WO2010098473A1 - 無機多孔質支持体-ゼオライト膜複合体、その製造方法およびそれを用いた分離方法 - Google Patents

無機多孔質支持体-ゼオライト膜複合体、その製造方法およびそれを用いた分離方法 Download PDF

Info

Publication number
WO2010098473A1
WO2010098473A1 PCT/JP2010/053172 JP2010053172W WO2010098473A1 WO 2010098473 A1 WO2010098473 A1 WO 2010098473A1 JP 2010053172 W JP2010053172 W JP 2010053172W WO 2010098473 A1 WO2010098473 A1 WO 2010098473A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous support
inorganic porous
zeolite membrane
zeolite
membrane composite
Prior art date
Application number
PCT/JP2010/053172
Other languages
English (en)
French (fr)
Inventor
美樹 杉田
武脇 隆彦
大島 一典
藤田 直子
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42665677&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010098473(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to EP17197584.0A priority Critical patent/EP3305396B1/en
Priority to CN2010800092499A priority patent/CN102333584A/zh
Priority to EP10746352.3A priority patent/EP2402071B1/en
Publication of WO2010098473A1 publication Critical patent/WO2010098473A1/ja
Priority to US13/219,277 priority patent/US8376148B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • B01D71/0281Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/362Pervaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0051Inorganic membrane manufacture by controlled crystallisation, e,.g. hydrothermal growth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/108Inorganic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/025Aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/027Silicium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/24Use of template or surface directing agents [SDA]

