WO2010113224A1 - アルミニウム電解コンデンサ用電解液及びアルミニウム電解コンデンサ - Google Patents
アルミニウム電解コンデンサ用電解液及びアルミニウム電解コンデンサ Download PDFInfo
- Publication number
- WO2010113224A1 WO2010113224A1 PCT/JP2009/003262 JP2009003262W WO2010113224A1 WO 2010113224 A1 WO2010113224 A1 WO 2010113224A1 JP 2009003262 W JP2009003262 W JP 2009003262W WO 2010113224 A1 WO2010113224 A1 WO 2010113224A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aluminum
- acid
- electrolytic solution
- electrolytic capacitor
- anode
- Prior art date
Links
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 345
- 239000008151 electrolyte solution Substances 0.000 title claims abstract description 283
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 270
- 239000003990 capacitor Substances 0.000 title claims abstract description 240
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 claims abstract description 213
- -1 phosphorus oxoacid Chemical class 0.000 claims abstract description 197
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims abstract description 160
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 157
- 239000011574 phosphorus Substances 0.000 claims abstract description 157
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims abstract description 153
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 claims abstract description 127
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims abstract description 122
- 150000001875 compounds Chemical class 0.000 claims abstract description 118
- 239000002904 solvent Substances 0.000 claims abstract description 102
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 91
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims abstract description 82
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims abstract description 76
- 235000019253 formic acid Nutrition 0.000 claims abstract description 76
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 claims abstract description 75
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 69
- 239000001361 adipic acid Substances 0.000 claims abstract description 63
- 235000011037 adipic acid Nutrition 0.000 claims abstract description 63
- 150000001536 azelaic acids Chemical class 0.000 claims abstract description 48
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 claims abstract description 47
- 239000007864 aqueous solution Substances 0.000 claims abstract description 40
- 239000002738 chelating agent Substances 0.000 claims abstract description 34
- 239000003792 electrolyte Substances 0.000 claims description 123
- 150000003839 salts Chemical class 0.000 claims description 59
- 239000011888 foil Substances 0.000 claims description 54
- 238000004090 dissolution Methods 0.000 claims description 43
- 238000006243 chemical reaction Methods 0.000 claims description 39
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 claims description 35
- 238000011282 treatment Methods 0.000 claims description 31
- 239000000126 substance Substances 0.000 claims description 28
- 150000002500 ions Chemical class 0.000 claims description 27
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 26
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 claims description 15
- 229920006395 saturated elastomer Polymers 0.000 claims description 13
- 150000001735 carboxylic acids Chemical class 0.000 claims description 11
- 229940067597 azelate Drugs 0.000 claims description 7
- 229910019142 PO4 Inorganic materials 0.000 claims description 4
- 239000010452 phosphate Substances 0.000 claims description 4
- 230000002035 prolonged effect Effects 0.000 abstract description 5
- 150000001279 adipic acids Chemical class 0.000 abstract 1
- 235000011007 phosphoric acid Nutrition 0.000 description 81
- 239000000047 product Substances 0.000 description 30
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 24
- 230000008859 change Effects 0.000 description 24
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 22
- 230000000052 comparative effect Effects 0.000 description 21
- 230000000694 effects Effects 0.000 description 21
- 239000000243 solution Substances 0.000 description 20
- 239000002253 acid Substances 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 15
- 230000015572 biosynthetic process Effects 0.000 description 14
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 14
- 230000002195 synergetic effect Effects 0.000 description 13
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 230000002829 reductive effect Effects 0.000 description 12
- 150000003863 ammonium salts Chemical class 0.000 description 11
- 150000007942 carboxylates Chemical class 0.000 description 10
- FLDCSPABIQBYKP-UHFFFAOYSA-N 5-chloro-1,2-dimethylbenzimidazole Chemical compound ClC1=CC=C2N(C)C(C)=NC2=C1 FLDCSPABIQBYKP-UHFFFAOYSA-N 0.000 description 9
- 239000001741 Ammonium adipate Substances 0.000 description 9
- 235000019293 ammonium adipate Nutrition 0.000 description 9
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 9
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 8
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 8
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 229940085991 phosphate ion Drugs 0.000 description 8
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 7
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 description 7
- 239000003960 organic solvent Substances 0.000 description 7
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 7
- 159000000000 sodium salts Chemical class 0.000 description 7
- AKEUNCKRJATALU-UHFFFAOYSA-N 2,6-dihydroxybenzoic acid Chemical compound OC(=O)C1=C(O)C=CC=C1O AKEUNCKRJATALU-UHFFFAOYSA-N 0.000 description 6
- 150000001278 adipic acid derivatives Chemical class 0.000 description 6
- 150000001412 amines Chemical class 0.000 description 6
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 6
- 238000005868 electrolysis reaction Methods 0.000 description 6
- 238000010828 elution Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 6
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 5
- 159000000007 calcium salts Chemical class 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 5
- URDCARMUOSMFFI-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(2-hydroxyethyl)amino]acetic acid Chemical compound OCCN(CC(O)=O)CCN(CC(O)=O)CC(O)=O URDCARMUOSMFFI-UHFFFAOYSA-N 0.000 description 4
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 4
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 4
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 150000005332 diethylamines Chemical class 0.000 description 4
- 150000004656 dimethylamines Chemical class 0.000 description 4
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 4
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 4
- MNWFXJYAOYHMED-UHFFFAOYSA-N heptanoic acid Chemical compound CCCCCCC(O)=O MNWFXJYAOYHMED-UHFFFAOYSA-N 0.000 description 4
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 4
- 238000006386 neutralization reaction Methods 0.000 description 4
- 229960003330 pentetic acid Drugs 0.000 description 4
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 4
- 239000011241 protective layer Substances 0.000 description 4
- 229940005657 pyrophosphoric acid Drugs 0.000 description 4
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 4
- GIWQSPITLQVMSG-UHFFFAOYSA-N 1,2-dimethylimidazole Chemical compound CC1=NC=CN1C GIWQSPITLQVMSG-UHFFFAOYSA-N 0.000 description 3
- TUSDEZXZIZRFGC-UHFFFAOYSA-N 1-O-galloyl-3,6-(R)-HHDP-beta-D-glucose Natural products OC1C(O2)COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC1C(O)C2OC(=O)C1=CC(O)=C(O)C(O)=C1 TUSDEZXZIZRFGC-UHFFFAOYSA-N 0.000 description 3
- BRRSNXCXLSVPFC-UHFFFAOYSA-N 2,3,4-Trihydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C(O)=C1O BRRSNXCXLSVPFC-UHFFFAOYSA-N 0.000 description 3
- OTLNPYWUJOZPPA-UHFFFAOYSA-N 4-nitrobenzoic acid Chemical compound OC(=O)C1=CC=C([N+]([O-])=O)C=C1 OTLNPYWUJOZPPA-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 3
- 239000005711 Benzoic acid Substances 0.000 description 3
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical class NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 3
- 239000001263 FEMA 3042 Substances 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- LRBQNJMCXXYXIU-PPKXGCFTSA-N Penta-digallate-beta-D-glucose Natural products OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-PPKXGCFTSA-N 0.000 description 3
- QPFYXYFORQJZEC-FOCLMDBBSA-N Phenazopyridine Chemical class NC1=NC(N)=CC=C1\N=N\C1=CC=CC=C1 QPFYXYFORQJZEC-FOCLMDBBSA-N 0.000 description 3
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 3
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical class OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical class CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 235000010233 benzoic acid Nutrition 0.000 description 3
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 3
- 239000004327 boric acid Substances 0.000 description 3
- 150000003940 butylamines Chemical class 0.000 description 3
- 235000015165 citric acid Nutrition 0.000 description 3
- ZJHQDSMOYNLVLX-UHFFFAOYSA-N diethyl(dimethyl)azanium Chemical class CC[N+](C)(C)CC ZJHQDSMOYNLVLX-UHFFFAOYSA-N 0.000 description 3
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical class C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 3
- XQRLCLUYWUNEEH-UHFFFAOYSA-N diphosphonic acid Chemical compound OP(=O)OP(O)=O XQRLCLUYWUNEEH-UHFFFAOYSA-N 0.000 description 3
- WEHWNAOGRSTTBQ-UHFFFAOYSA-N dipropylamine Chemical class CCCNCCC WEHWNAOGRSTTBQ-UHFFFAOYSA-N 0.000 description 3
- 150000002169 ethanolamines Chemical class 0.000 description 3
- 150000003947 ethylamines Chemical class 0.000 description 3
- LIWAQLJGPBVORC-UHFFFAOYSA-N ethylmethylamine Chemical class CCNC LIWAQLJGPBVORC-UHFFFAOYSA-N 0.000 description 3
- 230000008014 freezing Effects 0.000 description 3
- 238000007710 freezing Methods 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 3
- 239000011976 maleic acid Substances 0.000 description 3
- 150000003956 methylamines Chemical class 0.000 description 3
- 150000003016 phosphoric acids Chemical class 0.000 description 3
- 159000000001 potassium salts Chemical class 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical class CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 3
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 3
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 3
- 150000005846 sugar alcohols Polymers 0.000 description 3
- LRBQNJMCXXYXIU-NRMVVENXSA-N tannic acid Chemical compound OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-NRMVVENXSA-N 0.000 description 3
- 229920002258 tannic acid Polymers 0.000 description 3
- 229940033123 tannic acid Drugs 0.000 description 3
- 235000015523 tannic acid Nutrition 0.000 description 3
- 239000011975 tartaric acid Substances 0.000 description 3
- 235000002906 tartaric acid Nutrition 0.000 description 3
- 150000005621 tetraalkylammonium salts Chemical class 0.000 description 3
- DZLFLBLQUQXARW-UHFFFAOYSA-N tetrabutylammonium Chemical class CCCC[N+](CCCC)(CCCC)CCCC DZLFLBLQUQXARW-UHFFFAOYSA-N 0.000 description 3
- CBXCPBUEXACCNR-UHFFFAOYSA-N tetraethylammonium Chemical class CC[N+](CC)(CC)CC CBXCPBUEXACCNR-UHFFFAOYSA-N 0.000 description 3
- QEMXHQIAXOOASZ-UHFFFAOYSA-N tetramethylammonium Chemical class C[N+](C)(C)C QEMXHQIAXOOASZ-UHFFFAOYSA-N 0.000 description 3
- OSBSFAARYOCBHB-UHFFFAOYSA-N tetrapropylammonium Chemical class CCC[N+](CCC)(CCC)CCC OSBSFAARYOCBHB-UHFFFAOYSA-N 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- WYXIGTJNYDDFFH-UHFFFAOYSA-Q triazanium;borate Chemical compound [NH4+].[NH4+].[NH4+].[O-]B([O-])[O-] WYXIGTJNYDDFFH-UHFFFAOYSA-Q 0.000 description 3
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical class CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 3
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical class CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- NYYVCPHBKQYINK-UHFFFAOYSA-N 1-ethyl-2-methylimidazole Chemical compound CCN1C=CN=C1C NYYVCPHBKQYINK-UHFFFAOYSA-N 0.000 description 2
- UIAFKZKHHVMJGS-UHFFFAOYSA-N 2,4-dihydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1O UIAFKZKHHVMJGS-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 2
- JYFHYPJRHGVZDY-UHFFFAOYSA-N Dibutyl phosphate Chemical compound CCCCOP(O)(=O)OCCCC JYFHYPJRHGVZDY-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 240000000907 Musa textilis Species 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- ATHHXGZTWNVVOU-UHFFFAOYSA-N N-methylformamide Chemical compound CNC=O ATHHXGZTWNVVOU-UHFFFAOYSA-N 0.000 description 2
- 125000000320 amidine group Chemical class 0.000 description 2
- GIXWDMTZECRIJT-UHFFFAOYSA-N aurintricarboxylic acid Chemical compound C1=CC(=O)C(C(=O)O)=CC1=C(C=1C=C(C(O)=CC=1)C(O)=O)C1=CC=C(O)C(C(O)=O)=C1 GIXWDMTZECRIJT-UHFFFAOYSA-N 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000013522 chelant Substances 0.000 description 2
- 230000002301 combined effect Effects 0.000 description 2
- 150000001923 cyclic compounds Chemical class 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 2
- 238000004993 emission spectroscopy Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000174 gluconic acid Substances 0.000 description 2
- 235000012208 gluconic acid Nutrition 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- ROBFUDYVXSDBQM-UHFFFAOYSA-N hydroxymalonic acid Chemical compound OC(=O)C(O)C(O)=O ROBFUDYVXSDBQM-UHFFFAOYSA-N 0.000 description 2
- MNUOZFHYBCRUOD-UHFFFAOYSA-N hydroxyphthalic acid Natural products OC(=O)C1=CC=CC(O)=C1C(O)=O MNUOZFHYBCRUOD-UHFFFAOYSA-N 0.000 description 2
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- ZWLPBLYKEWSWPD-UHFFFAOYSA-N o-toluic acid Chemical compound CC1=CC=CC=C1C(O)=O ZWLPBLYKEWSWPD-UHFFFAOYSA-N 0.000 description 2
- AHKZTVQIVOEVFO-UHFFFAOYSA-N oxide(2-) Chemical compound [O-2] AHKZTVQIVOEVFO-UHFFFAOYSA-N 0.000 description 2
- IBIRZFNPWYRWOG-UHFFFAOYSA-N phosphane;phosphoric acid Chemical compound P.OP(O)(O)=O IBIRZFNPWYRWOG-UHFFFAOYSA-N 0.000 description 2
- WLJVNTCWHIRURA-UHFFFAOYSA-N pimelic acid Chemical compound OC(=O)CCCCCC(O)=O WLJVNTCWHIRURA-UHFFFAOYSA-N 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- SEACXNRNJAXIBM-UHFFFAOYSA-N triethyl(methyl)azanium Chemical class CC[N+](C)(CC)CC SEACXNRNJAXIBM-UHFFFAOYSA-N 0.000 description 2
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- OTPDWCMLUKMQNO-UHFFFAOYSA-N 1,2,3,4-tetrahydropyrimidine Chemical group C1NCC=CN1 OTPDWCMLUKMQNO-UHFFFAOYSA-N 0.000 description 1
- HJSYENHCQNNLAS-UHFFFAOYSA-N 1,2,4-trimethyl-4,5-dihydroimidazole Chemical compound CC1CN(C)C(C)=N1 HJSYENHCQNNLAS-UHFFFAOYSA-N 0.000 description 1
- AGMJWUBJIPQHBM-UHFFFAOYSA-N 1,2,4-trimethylimidazole Chemical compound CC1=CN(C)C(C)=N1 AGMJWUBJIPQHBM-UHFFFAOYSA-N 0.000 description 1
- QEIHVTKMBYEXPZ-UHFFFAOYSA-N 1,2-dimethyl-4,5-dihydroimidazole Chemical compound CN1CCN=C1C QEIHVTKMBYEXPZ-UHFFFAOYSA-N 0.000 description 1
- ZFDWWDZLRKHULH-UHFFFAOYSA-N 1,2-dimethyl-5,6-dihydro-4h-pyrimidine Chemical compound CN1CCCN=C1C ZFDWWDZLRKHULH-UHFFFAOYSA-N 0.000 description 1
