項6記載の液封入式防振装置。
PCT/JP2010/000147 2009-04-16 2010-01-13 液封入式防振装置 WO2010119595A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10764182.1A EP2420697B1 (en) 2009-04-16 2010-01-13 Liquid enclosed antivibration device
CN2010800171626A CN102395811B (zh) 2009-04-16 2010-01-13 液封式防振装置
US13/258,937 US8807544B2 (en) 2009-04-16 2010-01-13 Liquid-sealed antivibration device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009100142A JP5225923B2 (ja) 2009-04-16 2009-04-16 液封入式防振装置
JP2009-100142 2009-04-16

Publications (1)

Publication Number Publication Date
WO2010119595A1 true WO2010119595A1 (ja) 2010-10-21

Family

ID=42982270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000147 WO2010119595A1 (ja) 2009-04-16 2010-01-13 液封入式防振装置

Country Status (5)

Country Link
US (1) US8807544B2 (ja)
EP (1) EP2420697B1 (ja)
JP (1) JP5225923B2 (ja)
CN (1) CN102395811B (ja)
WO (1) WO2010119595A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102588493A (zh) * 2012-03-02 2012-07-18 上海骆氏减震件有限公司 解耦膜、解耦膜骨架和隔振悬置
US8807545B2 (en) 2011-03-31 2014-08-19 Toyo Tire & Rubber Co., Ltd. Liquid-sealed antivibration device
US8864114B2 (en) 2011-03-11 2014-10-21 Toyo Tire & Rubber Co., Ltd. Liquid-sealed antivibration device
WO2018135312A1 (ja) 2017-01-19 2018-07-26 株式会社ブリヂストン 防振装置

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8678360B2 (en) * 2008-09-17 2014-03-25 Toyo Tire & Rubber Co., Ltd. Liquid-sealed type vibration isolator
JP2013011315A (ja) * 2011-06-30 2013-01-17 Tokai Rubber Ind Ltd 流体封入式防振装置
JP5801134B2 (ja) * 2011-08-03 2015-10-28 東洋ゴム工業株式会社 液封入式防振装置
JP5969258B2 (ja) * 2012-04-27 2016-08-17 東洋ゴム工業株式会社 液封入式防振装置
JP5865780B2 (ja) * 2012-05-24 2016-02-17 株式会社ブリヂストン 防振装置
JP5879211B2 (ja) * 2012-06-25 2016-03-08 株式会社ブリヂストン 防振装置
CN103223848B (zh) * 2013-05-06 2015-10-07 重庆长安汽车股份有限公司 动力总成塔式悬置
JP6028099B2 (ja) * 2013-06-03 2016-11-16 株式会社ブリヂストン 防振装置
JP6274927B2 (ja) * 2014-03-17 2018-02-07 株式会社ブリヂストン 防振装置
JP6245646B2 (ja) * 2014-04-08 2017-12-13 株式会社ブリヂストン 防振装置
JP6300404B2 (ja) * 2014-04-09 2018-03-28 株式会社ブリヂストン 防振装置
JP6335622B2 (ja) 2014-04-30 2018-05-30 株式会社ブリヂストン 防振装置
JP6429363B2 (ja) * 2014-06-13 2018-11-28 株式会社ブリヂストン 防振装置
US10145443B2 (en) 2015-01-26 2018-12-04 Itt Manufacturing Enterprises Llc Compliant elastomeric shock absorbing apparatus
KR101596713B1 (ko) * 2015-02-13 2016-02-24 현대자동차주식회사 하이드로마운트
CN104806689B (zh) * 2015-04-28 2017-07-04 安徽江淮汽车集团股份有限公司 一种发动机液压悬置总成
US10589615B2 (en) 2015-08-03 2020-03-17 Ford Global Technologies, Llc Decoupler for a hydraulic engine mount
KR102169365B1 (ko) * 2015-08-31 2020-10-26 현대자동차주식회사 엔진마운트의 노즐 구조
KR101640556B1 (ko) * 2015-08-31 2016-07-19 현대자동차주식회사 멤브레인의 장착구조
DE102016101203A1 (de) 2016-01-25 2017-07-27 Vibracoustic Gmbh Hydrolager mit Unterdruckventil
DE102016101829A1 (de) * 2016-02-02 2017-08-03 Vibracoustic Gmbh Hydrolager mit schaltbar schwingendem Tilgerkanal
JP6619702B2 (ja) * 2016-06-23 2019-12-11 株式会社ブリヂストン 防振装置
KR101769304B1 (ko) 2016-08-18 2017-08-18 현대자동차주식회사 엔진마운트의 노즐판
CN106090112A (zh) * 2016-08-24 2016-11-09 张家港市铭诺橡塑金属有限公司 一种用于汽车的液阻型橡胶隔振器
JP6860407B2 (ja) * 2017-04-13 2021-04-14 Toyo Tire株式会社 ストッパ
DE102017119714B4 (de) * 2017-08-28 2022-01-05 Vega Grieshaber Kg Vibrationssensor
CN108110915B (zh) * 2018-01-25 2024-06-04 博远机电(嘉兴)有限公司 定子密封结构及电机
CN112576681B (zh) * 2019-09-27 2023-02-24 现代自动车株式会社 用于车辆的悬置
JP7348434B2 (ja) * 2020-10-26 2023-09-21 山下ゴム株式会社 開閉体用液封ダンパ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002372091A (ja) * 2001-06-18 2002-12-26 Tokai Rubber Ind Ltd 液体封入式防振装置
JP2006038017A (ja) 2004-07-23 2006-02-09 Bridgestone Corp 防振装置
JP2006057727A (ja) 2004-08-19 2006-03-02 Toyo Tire & Rubber Co Ltd 液封入式防振装置、並びに、その液封入式防振装置に使用される弾性仕切り膜および挟持部材
JP2007092778A (ja) * 2005-09-27 2007-04-12 Toyo Tire & Rubber Co Ltd 液封入式防振装置
JP2007177975A (ja) 2005-12-28 2007-07-12 Bridgestone Corp 防振装置
JP2007177973A (ja) 2005-12-28 2007-07-12 Bridgestone Corp 防振装置
JP2008069905A (ja) * 2006-09-15 2008-03-27 Bridgestone Corp 防振装置