Definitions

  • the present invention uses an inorganic porous support-zeolite membrane composite suitable for the separation and concentration of a gas or liquid mixture containing an organic substance, and a method for producing the same, and further uses the inorganic porous support-zeolite membrane composite.
  • the present invention relates to a method for separating organic substances.
  • Zeolite membrane is generally used for separation and concentration as a zeolite membrane complex in which zeolite is formed in a membrane on a support.
  • the organic substance can be separated and concentrated by passing a mixture of the organic substance and water through the zeolite membrane composite and selectively permeating water.
  • Membrane separation and concentration using inorganic material membranes can reduce the amount of energy used compared to separation by distillation or adsorbent, and can be separated and concentrated in a wider temperature range than polymer membranes. It can also be applied to the separation of mixtures.
  • a method of utilizing hydrophilic zeolite for selective permeation of water has been proposed.
  • a method of selectively permeating water using an A-type zeolite membrane composite to concentrate alcohol Patent Document 1
  • a mordenite-type zeolite membrane composite selectively using water from a mixed system of alcohol and water.
  • a method of concentrating alcohol by permeation Patent Document 2
  • a method of separating and concentrating acetic acid by selectively permeating water from a mixed system of acetic acid and water using a ferrierite-type zeolite membrane complex Patent Document 3 etc.
  • the processing amount (permeation flow rate) of separation and concentration by a zeolite membrane is generally represented by a permeation flux that represents the weight of the permeate per unit area per unit area. It is said that the permeation flux of water in this case is desirably as large as possible for practical use of the zeolite membrane, and is preferably at least 1 kg / (m 2 ⁇ h) or more.
  • the permeation flux of the mordenite-type zeolite membrane composite described in Patent Document 2 is 0.6 kg / (m 2 ⁇ h) maximum in a water / ethanol system when the concentration of permeated water is 95% by weight or more. /0.23 kg / (m 2 ⁇ h) in the case of / acetic acid, which is insufficient for the processing amount required for practical use.
  • the permeation flux of the ferrierite type zeolite membrane composite described in Patent Document 3 is 0.22 kg / (m 2 ⁇ h) at maximum in the water / acetic acid system when the permeated water concentration is 95% by weight or more. Yes, the processing amount is insufficient for practical use.
  • the mordenite-type zeolite and ferrierite-type zeolite used in the zeolite membrane undergo a de-Al reaction under acidic conditions. Therefore, in general, SiO 2 / It is expected that the Al 2 O 3 ratio will change. Therefore, since the above-mentioned zeolite membrane composite is expected to change the separation performance as the use time becomes longer, use in the presence of an organic acid is not desirable. Further, since the structure of A-type zeolite is destroyed when it comes into contact with an acid, it cannot be applied as a separation membrane in the presence of an organic acid.
  • the present invention provides a zeolite membrane composite that achieves both a practically sufficient throughput and separation performance in separation and concentration using an inorganic material separation membrane, a method for producing the same, and a separation and concentration method using the membrane composite. This is a problem.
  • the present invention provides a zeolite membrane composite that is economical without requiring high energy costs, is not limited in application range, and has both a throughput and separation performance sufficient for practical use, a production method thereof, and the It is an object of the present invention to provide a separation and concentration method using a membrane complex.
  • an inorganic porous composite capable of separating and concentrating a gas or liquid mixture containing an organic substance, applicable in the presence of an organic substance, in particular an organic acid, and a method for producing the same, and a separation and concentration method using the same, particularly organic It is an object of the present invention to provide a method for separating and concentrating an acid / water mixed aqueous solution.
  • An inorganic porous support-zeolite membrane composite characterized by having a peak intensity in the vicinity of .9 ° is 0.5 times or more of the peak intensity in the vicinity of 2 ⁇ 20.8 °.
  • ⁇ 6> The inorganic porous support-zeolite membrane composite according to any one of ⁇ 1> to ⁇ 5>, wherein the zeolite crystal layer has a SiO 2 / Al 2 O 3 molar ratio of 5 or more.
  • ⁇ 7> Any one of ⁇ 1> to ⁇ 6>, which allows a highly permeable substance to pass through a gas or liquid mixture containing an organic substance and separates the highly permeable substance from the mixture.
  • ⁇ 8> The inorganic porous support-zeolite membrane composite according to ⁇ 7>, wherein the gas- or liquid-containing mixture containing the organic substance is a mixture of the organic substance and water.
  • ⁇ 9> The inorganic porous support-zeolite membrane composite according to ⁇ 7> or ⁇ 8>, wherein the organic substance is an organic acid.
  • ⁇ 10> The inorganic porous support-zeolite membrane composite according to ⁇ 7> or ⁇ 8>, wherein the organic substance is at least one selected from organic compounds containing alcohol, ether, aldehyde, ketone and nitrogen.
  • ⁇ 11> The inorganic porous support-zeolite membrane composite according to any one of ⁇ 1> to ⁇ 10>, wherein the inorganic porous support includes at least one selected from alumina, silica and mullite.
  • ⁇ 12> A method for producing an inorganic porous support-zeolite membrane composite as described in any one of ⁇ 1> to ⁇ 11>, wherein CHA-type zeolite is crystallized on the surface of the inorganic porous support.
  • a method for producing an inorganic porous support-zeolite membrane composite comprising: ⁇ 13> The method for producing an inorganic porous support-zeolite membrane composite according to ⁇ 12>, wherein a zeolite seed crystal is attached to the surface of the inorganic porous support, and then CHA-type zeolite is crystallized. ⁇ 14> The method for producing an inorganic porous support-zeolite membrane composite according to ⁇ 13>, wherein the zeolite seed crystal is CHA-type zeolite.
  • a reaction mixture containing a Si element source and an Al element source, and a molar ratio (SiO 2 / Al 2 O 3 ) representing the ratio of Si and Al in terms of each oxide is The method for producing an inorganic porous support-zeolite membrane composite as described in any one of ⁇ 12> to ⁇ 14>, wherein the inorganic porous support-zeolite membrane composite is used as a raw material so as to be 5 or more and 10,000 or less.
  • ⁇ 16> The method for producing an inorganic porous support-zeolite membrane composite as described in ⁇ 15>, wherein alkali metal ions are present in the reaction mixture.
  • ⁇ 17> The method for producing an inorganic porous support-zeolite membrane composite according to ⁇ 15> or ⁇ 16>, wherein an organic template is further used as a raw material, and the organic template is a cation derived from 1-adamantanamine.
  • a separation membrane comprising the inorganic porous support-zeolite membrane composite according to any one of ⁇ 1> to ⁇ 11>.
  • a gas or liquid mixture containing an organic substance is brought into contact with the inorganic porous support-zeolite membrane composite according to any one of ⁇ 1> to ⁇ 11>, and the mixture has high permeability.
  • a separation method comprising separating the highly permeable substance from the mixture by permeating the substance.
  • the separation method according to ⁇ 19>, wherein the gas or liquid mixture containing an organic substance is a mixture of an organic acid and water.
  • the gas or liquid mixture containing an organic substance is a mixture of at least one selected from organic compounds containing alcohol, ether, aldehyde, ketone and nitrogen and water.
  • a concentration method characterized in that a substance having low permeability is concentrated by permeating water.
  • the gas or liquid mixture containing an organic material is a mixture of at least one selected from organic acids, alcohols, ethers, aldehydes, ketones, and organic compounds containing nitrogen and water ⁇ 22> Concentration method.
  • the inorganic porous support-zeolite membrane composite of the present invention has a sufficiently large throughput for practical use when separating and concentrating a specific compound from a gas or liquid mixture containing an organic substance, and sufficient
  • This is a zeolite membrane composite for separation and concentration having separation performance, and separation and concentration from a gas or liquid mixture containing an organic substance using the zeolite membrane becomes possible.
  • a zeolite membrane composite for separation and concentration excellent in acid resistance can be obtained, and a mixture containing an organic acid can be separated and concentrated.
  • FIG. 3 is an XRD measurement result of a zeolite membrane described in Example 2.
  • FIG. 4 is an XRD measurement result of the zeolite membrane described in Example 5.
  • FIG. 4 is an XRD measurement result of a zeolite membrane described in Example 6.
  • FIG. 3 is a measurement result of water / acetic acid separation ability described in Example 8 and Comparative Example 1.
  • FIG. 1 is a measurement result of water / acetic acid separation ability described in Example 8 and Comparative Example 1.
  • the inorganic porous support-zeolite membrane composite of the present invention (hereinafter sometimes simply referred to as “zeolite membrane composite”) is formed on a surface layer of an inorganic porous support containing a ceramic sintered body, with a CHA-type zeolite. Is crystallized in the form of a film.
  • zeolite membrane composite each component constituting the inorganic porous support-zeolite membrane composite of the present invention will be specifically described.
  • the inorganic porous support used in the present invention is not particularly limited as long as it has chemical stability such that zeolite can be crystallized into a film on the surface layer and is porous.
  • Examples include sintered ceramics such as silica, ⁇ -alumina, ⁇ -alumina, mullite, zirconia, titania, yttria, silicon nitride, silicon carbide, sintered metals such as iron, bronze, and stainless steel, glass, and carbon molded products. Can be mentioned.
  • the inorganic porous support including a ceramic sintered body used in the present invention is a porous material including a sintered ceramic which is a solid material whose basic component or most of which is composed of an inorganic nonmetallic substance.
  • a quality support include ceramic sintered bodies containing ⁇ -alumina, ⁇ -alumina, mullite, zirconia, titania, yttria, silicon nitride, silicon carbide and the like. These may be used alone or in combination. This is because some of these ceramic sintered bodies have an effect of enhancing the adhesion at the interface by being zeoliticized during synthesis of the zeolite membrane.
  • the inorganic porous support containing at least one of alumina, silica, and mullite is easy to partially zeoliticize the inorganic porous support, so that the bond between the inorganic porous support and the CHA-type zeolite is reduced. It is more preferable in that it becomes strong and a dense membrane with high separation performance is easily formed.
  • the shape of the inorganic porous support used in the present invention is not limited as long as it can effectively separate a gas mixture or a liquid mixture. Specifically, a flat plate shape, a tubular shape, or a cylindrical shape, A honeycomb or monolith having a large number of cylindrical or prismatic holes may be mentioned, and any shape may be used.
  • the inorganic porous support used in the present invention crystallizes zeolite in its surface layer (hereinafter also referred to as “inorganic porous support surface layer”).
  • the average pore diameter of the inorganic porous support surface layer is not particularly limited, but is preferably controlled in pore diameter, usually 0.02 ⁇ m or more, preferably 0.05 ⁇ m or more, more preferably It is 0.1 ⁇ m or more, and is usually 20 ⁇ m or less, preferably 10 ⁇ m or less, and more preferably 5 ⁇ m or less.
  • the surface of the inorganic porous support is preferably smooth, and the surface may be polished with a file or the like as necessary.
  • the inorganic porous support surface layer means an inorganic porous support surface portion for crystallizing CHA-type zeolite, and may be any surface of each shape as long as it is a surface. There may be. For example, in the case of a cylindrical tube support, it may be the outer surface or the inner surface, and in some cases both the outer and inner surfaces.
  • the pore size of the inorganic porous support used in the present invention other than the surface layer of the inorganic porous support is not limited, and it is not necessary to be controlled, but the inorganic porous support
  • the porosity of the portion other than the surface layer is usually preferably 20% or more and 60% or less.
  • the porosity of the portion other than the surface layer of the inorganic porous support affects the permeation flux when separating the gas or liquid, and tends to inhibit the diffusion of the permeate below the lower limit, and is inorganic above the upper limit. There exists a tendency for the intensity
  • the CHA-type zeolite used in the present invention is a code that defines the structure of the zeolite defined by International Zeolite Association (IZA) and indicates a CHA structure. It is a zeolite having a crystal structure equivalent to that of naturally occurring chabasite.
  • the CHA-type zeolite has a structure characterized by having three-dimensional pores composed of 8-membered oxygen rings having a diameter of 3.8 ⁇ 3.8 mm, and the structure is characterized by X-ray diffraction data.
  • the framework density of the CHA-type zeolite used in the present invention is 14.5 T / 1000 kg.
  • the framework density means the number of elements constituting a skeleton other than oxygen per 1000 3 of the zeolite, and this value is determined by the structure of the zeolite.
  • the relationship between the framework density and the structure of zeolite is shown in ATLAS OF ZEOLITE FRAMEWORK TYPES Fifth Revised Edition 2001 ELSEVIER.
  • the SiO 2 / Al 2 O 3 molar ratio of the CHA-type zeolite used in the present invention is not particularly limited, but is usually 5 or more, preferably 8 or more, more preferably 10 or more, and still more preferably 12 That's it.
  • the upper limit of the molar ratio is usually 2000 or less, preferably 1000 or less, more preferably 500 or less, and still more preferably 100 or less. This is the same as the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane described later.
  • the zeolite membrane in the present invention is a membrane-like material composed of zeolite, and is preferably a membrane obtained by crystallizing zeolite on the surface layer of the inorganic porous support.
  • an inorganic binder such as silica and alumina, an organic substance such as a polymer, a silylating agent for modifying the surface of the zeolite, or the like may be included as necessary in addition to zeolite.
  • the zeolite membrane in the present invention may partially contain an amorphous component or the like, but is preferably a zeolite membrane substantially composed only of zeolite. Specifically, it is a zeolite membrane containing CHA-type zeolite as a main component, and may partially contain zeolite with other structures such as mordenite type and MFI type, or may contain amorphous components, etc. Preferably, it is a zeolite membrane substantially composed of only CHA-type zeolite.
  • the thickness of the zeolite membrane used in the present invention is not particularly limited, but is usually 0.1 ⁇ m or more, preferably 0.6 ⁇ m or more, more preferably 1.0 ⁇ m or more. Also, it is usually not less than 100 ⁇ m, preferably not more than 60 ⁇ m, more preferably not more than 20 ⁇ m.
  • the zeolite crystal layer refers to a zeolite membrane having the thickness of the zeolite membrane.
  • the particle diameter of the zeolite forming the zeolite membrane in the present invention is not particularly limited, but if it is too small, the grain boundary tends to increase and the like, and the permselectivity tends to be reduced. Preferably it is 50 nm or more, More preferably, it is 100 nm or more, and an upper limit is below the thickness of a film
  • the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane in the present invention is not particularly limited, but is usually 5 or more, preferably 8 or more, more preferably 10 or more, and still more preferably 12 or more.
  • the upper limit is usually 2000 or less, preferably 1000 or less, more preferably 500 or less, and still more preferably 100 or less. If the SiO 2 / Al 2 O 3 molar ratio is less than the lower limit, the durability tends to decrease, and if the upper limit is exceeded, the hydrophobicity is too strong and the permeation flux tends to be small.
  • the SiO 2 / Al 2 O 3 molar ratio in the present invention is a numerical value obtained by scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX). In order to obtain information on only a film of several microns, the X-ray acceleration voltage is usually measured at 10 kV.
  • a membrane composed of zeolite can be used as it is, but it is usually used as a zeolite membrane composite in which zeolite is fixed in a membrane form on various supports, and is preferably described in detail below. Used as the inorganic porous support-zeolite membrane composite described.
  • the zeolite is fixed to the surface layer of the inorganic porous support in the form of a film, and in some cases, the inorganic porous support is fixed even to the inside of the inorganic porous support. It is in the state of being.
  • the zeolite is crystallized into a film on an inorganic porous support, and the zeolite is fixed to the inorganic porous support with an inorganic binder or an organic binder.
  • a method of fixing the zeolite-dispersed polymer a method of fixing the zeolite to the inorganic porous support by impregnating a slurry of zeolite into the inorganic porous support, and optionally sucking it.
  • zeolite is crystallized into a film on the surface layer of the inorganic porous support.
  • CHA-type zeolite is crystallized in the form of a film on the surface layer of the inorganic porous support, and is usually crystallized by hydrothermal synthesis.
  • the position of the zeolite membrane used in the present invention on the surface of the inorganic porous support is not particularly limited, but when using a tubular inorganic porous support, the zeolite membrane may be attached to the outer surface, It may be applied to the surface, or may be applied to both surfaces depending on the system to be applied.
  • the inorganic porous support may be laminated on the surface of the inorganic porous support, or crystallized so as to fill the pores of the surface layer of the porous support.
  • the peak intensity here refers to the value obtained by subtracting the background value from the measured value.
  • the upper limit is not particularly limited, but is usually 1000 or less.
  • the upper limit is not particularly limited, but is usually 1000 or less.
  • the X-ray diffraction pattern is obtained by irradiating the surface on the side where the zeolite is mainly attached with X-rays using CuK ⁇ as a radiation source and setting the scanning axis to ⁇ / 2 ⁇ .
  • the shape of the sample to be measured may be any shape that can irradiate X-rays on the surface of the membrane composite on which the zeolite is mainly attached.
  • the body itself or the one cut into an appropriate size restricted by the apparatus is preferable.
  • the X-ray diffraction pattern mentioned here may be measured by fixing the irradiation width using an automatic variable slit when the surface of the membrane composite is a curved surface.
  • An X-ray diffraction pattern using an automatic variable slit refers to a pattern subjected to variable ⁇ fixed slit correction.
  • the peak in the vicinity of ° indicates the maximum peak in the range of 20.8 ° ⁇ 0.6 ° among peaks not derived from the base material.
  • the typical ratio of the peak intensity from the (1,0,0) plane to the peak from the (2,0, -1) plane is shown in COLLECTIONCOOF SIMULATED XRD POWDER PATTERNS FOR ZEOLITE Third Revised EditVI ER 1996 ELSE According to the 2.5. Therefore, when this ratio is 4 or more, for example, the zeolite crystal is oriented so that the (1,0,0) plane when the CHA structure is rhombohedral setting is close to the surface of the membrane composite. This means that it is growing. Orientation and growth of zeolite crystals in the zeolite membrane composite is advantageous in that a dense membrane with high separation performance can be formed.
  • the typical ratio of the peak intensity from the (1, 1, 1) plane to the peak intensity from the (2, 0, -1) plane is COLLECTION EC OF SIMULATED XRD POWDER PATTERNS FOR ZEOLITE Third Revised Edition 1996 ELSEVIER 0.3. Therefore, this ratio is 0.5 or more, for example, when the zeolite crystal is oriented so that the (1, 1, 1) plane is close to parallel to the surface of the membrane complex when the CHA structure is rhombohedral setting. It is thought that it means growing in an oriented manner. Orientation and growth of zeolite crystals in the zeolite membrane composite is advantageous in that a dense membrane with high separation performance can be formed.
  • Method for producing zeolite membrane As a method for crystallizing a zeolite membrane in the present invention, any method may be used as long as CHA-type zeolite is crystallized into a membrane on an inorganic porous support to form a CHA-type zeolite membrane. Of these, a method in which the inorganic porous support is put in a reaction mixture used for the production of CHA zeolite and directly hydrothermally synthesized to crystallize the CHA zeolite on the surface layer of the inorganic porous support is preferable.
  • an aqueous reaction mixture whose composition is adjusted and homogenized is used, and the inorganic porous support is placed inside. Put it in a heat-resistant pressure-resistant container such as an autoclave, which is gently fixed, and heat it.
  • reaction mixture examples include an Si element source, an Al element source, an organic template (if necessary), and water, and an alkali source is preferably added as necessary.
  • the Si element source and Al element source used in the reaction mixture are not particularly limited.
  • the Si element source any of amorphous silica, colloidal silica, silica gel, sodium silicate, amorphous aluminum silicate gel, tetraethoxysilane (TEOS), trimethylethoxysilane and the like can be used.
  • TEOS tetraethoxysilane
  • the Al element source any of sodium aluminate, aluminum hydroxide, aluminum sulfate, aluminum nitrate, aluminum oxide, amorphous aluminosilicate gel and the like can be used.
  • an organic template (structure directing agent) can be used as necessary, and those synthesized using an organic template are preferred. This is because, when synthesized using an organic template, the ratio of silicon atoms to aluminum atoms in the crystallized zeolite is increased, and the acid resistance is improved.
  • the organic template is not particularly limited as long as it can form a CHA type.
  • One type of template may be used or two or more types may be used in combination.
  • organic templates described in US Pat. No. 4,544,538 and US Patent Application Publication No. 2008/0075656 A1 are suitably combined. May be used.
  • a cation derived from 1-adamantanamine is used as an organic template, a CHA-type zeolite capable of forming a dense film is crystallized. Further, it is possible to produce a CHA-type zeolite having hydrophilicity sufficient for the membrane to selectively permeate water and to obtain a CHA-type zeolite excellent in acid resistance.
  • the N, N, N-trialkyl-1-adamantanammonium cation is more preferred.
  • the three alkyl groups in the case of the N, N, N-trialkyl-1-adamantanammonium cation are three independent alkyl groups, usually lower alkyl groups, preferably methyl groups. Specifically preferred is the N, N, N-trimethyl-1-adamantanammonium cation.
  • Such cations are accompanied by anions that do not harm the formation of CHA-type zeolite.
  • N, N, N-trialkylbenzylammonium cation can also be used.
  • alkyl is three independent alkyls, usually lower alkyl. Preferably it is methyl. Most preferred is the N, N, N-trimethylbenzylammonium cation.
  • alkali source used in the reaction mixture a hydroxide ion of a counter anion of an organic template, an alkali metal hydroxide such as NaOH or KOH, an alkaline earth metal hydroxide such as Ca (OH) 2 or the like is used. it can.
  • the type of alkali is not particularly limited, but is usually Na, K, Li, Rb, Cs, Ca, Mg, Sr, Ba, preferably Na, K, and more preferably K. Two or more alkalis may be used in combination, and specifically, Na and K are preferably used in combination.
  • the ratio of the Si element source and the Al element source in the reaction mixture is usually the molar ratio of the oxides of the respective elements, the SiO 2 / Al 2 O 3 molar ratio (hereinafter simply referred to as the “SiO 2 / Al 2 O 3 ratio”). Is expressed as).