- VMZNMSUASLBPDS-UHFFFAOYSA-N 1-ethyl-2-methyl-4,5-dihydroimidazole Chemical compound CCN1CCN=C1C VMZNMSUASLBPDS-UHFFFAOYSA-N 0.000 description 1
- OEYNWAWWSZUGDU-UHFFFAOYSA-N 1-methoxypropane-1,2-diol Chemical compound COC(O)C(C)O OEYNWAWWSZUGDU-UHFFFAOYSA-N 0.000 description 1
- MCTWTZJPVLRJOU-UHFFFAOYSA-N 1-methyl-1H-imidazole Chemical compound CN1C=CN=C1 MCTWTZJPVLRJOU-UHFFFAOYSA-N 0.000 description 1
- VWUDGSYCJGEGOI-UHFFFAOYSA-N 1-methyl-2-phenyl-4,5-dihydroimidazole Chemical compound CN1CCN=C1C1=CC=CC=C1 VWUDGSYCJGEGOI-UHFFFAOYSA-N 0.000 description 1
- ANFXTILBDGTSEG-UHFFFAOYSA-N 1-methyl-4,5-dihydroimidazole Chemical compound CN1CCN=C1 ANFXTILBDGTSEG-UHFFFAOYSA-N 0.000 description 1
- ABNDDOBSIHWESM-UHFFFAOYSA-N 1-methyl-5,6-dihydro-4h-pyrimidine Chemical compound CN1CCCN=C1 ABNDDOBSIHWESM-UHFFFAOYSA-N 0.000 description 1
- FGYADSCZTQOAFK-UHFFFAOYSA-N 1-methylbenzimidazole Chemical compound C1=CC=C2N(C)C=NC2=C1 FGYADSCZTQOAFK-UHFFFAOYSA-N 0.000 description 1
- SEULWJSKCVACTH-UHFFFAOYSA-N 1-phenylimidazole Chemical compound C1=NC=CN1C1=CC=CC=C1 SEULWJSKCVACTH-UHFFFAOYSA-N 0.000 description 1
- XHWHHMNORMIBBB-UHFFFAOYSA-N 2,2,3,3-tetrahydroxybutanedioic acid Chemical compound OC(=O)C(O)(O)C(O)(O)C(O)=O XHWHHMNORMIBBB-UHFFFAOYSA-N 0.000 description 1
- BQNDPALRJDCXOY-UHFFFAOYSA-N 2,3-dibutylbutanedioic acid Chemical compound CCCCC(C(O)=O)C(C(O)=O)CCCC BQNDPALRJDCXOY-UHFFFAOYSA-N 0.000 description 1
- MCZRLPTXKFSFMB-UHFFFAOYSA-N 2-(ethoxymethyl)-1-methyl-4,5-dihydroimidazole Chemical compound CCOCC1=NCCN1C MCZRLPTXKFSFMB-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical class NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- WXHLLJAMBQLULT-UHFFFAOYSA-N 2-[[6-[4-(2-hydroxyethyl)piperazin-1-yl]-2-methylpyrimidin-4-yl]amino]-n-(2-methyl-6-sulfanylphenyl)-1,3-thiazole-5-carboxamide;hydrate Chemical compound O.C=1C(N2CCN(CCO)CC2)=NC(C)=NC=1NC(S1)=NC=C1C(=O)NC1=C(C)C=CC=C1S WXHLLJAMBQLULT-UHFFFAOYSA-N 0.000 description 1
- OWCLRJQYKBAMOL-UHFFFAOYSA-N 2-butyloctanedioic acid Chemical compound CCCCC(C(O)=O)CCCCCC(O)=O OWCLRJQYKBAMOL-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- LRZVCQMHMOPSLT-UHFFFAOYSA-N 2-ethyl-1,4-dimethyl-4,5-dihydroimidazole Chemical compound CCC1=NC(C)CN1C LRZVCQMHMOPSLT-UHFFFAOYSA-N 0.000 description 1
- AFENDNXGAFYKQO-UHFFFAOYSA-N 2-hydroxybutyric acid Chemical compound CCC(O)C(O)=O AFENDNXGAFYKQO-UHFFFAOYSA-N 0.000 description 1
- XWVFEDFALKHCLK-UHFFFAOYSA-N 2-methylnonanedioic acid Chemical compound OC(=O)C(C)CCCCCCC(O)=O XWVFEDFALKHCLK-UHFFFAOYSA-N 0.000 description 1
- CFBYEGUGFPZCNF-UHFFFAOYSA-N 2-nitroanisole Chemical compound COC1=CC=CC=C1[N+]([O-])=O CFBYEGUGFPZCNF-UHFFFAOYSA-N 0.000 description 1
- SLAMLWHELXOEJZ-UHFFFAOYSA-N 2-nitrobenzoic acid Chemical compound OC(=O)C1=CC=CC=C1[N+]([O-])=O SLAMLWHELXOEJZ-UHFFFAOYSA-N 0.000 description 1
- IQUPABOKLQSFBK-UHFFFAOYSA-N 2-nitrophenol Chemical compound OC1=CC=CC=C1[N+]([O-])=O IQUPABOKLQSFBK-UHFFFAOYSA-N 0.000 description 1
- QXGJCWSBOZXWOV-UHFFFAOYSA-N 3,4-dihydroxyphthalic acid Chemical compound OC(=O)C1=CC=C(O)C(O)=C1C(O)=O QXGJCWSBOZXWOV-UHFFFAOYSA-N 0.000 description 1
- WGYFINWERLNPHR-UHFFFAOYSA-N 3-nitroanisole Chemical compound COC1=CC=CC([N+]([O-])=O)=C1 WGYFINWERLNPHR-UHFFFAOYSA-N 0.000 description 1
- AFPHTEQTJZKQAQ-UHFFFAOYSA-N 3-nitrobenzoic acid Chemical compound OC(=O)C1=CC=CC([N+]([O-])=O)=C1 AFPHTEQTJZKQAQ-UHFFFAOYSA-N 0.000 description 1
- RTZZCYNQPHTPPL-UHFFFAOYSA-N 3-nitrophenol Chemical compound OC1=CC=CC([N+]([O-])=O)=C1 RTZZCYNQPHTPPL-UHFFFAOYSA-N 0.000 description 1
- BTJIUGUIPKRLHP-UHFFFAOYSA-N 4-nitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1 BTJIUGUIPKRLHP-UHFFFAOYSA-N 0.000 description 1
- VYDWQPKRHOGLPA-UHFFFAOYSA-N 5-nitroimidazole Chemical compound [O-][N+](=O)C1=CN=CN1 VYDWQPKRHOGLPA-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- PDAXJVMXHHATAJ-UHFFFAOYSA-N CCCCO[PH2]=O Chemical compound CCCCO[PH2]=O PDAXJVMXHHATAJ-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Etidronic acid Chemical compound OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 229920001732 Lignosulfonate Polymers 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-N Metaphosphoric acid Chemical compound OP(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-N 0.000 description 1
- SUAKHGWARZSWIH-UHFFFAOYSA-N N,N‐diethylformamide Chemical compound CCN(CC)C=O SUAKHGWARZSWIH-UHFFFAOYSA-N 0.000 description 1
- OHLUUHNLEMFGTQ-UHFFFAOYSA-N N-methylacetamide Chemical compound CNC(C)=O OHLUUHNLEMFGTQ-UHFFFAOYSA-N 0.000 description 1
- BNUHAJGCKIQFGE-UHFFFAOYSA-N Nitroanisol Chemical compound COC1=CC=C([N+]([O-])=O)C=C1 BNUHAJGCKIQFGE-UHFFFAOYSA-N 0.000 description 1
- QLZHNIAADXEJJP-UHFFFAOYSA-N Phenylphosphonic acid Chemical compound OP(O)(=O)C1=CC=CC=C1 QLZHNIAADXEJJP-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- YDONNITUKPKTIG-UHFFFAOYSA-N [Nitrilotris(methylene)]trisphosphonic acid Chemical compound OP(O)(=O)CN(CP(O)(O)=O)CP(O)(O)=O YDONNITUKPKTIG-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 description 1
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 1
- 235000019289 ammonium phosphates Nutrition 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000000010 aprotic solvent Substances 0.000 description 1
- 150000001556 benzimidazoles Chemical class 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 229940114055 beta-resorcylic acid Drugs 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 150000004697 chelate complex Chemical class 0.000 description 1
- FFUMCSDSJNSMQH-HEXQVDJKSA-K chromoxane cyanin R Chemical compound [Na+].[Na+].[Na+].C1=C(C([O-])=O)C(=O)C(C)=C\C1=C(C=1C(=CC=CC=1)S([O-])(=O)=O)\C1=CC(C)=C(O)C(C([O-])=O)=C1 FFUMCSDSJNSMQH-HEXQVDJKSA-K 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 150000003950 cyclic amides Chemical class 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- XCIXKGXIYUWCLL-UHFFFAOYSA-N cyclopentanol Chemical compound OC1CCCC1 XCIXKGXIYUWCLL-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical class OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- UCQFCFPECQILOL-UHFFFAOYSA-N diethyl hydrogen phosphate Chemical compound CCOP(O)(=O)OCC UCQFCFPECQILOL-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- ZJXZSIYSNXKHEA-UHFFFAOYSA-N ethyl dihydrogen phosphate Chemical compound CCOP(O)(O)=O ZJXZSIYSNXKHEA-UHFFFAOYSA-N 0.000 description 1
- 150000004675 formic acid derivatives Chemical class 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 150000002311 glutaric acids Chemical class 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 150000002357 guanidines Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical group C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- BCDIWLCKOCHCIH-UHFFFAOYSA-N methylphosphinic acid Chemical compound CP(O)=O BCDIWLCKOCHCIH-UHFFFAOYSA-N 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 235000019837 monoammonium phosphate Nutrition 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- 150000002828 nitro derivatives Chemical class 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 125000005429 oxyalkyl group Chemical group 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 150000003009 phosphonic acids Chemical class 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000003586 protic polar solvent Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- DIORMHZUUKOISG-UHFFFAOYSA-N sulfoformic acid Chemical class OC(=O)S(O)(=O)=O DIORMHZUUKOISG-UHFFFAOYSA-N 0.000 description 1
- 229920001864 tannin Polymers 0.000 description 1
- 239000001648 tannin Substances 0.000 description 1
- 235000018553 tannin Nutrition 0.000 description 1
- ANHSGCWTORACPM-UHFFFAOYSA-N triazanium phosphoric acid phosphate Chemical compound [NH4+].[NH4+].[NH4+].OP(O)(O)=O.[O-]P([O-])([O-])=O ANHSGCWTORACPM-UHFFFAOYSA-N 0.000 description 1
- STCOOQWBFONSKY-UHFFFAOYSA-N tributyl phosphate Chemical compound CCCCOP(=O)(OCCCC)OCCCC STCOOQWBFONSKY-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/04—Electrodes or formation of dielectric layers thereon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/022—Electrolytes; Absorbents
- H01G9/035—Liquid electrolytes, e.g. impregnating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/04—Electrodes or formation of dielectric layers thereon
- H01G9/042—Electrodes or formation of dielectric layers thereon characterised by the material
- H01G9/045—Electrodes or formation of dielectric layers thereon characterised by the material based on aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/145—Liquid electrolytic capacitors
Definitions
- the present invention relates to an electrolytic solution for an aluminum electrolytic capacitor capable of providing an aluminum electrolytic capacitor having low impedance characteristics and a long lifetime.
- the present invention also relates to an aluminum electrolytic capacitor having a low impedance characteristic and having a long life using the electrolytic solution and / or an electrode which is not easily deteriorated.
- an anode made of an aluminum foil having an aluminum oxide film on its surface, a cathode made of an aluminum foil, and a separator holding an electrolytic solution disposed between the anode and the cathode are accommodated in a sealed case.
- a structure having a shape such as a wound type or a laminated type is widely used.
- a carboxylic acid such as adipic acid or benzoic acid or an ammonium salt thereof as an electrolyte
- ⁇ -butyrolactone 2 an electrolytic solution using a quaternized cyclic amidinium salt of a carboxylic acid such as phthalic acid or maleic acid as an electrolyte is known as a main solvent.
- Such an aluminum electrolytic capacitor is required to have a low impedance characteristic with the recent miniaturization of electronic equipment. In addition, low impedance characteristics are required even when capacitors are used under high frequency conditions. In order to meet this requirement, it is desirable to use an electrolytic solution having a low specific resistance and a high conductivity. Studies have been made to reduce the specific resistance by increasing the water content of the liquid.
- water in the electrolyte and carboxylic acid and / or carboxylate of the electrolyte are chemically active substances for the anode and cathode made of aluminum foil.
- the aluminum oxide film on the electrode surface is dissolved by the reaction with the carboxylic acid anion to form an aluminum carboxylic acid complex.
- the aluminum dissolves to produce a hydroxide, and hydrogen gas is generated simultaneously with this reaction. Therefore, when the water content of the electrolytic solution is increased, there is a problem that the electrode foil is deteriorated, the leakage current is increased, and the life of the capacitor is shortened.
- the phosphate ions combine with aluminum ions dissolved in the electrolytic solution to form a compound insoluble in the electrolytic solution, and this insoluble compound adheres to the electrode foil, and phosphoric acid is added. Since ions disappear from the electrolytic solution, the effect of preventing deterioration of the electrode foil by phosphate ions was not sufficient. Further, even if the amount of phosphoric acid added to the electrolytic solution is too large, the aluminum oxide film on the electrode surface dissolves due to the reaction with phosphate ions, resulting in an increase in the leakage current of the aluminum electrolytic capacitor.
- Patent Document 1 (WO 00/55876 pamphlet)
- a compound that generates phosphate ions in an aqueous solution and a chelating agent that coordinates to aluminum to form a water-soluble aluminum chelate complex are added to the electrolyte solution containing the aluminum ion eluted from the electrode foil and the above chelating agent
- the conjugate of the water-soluble aluminum chelate complex and phosphate ion is in the electrolyte solution in order to maintain chemical equilibrium with the phosphate ion in the electrolyte solution when dissolved in the electrolyte solution or attached to the electrode foil.
- the time for which ions are present in an appropriate amount can be prolonged, and deterioration of the anode and the cathode can be prevented for a long time.
- Patent Document 1 WO00 / 55876 pamphlet
- the inventors have investigated that the water content of the electrolyte is increased and the electrolyte is selected from formic acid, formate, adipic acid, adipic acid, glutaric acid and glutaric acid.
- the prepared carboxylic acid and / or carboxylate is used, the specific resistance of the electrolyte can be reduced satisfactorily, but the reaction between the carboxylate anion and the aluminum oxide film and the reaction between water and aluminum become remarkable. Since the elution of aluminum from the electrode foil cannot be sufficiently suppressed, the life of the capacitor is sufficiently satisfactory even when a conjugate of phosphate ion and water-soluble aluminum chelate complex is present in the electrolyte. I knew that it wouldn't be.
- the electrolyte solution contains a compound that suppresses elution of aluminum from the electrode foil.
- an electrode foil that hardly reacts with water and carboxylate anion in the electrolytic solution and does not easily cause aluminum elution is desired.
- an object of the present invention is to provide an electrolytic solution for an aluminum electrolytic capacitor having a low specific resistance and capable of suppressing elution of aluminum from an electrode foil.
- a further object of the present invention is to provide an aluminum electrolytic capacitor having a low impedance characteristic and a long life, particularly in a high temperature life test, using such a suitable electrolyte and / or an electrode foil in which elution of aluminum hardly occurs. It is to provide an aluminum electrolytic capacitor that exhibits a long life.
- a compound selected from the group consisting of azelaic acid and azelaate which also acts as an electrolyte, even if a compound selected from the group consisting of adipic acid, adipate, glutaric acid and glutarate is used as the electrolyte Coexisting in the electrolyte solution in an amount of 0.03 mol or more per kg of the solvent can suppress dissolution of aluminum in the anode and cathode of the aluminum electrolytic capacitor, generation of hydroxide, etc., and generation of hydrogen gas associated therewith.
- this can be achieved by allowing a conjugate of a phosphorus oxoacid ion and a water-soluble aluminum chelate complex to coexist in the electrolyte. Since the coalescence is dissolved in the electrolytic solution or attached to the electrode foil, the chemical equilibrium with the phosphorus oxoacid ions in the electrolytic solution can be maintained, and the time required for the presence of the appropriate amount of phosphorous oxoacid ions in the electrolytic solution can be prolonged.