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144443A (ja) * 1984-12-14 1986-07-02 Kinugawa Rubber Ind Co Ltd 液体封入型インシユレ−タのバルブ装置
US4679777A (en) * 1985-10-07 1987-07-14 General Motors Corporation Hydraulic-elastomeric mount displacement decoupler
JPS62228727A (ja) * 1986-03-31 1987-10-07 Kinugawa Rubber Ind Co Ltd 液体封入式インシユレ−タのバルブ装置
JPH0433478Y2 (ja) * 1986-07-08 1992-08-11
JPS63203940A (ja) * 1987-02-19 1988-08-23 Tokai Rubber Ind Ltd 流体封入式マウント装置
JPH04101834U (ja) * 1991-02-14 1992-09-02 東海ゴム工業株式会社 負圧制御式の流体封入型マウント装置
JP2510903B2 (ja) * 1991-06-03 1996-06-26 東海ゴム工業株式会社 流体封入式マウント装置およびその製造方法
US5273262A (en) * 1992-06-15 1993-12-28 General Motors Corporation Hydraulic mount with low amplitude, low-to-medium frequency vibration isolation
JP2817570B2 (ja) 1993-04-26 1998-10-30 東海ゴム工業株式会社 流体封入式防振マウント
JP3414245B2 (ja) * 1998-01-14 2003-06-09 東海ゴム工業株式会社 流体封入式防振装置
JP3697565B2 (ja) * 1998-08-31 2005-09-21 東洋ゴム工業株式会社 液封入式防振装置
JP3663482B2 (ja) 1999-05-27 2005-06-22 東洋ゴム工業株式会社 切替型液封入式防振装置
JP2003097632A (ja) 2001-07-16 2003-04-03 Tokai Rubber Ind Ltd 流体封入式防振装置
US7052003B2 (en) 2002-04-25 2006-05-30 Bridgestone Corporation Vibration isolating apparatus
JP2004003614A (ja) 2002-04-25 2004-01-08 Bridgestone Corp 防振装置
KR20030085715A (ko) 2002-05-01 2003-11-07 가부시키가이샤 후코쿠 액체봉입식 마운트장치
US7815174B2 (en) 2003-03-11 2010-10-19 Bridgestone Corporation Vibration isolator
JP2005113954A (ja) 2003-10-03 2005-04-28 Bridgestone Corp 防振装置
JP4330437B2 (ja) 2003-12-12 2009-09-16 東海ゴム工業株式会社 流体封入式防振装置
US7416173B2 (en) 2004-05-24 2008-08-26 Tokai Rubber Industries, Ltd. Pneumatically switchable type fluid-filled engine mount
FR2872878B1 (fr) 2004-07-07 2008-07-04 Hutchinson Sa Support antivibratoire hydraulique pilotable
US7216857B2 (en) * 2004-10-12 2007-05-15 Toyo Tire & Rubber Co., Ltd. Hydraulic antivibration device
JP4103008B2 (ja) * 2004-10-18 2008-06-18 東海ゴム工業株式会社 流体封入式防振装置
JP4688067B2 (ja) 2005-07-14 2011-05-25 東海ゴム工業株式会社 流体封入式エンジンマウント
JP4585941B2 (ja) 2005-08-18 2010-11-24 日産自動車株式会社 液封入式防振装置
JP4265613B2 (ja) 2005-09-14 2009-05-20 東海ゴム工業株式会社 流体封入式防振装置
JP2007092972A (ja) 2005-09-30 2007-04-12 Tokai Rubber Ind Ltd 流体封入式防振装置
JP4348553B2 (ja) 2005-12-15 2009-10-21 東海ゴム工業株式会社 流体封入式防振装置およびその製造方法
JP4896616B2 (ja) * 2006-07-26 2012-03-14 東海ゴム工業株式会社 流体封入式防振装置
JP2008051214A (ja) 2006-08-24 2008-03-06 Bridgestone Corp 防振装置
JP4919783B2 (ja) 2006-12-05 2012-04-18 山下ゴム株式会社 液封防振装置
DE112007002950B4 (de) 2006-12-05 2014-05-28 Honda Motor Co., Ltd. Flüssigkeitsgedichtete Vibrations-Isolations-Vorrichtung
US8678360B2 (en) * 2008-09-17 2014-03-25 Toyo Tire & Rubber Co., Ltd. Liquid-sealed type vibration isolator
JP5095763B2 (ja) * 2010-01-21 2012-12-12 東洋ゴム工業株式会社 液封入式防振装置
JP5198605B2 (ja) 2011-03-11 2013-05-15 東洋ゴム工業株式会社 液封入式防振装置
JP5248645B2 (ja) 2011-03-31 2013-07-31 東洋ゴム工業株式会社 液封入式防振装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002372091A (ja) * 2001-06-18 2002-12-26 Tokai Rubber Ind Ltd 液体封入式防振装置
JP2006038017A (ja) 2004-07-23 2006-02-09 Bridgestone Corp 防振装置
JP2006057727A (ja) 2004-08-19 2006-03-02 Toyo Tire & Rubber Co Ltd 液封入式防振装置、並びに、その液封入式防振装置に使用される弾性仕切り膜および挟持部材
JP2007092778A (ja) * 2005-09-27 2007-04-12 Toyo Tire & Rubber Co Ltd 液封入式防振装置
JP2007177975A (ja) 2005-12-28 2007-07-12 Bridgestone Corp 防振装置
JP2007177973A (ja) 2005-12-28 2007-07-12 Bridgestone Corp 防振装置
JP2008069905A (ja) * 2006-09-15 2008-03-27 Bridgestone Corp 防振装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8864114B2 (en) 2011-03-11 2014-10-21 Toyo Tire & Rubber Co., Ltd. Liquid-sealed antivibration device
US8807545B2 (en) 2011-03-31 2014-08-19 Toyo Tire & Rubber Co., Ltd. Liquid-sealed antivibration device
CN102588493A (zh) * 2012-03-02 2012-07-18 上海骆氏减震件有限公司 解耦膜、解耦膜骨架和隔振悬置
WO2018135312A1 (ja) 2017-01-19 2018-07-26 株式会社ブリヂストン 防振装置