  • the SiO 2 / Al 2 O 3 ratio is not particularly limited, but it is usually 5 or more, preferably 8 or more, because a CHA-type zeolite membrane can be densely formed, more preferably 10 Above, more preferably 15 or more. Moreover, it is 10,000 or less normally, Preferably it is 1000 or less, More preferably, it is 300 or less, More preferably, it is 100 or less.
  • a CHA-type zeolite membrane is preferable because it can be densely formed. Further, the produced CHA-type zeolite exhibits strong hydrophilicity, and is hydrophilic from a mixture containing organic matter. It is preferable at the point which can selectively permeate
  • other elements such as Ga, Fe, B, Ti, Zr, Sn, Zn and the like may be included.
  • CHA-type zeolite that can form a dense film is crystallized, which is preferable. Further, it is preferable in that a CHA-type zeolite having hydrophilicity sufficient for the membrane to selectively permeate water can be produced and a CHA-type zeolite excellent in acid resistance can be obtained.
  • the ratio of the silica source and an organic template in the reaction mixture usually is from 0.005 to 1 or less, 0.01 to 0.4 Preferably, it is 0.02 or more and 0.2 or less.
  • the produced CHA-type zeolite has strong acid resistance and Al is not easily desorbed.
  • the ratio of the Si element source to the alkali source is usually represented by M (2 / n) 2 O / SiO 2 molar ratio when the alkali metal or alkaline earth metal is represented by M and the valence is represented by n (1 or 2). 0.02 or more, 0.5 or less, preferably 0.04 or more and 0.4 or less, and more preferably 0.05 or more and 0.3 or less.
  • K is contained in the alkali metal from the viewpoint of forming a denser and higher crystalline film.
  • the molar ratio of K to all alkali metals and / or alkaline earth metals containing K is usually 0.01 to 1, preferably 0.1 to 1, and more preferably 0.3 to 1. is there.
  • the addition of K can be done by changing the space group by rhomboboreal setting
  • the peak intensity around 2 ⁇ 9.6 °, which is a peak derived from the (1, 0, 0) index in the CHA structure, or the (1, 1, 1) surface.
  • the ratio of Si element source to water is usually 10 or more and 1000 or less, preferably 30 or more and 500 or less, more preferably 40 or more and 200 or less, and particularly preferably 50 or more and 150 or less in terms of the molar ratio of water to SiO 2 .
  • a dense CHA-type zeolite membrane can be formed.
  • the amount of water is particularly important in the formation of a dense CHA-type zeolite membrane, and fine crystals are more likely to be produced under conditions where the amount of water is higher than that of the powder synthesis method under conditions where the amount of water is greater than that of silica. There is a tendency.
  • the amount of water when synthesizing the powdered CHA-type zeolite is generally about 15 to 50 in terms of H 2 O / SiO 2 molar ratio, but the condition is high in that the H 2 O / SiO 2 molar ratio is high and water is high.
  • the conditions are preferably 50 or more and 150 or less, CHA-type zeolite is crystallized into a dense membrane on the surface layer of the inorganic porous support to obtain a membrane composite with high separation performance. This is preferable.
  • seed crystals may not be present, but by adding seed crystals in the reaction system, This is preferable in that crystallization can be promoted.
  • the method of adding the seed crystal but the method of adding the seed crystal to the reaction mixture as in the synthesis of the powdered CHA-type zeolite or the method of attaching the seed crystal on the surface of the inorganic porous support. It is preferable to leave a seed crystal on the surface of the inorganic porous support as a method for producing the membrane composite.
  • the seed crystal used in the present invention may be of any type as long as it is a zeolite that promotes crystallization, but is preferably a CHA-type zeolite for efficient crystallization.
  • the CHA-type zeolite used as the seed crystal is not particularly limited, but it is desirable that the particle diameter is small, and it may be used after pulverization if necessary. Usually, it is 0.5 nm or more, preferably 1 nm or more, more preferably 2 nm or more, usually 5 ⁇ m or less, preferably 3 ⁇ m or less, and more preferably 2 ⁇ m or less.
  • the method for attaching the seed crystal on the surface of the inorganic porous support in the present invention is not particularly limited, but the seed crystal is dispersed in a solvent such as water and the support is immersed in the dispersion to seed the surface on the surface.
  • a dip method in which crystals are attached, and a method in which seed crystals are mixed with a solvent such as water to form a slurry, and are coated on the surface of the inorganic porous support.
  • the dip method is desirable for controlling the amount of seed crystals attached and producing a membrane composite with good reproducibility.
  • the solvent in which the seed crystal is dispersed is not particularly limited, but water is preferable.
  • the amount of the seed crystal to be dispersed is not particularly limited, but is usually 0.01% by weight or more, preferably 0.1% by weight or more, more preferably 0.5% by weight with respect to the total weight of the dispersion.
  • the above is preferable, and it is usually 20% by weight or less, preferably 10% by weight or less, more preferably 5% by weight or less, and further preferably 3% by weight or less.
  • the amount of seed crystals to be dispersed is too small, the amount of seed crystals adhering to the inorganic porous support will be small, so there may be a part where CHA-type zeolite is not partially formed on the support surface during hydrothermal synthesis. There is a possibility of becoming a film with. If the amount of seed crystals in the dispersion is too large, the amount of seed crystals adhering to the surface of the inorganic porous support by the dipping method will be almost constant, so if too much seed crystals are dispersed, the seed crystals will be wasted. It is more disadvantageous in terms of cost.
  • the inorganic porous support in the present invention is preferably synthesized after a seed crystal is attached by dipping or slurry coating and then dried.
  • the weight of the seed crystal to be preliminarily deposited on the surface of the support is not particularly limited, but is usually 0.01 g or more, preferably 0.05 g or more, more preferably the weight per 1 m 2 of the substrate. Is 0.1 g or more, usually 100 g or less, preferably 50 g or less, more preferably 10 g or less, and still more preferably 8 g or less.
  • the amount of the seed crystal is less than the lower limit, it becomes difficult to form a crystal, and when the film growth becomes insufficient or the film growth tends to be uneven, a dense film is formed. It may be difficult.
  • the amount of the seed crystal exceeds the upper limit, the surface irregularities are increased by the seed crystal, or the seed crystal falling from the surface of the support easily grows spontaneous nuclei, thereby inhibiting the film growth on the support. In some cases, it is difficult to form a dense film.
  • crystallizing by hydrothermal synthesis when the inorganic porous support is fixed, it can take any form such as vertical placement and horizontal placement. In this case, it may be crystallized by a stationary method or may be crystallized by stirring the reaction mixture.
  • the temperature at which the zeolite is crystallized is not particularly limited, but is usually 100 ° C or higher, preferably 120 ° C or higher, more preferably 150 ° C or higher, usually 200 ° C or lower, preferably 190 ° C or lower. More preferably, it is 180 ° C. or lower. If the reaction temperature is too low, the CHA-type zeolite may not crystallize, which is not preferable. If the reaction temperature is higher than this range, a zeolite different from the CHA type can be produced, which is not preferable.
  • the heating time is not particularly limited, but is usually 1 hour or longer, preferably 5 hours or longer, more preferably 10 hours or longer, usually 10 days or shorter, preferably 5 days or shorter, more preferably Is 3 days or less, more preferably 2 days or less. If the reaction time is too short, the CHA-type zeolite may not crystallize, which is not preferable. When the reaction time is too long, a zeolite different from the CHA type can be formed, which is not preferable.
  • the pressure at the time of crystallization is not particularly limited, the self-generated pressure generated when the reaction mixture placed in a closed vessel is heated to this temperature range is sufficient, but an inert gas such as nitrogen is added. It doesn't matter.
  • the organic template in the zeolite it is preferable to remove the organic template in the zeolite after washing the inorganic porous support-zeolite membrane composite obtained by hydrothermal synthesis with water.
  • a method for removing the organic template there are methods such as firing and extraction, and the method is not limited, but firing is desirable, and the preferred firing temperature is usually 350 ° C. or higher, preferably 400 ° C. or higher, more preferably 430. It is 900 degreeC or more, More preferably, it is 480 degreeC or more, Usually, 900 degreeC or less, Preferably it is 850 degreeC or less, More preferably, it is 800 degreeC or less, Most preferably, it is 750 degreeC or less.
  • the calcination temperature is too low, the proportion of the remaining organic template tends to increase, and the pores of the zeolite are small, which may reduce the permeation flux during separation and concentration. If the calcination temperature is too high, the difference in the coefficient of thermal expansion between the support and the zeolite will be large, so the zeolite membrane may be prone to cracking, and the denseness of the zeolite membrane will be lost, leading to poor separation performance. Sometimes.
  • the firing time is not particularly limited as long as the organic template is sufficiently removed, but it is preferably 1 hour or longer, more preferably 5 hours or longer.
  • the upper limit is not particularly limited, but is usually within 24 hours.
  • the firing is generally performed in an air atmosphere, but can be performed in an atmosphere containing oxygen.
  • the temperature increase rate during calcination be as slow as possible in order to reduce the difference in the thermal expansion coefficient between the support and the zeolite from causing cracks in the zeolite membrane.
  • it is 5 ° C./min or less, preferably 2 ° C./min or less, more preferably 1 ° C./min or less, particularly preferably 0.5 ° C./min or less.
  • it is 0.1 ° C./min or more in consideration of workability.
  • it is 5 ° C./min or less, preferably 2 ° C./min or less, more preferably 1 ° C./min or less, particularly preferably 0.5 ° C./min or less. Usually, it is 0.1 ° C./min or more in consideration of workability.
  • the inorganic porous support-zeolite membrane composite may be ion-exchanged as necessary.
  • the ion exchange is usually performed after removing the template such as baking.
  • Ions to be ion-exchanged include protons, alkali metal ions such as Na + , K + and Li + , and alkaline earth metal ions such as Ca 2+ , Mg 2+ , Sr 2+ and Ba 2+ , Fe, Cu, Zn and the like Examples thereof include transition metal ions. Of these, protons and alkali metal ions such as Na + , K + and Li + are preferred.
  • the inorganic porous support-zeolite membrane complex after calcination (such as when using a template) is mixed with an ammonium salt such as NH 4 NO 3 or NaNO 3 or an aqueous solution containing ions to be exchanged. It is usually treated with an acid such as hydrochloric acid at a temperature of room temperature to 100 ° C., washed with water, and calcined at 200 ° C. to 500 ° C. as necessary.
  • the method of separating and concentrating a gas or liquid mixture containing an organic substance using the inorganic porous support-zeolite membrane composite of the present invention is carried out by using the inorganic porous support provided with the zeolite membrane via the support side or the zeolite membrane side.
  • a substance (mixture) that is permeable to the CHA-type zeolite membrane from the mixture by bringing a gas or liquid mixture containing an organic substance into contact with one side of the mixture and setting the opposite side to a lower pressure than the side with which the mixture is in contact
  • This is a method of selectively permeating a substance having high permeability. Thereby, a highly permeable substance can be separated from the mixture.
  • the specific organic substance is separated and recovered or concentrated by increasing the concentration of the specific organic substance (substance having low permeability in the mixture) in the mixture containing the organic substance.
  • the specific organic substance substance having low permeability in the mixture
  • a separation / concentration method called permeable pervaporation or vapor permeation is one form.
  • the shape of the zeolite membrane composite of the present invention is not particularly limited, and any shape such as a tubular shape, a hollow fiber shape, a monolith type, and a honeycomb type can be adopted.
  • the size is not particularly limited, for example, in the case of a tubular shape, a length of 2 cm to 200 cm, an inner diameter of 0.5 cm to 2 cm, and a thickness of 0.5 mm to 4 mm are practical and preferable.
  • One of the separation functions of the zeolite membrane composite of the present invention is separation as a molecular sieve, and a gas molecule or liquid molecule having an effective pore diameter of 3.8 mm or more of CHA-type zeolite and a gas or less of that It is preferably used for separation from liquid molecules.
  • a gas molecule or liquid molecule having an effective pore diameter of 3.8 mm or more of CHA-type zeolite and a gas or less of that It is preferably used for separation from liquid molecules.
  • the size of the molecules is usually about 100 mm or less.
  • Another separation function of the zeolite membrane composite of the present invention is separation utilizing the difference in hydrophilicity.
  • a hydrophilic property generally appears when a certain amount of Al is contained in the zeolite framework.
  • the crystallization conditions of the CHA-type zeolite membrane it is possible to control the SiO 2 / Al 2 O 3 molar ratio in the crystal. If such a hydrophilic membrane is used, the organic matter can be separated and concentrated by selectively allowing water molecules to permeate through a mixed solution of the organic matter and water.
  • organic acids / water organic acids / water, alcohols / water, ketones / water such as acetone and methyl isobutyl ketone, aldehydes / water, ethers such as dioxane and tetrahydrofuran, amides such as dimethylformamide and N-methylpyrrolidone
  • the organic substance can be separated and concentrated by selectively permeating water from a mixed aqueous solution of the organic substance and water, such as organic compounds containing nitrogen (N-containing organic substance) / water, esters such as acetate ester / water, and the like.
  • the content of water in the mixture of organic matter and water is not particularly limited, and the structure is broken even in the case of a mixture having a high water content, for example, a water content of 20% by weight or more, in which the structure is broken in the A-type zeolite.
  • High selectivity and permeation flux can be realized without any problems.
  • systems other than organic acid / water even in the presence of an organic acid or an inorganic acid, it can be used because of its high acid resistance.
  • the zeolite membrane composite of the present invention can realize high selectivity and permeation flux even in separation from a mixture with an organic substance having a high water content or separation under acidic conditions. Therefore, by separating the mixture usually separated by distillation using the zeolite membrane composite of the present invention, energy required for separation can be reduced as compared with distillation. Since the zeolite membrane composite of the present invention can be separated from a mixture having a wide range of water content, it can be separated even in a system that has not been possible so far. For example, since the A-type zeolite membrane could not be separated from a mixture with an organic substance having a high water content, it is necessary to concentrate the organic substance to about 90% by distillation before using the A-type zeolite membrane.
  • the zeolite membrane composite of the present invention water and organic matter can be separated and the organic matter can be concentrated even from a mixture with an organic matter having a high water content of, for example, 50% or more.
  • all steps may be performed using the zeolite membrane composite to concentrate the organic matter to a desired concentration, or the zeolite membrane composite.
  • separation methods such as distillation, pressure swing adsorption (PSA), and temperature swing adsorption (TSA) can be suitably combined. By combining the conditions, separation with optimum energy efficiency becomes possible.
  • Examples of organic substances separable by the zeolite membrane composite of the present invention include carboxylic acids such as acetic acid, propionic acid, formic acid, lactic acid, oxalic acid, tartaric acid, benzoic acid, sulfonic acid, sulfinic acid, habituric acid, uric acid, Organic acids such as phenol, enol, diketone type compounds, thiophenol, imide, oxime, aromatic sulfonamide, primary and secondary nitro compounds, alcohols such as methanol, ethanol, isopropanol, acetone, methyl isobutyl ketone, etc.
  • carboxylic acids such as acetic acid, propionic acid, formic acid, lactic acid, oxalic acid, tartaric acid, benzoic acid, sulfonic acid, sulfinic acid, habituric acid, uric acid
  • Organic acids such as phenol, enol, diketone type compounds,
  • Ketones aldehydes such as acetaldehyde, ethers such as dioxane and tetrahydrofuran, organic compounds containing nitrogen such as amides such as dimethylformamide and N-methylpyrrolidone (N-containing organic substances), esters such as acetate esters, etc. It is done. Among these, the effect of the inorganic porous support-zeolite membrane composite is noticeable when separating the organic acid from the mixture of organic acid and water, which can take advantage of both the characteristics of molecular sieve and hydrophilicity. To do.
  • a preferred example is a mixture of carboxylic acids and water, particularly preferably separation of acetic acid and water.
  • the organic substance in the case of separating the organic substance and water from the mixture of the organic substance other than the organic acid and water preferably has 2 or more carbon atoms, and more preferably 3 or more carbon atoms.
  • the inorganic porous support-zeolite membrane composite of the present invention When used, it functions as a separation membrane, preferably a pervaporation separation membrane, and separates a specific compound from a gas or liquid mixture containing an organic substance and further concentrates it.
  • sufficient membrane separation with sufficient throughput and sufficient separation performance is possible.
  • the sufficient treatment amount here means that the permeation flux of the substance that permeates the membrane is 1 kg / (m 2 ⁇ h) or more.
  • P ⁇ is the weight percent concentration of the subcomponent in the permeate
  • F ⁇ is the weight percent concentration in the separated mixture of the component that is the main component in the permeate
  • F ⁇ is in the separated mixture of the component that is the subcomponent in the permeate.
  • the weight percent concentration of the liquid is 100 or more, or the concentration of the main component in the permeate is 95% by weight or more.
  • the amount of pores in the crystal can be estimated from the framework density of the zeolite.
  • CHA-type zeolite framework density 14.5T / 1000 ⁇ 17.2T / 1000 ⁇ 3 in 3 in which mordenite whereas, since the ferrierite has a 17.6 T / 1000 ⁇ 3, from the viewpoint of the framework density It is presumed that there are many spaces in the CHA-type zeolite crystals that serve as a flow path for the permeating substance.
  • the inorganic porous support-zeolite membrane composite of the present invention is a mixture containing an organic acid because a CHA type zeolite having a high SiO 2 / Al 2 O 3 molar ratio is excellent in acid resistance unlike A type zeolite and mordenite type zeolite. It is suitable for separation.
  • a CHA-type zeolite crystallized from a reaction mixture containing a high SiO 2 / Al 2 O 3 molar ratio and containing an organic template is difficult to release Al even under acidic conditions and has a stable structure.
  • mordenite-type zeolite proceeds with dealumination under acidic conditions.
  • the SiO 2 / Al 2 O 3 molar ratio of the crystal is expected to change in the direction of increasing.
  • the hydrophilicity is low, and separation performance using hydrophilicity may decrease the separation performance.
  • the zeolite membrane composite of the present invention Since the zeolite membrane composite of the present invention has acid resistance, it is separated and concentrated from a mixture containing an organic acid, in particular, separation of organic acid by selectively permeating water from a mixture of organic acid such as acetic acid and water. It can be used effectively for concentration and water separation for promoting esterification reaction.
  • XRD -X-ray diffraction
  • the X-ray is not the sample table surface, but the sample table surface, out of the two lines where the cylindrical tubular membrane complex placed on the sample table and the plane parallel to the sample table surface are in contact with each other so that noise and the like are not introduced as much as possible. It was made to hit mainly on the other line above the surface.
  • Example 1 In order to prepare a CHA type zeolite membrane, an aqueous solution of N, N, N-trimethyl-1-adamantanammonium hydroxide (TMADOH) was prepared with reference to the description in USP 4,454,538. An example is shown below. 5.5 g of 1-adamantanamine (manufactured by Aldrich) was dissolved in 75 ml of methanol, 24.2 g of potassium carbonate was added, and the mixture was stirred for 30 minutes. To this, 10 ml of iodomethane was added dropwise and stirred for one day. Thereafter, 50 ml of methylene chloride was added and the solid was filtered.
  • TMADOH N, N, N-trimethyl-1-adamantanammonium hydroxide
  • the solvent of the obtained solution was removed by an evaporator to obtain a solid.
  • 130 ml of methylene chloride was added, and filtration and removal of the solvent were repeated twice. Thereafter, the obtained solid was recrystallized from methanol, and the recrystallized solid was filtered, washed with diethyl ether, dried and dried to give N, N, N-trimethyl-1-adamantanammonium iodide (TMADI).
  • TMADI N, N, N-trimethyl-1-adamantanammonium iodide
  • this TMADI was dissolved in water, ion-exchanged with an anion exchange resin (SA-10A manufactured by Mitsubishi Chemical Corporation), and concentrated with an evaporator to obtain an aqueous solution of N, N, N-trimethyl-1-adamantanammonium hydroxide.
  • SA-10A anion exchange resin manufactured by Mitsubishi Chemical Corporation
  • evaporator concentrated with an evaporator to obtain an aqueous solution of N, N, N-trimethyl-1-adamantanammonium hydroxide.
  • concentration of N, N, N-trimethyl-1-adamantanammonium hydroxide in this aqueous solution was 0.75 mmol / g.
  • the amount of K contained in this aqueous solution was 1.84% by weight.
  • the inorganic porous support- (CHA type) zeolite membrane composite was prepared by hydrothermal synthesis of CHA type zeolite directly on the inorganic porous support. The following was prepared as a reaction mixture for hydrothermal synthesis. To a mixture of 6.9 g of 1 mol / L-NaOH aqueous solution and 103.6 g of water, 0.43 g of aluminum hydroxide (containing 53.5% by weight of Al 2 O 3 , manufactured by Aldrich) was added and stirred to dissolve it. It was set as the solution.
  • a mullite tube PM (external diameter: 12 mm, internal diameter: 9 mm) manufactured by Nikkato Co., Ltd. was cut to a length of 80 mm, and the outer surface was smoothed using water-resistant sandpaper. What was dried after washing with a washing machine was used.
  • SiO 2 / Al 2 O 3 / NaOH / H 2 O / TMADOH 1 / 0.033 / 0.140 / by the dip method in the same manner as described above.
  • the support was immersed in a dispersion of the seed crystal in about 1% by weight of water for a predetermined time, and then dried at 100 ° C. for 5 hours or more to adhere the seed crystal.
  • the weight of the attached seed crystal was about 3 g / m 2 .
  • the support to which the seed crystal was attached was immersed in a Teflon (registered trademark) inner cylinder containing the reaction mixture in the vertical direction, the autoclave was sealed, and heated at 160 ° C. for 48 hours under an autogenous pressure. After the elapse of a predetermined time, after cooling, the support-zeolite membrane composite was taken out of the reaction mixture, washed, and dried at 100 ° C. for 5 hours or more.
  • Example 2 The inorganic porous support CHA-type zeolite membrane composite was prepared by hydrothermal synthesis of CHA-type zeolite directly on the inorganic porous support.
  • reaction mixture for hydrothermal synthesis A mixture of 10.5 g of 1 mol / L-NaOH aqueous solution, 7.0 g of 1 mol / L-KOH aqueous solution and 100.0 g of water was mixed with aluminum hydroxide (containing 53.5% by weight of Al 2 O 3 , manufactured by Aldrich). 88 g was added, stirred and dissolved to obtain a transparent solution.
  • TMADOH aqueous N, N, N-trimethyl-1-adamantanammonium hydroxide