- the phosphorus oxoacid ions can also suppress dissolution of anode and cathode aluminum, generation of hydroxide and the like, and generation of hydrogen gas accompanying this, and the above conjugate and azelaic acid and / or azelate It has been found that the synergistic effect of these materials surprisingly suppresses dissolution of the anode and cathode aluminum, generation of hydroxide, etc., and generation of hydrogen gas associated therewith. Although it is not clear at this time, it is considered that azelaic acid and / or azelaic acid salt not only acts as an electrolyte but also adheres to the surfaces of the anode and cathode of the aluminum electrolytic capacitor to form a protective layer. .
- the first electrolytic solution for an aluminum electrolytic capacitor of the present invention comprises a solvent containing water, an electrolyte selected from the group consisting of carboxylic acid and a salt thereof, and a phosphorus oxoacid ion capable of generating a phosphorus oxoacid ion in an aqueous solution.
- An electrolytic solution for an aluminum electrolytic capacitor containing a productive compound and a chelating agent capable of forming a water-soluble aluminum chelate complex by coordinating to aluminum wherein the electrolytic solution contains azelaic acid and Contains at least one compound selected from the group consisting of azelaate and at least one compound selected from the group consisting of formic acid, formate, adipic acid, adipate, glutaric acid and glutarate And at least one compound selected from the group consisting of azelaic acid and azelaic acid salt.
- Yes amount 0.03 mol least the solvent 1kg per characterized in that it is a saturated dissolution amount at 50 ° C. in the electrolyte solution at most.
- the second electrolytic solution for an aluminum electrolytic capacitor of the present invention includes a solvent containing water, an electrolyte selected from the group consisting of a carboxylic acid and a salt thereof, and a phosphorus oxoacid ion capable of generating a phosphorus oxoacid ion in an aqueous solution.
- At least one compound selected from the group consisting of 0.03 to 0.5 moles of azelaic acid and azelaic acid salt, and formic acid, formate, adipic acid, adipate, glutaric acid and glutarate
- At least one compound selected from the group At least one compound selected from the group consisting of 0.03 to 0.5 moles of azelaic acid and azelaic acid salt, and formic acid, formate, adipic acid, adipate, glutaric acid
- Phosphooxoion ions include, in addition to phosphate ions, phosphite ions, hypophosphite ions, isomers of these phosphonate ions and phosphinate ions. Includes compounds that generate phosphorus oxoacid ions when this compound is dissolved in the above solvent, as well as compounds that generate phosphorus oxoacid ions through oxidation at the anode after the electrolytic solution is introduced into the aluminum electrolytic capacitor. It is.
- the electrolytic solution for aluminum electrolytic capacitors of the present invention contains a large amount of water in order to reduce the specific resistance, a compound that generates phosphoroxoacid ions in an aqueous solution generates phosphoroxoacid ions in the above electrolyte solution, and aluminum A chelating agent that coordinates to form a water-soluble aluminum chelate complex forms an aluminum chelate complex that dissolves in the electrolyte.
- the phosphorus oxoacid ion generated from the aluminum ion, the chelating agent, and the phosphorus oxoacid ion-forming compound As a result of the reaction, a conjugate of a phosphorus oxoacid ion and a water-soluble aluminum chelate complex is formed in the electrolytic solution.
- Aluminum ions may be added to the electrolytic solution in advance by adding an aluminum salt or the like. However, the chelating agent and the phosphoroxoate ion-forming compound are contained but the aluminum ions are not contained.
- the electrolytic solution in the aluminum electrolytic capacitor contains a conjugate of phosphoroxoate ions and a water-soluble aluminum chelate complex. Become. Then, the synergistic effect of azelaic acid and / or azelaic acid salt and this conjugate suppresses dissolution of the anode and cathode aluminum, generation of hydroxide and the like, and generation of hydrogen gas, so that the water content of the electrolyte is included.
- a long-life aluminum electrolytic capacitor can be obtained.
- the content of at least one compound selected from the group consisting of azelaic acid and azelaic acid salt in the electrolytic solution for aluminum electrolytic capacitors is at least 0.03 mol per kg of the solvent. There is at most a saturated dissolution amount at 50 ° C. in the electrolyte solution. Since the temperature of the electrolytic solution in the capacitor is 50 ° C. or higher under the normal aluminum electrolytic capacitor usage conditions, the azelaic acid and / or azelaic acid salt is completely dissolved in the electrolytic solution under the normal capacitor usage conditions. Acts as an electrolyte.
- the first electrolytic solution of the present invention a solution in which components other than azelaic acid and / or azelaic acid salt are dissolved in a solvent containing water is prepared, and a desired amount of this solution is heated to 70 ° C. After azelaic acid and / or azelaic acid salt is added and dissolved, the temperature of the solution is lowered to 50 ° C., and when no precipitate is observed after standing at 50 ° C. for 1 hour, the added azelaic acid and The azelaic acid salt is said to be in an amount equal to or less than the saturated dissolution amount at 50 ° C. in the electrolytic solution.
- the effect of the present invention is sufficient to suppress dissolution of aluminum in the anode and cathode, generation of hydroxide, and generation of hydrogen gas. If the amount is more than the saturated dissolution amount at 50 ° C. in the electrolytic solution, precipitation of the azelaic acid or azelaic acid salt from the electrolytic solution at a low temperature becomes remarkable.
- the content of at least one compound selected from the group consisting of azelaic acid and azelaic acid salt in the electrolytic solution for aluminum electrolytic capacitors is 0.03 to 0.00 per kg of the solvent.
- the range is 5 mol, preferably 0.03 to 0.3 mol.
- the amount of azelaic acid and / or azelaic acid salt is less than 0.03 mol per kg of the solvent, the effect of the present invention is sufficient to suppress dissolution of aluminum in the anode and cathode, generation of hydroxide, etc. and generation of hydrogen gas. If the amount is more than 0.5 mol, azelaic acid or azelaic acid salt may precipitate from the electrolyte at a low temperature.
- the effect of the present invention is not proportional to the amount added, and the content of azelaic acid and / or azelaic acid salt in the electrolyte solution is 0 per kg of the solvent.
- the lifetime of the capacitor is almost equivalent.
- the first electrolytic solution and the second electrolytic solution of the present invention water and a compound selected from the group consisting of formic acid, formate, adipic acid, adipic acid salt, glutaric acid and glutaric acid salt in the electrolytic solution Even if the amount is increased until the specific resistance at 30 ° C. of the electrolytic solution becomes 30 ⁇ cm or less, the synergistic effect of the conjugate of the phosphoroxoacid ion and the water-soluble aluminum chelate complex and the azelaic acid and / or azelaic acid salt In addition, dissolution of aluminum at the cathode, generation of hydroxide and the like, and generation of hydrogen gas associated therewith are suitably suppressed. Therefore, long-life aluminum electrolytic capacitors having low impedance characteristics can be suitably obtained, and these aluminum electrolytic capacitors exhibit a long life even in a no-load life test at 105 ° C.
- an aluminum electrolytic capacitor of the present invention containing an acid salt and a compound selected from the group consisting of formic acid, formate, adipic acid, adipic acid salt, glutaric acid and glutarate is introduced into the aluminum electrolytic capacitor.
- the present invention also provides an aluminum electrolysis comprising an anode made of an aluminum foil having an aluminum oxide film on its surface, a cathode made of an aluminum foil, and a separator holding an electrolytic solution disposed between the anode and the cathode.
- Capacitor in which the first electrolytic solution or the second electrolytic solution of the present invention is used as the electrolytic solution, and therefore, a combined body of a water-soluble aluminum chelate complex and a phosphoroxoate ion in the electrolytic solution in the capacitor. And an appropriate amount of azelaic acid and / or azelaic acid salt.
- the life of aluminum electrolytic capacitors is affected not only by the electrolyte but also by the electrode foil. This is because the lifetime of the capacitor is determined by the close interaction between the electrolytic solution and the electrode foil.
- the inventors have found that the aluminum oxide film is hardly dissolved by the carboxylic acid anion of the electrolyte by containing phosphorus in the aluminum oxide film of the anode. Therefore, also in the aluminum electrolytic capacitor in which the first electrolytic solution or the second electrolytic solution of the present invention described above is used, the anode preferably contains phosphorus in the aluminum oxide film.
- the dissolution of aluminum into the electrolytic solution accelerates, and the phosphorous oxoacid ions are consumed rapidly by the aluminum ions eluted in this electrolytic solution.
- the amount of phosphorus oxoacid ions in the electrolytic solution becomes less than an appropriate amount, and the anode and cathode are deteriorated.
- the deterioration of the cathode is more serious than the deterioration of the anode.
- the aluminum film of the anode contains 30 mg or more of phosphorous in terms of phosphoric acid per unit CV product, and further contains a conjugate of a water-soluble aluminum chelate complex and a phosphoroxoacid ion in the electrolyte, the moisture content in the electrolyte Even if the specific resistance of the electrolytic solution is decreased by increasing the amount and increasing the amount of carboxylic acid and / or carboxylate used in the electrolyte, the anode and The dissolution of aluminum in the cathode, the generation of hydroxides and the accompanying generation of hydrogen gas are surprisingly suppressed. As a result, it is possible to obtain an aluminum electrolytic capacitor having a low impedance characteristic and having a long life, particularly an aluminum electrolytic capacitor having a long life even in a high temperature life test.
- the present invention also provides an aluminum electrolysis comprising an anode made of an aluminum foil having an aluminum oxide film on its surface, a cathode made of an aluminum foil, and a separator holding an electrolytic solution disposed between the anode and the cathode.
- an aluminum electrolytic capacitor characterized by containing a prepared electrolyte and a conjugate of a phosphorus oxoacid ion and a water-soluble aluminum chelate complex.
- the phosphorus oxo acid ion can be generated from a phosphorus oxo acid ion generating compound capable of generating a phosphorus oxo acid ion in the above-mentioned aqueous solution.
- the water-soluble aluminum chelate complex is coordinated with the above-described aluminum to form a water-soluble aluminum chelate complex.
- the term “CV product” “C” means the capacitance of the aluminum oxide dielectric of the anode
- “V” means the film breakdown voltage of the anode. If the content of phosphorus in the aluminum oxide film is less than 30 mg per unit CV product in terms of phosphoric acid, the effect of inhibiting the dissolution of the aluminum oxide film is not sufficient, and if it exceeds 150 mg per unit CV product, the effect of the present invention is Since it is saturated, it is economically disadvantageous, and there is a disadvantage that the capacitance of the aluminum electrolytic capacitor is reduced.
- the amount of phosphorus is measured by dissolving the anode foil completely with hydrochloric acid and quantifying the amount of phosphate ions in the solution by the molybdenum blue method. Is defined as When measuring the amount of phosphoric acid per unit CV product, first, the electrostatic capacitance C of the aluminum oxide dielectric of the anode is measured, and the film withstand voltage V is measured by a voltage-time curve. The amount of phosphoric acid is measured by the above, and the value of the obtained phosphoric acid amount is divided by the product value of the obtained capacitance C and film withstand voltage V to calculate the amount of phosphoric acid per unit CV product.
- the capacitance of the aluminum oxide dielectric of the anode is It is represented by
- ⁇ 0 represents the dielectric constant of vacuum
- ⁇ represents the relative dielectric constant of the dielectric
- S represents the surface area (m 2 ) of the dielectric
- d represents the thickness (m) of the dielectric.
- the surface is close to the surface of the aluminum oxide film. It is preferable because phosphorus can be introduced uniformly and stably. Also in the chemical conversion treatment, it is known that phosphorus is present in a high concentration near the surface of the aluminum oxide film. For this reason, in the present invention, the range of the amount of phosphorus in the aluminum oxide film is defined by the amount of phosphorus per unit CV product proportional to the amount of phosphorus per unit surface area.
- an anode containing phosphorus in an amount of 30 to 150 mg / CV in terms of phosphoric acid in an aluminum oxide film is used, and an electrolytic solution containing a conjugate of a water-soluble aluminum chelate complex and a phosphorus oxoacid ion is used. Even if the electrolyte selected from the group consisting of water and carboxylic acid and salts thereof in the electrolytic solution is increased until the specific resistance at 30 ° C.
- the electrolytic solution having a water content of 20 to 80% by mass of the entire electrolytic solution.
- the amount of water is less than 20% by mass, the specific resistance of the electrolytic solution at a low temperature is increased.
- the amount is more than 80% by mass, the freezing point of the electrolytic solution is increased, and the guaranteed range of the capacitor is narrowed.
- an anode containing phosphorus in an amount of 30 to 150 mg / CV in terms of phosphoric acid in an aluminum oxide film is used, and an electrolytic solution containing a conjugate of a water-soluble aluminum chelate complex and a phosphorus oxoacid ion is used.
- an electrolytic solution containing a conjugate of a water-soluble aluminum chelate complex and a phosphorus oxoacid ion is used.
- at least one compound selected from the group consisting of formic acid, formate, adipic acid, adipic acid, glutaric acid and glutarate is present in the electrolyte as an electrolyte.
- a long-life capacitor can be obtained by a synergistic effect of a conjugate with a water-soluble aluminum chelate complex and an anode having an aluminum oxide film containing an appropriate amount of phosphorus.
- the aluminum electrolytic capacitor has a longer life due to the protective effect of azelaic acid and / or azelaic acid salt. This is preferable.
- the present invention comprising a salt, a compound selected from the group consisting of formic acid, formate, adipic acid, adipic acid, glutaric acid and glutarate, and a conjugate of a phosphorus oxoacid ion and a water-soluble aluminum chelate complex
- the use of an electrolytic solution for aluminum electrolytic capacitors results in low impedance characteristics and elution of azelaic acid and / or azelaic acid salt, a combination of a phosphoroxoacid ion and a water-soluble aluminum chelate complex, and aluminum. Long life, especially in high temperature life tests, due to the combined effect of difficult anodes It is possible to obtain an
- an aluminum electrolytic capacitor of the present invention comprising an acid salt and a compound selected from the group consisting of formic acid, formate, adipic acid, adipate, glutaric acid and glutarate as an electrolyte
- a conjugate of a phosphoroxoacid ion and a water-soluble aluminum chelate complex is formed.
- the present invention uses an anode having an aluminum oxide film containing 30 mg to 150 mg of phosphorus per unit CV product in terms of phosphoric acid, and an electrolytic solution containing a conjugate of a phosphorus oxoacid ion and a water-soluble aluminum chelate complex.
- the aluminum electrolytic capacitor has a low impedance characteristic because the synergistic effect of the combined body and the anode suppresses the dissolution of aluminum in the anode and the cathode, generation of hydroxide, etc., and the generation of hydrogen gas associated therewith. In addition to having a long life.
- the electrolytic solution for an aluminum electrolytic capacitor of the present invention containing a chelating agent capable of forming a complex is selected from the group consisting of at least 0.03 mol of azelaic acid and azelaic acid salt per kg of the solvent as the electrolyte.
- the electrolytic solution of the present invention When the electrolytic solution of the present invention is introduced into an aluminum electrolytic capacitor, a combination of a phosphorus oxoacid ion and a water-soluble aluminum chelate complex is formed in the electrolytic solution by a reaction with aluminum ions eluted from the anode and the cathode into the electrolytic solution. Is done.
- a compound selected from the group consisting of formic acid, formate, adipic acid, adipic acid, glutaric acid and glutarate which effectively reduces the specific resistance of the electrolyte
- An aluminum electrolytic capacitor having a long life can be obtained by a synergistic effect of the salt, and a conjugate of the phosphoroxoacid ion and the water-soluble aluminum chelate complex.
- a solvent containing water is used.
- the solvent may be only water, it is preferable to use a mixed solvent of water and an organic solvent.
- Usable organic solvents include protic polar solvents such as monohydric alcohols (methanol, ethanol, propanol, butanol, hexanol, cyclohexanol, cyclopentanol, benzyl alcohol, etc.), polyhydric alcohols, and oxyalcohol compounds (ethylene Glycol, propylene glycol, glycerin, methyl cellosolve, ethyl cellosolve, 1,3-butanediol, methoxypropylene glycol, etc.) and aprotic solvents amides (N-methylformamide, N, N-dimethylformamide, N-ethyl) Formamide, N, N-diethylformamide, N-methylacetamide, hexamethylphosphoricamide, etc.