Also Published As

Publication number Publication date
EP2420697A1 (en) 2012-02-22
EP2420697B1 (en) 2019-06-05
JP5225923B2 (ja) 2013-07-03
CN102395811B (zh) 2013-10-16
JP2010249248A (ja) 2010-11-04
CN102395811A (zh) 2012-03-28
US8807544B2 (en) 2014-08-19
EP2420697A4 (en) 2017-10-25
US20120074629A1 (en) 2012-03-29

Similar Documents

Publication Publication Date Title
JP5225923B2 (ja) 液封入式防振装置
US8864114B2 (en) Liquid-sealed antivibration device
WO2010032344A1 (ja) 液封入式防振装置
US8807545B2 (en) Liquid-sealed antivibration device
JP4348553B2 (ja) 流体封入式防振装置およびその製造方法
US9074654B2 (en) Vibration-damping device
JP5801134B2 (ja) 液封入式防振装置
JP2007092972A (ja) 流体封入式防振装置
JP5431982B2 (ja) 液封入式防振装置
US10895301B2 (en) Fluid-filled vibration-damping device
JP5184276B2 (ja) 液封入式防振装置
JP4705670B2 (ja) 液封入式防振装置
JP2010101466A (ja) 液封入式防振装置
JP5184273B2 (ja) 液封入式防振装置
JP5184272B2 (ja) 液封入式防振装置
JP5510713B2 (ja) 液封入式防振装置
JP2008185152A (ja) 流体封入式防振装置とそれを用いたエンジンマウント
JP3603653B2 (ja) 流体封入式防振装置
JP5801135B2 (ja) 液封入式防振装置
JP5668231B2 (ja) 液封入式防振装置
JP5010564B2 (ja) 液封入式防振装置
JP5050283B2 (ja) 液封入式防振装置
JP4792417B2 (ja) 流体封入式防振装置
JP5690988B2 (ja) 液封入式防振装置
JP2021071126A (ja) 流体封入式防振装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080017162.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010764182

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13258937

Country of ref document: US