  • Example 1 As the inorganic porous support, one treated in the same manner as in Example 1 was used. Prior to hydrothermal synthesis, a CHA-type zeolite seed crystal having a particle size of about 0.5 ⁇ m was deposited on the support in the same manner as in Example 1. The weight of the attached seed crystal was about 5 g / m 2 . In the same manner as in Example 1, the support on which the seed crystal was adhered was immersed in a Teflon (registered trademark) inner cylinder containing the reaction mixture in the vertical direction, and the autoclave was sealed, and the autoclave was sealed at 160 ° C. for 48 hours under an autogenous pressure. And heated.
  • Teflon registered trademark
  • the support-zeolite membrane composite was taken out of the reaction mixture, washed, and dried at 100 ° C. for 5 hours or more. Seal one end of the cylindrical tubular membrane composite in an as-made state after drying, and connect the other end to a vacuum line to reduce the pressure in the tube. As a result, the permeation flux was 0 ml / (m 2 ⁇ min).
  • the zeolite membrane composite before template firing was fired in an electric furnace at 500 ° C. for 5 hours. From the difference between the weight of the membrane composite after firing and the weight of the support, the weight of the CHA-type zeolite crystallized on the support was 120 g / m 2 . From SEM observation, the film thickness was about 15 ⁇ m.
  • XRD of the produced zeolite membrane was measured, it was found that CHA-type zeolite was produced.
  • XRD measurement was performed in the same manner as in Example 1.
  • SSZ-13 which is a powdered CHA-type zeolite (zeolite generally referred to as SSZ-13 in US Pat. No. 4,544,538, hereinafter referred to as SSZ-13) used as a seed crystal. It is shown in 2.
  • a) shows the XRD of the film of Example 2
  • b) shows the XRD of SSZ-13.
  • * in a figure is a peak derived from a support body.
  • SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane was measured by SEM-EDX and found to be 17.
  • Example 3 The inorganic porous support-CHA type zeolite membrane composite was produced by hydrothermal synthesis of CHA type zeolite directly on the inorganic porous support.
  • Example 2 As the inorganic porous support, one treated in the same manner as in Example 1 was used. Prior to hydrothermal synthesis, a CHA-type zeolite seed crystal having a particle size of about 2 ⁇ m was deposited on the support in the same manner as in Example 1. The weight of the attached seed crystal was about 2 g / m 2 .
  • the CHA-type zeolite having a particle size of about 2 ⁇ m used for the seed crystal is a SiO 2 / Al 2 O 3 solution using a 25 wt% N, N, N-trimethyl-1-adamantanammonium hydroxide (TMADOH) aqueous solution manufactured by Seychem.
  • TMADOH N-trimethyl-1-adamantanammonium hydroxide
  • / NaOH / KOH / H 2 O / TMADOH 1 / 0.066 / 0.15 / 0.1 / 100 / 0.1 gel composition crystallized by hydrothermal synthesis for 2 days at 160 ° C. Filtered, washed with water and dried.
  • the support on which the seed crystal was adhered was immersed in a Teflon (registered trademark) inner cylinder containing the reaction mixture in the vertical direction, and the autoclave was sealed, and the autoclave was sealed at 160 ° C. for 48 hours under an autogenous pressure. And heated.
  • the support-zeolite membrane composite was taken out of the reaction mixture, washed, and dried at 100 ° C. for 5 hours or more. Seal one end of the cylindrical tubular membrane composite in an as-made state after drying, and connect the other end to a vacuum line to reduce the pressure in the tube. As a result, the permeation flux was 0 ml / (m 2 ⁇ min).
  • the zeolite membrane composite before template firing was fired in an electric furnace at 500 ° C. for 5 hours. From the difference between the weight of the membrane composite after firing and the weight of the support, the weight of the CHA-type zeolite crystallized on the support was 130 g / m 2 .
  • SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane was measured by SEM-EDX and found to be 20.
  • Example 5 The inorganic porous support-CHA type zeolite membrane composite was produced by hydrothermal synthesis of CHA type zeolite directly on the inorganic porous support.
  • the following was prepared as a reaction mixture for hydrothermal synthesis.
  • TMADOH N, N, N-trimethyl-1-adamantanammonium hydroxide
  • Example 1 As the inorganic porous support, one treated in the same manner as in Example 1 was used. Prior to hydrothermal synthesis, the same treatment as in Example 1 was performed, except that a seed crystal of CHA-type zeolite having a particle size of about 2 ⁇ m was deposited on the support. The weight of the attached seed crystal was about 5 g / m 2 . As in Example 1, the support to which the seed crystal was attached was immersed in a Teflon (registered trademark) inner cylinder containing the reaction mixture in the vertical direction, and the Teflon (registered trademark) inner cylinder was immersed in 1 L of stainless steel.
  • Teflon registered trademark
  • the autoclave was put into a manufactured autoclave, and the autoclave was sealed and heated for 5 hours, and then heated at 160 ° C. for 48 hours under autogenous pressure.
  • the reaction mixture was mixed with a stirring blade rotating at 200 rpm.
  • the support-zeolite membrane composite was taken out of the reaction mixture, washed, and dried at 100 ° C. for 4 hours or more. Seal one end of the cylindrical tubular membrane composite in an as-made state after drying, and connect the other end to a vacuum line to reduce the pressure in the tube.
  • the permeation flux was 0 ml / (m 2 ⁇ min).
  • the zeolite membrane composite before template firing was fired in an electric furnace at 500 ° C. for 5 hours. From the difference between the weight of the membrane composite after firing and the weight of the support, the weight of the CHA-type zeolite crystallized on the support was 120 g / m 2 .
  • Example 6 The inorganic porous support-CHA type zeolite membrane composite was produced by hydrothermal synthesis of CHA type zeolite directly on the inorganic porous support.
  • Example 1 As the inorganic porous support, one treated in the same manner as in Example 1 was used. Prior to hydrothermal synthesis, a CHA-type zeolite seed crystal of about 0.5 ⁇ m was deposited on the support in the same manner as in Example 1. The weight of the attached seed crystal was about 3 g / m 2 . In the same manner as in Example 1, the support on which the seed crystal was adhered was immersed in a Teflon (registered trademark) inner cylinder containing the reaction mixture in the vertical direction, and the autoclave was sealed, and the autoclave was sealed at 160 ° C. for 48 hours under an autogenous pressure. And heated.
  • Teflon registered trademark
  • the support-zeolite membrane composite was taken out of the reaction mixture, washed, and dried at 100 ° C. for 4 hours or more. Seal one end of the cylindrical tubular membrane composite in an as-made state after drying, and connect the other end to a vacuum line to reduce the pressure in the tube. As a result, the permeation flux was 0 ml / (m 2 ⁇ min).
  • the zeolite membrane composite before template firing was fired in an electric furnace at 500 ° C. for 5 hours. From the difference between the weight of the membrane composite after firing and the weight of the support, the weight of the CHA zeolite crystallized on the support was 100 g / m 2 .
  • Example 7 Using the inorganic porous support-CHA type zeolite membrane composite obtained in Example 1, water is selectively permeated from a 70 ° C. water / acetic acid mixed solution (50/50 wt%) by a pervaporation method. Separation was performed.
  • FIG. 1 Schematic diagram of the equipment used for pervaporation is shown in FIG.
  • the inside of the zeolite membrane composite of 5 is depressurized by a vacuum pump of 9, and the pressure difference is about 1 atm with the outside where the liquid to be separated is in contact. Due to this pressure difference, water of the permeated substance 4 in the liquid to be separated permeates and permeates through the zeolite membrane composite 5. The permeated material is collected by 7 traps. On the other hand, acetic acid stays outside the 5 zeolite membrane.
  • concentration of 4 to-be-separated liquids was measured for every fixed time, and the separation factor of each time was computed using the density
  • the composition analysis of the permeate collected in the trap and the liquid to be separated was performed by gas chromatography. Since it stabilizes in about 5 hours from the start of transmission, the transmission results after about 5 hours are shown.
  • the permeation flux was 4.0 kg / (m 2 ⁇ h)
  • the separation factor was 384
  • the concentration of water in the permeate was 99.74% by weight.
  • the measurement results are shown in Table 1.
  • Example 8 Using the inorganic porous support-CHA-type zeolite membrane composite obtained in Example 2 from the water / acetic acid mixed solution (50/50% by weight) at 70 ° C. by the pervaporation method in the same manner as in Example 7. Separation with selective permeation was performed. The permeation flux was 4.8 kg / (m 2 ⁇ h), the separation factor was 544, and the concentration of water in the permeate was 99.81% by weight. The measurement results are shown in Table 1. Further, separation was continued for a long time, and the change with time in the permeation flux was examined. FIG. 5 shows a plot of the change after about 10 hours from the start with the permeation flux after 60 minutes as 1. This shows that the permeation flux is almost stable after about 5 hours.
  • Example 9 Using the inorganic porous support-CHA type zeolite membrane composite obtained in Example 2, water was obtained from a water / acetic acid mixed solution (50/50% by weight) at 80 ° C. by a pervaporation method in the same manner as in Example 7. Separation with selective permeation was performed. The permeation flux was 6.0 kg / (m 2 ⁇ h), the separation factor was 649, and the concentration of water in the permeate was 99.84% by weight. The measurement results are shown in Table 1.
  • Example 10 Using the inorganic porous support-CHA-type zeolite membrane composite obtained in Example 2 from the water / acetic acid mixed solution (10/90% by weight) at 70 ° C. by the pervaporation method in the same manner as in Example 7. Separation with selective permeation was performed. The permeation flux was 1.4 kg / (m 2 ⁇ h), the separation factor was 1411, and the concentration of water in the permeate was 99.33% by weight. The measurement results are shown in Table 1.
  • Example 11 Using the inorganic porous support-CHA-type zeolite membrane composite obtained in Example 3 from the water / acetic acid mixed solution (50/50% by weight) at 70 ° C. by the pervaporation method in the same manner as in Example 7. Separation with selective permeation was performed. The permeation flux was 5.6 kg / (m 2 ⁇ h), the separation factor was 230, and the concentration of water in the permeate was 99.57 wt%. The measurement results are shown in Table 1.
  • Example 12 Using the inorganic porous support-CHA type zeolite membrane composite obtained in Example 4 from a water / 2-propanol aqueous solution (30/70% by weight) at 70 ° C. by a pervaporation method in the same manner as in Example 7. Separation with selective permeation of water was performed. The permeation flux was 7.7 kg / (m 2 ⁇ h), the separation factor was 3000, and the concentration of water in the permeate was 99.92% by weight. The measurement results are shown in Table 2.
  • Example 13 Using the inorganic porous support-CHA-type zeolite membrane composite obtained in Example 5 from the water / acetic acid mixed solution (50/50% by weight) at 70 ° C. by the pervaporation method in the same manner as in Example 7. Separation with selective permeation was performed. The permeation flux was 4.6 kg / (m 2 ⁇ h), the separation factor was 64, and the concentration of water in the permeate was 98.46% by weight. The measurement results are shown in Table 1.
  • Example 14 Using the inorganic porous support-CHA-type zeolite membrane composite obtained in Example 6 from the water / acetic acid mixed solution (50/50% by weight) at 70 ° C. by the pervaporation method in the same manner as in Example 7. Separation with selective permeation was performed. The permeation flux was 0.9 kg / (m 2 ⁇ h), the separation factor was 26, and the concentration of water in the permeate was 96.30% by weight. The measurement results are shown in Table 1. Since the permeation flux, the separation factor, and the concentration of water in the permeate were stabilized in about 3 hours, this value is a value after about 3 hours.
  • Example 15 An inorganic porous support-CHA-type zeolite membrane composite was prepared in the same manner as in Example 2 except that the following reaction mixture was prepared for hydrothermal synthesis.
  • the reaction mixture used for the hydrothermal synthesis was a mixture of 12.9 g of 1 mol / L-NaOH aqueous solution, 8.6 g of 1 mol / L-KOH aqueous solution and 92.4 g of water and aluminum hydroxide (Al 2 O 3 53 1.16 g (containing 5% by weight, manufactured by Aldrich) and dissolved by stirring to obtain a substantially transparent solution, and N, N, N-trimethyl-1-adamantanammonium hydroxide (TMADOH) aqueous solution as an organic template 2.91 g (containing 25% by weight of TMADAOH, manufactured by Seychem) was added, and 12.9 g of colloidal silica (Snowtech-40 manufactured by Nissan Chemical Co., Ltd.) was further added and stirred for 2 hours to prepare.
  • TMADOH
  • the weight of the CHA zeolite crystallized on the support was 150 g / m 2 .
  • Example 16 Using the inorganic porous support-CHA-type zeolite membrane composite obtained in Example 15 from the water / acetic acid mixed solution (50/50% by weight) at 70 ° C. by the pervaporation method in the same manner as in Example 7. Separation with selective permeation was performed. The permeation flux was 4.5 kg / (m 2 ⁇ h), the separation factor was 180, and the concentration of water in the permeate was 99.43% by weight. The measurement results are shown in Table 1.
  • Example 17 Using the inorganic porous support-CHA type zeolite membrane composite obtained in the same manner as in Example 2, a water / 2-propanol solution (10/90 wt. %) To selectively permeate water.
  • the permeation flux was 4.0 kg / (m 2 ⁇ h)
  • the separation factor was 36000
  • the concentration of water in the permeate was 99.97% by weight.
  • the measurement results are shown in Table 2.
  • Example 18 Using the inorganic porous support-CHA type zeolite membrane composite obtained in the same manner as in Example 2, a water / 2-propanol solution (30/70 wt. %) To selectively permeate water.
  • the permeation flux was 5.8 kg / (m 2 ⁇ h)
  • the separation factor was 31000
  • the concentration of water in the permeate was 99.99 wt%.
  • the measurement results are shown in Table 2.
  • Example 19 Using an inorganic porous support-CHA type zeolite membrane composite obtained in the same manner as in Example 2, a water / 2-propanol solution (30/70 wt. %) To selectively permeate water.
  • the permeation flux was 2.5 kg / (m 2 ⁇ h)
  • the separation factor was 29000
  • the concentration of water in the permeate was 99.99 wt%.
  • the measurement results are shown in Table 2.
  • Example 20 A water / tetrahydrofuran solution (50/50 wt%) at 50 ° C. by the pervaporation method as in Example 7 using the inorganic porous support-CHA type zeolite membrane composite obtained in the same manner as in Example 2. Separation allowing selective permeation of water was performed. The permeation flux was 3.1 kg / (m 2 ⁇ h), the separation factor was 3100, and the concentration of water in the permeate was 99.97% by weight. The measurement results are shown in Table 2.
  • Example 21 Using the inorganic porous support-CHA type zeolite membrane composite obtained in the same manner as in Example 2, a 40 ° C. water / acetone solution (50/50 wt%) was obtained by the pervaporation method in the same manner as in Example 7. Separation allowing selective permeation of water was performed. The permeation flux was 1.6 kg / (m 2 ⁇ h), the separation factor was 14600, and the concentration of water in the permeate was 99.99 wt%. The measurement results are shown in Table 2.
  • Example 22 Using the inorganic porous support-CHA type zeolite membrane composite obtained in the same manner as in Example 2, a water / N-methyl-2-pyrrolidone solution at 70 ° C. (pervaporation method as in Example 7) ( 50/50% by weight) was selectively permeated through water.
  • the permeation flux was 5.6 kg / (m 2 ⁇ h)
  • the separation factor was 10300
  • the concentration of water in the permeate was 99.95% by weight.
  • the measurement results are shown in Table 2.
  • Example 23 Using the inorganic porous support-CHA-type zeolite membrane composite obtained in the same manner as in Example 2, a water / ethanol solution (86/14 wt%) at 70 ° C. by the pervaporation method as in Example 7. Separation allowing selective permeation of water was performed. The permeation flux was 1.3 kg / (m 2 ⁇ h), the separation factor was 500, and the concentration of water in the permeate was 99.97% by weight. The measurement results are shown in Table 2.
  • Example 24 Using the inorganic porous support-CHA type zeolite membrane composite obtained in the same manner as in Example 2, a methanol / acetone solution (50/50% by weight) at 40 ° C. by the pervaporation method as in Example 7. From which methanol was selectively permeated.
  • the permeation flux was 0.1 kg / (m 2 ⁇ h), the separation factor was 670, and the concentration of methanol in the permeate was 99.86% by weight.
  • the measurement results are shown in Table 2.
  • Example 1 Comparative Example 1
  • an inorganic porous support-MOR type zeolite membrane composite was prepared by hydrothermal synthesis of MOR type zeolite directly on the inorganic porous support, and water at 70 ° C. was prepared in the same manner as in Example 7. Separation by selectively allowing water to permeate from the / acetic acid mixed solution (50/50% by weight) was performed. The following was prepared as a reaction mixture for hydrothermal synthesis.
  • a slurry in which 5% by weight of MOR type zeolite TSZ-640NAA manufactured by Tosoh was dispersed in water was coated on the support and adhered as seed crystals of MOR type zeolite.
  • the weight of the attached seed crystal was about 6 g / m 2 .
  • the support to which the seed crystal was attached was immersed in a Teflon (registered trademark) inner cylinder containing the reaction mixture in the vertical direction, the autoclave was sealed, and heated at 160 ° C. for 8 hours under an autogenous pressure. After the elapse of a predetermined time, after cooling, the support-zeolite membrane composite was taken out of the reaction mixture, washed, and dried at 100 ° C.
  • the permeation flux was 0 ml / (m 2 ⁇ min).
  • the weight of the MOR type zeolite crystallized in the form of a support was about 35 g / m 2 .
  • Example 8 As a result of the separation evaluation, the permeation flux was 0.38 kg / (m 2 ⁇ h), the separation factor was 2300, and the concentration of water in the permeate was 99.96% by weight. From the results of Example 8 and Comparative Example 1, it can be seen that the CHA membrane composite has a high permselectivity equivalent to that of the MOR membrane composite, and has a high permeation flux more than 10 times that of the MOR membrane composite. . Further, separation was continued for a long time in the same manner as in Example 8, and the change with time in the permeation flux was examined. FIG. 5 shows a plot of the change after about 10 hours from the start with the permeation flux after 60 minutes as 1. It can be seen that the CHA-type zeolite membrane composite is superior in terms of stability, since the decrease over time is large compared to Example 8.
  • a porous metal support-CHA type zeolite membrane composite was prepared by directly hydrothermally synthesizing CHA type zeolite on a metal mesh support. Separation by selectively permeating water from an aqueous acetic acid solution (50/50% by weight) was performed.
  • As the metal mesh support TF ⁇ 14XL250 NF2M-02S2 manufactured by Nippon Seisen Co., Ltd. was cut to about 80 mm. The following was prepared as a reaction mixture for hydrothermal synthesis.
  • Example 2 The same process as in Example 1 was performed on the metal mesh support. Prior to hydrothermal synthesis, a CHA-type zeolite seed crystal of about 0.5 ⁇ m was deposited on the support in the same manner as in Example 1. The weight of the attached seed crystal was about 18 g / m 2 .
  • the support to which the seed crystal was attached was immersed in a Teflon (registered trademark) inner cylinder containing the above reaction mixture in the vertical direction, and the autoclave was sealed. And heated. After the elapse of a predetermined time, after cooling, the support-zeolite membrane composite was taken out of the reaction mixture, washed, and dried at 100 ° C. for 4 hours or more.
  • Teflon registered trademark
  • the permeation flux was 0 ml / (m 2 ⁇ min).
  • the zeolite membrane composite before template firing was fired in an electric furnace at 500 ° C. for 5 hours. From the difference between the weight of the membrane composite after firing and the weight of the support, the weight of the CHA-type zeolite crystallized on the support was 280 g / m 2 . From the XRD measurement, CHA-type zeolite was formed on the surface of the substrate. XRD measurement was performed in the same manner as in Example 1.
  • the permeation flux was 0.48 kg / (m 2 ⁇ h)
  • the separation factor was 5
  • the concentration of water in the permeate was 84.65% by weight.
  • the metal porous support-CHA membrane composite is different from the ceramic inorganic porous support-CHA membrane composite and has a selective permeability. It can be seen that the permeation flux is low.
  • Example 25 The inorganic porous support-CHA type zeolite membrane composite was produced by hydrothermal synthesis of CHA type zeolite directly on the inorganic porous support. The following was prepared as a reaction mixture for hydrothermal synthesis. To 126 g of 1 mol / L-KOH aqueous solution, 5.7 g of aluminum hydroxide (containing 53.5% by weight of Al 2 O 3 , manufactured by Aldrich) was added and dissolved by stirring to obtain a substantially transparent solution. To this was added 27 g of colloidal silica (Snowtech-40, Nissan Chemical Co., Ltd.) and stirred for 2 hours to prepare a mixture for hydrothermal synthesis.
  • colloidal silica Snowtech-40, Nissan Chemical Co., Ltd.
  • Example 2 As the inorganic porous support, one treated in the same manner as in Example 1 was used. Prior to hydrothermal synthesis, a CHA-type zeolite seed crystal of about 0.2 ⁇ m was deposited on the support in the same manner as in Example 1. The weight of the attached seed crystal was about 3 g / m 2 . The seed crystal of about 0.2 ⁇ m of CHA type zeolite was synthesized as follows. 10 g of Y-type zeolite having a SiO 2 / Al 2 O 3 ratio of 7 manufactured by Catalyst Kasei Co., Ltd. was added to an aqueous solution in which 5 g of KOH was dissolved in 100 g of water, and the mixture was stirred for 2 hours.
  • the reaction mixture was placed in a Teflon (registered trademark) inner cylinder, the autoclave was sealed, and the mixture was heated at 100 ° C. for 7 days. Then, it was allowed to cool, filtered and washed with water to obtain a CHA type zeolite.
  • the support on which the seed crystal was adhered was immersed in a Teflon (registered trademark) inner cylinder containing the above reaction mixture in the vertical direction to seal the autoclave, and the autoclave was sealed at 140 ° C. for 108 hours under an autogenous pressure. And heated.
  • the support-zeolite membrane composite was taken out of the reaction mixture, washed, and dried at 100 ° C. for 4 hours or more. Seal one end of the cylindrical tubular membrane composite in an as-made state after drying, and connect the other end to a vacuum line to reduce the pressure in the tube.
  • the permeation flux was 0 ml / (m 2 ⁇ min).
  • the weight of the CHA-type zeolite crystallized on the support was 50 g / m 2 .
  • the films produced showed a specific intensity in the XRD peak. From this, for example, it is presumed that the generated film is not oriented in any of the (1, 0, 0) plane and the (1, 1, 1) plane in rhombohedral setting. Further, the SiO 2 / Al 2 O 3 ratio of the zeolite membrane was measured by SEM-EDX and found to be 6.
  • Example 26 Using the inorganic porous support-CHA type zeolite membrane composite obtained in Example 25, from a water / 2-propanol aqueous solution (30/70% by weight) at 70 ° C. by a pervaporation method in the same manner as in Example 7. Separation with selective permeation of water was performed. The permeation flux was 3.9 kg / (m 2 ⁇ h), the separation factor was 21, and the concentration of water in the permeate was 90% by weight. The measurement results are shown in Table 2.
  • a zeolite membrane composite for separation and concentration having a large throughput that can withstand practical use when concentrating a specific compound from a gas or liquid mixture containing an organic substance and having sufficient separation performance.
  • separation and concentration from a gas or liquid mixture containing an organic substance using a zeolite membrane becomes possible.
  • a zeolite membrane composite for separation and concentration excellent in acid resistance can be obtained, and a mixture containing an organic acid such as acetic acid can be separated and concentrated.
  • it can be effectively used for separation / concentration of organic acid by selectively permeating water from a mixture of organic acid and water, water separation for promoting esterification reaction, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