- protic polar solvents such as mono
- the water content in the electrolytic solution of the present invention is preferably 20 to 80% by mass, more preferably 35 to 70% by mass, and particularly preferably 45 to 65% by mass with respect to the entire electrolytic solution.
- the content of the solvent in the electrolytic solution is preferably 60 to 90% by mass of the entire electrolytic solution from the viewpoint of the solubility of azelaic acid and / or azelate.
- the electrolyte solution of the present invention contains, as an essential component, at least one compound selected from the group consisting of azelaic acid and azelaic acid salt as an electrolyte selected from the group consisting of carboxylic acids and salts thereof.
- Azelaic acid salts include ammonium salts, quaternary ammonium salts, such as tetraalkylammonium salts (tetramethylammonium salt, tetraethylammonium salt, tetrapropylammonium salt, tetrabutylammonium salt, methyltriethylammonium salt, dimethyldiethylammonium salt, etc.
- amine salts such as primary amine salts (methylamine salt, ethylamine salt, propylamine salt, Butylamine salt, ethylenediamine salt, monoethanolamine salt, etc.), secondary amine salt (dimethylamine salt, diethylamine salt, dipropylamine salt, ethylmethylamine salt, diphenylamine salt, diethanolamine salt, etc.), tertiary amine salt
- Emissions salt trimethylamine salt, triethylamine salt, tributylamine salt, 1,8-diazabicyclo (5,4,0) - undecene-7 salt, triethanolamine salt, etc.
- These compounds may be used alone or in combination of two or more.
- the electrolytic solution of the present invention includes formic acid, formate, adipine
- at least one compound selected from the group consisting of acids, adipates, glutaric acids and glutarates is included.
- these ammonium salts As formate, adipate, and glutarate, these ammonium salts, quaternary ammonium salts such as tetraalkylammonium salts (tetramethylammonium salt, tetraethylammonium salt, tetrapropylammonium salt, tetrabutylammonium salt, methyl Triethylammonium salt, dimethyldiethylammonium salt, etc.), pyridium salt (1-methylpyridium salt, 1-ethylpyridium salt, 1,3-diethylpyridium salt, etc.), amine salt such as primary amine salt (methylamine) Salt, ethylamine salt, propylamine salt, butylamine salt, ethylenediamine salt, monoethanolamine salt, etc.), secondary amine salt (dimethylamine salt, diethylamine salt, dipropylamine salt, ethylmethylamine salt, diphenylamine salt, die Ol
- FIG. 1 shows a solution containing 60 parts by weight of water, 30 parts by weight of ethylene glycol, 6 parts by weight of formic acid and 3 parts by weight of azelaic acid, neutralized with aqueous ammonia, 60 parts by weight of water, 30 parts by weight of ethylene glycol, formic acid
- An electrode made of an aluminum foil having an aluminum oxide film on its surface was immersed in a solution containing 6 parts by weight and 3 parts by weight of adipic acid and neutralized with aqueous ammonia, and the amount of aluminum ions dissolved from the electrode was determined by ICP emission spectrometry. Shows the measurement results.
- FIG. 1 shows a solution containing 60 parts by weight of water, 30 parts by weight of ethylene glycol, 6 parts by weight of formic acid and 3 parts by weight of azelaic acid, neutralized with aqueous ammonia, 60 parts by weight of water, 30 parts by weight of ethylene glycol, formic acid
- FIG. 1 shows the result when a liquid containing adipic acid and formic acid is used
- 2 shows the result when a liquid containing azelaic acid and formic acid is used.
- FIG. 1 shows that when azelaic acid is present in the solution, almost no aluminum ions are observed in the solution even if formic acid coexists.
- azelaic acid and / or azelaic acid salt not only acts as an electrolyte but also adheres to the surfaces of the anode and cathode of the aluminum electrolytic capacitor to form a protective layer. It is done.
- the content of azelaic acid and / or azelaic acid salt in the electrolytic solution of the present invention is at least 0.03 mol per 1 kg of the solvent.
- the total amount is at least 0.03 mol per kg of the solvent.
- the amount of azelaic acid and / or azelaic acid salt is less than 0.03 mol per 1 kg of the above solvent, the effect of the present invention that suppresses dissolution of aluminum in the anode and cathode, generation of hydroxide, etc. and generation of hydrogen gas is not sufficient. .
- the maximum content of azelaic acid and / or azelaic acid salt can be a saturated dissolution amount at 50 ° C. in the above electrolytic solution.
- the total amount is a saturated dissolution amount at 50 ° C. in the electrolytic solution at most.
- Azelaic acid and / or azelaic acid salt dissolves more than 0.03 mol / kg at 50 ° C. in a solvent consisting only of water, and at 50 ° C. of azelaic acid and / or azelaic acid salt in the above electrolyte solution.
- the amount of saturated dissolution of the electrolyte increases as the water content of the electrolyte decreases, and the selected compound selected from the group consisting of formic acid, formate, adipic acid, adipic acid, glutaric acid and glutarate coexists. The higher the content, the lower the content.
- azelaic acid and / or azelaic acid salt is less than the saturated dissolution amount at 50 ° C., even if azelaic acid or azelaic acid salt is deposited at a low temperature, the pH of the electrolyte solution dissolves aluminum in the electrode foil. It doesn't change as much as it progresses.
- the maximum content of azelaic acid and / or azelaic acid salt can be 0.5 mol per kg of the solvent, preferably 0.3 mol per kg of the solvent.
- the total amount is at most 0.5 mol per kg of the solvent, preferably 0.3 mol per kg of the solvent.
- azelaic acid or azelaic acid salt may precipitate from the electrolytic solution at a low temperature.
- the amount of azelaic acid and / or azelaic acid salt exceeds 0.3 mol per kg of the solvent, the effect of the present invention is no longer proportional to the amount added, and the amount of azelaic acid and / or azelaic acid salt is 0 per kg of the solvent. In the range exceeding 3 mol, the lifetime of the aluminum electrolytic capacitor is almost the same.
- Adipic acid, adipate, glutaric acid and glutarate are not as good as formic acid and formate in reducing the specific resistance of the electrolyte, but dissolution of the aluminum oxide film by adipate anion and glutarate anion Since it is gentler than the dissolution of the aluminum oxide film by the formate anion, it is preferable in terms of further extending the life of the aluminum electrolytic capacitor.
- the electrolyte using glutaric acid and / or glutarate has a lower specific resistance than the electrolyte using the same concentration of adipic acid and / or adipate.
- formic acid and / or formate significantly reduce the specific resistance of the electrolytic solution only by using a small amount.
- At least one compound selected from the group consisting of formic acid and a salt thereof is mainly used as an electrolytic solution for obtaining an aluminum electrolytic capacitor having a long life and extremely low impedance characteristics.
- at least one compound selected from adipic acid, adipic acid salt, glutaric acid and glutaric acid salt is mainly used as an electrolytic solution for obtaining an aluminum electrolytic capacitor having a low impedance characteristic and an extremely long life. Is done.
- the content of at least one compound selected from the group consisting of formic acid, formate, adipic acid, adipate, glutaric acid and glutarate can be increased.
- the concentration of these compounds increases, the effect of reducing the specific resistance of the electrolytic solution is not proportional to the amount added.
- formic acid, adipic acid, glutaric acid or a salt thereof is precipitated from the electrolytic solution in the aluminum electrolytic capacitor, the pH of the electrolytic solution is increased, and dissolution of aluminum in the electrode foil, generation of aluminum hydroxide, etc. Generation of hydrogen gas may proceed.
- At least one compound selected from the group consisting of formic acid and formate is added to the electrolytic solution in an amount of 0.001 per kg of the solvent.
- the water content of the electrolytic solution at this time is preferably 50% by mass or more with respect to the electrolytic solution, and particularly preferably 50 to 65% by mass with respect to the electrolytic solution.
- an electrolytic solution having a specific resistance of about 10 to about 30 ⁇ cm at 30 ° C. is obtained, and this electrolytic solution leads to an aluminum electrolytic capacitor having an extremely low impedance.
- an aluminum electrolytic capacitor using an electrolytic solution in this range does not open the safety valve even after 4000 hours in a high temperature no-load life test at 105 ° C.
- Aluminum electrolytic capacitors having extremely low impedance characteristics are required to have a life that does not open even after 4000 hours in a high temperature no-load life test at 105 ° C. In the conventional studies, there has been no capacitor that has an extremely low impedance and can meet this demand.
- At least one selected from the group consisting of adipic acid, adipic acid salt, glutaric acid and glutaric acid is used as the electrolytic solution.
- an electrolytic solution having a specific resistance at 30 ° C. of about 20 to about 40 ⁇ cm can be obtained.
- an electrolytic solution having a specific resistance of about 40 to about 70 ⁇ cm at 30 ° C. is obtained.
- the specific resistance is a conventional electrolytic solution. If the electrolytic solution is not further lowered and the amount is more than 2.0 mol, dissolution of aluminum of the electrode proceeds, the life of the capacitor is shortened, and an aluminum electrolytic capacitor having a very long life cannot be obtained.
- the electrolyte solution of the present invention requires a compound selected from the group consisting of azelaic acid and azelate and a compound selected from the group consisting of formic acid, formate, adipic acid, adipic acid, glutaric acid and glutarate.
- carboxylic acids and / or carboxylates other than these compounds can be included as an electrolyte.
- the carboxylic acids that can be used include acetic acid, butanoic acid, succinic acid, pimelic acid, malonic acid, benzoic acid, isophthalic acid, phthalic acid, terephthalic acid, maleic acid, toluic acid, enanthic acid, and 1,6-decanedicarboxylic acid.
- decanedicarboxylic acid such as 5,6-decanedicarboxylic acid, octanedicarboxylic acid such as 1,7-octanedicarboxylic acid, and sebacic acid.
- carboxylate examples include ammonium salts of the above carboxylic acids, quaternary ammonium salts, such as tetraalkylammonium salts (tetramethylammonium salt, tetraethylammonium salt, tetrapropylammonium salt, tetrabutylammonium salt, methyltriethylammonium salt).
- ammonium salts of the above carboxylic acids examples include ammonium salts of the above carboxylic acids, quaternary ammonium salts, such as tetraalkylammonium salts (tetramethylammonium salt, tetraethylammonium salt, tetrapropylammonium salt, tetrabutylammonium salt, methyltriethylammonium salt).
- Dimethyldiethylammonium salt, etc. Dimethyldiethylammonium salt, etc.
- pyridium salts (1-methylpyridium salt, 1-ethylpyridium salt, 1,3-diethylpyridium salt, etc.
- amine salts such as primary amine salts (methylamine salt, ethylamine) Salt, propylamine salt, butylamine salt, ethylenediamine salt, monoethanolamine salt, etc.), secondary amine salt (dimethylamine salt, diethylamine salt, dipropylamine salt, ethylmethylamine salt, diphenylamine salt, diethano Amine salts, etc.), tertiary amine salts (trimethylamine salts, triethylamine salts, tributylamine salts, 1,8-diazabicyclo (5,4,0) -undecene-7 salts, triethanolamine salts, etc.).
- a salt of an anion such as phthalic acid, isophthalic acid, terephthalic acid, maleic acid, benzoic acid, toluic acid, enanthic acid, malonic acid and quaternized cyclic amidinium ion can also be used.
- the quaternized cyclic amidinium ion as a cation component is a cation obtained by quaternizing a cyclic compound having an N, N, N′-substituted amidine group, and a cyclic compound having an N, N, N′-substituted amidine group
- imidazole monocyclic compounds (1-methylimidazole, 1-phenylimidazole, 1,2-dimethylimidazole, 1-ethyl-2-methylimidazole, 1,2-dimethylimidazole, 1-ethyl-2-methylimidazole, Imidazole analogues such as 1,2-dimethylimidazole, 1,2,4-trimethylimidazole, oxyalkyl derivatives such as 1-methyl-2-oxymethylimidazole, 1-methyl-2-oxyethylimidazole, 1-methyl- Nitro derivatives such as 4 (5) -nitroimidazole, 1,2-dimethyl-5 (4) -a Amino derivatives
- the electrolytic solution for an aluminum electrolytic capacitor of the present invention further contains a phosphorus oxoacid ion generating compound capable of generating phosphorus oxoacid ions in an aqueous solution.
- Phosphorus acid ion-forming compounds include phosphoric acid, phosphorous acid, hypophosphorous acid, phosphonic acid, phosphinic acid, and salts thereof; esters of phosphoric acid and alkyl phosphoric acid, esters and derivatives of phosphonic acid and diphosphonic acid , Phosphinic acid esters, and salts thereof; and condensates thereof and salts of these condensates.
- phosphoric acid, phosphorous acid, hypophosphorous acid, and salts thereof can be used as the phosphorus oxoacid ion generating compound.
- phosphoric acid, phosphorous acid, and hypophosphorous acid salts include ammonium salts, aluminum salts, sodium salts, calcium salts, and potassium salts.
- Phosphoric acid and its salts are decomposed in aqueous solution to produce phosphate ions.
- phosphorous acid, hypophosphorous acid, and salts thereof generate phosphite ions, hypophosphite ions, phosphonate ions and phosphinate ions that are isomers thereof in an aqueous solution, and aluminum Phosphate ions are produced through oxidation at the anode of the electrolytic capacitor.
- an ester of phosphoric acid and alkyl phosphoric acid such as ethyl phosphate, diethyl phosphate, butyl phosphate, and dibutyl phosphate
- phosphonic acid 1-hydroxyethylidene-1,1-diphosphonic acid
- Phosphonic acids such as aminotrimethylenephosphonic acid, phenylphosphonic acid, and esters and derivatives of diphosphonic acid, phosphonic acid and diphosphonic acid
- phosphinic acids such as methylphosphinic acid
- phosphinic acid esters such as butyl phosphinate
- a salt such as a salt, an aluminum salt, a sodium salt, a potassium salt, or a calcium salt can be used.
- dibutyl phosphate, 1-hydroxyethylidene-1,1-diphosphonic acid, or salts thereof are preferable.
- condensed phosphoric acid that is a condensate of phosphoric acid and a salt thereof are used as the phosphorus oxoacid ion-forming compound.
- the condensed phosphoric acid include linear condensed phosphoric acid such as pyrophosphoric acid, tripolyphosphoric acid and tetrapolyphosphoric acid, cyclic condensed phosphoric acid such as metaphosphoric acid and hexametaphosphoric acid, and such chain and cyclic condensed phosphoric acid.
- An acid bonded one can be used.
- ammonium salt, sodium salt, potassium salt, etc. can be used as a salt of these condensed phosphoric acids.
- pyrophosphoric acid, tripolyphosphoric acid, tetrapolyphosphoric acid and salts thereof are preferred, pyrophosphoric acid, tripolyphosphoric acid and salts thereof are more preferred, and tripolyphosphoric acid is most preferred.
- salts of these condensates ammonium salts, aluminum salts, sodium salts, potassium salts, calcium salts and the like can be used.
- a condensate of the above-mentioned oxooxoion ion generating compound or a salt thereof can also be used.
- the salt of the condensate ammonium salt, aluminum salt, sodium salt, potassium salt, calcium salt and the like can be used.
- the above-mentioned oxooxoion ion-generating compound generates phosphate ions in an aqueous solution, or generates phosphite ions, hypophosphite ions, phosphonate ions and phosphinate ions which are isomers thereof, and Phosphate ions are generated through oxidation at the anode of the aluminum electrolytic capacitor.
- phosphoric acid and its salts that easily generate phosphate ions, condensed phosphoric acid, and derivatives of phosphoric acid, for example, esters of phosphoric acid and alkyl phosphoric acid are preferable.
- linear condensed phosphoric acids such as phosphoric acid, pyrophosphoric acid, tripolyphosphoric acid and salts thereof that generate a large amount of phosphate ions relatively quickly with respect to the amount added are also preferred.
- the effect of this invention can be acquired if it is a substance which produces a phosphorus oxo acid ion in aqueous solution other than these phosphorus oxo acid ion generating compounds.
- the phosphorus oxoacid ion-generating compound a single compound may be used, or two or more compounds may be used.
- the amount of the phosphorus oxoacid ion-forming compound is 0.01 to 5.0% by mass, preferably 0.2 to 3.0% by mass, based on the entire electrolytic solution. Outside this range, the effect is reduced.
- the electrolytic solution for an aluminum electrolytic capacitor further contains a chelating agent capable of forming a water-soluble aluminum chelate complex by coordination with aluminum.
- the chelating agent examples include citric acid, tartaric acid, gluconic acid, malic acid, lactic acid, glycolic acid, ⁇ -hydroxybutyric acid, hydroxymalonic acid, ⁇ -methylmalic acid, ⁇ -hydroxycarboxylic acids such as dihydroxytartaric acid, ⁇ - Resorcylic acid, ⁇ -resorcylic acid, trihydroxybenzoic acid, hydroxyphthalic acid, dihydroxyphthalic acid, phenol tricarboxylic acid, aluminone, eriochrome cyanine R and other aromatic hydroxycarboxylic acids, sulfosalicylic acid and other sulfocarboxylic acids, tannic acid, etc.
- Tannins guanidines such as dicyandiamide, saccharides such as galactose and glucose, lignins such as lignosulfonate, and ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), glycol etherdiaminetetraacetic acid (GE) Examples thereof include aminopolycarboxylic acids such as DTA), diethylenetriaminepentaacetic acid (DTPA), hydroxyethylethylenediaminetriacetic acid (HEDTA), triethylenetetraminehexaacetic acid (TTHA), and salts thereof. As these salts, ammonium salts, aluminum salts, sodium salts, potassium salts and the like can be used.
- tannic acid, trihydroxybenzoic acid, citric acid, tartaric acid, gluconic acid, aurintricarboxylic acid, ⁇ -resorcylic acid, DTPA, EDTA, GEDTA, HEDTA, which can easily form a chelate complex with aluminum are preferable.
- TTHA or salts thereof and more preferable are tannic acid, trihydroxybenzoic acid, citric acid, tartaric acid, ⁇ -resorcylic acid and aurin tricarboxylic acid, DTPA, GEDTA, HEDTA, TTHA, and salts thereof. .
- These chelating agents may also use a single compound or two or more compounds.
- the addition amount of these chelating agents is 0.01 to 3.0% by mass, preferably 0.1 to 2.0% by mass, based on the entire electrolytic solution. Outside this range, the effect is reduced.
- the chelating agent is less than this ratio, the leakage current characteristic of the aluminum electrolytic capacitor is deteriorated.
- there are more chelating agents than this ratio although the reason is not certain, the high temperature life characteristic of an aluminum electrolytic capacitor will deteriorate.
- the conjugate of the phosphorous oxide ion and the water-soluble aluminum chelate complex is electrolyzed by the reaction between the above-mentioned chelating agent and the phosphorus oxoacid ion-forming compound and the aluminum ion. Formed in the liquid.
- aluminum ions in advance to the electrolytic solution by adding an aluminum salt or the like, a combined body of a phosphoroxo acid ion and a water-soluble aluminum chelate complex is formed in the electrolytic solution, and this electrolytic solution is introduced into the aluminum electrolytic capacitor. be able to.
- an electrolytic solution containing a chelating agent and a compound capable of forming a phosphorus oxoacid ion but not containing aluminum ions is introduced into the aluminum electrolytic capacitor, the aluminum ions are eluted from the electrode foil.
- the electrolytic solution in the capacitor contains a conjugate of a phosphoroxoacid ion and a water-soluble aluminum chelate complex.
- a chemical equilibrium is maintained with the phosphorus oxo acid ion in electrolyte solution, and the phosphorus oxo acid ion in electrolyte solution is maintained in a suitable quantity.
- the phosphorus oxoacid ion in the electrolytic solution and the phosphorus oxoacid ion in the conjugate are detected over a long period of time after leaving the capacitor.
- Phosphooxo ion present in an appropriate amount in the electrolyte suppresses dissolution of aluminum on the anode and cathode, generation of aluminum hydroxide, etc., and suppresses generation of hydrogen, thereby improving the standing characteristics of the aluminum electrolytic capacitor.
- the synergistic effect of this conjugate and azelaic acid and / or azelaic acid salt surprisingly suppresses dissolution of anode and cathode aluminum, generation of hydroxide, etc. and generation of hydrogen gas. Is done.
- the electrolytic solution for an aluminum electrolytic capacitor of the present invention may contain other components in addition to the components described above.
- electrolytes other than carboxylic acid and its salts may contain boric acid, polyhydric alcohol complex compounds of boric acid obtained from boric acid and polyhydric alcohol, inorganic acids such as carbonic acid and silicic acid, and withstand voltage Mannit, nonionic surfactants, colloidal silica, and the like may be added to the electrolytic solution for the purpose of improving the resistance.
- Nitro compounds such as p-nitroanisole, m-nitroanisole and o-nitroanisole may be contained.
- the electrolytic solution for an aluminum electrolytic capacitor of the present invention comprises a solvent containing water, a compound selected from the group consisting of azelaic acid and azelate, and formic acid, formate, adipic acid, adipate, glutaric acid and glutaric acid It can be obtained by dissolving a compound selected from the group consisting of a salt, a phosphorus oxoacid ion generating compound and a chelating agent together with other additives as required.
- the pH may be adjusted by using azelaic acid and at least one of formic acid, adipic acid, and glutaric acid as the electrolyte, and neutralizing with ammonia gas or an amine such as dimethylamine or diethylamine.
- the pH is preferably adjusted in the range of 5.7 to 6.3. When the pH is lower than 5.7 or higher than 6.3, the anode and the cathode may be deteriorated.
- the above-described electrolytic solution for an aluminum electrolytic capacitor of the present invention is suitably used in an aluminum electrolytic capacitor that includes an anode, a cathode, and a separator that holds an electrolytic solution disposed between the anode and the cathode.
- the high-purity aluminum foil constituting the anode and the cathode is subjected to chemical or electrochemical etching in order to increase its surface area, and then subjected to chemical conversion treatment on the aluminum foil constituting the anode, An aluminum oxide film is formed on the surface.
- the chemical conversion treatment is performed using a chemical conversion solution such as an ammonium borate aqueous solution, an ammonium adipate aqueous solution, or an ammonium phosphate aqueous solution.
- a capacitor element is formed by interposing a separator such as Manila hemp or kraft paper between the anode and the cathode thus obtained, and the capacitor element is impregnated with the electrolytic solution for an aluminum electrolytic capacitor of the present invention, and further a sealed case
- An aluminum electrolytic capacitor is configured by being housed inside.
- the introduction of phosphorus into the aluminum oxide film of the anode may be carried out by any method that can introduce phosphorus, but phosphoric acid or phosphate, such as ammonium salt, aluminum salt, sodium salt, It is preferably carried out by chemical conversion treatment of the anode in an aqueous solution containing a potassium salt or a calcium salt.
- the aqueous solution used for this chemical conversion treatment may contain one type of compound selected from phosphoric acid and phosphate, or may contain two or more types of compounds.
- a phosphoric acid-ammonium phosphate aqueous solution can be preferably used.
- an aqueous solution not containing phosphorus such as an aqueous solution of ammonium borate or an aqueous solution of ammonium adipate, contains one or more compounds selected from the above-mentioned phosphoric acid and phosphate Phosphorus can also be introduced into the aluminum oxide film by chemical conversion treatment of the anode in an aqueous solution.
- phosphorus is present at a high concentration near the surface of the aluminum oxide film.
- an anode having an aluminum oxide film formed by chemical conversion treatment with an aqueous solution not containing phosphorus such as an aqueous solution of ammonium borate or an aqueous solution of ammonium adipate, was selected from the group consisting of the aforementioned phosphoric acid and phosphate Phosphorus can also be introduced into the aluminum oxide film by dipping in an aqueous solution containing one or more compounds and then pulling out the anode from this solution and drying it naturally or subjecting it to a heat oxidation treatment.
- an anode of an aluminum electrolytic capacitor an anode containing 30 mg or more of phosphorous in a unit CV product in terms of phosphoric acid in an aluminum oxide film is used, and a combined body of the above water-soluble aluminum chelate complex and phosphoroxoacid ion in the electrolytic solution
- the water content of the electrolyte increases regardless of whether the electrolyte contains azelaic acid and / or azelaic acid as an electrolyte due to the synergistic effect of the combined body and the anode.
- the present invention also provides an aluminum electrolysis comprising an anode made of an aluminum foil having an aluminum oxide film on its surface, a cathode made of an aluminum foil, and a separator holding an electrolytic solution disposed between the anode and the cathode.
- an aluminum electrolytic capacitor characterized by containing a prepared electrolyte and a conjugate of a phosphorus oxoacid ion and a water-soluble aluminum chelate complex.
- FIG. 2 shows an electrode in which the phosphorus content of the aluminum oxide film is changed, is immersed in a solution obtained by dissolving 6 g of formic acid in 100 g of water and then neutralized with aqueous ammonia, and the amount of aluminum dissolved from the electrode is measured by ICP emission spectrometry. Shows the results.
- 3 is the result of using an electrode that does not contain phosphorus in the aluminum oxide film
- 4 is the result of using an electrode in which the amount of phosphorus in the aluminum oxide film is 30 mg / CV in terms of phosphoric acid
- 5 is the oxidation.
- 6 shows the result of using an electrode with an amount of phosphorus in the aluminum film of 60 mg / CV in terms of phosphoric acid
- 6 shows the result of using an electrode in which the amount of phosphorus in the aluminum oxide film is 100 mg / CV in terms of phosphoric acid.
- Yes As shown in FIG. 2, as the phosphorus content of the aluminum oxide film increases, even if formic acid is present in the solution, the amount of dissolved aluminum is greatly reduced, and the aluminum oxide layer containing phosphorus plays a role as a protective layer. You can see that it plays.
- the content of phosphorus in the aluminum oxide film is 30 mg to 150 mg, preferably 50 mg to 120 mg, particularly preferably 80 mg to 120 mg per unit CV product in terms of phosphoric acid. If the amount is less than 30 mg per unit CV product, the effect of the aluminum oxide film as a protective layer is not sufficient, and if it exceeds 150 mg per unit CV product, the effect of the present invention is saturated, which is economically disadvantageous. There is a disadvantage that the capacitance of the capacitor is reduced.
- a suitable phosphorus content in the aluminum oxide film that is sufficient for the protective effect of the aluminum oxide film and does not lower the capacitance of the aluminum electrolytic capacitor is 50 mg to 70 mg per unit CV product in terms of phosphoric acid.
- the solvent in the electrolytic solution used may be only water, A mixed solvent with an organic solvent is preferred.
- the organic solvent all of the organic solvents shown for the electrolytic solution for an aluminum electrolytic capacitor of the present invention can be used, a single compound can be used, or two or more compounds can be used. it can. It is particularly preferable to use ethylene glycol.
- the content of water in the electrolytic solution is preferably 20 to 80% by mass, more preferably 35 to 70% by mass, and particularly preferably 45 to 65% by mass with respect to the entire electrolytic solution. When the amount of water is less than 20% by mass, the specific resistance of the electrolytic solution at a low temperature is increased. When the amount is more than 80% by mass, the freezing point of the electrolytic solution is increased, and the guaranteed range of the capacitor is narrowed.
- the electrolytic solution used is at least selected from carboxylic acids and salts thereof as an electrolyte Contains one compound.
- carboxylic acid and / or carboxylate all of the carboxylic acids and / or carboxylates shown for the above-described electrolytic solution for an aluminum electrolytic capacitor of the present invention can be used, or a single compound can be used. It is also possible to use two or more compounds.
- the total amount of the carboxylic acid and / or carboxylate is usually 5 to 25% by mass, preferably 9 to 20% by mass, based on the entire electrolyte. When the amount is less than 5% by mass, the specific resistance of the electrolytic solution is not sufficiently lowered.
- formic acid, adipic acid, glutaric acid, and salts thereof such as ammonium salt, dimethylamine salt, and diethylamine salt are preferable because the specific resistance of the electrolytic solution is effectively reduced.
- electrolytes particularly formic acid and / or formate
- an electrolyte having a specific resistance of 30 ⁇ cm or less at 30 ° C. can be obtained. Due to the synergistic effect of the conjugate of the acid ion and the water-soluble aluminum chelate complex and the anode having the aluminum oxide film containing an appropriate amount of phosphorus, dissolution of the anode and cathode aluminum, generation of hydroxide, etc. are accompanied by this.
- azelaic acid and / or azelaic acid salt is a suitable electrolyte because it suppresses dissolution of aluminum from the anode and the cathode.
- the electrolytic solution used is further a combination of a phosphoroxoacid ion and a water-soluble aluminum chelate complex Contains the body.
- This conjugate is composed of an electrolyte, an aluminum ion, a phosphorus oxo acid ion generating compound capable of generating a phosphorus oxo acid ion in an aqueous solution, and a chelating agent capable of forming a water-soluble aluminum chelate complex by coordination with aluminum.
- Aluminum ions may be added to the electrolytic solution in advance, but it is preferable to use aluminum ions eluted from the anode and the cathode.
- the phosphorus oxo acid ion generating compound and the chelating agent all of the phosphorus oxo acid ion generating compound and the chelating agent shown in the above-described electrolytic solution for an aluminum electrolytic capacitor of the present invention can be used.
- the preferred phosphorus oxoacid ion-forming compounds and chelating agents shown for the electrolytic solution for aluminum electrolytic capacitors are also preferred in this case.
- a single compound or two or more compounds may be used as the phosphorus oxoacid ion generating compound and the chelating agent.
- the addition amount of the phosphorus oxoacid ion-forming compound is 0.01 to 5.0% by mass, preferably 0.2 to 3.0% by mass, with respect to the whole electrolyte solution.
- an electrolytic solution used for an aluminum electrolytic capacitor using an anode containing 30 to 150 mg of phosphorus per unit CV product in terms of phosphoric acid in the aluminum oxide film of the present invention an appropriate amount of azelaic acid in a solvent containing water and / or A book containing an azelaic acid salt, a compound selected from the group consisting of formic acid, formate, adipic acid, adipic acid, glutaric acid and glutarate, and a conjugate of a phosphorus oxoacid ion and a water-soluble aluminum chelate complex
- the specific resistance of the electrolytic solution is effectively reduced by the action of a compound selected from the group consisting of formic acid, formate, adipic acid, adipate, glutaric acid and glutarate.
- the specific resistance at 30 ° C. of the electrolyte is about 10 to about 30 ⁇ cm. Can be lowered.
- the combined effects of azelaic acid and / or azelaic acid salts, conjugates of phosphoroxoate ions and water-soluble aluminum chelate complexes, and anodes in which aluminum does not easily elute make it possible to test the life of aluminum electrolytic capacitors, especially at high temperatures.
- the amount of phosphoric acid in the solution was quantified by the molybdenum blue method.
- the obtained amount of phosphoric acid was divided by the product of the obtained capacitance C and film voltage V to measure the amount of phosphoric acid per unit CV product.
- the amount of phosphorus per unit CV product was 150 mg in terms of phosphoric acid.
- Anode B The aluminum foil after the surface expansion treatment in the same manner as the anode A was formed in an aqueous solution of monoammonium dihydrogen phosphate (concentration: 1.4 g / L, pH 4.5 to 7.0) at a formation voltage of 13 V for 30 minutes.
- the aluminum oxide film containing phosphorus was formed on the surface.