 本発明は、特に有機酸の存在下で適用可能な、有機物を含む気体または液体の混合物の分離・濃縮をすることができ、また高いエネルギーコストを要することなく経済的で、かつ適用範囲が限定されない、実用上十分な処理量と分離性能を両立するゼオライト膜複合体、その製造方法、およびその膜複合体を用いた分離、濃縮方法を提供することを課題とする。本発明は、無機多孔質支持体-ゼオライト膜複合体であって、無機多孔質支持体がセラミックス焼結体を含み、かつゼオライト膜として無機多孔質支持体表面にCHA型ゼオライト結晶層を有することを特徴とする無機多孔質支持体-ゼオライト膜複合体に関する。

Description

無機多孔質支持体-ゼオライト膜複合体、その製造方法およびそれを用いた分離方法
 本発明は有機物を含有する気体または液体の混合物の分離、濃縮に好適である無機多孔質支持体-ゼオライト膜複合体、およびその製造方法、さらにこの無機多孔質支持体-ゼオライト膜複合体を用いた有機物の分離方法に関するものである。
 従来、有機物を含有する気体または液体の混合物の分離、濃縮においては、それぞれ分離、濃縮の対象とする物質の性質に応じて蒸留法、共沸蒸留法、溶媒抽出/蒸留法、吸着剤による分離法などが行われている。しかしながらこれらの従来方法は、多くのエネルギーを必要とする、あるいは分離、濃縮対象の適用範囲が限定的であるといった欠点がある。
 近年、これら従来の分離方法にかわる分離方法として、高分子膜などの膜を用いた膜分離、濃縮方法が提案されている。高分子膜は加工性に優れるものであり、例えば平膜や中空糸膜などがある。しかし高分子膜は耐熱性が低いという欠点がある。また高分子膜は耐薬品性が低く、特に有機溶媒や有機酸といった有機物との接触で膨潤するものが多いため、分離、濃縮対象の適用範囲が限定的である。
 一方、ゼオライト膜などの無機材料の膜を用いた膜分離、濃縮方法が提案されている。 ゼオライト膜は、一般的には支持体上に膜状にゼオライトを形成させたゼオライト膜複合体として分離、濃縮に用いる。例えば有機物と水との混合物を、ゼオライト膜複合体に通じさせ、水を選択的に透過させることにより、有機物を分離し、濃縮することができる。無機材料の膜を用いた膜分離、濃縮は、蒸留や吸着剤による分離に比べ、エネルギーの使用量を削減できるほか、高分子膜よりも広い温度範囲で分離、濃縮を実施でき、更に有機物を含む混合物の分離にも適用できる。
 ゼオライト膜を用いた分離では、親水性を有するゼオライトを水の選択的な透過に利用する方法が提案されている。例えばA型ゼオライト膜複合体を用いて水を選択的に透過させてアルコールを濃縮する方法(特許文献1)、モルデナイト型ゼオライト膜複合体を用いてアルコールと水の混合系から水を選択的に透過させてアルコールを濃縮する方法(特許文献2)や、フェリエライト型ゼオライト膜複合体を用いて酢酸と水の混合系から水を選択的に透過させて酢酸を分離・濃縮する方法(特許文献3)などが提案されている。
日本国特開平7-185275号公報 日本国特開2003-144871号公報 日本国特開2000-237561号公報
 しかしながら、実用化に十分な処理量と分離性能を両立し、かつ有機物、特に有機酸への耐性をもつゼオライト膜はいまだ見出せていない。ゼオライト膜による分離、濃縮の処理量(透過流量)は、一般的に単位時間、単位平面積あたりの透過物質の重量を表した透過流束で表される。この場合の水の透過流束については、ゼオライト膜を実用化するには透過流束は大きいほど望ましく、最低でも1kg/(m・h)以上であることが望ましいといわれている。
 しかし、特許文献2記載のモルデナイト型ゼオライト膜複合体の透過流束は、透過した水の濃度が95重量%以上の場合、水/エタノール系で最大0.6kg/(m・h)、水/酢酸系で0.23kg/(m・h)であり、実用化に要する処理量には不十分である。
 また特許文献3に記載のフェリエライト型ゼオライト膜複合体の透過流束は、透過した水の濃度が95重量%以上の場合、水/酢酸系で最大0.22kg/(m・h)であり、処理量が実用化には不十分である。
 また有機物への耐性の点では前記ゼオライト膜に用いられているモルデナイト型ゼオライトやフェリエライト型ゼオライトは、酸性条件下で脱Al化反応が進行するので、一般にゼオライトの親水性を左右するSiO/Al比が変化することが予想される。したがって、上記のゼオライト膜複合体は、使用時間が長くなるにつれ分離性能が変化することが予想されるので、有機酸存在条件下での使用は望ましくない。またA型ゼオライトは酸と接触すると構造が破壊されるため有機酸存在下で分離膜として適用できないという問題があった。
 本発明は、無機材料分離膜による分離、濃縮において、実用上十分な処理量と分離性能を両立するゼオライト膜複合体、その製造方法、およびその膜複合体を用いた分離、濃縮方法を提供することを課題とするものである。
 本発明は、高いエネルギーコストを要することなく経済的で、かつ適用範囲が限定されることが無く、実用化に十分な処理量と分離性能を両立するゼオライト膜複合体、その製造方法、およびその膜複合体を用いた分離、濃縮方法を提供することを課題とするものである。かつ有機物特に有機酸の存在下で適用可能な、有機物を含む気体または液体の混合物の分離・濃縮することができる無機多孔質複合体とその製造方法およびそれを用いた分離・濃縮方法、特に有機酸/水の混合水溶液の分離・濃縮方法を提供することを課題とするものである。
 本発明者らは上記課題を解決するために鋭意検討を重ねた結果、無機多孔質支持体及び/又はゼオライト膜を最適化することにより、前記課題を解決し得ることを見出し以下の発明に到達した。
<1> 無機多孔質支持体-ゼオライト膜複合体であって、無機多孔質支持体がセラミックス焼結体を含み、かつゼオライト膜として無機多孔質支持体表面にCHA型ゼオライト結晶層を有することを特徴とする無機多孔質支持体-ゼオライト膜複合体。
<2> 無機多孔質支持体-ゼオライト膜複合体であって、ゼオライト膜としてCHA型ゼオライト結晶層を有し、かつゼオライト膜表面にX線を照射して得たX線回折パターンにおいて2θ=17.9°付近のピーク強度が、2θ=20.8°付近のピーク強度の0.5倍以上であることを特徴とする無機多孔質支持体-ゼオライト膜複合体。
<3> 無機多孔質支持体-ゼオライト膜複合体であって、ゼオライト膜としてCHA型ゼオライト結晶層を有し、かつゼオライト膜表面にX線を照射して得たX線回折パターンにおいて2θ=9.6°付近のピーク強度が、2θ=20.8°付近のピーク強度の4倍以上であることを特徴とする無機多孔質支持体-ゼオライト膜複合体。
<4> ゼオライト膜表面にX線を照射して得たX線回折パターンにおいて2θ=17.9°付近のピーク強度が、2θ=20.8°付近のピーク強度の0.5倍以上である<1>に記載の無機多孔質支持体-ゼオライト膜複合体。
<5> ゼオライト膜表面にX線を照射して得たX線回折パターンにおいて2θ=9.6°付近のピーク強度が、2θ=20.8°付近のピーク強度の4倍以上である<1>、<2>または<4>に記載の無機多孔質支持体-ゼオライト膜複合体。
<6> ゼオライト結晶層のSiO/Alモル比が5以上である<1>~<5>のいずれか1に記載の無機多孔質支持体-ゼオライト膜複合体。
<7> 有機物を含む気体または液体の混合物のうち透過性の高い物質を透過し、該混合物から該透過性の高い物質を分離することが可能な<1>~<6>のいずれか1に記載の無機多孔質支持体-ゼオライト膜複合体。
<8> 有機物を含む気体または液体の混合物が有機物と水との混合物である<7>に記載の無機多孔質支持体-ゼオライト膜複合体。
<9> 有機物が有機酸である<7>または<8>に記載の無機多孔質支持体-ゼオライト膜複合体。
<10> 有機物がアルコール、エーテル、アルデヒド、ケトン及び窒素を含む有機化合物の中から選ばれる少なくとも1種類である<7>または<8>に記載の無機多孔質支持体-ゼオライト膜複合体。
<11> 無機多孔質支持体がアルミナ、シリカ及びムライトから選ばれる少なくとも1種類を含む<1>~<10>のいずれか1に記載の無機多孔質支持体-ゼオライト膜複合体。
<12> <1>~<11>のいずれか1に記載の無機多孔質支持体-ゼオライト膜複合体を製造する方法であって、無機多孔質支持体表面にCHA型ゼオライトを結晶化させる工程を含むことを特徴とする無機多孔質支持体-ゼオライト膜複合体の製造方法。
<13> 無機多孔質支持体表面にゼオライトの種結晶を付着させた後、CHA型ゼオライトを結晶化させる<12>に記載の無機多孔質支持体-ゼオライト膜複合体の製造方法。
<14> ゼオライトの種結晶が、CHA型ゼオライトである<13>に記載の無機多孔質支持体-ゼオライト膜複合体の製造方法。
<15> CHA型ゼオライトの結晶化を、Si元素源及びAl元素源を含む反応混合物を、SiとAlとの比を各酸化物換算で表した(SiO/Al)モル比が5以上10000以下となるように原料として用いて行うことを特徴とする<12>~<14>のいずれか1に記載の無機多孔質支持体-ゼオライト膜複合体の製造方法。
<16> 反応混合物中にアルカリ金属イオンが存在することを特徴とする<15>に記載の無機多孔質支持体-ゼオライト膜複合体の製造方法。
<17> 原料としてさらに有機テンプレートを用い、かつ有機テンプレートが1-アダマンタンアミンから誘導されるカチオンである<15>または<16>に記載の無機多孔質支持体-ゼオライト膜複合体の製造方法。
<18> <1>~<11>のいずれか1に記載の無機多孔質支持体-ゼオライト膜複合体を含む分離膜。
<19> <1>~<11>のいずれか1に記載の無機多孔質支持体-ゼオライト膜複合体に、有機物を含む気体または液体の混合物を接触させて、該混合物のうち透過性の高い物質を透過させることにより、該混合物から該透過性の高い物質を分離することを特徴とする分離方法。
<20> 有機物を含む気体または液体の混合物が、有機酸と水との混合物である<19>に記載の分離方法。
<21> 有機物を含む気体または液体の混合物が、アルコール、エーテル、アルデヒド、ケトン及び窒素を含む有機化合物の中から選ばれる少なくとも1種類と水との混合物である<19>に記載の分離方法。
<22> <1>~<11>のいずれか1に記載の無機多孔質支持体-ゼオライト膜複合体に、有機物を含む気体または液体の混合物を接触させて、該混合物から透過性の高い物質を透過させることにより、透過性の低い物質を濃縮することを特徴とする濃縮方法。
<23> 有機物を含む気体または液体の混合物が、有機酸、アルコール、エーテル、アルデヒド、ケトン、及び窒素を含む有機化合物の中から選ばれる少なくとも1種類と水との混合物である<22>に記載の濃縮方法。
 本発明の無機多孔質支持体-ゼオライト膜複合体は、有機物を含む気体または液体の混合物から特定の化合物を分離、濃縮する際に、実用上も十分に大きい処理量を有し、かつ十分な分離性能を有する分離、濃縮用ゼオライト膜複合体であり、ゼオライト膜を用いた有機物を含む気体または液体の混合物からの分離、濃縮が可能となる。
 また本発明のゼオライト膜複合体の製造方法によれば耐酸性に優れた分離、濃縮用ゼオライト膜複合体が得られ、有機酸を含有する混合物の分離・濃縮が可能となる。
パーベーパレーション測定装置の概略図である。 実施例2に記載のゼオライト膜のXRD測定結果である。 実施例5に記載のゼオライト膜のXRD測定結果である。 実施例6に記載のゼオライト膜のXRD測定結果である。 実施例8および比較例1に記載の水/酢酸分離能の測定結果である。
 以下、本発明の実施の形態について更に詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例であり、これらの内容に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 本発明の無機多孔質支持体-ゼオライト膜複合体(以下、単に「ゼオライト膜複合体」ということがある。)は、セラミックス焼結体を含む無機多孔質支持体の表面層に、CHA型ゼオライトが膜状に結晶化してなるものである。
 先ず、本発明の無機多孔質支持体-ゼオライト膜複合体を構成する各成分について、具体的に説明する。
 (無機多孔質支持体)
 本発明において用いられる無機多孔質支持体としては、表面層にゼオライトを膜状に結晶化できるような化学的安定性があり、多孔質であれば特に制限されるものではない。たとえばシリカ、α-アルミナ、γ-アルミナ、ムライト、ジルコニア、チタニア、イットリア、窒化珪素、炭化珪素などのセラミックス焼結体、鉄、ブロンズ、ステンレス等の焼結金属や、ガラス、カーボン成型体などが挙げられる。
 本発明において用いられるセラミックス焼結体を含む無機多孔質支持体とは、基本的成分あるいはその大部分が無機の非金属物質から構成されている固体材料であるセラミックスを焼結したものを含む多孔質の支持体をいう。
 具体的にはα-アルミナ、γ-アルミナ、ムライト、ジルコニア、チタニア、イットリア、窒化珪素、炭化珪素などを含むセラミックス焼結体が挙げられる。これらは単独で用いても複数のものを混合して用いてもよい。これらセラミックス焼結体は、その一部がゼオライト膜合成中にゼオライト化することで界面の密着性を高める効果があるためである。
 その中でもアルミナ、シリカ、ムライトのうち少なくとも1種を含む無機多孔質支持体は、無機多孔質支持体の部分的なゼオライト化が容易であるため、無機多孔質支持体とCHA型ゼオライトの結合が強固になり緻密で分離性能の高い膜が形成されやすくなる点でより好ましい。
 本発明において用いられる無機多孔質支持体の形状は、気体混合物や液体混合物を有効に分離できるものであれば制限されるものではなく、具体的には平板状、管状のもの、または円筒状、円柱状や角柱状の孔が多数存在するハニカム状のものやモノリスなどが挙げられ、いずれの形状のものでも良い。
 本発明において用いられる無機多孔質支持体は、その表面層(以下「無機多孔質支持体表面層」ともいう。)においてゼオライトを結晶化させる。
 前記無機多孔質支持体表面層が有する平均細孔径は特に制限されるものではないが、細孔径が制御されているものが好ましく、通常0.02μm以上、好ましくは0.05μm以上、さらに好ましくは0.1μm以上であり、通常20μm以下、好ましくは10μm以下、さらに好ましくは5μm以下の範囲が好ましい。
 また無機多孔質支持体の表面は滑らかであることが好ましく、必要に応じて表面をやすり等で研磨してもよい。
 なお、無機多孔質支持体表面層とはCHA型ゼオライトを結晶化させる無機多孔質支持体表面部分を意味し、表面であればそれぞれの形状のどこの表面であってもよく、複数の面であっても良い。たとえば円筒管の支持体の場合には外側の表面でも内側の表面でもよく、場合によっては外側と内側の両方の表面であってよい。
 また、本発明において用いられる無機多孔質支持体の、無機多孔質支持体表面層以外の部分の細孔径は制限されるものではなく、また特に制御される必要は無いが、無機多孔質支持体表面層以外の部分の気孔率は通常20%以上、60%以下であることが好ましい。無機多孔質支持体表面層以外の部分の気孔率は、気体や液体を分離する際の透過流束を左右し、前記下限未満では透過物の拡散を阻害する傾向があり、前記上限超過では無機多孔質支持体の強度が低下する傾向がある。
 (CHA型ゼオライト)
 本発明において用いられるCHA型ゼオライトとは、International Zeolite Association(IZA)が定めるゼオライトの構造を規定するコードでCHA構造のものを示す。天然に産出するチャバサイトと同等の結晶構造を有するゼオライトである。CHA型ゼオライトは3.8×3.8Åの径を有する酸素8員環からなる3次元細孔を有することを特徴とする構造をとり、その構造はX線回折データにより特徴付けられる。
 本発明において用いられるCHA型ゼオライトのフレームワーク密度は、14.5T/1000Åである。フレームワーク密度とは、ゼオライトの1000Åあたりの酸素以外の骨格を構成する元素の数を意味し、この値はゼオライトの構造により決まるものである。なおフレームワーク密度とゼオライトとの構造の関係はATLAS OF ZEOLITE FRAMEWORK TYPES Fifth Revised Edition 2001 ELSEVIER に示されている。
 本発明において用いられるCHA型ゼオライトのSiO/Alモル比は、特に限定されるものではないが、通常5以上であり、好ましくは8以上、より好ましくは10以上、さらに好ましくは12以上である。前記モル比の上限としては通常2000以下、好ましくは1000以下、より好ましくは500以下、さらに好ましくは100以下である。これは後述するゼオライト膜のSiO/Alモル比と同じである。
 (ゼオライト膜)
 本発明におけるゼオライト膜とは、ゼオライトにより構成される膜状物のことであり、好ましくは、前記無機多孔質支持体の表面層にゼオライトを結晶化させて膜にしたものである。膜を構成する成分としては、ゼオライト以外にシリカ、アルミナなどの無機バインダー、ポリマーなどの有機物、あるいはゼオライト表面を修飾するシリル化剤などを必要に応じ含んでいてもよい。
 本発明におけるゼオライト膜は、一部アモルファス成分などが含有されていてもよいが、好ましくは実質的にゼオライトのみで構成されるゼオライト膜である。具体的にはCHA型のゼオライトを主成分とするゼオライト膜であり、一部、モルデナイト型、MFI型などの他の構造のゼオライトが含まれていても、アモルファス成分などが含有されていてもよく、好ましくは、実質的にCHA型のゼオライトのみで構成されるゼオライト膜である。
 本発明において用いられるゼオライト膜の厚さとしては、特に制限されるものではないが、通常、0.1μm以上であり、好ましくは0.6μm以上、さらに好ましくは1.0μm以上である。また通常以上100μm以下であり、好ましくは60μm以下、さらに好ましくは20μm以下の範囲である。
 なお本発明におけるゼオライト結晶層とは、前記ゼオライト膜の厚みを有するゼオライト膜状物をいう。
 本発明におけるゼオライト膜を形成するゼオライトの粒子径は特に限定されるものではないが、小さすぎると粒界が大きくなるなどして透過選択性などを低下させる傾向があることから、通常30nm以上、好ましくは50nm以上、より好ましくは100nm以上であり、上限は膜の厚さ以下である。さらに好ましくはゼオライトの粒子径が膜の厚さと同じである場合である。ゼオライトの粒子径が膜の厚さと同じであるとき、ゼオライトの粒界が最も小さくなるためである。水熱合成で得られたゼオライト膜は、ゼオライトの粒子径と膜の厚さが同じになる場合があるので好ましい。
 本発明におけるゼオライト膜のSiO/Alモル比は、特に限定されるものではないが、通常5以上であり、好ましくは8以上、より好ましくは10以上、さらに好ましくは12以上である。上限としては通常2000以下、好ましくは1000以下、より好ましくは500以下、さらに好ましくは100以下である。SiO/Alモル比が前記下限未満では耐久性が低下する傾向があり、前記上限を超過すると疎水性が強すぎるため、透過流束が小さくなる傾向がある。
 なお本発明におけるSiO/Alモル比は、走査型電子顕微鏡-エネルギー分散型X線分光法(SEM-EDX)により得られた数値である。数ミクロンの膜のみの情報を得るために通常はX線の加速電圧を10kVで測定する。
 本発明におけるゼオライト膜は、ゼオライトにより構成される膜状物をそのまま用いることもできるが、通常は各種支持体上にゼオライトを膜状に固着させたゼオライト膜複合体として使用し、好ましくは以下詳述する無機多孔質支持体-ゼオライト膜複合体として用いる。
 (無機多孔質支持体-ゼオライト膜複合体)
 本発明の無機多孔質支持体-ゼオライト膜複合体とは、無機多孔質支持体の表面層にゼオライトが膜状に固着しており、場合によっては一部無機多孔質支持体の内部にまで固着している状態のものである。
 このようなゼオライト膜複合体を形成するためには、無機多孔質支持体にゼオライトを膜状に結晶化させて形成させる方法、無機多孔質支持体にゼオライトを無機バインダー、あるいは有機バインダーなどで固着させる方法、ゼオライトを分散させたポリマーを固着させる方法、ゼオライトのスラリーを無機多孔質支持体に含浸させ、場合によっては吸引させることによりゼオライトを無機多孔質支持体に固着させる方法などがある。
 本発明において好ましい様態は、無機多孔質支持体表面層にゼオライトを膜状に結晶化させたものである。
 具体的には無機多孔質支持体表面層にCHA型ゼオライトを膜状に結晶化させたものであり、通常は水熱合成により、結晶化させたものである。
 本発明において用いられるゼオライト膜の無機多孔質支持体表面上の位置は特に限定されるものではないが、管状無機多孔質支持体を用いる場合、外表面にゼオライト膜をつけてもよいし、内表面につけてもよく、さらに適用する系によっては両面につけてもよい。また、無機多孔質支持体の表面に積層させてもよいし、多孔質支持体の表面層の細孔内を埋めるように結晶化させてもよい。この場合、結晶化した膜層の内部に亀裂や連続した微細孔が無いことが重要であり、いわゆる緻密膜を形成させることが分離性を向上することになる。
 本発明の無機多孔質支持体-ゼオライト膜複合体は、X線回折のパターンにおいて2θ=17.9°付近のピークの強度が2θ=20.8°付近のピークの強度の0.5倍以上の大きさであることが好ましい。
 ここでいうピークの強度とは測定値からバックグラウンドの値を引いたものをさす。(2θ=17.9°付近のピークの強度)/(2θ=20.8°付近のピークの強度)で表されるピーク強度比でいえば、望ましくは0.5以上、好ましくは1以上、さらに好ましくは1.2以上、特に好ましくは1.5以上である。上限は特に限定はないが、通常は1000以下である。
 本発明の無機多孔質支持体-ゼオライト膜複合体は、X線回折のパターンにおいて2θ=9.6°付近のピークの強度が2θ=20.8°付近のピークの強度の4倍以上の大きさであることが好ましい。
 (2θ=9.6°付近のピークの強度)/(2θ=20.8°付近のピークの強度)で表されるピーク強度比でいえば、望ましくは4以上、好ましくは6以上、さらに好ましくは8以上、特に好ましくは10以上である。上限は特に限定はないが、通常は1000以下である。
 ここでいう、X線回折パターンとはゼオライトが主として付着している側の表面にCuKαを線源とするX線を照射して、走査軸をθ/2θとして得るものである。測定するサンプルの形状としては、膜複合体のゼオライトが主として付着している側の表面にX線が照射できるような形状なら何でもよく、膜複合体の特徴をよく表すものとして、作成した膜複合体そのままのもの、あるいは装置によって制約される適切な大きさに切断したものが好ましい。
 ここでいうX線回折パターンは、膜複合体の表面が曲面である場合には自動可変スリットを用いて照射幅を固定して測定してもかまわない。自動可変スリットを用いた場合のX線回折パターンとは、可変→固定スリット補正を実施したパターンを指す。
 ここでいう2θ=17.9°付近のピークとは基材に由来しないピークのうち17.9°±0.6°の範囲に存在するピークのうち最大のものを指し、2θ=20.8°付近のピークとは基材に由来しないピークのうち20.8°±0.6°の範囲に存在するピークで最大のものを指す。
 また2θ=9.6°付近のピークとは基材に由来しないピークのうち9.6°±0.6°の範囲に存在するピークのうち最大のものを指す。
 X線回折パターンで2θ=9.6°付近のピークはCOLLECTION OF SIMULATED XRD POWDER PATTERNS FOR ZEOLITE Third Revised Edition 1996 ELSEVIERによればrhombohedral settingで空間群を
Figure JPOXMLDOC01-appb-M000001
(No.166)とした時にCHA構造において指数が(1,0,0)の面に由来するピークである。
 またX線回折パターンで2θ=17.9°付近のピークはCOLLECTION OF SIMULATED XRD POWDER PATTERNS FOR ZEOLITE Third Revised Edition 1996 ELSEVIERによればrhombohedral settingで空間群を
Figure JPOXMLDOC01-appb-M000002
(No.166)とした時にCHA構造において指数が(1,1,1)の面に由来するピークである。
 X線回折パターンで2θ=20.8°付近のピークはCOLLECTION OF SIMULATED XRD POWDER PATTERNS FOR ZEOLITE Third Revised Edition 1996 ELSEVIERによればrhombohedral settingで空間群を
Figure JPOXMLDOC01-appb-M000003
(No.166)とした時にCHA構造において指数が(2,0,-1)の面に由来するピークである。
 (1,0,0)面由来のピークの強度と(2,0,-1)の面に由来のピーク強度の典型的な比は、COLLECTION OF SIMULATED XRD POWDER PATTERNS FOR ZEOLITE Third Revised Edition 1996 ELSEVIERによれば2.5である。そのためこの比が4以上であるということは例えば、CHA構造をrhombohedral settingとした場合の(1,0,0)面が膜複合体の表面と平行に近い向きになるようにゼオライト結晶が配向して成長していることを意味すると考えられる。ゼオライト膜複合体においてゼオライト結晶が配向して成長することは分離性能の高い緻密な膜が出来るという点で有利である。
 (1,1,1)面由来のピークの強度と(2,0,-1)の面に由来のピーク強度の典型的な比はCOLLECTION OF SIMULATED XRD POWDER PATTERNS FOR ZEOLITE Third Revised Edition 1996 ELSEVIERによれば0.3である。そのためこの比が0.5以上であるということは例えば、CHA構造をrhombohedral settingとした場合の(1,1,1)面が膜複合体の表面と平行に近い向きになるようにゼオライト結晶が配向して成長していることを意味すると考えられる。ゼオライト膜複合体においてゼオライト結晶が配向して成長することは分離性能の高い緻密な膜が出来るという点で有利である。
 (ゼオライト膜の製造方法)
 本発明におけるゼオライト膜の結晶化方法としては、無機多孔質支持体上にCHA型ゼオライトが膜状に結晶化し、CHA型ゼオライトの膜が形成されればどのような方法を用いてもよい。このうち無機多孔質支持体を、CHA型ゼオライト製造に用いる反応混合物中に入れて、直接水熱合成することで無機多孔質支持体表面層にCHA型ゼオライトを結晶化させる方法が好ましい。
 具体的に好ましい方法として、無機多孔質支持体表面層にCHA型ゼオライトを膜状に結晶化させる方法としては、組成を調整して均一化した水性反応混合物を、無機多孔質支持体を内部に緩やかに固定した、オートクレーブなどの耐熱耐圧容器に入れて密閉して加熱する。
 (反応混合物)
 前記反応混合物の例としてはSi元素源、Al元素源、(必要に応じて)有機テンプレート、および水を含み、さらに必要に応じアルカリ源を加えるのが好ましい。
 前記反応混合物に用いるSi元素源、Al元素源は特に限定されるものではない。Si元素源としては無定形シリカ、コロイダルシリカ、シリカゲル、ケイ酸ナトリウム、無定形アルミのシリケートゲル、テトラエトキシシラン(TEOS)、トリメチルエトキシシラン等のいずれでも用いることができる。Al元素源としてはアルミン酸ナトリウム、水酸化アルミニウム、硫酸アルミニウム、硝酸アルミニウム、酸化アルミニウム、無定形アルミノシリケートゲル等のいずれでも用いることができる。
 本発明におけるCHA型ゼオライトの製造において、必要に応じて有機テンプレート(構造規定剤)を用いることができ、有機テンプレートを用いて合成したものが好ましい。有機テンプレートを用いて合成する方が結晶化したゼオライトのアルミニウム原子に対するケイ素原子の割合が高くなり、耐酸性が向上するためである。有機テンプレートとしては、CHA型を形成しうるものであれば種類は問わず、特に限定されるものではない。
 またテンプレートは1種類使用しても、2種類以上を組み合わせて使用してもよく、例えば米国特許第4544538号明細書、米国特許出願公開第2008/0075656A1号明細書記載の有機テンプレートを好適に組み合わせて使用してもよい。具体的には、1-アダマンタンアミンから誘導されるカチオン、3-キナクリジナールから誘導されるカチオン、3-exo-アミノノルボルネンから誘導されるカチオン、等の脂環式アミンから誘導されるカチオンであり、1-アダマンタンアミンから誘導されるカチオンがより好ましい。1-アダマンタンアミンから誘導されるカチオンを有機テンプレートとしたとき、緻密な膜を形成しうるCHA型ゼオライトが結晶化する。また、膜が水を選択的に透過するのに十分な親水性を有するCHA型ゼオライトが生成しうるほか耐酸性に優れたCHA型ゼオライトが得られるためである。