- Anode C The aluminum foil after the surface expansion treatment in the same manner as the anode A was subjected to the first stage chemical conversion treatment for 30 minutes with an ammonium adipate solution (concentration: 150 g / L, pH 4.5 to 7.0) at a formation voltage of 3 V, Aluminum oxide containing phosphorous on the surface after second-stage chemical conversion treatment in an aqueous solution of monoammonium dihydrogen phosphate (concentration: 1.4 g / L, pH 4.5 to 7.0) for 30 minutes at a conversion voltage of 13 V A film was formed.
- an ammonium adipate solution concentration: 150 g / L, pH 4.5 to 7.0
- monoammonium dihydrogen phosphate concentration: 1.4 g / L, pH 4.5 to 7.0
- Anode D The aluminum foil after the surface expansion treatment as in the case of the anode A was subjected to the first stage chemical conversion treatment for 30 minutes with an ammonium adipate solution (concentration: 150 g / L, pH 4.5 to 7.0) at a formation voltage of 10 V, In the aqueous solution of monoammonium dihydrogen phosphate (concentration: 1.4 g / L, pH 4.5 to 7.0), the formation current was adjusted under the condition of a formation voltage of 13 V, and the second stage conversion treatment was performed for 30 minutes. An aluminum oxide film containing phosphorus was formed. When the amount of phosphorus per unit CV product in the aluminum oxide film was measured for the obtained anode having the aluminum oxide film by the method described above, a value of 70 mg in terms of phosphoric acid was obtained.
- an ammonium adipate solution concentration: 150 g / L, pH 4.5 to 7.0
- monoammonium dihydrogen phosphate concentration: 1.4 g / L, pH 4.5 to
- Anode E The aluminum foil after the surface expansion treatment as in the case of the anode A was subjected to the first stage chemical conversion treatment for 30 minutes with an ammonium adipate solution (concentration: 150 g / L, pH 4.5 to 7.0) at a formation voltage of 10 V, In the aqueous solution of monoammonium dihydrogen phosphate (concentration: 1.4 g / L, pH 4.5 to 7.0), the formation current was adjusted under the condition of a formation voltage of 13 V, and the second stage conversion treatment was performed for 30 minutes. An aluminum oxide film containing phosphorus was formed. When the amount of phosphorus per unit CV product in the aluminum oxide film was measured for the obtained anode having the aluminum oxide film by the method described above, a value of 60 mg in terms of phosphoric acid was obtained.
- an ammonium adipate solution concentration: 150 g / L, pH 4.5 to 7.0
- monoammonium dihydrogen phosphate concentration: 1.4 g / L, pH 4.5 to
- Anode F The aluminum foil after the surface expansion treatment in the same manner as the anode A was subjected to the first stage chemical conversion treatment for 30 minutes with an ammonium adipate solution (concentration: 150 g / L, pH 4.5 to 7.0) at a formation voltage of 10 V, In the aqueous solution of monoammonium dihydrogen phosphate (concentration: 1.4 g / L, pH 4.5 to 7.0), the formation current was adjusted under the condition of a formation voltage of 13 V, and the second stage conversion treatment was performed for 30 minutes. An aluminum oxide film containing phosphorus was formed. When the amount of phosphorus per unit CV product in the aluminum oxide film was measured for the obtained anode having the aluminum oxide film by the method described above, a value of 50 mg in terms of phosphoric acid was obtained.
- an ammonium adipate solution concentration: 150 g / L, pH 4.5 to 7.0
- monoammonium dihydrogen phosphate concentration: 1.4 g / L, pH 4.5 to
- Anode G The aluminum foil after the surface expansion treatment in the same manner as the anode A was subjected to a first stage chemical conversion treatment for 30 minutes with an ammonium adipate solution (concentration: 150 g / L, pH 4.7 to 7.0) at a formation voltage of 13 V, Immerse in an aqueous solution of monoammonium dihydrogen phosphate (concentration: 1.4 g / L, pH 4.5 to 7.0), and after repair and formation at 13 V, pull up and heat-treat in the electric furnace at 500 ° C. for 1 minute in air Went.
- an ammonium adipate solution concentration: 150 g / L, pH 4.7 to 7.0
- monoammonium dihydrogen phosphate concentration: 1.4 g / L, pH 4.5 to 7.0
- pull up and heat-treat in the electric furnace at 500 ° C. for 1 minute in air Went.
- Anode H The aluminum foil after the surface expansion treatment as in the case of the anode A was subjected to chemical conversion treatment with an ammonium adipate solution (concentration: 150 g / L, pH 4.5 to 7.0) for 30 minutes under the condition of a chemical conversion voltage of 13 V. An aluminum oxide film containing no phosphorus was formed.
- an ammonium adipate solution concentration: 150 g / L, pH 4.5 to 7.0
- the electrolyte was neutralized with ammonia gas or with amine addition, and the pH was adjusted to a range of 5.7 to 6.3. Since the electrolyte is neutralized with ammonia or amine, it is the same as the carboxylate is dissolved in the solvent, but the following table shows the acid form instead of the salt, per kg of solvent. Are expressed as the molar amount of formic acid per kg of solvent, the molar amount of adipic acid or glutaric acid per kg of solvent, and the molar amount of azelaic acid per kg of solvent. The amounts of azelaic acid in the electrolytic solutions shown in Tables 1 to 7 were all equal to or less than the saturated dissolution amount at 50 ° C. in each electrolytic solution.
- the obtained aluminum electrolytic capacitor was evaluated for initial capacitance, leakage current and dielectric loss, and dielectric loss after elapse of 4000 hours or 6000 hours of 105 ° C. no-load test. Moreover, about the capacitor
- the electrolytic solution containing about 50% by mass of water used in Example 7 and about 0.5 mol of formic acid per kg of solvent, and the water used in Example 8 and Comparative Examples 2 and 3 were used.
- the electrolytic solution containing about 50% by mass with respect to the electrolytic solution and containing about 1.0 mol of adipic acid per kg of the solvent but not containing formic acid also showed a low specific resistance of 30 ⁇ cm or less at 30 ° C. Therefore, in order to obtain an electrolytic solution having a specific resistance at 30 ° C. of 30 ⁇ cm or less, water is contained in an amount of 50% by mass or more with respect to the electrolytic solution and formic acid is present in an amount of 0.5 mol or more per kg of solvent or in the absence of formic acid.
- 1.0 mol or more of adipic acid per kg of the solvent may be contained in the electrolytic solution.
- Table 1 the values of the capacitance and leakage current of the obtained aluminum electrolytic capacitors were good.
- Example 7 uses an electrolytic solution containing less formic acid and water and no p-nitrobenzoic acid as compared with Examples 1 to 6, and an anode containing no phosphorus in the aluminum oxide film. This is an example. Since the electrolytic solution has a low content of formic acid and water, the specific resistance of the electrolytic solution at 30 ° C. was 29 ⁇ cm. Even after a load test of 4000 hours, the valve did not open and a long-life capacitor was obtained.
- the electrolyte contains about 0.45 mol of azelaic acid per kg of solvent and contains phosphate ions, a conjugate of phosphate ions and an aluminum chelate complex (hereinafter referred to as “conjugate”).
- the valve opened after 100 hours of only 105 ° C. no-load test, and in Comparative Example 2 where azelaic acid was not present even though a conjugate was present in the electrolyte,
- Example 8 where about 0.45 mol of azelaic acid per kg of solvent and also a conjugate were contained in the electrolyte solution, the valve was opened after 2500 hours of no-load test.
- the valve did not open, and the rate of change in dielectric loss was 190% (open after 4500 hours).
- the lifetime of the aluminum electrolytic capacitor of Example 8 exceeds the lifetime predicted by the combination of Comparative Example 2 and Comparative Example 3, and due to the synergistic effect of the conjugate and azelaic acid in the electrolyte, It has been found that the lifetime is significantly prolonged. Further, from Table 1, by using the electrolytic solution of the present invention having a specific resistance reduced to 30 ⁇ cm or less at 30 ° C., an aluminum electrolytic capacitor that does not open even after lapse of 4000 hours at 105 ° C. can be obtained. all right.
- the water used in Examples 9 to 15 and Comparative Example 4 is contained in an amount of about 60% by mass based on the electrolyte solution, formic acid is contained in about 1.6 mol per kg of the solvent, and adipic acid is contained in about 0.7 mol per kg of the solvent.
- the electrolyte solution exhibited an extremely low specific resistance of about 10 ⁇ cm at 30 ° C.
- An electrolyte containing about 60% by mass of water used in Example 16 with respect to the electrolyte, about 1.1 mol of formic acid per kg of solvent, and about 0.7 mol of adipic acid per kg of solvent was also used.
- the aluminum electrolytic capacitor of Comparative Example 4 containing no phosphorus in the aluminum oxide film on the anode was opened after 1500 hours at 105 ° C. no-load test.
- the capacitor of Example 15 using the anode in which the amount of phosphorus in the aluminum oxide film was 30 mg / CV in terms of phosphoric acid had a life that was twice that of Comparative Example 4, but was 105 ° C. with no load.
- the valve was opened before 4000 hours of the test.
- a capacitor with an anode having an amount of phosphorus in the aluminum oxide film of 50 mg / CV or more in terms of phosphoric acid does not open before 4000 hours of 105 ° C. no-load test, and the amount of phosphorus in the aluminum oxide film increases.
- the change rate of the dielectric loss before and after the lapse of 4000 hours at 105 ° C. no-load test tended to decrease. Further, as can be understood from the comparison of Examples 9 to 11, it is found that when the amount of phosphorus in the aluminum oxide film exceeds 100 mg / CV, the effect of suppressing the change in dielectric loss is not proportional to the concentration of phosphorus. It was.
- Example 16 uses an electrolytic solution having a smaller amount of formic acid and no p-nitrobenzoic acid than the electrolytic solutions of Examples 9 to 15, and the amount of phosphorus in the aluminum oxide film in terms of phosphoric acid.
- Example 16 This is an example using a 30 mg / CV anode.
- the specific resistance at 30 ° C. of the electrolytic solution used in Example 16 is 11 ⁇ cm, and if formic acid is contained in 1.09 mol per kg of solvent, formic acid is contained in 1.63 mol per kg of solvent. It was found that the specific resistance value could be reduced to the same value as the electrolyte used in 9-15.
- the valve did not open after 4000 hours of 105 no-load test, and a long-life capacitor was obtained. It was.
- Comparative Example 6 in which the amount of phosphorus in the aluminum oxide film of the anode is 120 mg / CV in terms of phosphoric acid and contains a phosphate ion but no conjugate is present, it is opened after only 105 ° C. no-load test for 100 hours.
- Comparative Example 5 which does not contain phosphorus in the aluminum oxide film of the anode even when a conjugate is present in the electrolyte, the valve has been opened after 2500 hours of no-load test at 105 ° C.
- Example 17 in which phosphorus is present at 120 mg / CV in terms of phosphoric acid in the aluminum oxide film of the anode and the conjugate is present in the electrolyte, the valve opens even after 4000 hours of 105 ° C. no-load test. The change rate of the dielectric loss was 110% (the valve was not opened even after 10,000 hours had elapsed). Further, in Comparative Example 7 in which the amount of phosphorus in the aluminum oxide film on the anode is 30 mg / CV in terms of phosphoric acid and the phosphate ion is contained but the conjugate does not exist, it is opened after only 105 hours of no load test at 105 ° C.
- Example 18 In Comparative Example 5 which does not contain phosphorus in the aluminum oxide film of the anode even when a conjugate is present in the electrolyte, the valve has been opened after 2500 hours of no-load test at 105 ° C.
- Example 18 in which phosphorus is present at 30 mg / CV in terms of phosphoric acid in the aluminum oxide film of the anode and the conjugate is present in the electrolyte, the valve opens even after 4000 hours of no-load test at 105 ° C. The change rate of the dielectric loss was 130% (the valve was not opened even after 8000 hours had elapsed).
- the life of the aluminum electrolytic capacitor of Example 17 exceeds the life predicted by the combination of Comparative Example 5 and Comparative Example 6, and the life of the aluminum electrolytic capacitor of Example 18 is Comparative Example 5 and Comparative Example.
- the lifetime expected by the combination of 7 is exceeded. As described above, it has been found that the lifetime of the aluminum electrolytic capacitor is remarkably prolonged by the synergistic effect of the combined body in the electrolytic solution and the anode having the aluminum oxide film containing an appropriate amount of phosphorus.
- Tables 3 and 4 below show the composition of the electrolyte used for each aluminum electrolytic capacitor, the molar amount of azelaic acid per kg of solvent, the molar amount of formic acid per kg of solvent, the molar amount of adipic acid per kg of solvent, electrolysis Specific resistance of liquid at 30 ° C, initial capacitance of aluminum electrolytic capacitor, leakage current and dielectric loss (tan ⁇ ), dielectric loss after 4000 hours of 105 ° C no-load test, change of dielectric loss before and after 4000 hours When the rate and capacitor open, the valve opening time is shown together.
- Table 3 is an example using an electrolytic solution containing no azelaic acid
- Table 4 is an example using an electrolytic solution containing azelaic acid.
- Example 39 shows that formic acid is present in an amount of 0.5% per 1 kg of solvent. It can be seen that it has the effect of significantly reducing the resistance.
- the formic acid content of the electrolyte exceeded 3 moles per 1 kg of the solvent, the capacitor opened before 4000 hours of 105 ° C. no-load test. Therefore, it can be seen that the formic acid content should be in the range of 0.5 to 3 mol per kg of solvent.
- the electrolytic solution having a water content of about 40% or more in the electrolytic solution showed a low specific resistance of 30 ⁇ cm or less at 30 ° C. when formic acid was contained, and about 40 ⁇ cm at 30 ° C. when no formic acid was contained.
- the specific resistance of the electrolytic solution containing about 30% by mass of water in Examples 44 and 46 and not containing formic acid was 50 ⁇ cm or more at 30 ° C.
- this specific resistance value is significantly lower than the specific resistance value of about 150 ⁇ cm of the electrolytic solution in which the conventional ethylene glycol is the main solvent and water is about 10% by mass of the entire electrolytic solution, and the conventional ⁇ -butyrolactone is The specific resistance value of the electrolytic solution used as the main solvent is lower than about 80 ⁇ cm.
- Example 44 only about 0.03 mol of azelaic acid per 1 kg of solvent was allowed to coexist in the electrolyte, but the dielectric loss after 4000 hours of no-load test at 105 ° C. hardly changed. was gotten. The aluminum electrolytic capacitor of Example 44 did not open even after 10000 hours of 105 ° C. no-load test.
- Table 5 shows the composition of the electrolyte used for each aluminum electrolytic capacitor, the molar amount of azelaic acid per kg of solvent, the molar amount of formic acid per kg of solvent, the molar amount of adipic acid per kg of solvent, Specific resistance at 30 ° C, initial capacitance of aluminum electrolytic capacitor, leakage current and dielectric loss (tan ⁇ ), dielectric loss after 4000 hours and 6000 hours of 105 ° C no-load test, around 4000 hours and 6000 hours The rate of change in dielectric loss and when the capacitor opens before 4000 hours have elapsed are shown together.
- a capacitor using an anode with an amount of phosphorus in the aluminum oxide film of 60 mg / CV in terms of phosphoric acid is compared to a capacitor using an anode with an amount of phosphorus in the aluminum oxide film of 30 mg / CV in terms of phosphoric acid.
- the effect of the concentration of azelaic acid in the electrolytic solution is small, and in particular, a 105 ° C. no-load test for 6000 hours in a capacitor using an electrolytic solution in which the azelaic acid content of Examples 48 to 51 is 0.13 mol or more per kg of solvent.
- the change rate of the dielectric loss before and after the lapse was approximately equal to 130% or less, and an extremely long capacitor was obtained.