 1-アダマンタンアミンから誘導されるカチオンのうち、N,N,N-トリアルキル-1-アダマンタンアンモニウムカチオンがさらに好ましい。N,N,N-トリアルキル-1-アダマンタンアンモニウムカチオンの場合の3つのアルキル基は、3つの独立したアルキル基であり、通常低級アルキル基であり、好ましくはメチル基である。具体的に好ましいものは、N,N,N-トリメチル-1-アダマンタンアンモニウムカチオンである。このようなカチオンはCHA型ゼオライトの形成に害を及ぼさないアニオンを伴う。このようなアニオンを代表するものには、Cl、Br、Iなどのハロゲンイオンや水酸化物イオン、酢酸塩、硫酸塩、およびカルボン酸塩が含まれる。水酸化物イオンは特に好適に用いられる。またその他の有機テンプレートとしてはN,N,N-トリアルキルベンジルアンモニウムカチオンも用いることができる。この場合もアルキルは3つの独立したアルキルであり、通常低級アルキルである。好ましくはメチルである。最も好ましいのは、N,N,N-トリメチルベンジルアンモニウムカチオンである。
 前記反応混合物に用いるアルカリ源としては有機テンプレートのカウンターアニオンの水酸化物イオンやNaOH、KOHなどのアルカリ金属水酸化物、Ca(OH)などのアルカリ土類金属水酸化物などを用いることができる。
 アルカリの種類は特に限定されるものではないが、通常Na、K、Li、Rb、Cs、Ca、Mg、Sr、Baであり、好ましくはNa、Kであり、より好ましくはKである。アルカリは2種類以上を併用してもよく、具体的にはNaとKを併用するのが好ましい。
 反応混合物中のSi元素源とAl元素源の比は通常、それぞれの元素の酸化物のモル比、SiO/Alモル比(以下単に「SiO/Al比」ということがある。)として表わす。SiO/Al比は特に限定されるものではないが、通常5以上であり、好ましくは8以上であることがCHA型ゼオライト膜が緻密に生成しうる点で好ましく、より好ましくは10以上、更に好ましくは15以上が好ましい。また通常10000以下であり、好ましくは1000以下であり、より好ましくは300以下であり、更に好ましくは100以下である。
 SiO/Al比がこの範囲内にあるときCHA型ゼオライト膜が緻密に生成しうるため好ましく、更に生成したCHA型ゼオライトが強い親水性を示し、有機物を含有する混合物中から親水性の化合物、特に水を選択的に透過することができる点で好ましい。また耐酸性に強く脱AlしにくいCHA型ゼオライトが得られる。なお、Al以外に他の元素、例えばGa、Fe、B、Ti、Zr、Sn、Znなどの元素を含んでいてもかまわない。
 SiO/Al比がこの範囲にあるとき、緻密な膜を形成しうるCHA型ゼオライトが結晶化するので好ましい。また、膜が水を選択的に透過するのに十分な親水性を有するCHA型ゼオライトが生成しうるほか耐酸性に優れたCHA型ゼオライトが得られる点で好ましい。
 反応混合物中のシリカ源と有機テンプレートの比は、SiOに対する有機テンプレートのモル比(有機テンプレート/SiO比)が通常、0.005以上1以下であり、0.01以上0.4以下が好ましく、さらに好ましくは0.02以上0.2以下である。この範囲にあるとき緻密なCHA型ゼオライト膜が生成しうることに加えて生成したCHA型ゼオライトが耐酸性に強くAlが脱離しにくい。
 Si元素源とアルカリ源の比はアルカリ金属またはアルカリ土類金属をMであらわし、その価数をn(1または2)であらわすと、M(2/n)O/SiOのモル比で通常、0.02以上0.5以下であり、好ましくは0.04以上0.4以下、さらに好ましくは0.05以上0.3以下である。
 また、アルカリ金属の中でKが含まれる場合がより緻密で結晶性の高い膜を生成させるという点で好ましい。その場合のKと、Kを含むすべてのアルカリ金属および/またはアルカリ土類金属とのモル比は通常、0.01~1、好ましくは0.1~1、さらに好ましくは0.3~1である。また、Kの添加は、rhombohedral settingで空間群を
Figure JPOXMLDOC01-appb-M000004
(No.166)とした時にCHA構造において指数が(1,0,0)の面に由来するピークである2θ=9.6°付近のピーク強度、または(1,1,1)の面に由来するピークである2θ=17.9°付近のピーク強度と、(2,0,-1)の面に由来するピークである2θ=20.8°付近のピーク強度の比を大きくする傾向がある。
 Si元素源と水の比はSiOに対する水のモル比で通常10以上1000以下であり、好ましくは、30以上500以下、さらに好ましくは40以上200以下、特に好ましくは50以上150以下である。反応混合物中の物質のモル比がこれらの範囲にあるとき、緻密なCHA型ゼオライト膜が生成しうる。水の量は緻密なCHA型ゼオライト膜の生成において特に重要であり、粉末合成法の一般的な条件よりも水がシリカに対して多い条件のほうが細かい結晶が生成して緻密な膜ができやすい傾向にある。粉末のCHA型ゼオライトを合成する際の水の量は一般的にはHO/SiOモル比で15~50程度であるが、HO/SiOモル比が高い、水が多い条件にすることが好ましく、具体的に好ましくは50以上150以下といった条件下であると、無機多孔質支持体表面層にCHA型ゼオライトが緻密な膜状に結晶化し分離性能の高い膜複合体が得られる点で好ましい。
 (複合体の製造方法)
 支持体表面層に、気体や液体混合物の分離に適用可能な緻密で、かつ十分な透過流束が達成できるような膜状のCHA型ゼオライトを結晶化させるには、単に上記の文献をそのまま適用するだけでは不十分であり、これらの方法から膜状にする条件を種々検討する必要がある。
 本発明における無機多孔質支持体表面層に膜状にCHA型ゼオライトを結晶化させる際に、種結晶が存在しなくてもかまわないが、反応系内に種結晶を加えることでCHA型ゼオライトの結晶化を促進できるという点で好ましい。種結晶を加える方法としては特に限定されるものではないが、粉末のCHA型ゼオライトの合成時のように反応混合物中に種結晶を加える方法や、無機多孔質支持体表面上に種結晶を付着させておく方法が可能であり、膜複合体の製造方法として無機多孔質支持体表面上に種結晶を付着させておくことが好ましい。支持体表面上に予め種結晶を付着させておくことで緻密で分離性能良好なゼオライト膜が生成しやすくなる。
 本発明において使用する種結晶は、結晶化を促進するゼオライトであれば種類は問わないが、効率よく結晶化させるためにはCHA型ゼオライトであることが好ましい。種結晶として用いられるCHA型ゼオライトは特に限定されるものではないが、その粒子径は小さいほうが望ましく、必要に応じて粉砕して用いても良い。通常、0.5nm以上であり、好ましくは1nm以上であり、より好ましくは2nm以上であり、通常5μm以下であり、好ましくは、3μm以下であり、さらに好ましくは2μm以下である。
 本発明における無機多孔質支持体表面上に種結晶を付着させる方法は特に限定されるものではないが、種結晶を水などの溶媒に分散させてその分散液に支持体を浸けて表面に種結晶を付着させるディップ法や、種結晶を水などの溶媒と混合してスラリー状にしたものを無機多孔質支持体表面上に塗りこむ方法などがある。種結晶の付着量を制御し、再現性良く膜複合体を製造するにはディップ法が望ましい。
 本発明において種結晶を分散させる溶媒は、特に限定されるものではないが、水が好ましい。分散させる種結晶の量は、特に限定されるものではないが、分散液の全重量に対して通常0.01重量%以上、好ましくは0.1重量%以上、より好ましくは0.5重量%以上が好ましく、通常20重量%以下、好ましくは10重量%以下、より好ましくは5重量%以下、更に好ましくは3重量%以下である。分散させる種結晶の量が少なすぎると無機多孔質支持体上に付着する種結晶の量が少ないため、水熱合成時に支持体表面に部分的にCHA型ゼオライトが生成しない箇所ができることがあり欠陥のある膜となる可能性がある。分散液中の種結晶の量が多すぎるとディップ法によって無機多孔質支持体表面上付着する種結晶の量はほぼ一定となるため、分散させる種結晶の量が多すぎると種結晶の無駄が多くなりコスト面で不利である。
 本発明における無機多孔質支持体はディップ法あるいはスラリーの塗りこみによって種結晶を付着させた後、乾燥した後に膜の合成を行うことが望ましい。
 支持体表面上に予め付着させておく種結晶の重量は、特に限定されるものではないが、基材1mあたりの重量で、通常、0.01g以上、好ましくは0.05g以上、より好ましくは0.1g以上であり、通常100g以下であり、好ましくは50g以下であり、より好ましくは10g以下であり更に好ましくは8g以下である。種結晶の量が前記下限未満の場合には結晶ができにくくなり、膜の成長が不十分になる場合や、膜の成長が不均一になったりする傾向があるために緻密な膜が生成しにくくなることがある。また種結晶の量が前記上限超過の場合には、表面の凹凸が種結晶によって増長されたり、支持体表面から落ちた種結晶によって自発核が成長しやすくなって支持体上の膜成長が阻害されたりする場合があり、緻密な膜が生成しにくくなることがある。
 水熱合成により結晶化させる場合、無機多孔質支持体を固定化するに際しては、縦置き、横置きなどあらゆる形態をとることができる。この場合、静置法で結晶化させてもよいし、反応混合物を攪拌させて結晶化させてもかまわない。
 ゼオライトを結晶化させる際の温度は特に限定されるものではないが、通常100℃以上、好ましくは120℃以上、更に好ましくは150℃以上であり、通常200℃以下であり、好ましくは190℃以下、さらに好ましくは180℃以下である。反応温度が低すぎる場合、CHA型ゼオライトが結晶化しないことがあり好ましくない。反応温度がこの範囲より高すぎる場合はCHA型とは異なるタイプのゼオライトが生成しうるので好ましくない。
 加熱時間は特に限定されるものではないが、通常1時間以上であり、好ましくは5時間以上、更に好ましくは10時間以上であり、通常は10日間以下であり、好ましくは5日以下、より好ましくは3日以下、さらに好ましくは2日以下である。反応時間が短すぎる場合はCHA型ゼオライトが結晶化しないことがあり好ましくない。反応時間が長すぎる場合はCHA型とは異なるタイプのゼオライトが生成しうるため好ましくない。
 結晶化時の圧力は特に限定されるものではないが、密閉容器中に入れた反応混合物をこの温度範囲に加熱したときに生じる自生圧力で十分であるが、窒素などの不活性ガスを加えてもかまわない。
 水熱合成により得られた無機多孔質支持体-ゼオライト膜複合体は水洗した後に、ゼオライト中の有機テンプレートを取り除くことが好ましい。有機テンプレートを取り除く方法としては焼成や抽出などの方法があり、その方法は限定されるものではないが、焼成が望ましく、好ましい焼成温度は通常350℃以上、好ましくは400℃以上、より好ましくは430℃以上、更に好ましくは480℃以上であり、通常900℃以下、好ましくは850℃以下、さらに好ましくは800℃以下、特に好ましくは750℃以下である。焼成温度が低すぎる場合には有機テンプレートが残っている割合が多くなる傾向があり、ゼオライトの細孔が少なく、そのために分離濃縮の際の透過流束が減少する可能性があり好ましくない。焼成温度が高すぎる場合には支持体とゼオライトの熱膨張率の差が大きくなるためゼオライト膜に亀裂が生じやすくなる可能性があり、ゼオライト膜の緻密性が失われ分離性能が低くなりやすくなることがある。
 焼成時間は有機テンプレートが十分に取り除かれれば特に限定されるものではないが、1時間以上が好ましくさらに好ましくは5時間以上である。上限は特に限定されるものではないが通常24時間以内である。焼成は空気雰囲気で行われることが一般的であるが、酸素が含まれる雰囲気で行うことができる。
 焼成の際の昇温速度は、支持体とゼオライトの熱膨張率の差がゼオライト膜に亀裂を生じさせることを少なくするために、なるべく遅くすることが望ましい。通常、5℃/分以下、好ましくは2℃/分以下、さらに好ましくは1℃/分以下、特に好ましくは0.5℃/分以下である。通常、作業性を考慮し0.1℃/分以上である。また、焼成後の降温速度もゼオライト膜に亀裂が生じることを避けるためにコントロールする必要がある。昇温速度と同様、遅ければ遅いほど望ましい。通常、5℃/分以下、好ましくは2℃/分以下、さらに好ましくは1℃/分以下、特に好ましくは0.5℃/分以下である。通常、作業性を考慮し0.1℃/分以上である。
 無機多孔質支持体-ゼオライト膜複合体を必要に応じてイオン交換しても良い。イオン交換はテンプレートを用いて合成した場合は通常、焼成などのテンプレートを除去した後に行う。イオン交換するイオンとしてはプロトン、およびNa、K、Liなどのアルカリ金属イオン、およびCa2+、Mg2+、Sr2+、Ba2+などのアルカリ土類金属イオン、Fe、Cu、Znなどの遷移金属のイオンなどがあげられる。この中でプロトン、およびNa、K、Liなどのアルカリ金属イオンが好ましい。
 イオン交換の方法としては、焼成後(テンプレートを使用した場合など)の無機多孔質支持体-ゼオライト膜複合体をNHNO、NaNOなどアンモニウム塩あるいは交換するイオンを含む水溶液、場合によっては塩酸などの酸で通常、室温から100℃の温度で処理後、水洗し、必要に応じて200℃~500℃で焼成する。
 (分離・濃縮方法)
 本発明の無機多孔質支持体-ゼオライト膜複合体を用いて有機物を含有する気体または液体混合物を分離、濃縮する方法は、ゼオライト膜を備えた無機多孔質支持体を介し支持体側又はゼオライト膜側の一方の側に有機物を含む気体または液体の混合物を接触させ、その逆側を混合物が接触している側よりも低い圧力とすることによって混合物からCHA型ゼオライト膜に透過性がある物質(混合物中の透過性が高い物質)を選択的に透過させる方法である。これにより、混合物から透過性の高い物質を分離することができる。そしてその結果、有機物を含む混合物中の特定の有機物(混合物中の透過性が低い物質)の濃度を高めることで、特定の有機物を分離回収、あるいは濃縮する方法である。具体的に言えば、水と有機物の混合物の場合、通常水がゼオライト膜に対する透過性が高いので、混合物から水と有機物とが分離され、有機物は元の混合物中で濃縮される。透過性パーベーパレーション、ベーパーパーミエーションと呼ばれる分離・濃縮方法はひとつの形態である。
 本発明のゼオライト膜複合体の形状は特に限定されるものでなく、管状、中空糸状、モノリス型、ハニカム型などあらゆる形状を採用できる。また大きさも特に限定されないが、例えば、管状の場合は、通常長さ2cm以上200cm以下、内径0.5cm以上から2cm以下、厚さ0.5mm以上から4mm以下が実用的で好ましい。
 本発明のゼオライト膜複合体の分離機能の一つは、分子ふるいとしての分離であり、CHA型ゼオライトの有効細孔径3.8Å以上の大きさを有する気体分子または液体分子とそれ以下の気体または液体分子との分離に好適に使用される。なお分離に供される分子に上限はないが、分子の大きさは通常、100Å以下程度である。
 また、本発明のゼオライト膜複合体のもう一つの分離機能は親水性の差を利用した分離である。ゼオライトの種類にもよるが、一般にはゼオライト骨格中Alが一定量含有されることにより、親水的性質が現れる。CHA型ゼオライト膜の結晶化条件を制御すれば結晶中のSiO/Alモル比を制御することは可能である。このような親水性膜を用いれば有機物と水の混合溶液から水分子を選択的に膜透過させることにより有機物を分離、濃縮することができる。すなわち、有機酸類/水、アルコール類/水、アセトン、メチルイソブチルケトン等のケトン類/水、アルデヒド類/水、ジオキサン、テトラヒドロフラン等のエーテル類/水、ジメチルホルムアミド、N-メチルピロリドン等のアミドなどの窒素を含む有機化合物(N含有有機物)/水、酢酸エステル等のエステル類/水等の、有機物と水の混合水溶液から水を選択的に透過して有機物を分離、濃縮することができる。この場合に有機物と水との混合物における水の含有量は特に制限は無く、A型ゼオライトでは構造が壊れてしまう高い水含有量、例えば20重量%以上の水含有量の混合物においても構造が壊れることなく高い選択率と透過流束を実現することができる。
 また、有機酸/水以外の系においても、有機酸や無機酸が存在していても耐酸性が高いので使用することができる。
 このように、本発明のゼオライト膜複合体は、高い水含有量の有機物との混合物からの分離や、酸性条件での分離においても高い選択率と透過流束が実現できる。そのため通常蒸留で分離している混合物を本発明のゼオライト膜複合体を用いて分離することにより、蒸留に比べて分離に必要なエネルギーを小さくすることができる。本発明のゼオライト膜複合体は、広い範囲の水含有量の混合物からの分離が可能であるので、これまでできなかった系においても分離が可能となる。例えば、これまでA型のゼオライト膜では、高い水含有量の有機物との混合物からの分離ができなかったので、蒸留により90%程度まで有機物を濃縮してからA型ゼオライト膜を使用する必要があった。しかし、本発明のゼオライト膜複合体を用いれば、例えば50%以上の高い水含有量の有機物との混合物からであっても水と有機物を分離し、有機物を濃縮することができる。本発明のゼオライト膜複合体を用いて水と有機物を分離する場合に、所望の濃度まで有機物を濃縮するにあたり、すべての工程をゼオライト膜複合体を用いて行ってもよいし、ゼオライト膜複合体と蒸留や圧力スイング吸着(PSA)、温度スイング吸着(TSA)などの分離方法とを好適に組み合わせることも可能であり、条件を合わせることによって、最適なエネルギー効率による分離が可能となる。
 本発明のゼオライト膜複合体により分離可能な有機物の例としては、酢酸、プロピオン酸、蟻酸、乳酸、シュウ酸、酒石酸、安息香酸などのカルボン酸類や、スルフォン酸、スルフィン酸、ハビツル酸、尿酸、フェノール、エノール、ジケトン型化合物、チオフェノール、イミド、オキシム、芳香族スルフォンアミド、第1級および第2級ニトロ化合物などの有機酸や、メタノール、エタノール、イソプロパノールなどのアルコール、アセトン、メチルイソブチルケトン等のケトン類、アセトアルデヒドなどのアルデヒド類、ジオキサン、テトラヒドロフラン等のエーテル類、ジメチルホルムアミド、N-メチルピロリドン等のアミドなどの窒素を含む有機化合物(N含有有機物)、酢酸エステル等のエステル類などがあげられる。これらの中から、分子ふるいと親水性の両方の特徴を生かすことのできる有機酸と水との混合物から有機酸を分離するときに無機多孔質支持体-ゼオライト膜複合体の効果が際立って発現する。好ましくはカルボン酸類と水との混合物、特に好ましくは酢酸と水の分離などがより好適な例である。また、有機酸以外の有機物と水との混合物から有機物と水を分離する場合の有機物は炭素数が2以上であることが好ましく、炭素数が3以上であることがより好ましい。
 本発明の無機多孔質支持体-ゼオライト膜複合体を用いると分離膜として、好ましくは浸透気化分離膜として機能し有機物を含む気体または液体の混合物から特定の化合物を分離し、さらに濃縮する、実用上も十分な処理量をもち十分な分離の性能も十分な膜分離が可能となる。ここでいう十分な処理量とは膜を透過する物質の透過流束が1kg/(m・h)以上であることをいう。また十分な分離の性能とは膜分離で一般的に用いられる分離の性能を表す、分離係数=(Pα/Pβ)/(Fα/Fβ)[ここでPαは透過液中の主成分の重量パーセント濃度、Pβは透過液中の副成分の重量パーセント濃度、Fαは透過液において主成分となる成分の被分離混合物中の重量パーセント濃度、Fβは透過液において副成分となる成分の被分離混合物中の重量パーセント濃度]が100以上であることあるいは透過液中の主成分の濃度が95重量%以上であることをいう。
 従来のモルデナイト型ゼオライト膜複合体やフェリエライト型ゼオライト膜複合体では十分な処理量と十分な分離性能を両立する有機物を含む混合液の膜分離はできなかった。本発明においてはCHA型ゼオライトの細孔構造が三次元構造であるために、細孔構造が一次元のモルデナイト型ゼオライトの膜よりも細孔内を分子が通りやすいために透過流束が高く十分な処理量を達成していると推測する。分離性能の高い緻密なゼオライト膜では透過物質の主な流路はゼオライト結晶中の細孔であるので、細孔が多い構造のゼオライトの膜では十分な処理量を高い分離性能と両立できると推測する。結晶中の細孔の量はゼオライトのフレームワーク密度からも推測できる。CHA型ゼオライトのフレームワーク密度が14.5T/1000Åであるのに対しモルデナイトでは17.2T/1000Å、フェリエライトでは17.6T/1000Åとなっているので、フレームワーク密度の点からもCHA型ゼオライトの結晶中に透過物質の流路となるような空間が多いことが推測される。
 本発明の無機多孔質支持体-ゼオライト膜複合体は、高いSiO/Alモル比を持つCHA型ゼオライトがA型ゼオライトやモルデナイト型ゼオライトと異なり耐酸性に優れるため有機酸を含む混合物の分離に好適である。高いSiO/Alモル比でかつ有機テンプレートを含む反応混合液から結晶化するCHA型ゼオライトは酸性条件下でもAlが抜けにくく、構造も安定である。一方、モルデナイト型ゼオライトは酸性条件下で脱Alが進行する。脱Alが進行することによるモルデナイト型ゼオライトの結晶構造の変化は少ないものの結晶のSiO/Alモル比は大きくなる方向に変化することが予想されるのでモルデナイト型ゼオライト膜中の結晶の親水性は低くなって親水性を利用した分離では分離性能が低下する可能性がある。またA型ゼオライトは酸によって構造が破壊されるので有機酸の存在下では膜として機能しなくなると推測する。
 本発明のゼオライト膜複合体は耐酸性を有するため有機酸を含む混合物からの分離・濃縮、特に酢酸などの有機酸と水との混合物から水を選択的に透過することによる有機酸の分離・濃縮、エステル化反応促進のための水分離などに有効に利用できる。
 以下、実施例に基づいて本発明を更に具体的に説明するが本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。
・X線回折(XRD)の測定方法
XRD測定は以下の条件に基づきおこなった。
装置名:オランダPANalytical社製X’PertPro MPD
光学系仕様 入射側:封入式X線管球(CuKα)
          Soller Slit (0.04rad)
          Divergence Slit (Valiable Slit)
      試料台:XYZステージ
      受光側:半導体アレイ検出器(X’ Celerator)
          Ni-filter
              Soller Slit (0.04rad)
      ゴニオメーター半径:240mm
測定条件  X線出力(CuKα):45kV、40mA
      走査軸:θ/2θ
      走査範囲(2θ):5.0-70.0°
      測定モード:Continuous
      読込幅:0.05°
      計数時間:99.7sec
      自動可変スリット(Automatic-DS):1mm(照射幅)
      横発散マスク:10mm(照射幅)
 なお、X線は円筒管の軸方向に対して垂直な方向に照射した。またX線は、できるだけノイズ等がはいらないように、試料台においた円筒管状の膜複合体と、試料台表面と平行な面とが接する2つのラインのうち、試料台表面ではなく、試料台表面より上部にあるもう一方のライン上に主にあたるようにした。
・SEM-EDXの測定方法
 装置:
  SEM:FE-SEM Hitachi:S-4800
  EDX:EDAX Genesis
 加速電圧:10kV
 倍率5000倍での視野全面(25μm×18μm)を走査し、X線定量分析を行った。
 (実施例1)
 CHA型ゼオライト膜の作成のために、N,N,N-トリメチル-1-アダマンタンアンモニウムヒドロキシド(TMADOH)水溶液をUSP4544538の記載を参考に調製した。以下に例を示す。
 5.5gの1-アダマンタンアミン(アルドリッチ社製)を75mlのメタノールに溶解し、24.2gの炭酸カリウムを加え、30分攪拌した。これに、10mlのヨードメタンを滴下させ、1昼夜攪拌した。その後塩化メチレンを50ml加えて固体をろ過した。得られた溶液の溶媒をエバポレーターにより除去して固体を得た。この固体に塩化メチレン130ml加えてろ過、溶媒の除去を2回繰り返した。その後、得られた固体をメタノールを用いて再結晶を行い、再結晶された固体をろ過し、ジエチルエーテルで洗浄後、乾燥してN,N,N-トリメチル-1-アダマンタンアンモニウムヨーダイド(TMADI)を得た。その後このTMADIを水に溶解させ、アニオン交換樹脂(三菱化学社製 SA-10A)によりイオン交換し、エバポレーターで濃縮し、N,N,N-トリメチル-1-アダマンタンアンモニウムヒドロキシド水溶液を得た。滴定により、この水溶液中のN,N,N-トリメチル-1-アダマンタンアンモニウムヒドロキシドの濃度は0.75mmol/gであった。また、この水溶液中に含まれるK量は1.84重量%であった。
 無機多孔質支持体-(CHA型)ゼオライト膜複合体はCHA型ゼオライトを無機多孔質支持体上に直接水熱合成することで作製した。
 水熱合成のための反応混合物として、以下のものを調製した。
 1mol/L-NaOH水溶液6.9gと水103.6gを混合したものに水酸化アルミニウム(Al 53.5重量%含有、アルドリッチ社製)0.43gを加えて撹拌し溶解させ、透明溶液とした。これに有機テンプレートとして、上記のN,N,N-トリメチル-1-アダマンタンアンモニウムヒドロキシド(TMADOH)水溶液9.2gを加え(この溶液中にKとして0.17g含有している。)、さらにコロイダルシリカ(日産化学社製 スノーテック-40)10.4gを加えて3時間撹拌し、水熱合成用混合物を調製した。
 無機多孔質支持体としては(株)ニッカトー製のムライトチューブPM(外径12mm、内径9mm)を80mmの長さに切断した後、外表面を耐水性紙やすりを用いて滑らかにして、超音波洗浄機で洗浄したのち乾燥させたものを用いた。支持体上には水熱合成に先立ち、ディップ法で上記の方法と同様の方法によりSiO/Al/NaOH/HO/TMADOH=1/0.033/0.1/40/0.1のゲル組成で160℃、2日間水熱合成して結晶化させた0.5μm程度のCHA型ゼオライトの種結晶を付着させた。
 この種結晶を約1重量%水中に分散させたものに支持体を所定時間浸した後、100℃で5時間以上乾燥させて種結晶を付着させた。付着した種結晶の重量は約3g/mであった。この種結晶を付着させた支持体を上記反応混合物の入ったテフロン(登録商標)製内筒に垂直方向に浸漬してオートクレーブを密閉し160℃で48時間、自生圧力下で加熱した。所定時間経過後、放冷した後に支持体-ゼオライト膜複合体を反応混合物から取り出し洗浄後100℃で5時間以上乾燥させた。乾燥後、テンプレート焼成前のゼオライト(以下as-madeということがある)の状態で円筒管状の膜複合体の一端を封止し、他の一端を真空ラインに接続することで管内を減圧とし、真空ライン設置した流量計で空気の透過流束を測定したところ透過流束は0ml/(m・分)であった。
 テンプレート焼成前のゼオライト(as-made)の膜複合体を電気炉で550℃、10時間焼成した。このときの昇温速度と降温速度はともに0.5℃/分とした。焼成後の膜複合体の重量と支持体の重量の差から支持体上に結晶化したCHA型ゼオライトの重量は120g/mであった。SEM観察から膜厚は約15μmであった。
 生成した膜のXRDを測定したところCHA型ゼオライトが生成していることがわかった。XRD測定は前記の条件によりおこなった。また照射幅を自動可変スリットによって1mmに固定して測定し、Materials Data, Inc.のXRD解析ソフトJADE 7.5.2(日本語版)を用いて可変スリット→固定スリット変換を行ってXRDパターンを得た。(2θ=17.9°付近のピークの強度)/(2θ=20.8°付近のピークの強度)=2.9であり、rhombohedral settingにおける(1,1,1)面への配向が推測された。
 また短冊状に切断した無機多孔質支持体-CHA型ゼオライト膜複合体をSEMで観測した結果、表面に結晶が緻密に生成していた。
 また、SEM-EDXにより、ゼオライト膜のSiO/Alモル比を測定したところ、22であった。
 (実施例2)
 無機多孔質支持体CHA型ゼオライト膜複合体はCHA型ゼオライトを無機多孔質支持体上に直接水熱合成することで作製した。
 水熱合成のための反応混合物として、以下のものを調製した。
 1mol/L-NaOH水溶液10.5gと1mol/L-KOH水溶液7.0gと水100.0gを混合したものに水酸化アルミニウム(Al 53.5重量%含有、アルドリッチ社製)0.88gを加えて撹拌し溶解させ、透明溶液とした。これに有機テンプレートとして、N,N,N-トリメチル-1-アダマンタンアンモニウムヒドロキシド(TMADOH)水溶液(TMADAOH25重量%含有、セイケム社製)2.95gを加え、さらにコロイダルシリカ(日産化学社製 スノーテック-40)10.5gを加えて2時間撹拌し、水熱合成用混合物を調製した。
 無機多孔質支持体としては実施例1と同様に処理したものを用いた。支持体上には水熱合成に先立ち、実施例1と同様に粒径0.5μm程度のCHA型ゼオライトの種結晶を付着させた。付着した種結晶の重量は約5g/mであった。
 実施例1と同様にこの種結晶を付着させた支持体を上記反応混合物の入ったテフロン(登録商標)製内筒に垂直方向に浸漬してオートクレーブを密閉し160℃で48時間、自生圧力下で加熱した。所定時間経過後、放冷した後に支持体-ゼオライト膜複合体を反応混合物から取り出し洗浄後100℃で5時間以上乾燥させた。乾燥後のas-madeの状態で円筒管状の膜複合体の一端を封止し、他の一端を真空ラインに接続することで管内を減圧とし、真空ライン設置した流量計で空気の透過流束を測定したところ透過流束は0ml/(m・min)であった。テンプレート焼成前のゼオライトの膜複合体を電気炉で500℃、5時間焼成した。焼成後の膜複合体の重量と支持体の重量の差から支持体上に結晶化したCHA型ゼオライトの重量は120g/mであった。SEM観察から膜厚は約15μmであった。
 生成したゼオライト膜のXRDを測定したところ、CHA型ゼオライトが生成していることがわかった。XRD測定は実施例1と同様に行った。生成した膜のXRDと種結晶として使用した粉末のCHA型ゼオライト(USP4544538号公報においてSSZ-13と一般に呼称されるゼオライト、以下SSZ-13として表わす。)であるSSZ-13のXRDの比較を図2に示す。図2において、a)は実施例2の膜の、b)はSSZ-13のXRDを示す。また、図中の*は支持体由来のピークである。生成した膜のXRDでは、粉末のCHA型ゼオライトであるSSZ-13のXRDにくらべ2θ=17.9°付近のピークの強度が顕著に大きいことがわかる。粉末のCHA型ゼオライトであるSSZ-13の(2θ=17.9°付近のピークの強度)/(2θ=20.8°付近のピークの強度)=0.2に対し、生成した膜の(2θ=17.9°付近のピークの強度)/(2θ=20.8°付近のピークの強度)=12.6であり、rhombohedral settingにおける(1,1,1)面への配向が推測された。
 また、SEM-EDXにより、ゼオライト膜のSiO/Alモル比を測定したところ、17であった。
 (実施例3)
 無機多孔質支持体-CHA型ゼオライト膜複合体はCHA型ゼオライトを無機多孔質支持体上に直接水熱合成することで作製した。
 水熱合成のための反応混合物として、以下のものを調製した。
 1mol/L-NaOH水溶液10.5gと1mol/L-KOH水溶液7.0gと水100.4gを混合したものに水酸化アルミニウム(Al53.5重量%含有、アルドリッチ社製)0.88gを加えて撹拌し溶解させ、透明溶液とした。これに有機テンプレートとして、N,N,N-トリメチル-1-アダマンタンアンモニウムヒドロキシド(TMADOH)水溶液(TMADAOH25重量%含有、セイケム社製)2.37gを加え、さらにコロイダルシリカ(日産化学社製 スノーテック-40)10.5gを加えて2時間撹拌し、水熱合成用混合物を調製した。
 無機多孔質支持体としては実施例1と同様に処理したものを用いた。支持体上には水熱合成に先立ち、実施例1と同様に粒径2μm程度のCHA型ゼオライトの種結晶を付着させた。付着した種結晶の重量は約2g/mであった。種結晶に用いた粒径2μm程度のCHA型ゼオライトは、セイケム社の25重量%N,N,N-トリメチル-1-アダマンタンアンモニウムヒドロキシド(TMADOH)水溶液を用いて、SiO/Al/NaOH/KOH/HO/TMADOH=1/0.066/0.15/0.1/100/0.1のゲル組成で160℃、2日間水熱合成をして結晶化させたものをろ過、水洗、乾燥したものである。
 実施例1と同様にこの種結晶を付着させた支持体を上記反応混合物の入ったテフロン(登録商標)製内筒に垂直方向に浸漬してオートクレーブを密閉し160℃で48時間、自生圧力下で加熱した。所定時間経過後、放冷した後に支持体-ゼオライト膜複合体を反応混合物から取り出し洗浄後100℃で5時間以上乾燥させた。乾燥後のas-madeの状態で円筒管状の膜複合体の一端を封止し、他の一端を真空ラインに接続することで管内を減圧とし、真空ライン設置した流量計で空気の透過流束を測定したところ透過流束は0ml/ (m・min)であった。テンプレート焼成前のゼオライトの膜複合体を電気炉で500℃、5時間焼成した。焼成後の膜複合体の重量と支持体の重量の差から支持体上に結晶化したCHA型ゼオライトの重量は130g/mであった。
 生成した膜のXRDを測定したところCHA型ゼオライトが生成していることがわかった。XRD測定は実施例1と同様に行った。生成した膜のXRDの結果から、2θ=17.9°付近のピークの強度が顕著に大きいことがわかる。生成した膜の(2θ=17.9°付近のピークの強度)/(2θ=20.8°付近のピークの強度)=1.0であった。
 また、SEM-EDXにより、ゼオライト膜のSiO/Alモル比を測定したところ、20であった。
(実施例4)
 無機多孔質支持体として多孔質アルミナチューブ(外径12mm、内径9mm)を用いた以外は、実施例3と同様に行って、無機多孔質支持体-CHA型ゼオライト膜複合体を作成した。
 生成したCHA型ゼオライト膜のXRDの結果から、(2θ=17.9°付近のピークの強度)/(2θ=20.8°付近のピークの強度)=1.2であった。また、SEM-EDXにより、ゼオライト膜のSiO/Alモル比を測定したところ、17であった。
(実施例5)
 無機多孔質支持体-CHA型ゼオライト膜複合体はCHA型ゼオライトを無機多孔質支持体上に直接水熱合成することで作製した。
 水熱合成のための反応混合物として、以下のものを調製した。
 1mol/L-NaOH水溶液32gと1mol/L-KOH水溶液48gと水457gを混合したものに水酸化アルミニウム(Al 53.5重量%含有、アルドリッチ社製)4.0gを加えて撹拌し溶解させ、ほぼ透明溶液とした。これに有機テンプレートとして、N,N,N-トリメチル-1-アダマンタンアンモニウムヒドロキシド(TMADOH)水溶液(TMADAOH25重量%含有、セイケム社製)13.5gを加え、さらにコロイダルシリカ (日産化学社製 スノーテック-40)48gを加えて2時間撹拌し、水熱合成用混合物を調製した。
 無機多孔質支持体としては実施例1と同様に処理したものを用いた。支持体上には水熱合成に先立ち、粒径2μm程度のCHA型ゼオライトの種結晶を付着させた以外は実施例1と同様の処理を行った。付着した種結晶の重量は約5g/mであった。
 実施例1と同様にこの種結晶を付着させた支持体を上記反応混合物の入ったテフロン(登録商標)製内筒に垂直方向に浸漬してこのテフロン(登録商標)製内筒を1Lのステンレス製オートクレーブに入れ、オートクレーブを密閉し昇温に5時間をかけたのち、160℃で48時間、自生圧力下で加熱した。反応の間、200rpmで回転する撹拌翼によって反応混合物を混合した。所定時間経過後、放冷した後に支持体-ゼオライト膜複合体を反応混合物から取り出し洗浄後100℃で4時間以上乾燥させた。乾燥後のas-madeの状態で円筒管状の膜複合体の一端を封止し、他の一端を真空ラインに接続することで管内を減圧とし、真空ライン設置した流量計で空気の透過流束を測定したところ透過流束は0ml/(m・min)であった。テンプレート焼成前のゼオライトの膜複合体を電気炉で500℃、5時間焼成した。焼成後の膜複合体の重量と支持体の重量の差から支持体上に結晶化したCHA型ゼオライトの重量は120g/mであった。
 生成した膜のXRDを測定したところCHA型ゼオライトが生成していることがわかった。XRD測定は実施例1と同様に行った。生成した膜のXRDを図3に示す。図中の*は支持体由来のピークである。
 生成した膜のXRDでは粉末のCHA型ゼオライトであるSSZ-13のXRDにくらべ2θ=9.6°付近のピークの強度が顕著に大きいことがわかる。生成した膜の(2θ=9.6°付近のピークの強度)/(2θ=20.8°付近のピークの強度)=6.8とCOLLECTION OF SIMULATED XRD POWDER PATTERNS FOR ZEOLITE Third Revised Edition 1996 ELSEVIERに記載の粉末のCHAのXRDの比((2θ=9.6°付近のピークの強度)/(2θ=20.8°付近のピークの強度)=2.5にくらべ著しく大きく、rhombohedral settingにおける(1,0,0)面への配向が推測された。また、SEM-EDXにより、ゼオライト膜のSiO/Alモル比を測定したところ、17であった。
(実施例6)  
 無機多孔質支持体-CHA型ゼオライト膜複合体はCHA型ゼオライトを無機多孔質支持体上に直接水熱合成することで作製した。
 水熱合成のための反応混合物として、以下のものを調製した。
 1mol/L-NaOH水溶液30.1gと水66.0gを混合したものに水酸化アルミニウム(Al 53.5重量%含有、アルドリッチ社製)0.057gを加えて撹拌し溶解させ、ほぼ透明溶液とした。これに有機テンプレートとして、N,N,N-トリメチル-1-アダマンタンアンモニウムヒドロキシド(TMADOH)水溶液(TMADAOH25重量%含有、セイケム社製)12.7gを加え、さらにコロイダルシリカ(日産化学社製 スノーテック-40)23.6gを加えて2時間撹拌し、水熱合成用混合物を調製した。
 無機多孔質支持体としては実施例1と同様に処理したものを用いた。支持体上には水熱合成に先立ち、実施例1と同様に0.5μm程度のCHA型ゼオライトの種結晶を付着させた。付着した種結晶の重量は約3g/mであった。
 実施例1と同様にこの種結晶を付着させた支持体を上記反応混合物の入ったテフロン(登録商標)製内筒に垂直方向に浸漬してオートクレーブを密閉し160℃で48時間、自生圧力下で加熱した。所定時間経過後、放冷した後に支持体-ゼオライト膜複合体を反応混合物から取り出し洗浄後100℃で4時間以上乾燥させた。乾燥後のas-madeの状態で円筒管状の膜複合体の一端を封止し、他の一端を真空ラインに接続することで管内を減圧とし、真空ライン設置した流量計で空気の透過流束を測定したところ透過流束は0ml/ (m・min)であった。テンプレート焼成前のゼオライトの膜複合体を電気炉で500℃、5時間焼成した。焼成後の膜複合体の重量と支持体の重量の差から支持体上に結晶化したCHA型ゼオライトの重量は100g/mであった。
 生成した膜のXRDを測定したところCHA型ゼオライトが生成していることがわかった。XRD測定は実施例1と同様に行った。生成した膜のXRDを図4に示す。図中の*は支持体由来のピークである。
 生成した膜のXRDにおいて(2θ=9.6°付近のピークの強度)/(2θ=20.8°付近のピークの強度)=1.7であり、(2θ=17.9°付近のピークの強度)/(2θ=20.8°付近のピークの強度)=0.3であった。
 このように、生成した膜のXRDピークに特異な強度を示すものはなかった。これから例えば、生成した膜がrhombohedral settingにおける(1,0,0)面、(1,1,1)面のいずれにも配向していないことが推測される。
 また、SEM-EDXにより、ゼオライト膜のSiO/Alモル比を測定しようとしたが、出発の反応混合物のSiO/Alモル比が500であることからゼオライト膜のSiO/Alモル比も非常に高くなることから、正確な値が得られなかった。ゼオライト膜のSEM-EDXでは通常、SiO/Alモル比の測定限界値が100程度と考えられるため、少なくともこのゼオライト膜のSiO/Alモル比は100以上であると推測される。
 (実施例7)
 実施例1で得られた無機多孔質支持体-CHA型ゼオライト膜複合体を用いてパーベーパレーション法により70℃の水/酢酸混合溶液(50/50重量%)から水を選択的に透過させる分離を行った。
 パーベーパレーションに用いた装置の概略図を図1に示す。図1において5のゼオライト膜複合体は9の真空ポンプによって内側が減圧され、4の被分離液が接触している外側と圧力差が約1気圧になっている。この圧力差によって4の被分離液中透過物質の水が5のゼオライト膜複合体に浸透気化して透過する。透過した物質は7のトラップで捕集される。一方、酢酸は5のゼオライト膜の外側に滞留する。一定時間ごとに4の被分離液の濃度を測定し、その濃度を用いて各時間の分離係数を算出した。
 トラップに捕集した透過液、被分離液の組成分析はガスクロマトグラフによって行った。透過開始から約5時間程度で安定してくるので、約5時間後の透過成績を示す。
 透過流束は4.0kg/(m・h)、分離係数は384、透過液中の水の濃度は99.74重量%であった。測定結果を表1に示す。
 (実施例8)
 実施例2で得られた無機多孔質支持体-CHA型ゼオライト膜複合体を用いて実施例7と同様にパーベーパレーション法により70℃の水/酢酸混合溶液(50/50重量%)から水を選択的に透過させる分離を行った。
 透過流束は4.8kg/(m・h)、分離係数は544、透過液中の水の濃度は99.81重量%であった。測定結果を表1に示す。
 また、分離を長時間継続し、透過流束の経時変化を調べた。開始から約10時間後の変化を開始60分後の透過流束を1としてプロットしたものを図5に示した。これから透過流束は約5時間後はほぼ安定していることがわかる。
 (実施例9)
 実施例2で得られた無機多孔質支持体-CHA型ゼオライト膜複合体を用いて実施例7と同様にパーベーパレーション法により80℃の水/酢酸混合溶液(50/50重量%)から水を選択的に透過させる分離を行った。
 透過流束は6.0kg/(m・h)、分離係数は649、透過液中の水の濃度は99.84重量%であった。測定結果を表1に示す。
(実施例10)
 実施例2で得られた無機多孔質支持体-CHA型ゼオライト膜複合体を用いて実施例7と同様にパーベーパレーション法により70℃の水/酢酸混合溶液(10/90重量%)から水を選択的に透過させる分離を行った。
 透過流束は1.4 kg/(m・h)、分離係数は1411、透過液中の水の濃度は99.33重量%であった。測定結果を表1に示す。
(実施例11) 
 実施例3で得られた無機多孔質支持体-CHA型ゼオライト膜複合体を用いて実施例7と同様にパーベーパレーション法により70℃の水/酢酸混合溶液(50/50重量%)から水を選択的に透過させる分離を行った。
 透過流束は5.6kg/(m・h)、分離係数は230、透過液中の水の濃度は99.57重量%であった。測定結果を表1に示す。
 (実施例12)
 実施例4で得られた無機多孔質支持体-CHA型ゼオライト膜複合体を用いて実施例7と同様にパーベーパレーション法により70℃の水/2-プロパノール水溶液(30/70重量%)から水を選択的に透過させる分離を行った。
 透過流束は7.7kg/(m・h)、分離係数は3000、透過液中の水の濃度は99.92重量%であった。測定結果を表2に示す。
 (実施例13)
 実施例5で得られた無機多孔質支持体-CHA型ゼオライト膜複合体を用いて実施例7と同様にパーベーパレーション法により70℃の水/酢酸混合溶液(50/50重量%)から水を選択的に透過させる分離を行った。
 透過流束は4.6kg/(m・h)、分離係数は64、透過液中の水の濃度は98.46重量%であった。測定結果を表1に示す。
(実施例14)
 実施例6で得られた無機多孔質支持体-CHA型ゼオライト膜複合体を用いて実施例7と同様にパーベーパレーション法により70℃の水/酢酸混合溶液(50/50重量%)から水を選択的に透過させる分離を行った。
 透過流束は0.9kg/(m・h)、分離係数は26、透過液中の水の濃度は96.30重量%であった。測定結果を表1に示す。約3時間で透過流束、分離係数、透過液中の水の濃度が安定したのでこの値は約3時間後の値である。
(実施例15)
 水熱合成のための反応混合物として、以下のものを調製した以外は実施例2と同様にして無機多孔質支持体-CHA型ゼオライト膜複合体を作成した。用いた水熱合成のための反応混合物は、1mol/L-NaOH水溶液12.9gと1mol/L-KOH水溶液8.6gと水92.4gを混合したものに水酸化アルミニウム(Al53.5重量%含有、アルドリッチ社製)1.16gを加えて撹拌し溶解させ、ほぼ透明溶液とし、これに有機テンプレートとして、N,N,N-トリメチル-1-アダマンタンアンモニウムヒドロキシド(TMADOH)水溶液(TMADAOH25重量%含有、セイケム社製)2.91gを加え、さらにコロイダルシリカ(日産化学社製 スノーテック-40)12.9gを加えて2時間撹拌して調製した。得られた膜複合体の焼成後の重量と支持体の重量の差から支持体上に結晶化したCHA型ゼオライトの重量は150g/mであった。
 XRD測定を実施例1と同様に行った。
 生成した膜の(2θ=9.6°付近のピークの強度)/(2θ=20.8°付近のピークの強度)=12.8であった。
 また、SEM-EDXにより、ゼオライト膜のSiO/Alモル比を測定したところ、15であった。
(実施例16)
 実施例15で得られた無機多孔質支持体-CHA型ゼオライト膜複合体を用いて実施例7と同様にパーベーパレーション法により70℃の水/酢酸混合溶液(50/50重量%)から水を選択的に透過させる分離を行った。透過流束は4.5kg/(m・h)、分離係数は180、透過液中の水の濃度は99.43重量%であった。測定結果を表1に示す。
(実施例17)
 実施例2と同様にして得られた無機多孔質支持体-CHA型ゼオライト膜複合体を用いて実施例7と同様にパーベーパレーション法により70℃の水/2-プロパノール溶液(10/90重量%)から水を選択的に透過させる分離を行った。
 透過流束は4.0kg/(m・h)、分離係数は36000、透過液中の水の濃度は99.97重量%であった。測定結果を表2に示す。
(実施例18)
 実施例2と同様にして得られた無機多孔質支持体-CHA型ゼオライト膜複合体を用いて実施例7と同様にパーベーパレーション法により70℃の水/2-プロパノール溶液(30/70重量%)から水を選択的に透過させる分離を行った。
 透過流束は5.8kg/(m・h)、分離係数は31000、透過液中の水の濃度は99.99重量%であった。測定結果を表2に示す。
(実施例19)
 実施例2と同様にして得られた無機多孔質支持体-CHA型ゼオライト膜複合体を用いて実施例7と同様にパーベーパレーション法により50℃の水/2-プロパノール溶液(30/70重量%)から水を選択的に透過させる分離を行った。
 透過流束は2.5kg/(m・h)、分離係数は29000、透過液中の水の濃度は99.99重量%であった。測定結果を表2に示す。
(実施例20)
 実施例2と同様にして得られた無機多孔質支持体-CHA型ゼオライト膜複合体を用いて実施例7と同様にパーベーパレーション法により50℃の水/テトラヒドロフラン溶液(50/50重量%)から水を選択的に透過させる分離を行った。
 透過流束は3.1kg/(m・h)、分離係数は3100、透過液中の水の濃度は99.97重量%であった。測定結果を表2に示す。
(実施例21)
 実施例2と同様にして得られた無機多孔質支持体-CHA型ゼオライト膜複合体を用いて実施例7と同様にパーベーパレーション法により40℃の水/アセトン溶液(50/50重量%)から水を選択的に透過させる分離を行った。
 透過流束は1.6kg/(m・h)、分離係数は14600、透過液中の水の濃度は99.99重量%であった。測定結果を表2に示す。
(実施例22)
 実施例2と同様にして得られた無機多孔質支持体-CHA型ゼオライト膜複合体を用いて実施例7と同様にパーベーパレーション法により70℃の水/N-メチル-2-ピロリドン溶液(50/50重量%)から水を選択的に透過させる分離を行った。
 透過流束は5.6kg/(m・h)、分離係数は10300、透過液中の水の濃度は99.95重量%であった。測定結果を表2に示す。
(実施例23)
 実施例2と同様にして得られた無機多孔質支持体-CHA型ゼオライト膜複合体を用いて実施例7と同様にパーベーパレーション法により70℃の水/エタノール溶液(86/14重量%)から水を選択的に透過させる分離を行った。
 透過流束は1.3kg/(m・h)、分離係数は500、透過液中の水の濃度は99.97重量%であった。測定結果を表2に示す。
(実施例24)
 実施例2と同様にして得られた無機多孔質支持体-CHA型ゼオライト膜複合体を用いて実施例7と同様にパーベーパレーション法により40℃のメタノール/アセトン溶液(50/50重量%)からメタノールを選択的に透過させる分離を行った。
 透過流束は0.1kg/(m・h)、分離係数は670、透過液中のメタノールの濃度は99.86重量%であった。測定結果を表2に示す。
 (比較例1)
 比較のため無機多孔質支持体-MOR型ゼオライト膜複合体を、MOR型ゼオライトを無機多孔質支持体上に直接水熱合成することで作製し、実施例7と同様の方法で70℃の水/酢酸混合溶液(50/50重量%)から水を選択的に透過させる分離を行った。
 水熱合成のための反応混合物として、以下のものを調製した。
 水酸化ナトリウム(97.0重量%、純正化学社製)14.9gと水69.5gを混合したものに水酸化アルミニウム(Al 53.5重量%含有、Aldrich社製)1.09gを加えて撹拌し溶解させ、透明溶液とした。これにコロイダルシリカ(日産化学社製 スノーテック-40)90.0gを加えて2時間撹拌し、水熱合成用混合物を調製した。
 無機多孔質支持体としては実施例1と同様のものを用いた。水熱合成に先立ち、東ソー製MOR型ゼオライトTSZ-640NAAを5重量%水に分散させたスラリーを支持体上に塗りこんでMOR型ゼオライトの種結晶として付着させた。付着した種結晶の重量は約6g/mであった。この種結晶を付着させた支持体を上記反応混合物の入ったテフロン(登録商標)製内筒に垂直方向に浸漬してオートクレーブを密閉し160℃で8時間、自生圧力下で加熱した。所定時間経過後、放冷した後に支持体-ゼオライト膜複合体を反応混合物から取り出し洗浄後100℃で5時間以上乾燥させた。乾燥後のas-madeの状態で円筒管状の膜複合体の一端を封止し、他の一端を真空ラインに接続することで管内を減圧とし、真空ライン設置した流量計で空気の透過流束を測定したところ透過流束は0ml/(m・分)であった。乾燥後の膜複合体の重量と支持体の重量の差から支持体状に結晶化したMOR型ゼオライトの重量は約35g/mであった。
 分離評価の結果、透過流束は0.38kg/(m・h)、分離係数は2300、透過液中の水の濃度は99.96重量%であった。
 この実施例8と比較例1の結果からCHA膜複合体はMOR膜複合体と同等の高い選択透過性を有し、かつMOR膜複合体の10倍以上の高い透過流束を持つことがわかる。
 さらに、実施例8の場合と同様に分離を長時間継続し、透過流束の経時変化を調べた。開始から約10時間後の変化を開始60分後の透過流束を1としてプロットしたものを図5に示した。実施例8に比べて経時的な低下が大きく、安定性という点でもCHA型ゼオライト膜複合体が優れていることがわかる。
(比較例2)
 比較のため金属多孔質支持体-CHA型ゼオライト膜複合体を、CHA型ゼオライトを金属メッシュ支持体上に直接水熱合成することで作製し、実施例7と同様の方法で70℃の水/酢酸混合水溶液(50/50重量%)から水を選択的に透過させる分離を行った。
 金属メッシュ支持体としては日本精線(株)のTFφ14XL250 NF2M―02S2を約80mmに切断したものをもちいた。
 水熱合成のための反応混合物として、以下のものを調製した。 
 1mol/L-NaOH水溶液32.0gと水74.55gを混合したものに水酸化アルミニウム(Al 53.5重量%含有、アルドリッチ社製)0.76gを加えて撹拌し溶解させ、ほぼ透明溶液とした。これに有機テンプレートとして、N,N,N-トリメチル-1-アダマンタンアンモニウムヒドロキシド(TMADOH)水溶液(TMADAOH25重量%含有、セイケム社製)27.00gを加え、さらにヒュームドシリカ(日本アエロジル社製 アエロジル200)9.6gを加えて2時間撹拌し、水熱合成用混合物を調製した。
 金属メッシュ支持体には実施例1と同様の処理を行った。支持体上には水熱合成に先立ち、実施例1と同様に0.5μm程度のCHA型ゼオライトの種結晶を付着させた。付着した種結晶の重量は約18g/mであった。
 実施例1と同様にこの種結晶を付着させた支持体を上記反応混合物の入ったテフロン(登録商標)製内筒に垂直方向に浸漬してオートクレーブを密閉し160℃で48時間、自生圧力下で加熱した。所定時間経過後、放冷した後に支持体-ゼオライト膜複合体を反応混合物から取り出し洗浄後100℃で4時間以上乾燥させた。乾燥後のas-madeの状態で円筒管状の膜複合体の一端を封止し、他の一端を真空ラインに接続することで管内を減圧とし、真空ライン設置した流量計で空気の透過流束を測定したところ透過流束は0ml/ (m・min)であった。テンプレート焼成前のゼオライトの膜複合体を電気炉で500℃、5時間焼成した。焼成後の膜複合体の重量と支持体の重量の差から支持体上に結晶化したCHA型ゼオライトの重量は280g/mであった。
 XRDの測定から基材の表面にCHA型ゼオライトが生成していた。XRD測定は実施例1と同様に行った。
 生成した膜のXRDにおいて(2θ=9.6°付近のピークの強度)/(2θ=20.8°付近のピークの強度)=0.8であり、(2θ=17.9°付近のピークの強度)/(2θ=20.8°付近のピークの強度)=0.1であった。
 このように、生成した膜のXRDピークに特異な強度を示すものはなかった。これから例えば、生成した膜がrhombohedral settingにおける(1,0,0)面、(1,1,1)面のいずれにも配向していないことが推測される。
 分離評価の結果、透過流束は0.48kg/(m・h)、分離係数は5、透過液中の水の濃度は84.65重量%であった。
 この比較例2と実施例3、4、5、6、7、8の結果から金属多孔質支持体―CHA膜複合体はセラミックス無機多孔質支持体―CHA膜複合体と異なり、選択透過性が低く、透過流束も低いことが分かる。(2θ=9.6°付近のピークの強度)/(2θ=20.8°付近のピークの強度)、または(2θ=17.9°付近のピークの強度)/(2θ=20.8°付近のピークの強度)の値が小さい、金属多孔質支持体―CHA膜複合体ではセラミックス無機多孔質支持体―CHA膜複合体と異なり、緻密な膜が形成されにくいと推測される。
(実施例25)
 無機多孔質支持体-CHA型ゼオライト膜複合体はCHA型ゼオライトを無機多孔質支持体上に直接水熱合成することで作製した。
 水熱合成のための反応混合物として、以下のものを調製した。
 1mol/L-KOH水溶液126gに水酸化アルミニウム(Al 53.5重量%含有、アルドリッチ社製)5.7gを加えて撹拌し溶解させ、ほぼ透明溶液とした。これにコロイダルシリカ(日産化学社製 スノーテック-40)27gを加えて2時間撹拌し、水熱合成用混合物を調製した。
 無機多孔質支持体としては実施例1と同様に処理したものを用いた。支持体上には水熱合成に先立ち、実施例1と同様に0.2μm程度のCHA型ゼオライトの種結晶を付着させた。付着した種結晶の重量は約3g/mであった。
 この0.2μm程度のCHA型ゼオライトの種結晶は以下のように合成した。触媒化成社製のSiO/Al比が7のY型ゼオライト10gを、KOH5gを水100gに溶かした水溶液に加え、2時間攪拌した。この反応混合物をテフロン(登録商標)製内筒に入れてオートクレーブを密閉し100℃7日間加熱した。その後、放冷し、ろ過、水洗してCHA型ゼオライトを得た。
 実施例1と同様にこの種結晶を付着させた支持体を上記反応混合物の入ったテフロン(登録商標)製内筒に垂直方向に浸漬してオートクレーブを密閉し140℃で108時間、自生圧力下で加熱した。所定時間経過後、放冷した後に支持体-ゼオライト膜複合体を反応混合物から取り出し洗浄後100℃で4時間以上乾燥させた。乾燥後のas-madeの状態で円筒管状の膜複合体の一端を封止し、他の一端を真空ラインに接続することで管内を減圧とし、真空ライン設置した流量計で空気の透過流束を測定したところ透過流束は0ml/(m・min)であった。この膜複合体の重量と支持体の重量の差から支持体上に結晶化したCHA型ゼオライトの重量は50g/mであった。
 生成した膜のXRDを測定したところ、CHA型ゼオライトが生成していることがわかった。生成した膜のXRDにおいて(2θ=9.6°付近のピークの強度)/(2θ=20.8°付近のピークの強度)=0.3であり、(2θ=17.9°付近のピークの強度)/(2θ=20.8°付近のピークの強度)=0.1であった。
 このように、生成した膜のXRDピークに特異な強度を示すものはなかった。これから例えば、生成した膜がrhombohedral settingにおける(1,0,0)面、(1,1,1)面のいずれにも配向していないことが推測される。
 また、SEM-EDXにより、ゼオライト膜のSiO/Al比を測定したところ6であった。
(実施例26)
 実施例25で得られた無機多孔質支持体-CHA型ゼオライト膜複合体を用いて実施例7と同様にパーベーパレーション法により70℃の水/2-プロパノール水溶液(30/70重量%)から水を選択的に透過させる分離を行った。
 透過流束は3.9kg/(m・h)、分離係数は21、透過液中の水の濃度は90重量%であった。測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2009年2月27日出願の日本特許出願(特願2009-46755)、及び2009年11月11日出願の日本特許出願(特願2009-258274)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明によれば有機物を含む気体または液体の混合物から特定の化合物を濃縮する際に実用に耐える大きな処理量を有し、かつ十分な分離性能を有する分離、濃縮用ゼオライト膜複合体が得られ、ゼオライト膜を用いた有機物を含む気体または液体の混合物からの分離、濃縮が可能となる。
 また本発明によれば耐酸性に優れた分離、濃縮用ゼオライト膜複合体が得られ、酢酸などの有機酸を含有する混合物の分離・濃縮が可能となる。特に有機酸と水との混合物から水を選択的に透過することによる有機酸の分離・濃縮、エステル化反応促進のための水分離などに有効に利用できる。
1 スターラー
2 湯浴
3 撹拌子
4 被分離液
5 ゼオライト膜複合体
6 ピラニゲージ
7 透過液捕集用トラップ
8 コールドトラップ
9 真空ポンプ