- the capacitors of Examples 48 to 53 using an anode in which the amount of phosphorus in the aluminum oxide film was 60 mg / CV in terms of phosphoric acid and using an electrolytic solution containing 0.064 mol or more of azelaic acid per kg of the solvent Electrolysis that does not open even after 6000 hours of 105 ° C no-load test, uses an anode whose phosphorus content in the aluminum oxide film is 30 mg / CV in terms of phosphoric acid, and contains 0.130 mol or more of azelaic acid per kg of solvent
- the capacitors of Examples 58 to 60 using the liquid did not open even after 6000 hours of 105 ° C. no-load test, and had a very long life.
- Example 66 when the content of glutaric acid exceeds 1.5 mol per kg of the solvent in the presence of formic acid, the capacitor is opened even in the presence of azelaic acid. It can be seen that the content of glutaric acid should be in the range of 1.5 mol or less per kg of solvent.
- an aluminum electrolytic capacitor having a low impedance characteristic and a long life, and an electrolytic solution for an aluminum electrolytic capacitor capable of providing such an aluminum electrolytic capacitor.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
Description
陽極A
純度99.9%の帯状のアルミニウム箔にエッチング処理を施して拡面処理した後、アルミニウム箔を、リン酸二水素一アンモニウム水溶液(濃度:2.8g/L、pH4.5~7.0)中で化成電圧13Vの条件で30分間化成処理し、その表面にリンを含有する酸化アルミニウム皮膜を形成した。得られた酸化アルミニウム皮膜を有する陽極について、陽極箔の酸化アルミニウム誘電体の静電容量Cを測定し、次いで電圧-時間曲線により皮膜耐圧Vを測定し、次いで陽極箔を塩酸で完全に溶解し、溶解液中のリン酸量をモリブデンブルー法により定量した。得られたリン酸量の値を得られた静電容量Cと皮膜電圧Vの積の値で割って、単位CV積当たりのリン酸量を測定した。単位CV積当たりのリン量は、リン酸換算で150mgであった。
陽極Aと同様に拡面処理した後のアルミニウム箔を、リン酸二水素一アンモニウム水溶液(濃度:1.4g/L、pH4.5~7.0)中で化成電圧13Vの条件で30分間化成処理し、その表面にリンを含有する酸化アルミニウム皮膜を形成した。得られた酸化アルミニウム皮膜を有する陽極について、上述した方法で酸化アルミニウム皮膜中の単位CV積当たりのリン量を測定したところ、リン酸換算で120mgの値が得られた。
陽極Aと同様に拡面処理した後のアルミニウム箔を、アジピン酸アンモニウム溶液(濃度:150g/L、pH4.5~7.0)で化成電圧3Vの条件で30分間一段目化成処理し、次いでリン酸二水素一アンモニウム水溶液(濃度:1.4g/L、pH4.5~7.0)中で化成電圧13Vの条件で30分間二段目化成処理し、その表面にリンを含有する酸化アルミニウム皮膜を形成した。得られた酸化アルミニウム皮膜を有する陽極について、上述した方法で酸化アルミニウム皮膜中の単位CV積当たりのリン量を測定したところ、リン酸換算で100mgの値が得られた。
陽極Aと同様に拡面処理した後のアルミニウム箔を、アジピン酸アンモニウム溶液(濃度:150g/L、pH4.5~7.0)で化成電圧10Vの条件で30分間一段目化成処理し、次いでリン酸二水素一アンモニウム水溶液(濃度:1.4g/L、pH4.5~7.0)中で化成電圧13Vの条件で化成電流を調整し、30分間二段目化成処理し、その表面にリンを含有する酸化アルミニウム皮膜を形成した。得られた酸化アルミニウム皮膜を有する陽極について、上述した方法で酸化アルミニウム皮膜中の単位CV積当たりのリン量を測定したところ、リン酸換算で70mgの値が得られた。
陽極Aと同様に拡面処理した後のアルミニウム箔を、アジピン酸アンモニウム溶液(濃度:150g/L、pH4.5~7.0)で化成電圧10Vの条件で30分間一段目化成処理し、次いでリン酸二水素一アンモニウム水溶液(濃度:1.4g/L、pH4.5~7.0)中で化成電圧13Vの条件で化成電流を調整し、30分間二段目化成処理し、その表面にリンを含有する酸化アルミニウム皮膜を形成した。得られた酸化アルミニウム皮膜を有する陽極について、上述した方法で酸化アルミニウム皮膜中の単位CV積当たりのリン量を測定したところ、リン酸換算で60mgの値が得られた。
陽極Aと同様に拡面処理した後のアルミニウム箔を、アジピン酸アンモニウム溶液(濃度:150g/L、pH4.5~7.0)で化成電圧10Vの条件で30分間一段目化成処理し、次いでリン酸二水素一アンモニウム水溶液(濃度:1.4g/L、pH4.5~7.0)中で化成電圧13Vの条件で化成電流を調整し、30分間二段目化成処理し、その表面にリンを含有する酸化アルミニウム皮膜を形成した。得られた酸化アルミニウム皮膜を有する陽極について、上述した方法で酸化アルミニウム皮膜中の単位CV積当たりのリン量を測定したところ、リン酸換算で50mgの値が得られた。
陽極Aと同様に拡面処理した後のアルミニウム箔を、アジピン酸アンモニウム溶液(濃度:150g/L、pH4.7~7.0)で化成電圧13Vの条件で30分間一段目化成処理し、次いでリン酸二水素一アンモニウム水溶液(濃度:1.4g/L、pH4.5~7.0)に浸漬し、13Vで修復化成をした後、引き上げて空気中で電気炉により500℃で1分間熱処理を行った。得られた酸化アルミニウム皮膜を有する陽極について、上述した方法で酸化アルミニウム皮膜中の単位CV積当たりのリン量を測定したところ、リン酸換算で30mgの値が得られた。
陽極Aと同様に拡面処理した後のアルミニウム箔を、アジピン酸アンモニウム溶液(濃度:150g/L、pH4.5~7.0)で化成電圧13Vの条件で30分間化成処理し、その表面にリンを含有しない酸化アルミニウム皮膜を形成した。
上記陽極A~Hのいずれかの陽極と、純度99.9%の帯状のアルミニウム箔にエッチング処理を施して拡面処理した陰極とを、マニラ麻のセパレータを介して巻回し、以下の表1~7に示す電解液を含浸させ、有底筒状のアルミニウムよりなる外装ケースに収納し、外装ケースの開口端部に、ブチルゴム製の封口体を挿入し、さらに外装ケースの端部を絞り加工して電解コンデンサの封口を行い、径10mm、高さ20mm、定格6.3V、2200μFのアルミニウム電解コンデンサを作成した。電解液は、アンモニアガスにより、又はアミン添加により中和し、pHを5.7~6.3の範囲に調整した。電解液がアンモニア又はアミンで中和されているため、カルボン酸塩が溶媒に溶解しているのと同じであるが、以下の表には塩ではなく酸の形態で表しており、溶媒1kg当たりのモル量についても、溶媒1kg当たりのギ酸のモル量、溶媒1kg当たりのアジピン酸又はグルタル酸のモル量、溶媒1kg当たりのアゼライン酸のモル量として表している。なお、表1~7に示す電解液におけるアゼライン酸量は、いずれも、それぞれの電解液における50℃での飽和溶解量以下であった。
得られたアルミニウム電解コンデンサについて、初期の静電容量、漏れ電流及び誘電損失と、105℃無負荷試験4000時間経過後又は6000時間経過後の誘電損失を評価した。また、105℃無負荷試験4000時間前に開弁に至ったコンデンサについては、開弁に至った時間を寿命として記録した。105℃無負荷試験前後の誘電損失の変化率が大きいほどコンデンサの寿命が短くなる傾向にある。また、誘電損失の変化率が200%を超えると、その後早期に開弁に至ることもわかっている。
陽極G、Hを使用し、アゼライン酸の含有量が異なる電解液を使用してアルミニウム電解コンデンサを作成し、特性評価を行った。以下の表1に、各アルミニウム電解コンデンサに使用した電解液の組成、溶媒1kg当たりのアゼライン酸のモル量、溶媒1kg当たりのギ酸のモル量、溶媒1kg当たりのアジピン酸のモル量、電解液の30℃での比抵抗、アルミニウム電解コンデンサの初期の静電容量、漏れ電流及び誘電損失(tanδ)、105℃無負荷試験4000時間経過後の誘電損失、4000時間経過前後の誘電損失の変化率及びコンデンサが開弁した場合には開弁に至った時間をまとめて示す。
陽極A~Hを使用し、アゼライン酸を含有しない電解液を使用してアルミニウム電解コンデンサを作成し、特性評価を行った。以下の表2に、各アルミニウム電解コンデンサに使用した電解液の組成、電解液の30℃での比抵抗、アルミニウム電解コンデンサの初期の静電容量、漏れ電流及び誘電損失(tanδ)、105℃無負荷試験4000時間経過後の誘電損失、4000時間経過前後の誘電損失の変化率及びコンデンサが開弁した場合には開弁に至った時間をまとめて示す。
陽極B、E、G、Hを使用し、アゼライン酸、ギ酸、アジピン酸及び水の含有量が異なる電解液を使用してアルミニウム電解コンデンサを作成し、特性評価を行った。以下の表3、4に、各アルミニウム電解コンデンサに使用した電解液の組成、溶媒1kg当たりのアゼライン酸のモル量、溶媒1kg当たりのギ酸のモル量、溶媒1kg当たりのアジピン酸のモル量、電解液の30℃での比抵抗、アルミニウム電解コンデンサの初期の静電容量、漏れ電流及び誘電損失(tanδ)、105℃無負荷試験4000時間経過後の誘電損失、4000時間経過前後の誘電損失の変化率及びコンデンサが開弁した場合には開弁時間をまとめて示す。表3は、アゼライン酸を含有しない電解液を使用した例であり、表4は、アゼライン酸を含有する電解液を使用した例である。
陽極Eと陽極Gを使用し、アゼライン酸の含有量が異なる電解液を使用してアルミニウム電解コンデンサを作成し、特性評価を行った。以下の表5に、各アルミニウム電解コンデンサに使用した電解液の組成、溶媒1kg当たりのアゼライン酸のモル量、溶媒1kg当たりのギ酸のモル量、溶媒1kg当たりのアジピン酸のモル量、電解液の30℃での比抵抗、アルミニウム電解コンデンサの初期の静電容量、漏れ電流及び誘電損失(tanδ)、105℃無負荷試験4000時間及び6000時間経過後の誘電損失、4000時間及び6000時間経過前後の誘電損失の変化率、及び4000時間経過前にコンデンサが開弁した場合には開弁時間をまとめて示す。
陽極Gを使用し、アジピン酸及びグルタル酸の一方を含む電解液を使用してアルミニウム電解コンデンサを作成し、特性評価を行った。以下の表6に、各アルミニウム電解コンデンサに使用した電解液の組成、溶媒1kg当たりのアゼライン酸のモル量、溶媒1kg当たりのアジピン酸又はグルタル酸のモル量、電解液の30℃での比抵抗、アルミニウム電解コンデンサの初期の静電容量、漏れ電流及び誘電損失(tanδ)、105℃無負荷試験4000時間経過後の誘電損失、4000時間経過前後の誘電損失の変化率及びコンデンサが開弁した場合には開弁時間をまとめて示す。
陽極Bと陽極Gを使用し、中和をアンモニアガス、ジメチルアミン、ジエチルアミンで行った電解液を使用してアルミニウム電解コンデンサを作成し、特性評価を行った。電解液は、全てpH5.7~6.3に調整した。以下の表7に、各アルミニウム電解コンデンサに使用した電解液の組成、電解液の30℃での比抵抗、アルミニウム電解コンデンサの初期の静電容量、漏れ電流及び誘電損失(tanδ)、105℃無負荷試験4000時間経過後の誘電損失、及び4000時間経過前後の誘電損失の変化率をまとめて示す。
2 アゼライン酸とギ酸を含有する液を使用
3 酸化アルミニウム皮膜中にリンを含有しない電極を使用
4 酸化アルミニウム皮膜中のリン量がリン酸換算で30mg/CVの電極を使用
5 酸化アルミニウム皮膜中のリン量がリン酸換算で60mg/CVの電極を使用
6 酸化アルミニウム皮膜中のリン量がリン酸換算で100mg/CVの電極を使用
Claims (20)
- 水を含む溶媒と、
カルボン酸及びその塩から成る群から選択された電解質と、
水溶液中でリンオキソ酸イオンを生成可能なリンオキソ酸イオン生成性化合物と、
アルミニウムに配位することにより水溶性アルミニウムキレート錯体を形成可能なキレート化剤と
を含有するアルミニウム電解コンデンサ用電解液であって、
前記電解液が、前記電解質として、アゼライン酸及びアゼライン酸塩から成る群から選択された少なくとも1種の化合物と、ギ酸、ギ酸塩、アジピン酸、アジピン酸塩、グルタル酸及びグルタル酸塩から成る群から選択された少なくとも1種の化合物とを含有し、
前記アゼライン酸及びアゼライン酸塩から成る群から選択された少なくとも1種の化合物の含有量が、少なくとも前記溶媒1kg当たり0.03モルであり、多くとも前記電解液における50℃での飽和溶解量である
ことを特徴とするアルミニウム電解コンデンサ用電解液。 - 30℃における比抵抗が30Ωcm以下である、請求項1に記載のアルミニウム電解コンデンサ用電解液。
- 前記電解液がアルミニウムイオンを含有し、
該アルミニウムイオンと、前記キレート化剤と、前記リンオキソ酸イオン生成性化合物から生成したリンオキソ酸イオンとの反応により、リンオキソ酸イオンと水溶性アルミニウムキレート錯体との結合体が前記電解液中に形成されている、請求項1に記載のアルミニウム電解コンデンサ用電解液。 - 前記電解液がアルミニウム電解コンデンサ内に導入された電解液であり、
前記アルミニウムイオンが前記アルミニウム電解コンデンサの陽極及び陰極から溶出したイオンである、請求項3に記載のアルミニウム電解コンデンサ用電解液。 - 水を含む溶媒と、
カルボン酸及びその塩から成る群から選択された電解質と、
水溶液中でリンオキソ酸イオンを生成可能なリンオキソ酸イオン生成性化合物と、
アルミニウムに配位することにより水溶性アルミニウムキレート錯体を形成可能なキレート化剤と
を含有するアルミニウム電解コンデンサ用電解液であって、
前記電解液が、前記電解質として、
前記溶媒1kg当たり0.03~0.5モルのアゼライン酸及びアゼライン酸塩から成る群から選択された少なくとも1種の化合物と、
ギ酸、ギ酸塩、アジピン酸、アジピン酸塩、グルタル酸及びグルタル酸塩から成る群から選択された少なくとも1種の化合物と
を含有することを特徴とするアルミニウム電解コンデンサ用電解液。 - 30℃における比抵抗が30Ωcm以下である、請求項5に記載のアルミニウム電解コンデンサ用電解液。
- 前記電解液がアルミニウムイオンを含有し、
該アルミニウムイオンと、前記キレート化剤と、前記リンオキソ酸イオン生成性化合物から生成したリンオキソ酸イオンとの反応により、リンオキソ酸イオンと水溶性アルミニウムキレート錯体との結合体が前記電解液中に形成されている、請求項5に記載のアルミニウム電解コンデンサ用電解液。 - 前記電解液がアルミニウム電解コンデンサ内に導入された電解液であり、
前記アルミニウムイオンが前記アルミニウム電解コンデンサの陽極及び陰極から溶出したイオンである、請求項7に記載のアルミニウム電解コンデンサ用電解液。 - 表面に酸化アルミニウム皮膜を有するアルミニウム箔からなる陽極と、
アルミニウム箔からなる陰極と、
陽極と陰極との間に配置された電解液を保持したセパレータと
を備えたアルミニウム電解コンデンサであって、
前記電解液が請求項4に記載のアルミニウム電解コンデンサ用電解液であることを特徴とするアルミニウム電解コンデンサ。 - 前記陽極が酸化アルミニウム皮膜中にリンを含有している、請求項9に記載のアルミニウム電解コンデンサ。
- 表面に酸化アルミニウム皮膜を有するアルミニウム箔からなる陽極と、
アルミニウム箔からなる陰極と、
陽極と陰極との間に配置された電解液を保持したセパレータと
を備えたアルミニウム電解コンデンサであって、
前記電解液が請求項8に記載のアルミニウム電解コンデンサ用電解液であることを特徴とするアルミニウム電解コンデンサ。 - 前記陽極が酸化アルミニウム皮膜中にリンを含有している、請求項11に記載のアルミニウム電解コンデンサ。
- 表面に酸化アルミニウム皮膜を有するアルミニウム箔からなる陽極と、
アルミニウム箔からなる陰極と、
陽極と陰極との間に配置された電解液を保持したセパレータとを備えたアルミニウム電解コンデンサであって、
前記陽極が、酸化アルミニウム皮膜中にリンをリン酸換算で単位CV積当たり30mg~150mg含有し、
前記電解液が、水を含む溶媒と、カルボン酸及びその塩から成る群から選択された電解質と、リンオキソ酸イオンと水溶性アルミニウムキレート錯体との結合体とを含有する
ことを特徴とするアルミニウム電解コンデンサ。 - 前記陽極の酸化アルミニウム皮膜中のリンが、リン酸及びリン酸塩から選択された少なくとも1種の化合物を含有する水溶液中での陽極の化成処理により酸化アルミニウム皮膜中に導入された、請求項13に記載のアルミニウム電解コンデンサ。
- 前記電解液の30℃における比抵抗が30Ωcm以下である、請求項13に記載のアルミニウム電解コンデンサ。
- 前記電解液が、前記電解質として、ギ酸、ギ酸塩、アジピン酸、アジピン酸塩、グルタル酸及びグルタル酸塩から成る群から選択された少なくとも1種の化合物を含有する、請求項13に記載のアルミニウム電解コンデンサ。
- 前記電解液における水の含有量が電解液全体の20~80質量%である、請求項13に記載のアルミニウム電解コンデンサ。
- 前記電解液が、前記電解質として、アゼライン酸及びアゼライン酸塩から成る群から選択された少なくとも1種の化合物を含有する、請求項13に記載のアルミニウム電解コンデンサ。
- 前記電解液が請求項4に記載のアルミニウム電解コンデンサ用電解液である、請求項13に記載のアルミニウム電解コンデンサ。
- 前記電解液が請求項8に記載のアルミニウム電解コンデンサ用電解液である、請求項13に記載のアルミニウム電解コンデンサ。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011506856A JP5447505B2 (ja) | 2009-03-31 | 2009-07-11 | アルミニウム電解コンデンサ用電解液及びアルミニウム電解コンデンサ |
CN200980158503.9A CN102379015B (zh) | 2009-03-31 | 2009-07-11 | 铝电解电容器用电解液以及铝电解电容器 |
US13/258,507 US8675347B2 (en) | 2009-03-31 | 2009-07-11 | Electrolytic solution for aluminum electrolytic capacitor, and aluminum electrolytic capacitor |
EP09842581.2A EP2416331B1 (en) | 2009-03-31 | 2009-07-11 | Electrolytic solution for aluminum electrolytic capacitor, and aluminum electrolytic capacitor |
US14/166,449 US8913369B2 (en) | 2009-03-31 | 2014-01-28 | Electrolytic solution for aluminum electrolytic capacitor, and aluminum electrolytic capacitor |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009088569 | 2009-03-31 | ||
JP2009-088573 | 2009-03-31 | ||
JP2009088573 | 2009-03-31 | ||
JP2009-088569 | 2009-03-31 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/258,507 A-371-Of-International US8675347B2 (en) | 2009-03-31 | 2009-07-11 | Electrolytic solution for aluminum electrolytic capacitor, and aluminum electrolytic capacitor |
US14/166,449 Division US8913369B2 (en) | 2009-03-31 | 2014-01-28 | Electrolytic solution for aluminum electrolytic capacitor, and aluminum electrolytic capacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010113224A1 true WO2010113224A1 (ja) | 2010-10-07 |
Family
ID=42827557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/003262 WO2010113224A1 (ja) | 2009-03-31 | 2009-07-11 | アルミニウム電解コンデンサ用電解液及びアルミニウム電解コンデンサ |
Country Status (7)
Country | Link |
---|---|
US (2) | US8675347B2 (ja) |
EP (1) | EP2416331B1 (ja) |
JP (1) | JP5447505B2 (ja) |
KR (1) | KR101548193B1 (ja) |
CN (2) | CN102379015B (ja) |
TW (1) | TWI447766B (ja) |
WO (1) | WO2010113224A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013004650A (ja) * | 2011-06-15 | 2013-01-07 | Panasonic Corp | 電解コンデンサ用陽極箔及びこれを用いたアルミ電解コンデンサまたは機能性高分子アルミ電解コンデンサならびに電解コンデンサ用陽極箔の製造方法 |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9105401B2 (en) | 2011-12-02 | 2015-08-11 | Avx Corporation | Wet electrolytic capacitor containing a gelled working electrolyte |
DE102013202252A1 (de) * | 2013-02-12 | 2014-08-28 | Siemens Aktiengesellschaft | Dünnschichtkondensatoren mit hoher Integrationsdichte |
CN103295788B (zh) * | 2013-06-06 | 2017-02-08 | 南通三鑫电子科技股份有限公司 | 高含水体系高频低阻抗铝电解电容器工作电解液及其制备方法 |
CN103680985B (zh) * | 2013-12-25 | 2016-12-07 | 佛山市高明区利明电子有限公司 | 一种200v电解电容器及其生产工艺 |
JP6740579B2 (ja) * | 2015-08-12 | 2020-08-19 | 日本ケミコン株式会社 | 固体電解コンデンサおよび固体電解コンデンサの製造方法 |
CN105239128B (zh) * | 2015-09-01 | 2018-03-30 | 广西贺州市桂东电子科技有限责任公司 | 一种超高压化成箔形成液及配制方法 |
CN105469990B (zh) * | 2015-12-22 | 2018-08-21 | 东莞市久制电子有限公司 | 一种高水系高稳定性铝电解电容器用电解液及其制备方法 |
US9978529B2 (en) | 2016-01-11 | 2018-05-22 | Pacesetter, Inc. | Oxide on edges of metal anode foils |
CN107705992A (zh) * | 2017-10-23 | 2018-02-16 | 周瑛 | 高效稳定的节能灯铝电解电容的电解液 |
JP6981348B2 (ja) * | 2018-04-13 | 2021-12-15 | トヨタ自動車株式会社 | 正極、非水電解質二次電池、および正極の製造方法 |
EP3664113A4 (en) * | 2018-10-09 | 2021-05-19 | CapXon Electronic (Shenzhen) Co., Ltd | HYBRID ALUMINUM ELECTROLYTE CAPACITOR AND METHOD FOR MANUFACTURING THEREOF |
WO2020073189A1 (zh) * | 2018-10-09 | 2020-04-16 | 丰宾电子(深圳)有限公司 | 混合型铝电解电容器及其制造方法 |
RU2713639C1 (ru) * | 2019-07-19 | 2020-02-05 | Открытое акционерное общество "Элеконд" | Рабочий электролит для конденсатора, способ его приготовления и алюминиевый электролитический конденсатор с таким электролитом |
RU2715998C1 (ru) * | 2019-10-16 | 2020-03-05 | Открытое акционерное общество "Элеконд" | Рабочий электролит для конденсатора, способ его приготовления и алюминиевый электролитический конденсатор с таким электролитом |
CN110993346B (zh) * | 2019-11-22 | 2021-10-22 | 肇庆绿宝石电子科技股份有限公司 | 一种开关电源用超低阻抗铝电解电容器 |
CN111029153B (zh) * | 2019-12-13 | 2022-02-11 | 珠海格力新元电子有限公司 | 一种超低温铝电解电容器用的电解液及其制备方法 |
CN113113233A (zh) * | 2021-04-09 | 2021-07-13 | 深圳市金富康电子有限公司 | 一种固液混合卷绕型铝电解电容器及其制备方法 |
CN113161152B (zh) * | 2021-04-13 | 2023-04-07 | 新疆众和股份有限公司 | 一种铝电解电容器阳极箔中磷酸根的浸取和检测方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0661099A (ja) * | 1992-08-05 | 1994-03-04 | Mitsubishi Petrochem Co Ltd | 電解コンデンサ駆動用電解液 |
WO2000055876A1 (fr) * | 1999-03-17 | 2000-09-21 | Nippon Chemi-Con Corporation | Electrolyte pour condensateur electrolytique |
JP2002270473A (ja) * | 2001-01-05 | 2002-09-20 | Nippon Chemicon Corp | 電解コンデンサ用電解液及びこれを用いた電解コンデンサ |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2836878C2 (de) * | 1978-08-23 | 1984-05-30 | Siemens AG, 1000 Berlin und 8000 München | Verfahren zur anodischen Herstellung hydrophober Oxidschichten auf Aluminium- Folien für Elektrolytkondensatoren |
US4509094A (en) * | 1984-02-21 | 1985-04-02 | Sprague Electric Company | Electrolytic capacitor for at least 150 V service |
US5175674A (en) * | 1992-03-24 | 1992-12-29 | North American Philips Corporation | Electrolyte containing a novel depolarizer and an electrolytic capacitor containing said electrolyte |
US5661629A (en) | 1995-06-06 | 1997-08-26 | Macfarlane; Douglas Robert | High conductivity crosslinked electrolyte materials and capacitors incorporating the same |
DE69836059T2 (de) * | 1997-10-03 | 2007-05-10 | Nippon Chemi-Con Corp., Ome | Elektrolytkondensator |
SG97822A1 (en) | 1998-12-01 | 2003-08-20 | Rubycon Corp | Electrolytic solution for electrolytic capacitor and electrolytic capacitor using the same |
US7050402B2 (en) | 2000-06-09 | 2006-05-23 | Texas Instruments Incorporated | Wireless communications with frequency band selection |
WO2002097834A1 (en) * | 2001-05-31 | 2002-12-05 | Nippon Chemi-Con Corporation | Electrolytic capacitor and electrolytic capacitor-use electrode foil used therefor |
JP4570303B2 (ja) * | 2001-12-28 | 2010-10-27 | ルビコン株式会社 | 電解コンデンサおよび電解コンデンサ駆動用電解液 |
JP2004128076A (ja) * | 2002-09-30 | 2004-04-22 | Nippon Chemicon Corp | 電解コンデンサ用電解液 |
JP2005303062A (ja) * | 2004-04-13 | 2005-10-27 | Rubycon Corp | 電解コンデンサ駆動用電解液及び電解コンデンサ |
TW200644010A (en) * | 2005-06-09 | 2006-12-16 | Kun-Li Wang | High water content electrolyte for driving electrolysis capacitor |
CN100480427C (zh) * | 2006-11-08 | 2009-04-22 | 东莞万利信新材料元件有限公司 | 一种抑制电解电容器铝箔氧化膜和水反应的处理工艺及检验方法 |
-
2009
- 2009-07-10 TW TW098123449A patent/TWI447766B/zh active
- 2009-07-11 WO PCT/JP2009/003262 patent/WO2010113224A1/ja active Application Filing
- 2009-07-11 KR KR1020117021220A patent/KR101548193B1/ko active IP Right Grant
- 2009-07-11 EP EP09842581.2A patent/EP2416331B1/en active Active
- 2009-07-11 CN CN200980158503.9A patent/CN102379015B/zh active Active
- 2009-07-11 US US13/258,507 patent/US8675347B2/en active Active
- 2009-07-11 JP JP2011506856A patent/JP5447505B2/ja active Active
- 2009-07-11 CN CN201410122729.6A patent/CN104036958B/zh active Active
-
2014
- 2014-01-28 US US14/166,449 patent/US8913369B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0661099A (ja) * | 1992-08-05 | 1994-03-04 | Mitsubishi Petrochem Co Ltd | 電解コンデンサ駆動用電解液 |
WO2000055876A1 (fr) * | 1999-03-17 | 2000-09-21 | Nippon Chemi-Con Corporation | Electrolyte pour condensateur electrolytique |
JP2002270473A (ja) * | 2001-01-05 | 2002-09-20 | Nippon Chemicon Corp | 電解コンデンサ用電解液及びこれを用いた電解コンデンサ |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013004650A (ja) * | 2011-06-15 | 2013-01-07 | Panasonic Corp | 電解コンデンサ用陽極箔及びこれを用いたアルミ電解コンデンサまたは機能性高分子アルミ電解コンデンサならびに電解コンデンサ用陽極箔の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
TWI447766B (zh) | 2014-08-01 |
JP5447505B2 (ja) | 2014-03-19 |
CN104036958A (zh) | 2014-09-10 |
US8913369B2 (en) | 2014-12-16 |
EP2416331B1 (en) | 2018-03-14 |
CN104036958B (zh) | 2018-04-27 |
KR20120006978A (ko) | 2012-01-19 |
EP2416331A4 (en) | 2013-01-16 |
EP2416331A1 (en) | 2012-02-08 |
CN102379015A (zh) | 2012-03-14 |
US20140133066A1 (en) | 2014-05-15 |
CN102379015B (zh) | 2014-04-16 |
US8675347B2 (en) | 2014-03-18 |
TW201036015A (en) | 2010-10-01 |
JPWO2010113224A1 (ja) | 2012-10-04 |
KR101548193B1 (ko) | 2015-08-28 |
US20120026645A1 (en) | 2012-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5447505B2 (ja) | アルミニウム電解コンデンサ用電解液及びアルミニウム電解コンデンサ | |
JP4737476B2 (ja) | 電解コンデンサ用電解液 | |
JP5789950B2 (ja) | アルミニウム電解コンデンサ用電解液及びアルミニウム電解コンデンサ | |
WO2011004616A1 (ja) | アルミニウム電解コンデンサ用電解液及びアルミニウム電解コンデンサ | |
JP2006108159A (ja) | 電解コンデンサ | |
JP2011216744A (ja) | アルミニウム電解コンデンサ用電解液及びアルミニウム電解コンデンサ | |
JP5109561B2 (ja) | 電解コンデンサ | |
JP2003289017A (ja) | 電解コンデンサ用電解液とその製造方法、およびそれを用いた電解コンデンサ。 | |
JP4737354B2 (ja) | 電解コンデンサ用電解液およびそれを用いた電解コンデンサ。 | |
JP4569729B2 (ja) | アルミ電解コンデンサ | |
JP4586949B2 (ja) | 電解コンデンサ用電解液とその製造方法、およびそれを用いた電解コンデンサ。 | |
JP4569730B2 (ja) | アルミ電解コンデンサ | |
JP2002057074A (ja) | アルミ電解コンデンサ | |
JP2001319833A (ja) | アルミ電解コンデンサ、及びそれに用いるアルミ電解コンデンサ用電解液とその製造方法。 | |
JP4569725B2 (ja) | アルミ電解コンデンサ、及びそれに用いるアルミ電解コンデンサ用電解液とその製造方法。 | |
JP2005294593A (ja) | 電解コンデンサ | |
JP4743362B2 (ja) | 電解コンデンサ、及びそれに用いる電解コンデンサ用電解液とその製造方法。 | |
JP2005294598A (ja) | 電解コンデンサ | |
JP2001326147A (ja) | アルミ電解コンデンサ、及びそれに用いるアルミ電解コンデンサ用電解液とその製造方法。 | |
JP2002083745A (ja) | アルミ電解コンデンサ、及びそれに用いるアルミ電解コンデンサ用電解液とその製造方法。 | |
JP2005294590A (ja) | 電解コンデンサ | |
JP2002100537A (ja) | アルミ電解コンデンサ | |
JP2001319832A (ja) | アルミ電解コンデンサ、及びそれに用いるアルミ電解コンデンサ用電解液とその製造方法。 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980158503.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09842581 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011506856 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20117021220 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13258507 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009842581 Country of ref document: EP |