Claims (23)

  1.  無機多孔質支持体-ゼオライト膜複合体であって、無機多孔質支持体がセラミックス焼結体を含み、かつゼオライト膜として無機多孔質支持体表面にCHA型ゼオライト結晶層を有することを特徴とする無機多孔質支持体-ゼオライト膜複合体。
  2.  無機多孔質支持体-ゼオライト膜複合体であって、ゼオライト膜としてCHA型ゼオライト結晶層を有し、かつゼオライト膜表面にX線を照射して得たX線回折パターンにおいて2θ=17.9°付近のピーク強度が、2θ=20.8°付近のピーク強度の0.5倍以上であることを特徴とする無機多孔質支持体-ゼオライト膜複合体。
  3.  無機多孔質支持体-ゼオライト膜複合体であって、ゼオライト膜としてCHA型ゼオライト結晶層を有し、かつゼオライト膜表面にX線を照射して得たX線回折パターンにおいて2θ=9.6°付近のピーク強度が、2θ=20.8°付近のピーク強度の4倍以上であることを特徴とする無機多孔質支持体-ゼオライト膜複合体。
  4.  ゼオライト膜表面にX線を照射して得たX線回折パターンにおいて2θ=17.9°付近のピーク強度が、2θ=20.8°付近のピーク強度の0.5倍以上である請求項1に記載の無機多孔質支持体-ゼオライト膜複合体。
  5.  ゼオライト膜表面にX線を照射して得たX線回折パターンにおいて2θ=9.6°付近のピーク強度が、2θ=20.8°付近のピーク強度の4倍以上である請求項1、2または4に記載の無機多孔質支持体-ゼオライト膜複合体。
  6.  ゼオライト結晶層のSiO/Alモル比が5以上である請求項1~5のいずれか1項に記載の無機多孔質支持体-ゼオライト膜複合体。
  7.  有機物を含む気体または液体の混合物のうち透過性の高い物質を透過し、該混合物から該透過性の高い物質を分離することが可能な請求項1~6のいずれか1項に記載の無機多孔質支持体-ゼオライト膜複合体。
  8.  有機物を含む気体または液体の混合物が有機物と水との混合物である請求項7記載の無機多孔質支持体-ゼオライト膜複合体。
  9.  有機物が有機酸である請求項7または8に記載の無機多孔質支持体-ゼオライト膜複合体。
  10.  有機物がアルコール、エーテル、アルデヒド、ケトン、及び窒素を含む有機化合物の中から選ばれる少なくとも1種類である請求項7または8に記載の無機多孔質支持体-ゼオライト膜複合体。
  11.  無機多孔質支持体がアルミナ、シリカ及びムライトから選ばれる少なくとも1種類を含む請求項1~10のいずれか1項に記載の無機多孔質支持体-ゼオライト膜複合体。
  12.  請求項1~11のいずれか1項に記載の無機多孔質支持体-ゼオライト膜複合体を製造する方法であって、無機多孔質支持体表面にCHA型ゼオライトを結晶化させる工程を含むことを特徴とする無機多孔質支持体-ゼオライト膜複合体の製造方法。
  13.  無機多孔質支持体表面にゼオライトの種結晶を付着させた後、CHA型ゼオライトを結晶化させる請求項12に記載の無機多孔質支持体-ゼオライト膜複合体の製造方法。
  14.  ゼオライトの種結晶が、CHA型ゼオライトである請求項13に記載の無機多孔質支持体-ゼオライト膜複合体の製造方法。
  15.  CHA型ゼオライトの結晶化を、Si元素源及びAl元素源を含む反応混合物を、SiとAlとの比を各酸化物換算で表した(SiO/Al)モル比が5以上10000以下となるように原料として用いて行うことを特徴とする請求項12~14のいずれか1項に記載の無機多孔質支持体-ゼオライト膜複合体の製造方法。
  16.  反応混合物中にアルカリ金属イオンが存在することを特徴とする請求項15に記載の無機多孔質支持体-ゼオライト膜複合体の製造方法。
  17.  原料としてさらに有機テンプレートを用い、かつ有機テンプレートが1-アダマンタンアミンから誘導されるカチオンである請求項15または16に記載の無機多孔質支持体-ゼオライト膜複合体の製造方法。
  18.  請求項1~11のいずれか1項に記載の無機多孔質支持体-ゼオライト膜複合体を含む分離膜。
  19.  請求項1~11のいずれか1項に記載の無機多孔質支持体-ゼオライト膜複合体に、有機物を含む気体または液体の混合物を接触させて、該混合物のうち透過性の高い物質を透過させることにより、該混合物から該透過性の高い物質を分離することを特徴とする分離方法。
  20.  有機物を含む気体または液体の混合物が、有機酸と水との混合物である請求項19に記載の分離方法。
  21.  有機物を含む気体または液体の混合物が、アルコール、エーテル、アルデヒド、ケトン、及び窒素を含む有機化合物の中から選ばれる少なくとも1種類と水との混合物である請求項19に記載の分離方法。
  22.  請求項1~11のいずれか1項に記載の無機多孔質支持体-ゼオライト膜複合体に、有機物を含む気体または液体の混合物を接触させて、該混合物から透過性の高い物質を透過させることにより、透過性の低い物質を濃縮することを特徴とする濃縮方法。
  23.  有機物を含む気体または液体の混合物が、有機酸、アルコール、エーテル、アルデヒド、ケトン、及び窒素を含む有機化合物の中から選ばれる少なくとも1種類と水との混合物である請求項22に記載の濃縮方法。
PCT/JP2010/053172 2009-02-27 2010-02-26 無機多孔質支持体-ゼオライト膜複合体、その製造方法およびそれを用いた分離方法 WO2010098473A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17197584.0A EP3305396B1 (en) 2009-02-27 2010-02-26 Inorganic porous support-zeolite membrane composite, production method therof, and separation method using the composite
CN2010800092499A CN102333584A (zh) 2009-02-27 2010-02-26 无机多孔支持体-沸石膜复合体、其制造方法和使用其的分离方法
EP10746352.3A EP2402071B1 (en) 2009-02-27 2010-02-26 Inorganic porous support-zeolite membrane composite, production method thereof, and separation method using the composite
US13/219,277 US8376148B2 (en) 2009-02-27 2011-08-26 Inorganic porous support-zeolite membrane composite, production method thereof, and separation method using the composite

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009046755 2009-02-27
JP2009-046755 2009-02-27
JP2009-258274 2009-11-11
JP2009258274 2009-11-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/219,277 Continuation US8376148B2 (en) 2009-02-27 2011-08-26 Inorganic porous support-zeolite membrane composite, production method thereof, and separation method using the composite

Publications (1)

Publication Number Publication Date
WO2010098473A1 true WO2010098473A1 (ja) 2010-09-02

Family

ID=42665677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053172 WO2010098473A1 (ja) 2009-02-27 2010-02-26 無機多孔質支持体-ゼオライト膜複合体、その製造方法およびそれを用いた分離方法

Country Status (5)

Country Link
US (1) US8376148B2 (ja)
EP (2) EP3305396B1 (ja)
JP (2) JP5585126B2 (ja)
CN (3) CN105413483B (ja)
WO (1) WO2010098473A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013018748A (ja) * 2011-07-12 2013-01-31 Japan Organo Co Ltd 電極製造工程におけるnmp精製システム
JP2013018747A (ja) * 2011-07-12 2013-01-31 Japan Organo Co Ltd 電極製造工程におけるnmp精製システム
JP2013094752A (ja) * 2011-11-02 2013-05-20 Mitsubishi Chemicals Corp 長尺化無機多孔質支持体−ゼオライト膜複合体の製造方法
JP2013126649A (ja) * 2011-11-17 2013-06-27 National Institute Of Advanced Industrial Science & Technology ゼオライト膜およびその製造方法
WO2013125660A1 (ja) 2012-02-24 2013-08-29 三菱化学株式会社 ゼオライト膜複合体
WO2013125661A1 (ja) 2012-02-24 2013-08-29 三菱化学株式会社 多孔質支持体―ゼオライト膜複合体
JP2014113584A (ja) * 2012-11-15 2014-06-26 Hitachi Zosen Corp パラフィンとオレフィンの混合物からのオレフィンの分離・回収装置および方法
WO2016006564A1 (ja) * 2014-07-10 2016-01-14 日立造船株式会社 ゼオライト膜、その製造方法およびこれを用いた分離方法
JP2017080744A (ja) * 2012-03-06 2017-05-18 三菱化学株式会社 多孔質支持体−ゼオライト膜複合体の製造方法
US10005077B2 (en) 2011-07-03 2018-06-26 Regents Of The University Of Minnesota Zeolite nanosheet membrane

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2412427B1 (en) * 2009-03-24 2018-09-26 Mitsubishi Chemical Corporation Zeolite membrane, separation membrane, and use thereof
JP5569901B2 (ja) * 2009-06-08 2014-08-13 独立行政法人産業技術総合研究所 ゼオライト膜、分離膜モジュール及びその製造方法
WO2013129625A1 (ja) * 2012-02-29 2013-09-06 日本碍子株式会社 セラミック分離膜及び脱水方法
JP6015062B2 (ja) * 2012-03-28 2016-10-26 三菱化学株式会社 ゼオライト膜を用いて放射性物質含有水を濃縮する装置
JP6107000B2 (ja) * 2012-03-30 2017-04-05 三菱化学株式会社 ゼオライト膜複合体
JP6167484B2 (ja) * 2012-08-21 2017-07-26 三菱ケミカル株式会社 多孔質支持体−ゼオライト膜複合体
JP6163719B2 (ja) * 2012-08-31 2017-07-19 三菱ケミカル株式会社 硫化水素の分離方法
JP6141155B2 (ja) * 2012-09-13 2017-06-07 国立大学法人 岡山大学 多孔質バルク体からなる有機質分離材、それを利用した有機質分離方法および有機質分離装置
JP2014198308A (ja) 2013-03-29 2014-10-23 日本碍子株式会社 セラミック分離フィルタ及び脱水方法
WO2015020014A1 (ja) 2013-08-05 2015-02-12 三菱化学株式会社 ゼオライト及びその製造方法と用途
JP6785483B2 (ja) * 2013-09-30 2020-11-18 国立研究開発法人産業技術総合研究所 ゼオライト薄膜を有する複合膜およびその製造方法
JP5732169B1 (ja) * 2013-12-27 2015-06-10 イビデン株式会社 ゼオライトの製造方法及びハニカム触媒
CN106255545B (zh) * 2014-04-18 2019-08-27 三菱化学株式会社 多孔支持体-沸石膜复合体和多孔支持体-沸石膜复合体的制造方法
US9649601B2 (en) * 2014-05-08 2017-05-16 Bettergy Corp. Composite membranes for olefin/paraffin separation
CN104289115B (zh) * 2014-08-25 2016-06-01 南京工业大学 一种高硅cha型ssz-13分子筛膜的制备方法
CN106795075B (zh) * 2014-10-30 2020-11-24 三菱化学株式会社 高浓度醇的制造方法
CN114146575A (zh) * 2014-11-25 2022-03-08 三菱化学株式会社 多孔支持体-沸石膜复合体以及多孔支持体-沸石膜复合体的制造方法
JP6616101B2 (ja) 2015-05-15 2019-12-04 イビデン株式会社 ゼオライト、該ゼオライトの製造方法、該ゼオライトを使用したハニカム触媒及び排ガス浄化装置
US9943808B2 (en) * 2016-02-19 2018-04-17 King Fahd University Of Petroleum And Minerals Aluminum oxide supported gas permeable membranes
CN106045872B (zh) * 2016-06-06 2018-04-27 南京工业大学 一种二甲基甲酰胺废液的渗透汽化法回收系统及方法
JP6757606B2 (ja) * 2016-06-21 2020-09-23 日立造船株式会社 Mfi型ゼオライト(シリカライト)を用いた分離膜の製造方法
CN109890489A (zh) 2016-11-08 2019-06-14 日本碍子株式会社 分离膜的干燥方法及分离膜结构体的制造方法
JP7167462B2 (ja) * 2017-03-27 2022-11-09 三菱ケミカル株式会社 アルカリ性含水有機化合物の水分離方法
CN110709154B (zh) 2017-06-07 2022-01-07 日本碍子株式会社 脱水方法、脱水装置以及膜结构体
AU2018286313B2 (en) 2017-06-15 2023-11-23 Mitsubishi Chemical Corporation Ammonia separation method and zeolite
JP2019151498A (ja) * 2018-02-28 2019-09-12 株式会社ダイセル ナノダイヤモンド有機溶媒分散体の製造方法
JP7090278B2 (ja) * 2018-03-07 2022-06-24 日立造船株式会社 Cha型チタノシリケート分離膜およびその製造方法、並びにガス分離方法
CN111902203B (zh) 2018-03-30 2022-07-15 日本碍子株式会社 沸石膜复合体、沸石膜复合体的制造方法以及分离方法
KR102205266B1 (ko) * 2018-12-28 2021-01-20 고려대학교 산학협력단 Cha 제올라이트 분리막 및 그 제조방법
AU2020207924A1 (en) * 2019-01-18 2021-07-08 Toray Industries, Inc. Carbon membrane for fluid separation use
SG11202108995RA (en) * 2019-03-26 2021-09-29 Zeon Corp Zeolite membrane composite, and separation method and production method of branched diolefin using same
US11220625B2 (en) 2019-09-30 2022-01-11 Halliburton Energy Services, Inc. Settable, removable, and reusable lost circulation fluids
KR102316205B1 (ko) * 2020-01-15 2021-10-25 고려대학교 산학협력단 저온 열처리 공정을 통한 카바자이트 제올라이트 분리막의 결함구조 조절방법
CN111573692B (zh) * 2020-04-13 2022-04-01 北京科技大学 一种cha分子筛膜及其制备方法和应用
CN112426891B (zh) * 2020-10-09 2022-05-13 大连理工大学 一种cha型沸石分子筛膜的制备方法
CN116020403B (zh) * 2022-09-09 2024-10-18 中煤科工西安研究院(集团)有限公司 一种用于废水处置的固定床层、制备方法、应用及固定床

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4544538A (en) 1982-07-09 1985-10-01 Chevron Research Company Zeolite SSZ-13 and its method of preparation
JPH07185275A (ja) 1993-12-27 1995-07-25 Mitsui Eng & Shipbuild Co Ltd 液体混合物分離膜
JP2000237561A (ja) 1998-01-08 2000-09-05 Tosoh Corp Fer型ゼオライト膜、その製造方法及びそれを用いた有機酸の濃縮方法
JP2003144871A (ja) 2001-08-24 2003-05-20 Tosoh Corp モルデナイト型ゼオライト膜複合体およびその製造方法並びにそれを用いた濃縮方法
JP2007054772A (ja) * 2005-08-26 2007-03-08 National Institute Of Advanced Industrial & Technology 表面保護加工されたゼオライト膜ならびにゼオライト膜を用いた脱水装置
JP2007313389A (ja) * 2006-05-23 2007-12-06 Asahi Kasei Corp マーリノアイト型ゼオライト複合膜及びその製造方法
US20080075656A1 (en) 2006-09-25 2008-03-27 Zones Stacey I Preparation of Molecular Sieves Using a Structure Directing Agent and An N, N, N-Triakyl Benzyl Quaternary Ammonium Cation
JP2008534272A (ja) * 2005-04-08 2008-08-28 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 気相分離用膜並びにその膜の製造方法
JP2009046755A (ja) 2007-08-23 2009-03-05 Tokyo Yogyo Co Ltd ガス吹込みプラグ
JP2009258274A (ja) 2008-04-15 2009-11-05 Sekisui Chem Co Ltd 表示装置前板用粘着シート

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5554286A (en) 1993-12-27 1996-09-10 Mitsui Engineering & Shipbuilding Co., Ltd. Membrane for liquid mixture separation
JP2002263456A (ja) * 2001-03-08 2002-09-17 Toray Ind Inc ゼオライト膜の処理方法、および分離方法
US6709644B2 (en) * 2001-08-30 2004-03-23 Chevron U.S.A. Inc. Small crystallite zeolite CHA
JP2004082008A (ja) * 2002-08-27 2004-03-18 Bio Nanotec Research Institute Inc 種結晶の担持方法によって分離係数が決定されるゼオライト膜の製造方法
CN1239237C (zh) * 2002-12-24 2006-02-01 王旭生 一种水处理用纳米多微孔陶瓷复合膜的制备方法
JP2004344755A (ja) * 2003-05-21 2004-12-09 Asahi Kasei Corp ゼオライト複合薄膜
US7138006B2 (en) * 2003-12-24 2006-11-21 Chevron U.S.A. Inc. Mixed matrix membranes with low silica-to-alumina ratio molecular sieves and methods for making and using the membranes
CN101502760A (zh) * 2004-03-17 2009-08-12 三菱化学株式会社 分离膜
US20050268782A1 (en) * 2004-03-26 2005-12-08 Kulkarni Sudhir S Novel polyimide based mixed matrix membranes
AU2005309942B2 (en) * 2004-11-29 2010-11-25 Chevron U.S.A. Inc. High-silica molecular sieve CHA
JP5051816B2 (ja) * 2006-05-23 2012-10-17 独立行政法人産業技術総合研究所 フィリップサイト型ゼオライト複合膜及びその製造方法
JP2008031072A (ja) * 2006-07-27 2008-02-14 Ube Ind Ltd イミンおよびエナミンの製造方法
WO2008112520A1 (en) * 2007-03-09 2008-09-18 The Regents Of The University Of Colorado, A Body Corporate Synthesis of zeolites and zeolite membranes using multiple structure directing agents
US8685143B2 (en) * 2008-05-15 2014-04-01 Shell Oil Company Method of making a high-performance supported gas separation molecular sieve membrane using a shortened crystallization time

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4544538A (en) 1982-07-09 1985-10-01 Chevron Research Company Zeolite SSZ-13 and its method of preparation
JPH07185275A (ja) 1993-12-27 1995-07-25 Mitsui Eng & Shipbuild Co Ltd 液体混合物分離膜
JP2000237561A (ja) 1998-01-08 2000-09-05 Tosoh Corp Fer型ゼオライト膜、その製造方法及びそれを用いた有機酸の濃縮方法
JP2003144871A (ja) 2001-08-24 2003-05-20 Tosoh Corp モルデナイト型ゼオライト膜複合体およびその製造方法並びにそれを用いた濃縮方法
JP2008534272A (ja) * 2005-04-08 2008-08-28 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 気相分離用膜並びにその膜の製造方法
JP2007054772A (ja) * 2005-08-26 2007-03-08 National Institute Of Advanced Industrial & Technology 表面保護加工されたゼオライト膜ならびにゼオライト膜を用いた脱水装置
JP2007313389A (ja) * 2006-05-23 2007-12-06 Asahi Kasei Corp マーリノアイト型ゼオライト複合膜及びその製造方法
US20080075656A1 (en) 2006-09-25 2008-03-27 Zones Stacey I Preparation of Molecular Sieves Using a Structure Directing Agent and An N, N, N-Triakyl Benzyl Quaternary Ammonium Cation
JP2009046755A (ja) 2007-08-23 2009-03-05 Tokyo Yogyo Co Ltd ガス吹込みプラグ
JP2009258274A (ja) 2008-04-15 2009-11-05 Sekisui Chem Co Ltd 表示装置前板用粘着シート

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"ATLAS OF ZEOLITE FRAMEWORK TYPES", 2001, ELSEVIER
"COLLECTION OF SIMULATED XRD POWDER PATTERNS FOR ZEOLITE", 1996, ELSEVIER

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10005077B2 (en) 2011-07-03 2018-06-26 Regents Of The University Of Minnesota Zeolite nanosheet membrane
JP2013018748A (ja) * 2011-07-12 2013-01-31 Japan Organo Co Ltd 電極製造工程におけるnmp精製システム
JP2013018747A (ja) * 2011-07-12 2013-01-31 Japan Organo Co Ltd 電極製造工程におけるnmp精製システム
JP2013094752A (ja) * 2011-11-02 2013-05-20 Mitsubishi Chemicals Corp 長尺化無機多孔質支持体−ゼオライト膜複合体の製造方法
JP2013126649A (ja) * 2011-11-17 2013-06-27 National Institute Of Advanced Industrial Science & Technology ゼオライト膜およびその製造方法
US20140360939A1 (en) * 2012-02-24 2014-12-11 Mitsubishi Chemical Corporation Porous support-zeolite membrane composite
US11090617B2 (en) 2012-02-24 2021-08-17 Mitsubishi Chemical Corporation Porous support-zeolite membrane composite
US20140360938A1 (en) * 2012-02-24 2014-12-11 Mitsubishi Chemical Corporation Zeolite membrane composite
WO2013125661A1 (ja) 2012-02-24 2013-08-29 三菱化学株式会社 多孔質支持体―ゼオライト膜複合体
JP2017064716A (ja) * 2012-02-24 2017-04-06 三菱化学株式会社 Cha型ゼオライト膜複合体の製造方法
US12048904B2 (en) 2012-02-24 2024-07-30 Mitsubishi Chemical Corporation Zeolite membrane composite
WO2013125660A1 (ja) 2012-02-24 2013-08-29 三菱化学株式会社 ゼオライト膜複合体
US20180339272A1 (en) * 2012-02-24 2018-11-29 Mitsubishi Chemical Corporation Zeolite membrane composite
JP2017080744A (ja) * 2012-03-06 2017-05-18 三菱化学株式会社 多孔質支持体−ゼオライト膜複合体の製造方法
JP2018167267A (ja) * 2012-03-06 2018-11-01 三菱ケミカル株式会社 多孔質支持体−ゼオライト膜複合体の製造方法
JP2014113584A (ja) * 2012-11-15 2014-06-26 Hitachi Zosen Corp パラフィンとオレフィンの混合物からのオレフィンの分離・回収装置および方法
WO2016006564A1 (ja) * 2014-07-10 2016-01-14 日立造船株式会社 ゼオライト膜、その製造方法およびこれを用いた分離方法
US10639594B2 (en) 2014-07-10 2020-05-05 Hitachi Zosen Corporation Zeolite membrane, production method therefor, and separation method using same
JPWO2016006564A1 (ja) * 2014-07-10 2017-06-08 日立造船株式会社 ゼオライト膜、その製造方法およびこれを用いた分離方法

Also Published As

Publication number Publication date
CN105536564A (zh) 2016-05-04
CN105413483B (zh) 2018-05-22
EP2402071A1 (en) 2012-01-04
JP5585126B2 (ja) 2014-09-10
CN105413483A (zh) 2016-03-23
JP5761300B2 (ja) 2015-08-12
EP3305396A1 (en) 2018-04-11
US8376148B2 (en) 2013-02-19
US20120024777A1 (en) 2012-02-02
CN102333584A (zh) 2012-01-25
JP2014050840A (ja) 2014-03-20
EP2402071B1 (en) 2019-04-03
EP3305396B1 (en) 2022-03-30
EP2402071A4 (en) 2013-11-06
JP2011121040A (ja) 2011-06-23

Similar Documents

Publication Publication Date Title
JP5761300B2 (ja) 無機多孔質支持体−ゼオライト膜複合体、その製造方法およびそれを用いた分離方法
JP6366568B2 (ja) 多孔質支持体−ゼオライト膜複合体及び分離方法
JP6260684B2 (ja) Cha型ゼオライト膜複合体の製造方法
JP6551578B2 (ja) 多孔質支持体−ゼオライト膜複合体の製造方法
JP5903802B2 (ja) 多孔質支持体―ゼオライト膜複合体の製造方法
JP5533438B2 (ja) 含水有機化合物の脱水濃縮装置
JP5445398B2 (ja) 多孔質支持体―ゼオライト膜複合体の製造方法
JP6213620B2 (ja) 多孔質支持体―ゼオライト膜複合体およびそれを用いる分離方法
JP6167484B2 (ja) 多孔質支持体−ゼオライト膜複合体
JP6163719B2 (ja) 硫化水素の分離方法
JP5857533B2 (ja) 有機溶剤−酸−水混合物からの有機溶剤の回収方法
JP5810750B2 (ja) 酸−水混合物からの酸の回収方法
JP6056310B2 (ja) アンモニアの分離方法
JP5533437B2 (ja) メンブレンリアクター
JP6019564B2 (ja) 長尺化無機多孔質支持体−ゼオライト膜複合体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080009249.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746352

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010746352

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE