WO2010074185A1 - 樹脂組成物、フィルム、袋製品、および、樹脂組成物の製造方法 - Google Patents

樹脂組成物、フィルム、袋製品、および、樹脂組成物の製造方法 Download PDF

Info

Publication number
WO2010074185A1
WO2010074185A1 PCT/JP2009/071505 JP2009071505W WO2010074185A1 WO 2010074185 A1 WO2010074185 A1 WO 2010074185A1 JP 2009071505 W JP2009071505 W JP 2009071505W WO 2010074185 A1 WO2010074185 A1 WO 2010074185A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin composition
starch
aliphatic polyester
mass
Prior art date
Application number
PCT/JP2009/071505
Other languages
English (en)
French (fr)
Inventor
裕之 金子
中野 博
友秀 吉田
太郎 天野
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to CN2009801514014A priority Critical patent/CN102257066A/zh
Priority to US13/142,347 priority patent/US8974881B2/en
Priority to EP09834982.2A priority patent/EP2380932B1/en
Publication of WO2010074185A1 publication Critical patent/WO2010074185A1/ja
Priority to US14/614,807 priority patent/US9206306B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/02Homopolymers or copolymers of esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/28Shaping by stretching, e.g. drawing through a die; Apparatus therefor of blown tubular films, e.g. by inflation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/04Thermoplastic elastomer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1334Nonself-supporting tubular film or bag [e.g., pouch, envelope, packet, etc.]
    • Y10T428/1345Single layer [continuous layer]

Definitions

  • the present invention relates to a resin composition, a film formed by molding the resin composition, a bag product, and a method for producing the resin composition.
  • plastics are excellent in strength, water resistance, moldability, transparency, cost, etc., and are therefore used in a wide range of applications as molded articles such as bags and containers.
  • plastics widely used for applications such as bags and containers include polyethylene, polypropylene, polystyrene, polyvinyl chloride, and polyethylene terephthalate.
  • molded articles made of the above-mentioned plastics do not biodegrade or hydrolyze in the natural environment, or the degradation rate is extremely slow, so when they are buried after use, they remain in the soil or are dumped. If this happens, the scenery may be damaged. Moreover, even when incinerated, there are problems such as generating harmful gases and damaging the incinerator.
  • Biodegradable resins have been attracting attention as environmentally friendly plastics that solve these problems. Since the film formed by molding the biodegradable resin is decomposed in the soil by embedding in the soil after use, it is possible to prevent global warming and soil and air pollution. Therefore, in recent years, many biodegradable resin films are being used for garbage bags, shopping bags, and the like. However, since many of these biodegradable resin films are generally inferior in mechanical properties, research for improving the mechanical properties of biodegradable films while maintaining good biodegradability has been conducted. Many have been made.
  • Patent Document 1 discloses a biodegradable resin composition in which starch, aliphatic polyester, and aliphatic aromatic polyester are mixed at a specific ratio.
  • Patent Document 2 discloses a biodegradable resin composition having a dispersed phase containing starch and a continuous phase composed of a thermoplastic polymer.
  • Patent Document 3 discloses a resin composition in which starch, aliphatic polyester, and polyhydric alcohol are mixed at a specific ratio.
  • aliphatic polyester resins are applied to various molded products such as films, but if molded products using aliphatic polyester resins are left for a while, oligomers, especially cyclic dimers, are deposited on the surface, and the surface is At present, there is a problem of whitening, and an effective removal method that can suppress the cost has not been developed.
  • Patent Document 5 discloses an aliphatic polyester resin (A), a thermoplastic resin (B) other than the aliphatic polyester resin (A), starch (C), and an organic group containing a hydroxyl group.
  • a resin composition containing at least the compound (D) is disclosed.
  • Japanese Unexamined Patent Publication No. 2008-13602 Japanese National Table 2000-509427 Japanese Unexamined Patent Publication No. 2003-55470 Japanese Unexamined Patent Publication No. 2002-003606 Japanese Unexamined Patent Publication No. 7-330954
  • the aliphatic polyester resin that is a raw material of the resin composition described in Patent Document 1 has a cyclic dimer already reduced to about 700 ppm or less.
  • the produced thermoplastic resin composition has a small amount of cyclic dimer and does not precipitate, at the stage of practical use, complicated work is required to reduce the cyclic dimer in the raw material. It was found that it was expensive and the organic solvent remained in the resin, which is not suitable for mass production.
  • the present invention has been made in view of the above problems, and is a resin composition having improved at least one of film moldability and mechanical properties, particularly at least one of tensile elastic modulus and tear strength, and production thereof It is an object of the present invention to provide a method and a film and bag product formed by molding the resin composition.
  • the present invention provides good moldability and mechanical strength by using a specific production method even for aliphatic polyester resins that are generally impractical such that a cyclic dimer is precipitated and the surface is whitened. And has succeeded in developing a practical resin composition in which the precipitation of the oligomer derived from the aliphatic polyester resin on the surface is suppressed. Then, this invention makes it a subject to provide the resin composition, its manufacturing method, and the film and bag product which shape
  • the present inventors have (1) By making the microstructure in the resin composition into a specific form, the tensile elastic modulus and tear strength are dramatically improved. I found. In addition, (2) Formability and mechanical properties are improved by adjusting the water content of the resin composition that is the raw material of the film, (3) The tensile modulus and tear strength are dramatically improved by optimizing the components of the resin composition and the blending ratio thereof. (4) In addition to a resin composition comprising an aliphatic polyester resin (A) having a specific amount of a cyclic dimer and starch (C), a starch plasticizer (D) is melt-kneaded to thereby create an aliphatic group. In addition to greatly improved mechanical strength compared to the polyester resin (A), surprisingly, the oligomer derived from the aliphatic polyester resin dissolves in the organic compound containing a hydroxyl group. The precipitation of oligomers of I found.
  • a resin composition comprising at least an aliphatic polyester resin (A) and starch (C), wherein the aliphatic polyester resin (A) forms a sea phase and the starch (C) forms an island phase.
  • a resin composition having an average particle size of the island phase of 1 ⁇ m or less.
  • the resin composition according to [1], wherein the aliphatic polyester resin (A) preferably includes a diol unit and a dicarboxylic acid unit as constituent units.
  • the aliphatic polyester resin (A) is a polybutylene succinate resin, a polybutylene succinate adipate resin, or a mixture of both resins, according to [1] or [2]. Resin composition.
  • thermoplastic resin (B) other than the aliphatic polyester resin, and the thermoplastic resin forms an island phase separate from the island phase of the starch (C).
  • the thermoplastic resin (B) contains an aliphatic aromatic polyester resin, and the aliphatic aromatic polyester resin forms an island phase separate from the island phase of the starch (C).
  • [6] The resin composition according to [5], wherein the aliphatic aromatic polyester resin preferably includes a diol unit and a dicarboxylic acid unit as constituent units.
  • the content of the cyclic dimer contained in the aliphatic polyester resin (A) is 1000 ppm to 10000 ppm by mass with respect to the aliphatic polyester resin (A).
  • thermoplastic resin (B) is 1 part by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the aliphatic polyester resin (A), and the starch plasticizer (D) is starch.
  • the aliphatic polyester resin (A) is a polybutylene succinate resin
  • the thermoplastic resin (B) other than the aliphatic polyester resin is a polybutylene terephthalate alkylate resin
  • the starch plasticizer (D) is glycerin
  • the mass ratio of each component to the whole resin composition is 30 to 45 mass% of the polybutylene succinate resin, 15 to 25 mass% of the polybutylene terephthalate alkylate resin, and 30 to 45 mass% of the starch (C).
  • the resin composition according to any one of [8] to [11], wherein the glycerin is 4 to 8% by mass.
  • a method for producing a resin composition comprising an aliphatic polyester resin (A) and a starch (C), the composition (X) comprising a starch (C) having an average particle size of 1 ⁇ m or less, and an aliphatic
  • the manufacturing method of the resin composition which mixes a polyester-type resin (A).
  • a method for producing a resin composition comprising an aliphatic polyester resin (A) and starch (C), wherein the water content in the resin composition is adjusted to less than 1% by mass. 16].
  • the manufacturing method of the resin composition as described in 16].
  • a method for producing a resin composition in which an aliphatic polyester resin (A) and starch (C) are kneaded, wherein the aliphatic polyester resin (A) has a cyclic dimer content is used.
  • [19] Preferably, using a twin-screw extruder having a main raw material supply unit for supplying raw materials, a sub raw material supply unit, and a devolatilization process unit between the sub raw material supply unit and the die head,
  • Manufacturing method is described in [18], wherein the starch (C) is fed from the main raw material supply part, the aliphatic polyester resin (A) is supplied from the auxiliary raw material supply part, and devolatilization is performed in the devolatilization process part.
  • the aliphatic polyester resin (A) is a polybutylene succinate resin, a polybutylene succinate adipate resin, or a mixture of both resins, [16] to [21] The manufacturing method of the resin composition as described in one.
  • thermoplastic resin (B) other than the aliphatic polyester resin (A) is further blended, with respect to 100 parts by mass of the aliphatic polyester resin (A)
  • the method for producing a resin composition according to any one of [16] to [26], wherein the thermoplastic resin (B) of 1 part by mass or more and 100 parts by mass or less is blended.
  • thermoplastic resin (B) is an aliphatic aromatic polyester resin.
  • thermoplastic resin (B) preferably includes a diol unit and a dicarboxylic acid unit as constituent units.
  • thermoplastic resin (B) is a polybutylene adipate terephthalate resin.
  • the present invention it is possible to provide a resin composition having good film moldability and / or excellent mechanical properties when used as a film, particularly excellent tensile elastic modulus and tear strength.
  • This resin composition is excellent in dispersibility of each component in the composition and also has good moldability.
  • the molded object obtained from this resin composition, especially a film can be utilized suitably as various bag products, such as a garbage bag and a shopping bag.
  • the preferable form of this invention has favorable moldability and mechanical strength, and provides the resin composition in which precipitation of the oligomer originating in aliphatic polyester-type resin (A) was suppressed, and its manufacturing method. Can do.
  • FIG. 1 is a schematic view of a twin screw extruder 100 that is preferably used for the production of the resin composition of the present invention.
  • FIG. 2 is a transmission electron micrograph of the resin composition pellets produced in Example 1.
  • FIG. 3 is a schematic view of a resin composition pellet manufacturing process.
  • the resin composition of the present invention contains at least an aliphatic polyester resin (A) and starch (C).
  • the aliphatic polyester resin (A) is a sea phase
  • starch ( C) forms an island phase.
  • a resin composition containing a specific resin as a component may be called with the name of the resin as the main component.
  • the “main component” refers to a component that occupies 50% by mass or more, preferably 70% by mass or more, particularly 90% by mass or more of the composition.
  • polybutylene succinate-based resin refers to a resin composition containing a polybutylene succinate-based resin as a main component.
  • “mass%”, “mass ppm”, and “mass part” are synonymous with “weight%”, “weight ppm”, and “part by weight”, respectively.
  • ppm when “ppm” is simply described, it indicates “weight ppm”.
  • polymer refers to a polymer composed of a single type of repeating structural unit (so-called “homopolymer”) and a polymer composed of a plurality of types of repeating structural units (so-called “polymer”). It is used as a concept including “copolymer”).
  • a partial structural unit of a polymer derived from a certain monomer is represented by adding the word “unit” to the name of the monomer.
  • the partial structural unit derived from dicarboxylic acid is represented by the name “dicarboxylic acid unit”.
  • the monomers that give the same partial structural unit are collectively referred to by the name obtained by replacing the “unit” in the name of the partial structural unit with “component”.
  • monomers such as aromatic dicarboxylic acids and aromatic dicarboxylic acid diesters form aromatic dicarboxylic acid units, even if the reaction in the process of forming the polymer is different. Therefore, these aromatic dicarboxylic acids and aromatic dicarboxylic acid diesters are collectively referred to as “aromatic dicarboxylic acid component”.
  • the aliphatic polyester resin (A) refers to a polyester resin having substantially no aromatic ring in the molecule.
  • the aliphatic polyester-based resin (A) in the present invention preferably contains a diol unit and a dicarboxylic acid unit, and more preferably, for example, a chain aliphatic and / or alicyclic represented by the following formula (1). It consists of a diol unit and a chain aliphatic and / or alicyclic dicarboxylic acid unit represented by the following formula (2).
  • R 1 represents a divalent chain aliphatic hydrocarbon group and / or a divalent alicyclic hydrocarbon group. When copolymerized, two or more types of R 1 may be contained in the resin.
  • R 2 represents a divalent chain aliphatic hydrocarbon group and / or a divalent alicyclic hydrocarbon group. When copolymerized, two or more types of R 1 may be contained in the resin.
  • “and” in the “divalent chain aliphatic hydrocarbon group and / or divalent alicyclic hydrocarbon group” means in one molecule of the constituent component. Means that it contains both a divalent chain aliphatic hydrocarbon group and a divalent alicyclic hydrocarbon group.
  • chain aliphatic and / or alicyclic may be simply abbreviated as “aliphatic”.
  • the aliphatic diol component giving the diol unit of the formula (1) is not particularly limited, but an aliphatic diol component having 2 to 10 carbon atoms is preferable, and an aliphatic diol component having 4 to 6 carbon atoms is particularly preferable. Specific examples include 1,3-propanediol, 1,4-butanediol, 1,4-cyclohexanedimethanol and the like, and among these, 1,4-butanediol is particularly preferable. Two or more types of aliphatic diol components can be used.
  • the aliphatic dicarboxylic acid component giving the dicarboxylic acid unit of the formula (2) is not particularly limited, but an aliphatic dicarboxylic acid component having 2 to 10 carbon atoms is preferable, and an aliphatic dicarboxylic acid component having 4 to 8 carbon atoms is preferable. Particularly preferred. Specific examples of the aliphatic dicarboxylic acid component include succinic acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid and the like, and succinic acid or adipic acid is particularly preferable. Two or more types of aliphatic dicarboxylic acid components can be used.
  • the aliphatic polyester resin (A) in the present invention may contain an aliphatic oxycarboxylic acid unit.
  • Specific examples of the aliphatic oxycarboxylic acid that gives an aliphatic oxycarboxylic acid unit include, for example, lactic acid, glycolic acid, 2-hydroxy-n-butyric acid, 2-hydroxycaproic acid, 6-hydroxycaproic acid, 2-hydroxy-3 , 3-dimethylbutyric acid, 2-hydroxy-3-methylbutyric acid, 2-hydroxyisocaproic acid and the like, or lower alkyl esters or intramolecular esters thereof.
  • any of D-form, L-form and racemic form may be sufficient, and a form may be a solid, a liquid, or aqueous solution.
  • lactic acid or glycolic acid is particularly preferred.
  • These aliphatic oxycarboxylic acids can be used alone or as a mixture of two or more.
  • the lower limit of the amount of the aliphatic oxycarboxylic acid is usually 0 mol% or more, preferably 0.01 mol% or more, and the upper limit is usually 30 in all the components constituting the aliphatic polyester resin (A).
  • the mol% or less preferably 20 mol% or less.
  • the aliphatic polyester-based resin (A) in the present invention includes “a trifunctional or higher aliphatic polyhydric alcohol”, “a trifunctional or higher aliphatic polyvalent carboxylic acid or acid anhydride thereof”, or “a trifunctional or higher functional polyhydric alcohol”.
  • the copolymerization of “aliphatic polyvalent oxycarboxylic acid” is preferable because the melt viscosity of the resulting aliphatic polyester resin (A) can be increased.
  • trifunctional aliphatic polyhydric alcohol examples include trimethylolpropane and glycerin, and specific examples of the tetrafunctional aliphatic polyhydric alcohol include pentaerythritol. These may be used alone or in combination of two or more.
  • trifunctional aliphatic polyvalent carboxylic acid or its acid anhydride examples include propanetricarboxylic acid or its acid anhydride, and specific examples of the tetrafunctional polyvalent carboxylic acid or its acid anhydride include: Examples include cyclopentanetetracarboxylic acid or acid anhydrides thereof. These may be used alone or in combination of two or more.
  • the trifunctional aliphatic oxycarboxylic acid component includes (i) a type having two carboxyl groups and one hydroxyl group in the same molecule, and (ii) one carboxyl group and two hydroxyl groups. Any type can be used. Specifically, malic acid or the like is preferably used.
  • the tetrafunctional aliphatic oxycarboxylic acid component includes (i) a type in which three carboxyl groups and one hydroxyl group are shared in the same molecule, and (ii) two carboxyl groups and two hydroxyl groups.
  • the amount of such a trifunctional or higher functional compound is generally 0 mol% or more, preferably 0.01 mol% or more, and the upper limit is the total component constituting the aliphatic polyester resin (A). Usually, it is 5 mol% or less, preferably 2.5 mol% or less.
  • Preferred aliphatic polyester resins (A) in the present invention include polybutylene succinate resins and polybutylene succinate adipate resins.
  • the aliphatic polyester resin (A) is particularly preferably polybutylene succinate, polybutylene succinate adipate, or a mixture thereof.
  • the raw material which derives an aliphatic polyester-type resin (A), especially a diol unit and / or a dicarboxylic acid unit may be obtained from biomass resources.
  • a method for obtaining the raw material from the biomass resource is not particularly limited, and a known technique may be used.
  • the content of the cyclic dimer contained in the aliphatic polyester resin (A) as a raw material blended in the resin composition of the present invention is 1000 ppm to 10,000 ppm by mass with respect to the aliphatic polyester resin (A). Although it is essential, it is preferably 1500 to 9000 ppm, particularly preferably 2000 to 8000 ppm, and further preferably 2500 to 7500 ppm.
  • the content of the cyclic dimer derived from the aliphatic polyester resin (A) is too large, the amount of starch plasticizer (D) necessary for suppressing the precipitation of the cyclic dimer is too large. In some cases, the starch plasticizer (D) segregates on the surface of the molded body, and the fluidity of the resin becomes too high, causing troubles during molding. On the other hand, if it is attempted to reduce the content of the cyclic dimer more than necessary, it is necessary to wash the resin using an appropriate solvent, as will be described later. However, there are cases where the washing process with a solvent is complicated, and the solvent used for washing remains in the resin pellets.
  • the content of the cyclic dimer in the present invention is a value determined by the method described in the examples.
  • the aliphatic polyester-based resin (A) produced without using a method for controlling the content of the cyclic dimer below 1000 ppm.
  • the cyclic dimer as used in the present invention refers to, for example, a diol component that gives a diol unit of the above formula (1) is 1,4-butanediol, and a dicarboxylic acid component that gives a dicarboxylic acid unit of the above formula (2)
  • an acid it refers to a structure represented by the following formula (3) consisting of two 1,4-butanediol units (BD) and two succinic acid (SA) units.
  • the aliphatic polyester resin (A) used in the present invention can be produced by a known method.
  • a general method of melt polymerization in which an esterification reaction and / or a transesterification reaction between the aliphatic dicarboxylic acid component and the aliphatic diol component is performed, followed by a polycondensation reaction under reduced pressure, although it can manufacture also by the well-known solution heating dehydration condensation method using a solvent, the method of manufacturing by melt polymerization performed without a solvent from a viewpoint of economical efficiency or the simplicity of a manufacturing process is preferable.
  • the polycondensation reaction is preferably performed in the presence of a polymerization catalyst.
  • the addition timing of the polymerization catalyst is not particularly limited as long as it is before the polycondensation reaction, and it may be added when the raw materials are charged, or may be added at the start of pressure reduction.
  • the polymerization catalyst is generally a compound containing a group 1 to group 14 metal element excluding hydrogen and carbon in the periodic table. Specifically, at least one metal selected from the group consisting of titanium, zirconium, tin, antimony, cerium, germanium, zinc, cobalt, manganese, iron, aluminum, magnesium, calcium, strontium, sodium, and potassium. And compounds containing organic groups such as carboxylates, alkoxy salts, organic sulfonates and ⁇ -diketonate complexes, and inorganic compounds such as metal oxides and halides described above, or mixtures thereof.
  • the catalyst is preferably a compound that is liquid at the time of polymerization or that dissolves in the ester low polymer or the polyester because the polymerization rate is increased when the catalyst is melted or dissolved at the time of polymerization.
  • the amount of catalyst added in the case of using a metal compound as the polymerization catalyst is such that the lower limit is usually 5 ppm or more, preferably 10 ppm or more, and the upper limit is usually 30000 ppm or less, preferably 1000 ppm, as the amount of metal relative to the produced polyester. Below, more preferably 250 ppm or less, particularly preferably 130 ppm or less. If too much catalyst is used, it is not only economically disadvantageous but also lowers the thermal stability of the polymer. Conversely, if it is too little, the polymerization activity is lowered, and as a result, the polymer decomposes during polymer production. Is more likely to be triggered.
  • the lower limit is usually 150 ° C or higher, preferably 180 ° C or higher, and the upper limit is usually 260 ° C or lower, preferably 250 ° C or lower.
  • the reaction atmosphere is usually an inert gas atmosphere such as nitrogen or argon.
  • the reaction pressure is usually from normal pressure to 10 kPa, but normal pressure is preferred.
  • the reaction time is usually 1 hour or longer, and the upper limit is usually 10 hours or shorter, preferably 4 hours or shorter.
  • the lower limit of the pressure is usually 0.001 ⁇ 10 3 Pa or more, preferably 0.01 ⁇ 10 3 Pa or more, and the upper limit is usually 1.4 ⁇ 10 3 Pa or less, preferably 0.
  • the degree of vacuum is 4 ⁇ 10 3 Pa or less.
  • the lower limit of the reaction temperature is usually 150 ° C. or higher, preferably 180 ° C. or higher, and the upper limit is usually 260 ° C. or lower, preferably 250 ° C. or lower.
  • the lower limit of the reaction time is usually 2 hours or more, and the upper limit is usually 15 hours or less, preferably 10 hours or less.
  • a known vertical or horizontal stirred tank reactor can be used as a reaction apparatus for producing the aliphatic polyester resin (A).
  • melt polymerization is performed in two stages of esterification and / or transesterification and reduced pressure polycondensation using the same or different reactors, and a vacuum pump and a reactor are used as the reduced pressure polycondensation reactor.
  • a method using a stirred tank reactor equipped with a evacuating pipe for decompression to be connected can be mentioned.
  • a condenser is connected between the vacuum exhaust pipe connecting the vacuum pump and the reactor, and the volatile components and unreacted monomers generated during the condensation polymerization reaction are recovered by the condenser. Is preferred.
  • the molar ratio of the diol component and the dicarboxylic acid component for obtaining a polyester having a desired degree of polymerization differs in a preferred range depending on the purpose and the type of raw material, but the amount of the diol component relative to 1 mol of the acid component is
  • the lower limit is usually 0.8 mol or more, preferably 0.9 mol or more
  • the upper limit is usually 1.5 mol or less, preferably 1.3 mol or less, particularly preferably 1.2 mol or less.
  • urethane bonds, amide bonds, carbonate bonds, ether bonds, and the like can be introduced.
  • the aliphatic polyester resin (A) used in the present invention is a thermoplastic resin having crystallinity and has a melting temperature.
  • the melting temperature of the aliphatic polyester resin (A) is preferably 60 ° C. or higher and 150 ° C. or lower, more preferably 65 ° C. or higher and 130 ° C. or lower, and further preferably 70 ° C. or higher and 120 ° C. or lower.
  • the melting temperature is higher than 150 ° C., the process temperature becomes high in the kneading process of the composition, so that the starch in the resin composition is deteriorated and there is a possibility that the molded product is colored.
  • the melting temperature is lower than 60 ° C., there may be inconveniences in practical use such as deformation depending on the use temperature of the molded product.
  • the melting temperature is determined by differential scanning calorimetry measurements. For differential scanning calorimetry, for example, a DSC7 manufactured by PerkinElmer is used, a 5 mg sample is heated at a rate of 10 ° C./min under a nitrogen stream at a flow rate of 50 mL / min, and an endothermic peak accompanying melting of the crystal is recorded. Is implemented.
  • the aliphatic polyester resin (A) used in the present invention has a sufficiently high crystallization rate, and the half-value width of the exothermic peak based on crystallization when cooled at 10 ° C./min in the differential scanning calorimeter measurement. Usually, it is 15 ° C. or less, preferably 10 ° C. or less, particularly preferably 8 ° C. or less.
  • the differential scanning calorimeter is measured by using, for example, DSC7 manufactured by PerkinElmer, Inc., a 5 mg sample is heated and melted under a nitrogen stream at a flow rate of 50 mL / min, and then cooled at a rate of 10 ° C./min. This is done by recording the exothermic peak.
  • melt flow rate (MFR) of the aliphatic polyester resin (A) used in the present invention is measured at 190 ° C. and 2.16 kg
  • the lower limit is usually 0.1 g / 10 min or more
  • the upper limit is usually It is 100 g / 10 min or less, preferably 50 g / 10 min or less, particularly preferably 30 g / 10 min or less.
  • the content of the aliphatic polyester-based resin (A) in the resin composition of the present invention is preferably 10% or more, more preferably 20% or more, in mass ratio, based on the total resin composition (100%).
  • the upper limit of the content is preferably 80% or less, more preferably 60% or less, still more preferably 50% or less, and particularly preferably 45% or less. If the content of the aliphatic polyester-based resin (A) is too large, the physical properties such as the tear strength are reduced, and the cost is not preferable. On the other hand, if the content of the aliphatic polyester-based resin (A) is too small, it is not preferable because physical properties such as tensile elastic modulus are lowered and film moldability is deteriorated.
  • the resin composition of the present invention may contain a thermoplastic resin (B) other than the aliphatic polyester resin (A) together with the aliphatic polyester resin (A) and starch (C).
  • the thermoplastic resin (B) of the present invention is not particularly limited as long as it is a thermoplastic resin other than the aliphatic polyester resin (A), but a biodegradable resin is preferable. Specific examples include polybutylene succinate resin, polybutylene succinate adipate resin, polylactic acid, polyhydroxyalkanoate, polycaprolactone, aliphatic aromatic polyester resin, and the like.
  • an aliphatic aromatic polyester resin is preferable from the viewpoint of compatibility with the aliphatic polyester resin (A).
  • the aliphatic aromatic polyester-based resin forms an island phase in the same manner as the starch (C) by being contained in the resin composition.
  • the “aliphatic aromatic polyester resin” is mainly composed of an aromatic dicarboxylic acid, an aliphatic dicarboxylic acid, and an aliphatic diol.
  • the content of the aromatic dicarboxylic acid unit is preferably 5 mol% or more and 60 mol% or less based on the total amount of the aliphatic dicarboxylic acid unit and the aromatic dicarboxylic acid unit (100 mol%).
  • Group dicarboxylic acid unit as an essential component.
  • it may have an oxycarboxylic acid unit.
  • R 3 represents a divalent chain aliphatic hydrocarbon group and / or a divalent alicyclic hydrocarbon group, and is not limited to one type when copolymerized.
  • —OC—R 4 —CO— (5) [In the formula (5), R 4 represents a direct bond or a divalent chain aliphatic hydrocarbon group and / or a divalent alicyclic hydrocarbon group, and is 1 when copolymerized. It is not limited to species.
  • —OC—R 5 —CO— (6) [In formula (6), R 5 represents a divalent aromatic hydrocarbon group, and is not limited to one type when copolymerized.
  • the diol component giving the diol unit of the formula (4) is usually one having 2 to 10 carbon atoms, such as ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,4-cyclohexane. Examples include dimethanol. Of these, diols having 2 to 4 carbon atoms are preferable, ethylene glycol and 1,4-butanediol are more preferable, and 1,4-butanediol is particularly preferable.
  • the dicarboxylic acid component that gives the dicarboxylic acid unit of the formula (5) usually has 2 to 10 carbon atoms, and examples thereof include succinic acid, adipic acid, suberic acid, sebacic acid, and dodecanedioic acid. Among these, succinic acid or adipic acid is preferable.
  • the aromatic dicarboxylic acid component that gives the aromatic dicarboxylic acid unit of the formula (6) include terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid and the like. Among these, terephthalic acid and isophthalic acid are preferable, and terephthalic acid is particularly preferable. preferable.
  • aromatic dicarboxylic acid in which a part of the aromatic ring is substituted with a sulfonate is exemplified.
  • Two or more types of aliphatic dicarboxylic acid components, aliphatic diol components, and aromatic dicarboxylic acid components can be used.
  • the aliphatic aromatic polyester resin is preferably a polybutylene terephthalate alkylate resin, more preferably a polybutylene adipate terephthalate resin or a polybutylene succinate terephthalate resin, and particularly preferably a polybutylene adipate terephthalate resin.
  • the aliphatic aromatic polyester resin in the present invention may contain an aliphatic oxycarboxylic acid unit.
  • Specific examples of the aliphatic oxycarboxylic acid that gives an aliphatic oxycarboxylic acid unit include lactic acid, glycolic acid, 2-hydroxy-n-butyric acid, 2-hydroxycaproic acid, 6-hydroxycaproic acid, 2-hydroxy-3, Examples thereof include 3-dimethylbutyric acid, 2-hydroxy-3-methylbutyric acid, 2-hydroxyisocaproic acid, and mixtures thereof.
  • these lower alkyl esters or intramolecular esters may be used.
  • any of D-form, L-form and racemic form may be sufficient, and a form may be any of solid, liquid, or aqueous solution.
  • lactic acid or glycolic acid is preferable.
  • These aliphatic oxycarboxylic acids can be used alone or as a mixture of two or more.
  • the amount of the aliphatic oxycarboxylic acid is such that the lower limit is usually 0 mol% or more, preferably 0.01 mol% or more, and the upper limit is usually 30 mol% among all the components constituting the aliphatic aromatic polyester resin. Hereinafter, it is preferably 20 mol% or less.
  • An aliphatic aromatic polyester-type resin can be manufactured by the manufacturing method similar to the said aliphatic polyester-type resin (A).
  • the melt flow rate (MFR) of the aliphatic aromatic polyester resin used in the present invention when measured at 190 ° C. and 2.16 kg, has a lower limit of usually 0.1 g / 10 min or more and an upper limit of usually 100 g / It is 10 minutes or less, preferably 50 g / 10 minutes or less, particularly preferably 30 g / 10 minutes or less.
  • the content of the thermoplastic resin (B) other than the aliphatic polyester resin (A) is preferably 1 part by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the aliphatic polyester resin (A).
  • the lower limit of the content is more preferably 5 parts by mass or more, particularly preferably 10 parts by mass or more, and most preferably 20 parts by mass or more.
  • the upper limit of the content is more preferably 70 parts by mass or less, particularly preferably 60 parts by mass or less.
  • the content of the thermoplastic resin (B) other than the aliphatic polyester resin (A) in the resin composition of the present invention is a mass ratio based on the entire resin composition (100%), and is 15% or more and 25%. It is as follows. If the content of the thermoplastic resin (B) other than the aliphatic polyester resin (A) is too large, the stiffness of the film obtained from the resin composition is insufficient, and the biodegradation rate is lowered, which is not preferable. On the other hand, when the content of the thermoplastic resin (B) other than the aliphatic polyester resin (A) is too small, the dispersion of the starch (C) is deteriorated or the tensile elastic modulus and the tear strength are insufficient. Absent.
  • ⁇ Starch (C)> The starch (C) in the present invention, the molecular formula (C 6 H 10 O 5) n [ where n represents a positive integer. ] Is a natural polymer in which a number of ⁇ -glucose molecules are polymerized by glycosidic bonds or a modified product thereof.
  • “denaturation” includes all modifications such as chemical, physical and biological.
  • chemical modification a part or all of the structural unit of starch (C) is modified by chemical reaction such as esterification, etherification, oxidation, reduction, coupling, dehydration, hydrolysis, dehydrogenation, halogenation, etc. In particular, it indicates that the hydroxyl group is etherified or esterified.
  • Physical modification means changing physical properties such as changing the crystallinity.
  • Biological degeneration refers to changing a chemical structure or the like using a living organism.
  • starch (C) in the present invention examples include corn starch, waxy corn starch, high amylose corn starch, wheat starch, rice starch, potato starch, sweet potato starch, tapioca starch, pea starch, and ⁇ starch.
  • Corn starch or potato starch is preferred, and corn starch is particularly preferred.
  • starch (C) used in the present invention starch is used so that the average particle diameter of the starch island phase in the resin composition is 1 ⁇ m or less from the viewpoint of improving physical properties such as tear strength and tensile elastic modulus. It is preferably used, more preferably 0.7 ⁇ m or less, and still more preferably 0.5 ⁇ m or less.
  • the average particle diameter of the starch mentioned here is described separately in detail, but the average value of equivalent circle diameter (diameter when measuring the area of the starch phase and drawing a perfect circle with the area) It is.
  • the content of the starch (C) is arbitrary as long as the effect of the present invention is not significantly impaired, but is preferably 1% by mass or more and 60% by mass or less based on the total resin composition (100% by mass).
  • the lower limit of the starch content is more preferably 5% by mass, further preferably 10% by mass, particularly preferably 15% by mass, and most preferably 30% by mass.
  • the upper limit of the starch content is more preferably 50% by mass, still more preferably 45% by mass, and most preferably 40% by mass.
  • the starch content is less than 1% by mass, the physical property improving effect by starch may not be sufficiently exhibited.
  • the starch content exceeds 60% by mass water resistance, hydrolysis resistance, flexibility, etc. are impaired. There is.
  • the resin composition of the present invention preferably contains a starch plasticizer (D).
  • a starch plasticizer (D) an organic compound containing a hydroxyl group is preferably used, and the organic compound containing a hydroxyl group is not particularly limited as long as it has a hydroxyl group.
  • examples thereof include monohydric alcohols, polyhydric alcohols, partial esters or partial ethers of polyhydric alcohols.
  • the molecular weight of the plasticizer (D) of starch is preferably 3000 or less, more preferably 2500 or less, and particularly preferably 2000 or less.
  • the content of the plasticizer (D) in the starch is preferably 10% by mass or more and 55% by mass or less based on the starch (C) (100% by mass).
  • the upper limit of the content of the plasticizer (D) in starch is more preferably 50% by mass, and further preferably 45% by mass.
  • the lower limit of the content is preferably 15% by mass, more preferably 17% by mass, and still more preferably 20% by mass.
  • the content of the starch plasticizer (D) is too small, oligomers derived from the aliphatic polyester resin (A) are deposited on the surface, or plasticization of the added starch does not proceed sufficiently and the starch fat In some cases, the mechanical properties may deteriorate due to poor dispersion in the group polyester.
  • the content of the starch plasticizer (D) is too large, the starch plasticizer (D) is segregated on the surface of the molded article, which may impair the properties such as the surface appearance.
  • the aliphatic polyester resin (A) contains starch (C) and starch plasticizer (D), and the starch plasticizer (D) is contained in the starch (C ) Is preferred to be in the above range.
  • the starch plasticizer (D) penetrates into the starch (C) and is heated to be thermoplasticized, thereby producing an aliphatic polyester.
  • Compatibility with the thermoplastic resin (B) other than the aliphatic resin (A) and the aliphatic polyester resin (A) is increased, the dispersion diameter of the starch phase is reduced, and the mechanical properties of the resin composition are improved.
  • the cyclic dimer derived from the aliphatic polyester resin (A) is dissolved in the plasticizer (D) of the starch, the cyclic dimer is deposited on the surface of the resin composition pellet or the molded body.
  • the content of the starch plasticizer (D) in the resin composition of the present invention is a mass ratio based on the whole resin composition (100%), and the lower limit is preferably 1% or more, more preferably 3% or more.
  • the upper limit is preferably 10% or less, more preferably 8% or less, and even more preferably 7% or less. If the content of the starch plasticizer (D) is too large, the starch plasticizer (D) bleeds out from the film surface or the elastic modulus of the resulting film decreases, which is not preferable. On the other hand, when the content of the plasticizer (D) in the starch is too small, the starch cannot be sufficiently plasticized, and the dispersed particle diameter of the starch becomes coarse, which is not preferable.
  • a compatibilizer an inorganic filler, an organic filler, a crystal nucleating agent, an antioxidant, an antiblocking agent, an ultraviolet absorber, a light-resistant agent, an antioxidant, a heat stabilizer, a colorant, a flame retardant, Release agents, antistatic agents, antifogging agents, surface wetting improvers, incineration aids, pigments, lubricants, dispersion aids, surfactants, slip agents, hydrolysis inhibitors, end-capping agents, etc.
  • Ingredients may be used. These can be arbitrarily used as long as the effects of the present invention are not impaired.
  • the resin composition of the present invention may contain a compatibilizing agent.
  • the compatibilizing agent is an additive that improves the compatibility when the incompatible dissimilar resin or the starch and the resin are mixed. By adding a compatibilizing agent, the compatibility can be improved.
  • the compatibilizer is preferably added in an amount of 0.01% by mass or more and 10% by mass or less based on the entire resin composition (100% by mass).
  • the lower limit of the addition amount is more preferably 0.1% by mass or more, and further preferably 1% by mass or more.
  • the upper limit of the addition amount is more preferably 5% by mass or less, further preferably 3% by mass or less, and particularly preferably 2% by mass or less.
  • the compatibilizer examples include a polymer compatibilizer, a low molecular organic compound, an inorganic compound, an organic-inorganic composite, etc., but the polymer compatibilizer and the low molecular organic compound are molded products. From the viewpoint of physical properties, a polymer type compatibilizer is more preferable from the viewpoint of the molding process.
  • the compatibilizer is preferably one having an acid anhydride group, glycidyl group or ether group structure, and a polymer type compatibilizer having any one of these structures is more preferred. By using a compatibilizing agent having these structures, the effect of improving the compatibility is increased.
  • Polymeric compatibilizers include polyester, polyolefin, polyamide, polyether, polycarbonate, acrylic, styrene, urethane, polyacetal, olefin elastomer, unsaturated aliphatic elastomer, hydrogenated Examples thereof include resins such as unsaturated aliphatic elastomers, and two or more kinds of these blocks, grafts, or random copolymers.
  • a polar group may be introduced into the molecule by further adding an unsaturated fatty acid anhydride to these copolymers.
  • Maleic anhydride is preferably used as the unsaturated fatty acid anhydride to be added.
  • Polyester-based compatibilizers include polyester blocks or random or grafts containing a structure such as aromatic polyesters such as polyethylene terephthalate and polybutylene terephthalate, polylactic acid, polycaprolactone, and poly-3-hydroxybutyrate as part of the molecular structure.
  • polyamide-based compatibilizers that include copolymers include 6 nylon, 6, 6 nylon, and 12 nylon.
  • polyether-based compatibilizer include polyethylene glycol, polypropylene glycol, and polytetramethylene glycol.
  • Examples of styrene-based materials include polystyrene, poly p-methyl styrene, poly ⁇ -methyl styrene and the like.
  • Examples of the olefin elastomer include ethylene propylene random copolymer and poly 1-butene.
  • Examples of the unsaturated aliphatic elastomer include polybutadiene, polyisoprene, SBS, and SIS.
  • Examples of the hydrogenated unsaturated aliphatic elastomer include SEBS and SEPS.
  • polyolefin-based, polyamide-based, polyether-based, acrylic-based, styrene-based, hydrogenated unsaturated aliphatic elastomers and two or more types of these copolymers polyolefin / glycidyl acrylate copolymers
  • examples include polyolefin / glycidyl methacrylate copolymer, polyolefin / polyether copolymer, polyether ester amide, SEBS, maleic anhydride-modified SEBS, and the like.
  • inorganic filler You may mix
  • inorganic fillers include silica, mica, talc, titanium oxide, calcium carbonate, diatomaceous earth, allophane, bentonite, potassium titanate, zeolite, sepiolite, smectite, kaolin, kaolinite, glass, limestone, carbon, wollastonite.
  • Calcined perlite "silicates such as calcium silicate and sodium silicate", hydroxides such as aluminum oxide, magnesium carbonate, calcium hydroxide, ferric carbonate, zinc oxide, iron oxide, aluminum phosphate, barium sulfate, etc. Can be mentioned. These may be used alone or in combination of two or more.
  • the amount of the inorganic filler contained in the resin composition of the present invention is not particularly limited, but the inorganic filler is preferably 1 part by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the resin composition. Is more preferably no less than 20 parts by mass and no greater than 5 parts by mass and no greater than 15 parts by mass. If the amount of the inorganic filler is too small, the effect of improving the mechanical properties may be reduced. On the other hand, if the amount is too large, the moldability and impact resistance may be deteriorated.
  • Organic filler examples include pulp, chitin and / or chitosan, coconut shell powder, bamboo powder, bark powder, and powders such as kenaf and straw. These may be used alone or in combination of two or more.
  • the content of the organic filler in the resin composition is preferably 60 parts by mass or less with respect to 100 parts by mass of the resin composition.
  • additives may be used alone or in combination of two or more. Among these, it is particularly preferable to add a slip agent and an antiblocking agent.
  • the antifogging agent may be previously kneaded into the resin, or may be applied to the surface of the molded product after molding.
  • the antifogging agent used is preferably an ester surfactant of a saturated or unsaturated aliphatic carboxylic acid having 4 to 20 carbon atoms and a polyhydric alcohol.
  • the slip agent include unsaturated fatty acid amides and unsaturated fatty acid bisamides composed of unsaturated fatty acids having 6 to 30 carbon atoms, most preferably erucic acid amide.
  • anti-blocking agent examples include saturated fatty acid amides having 6 to 30 carbon atoms, saturated fatty acid bisamides, methylol amides, ethanol amides, natural silicas, synthetic silicas, synthetic celites, talc and the like.
  • Specific examples of the light-proofing agent include bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2- n-Butyl-bis (1,2,2,6,6-pentamethyl-4-piperidyl) malonate is preferred.
  • the ultraviolet absorber that may be added to the resin composition of the present invention
  • benzophenone-based, benzotriazole-based, salicylic acid-based, cyanoacrylate-based antioxidants are preferably used.
  • the addition amount of these additives is usually 0.001% by mass or more and 10% by mass or less based on the whole resin composition (100% by mass).
  • the lower limit of the addition amount is preferably 0.01% by mass or more, more preferably 0.1% by mass or more.
  • the upper limit of the addition amount is preferably 5% by mass or less, more preferably 3% by mass or less.
  • the resin composition of this invention can also mix
  • the terminal blocking agent include carbodiimide compounds, epoxy compounds, oxazoline compounds, etc. Among them, carbodiimide compounds are preferably used.
  • a carbodiimide compound in the present invention, can be suitably used not only for the purpose of mainly suppressing hydrolysis due to moisture in the atmosphere, but also for the purpose of improving moldability and further reducing the cyclic dimer.
  • the carbodiimide compound used is a compound (including a polycarbodiimide compound) having one or more carbodiimide groups in the molecule, and such a carbodiimide compound uses, for example, an organophosphorus compound or an organometallic compound as a catalyst, It can be synthesized by subjecting an isocyanate compound to a decarboxylation condensation reaction in a solvent-free or inert solvent at a temperature of 70 ° C. or higher.
  • monocarbodiimide compounds include dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, t-butylisopropylcarbodiimide, diphenylcarbodiimide, di-t-butylcarbodiimide, di- ⁇ -naphthylcarbodiimide. Etc. can be illustrated. Of these, dicyclohexylcarbodiimide and diisopropylcarbodiimide are preferred because they are easily available industrially. Examples of the polycarbodiimide compound include U.S.
  • a polycarbodiimide compound may be used.
  • the lower limit of the degree of polymerization is 2 or more, preferably 4 or more, and the upper limit is usually 40 or less, preferably 20 or less. If the degree of polymerization is too large, dispersibility in the composition becomes insufficient, which may cause poor appearance in, for example, an inflation film.
  • the carbodiimide compound may be added during the preparation of the resin composition to be described later, or kneaded with one or two kinds of polyesters among aliphatic polyester resins and aliphatic aromatic polyester resins, and other during the molding. You may dry-blend with a component and mix and shape
  • a master batch of a high concentration carbodiimide compound is prepared with an aliphatic polyester resin and / or an aliphatic aromatic polyester resin, and the aliphatic polyester resin and / or so that the carbodiimide compound has a predetermined concentration at the time of molding.
  • An aliphatic aromatic polyester resin and starch may be dry blended and diluted.
  • biodegradable resins and natural products such as polylactic acid, polycaprolactone, polyamide, polyvinyl alcohol, cellulose ester, cellulose, paper, wood flour, Chitin and / or chitosan, animal / plant material fine powders such as coconut shell powder, walnut shell powder, or a mixture thereof can be blended.
  • the mixer a horizontal cylindrical type, V-shaped, double-cone type mixer, a blender such as a ribbon blender or a super mixer, various continuous mixers, or the like can be used.
  • a batch kneader such as a roll or an internal mixer, a single-stage or two-stage continuous kneader, a twin screw extruder, a single screw extruder, or the like can be used.
  • FIG. 1 is a schematic view of a twin screw extruder 100 that is preferably used for the production of the resin composition of the present invention.
  • the twin-screw extruder 100 includes two screw shafts 2 that are arranged in parallel in the cylinder 1 and mesh with each other.
  • the cylinder 1 includes a main raw material supply unit 3 located on the upstream side in the feed direction and a secondary raw material supply unit 5 located on the downstream side in the feed direction. Vent portions 4 and 6 are provided, respectively.
  • starch (C), thermoplastic resin (B) other than aliphatic polyester resin (A), and starch plasticizer (D) are supplied, melt-kneaded, and composition ( X) and sent in the cylinder downstream direction.
  • the temperature at the time of melt-kneading needs to be at least higher than the melting point of the plasticized starch and the resin, and is usually 100 to 180 ° C., preferably 130 to 170 ° C.
  • Gas components such as air, water vapor, and raw material-derived volatile components contained in the melted composition (X) are present between the main raw material supply unit 3 and the auxiliary raw material supply unit 5 and are vent portions that are open vents. 4 is partially discharged and separated and devolatilized.
  • the devolatilized composition (X) is further melt-kneaded with the aliphatic polyester resin (A) side-feeded from the auxiliary raw material supply unit 5 to obtain a resin composition.
  • a part of gas components such as air, water vapor, and raw material-derived volatile components contained in the resin composition is vacuumed and exhausted to the outside through a vent portion 6 that is a suction vent.
  • the molten resin composition that has passed through the vent portion 6 is extruded into water in the form of a melted strand from the die head 7, cooled and solidified, cut by a pelletizer (not shown), and then dried. It is set as a resin composition pellet.
  • the resin composition devolatilized by the twin screw extruder 100 is once pelletized through the die head 7 and the pelletizer, but is continuously supplied to the molding machine in a molten state and molded into a film or the like. May be.
  • FIG. 3 is a schematic view of the resin pellet manufacturing process.
  • the twin screw extruder 10 is the same as the extruder 100 described above.
  • the molten resin composition that has passed through the vent portion 6 is extruded into the water of the water tank 20 in the form of a strand melted from the die head 7, cooled and solidified, cut by the pelletizer 30, and then dried by the dryer 40.
  • a resin composition pellet is obtained.
  • the obtained resin composition pellets are supplied to a molding machine to be molded into a film.
  • the resin composition when supplied to the molding machine has a moisture content of less than 1% by mass. It is preferable to do. That is, the film of the present invention is produced using a resin composition having a moisture content of less than 1% by mass. By setting the water content within the above range, the moldability of the resin composition can be improved, and as a result, a film having good physical properties such as tensile elastic modulus and tear strength can be obtained.
  • the pelletized resin composition is preferably dried in a dryer at 60 to 80 ° C. for at least 8 hours. In addition, drying is preferably performed in a nitrogen atmosphere in order to maintain the pellet quality.
  • the moisture content of the resin pellet is a value measured by the Karl Fischer method.
  • the resin composition is once pelletized through the die head 7 and the pelletizer 30, but the moisture is removed by the vent portions 4 and 6 to a moisture amount not more than that specified in the present invention. If it is confirmed that the biodegradable film has been melted, the biodegradable film may be molded by continuously supplying it to the molding machine.
  • the kneading method in the present invention includes a devolatilization step.
  • a vent part preferably a vacuum vent is preferably provided.
  • a vacuum vent By providing a vacuum vent, excess water and / or cyclic dimer in the resin composition can be reduced.
  • the devolatilization step using a vacuum vent is performed, for example, by evacuation using a vacuum pump.
  • the degree of vacuum at the vacuum vent is not particularly specified, but is preferably 200 Torr or less.
  • the method for preparing the resin composition of the present invention is not particularly limited, (1) A method in which all raw materials are blended and then charged into an hopper of an extruder and melt mixed in the extruder.
  • thermoplastic resin (B) and starch plasticizer (D) other than aliphatic polyester resin it is put into an hopper of an extruder and melt-mixed in an extruder to obtain Dry blending the resulting resin composition with the aliphatic polyester resin (A), (4) A step of mixing starch (C) and starch plasticizer (D), and then a thermoplastic resin (B) other than aliphatic polyester resin (A) and aliphatic polyester resin (A) ,
  • the resin composition is adjusted by the method described in (5) from the viewpoint of the load on the extruder, the dispersibility of the starch (C) in the resin composition, and the productivity of the resin composition in the kneading process. It is desirable to do.
  • the resin composition prepared by the above method may be mixed with the aliphatic polyester resin (A) and a thermoplastic resin (B) other than the aliphatic polyester resin to adjust to the desired resin composition.
  • blending oil or the like can also be used for the purpose of uniformly dispersing the various additives.
  • the aliphatic polyester-based resin (A) forms a sea phase
  • the average particle size of each island phase is 1 ⁇ m or less, preferably 0.5 ⁇ m or less, more preferably 0.3 ⁇ m or less.
  • the blending amount of the thermoplastic resin (B) other than the aliphatic polyester resin (A) added is adjusted, the blending amount of the starch plasticizer (D) is adjusted, starch ( C) and a thermoplastic resin (B) other than the aliphatic polyester resin (A) added as necessary, a starch plasticizer (D), etc. are melt-mixed to obtain a starch having an average particle size of 1 ⁇ m or less ( After the composition (X) containing C) is added, the aliphatic polyester-based resin (A) is added thereto and further melt-mixed, or by applying these conditions in appropriate combination, The dispersibility of each component can be improved.
  • the average particle diameter of the island phase of each component in the resin was observed using a transmission electron microscope (TEM) after performing ion etching on the resin composition and subsequently performing gold vapor deposition. It can be obtained as an average value of the equivalent circle diameters of the island phases of the respective components existing in the 5 ⁇ m ⁇ 5 ⁇ m range of the image.
  • the measurement of the average particle diameter may be basically performed for one resin composition pellet arbitrarily taken out. However, when the numerical value varies widely for each pellet, the average of 100 randomly extracted pellets is averaged. The value can be an average particle diameter.
  • the content of is preferably 1000 ppm to 9000 ppm, more preferably 1000 ppm to 7500 ppm, still more preferably 1000 ppm to 6000 ppm, and particularly preferably 1000 ppm to 4500 ppm by mass with respect to the resin composition.
  • the content of the cyclic dimer in the resin composition in the present invention is a value determined by the method described in Examples.
  • the content of the cyclic dimer present in the molded body is almost the same as the content of the cyclic dimer contained in the resin composition before molding. That is, at the time of molding, the cyclic dimer contained in the resin composition is contained in the obtained molded body without volatilization or the like. However, if it is deposited on the surface of the molded body, the mass of the deposited cyclic dimer is also added to that existing in the molded body.
  • the content of the cyclic dimer in the molded body is a value determined by the method described in the examples.
  • the resin composition in the present invention can be subjected to molding by various molding methods applied to general-purpose plastics.
  • the molding methods include, for example, compression molding (compression molding, laminate molding, stampable molding), injection molding, extrusion molding and coextrusion molding (film molding by inflation method or T-die method, laminate molding, pipe molding, electric wire / cable molding.
  • the tensile elastic modulus in the direction parallel to the resin flow is not particularly limited, but is preferably 50 to 700 MPa, more preferably 80 to 650 MPa. 100 to 600 MPa is particularly preferable, and 150 to 500 MPa is more preferable. If the tensile modulus is too low, it may not be able to withstand the weight of the contents depending on the thickness of the film when used as a packaging material for garbage bags, shopping bags, shopping bags, compost bags and the like. Moreover, when too large, the flexibility of a film may be impaired and usability may worsen. Therefore, it is particularly preferable that the tensile elastic modulus according to JIS K7127 is 200 MPa or more.
  • the Elmendorf tear strength in the direction parallel to the flow of the resin when formed into a film having a thickness of 20 ⁇ m is not particularly limited to this, but is preferably 2 N / mm or more, more preferably 4 N / mm. mm or more, particularly preferably 6 N / mm or more, and most preferably 8 N / mm. If the Elmendorf tear strength is less than 2 N / mm, there may be practical problems as packaging materials for garbage bags, shopping bags, shopping bags, compost bags, and the like. Therefore, the Elmendorf tear strength according to JIS K7128 is particularly preferably 100 N / mm or more.
  • the film made of the resin composition produced by the production method of the present invention preferably has a weight loss of 5% or more in horticultural soil in an environment of 50 ° C. over 8 days.
  • a more preferable weight loss rate is 8% or more, and most preferably 10% or more. If the weight loss rate is less than 5% in 8 days, the film may remain in the soil for a long time when discarded, whereas the film with a low initial weight loss rate may not be completely biodegraded. .
  • these molded products are provided with chemical functions, electrical functions, magnetic functions, mechanical functions, friction / wear / lubricating functions, optical functions, thermal functions, surface functions such as biocompatibility, etc.
  • secondary processing include embossing, painting, adhesion, printing, metalizing (plating, etc.), machining, surface treatment (antistatic treatment, corona discharge treatment, plasma treatment, photochromism treatment, physical vapor deposition, chemical vapor deposition, Coating) and the like.
  • the resin composition of the present invention Since the resin composition of the present invention has good moldability and mechanical strength and the precipitation of the oligomer derived from the aliphatic polyester resin (A) on the surface is suppressed, the resin composition of the present invention is
  • the molded body formed by molding is suitably used in a wide range of applications such as various foods, medicines, miscellaneous liquids and powders, solid packaging materials, agricultural materials, and building materials. Specific applications include injection molded products (for example, fresh food trays, fast food containers, outdoor leisure products, etc.), extruded products (films, such as fishing lines, fishing nets, vegetation nets, water retaining sheets, etc.), hollow molding.
  • Products (bottles, etc.), other agricultural films, coating materials, fertilizer coating materials, laminate films, plates, stretched sheets, monofilaments, non-woven fabrics, flat yarns, staples, crimped fibers, striped tape, Split yarn, composite fiber, blow bottle, foam, shopping bag, garbage bag, compost bag, cosmetic container, detergent container, bleach container, rope, binding material, sanitary cover stock material, cold box, cushion material film, multi Filament, synthetic paper, surgical thread, suture, artificial bone, artificial skin for medical use, Microcapsules etc. DDS of wound dressing and the like.
  • the resin composition of the present invention has good moldability and mechanical strength, and since precipitation on the surface of the oligomer derived from the aliphatic polyester resin (A) is suppressed, the film formed by inflation molding is used. It is preferably applied to a shopping bag or a garbage bag to be manufactured.
  • information electronic materials such as toner binders and thermal transfer ink binders, automotive interior parts such as electrical product casings, instrument panels, sheets and pillars, and automotive exterior structural materials such as bumpers, front grills and wheel covers.
  • packaging materials such as packaging films, bags, trays, bottles, cushioning foams, fish boxes, etc., and agricultural materials such as mulching films, tunnel films, house films, sun coverings, grass protections. Sheets, cocoon sheets, germination sheets, vegetation mats, nursery beds, flower pots and the like can be mentioned.
  • the present invention will be described in more detail with reference to examples.
  • the present invention is not limited to the following examples as long as the gist thereof is not exceeded.
  • adopted in the following examples is as follows.
  • Aliphatic polyester resin (A-1) Polybutylene succinate resin GS Pla manufactured by Mitsubishi Chemical Corporation (grade name: AZ91TN, content of cyclic dimer contained in the resin: 7900 ppm)
  • Aliphatic polyester resin (A-2) GSPla manufactured by Mitsubishi Chemical Corporation (grade name: AD92WN, content of cyclic dimer contained in the resin: 5100 ppm)
  • Thermoplastic resin (B) BASF polybutylene terephthalate adipate resin Ecoflex (grade name: FBX7011) [Starch (C)] Corn starch manufactured by Nippon Corn Starch Co., Ltd.
  • the average particle size of the starch used as this raw material is the starch island phase dispersed in the resin composition Unlike the average particle size, it is the average value of the maximum particle size measured for 50 arbitrary starch particles by observing the starch particles of the raw material using an optical microscope.
  • Plasticizer for starch (D) Wako Pure Chemical Industries special grade glycerin
  • the cutting direction was set to be a plane parallel to the TD direction (care was taken to cut the approximately central part of the pellet and collect a section). Then, it returned to normal temperature, spraying dry nitrogen on this section
  • RuO 4 were stained with RuO 4 and observed at 120 KV using a JEM-1230 TEM (transmission electron microscope) manufactured by JEOL Ltd. to observe the sea-island structure. Furthermore, the range of 5 ⁇ m ⁇ 5 ⁇ m of the TEM image obtained here was analyzed by Winroof manufactured by Mitani Corporation, and the equivalent circle diameter of the starch phase (the diameter when measuring the area and drawing a perfect circle with the area) ) Average value (average particle size).
  • this average value may be referred to as the average particle diameter of the starch phase.
  • ⁇ Evaluation of content of cyclic dimer> As sample pretreatment, 1) 0.5 g of sample was quantified and dissolved in 5 mL of chloroform. When there was a component insoluble in chloroform, it was filtered to remove chloroform-insoluble matter. 2) 10 mL of methanol was added to the chloroform solution to reprecipitate the polymer portion. 3) 1 mL of the supernatant of the solution was taken and dried by blowing with nitrogen gas. 1 mL of acetonitrile was added to the dried sample and dissolved. 4) Acetonitrile-soluble component was filtered and used as a measurement sample.
  • the pretreated measurement sample was liquid chromatography “LC-10A” manufactured by Shimadzu Corporation, the mobile phase was acetonitrile / water (volume ratio 4/6), and the column was “SHISEIDOCCAPELL PAK C-18 TYPE MG” manufactured by Shiseido Co., Ltd. Was used to quantify the content (ppm by mass) of the cyclic dimer contained in the aliphatic polyester resin (A) and the resin composition.
  • thermoplastic resin composition was evaluated visually and by hand, and evaluated according to the following criteria. Good (O): No bleed-out to the surface of starch agglomerates or organic compounds containing hydroxyl groups. Poor (x): Bleed-out to the surface of starch agglomerates and organic compounds containing hydroxyl groups is observed.
  • the set temperature during kneading was 80 to 150 ° C., and the screw rotation speed was 150 to 300 rpm.
  • 40 mass% of aliphatic polyester resin (A-2) was further side-feeded and kneaded.
  • the obtained resin composition was extruded from a die in a strand shape, cooled in a water tank, and cut to obtain white pellets.
  • a TEM photograph of the pellet section is shown in FIG. From FIG.
  • the obtained pellets had a special morphology in which GSPla was the sea phase and starch and Ecoflex were the island phases. Moreover, from the TEM observation image of the pellet, the average particle diameter of the starch phase was calculated to be 0.3 ⁇ m.
  • the obtained resin composition pellets were dried at 70 ° C. under a nitrogen atmosphere for 8 hours, and then the pellets were subjected to inflation molding to form a film having a thickness of 30 ⁇ m. Inflation molding was performed under the conditions of Blow Ratio 3, Folding Diameter 360 mm, and Molding Temperature 140 ° C. using Engineering Plastics Industrial Co., Ltd. Model E30SP. Table 1 shows the contents of the implementation and the evaluation results of the obtained film. In Table 1, “-” in the composition [mass%] column indicates that the substance is not added, and [-] in the process column is not implemented. In the evaluation result column, [-] indicates that evaluation is not performed.
  • Example 2 Resin pellets were obtained in the same manner as in Example 1 except that the amount ratio of each component was changed as shown in Table 1.
  • GSPla was a sea phase and starch and Ecoflex each had an island phase and had a special morphology.
  • the average particle diameter of the starch phase was calculated to be 0.3 ⁇ m. Further, the pellet was blown in the same manner as in Example 1. Table 1 shows the contents of the implementation and the evaluation results of the obtained film.
  • the average particle diameter of the starch phase obtained from the TEM image was as fine as 0.3 ⁇ m, the inflation molding could be performed stably, and a film with a smooth surface could be obtained.
  • Table 1 shows the contents of the implementation and the evaluation results of the obtained film.
  • Example 4 The pellet of the resin composition obtained in Example 1 was subjected to the same inflation molding as in Example 1 without drying.
  • the moisture content of the pellets subjected to molding was 2.1% by mass.
  • Table 1 shows the contents of the implementation and the evaluation results of the obtained film.
  • the film of Example 4 was able to be formed into a cylindrical shape, but the inside of the film was fused and was inferior to the film of Example 1.
  • Example 5 A resin composition and a film were prepared under the same conditions as in Example 1 except that the amount ratio of each component was changed to the ratio shown in Table 1.
  • Table 1 shows the contents of the implementation and the evaluation results of the obtained film.
  • those in which the water content of the resin composition was adjusted to less than 1% by weight were particularly excellent in both tensile modulus and tear strength.
  • thermoplastic resin (B) BASF polybutylene terephthalate adipate resin Ecoflex (grade name: FBX7011)
  • D starch plasticizer
  • TEX30 manufactured by Wako Pure Chemical Industries, Ltd.
  • the obtained resin composition was subjected to inflation molding at a molding temperature of 150 ° C. using an inflation molding machine to form a film having a thickness of 20 ⁇ m.
  • the obtained film had no foreign matter such as aggregates and was translucent white, and no oligomer deposition was observed even at 1 month under conditions of 23 ° C. and 50% RH.
  • Table 1 shows the contents of the implementation and the evaluation results of the obtained film.
  • Example 10 In Example 9, except that suction by a vacuum vent was performed, the resin composition was extruded without being changed, and a white resin composition was obtained. Thereafter, the pellets of the resin composition were dried at 60 ° C. in a nitrogen atmosphere for 8 hours.
  • the content of the cyclic dimer measured by the method described above was 3050 ppm with respect to the entire resin composition. It is 7193 ppm when converted per aliphatic polyester resin (A-1) in the resin composition, and cyclic 2 converted per aliphatic polyester resin (A) by adding a devolatilization step using a vacuum vent. The content of the mass changed.
  • the obtained resin composition was subjected to inflation molding at a molding temperature of 150 ° C.
  • the obtained film was translucent white with no foreign matter such as agglomerates and the like, and no oligomer deposition was observed even at 1 month under conditions of 23 ° C. and 50% RH.
  • Table 1 shows the contents of the implementation and the evaluation results of the obtained film.
  • Example 11 16.7 parts by mass of the resin composition obtained in Example 9, 76.8 parts by mass of the aliphatic polyester resin (A-1), and 6.5 parts by mass of the thermoplastic resin (B) were added to a screw-type twin screw extruder.
  • the mixture was introduced into a (Technobel twin screw extruder (KZW15)) from a hopper and kneaded so that the maximum temperature was 170 ° C. or lower.
  • the obtained resin composition pellets were dried at 60 ° C. in a nitrogen atmosphere for 8 hours.
  • the content of the cyclic dimer measured by the method described above was 6600 ppm with respect to the entire resin composition.
  • the obtained resin composition was subjected to inflation molding at a molding temperature of 150 ° C. using an inflation molding machine to form a film having a thickness of 20 ⁇ m.
  • the obtained film was translucent white with no foreign matter such as agglomerates and the like, and no oligomer deposition was observed even at 1 month under conditions of 23 ° C. and 50% RH.
  • Table 1 shows the contents of the implementation and the evaluation results of the obtained film.
  • Example 12 In Example 9, 33.5 parts by weight of aliphatic polyester resin (A-1), 15.0 parts by weight of thermoplastic resin (B), 35.5 parts by weight of starch (C), plasticizer for starch (D) A resin composition was obtained by melt-kneading in the same manner as in Example 1 except that the amount was 16 parts by mass. The content of the cyclic dimer measured by the above-described method was 2600 ppm with respect to the entire resin composition. When converted to the aliphatic polyester resin (A-1) in the resin composition, it was 7755 ppm, and the amount of the cyclic dimer did not change greatly in the extrusion process. Film formation was performed in the same manner as in Example 9.
  • the obtained film was translucent white with no foreign matter such as agglomerates and the like, and no oligomer deposition was observed even at 1 month under conditions of 23 ° C. and 50% RH.
  • Table 1 shows the contents of the implementation and the evaluation results of the obtained film.
  • Example 13 In Example 10, 44.2 parts by weight of aliphatic polyester resin (A-1), 15.0 parts by weight of thermoplastic resin (B), 35.5 parts by weight of starch (C), and plasticizer for starch (D) A resin composition was obtained by melt-kneading in the same manner as in Example 10 except that the amount was 5.3 parts by mass. The content of the cyclic dimer measured by the method described above was 3180 ppm with respect to the entire resin composition. It was 7199 ppm in terms of per aliphatic polyester resin (A-1) in the resin composition. Film formation was performed in the same manner as in Example 9.
  • the obtained film was translucent white with no foreign matter such as agglomerates and the like, and no oligomer deposition was observed even at 1 month under conditions of 23 ° C. and 50% RH.
  • Table 1 shows the contents of the implementation and the evaluation results of the obtained film.
  • Example 14 In Example 10, the aliphatic polyester resin (A-1) was changed to 43.7 parts by mass of the aliphatic polyester resin (A-2), 25.0 parts by mass of the thermoplastic resin (B), starch (C) 25.
  • a resin composition was obtained by melt-kneading in the same manner as in Example 10 except that 0 part by mass and 6.3 parts by mass of the plasticizer (D) for starch were used.
  • the content of the cyclic dimer measured by the method described above was 2000 ppm with respect to the entire resin composition. It was 4577 ppm in terms of per aliphatic polyester resin (A-2) in the resin composition. Film formation was performed in the same manner as in Example 9.
  • the obtained film was translucent white with no foreign matter such as agglomerates and the like, and no oligomer deposition was observed even at 1 month under conditions of 23 ° C. and 50% RH.
  • Table 1 shows the contents of the implementation and the evaluation results of the obtained film.
  • Example 15 In Example 9, the aliphatic polyester resin (A-1) was changed to 33.4 parts by mass of the aliphatic polyester resin (A-2), 19.7 parts by mass of the thermoplastic resin (B), and starch (C) 39.
  • a resin composition was obtained by melt-kneading in the same manner as in Example 9 except that 4 parts by mass and 7.5 parts by mass of the plasticizer (D) for starch were used.
  • the content of the cyclic dimer measured by the above-described method was 1700 ppm with respect to the entire resin composition. It was 5088 ppm in terms of per aliphatic polyester resin (A-2) in the resin composition. Film formation was performed in the same manner as in Example 9.
  • the obtained film was translucent white with no foreign matter such as agglomerates and the like, and no oligomer deposition was observed even at 1 month under conditions of 23 ° C. and 50% RH.
  • Table 1 shows the contents of the implementation and the evaluation results of the obtained film.
  • Example 16 In Example 15, Example 15 was carried out except that a carbodiimide compound (carbodilite HMV-8CA; 0.4 parts by mass relative to the resulting resin composition) was added to the aliphatic polyester resin (A-2) and side-fed.
  • the resin composition was obtained by melt-kneading in the same manner as described above.
  • the content of the cyclic dimer measured by the above method was 1650 ppm with respect to the entire resin composition. It was 4938 ppm in terms of the aliphatic polyester resin (A-2) in the resin composition.
  • Film formation was performed in the same manner as in Example 9. Compared to Example 15, the stability of the molten film was better.
  • the obtained film was translucent white with no foreign matter such as agglomerates and the like, and no oligomer deposition was observed even at 1 month under conditions of 23 ° C. and 50% RH.
  • Table 1 shows the contents of the implementation and the evaluation results of the obtained film.
  • Example 4 Inflation molding was performed on 100 parts by mass of the aliphatic polyester resin (A-1) under the same conditions as in Example 12 to obtain a film having a thickness of 20 ⁇ m.
  • the obtained film was translucent without foreign substances such as aggregates, but a large amount of oligomers was observed when it was placed at 23 ° C. and 50% RH for 1 month.
  • Table 1 shows the contents of the implementation and the evaluation results of the obtained film.
  • Example 5 Inflation molding was performed on 100 parts by mass of the aliphatic polyester resin (A-2) under the same conditions as in Example 12 to obtain a film having a thickness of 20 ⁇ m.
  • the obtained film was translucent without foreign substances such as aggregates, but a large amount of oligomers was observed when it was placed at 23 ° C. and 50% RH for 1 month.
  • Table 1 shows the contents of the implementation and the evaluation results of the obtained film.
  • Example 7 (Comparative Example 7)
  • the aliphatic polyester resin (A-1) was changed to 46.6 parts by mass of the aliphatic polyester resin (A-2), 21.0 parts by mass of the thermoplastic resin (B), starch (C) 30.
  • a resin composition was obtained by melt-kneading in the same manner as in Example 13 except that 0 part by mass and 2.4 parts by mass of the plasticizer (D) for starch were used.
  • the content of the cyclic dimer measured by the method described above was 2150 ppm with respect to the entire resin composition. It was 4614 ppm in terms of per aliphatic polyester resin (A-2) in the resin composition.
  • the film was formed by the same method as in Example 9.
  • the obtained film had many aggregates derived from starch, and the average particle size of the starch phase was 10 ⁇ m. Since it was a sample with poor appearance that could not be blow-molded at a thickness of 20 ⁇ m, it was molded at a thickness of 60 ⁇ m.
  • Table 1 shows the contents of the implementation and the evaluation results of the obtained film.
  • Comparative Example 7 was the same as Comparative Example 7 except that the aliphatic polyester resin (A-2) was changed to 31 parts by weight of the aliphatic polyester resin (A-1) and 18 parts by weight of the starch plasticizer (D). Then, the resin composition was obtained by melt-kneading. The content of the cyclic dimer measured by the above-described method was 2200 ppm with respect to the entire resin composition. It was 7097 ppm in terms of per aliphatic polyester resin (A-1) in the resin composition.
  • Inflation molding was attempted in the same manner as in Example 9. However, since the fluidity of the resin composition was increased by adding a large amount of glycerin, it was impossible to perform inflation molding at a thickness of 20 ⁇ m. Molded with The film surface was sticky due to glycerin bleedout. The average particle size of the starch phase was 4 ⁇ m. When the obtained film was placed under conditions of 23 ° C. and 50% RH for 1 month, no oligomer precipitation was observed. Table 1 shows the contents of the implementation and the evaluation results of the obtained film.
  • Comparative Example 9 In Comparative Example 8, instead of using 31 parts by weight of the aliphatic polyester resin (A-1), 31 parts by weight of the aliphatic polyester resin (A-3) obtained in Production Example 2 was used. A resin composition was obtained by melt-kneading under the same conditions as in Comparative Example 8. The content of the cyclic dimer measured by the above method was 150 ppm with respect to the entire resin composition. It was 484 ppm when converted per aliphatic polyester resin (A-3) in the resin composition.
  • Example 9 Inflation molding was performed in the same manner as in Example 9 to obtain a film having a thickness of 20 ⁇ m.
  • the obtained film was translucent without foreign matter such as aggregates.
  • the surface condition was good without oligomer precipitation.
  • acetone was washed for 12 hours, so the productivity was low and there was an odor of acetone.
  • Table 1 shows the contents of the implementation and the evaluation results of the obtained film.
  • the moldability of a film is favorable and / or the resin composition excellent in the mechanical physical property at the time of setting it as a film, especially the tensile elasticity modulus and tear strength can be provided.
  • This resin composition is excellent in dispersibility of each component in the composition and also has good moldability.
  • the molded object obtained from this resin composition, especially a film can be utilized suitably as various bag products, such as a garbage bag and a shopping bag.
  • it has favorable moldability and mechanical strength, and provides the resin composition in which precipitation of the oligomer originating in aliphatic polyester-type resin (A) was suppressed, and its manufacturing method. Can do. Therefore, the industrial value of the present invention is remarkable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

 本発明の課題は、フィルムの成形性、および/または、機械物性、特に引張弾性率や引裂き強度が改善された、樹脂組成物を提供することに係る。本発明は、少なくとも脂肪族ポリエステル系樹脂(A)と澱粉(C)とを含有し、脂肪族ポリエステル系樹脂(A)が海相、澱粉(C)が島相を形成する樹脂組成物において、島相の平均粒子径が1μm以下とすることに係る。

Description

樹脂組成物、フィルム、袋製品、および、樹脂組成物の製造方法
 本発明は、樹脂組成物、該樹脂組成物を成形してなるフィルム、袋製品、および、該樹脂組成物の製造方法に関する。
 現代社会において、各種食品、薬品、雑貨用等の液状物や粉粒物、固形物の包装用資材、農業用資材、建築資材などの用途に対し、紙、プラスチック、アルミ箔等の様々な材料が用いられている。中でも、プラスチックは、強度、耐水性、成形性、透明性、コスト等において優れていることから、袋や容器などの成形品として、幅広い用途で使用されている。現在袋や容器などの用途に広く使用されているプラスチックとしては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリエチレンテレフタレート等がある。しかしながら、上記プラスチックからなる成形品は、自然環境下においては生分解や加水分解をしないか、又は分解速度が極めて遅いために、使用後埋設処理された場合は土中に残存したり、投棄された場合は景観を損ねたりすることがある。また、焼却処理された場合でも、有害なガスを発生したり、焼却炉を傷めたりするなどの問題がある。
 これらの問題を解決する環境にやさしいプラスチックとして、生分解性樹脂が注目されてきている。生分解性樹脂を成形してなるフィルムは、使用後は土中に埋設することにより、土中で分解されるため、温暖化防止、土壌及び大気の汚染防止を図ることができる。そのため、近年は、ゴミ袋、買い物袋等に生分解性樹脂製のフィルムが多く使用されつつある。しかし、これら生分解性樹脂製のフィルムは、一般的に機械的物性に劣るものが多いため、良好な生分解性を維持しつつも生分解性フィルムの機械的物性を改善するための研究が数多くなされている。
 例えば、特許文献1には、澱粉と、脂肪族ポリエステルと、脂肪族芳香族ポリエステルとを特定の割合で混合した生分解性樹脂組成物が開示されている。また、特許文献2には、澱粉を含有する分散相と、熱可塑性ポリマーが構成する連続相とを有する生分解性樹脂組成物が開示されている。さらに、特許文献3には、澱粉と脂肪族ポリエステルと多価アルコールとを特定の割合で混合した樹脂組成物が開示されている。
 しかしながら、これら特許文献1~3に開示されている生分解性樹脂組成物は、樹脂組成物中の成分の分散性が悪く、機械物性の改善は未だ不十分であった。そのため、機械物性が一層改善された生分解性樹脂組成物及びその成形体が望まれていた。
 また、脂肪族ポリエステル樹脂は、フィルム等の各種成形品に適用されているが、脂肪族ポリエステル樹脂を用いた成形品をしばし放置すると、表面にオリゴマー、とりわけ環状2量体が析出し、表面が白化するという問題があり、コストを抑えられるような有効な除去方法は開発されていないのが現状である。そこで、有効な除去方法として近年開発されてきた方法としては、脂肪族ポリエステル樹脂に含まれるオリゴマー、とりわけ環状2量体を低減する技術として、脂肪族ポリエステルを、脂肪族ケトン、環状脂肪族エーテル、脂肪族モノエステルから選ばれる1種類以上の溶剤で、脂肪族ポリエステルの融点よりも低く、溶剤の沸点よりも低い温度にて洗浄する技術がある(特許文献4)。しかし、この方法では、製造工程のプロセスが煩雑になり、また使用した有機溶媒が樹脂中に残留するという問題があった。
 脂肪族ポリエステル樹脂の機械的性質を改善する試みとして、澱粉と脂肪族ポリエステルの組成物を調製することも行われているが、上記の脂肪族ポリエステル樹脂に由来するオリゴマーによる成形体の白化という問題は依然解決されておらず、その機械的性質の改善に関しても不十分であった(特許文献5)。更に、機械的性質を改善する目的として特許文献1には、脂肪族ポリエステル樹脂(A)、脂肪族ポリエステル樹脂(A)以外の熱可塑性樹脂(B)、澱粉(C)及び水酸基を含有する有機化合物(D)を少なくとも含有する樹脂組成物が開示されている。
日本国特開2008-13602号公報 日本国特表2000-509427号公報 日本国特開2003-55470号公報 日本国特開2002-003606号公報 日本国特開平7-330954号公報
 本発明者らが検討した結果、特許文献1に記載の樹脂組成物の原料である脂肪族ポリエステル樹脂は、環状2量体を既に約700ppm以下に低減されたものであり、このような樹脂で製造される熱可塑性樹脂組成物は環状2量体が少なく析出しないことも考えられるが、実際に実用化する段階では、原料中の環状2量体を低減するために煩雑な作業が必要になりコストがかかってしまったり、有機溶媒が樹脂中に残留してしまい、大量生産には適していないことが分かった。
 本発明は上記課題に鑑みてなされたものであり、フィルムの成形性および機械物性の少なくとも何れかの特性、特に引張弾性率および引裂き強度の少なくとも何れかが改善された、樹脂組成物及びその製造方法、ならびに、該樹脂組成物を成形してなるフィルムおよび袋製品を提供することを課題とする。
 また、本発明は、環状2量体が析出し、表面が白化するような一般的には実用的ではない脂肪族ポリエステル樹脂でも、特定の製造方法を用いることで、良好な成形性や機械強度を有し、脂肪族ポリエステル樹脂に由来するオリゴマーの表面への析出が抑制された実用可能な樹脂組成物を開発することに成功した。そこで、本発明はその樹脂組成物とその製造方法、ならびに、該樹脂組成物を成形してなるフィルムおよび袋製品を提供することを課題とする。
 本発明者らは、上記課題に関して検討を行った結果、
(1)樹脂組成物中の微細構造を特定の形態にすることで、引張弾性率や引裂き強度が飛躍的に向上すること、
を見出した。また、さらに、
(2)フィルムの原料となる樹脂組成物の水分量を調整することで、成形性や機械的物性が向上すること、
(3)樹脂組成物の成分とその配合比率を最適化することで、引張弾性率や引裂き強度が飛躍的に向上すること、
(4)特定量の環状2量体を有する脂肪族ポリエステル系樹脂(A)および澱粉(C)からなる樹脂組成物に加えて、澱粉の可塑剤(D)を溶融混練することにより、脂肪族ポリエステル系樹脂(A)に比べて機械強度が大きく改善されることに加え、驚くべきことに脂肪族ポリエステル系樹脂に由来するオリゴマーが水酸基を含有する有機化合物に溶解するために、成形体表面へのオリゴマーの析出を抑制できること、
を見出した。
 以上の見識を基に、本発明者らは以下の発明を完成させた。
[1] 少なくとも脂肪族ポリエステル系樹脂(A)と澱粉(C)とを含有し、該脂肪族ポリエステル系樹脂(A)が海相、該澱粉(C)が島相を形成する樹脂組成物であって、該島相の平均粒子径が1μm以下である、樹脂組成物。
[2] 好ましくは、前記脂肪族ポリエステル系樹脂(A)が、ジオール単位及びジカルボン酸単位を構成単位とする、[1]に記載の樹脂組成物。
[3] 好ましくは、前記脂肪族ポリエステル系樹脂(A)が、ポリブチレンサクシネート系樹脂、ポリブチレンサクシネートアジペート系樹脂又はその両樹脂の混合物である、[1]または[2]に記載の樹脂組成物。
[4] 好ましくは、さらに、脂肪族ポリエステル系樹脂以外の熱可塑性樹脂(B)を含有し、該熱可塑性樹脂は、前記澱粉(C)の島相と別個の島相を形成する、[1]~[3]のいずれか1つに記載の樹脂組成物。
[5] 好ましくは、前記熱可塑性樹脂(B)として脂肪族芳香族ポリエステル系樹脂を含有し、該脂肪族芳香族ポリエステル系樹脂は、前記澱粉(C)の島相と別個の島相を形成する、[4]に記載の樹脂組成物。
[6] 好ましくは、前記脂肪族芳香族ポリエステル系樹脂が、ジオール単位及びジカルボン酸単位を構成単位とする、[5]に記載の樹脂組成物。
[7] 好ましくは、前記脂肪族芳香族ポリエステル系樹脂が、ポリブチレンアジペートテレフタレート系樹脂である、[5]または[6]に記載の樹脂組成物。
[8] 好ましくは、さらに、澱粉の可塑剤(D)を含有する、[1]~[7]のいずれか1つに記載の樹脂組成物。
[9] 好ましくは、前記脂肪族ポリエステル系樹脂(A)に含まれる環状2量体の含量が、該脂肪族ポリエステル系樹脂(A)に対して、質量で1000ppm~10000ppmである、[1]~[8]のいずれか1つに記載の樹脂組成物。
[10] 好ましくは、樹脂組成物に含まれる環状2量体の含量が、樹脂組成物全体に対して、質量で1000ppm~9000ppmである、[9]に記載の樹脂組成物。
[11] 好ましくは、前記熱可塑性樹脂(B)は、脂肪族ポリエステル系樹脂(A)100質量部に対して1質量部以上100質量部以下であり、前記澱粉の可塑剤(D)が澱粉(C)に対して10~55質量%である、[8]~[10]のいずれか1つに記載の樹脂組成物。
[12] 好ましくは、前記脂肪族ポリエステル系樹脂(A)が、ポリブチレンサクシネート系樹脂であり、前記脂肪族ポリエステル系樹脂以外の熱可塑性樹脂(B)が、ポリブチレンテレフタレートアルキレート系樹脂であり、澱粉の可塑剤(D)がグリセリンであり、
前記樹脂組成物全体に対する各成分の質量割合が、前記ポリブチレンサクシネート系樹脂30~45質量%、前記ポリブチレンテレフタレートアルキレート系樹脂15~25質量%、前記澱粉(C)30~45質量%、前記グリセリン4~8質量%である、[8]~[11]のいずれか1つに記載の樹脂組成物。
[13] [1]~[12]のいずれか1つに記載の樹脂組成物を成形してなるフィルムであって、JIS K7127に準拠した引張弾性率が200MPa以上であり、JIS K7128に準拠したエルメンドルフ引裂強度が100N/mm以上である、フィルム。
[14] 好ましくは、インフレーション成形されたものである、[13]に記載のフィルム。
[15] [13]または[14]に記載のフィルムからなる袋製品。
[16] 脂肪族ポリエステル系樹脂(A)と澱粉(C)とを含む樹脂組成物の製造方法であって、平均粒子径1μm以下の澱粉(C)を含む組成物(X)と、脂肪族ポリエステル系樹脂(A)とを混合する、樹脂組成物の製造方法。
[17] 好ましくは、脂肪族ポリエステル系樹脂(A)と澱粉(C)とを含む樹脂組成物の製造方法であって、該樹脂組成物中の水分量を1質量%未満に調整する、[16]に記載の樹脂組成物の製造方法。
[18] 好ましくは、脂肪族ポリエステル系樹脂(A)および澱粉(C)を混練する樹脂組成物の製造方法であって、脂肪族ポリエステル系樹脂(A)として、環状2量体の含有量が1000~10000ppmである脂肪族ポリエステル系樹脂(A)を用いる、[16]または[17]に記載の樹脂組成物の製造方法。
[19] 好ましくは、原料を供給するための主原料供給部、副原料供給部、該副原料供給部とダイスヘッドとの間に脱揮工程部を有する二軸スクリュー式押出機を用い、該主原料供給部から澱粉(C)をフィードし、脂肪族ポリエステル系樹脂(A)を該副原料供給部から供給し、該脱揮工程部において脱揮を行う、[18]に記載の樹脂組成物の製造方法。
[20] 好ましくは、前記脂肪族ポリエステル系樹脂(A)の融解温度が130℃以下である、[16]~[19]のいずれか1つに記載の樹脂組成物の製造方法。
[21] 好ましくは、前記脂肪族ポリエステル系樹脂(A)が、ジオール単位及びジカルボン酸単位を構成単位とする、[16]~[20]のいずれか1つに記載の樹脂組成物の製造方法。
[22] 好ましくは、前記脂肪族ポリエステル系樹脂(A)が、ポリブチレンサクシネート系樹脂、ポリブチレンサクシネートアジペート系樹脂又はその両樹脂の混合物である、[16]~[21]のいずれか1つに記載の樹脂組成物の製造方法。
[23] 好ましくは、前記樹脂組成物に、さらに澱粉の可塑剤(D)を含有させる、[16]~[22]のいずれか1つに記載の樹脂組成物の製造方法。
[24] 好ましくは、前記澱粉の可塑剤(D)が、水酸基を有する有機化合物である、[23]に記載の樹脂組成物の製造方法。
[25] 好ましくは、前記澱粉の可塑剤(D)の分子量が3000以下である、[23]または[24]に記載の樹脂組成物の製造方法。
[26] 好ましくは、前記澱粉の可塑剤(D)が、グリセリン、ソルビトール、ペンタエリストール、プロピレングリコール及びエチレングリコールからなる群より選ばれる少なくとも1種である、[23]~[25]のいずれか1つに記載の樹脂組成物の製造方法。
[27] 好ましくは、さらに、脂肪族ポリエステル系樹脂(A)以外の熱可塑性樹脂(B)を配合させる樹脂組成物の製造方法であって、脂肪族ポリエステル系樹脂(A)100質量部に対して1質量部以上100質量部以下である熱可塑性樹脂(B)を配合させる、[16]~[26]のいずれか1つに記載の樹脂組成物の製造方法。
[28] 好ましくは、前記熱可塑性樹脂(B)が、脂肪族芳香族ポリエステル系樹脂である、[27]に記載の樹脂組成物の製造方法。
[29] 好ましくは、前記熱可塑性樹脂(B)が、ジオール単位とジカルボン酸単位とを構成単位とする、[27]または[28]に記載の樹脂組成物の製造方法。
[30] 好ましくは、前記熱可塑性樹脂(B)が、ポリブチレンアジペートテレフタレート系樹脂である、[27]~[29]のいずれか1つに記載の樹脂組成物の製造方法。
 本発明によれば、フィルムの成形性が良好であり、および/または、フィルムとした場合の機械物性、特に引張弾性率及び引裂強度に優れた、樹脂組成物を提供することができる。この樹脂組成物は該組成物中の各成分の分散性に優れており、成形性も良好である。このため、該樹脂組成物から得られる成形体、特にフィルムは、ごみ袋、買い物袋などの各種袋製品として好適に利用することができる。
 また、本発明の好ましい形態においては、良好な成形性や機械強度を有し、脂肪族ポリエステル系樹脂(A)に由来するオリゴマーの析出が抑制された樹脂組成物及びその製造方法を提供することができる。
図1は、本発明の樹脂組成物の製造に好ましく用いられる二軸スクリュー押出機100の概略図である。 図2は、実施例1で製造された樹脂組成物ペレットの透過型電子顕微鏡写真である。 図3は、樹脂組成物ペレット製造工程の概略図である。
 <樹脂組成物>
 本発明の樹脂組成物は、脂肪族ポリエステル系樹脂(A)と、澱粉(C)とを少なくとも含有しており、樹脂組成物中において、脂肪族ポリエステル系樹脂(A)が海相、澱粉(C)が島相を形成しているものである。以下、各成分及び製造方法等について詳細に説明する。
 なお、本明細書では、特定の樹脂を成分として含有する樹脂組成物を、その主成分となる樹脂の名前を冠して呼ぶ場合がある。ここで「主成分」とは、組成物の50質量%以上、好ましくは70質量%以上、特には90質量%以上を占める成分をいうものとする。例えば、「ポリブチレンサクシネート系樹脂」とは、ポリブチレンサクシネート系樹脂を主成分とする樹脂組成物をいう。
 ここで、“質量%”、“質量ppm”及び“質量部”は、それぞれ“重量%”、“重量ppm”及び“重量部”と同義である。また、単に“ppm”と記載した場合は、“重量ppm”のことを示す。
 また、本明細書では「重合体」という語を、単一種の繰り返し構造単位から構成される重合体(所謂「単独重合体」)と、複数種の繰り返し構造単位から構成される重合体(所謂「共重合体」)とを包含する概念として使用する。
 また、以下の記載では、ある単量体に由来する重合体の部分構造単位を、その単量体の名称に「単位」という言葉を付して表わす。例えば、ジカルボン酸に由来する部分構造単位は、「ジカルボン酸単位」という名称で表わされる。
 また、同一の部分構造単位を与える単量体を、その部分構造単位の名称の「単位」を「成分」に換えた名称で総称する。例えば、芳香族ジカルボン酸や芳香族ジカルボン酸ジエステル等の単量体は、重合体を形成する過程の反応は異なったとしても、いずれも芳香族ジカルボン酸単位を形成する。よって、これらの芳香族ジカルボン酸及び芳香族ジカルボン酸ジエステルを、「芳香族ジカルボン酸成分」という名で総称する。
 <脂肪族ポリエステル系樹脂(A)>
 本発明において、脂肪族ポリエステル系樹脂(A)とは、分子中に芳香族環を実質的に有さないポリエステル樹脂をいう。本発明における脂肪族ポリエステル系樹脂(A)は、ジオール単位及びジカルボン酸単位を含むものが好ましく、更に好ましくは、例えば、下記式(1)で表される鎖状脂肪族及び/又は脂環式ジオール単位、並びに、下記式(2)で表される鎖状脂肪族及び/又は脂環式ジカルボン酸単位からなるものである。
 -O-R-O-      (1)
[式(1)中、Rは2価の鎖状脂肪族炭化水素基及び/又は2価の脂環式炭化水素基を示す。共重合されている場合には、樹脂中に2種以上のRが含まれていてもよい。]
 -OC-R-CO-    (2)
[式(2)中、Rは2価の鎖状脂肪族炭化水素基及び/又は2価の脂環式炭化水素基を示す。共重合されている場合には、樹脂中に2種以上のRが含まれていてもよい。]
 なお、式(1)、式(2)において、「2価の鎖状脂肪族炭化水素基及び/又は2価の脂環式炭化水素基」の「及び」とは、構成成分の1分子中に2価の鎖状脂肪族炭化水素基と2価の脂環式炭化水素基の両方を含んでいる場合を意味する。また、以下、「鎖状脂肪族及び/又は脂環式」を、単に「脂肪族」と略記する場合がある。
 式(1)のジオール単位を与える脂肪族ジオール成分は特に限定はないが、炭素数2~10個の脂肪族ジオール成分が好ましく、炭素数4~6個の脂肪族ジオール成分が特に好ましい。具体的には、例えば、1,3-プロパンジオール、1,4-ブタンジオール、1,4-シクロヘキサンジメタノール等が挙げられ、中でも1,4-ブタンジオールが特に好ましい。脂肪族ジオール成分は2種類以上を用いることもできる。
 式(2)のジカルボン酸単位を与える脂肪族ジカルボン酸成分は特に限定はないが、炭素数2~10個の脂肪族ジカルボン酸成分が好ましく、炭素数4~8個の脂肪族ジカルボン酸成分が特に好ましい。脂肪族ジカルボン酸成分の具体例としては、例えば、コハク酸、アジピン酸、スベリン酸、セバシン酸、ドデカン二酸等が挙げられ、中でもコハク酸又はアジピン酸が特に好ましい。脂肪族ジカルボン酸成分は2種類以上を用いることもできる。
 更に、本発明における脂肪族ポリエステル系樹脂(A)には、脂肪族オキシカルボン酸単位が含有されていてもよい。脂肪族オキシカルボン酸単位を与える脂肪族オキシカルボン酸の具体例としては、例えば、乳酸、グリコール酸、2-ヒドロキシ-n-酪酸、2-ヒドロキシカプロン酸、6-ヒドロキシカプロン酸、2-ヒドロキシ3,3-ジメチル酪酸、2-ヒドロキシ-3-メチル酪酸、2-ヒドロキシイソカプロン酸等、又はこれらの低級アルキルエステル若しくは分子内エステルが挙げられる。これらに光学異性体が存在する場合には、D体、L体又はラセミ体の何れでもよく、形態としては固体、液体又は水溶液であってもよい。これらの中で特に好ましいものは、乳酸又はグリコール酸である。これら脂肪族オキシカルボン酸は単独でも、2種以上の混合物としても使用することもできる。
 上記脂肪族オキシカルボン酸の量は、脂肪族ポリエステル系樹脂(A)を構成する全構成成分中、下限が通常0モル%以上、好ましくは、0.01モル%以上であり、上限が通常30モル%以下、好ましくは20モル%以下である。
 また、本発明における脂肪族ポリエステル系樹脂(A)は、「3官能以上の脂肪族多価アルコール」、「3官能以上の脂肪族多価カルボン酸又はその酸無水物」又は「3官能以上の脂肪族多価オキシカルボン酸」を共重合すると、得られる脂肪族ポリエステル系樹脂(A)の溶融粘度を高めることができるため好ましい。
 3官能の脂肪族多価アルコールの具体例としては、トリメチロールプロパン、グリセリン等が挙げられ、4官能の脂肪族多価アルコールの具体例としては、ペンタエリスリトール等が挙げられる。これらは単独でも2種以上混合して使用することもできる。
 3官能の脂肪族多価カルボン酸又はその酸無水物の具体例としては、プロパントリカルボン酸又はその酸無水物が挙げられ、4官能の多価カルボン酸又はその酸無水物の具体例としては、シクロペンタンテトラカルボン酸又はその酸無水物等が挙げられる。これらは単独でも2種以上混合して使用することもできる。
 また、3官能の脂肪族オキシカルボン酸成分は、(i)カルボキシル基が2個とヒドロキシル基が1個を同一分子中に有するタイプと、(ii)カルボキシル基が1個とヒドロキシル基が2個のタイプとに分かれ、何れのタイプも使用可能である。具体的には、リンゴ酸等が好ましく用いられる。また、4官能の脂肪族オキシカルボン酸成分は、(i)3個のカルボキシル基と1個のヒドロキシル基とを同一分子中に共有するタイプ、(ii)2個のカルボキシル基と2個のヒドロキシル基とを同一分子中に共有するタイプ、(iii)3個のヒドロキシル基と1個のカルボキシル基とを同一分子中に共有するタイプとに分かれ、何れのタイプも使用可能である。具体的には、クエン酸、酒石酸等が挙げられる。これらは単独でも2種以上混合して使用することもできる。
 このような3官能以上の化合物の量は、脂肪族ポリエステル系樹脂(A)を構成する全構成成分中、下限は、通常0モル%以上、好ましくは0.01モル%以上であり、上限は、通常5モル%以下、好ましくは2.5モル%以下である。
 本発明における好ましい脂肪族ポリエステル系樹脂(A)としては、ポリブチレンサクシネート系樹脂、ポリブチレンサクシネートアジペート系樹脂が挙げられる。脂肪族ポリエステル系樹脂(A)として、特に好ましくは、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート、又はそれらの混合物である。
 また、脂肪族ポリエステル系樹脂(A)、特にジオール単位及び/又はジカルボン酸単位を誘導する原料はバイオマス資源から得られるものであってもよい。バイオマス資源から上記原料を得る方法は特に限定されず公知の技術を用いればよい。
 本発明の樹脂組成物に配合される原料としての脂肪族ポリエステル系樹脂(A)に含まれる環状2量体の含量は、脂肪族ポリエステル系樹脂(A)に対して、質量で1000ppm~10000ppmが必須であるが、好ましくは1500ppm~9000ppmであり、特に好ましくは2000ppm~8000ppmであり、更に好ましくは2500ppm~7500ppmである。脂肪族ポリエステル系樹脂(A)由来の環状2量体の含量が多過ぎる場合は、環状2量体の析出を抑制するために必要な澱粉の可塑剤(D)の添加量が多くなり過ぎるため、該澱粉の可塑剤(D)が成形体表面に偏析する、樹脂の流動性が高くなり過ぎるために成形時にトラブルが生ずる等の場合がある。一方、環状2量体の含量を必要以上に少なくしようとすると、後述するように、適切な溶媒を使用して樹脂を洗浄する必要があり、確かに成形体表面への環状2量体の偏析は抑制されるが、溶媒による洗浄のプロセスが煩雑である、洗浄に使用した溶媒が樹脂ペレットに残留する等の場合がある。本発明における環状2量体の含量は、実施例に記載の方法で定量した値である。
 環状2量体の含量を、脂肪族ポリエステル系樹脂(A)全体に対して、質量で1000ppm~10000ppmにする方法は特に限定はないが、後述する脂肪族ポリエステル系樹脂(A)の製造工程において、得られた樹脂を押出機にて溶融させて押し出しながら脱揮する方法、脂肪族ポリエステル系樹脂(A)を製造後に有機溶剤で洗浄する方法等がある。しかしながら、環状2量体の含量を1000ppmより少なく制御するために、脂肪族ポリエステル系樹脂(A)を製造後に有機溶剤で洗浄する方法や得られた樹脂を押出機にて溶融させて押し出しながら脱揮する方法を用いることは、製造プロセスが煩雑になったり、使用した有機溶媒が樹脂中に残留するという問題があり好ましくない。
 本発明ではこのように1000ppmより少なく環状2量体の含量を制御するための方法を用いることなく製造された脂肪族ポリエステル系樹脂(A)を用いることが好ましい。ただし、本発明の効果を損なわない限り、特に制限されるものではない。
 本発明でいう環状2量体とは、例えば上記式(1)のジオール単位を与えるジオール成分が1,4-ブタンジオールであり、上記式(2)のジカルボン酸単位を与えるジカルボン酸成分がコハク酸の場合、2個の1,4-ブタンジオール単位(BD)と2個のコハク酸(SA)単位とからなる下記(3)式のような構造を指す。
Figure JPOXMLDOC01-appb-C000001
 本発明で使用する脂肪族ポリエステル系樹脂(A)は、公知の方法で製造することができる。例えば、上記の脂肪族ジカルボン酸成分と脂肪族ジオール成分とのエステル化反応及び/又はエステル交換反応を行った後、減圧下での重縮合反応を行うといった溶融重合の一般的な方法や、有機溶媒を用いた公知の溶液加熱脱水縮合方法によっても製造することができるが、経済性や製造工程の簡略性の観点から、無溶媒下で行う溶融重合で製造する方法が好ましい。
 また、重縮合反応は、重合触媒の存在下に行うことが好ましい。重合触媒の添加時期は、重縮合反応以前であれば特に限定されず、原料仕込み時に添加しておいてもよく、減圧開始時に添加してもよい。重合触媒としては、一般には、周期表で、水素、炭素を除く1族~14族金属元素を含む化合物である。具体的には、チタン、ジルコニウム、錫、アンチモン、セリウム、ゲルマニウム、亜鉛、コバルト、マンガン、鉄、アルミニウム、マグネシウム、カルシウム、ストロンチウム、ナトリウム及びカリウムからなる群から選ばれた、少なくとも1種以上の金属を含むカルボン酸塩、アルコキシ塩、有機スルホン酸塩又はβ-ジケトナート錯体等の有機基を含む化合物、更には前記した金属の酸化物、ハロゲン化物等の無機化合物、又はそれらの混合物が挙げられる。
 これらの中では、チタン、ジルコニウム、ゲルマニウム、亜鉛、アルミニウム、マグネシウム又はカルシウムを含む金属化合物、並びにそれらの混合物が好ましく、その中でも、特に、チタン化合物又はゲルマニウム化合物が好ましい。また、触媒は、重合時に溶融又は溶解した状態であると重合速度が高くなる理由から、重合時に液状であるか、エステル低重合体やポリエステルに溶解する化合物が好ましい。
 これらの重合触媒として金属化合物を用いる場合の触媒添加量は、生成するポリエステルに対する金属量として、下限値が通常、5ppm以上、好ましくは10ppm以上であり、上限値が通常、30000ppm以下、好ましくは1000ppm以下、より好ましくは250ppm以下、特に好ましくは130ppm以下である。使用する触媒量が多すぎると、経済的に不利であるばかりでなくポリマーの熱安定性が低くなるのに対し、逆に少なすぎると重合活性が低くなり、それに伴いポリマー製造中にポリマーの分解が誘発されやすくなる。
 ジカルボン酸成分とジオール成分とのエステル化反応及び/又はエステル交換反応の反応温度は、下限が通常150℃以上、好ましくは180℃以上、上限が通常260℃以下、好ましくは250℃以下である。反応雰囲気は、通常、窒素、アルゴン等の不活性ガス雰囲気下である。反応圧力は、通常、常圧~10kPaであるが、常圧が好ましい。反応時間は、通常1時間以上であり、上限は通常10時間以下、好ましくは、4時間以下である。
 その後の重縮合反応は、圧力を、下限が通常0.001×10Pa以上、好ましくは0.01×10Pa以上であり、上限が通常1.4×10Pa以下、好ましくは0.4×10Pa以下の真空度として行う。この時の反応温度は、下限が通常150℃以上、好ましくは180℃以上であり、上限が通常260℃以下、好ましくは250℃以下の範囲である。反応時間は、下限が通常2時間以上であり、上限が通常15時間以下、好ましくは10時間以下である。
 本発明において脂肪族ポリエステル系樹脂(A)を製造する反応装置としては、公知の縦型あるいは横型撹拌槽型反応器を用いることができる。例えば、溶融重合を同一又は異なる反応装置を用いて、エステル化及び/又はエステル交換の工程と減圧重縮合の工程の2段階で行い、減圧重縮合の反応器としては、真空ポンプと反応器を結ぶ減圧用排気管を具備した撹拌槽型反応器を使用する方法が挙げられる。また、真空ポンプと反応器とを結ぶ減圧用排気管の間には、凝縮器が結合されており、該凝縮器にて縮重合反応中に生成する揮発成分や未反応モノマーが回収される方法が好んで用いられる。
 本発明において、目的とする重合度のポリエステルを得るためのジオール成分とジカルボン酸成分とのモル比は、その目的や原料の種類により好ましい範囲は異なるが、酸成分1モルに対するジオール成分の量が、下限が通常0.8モル以上、好ましくは、0.9モル以上であり、上限が通常1.5モル以下、好ましくは1.3モル以下、特に好ましくは1.2モル以下である。また、ウレタン結合、アミド結合、カーボネート結合、エーテル結合等を導入することができる。
 本発明に用いられる脂肪族ポリエステル系樹脂(A)は、結晶性を有する熱可塑性樹脂であり融解温度を有する。脂肪族ポリエステル系樹脂(A)の融解温度は、好ましくは60℃以上150℃以下、より好ましくは65℃以上130℃以下、さらに好ましくは70℃以上120℃以下である。融解温度が150℃より高いと、組成物の混練工程において工程温度が高くなるため樹脂組成物中の澱粉の劣化が進み、成形品が着色するなどの不具合が生じる可能性がある。また、融解温度が60℃よりも低いと、成形品の使用温度によっては変形が生じるなど実用に際して不都合が生じる可能性がある。融解温度は、示差走査熱量計測定により決定される。示差走査熱量計測定は、例えばパーキンエルマー社製DSC7を用い、5mgのサンプルを、流量50mL/分の窒素気流下で10℃/分の速度で加熱し、結晶の融解に伴う吸熱ピークを記録することにより実施される。
 本発明に用いられる脂肪族ポリエステル系樹脂(A)は十分に結晶化速度が高いものであり、示差走査熱量計測定において10℃/分で冷却した際の結晶化に基づく発熱ピークの半値幅が、通常、15℃以下、好ましくは10℃以下、特に好ましくは8℃以下である。示差走査熱量計測定は、例えばパーキンエルマー社製DSC7を用い、5mgのサンプルを、流量50mL/分の窒素気流下で加熱溶融させた後、10℃/分の速度で冷却し、結晶化に伴う発熱ピークを記録することにより実施される。
 本発明に用いられる脂肪族ポリエステル系樹脂(A)のメルトフローレート(MFR)は、190℃、2.16kgで測定した場合、下限が通常0.1g/10分以上であり、上限が、通常100g/10分以下、好ましくは50g/10分以下、特に好ましくは30g/10分以下である。
 本発明の樹脂組成物における、脂肪族ポリエステル系樹脂(A)の含有量は、樹脂組成物全体を基準(100%)として、質量割合で、好ましくは10%以上、より好ましくは20%以上、さらに好ましくは30%以上であり、含有量の上限は、好ましくは80%以下、より好ましくは60%以下、さらに好ましくは50%以下、特に好ましくは45%以下である。脂肪族ポリエステル系樹脂(A)の含有量が多すぎると、引裂き強度などの物性が低下したり、コストが上昇したりするなどして好ましくない。一方、脂肪族ポリエステル系樹脂(A)の含有量が少なすぎると、引張弾性率などの物性が低下したり、フィルム成形性が悪化したりするなどして好ましくない。
 <脂肪族ポリエステル系樹脂(A)以外の熱可塑性樹脂(B)>
 本発明の樹脂組成物には、脂肪族ポリエステル系樹脂(A)や澱粉(C)と共に、脂肪族ポリエステル系樹脂(A)以外の熱可塑性樹脂(B)を含有していてもよい。
 本発明の熱可塑性樹脂(B)は、脂肪族ポリエステル系樹脂(A)以外の熱可塑性樹脂であれば特に制限されることはないが、生分解性樹脂が好ましい。具体例としては、ポリブチレンサクシネート系樹脂、ポリブチレンサクシネートアジペート系樹脂、ポリ乳酸、ポリヒドロキシアルカノエート、ポリカプロラクトン、脂肪族芳香族ポリエステル系樹脂、などである。とりわけ、脂肪族芳香族ポリエステル系樹脂が脂肪族ポリエステル系樹脂(A)との相溶性の観点から好ましい。脂肪族芳香族ポリエステル系樹脂は、樹脂組成物に含有されることによって、澱粉(C)と同様に島相を形成する。
 「脂肪族芳香族ポリエステル系樹脂」とは、芳香族ジカルボン酸及び脂肪族ジカルボン酸、並びに、脂肪族ジオールを主成分とするものである。この場合の芳香族ジカルボン酸単位の含量は、脂肪族ジカルボン酸単位と芳香族ジカルボン酸単位の全量を基準(100モル%)として、5モル%以上60モル%以下であることが好ましい。具体的には、例えば、下記式(4)で表される脂肪族ジオ-ル単位、下記式(5)で表される脂肪族ジカルボン酸単位、及び、下記式(6)で表される芳香族ジカルボン酸単位を必須成分とするものである。ただし、オキシカルボン酸単位を有していてもよい。
 -O-R-O-      (4)
[式(4)中、Rは2価の鎖状脂肪族炭化水素基及び/又は2価の脂環式炭化水素基を示し、共重合されている場合には1種に限定されない。]
 -OC-R-CO-    (5)
[式(5)中、Rは直接結合を示すか、2価の鎖状脂肪族炭化水素基及び/又は2価の脂環式炭化水素基を示し、共重合されている場合には1種に限定されない。]
 -OC-R-CO-    (6)
[式(6)中、Rは2価の芳香族炭化水素基を示し、共重合されている場合には1種に限定されない。]
 式(4)のジオール単位を与えるジオール成分は、炭素数が通常2以上10以下のものであり、例えば、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,4-シクロヘキサンジメタノール等が挙げられる。中でも、炭素数2以上4以下のジオールが好ましく、エチレングリコール、1,4-ブタンジオールがより好ましく、1,4-ブタンジオールが特に好ましい。
 式(5)のジカルボン酸単位を与えるジカルボン酸成分は、炭素数が通常2以上10以下のものであり、例えば、コハク酸、アジピン酸、スベリン酸、セバシン酸、ドデカン二酸等が挙げられる。中でも、コハク酸又はアジピン酸が好ましい。
 式(6)の芳香族ジカルボン酸単位を与える芳香族ジカルボン酸成分としては、例えば、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸等が挙げられ、中でも、テレフタル酸、イソフタル酸が好ましく、テレフタル酸が特に好ましい。また、芳香環の一部がスルホン酸塩で置換されている芳香族ジカルボン酸が挙げられる。なお、脂肪族ジカルボン酸成分、脂肪族ジオール成分及び芳香族ジカルボン酸成分は、それぞれ2種類以上を用いることもできる。脂肪族芳香族ポリエステル系樹脂としては、ポリブチレンテレフタレートアルキレート系樹脂が好ましく、ポリブチレンアジペートテレフタレート系樹脂またはポリブチレンサクシネートテレフタレート系樹脂がより好ましく、ポリブチレンアジペートテレフタレート系樹脂が特に好ましい。
 本発明における脂肪族芳香族ポリエステル系樹脂には、脂肪族オキシカルボン酸単位が含有されていてもよい。脂肪族オキシカルボン酸単位を与える脂肪族オキシカルボン酸の具体例としては、乳酸、グリコール酸、2-ヒドロキシ-n-酪酸、2-ヒドロキシカプロン酸、6-ヒドロキシカプロン酸、2-ヒドロキシ-3,3-ジメチル酪酸、2-ヒドロキシ-3-メチル酪酸、2-ヒドロキシイソカプロン酸、又はこれらの混合物等が挙げられる。更に、これらの低級アルキルエステル又は分子内エステルであってもよい。これらに光学異性体が存在する場合には、D体、L体又はラセミ体の何れでもよく、形態としては固体、液体又は水溶液の何れであってもよい。これらの中で好ましいものは、乳酸又はグリコール酸である。これら脂肪族オキシカルボン酸は単独でも、2種以上の混合物としても使用することもできる。
 この脂肪族オキシカルボン酸の量は、脂肪族芳香族ポリエステル系樹脂を構成する全構成成分中、下限が通常0モル%以上、好ましくは0.01モル%以上であり、上限が通常30モル%以下、好ましくは20モル%以下である。
 脂肪族芳香族ポリエステル系樹脂は、前記脂肪族ポリエステル系樹脂(A)と同様の製法により製造することができる。
 本発明に用いられる脂肪族芳香族ポリエステル系樹脂のメルトフローレート(MFR)は、190℃、2.16kgで測定した場合、下限が通常0.1g/10分以上であり、上限が通常100g/10分以下、好ましくは50g/10分以下、特に好ましくは30g/10分以下である。
 脂肪族ポリエステル系樹脂(A)以外の熱可塑性樹脂(B)の含有量は、脂肪族ポリエステル系樹脂(A)100質量部に対して、好ましくは1質量部以上100質量部以下である。含有量の下限は、より好ましくは5質量部以上、特に好ましくは10質量部以上、最も好ましくは20質量部以上である。含有量の上限は、より好ましくは70質量部以下、特に好ましくは60質量部以下である。熱可塑性樹脂(B)の含有量が多すぎると、後述する混練工程において澱粉(C)の樹脂組成物中の分散が悪くなり、樹脂組成物を成形して得られるフィルムなどの成形体の機械物性などが低下する可能性がある。一方、熱可塑性樹脂(B)の含有量が少なすぎても、後述する混練工程において澱粉(C)の樹脂組成物中の分散が悪くなる可能性がある。
 本発明の樹脂組成物における、脂肪族ポリエステル系樹脂(A)以外の熱可塑性樹脂(B)の含有量は、樹脂組成物全体を基準(100%)とした質量割合で、15%以上25%以下である。脂肪族ポリエステル系樹脂(A)以外の熱可塑性樹脂(B)の含有量が多すぎると、樹脂組成物から得られるフィルムのコシが不足し、また生分解速度が低下して好ましくない。一方、脂肪族ポリエステル系樹脂(A)以外の熱可塑性樹脂(B)の含有量が少なすぎると、澱粉(C)の分散が悪化したり、引張弾性率や引裂き強度が不足したりして好ましくない。
 <澱粉(C)>
 本発明における澱粉(C)とは、分子式(C10[ここでnは正の整数を表す。]の炭水化物(多糖類)で、多数のα-グルコース分子がグリコシド結合によって重合した天然高分子やその変性物である。ここで「変性」は、化学的、物理的、生物学的等のあらゆる変性を含むものである。化学的変性としては、澱粉(C)の構成単位の一部又は全部をエステル化、エーテル化、酸化、還元、カップリング、脱水、加水分解、脱水素、ハロゲン化等の化学反応により変性することを示し、特には、水酸基をエーテル化又はエステル化することを示す。また物理変性は、結晶化度を変化させること等、物理的性質を変化させることを示す。また生物学的変性は、生物を用いて化学構造等を変化させることを示す。
 本発明における澱粉(C)は、具体的には、例えば、コーンスターチ、ワキシーコーンスターチ、ハイアミロースコーンスターチ、小麦澱粉、米澱粉、馬鈴薯澱粉、甘藷澱粉、タピオカ澱粉、エンドウ澱粉、α澱粉等が挙げられ、コーンスターチ又は馬鈴薯澱粉が好ましく、特に好ましくはコーンスターチである。
 本発明で使用される澱粉(C)としては、引裂き強度や引張弾性率などの物性を向上させる観点から、樹脂組成物中での澱粉島相の平均粒子径が1μm以下であるように澱粉を用いることが好ましく、より好ましくは0.7μm以下、さらに好ましくは0.5μm以下の澱粉島相であることが好ましい。なお、ここでいう澱粉の平均粒子径は、詳細な測定方法は別に記載するが、円相当径(澱粉相の面積を測定し、その面積をもつ真円を描いたときの直径)の平均値である。
 澱粉(C)の含有量は、本発明の効果を著しく損なわない限り任意であるが、樹脂組成物全体を基準(100質量%)として、好ましくは1質量%以上60質量%以下である。澱粉の含有量の下限は、より好ましくは5質量%、さらに好ましくは10質量%、特に好ましくは15質量%、最も好ましくは30質量%である。澱粉の含有量の上限は、より好ましくは50質量%、更に好ましくは45質量%、最も好ましくは40質量%である。澱粉含有量が1質量%未満では、澱粉による物性改良効果が十分に発現しない場合があり、澱粉含有量が60質量%を超えると、耐水性、耐加水分解性、柔軟性等が損なわれる場合がある。
 <澱粉の可塑剤(D)>
 本発明の樹脂組成物は、澱粉の可塑剤(D)を含有していることが好ましい。澱粉の可塑剤(D)としては、水酸基を含有する有機化合物が好適に用いられ、該水酸基を含有する有機化合物としては、水酸基を有していれば特に限定はないが、具体的には、例えば、1価アルコール、多価アルコール、多価アルコールの部分エステル若しくは部分エーテル等が挙げられる。これらの中で好ましくは、ソルビトール、ペンタエリストール、トリメチロールプロパン、トリメチロールエタン、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ヘプタンジオール、1,6-へキサンジオール、1,8-オクタンジオール、1,9-ナノンジオール、1,10-デカンジオール、1,12-ドデカンジオール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール、グリセリン、グリセリンモノアルキルエステル、グリセリンジアルキルエステル、グリセリンモノアルキルエーテル、グリセリンジアルキルエーテル、ジグリセリン、ジグリセリンアルキルエステル等であり、より好ましくはエチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、グリセリン、グリセリンモノエステル、ソルビトール又はペンタエリスリトールであり、特に好ましくはグリセリン、ソルビトール、ペンタエリスリトール、プロピレングリコール又はエチレングリコールであり、中でもグリセリンが最も好ましい。澱粉の可塑剤(D)は、1種又は2種類以上が用いられる。
 澱粉の可塑剤(D)の分子量は、好ましくは3000以下、より好ましくは2500以下、特に好ましくは2000以下であることが望ましい。
 澱粉の可塑剤(D)の含有量は、澱粉(C)を基準(100質量%)として、好ましくは10質量%以上55質量%以下である。澱粉の可塑剤(D)の含有量の上限は、より好ましくは50質量%であり、さらに好ましくは45質量%である。一方、含有量の下限は好ましくは15質量%、より好ましくは17質量%、さらに好ましくは20質量%である。澱粉の可塑剤(D)の含有量が少なすぎると、脂肪族ポリエステル系樹脂(A)に由来するオリゴマーが表面へ析出したり、添加した澱粉の可塑化が十分に進行せずに澱粉の脂肪族ポリエステルへの分散が良好でなくなるために機械物性が低下したりする場合がある。一方、澱粉の可塑剤(D)の含有量が多すぎる場合は、成形体表面に澱粉の可塑剤(D)が偏析し、表面外観等の性状を損なう場合がある。
 特に本発明では、脂肪族ポリエステル系樹脂(A)に対して、澱粉(C)及び澱粉の可塑剤(D)を含有し、かつ、澱粉の可塑剤(D)の含有量を、澱粉(C)を基準として、上記範囲にすることが好ましい。上述したが、澱粉の可塑剤(D)が特定量配合されることによって、澱粉の可塑剤(D)が澱粉(C)内部に浸透し、加熱されることにより熱可塑化され、脂肪族ポリエステル系樹脂(A)および脂肪族ポリエステル系樹脂(A)以外の熱可塑性樹脂(B)に対する相溶性が増し、澱粉相の分散径も細かくなり、樹脂組成物の機械物性が改善されると同時に、更には、澱粉の可塑剤(D)中に、脂肪族ポリエステル系樹脂(A)由来の環状2量体が溶解することにより、環状2量体が樹脂組成物ペレットないしは成形体表面に析出することを抑制するという意外な効果がある。
 従って、脂肪族ポリエステル系樹脂(A)中の環状2量体の含量が1000ppm以上であっても、環状2量体の表面への析出を抑制できるようになる。
 本発明の樹脂組成物における、澱粉の可塑剤(D)の含有量は、樹脂組成物全体を基準(100%)とした質量割合で、下限が好ましくは1%以上、より好ましくは3%以上、さらに好ましくは4%以上であり、上限が好ましくは10%以下、より好ましくは8%以下、さらに好ましくは7%以下である。澱粉の可塑剤(D)の含有量が多すぎると、澱粉の可塑剤(D)がフィルム表面からブリードアウトしたり、得られるフィルムの弾性率が低下したりするなどして好ましくない。一方、澱粉の可塑剤(D)の含有量が少なすぎると、澱粉が十分に可塑化できず、澱粉の分散粒子径が粗くなって好ましくない。
 <各種添加剤>
 本発明においては、相溶化剤、無機充填剤、有機充填剤、結晶核剤、酸化防止剤、アンチブロッキング剤、紫外線吸収剤、耐光剤、酸化防止剤、熱安定剤、着色剤、難燃剤、離型剤、帯電防止剤、防曇剤、表面ぬれ改善剤、焼却補助剤、顔料、滑剤、分散助剤、界面活性剤、スリップ剤、加水分解防止剤、末端封止剤等の「その他の成分」を使用してもよい。これらは、本発明の前記効果を損なわない範囲で任意に使用できる。
 (相溶化剤)
 本発明の樹脂組成物には、相溶化剤を含有していてもよい。相溶化剤とは、非相溶性の異種樹脂、或いは澱粉と樹脂を混合する際に、相溶性を改良する添加剤である。相溶化剤を添加することにより、相溶性を向上させることができる。
 相溶化剤は、樹脂組成物全体を基準(100質量%)として、0.01質量%以上10質量%以下添加するのが好ましい。添加量の下限は、より好ましくは0.1質量%以上、更に好ましくは1質量%以上である。添加量の上限は、より好ましくは5質量%以下、更に好ましくは3質量%以下、特に好ましくは2質量%以下である。
 相溶化剤の例としては、高分子型相溶化剤、低分子の有機化合物、無機化合物、有機無機複合体等が挙げられるが、高分子型相溶化剤、低分子の有機化合物が成形品の物性の点でこのましく、成形プロセスの観点から、高分子型相溶化剤がより好ましい。また、相溶化剤としては、酸無水物基、グリシジル基、エーテル基のいずれかの構造を有するものであることが好ましく、これらいずれかの構造を有する高分子型相溶化剤がより好ましい。これらの構造を有する相溶化剤を用いることにより、上記相溶性を向上させる効果が大きくなる。
 高分子型相溶化剤としては、ポリエステル系、ポリオレフィン系、ポリアミド系、ポリエーテル系、ポリカーボネート系、アクリル系、スチレン系、ウレタン系、ポリアセタール系、オレフィン系エラストマー、不飽和脂肪族系エラストマー、水添不飽和脂肪族系エラストマー等の樹脂及びこれらの2種類以上のブロック、グラフト又は、ランダム共重合体が挙げられる。これらの共重合体に更に不飽和脂肪酸無水物を付加させる等して極性基を分子中に導入してもよい。付加させる不飽和脂肪酸無水物として無水マレイン酸が好ましく用いられる。
 この中でも、ポリエステル系、ポリオレフィン系、ポリアミド系、ポリエーテル系、アクリル系、スチレン系、オレフィン系エラストマー、不飽和脂肪族系エラストマー、水添不飽和脂肪族系エラストマー及びこれらの2種以上の共重合体等がより好ましく、ポリオレフィン系、ポリアミド系、ポリエーテル系、アクリル系、スチレン系、水添不飽和脂肪族系エラストマー及びこれらの2種以上の共重合体が更に好ましい。
 ポリエステル系の相溶化剤としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート等の芳香族ポリエステル、ポリ乳酸、ポリカプロラクトン、ポリ-3-ヒドロキシブチレート等構造を分子構造の一部に含むポリエステルブロック又はランダム又はグラフト共重合体が挙げられる
 ポリアミド系の相溶化剤としては、6ナイロン、6,6ナイロン、12ナイロン等が挙げられる。ポリエーテル系の相溶化剤としては、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等が挙げられる。
 スチレン系としては、ポリスチレン、ポリp-メチルスチレン、ポリα-メチルスチレン等が挙げられる。オレフィン系エラストマーとしては、エチレンプロピレンランダム共重合体、ポリ1-ブテン等が挙げられる。不飽和脂肪族系エラストマーとしては、ポリブタジエン、ポリイソプレン、SBS、SIS等が挙げられる。水添不飽和脂肪族系エラストマーとしては、SEBS、SEPS等が挙げられる。ポリオレフィン系、ポリアミド系、ポリエーテル系、アクリル系、スチレン系、水添不飽和脂肪族系エラストマー及びこれらの2種以上の共重合体の中でも特に好ましい例としては、ポリオレフィン/グリシジルアクリレート共重合体、ポリオレフィン/グリシジルメタクリレート共重合体、ポリオレフィン/ポリエーテル共重合体、ポリエーテルエステルアミド、SEBS、無水マレイン酸変性SEBS等が挙げられる。
 (無機充填剤)
 本発明の樹脂組成物には、無機充填剤を配合させても良い。かかる無機充填剤としては、シリカ、雲母、タルク、酸化チタン、炭酸カルシウム、ケイ藻土、アロフェン、ベントナイト、チタン酸カリウム、ゼオライト、セピオライト、スメクタイト、カオリン、カオリナイト、ガラス、石灰石、カーボン、ワラステナイト、焼成パーライト、「珪酸カルシウム、珪酸ナトリウム等の珪酸塩」、酸化アルミニウム、炭酸マグネシウム、水酸化カルシウム等の水酸化物、炭酸第二鉄、酸化亜鉛、酸化鉄、リン酸アルミニウム、硫酸バリウム等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合して使用してもよい。
 本発明の樹脂組成物に含有される無機充填剤の量は特に限定はないが、樹脂組成物100質量部に対して、無機充填剤が、1質量部以上30質量部以下が好ましく、3質量部以上20質量部以下がより好ましく、5質量部以上15質量部以下が特に好ましい。無機充填剤が少なすぎる場合は、機械物性改良効果が少なくなる場合があり、一方、多すぎる場合は、成形性及び耐衝撃性が悪化する場合がある。
 (有機充填剤)
 有機充填剤としては、パルプ、キチン及び/又はキトサン質、椰子殻粉末、竹粉末、樹皮粉末、ケナフや藁等の粉末等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合して使用してもよい。樹脂組成物中の有機充填剤の含有量は、樹脂組成物100質量部に対して、60質量部以下が好ましい。
 各種添加剤は、1種を単独で用いてもよく、2種以上を混合して使用してもよい。これらの中で特にスリップ剤、アンチブロッキング剤は配合した方が好ましい。
 防曇剤はあらかじめ樹脂に防曇剤を練りこんでもよいし、成形後、成形品表面に塗布してもよい。使用する防曇剤は具体的には、炭素数4以上20以下の飽和又は不飽和脂肪族カルボン酸と多価アルコールのエステル系界面活性剤が好ましく用いられる。スリップ剤としては、炭素数6~30の不飽和脂肪酸からなる不飽和脂肪酸アマイド、不飽和脂肪酸ビスアマイドが挙げられるが、最も好ましくはエルカ酸アマイドが挙げられる。
 アンチブロッキング剤としては、炭素数6~30の飽和脂肪酸アマイド、飽和脂肪酸ビスアマイド、メチロールアマイド、エタノールアマイド、天然シリカ、合成シリカ、合成ゼライト、タルク等が挙げられる。
 耐光剤としては具体的には、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチル-ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)マロネートが好ましい。
 本発明の樹脂組成物に添加してもよい紫外線吸収剤としては、ベンゾフェノン系、ベンゾトリアゾール系、サリチル酸系、シアノアクリレート系等の酸化防止剤が好適に用いられる。
 これらの添加剤の添加量は、樹脂組成物全体を基準(100質量%)として、通常0.001質量%以上10質量%以下である。添加量の下限は、好ましくは0.01質量%以上、より好ましくは0.1質量%以上である。添加量の上限は好ましくは5質量%以下、更に好ましくは3質量%以下である。また、本発明の樹脂組成物には、機能性添加剤として、鮮度保持剤、抗菌剤等を配合することもできる。
 末端封止剤として、カルボジイミド化合物、エポキシ化合物、オキサゾリン化合物等が挙げられるが、その中でもカルボジイミド化合物が好適に用いられる。
 (カルボジイミド化合物)
 本発明において、主に大気中の水分等による加水分解を抑制する目的だけではなく、成形性を向上させ、更に環状2量体を減少させる目的で、カルボジイミド化合物を好適に用いることができる。用いられるカルボジイミド化合物は、分子中に1個以上のカルボジイミド基を有する化合物(ポリカルボジイミド化合物を含む)であり、このようなカルボジイミド化合物は、例えば触媒として有機リン系化合物又は有機金属化合物を用いて、イソシアネート化合物を70℃以上の温度で、無溶媒又は不活性溶媒中で脱炭酸縮合反応させることにより合成することができる。
 上記のカルボジイミド化合物の内、モノカルボジイミド化合物としては、ジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、ジメチルカルボジイミド、ジイソブチルカルボジイミド、ジオクチルカルボジイミド、t-ブチルイソプロピルカルボジイミド、ジフェニルカルボジイミド、ジ-t-ブチルカルボジイミド、ジ-β-ナフチルカルボジイミド等を例示することができる。これらの中では、工業的に入手が容易であるので、ジシクロヘキシルカルボジイミドやジイソプロピルカルボジイミドが好ましい。またポリカルボジイミド化合物としては、例えば米国特許第2941956号明細書、日本国特公昭47-33279号公報、J.Org.Chem.28巻、p2069-2075(1963)、及びChemical Review 1981、81巻、第4号、p.619~p.621等に記載された方法により製造したものを用いることができる。
 本発明においては、ポリカルボジイミド化合物を用いても良い。その重合度は、下限が2以上、好ましくは4以上であり、上限が通常40以下、好ましくは、20以下である。この重合度が大きすぎると、組成物中における分散性が不十分となり、例えばインフレーションフィルムにおいて外観不良の原因になる場合がある。
 カルボジイミド化合物は、後述する樹脂組成物の調製時に添加してもよいし、脂肪族ポリエステル系樹脂、脂肪族芳香族ポリエステル系樹脂のうちの1種類又は2種類のポリエステルに練り混み、成形時に他の成分とドライブレンドすることによって樹脂組成物の全成分と混合して成形してもよい。あるいは、脂肪族ポリエステル系樹脂及び/又は脂肪族芳香族ポリエステル系樹脂で高濃度のカルボジイミド化合物のマスターバッチを調製し、成形時にカルボジイミド化合物が所定濃度となるように、脂肪族ポリエステル系樹脂及び/又は脂肪族芳香族ポリエステル系樹脂、デンプンをドライブレンドして希釈してもよい。
 <その他の成分>
 本発明の樹脂組成物には、本発明の効果を阻害しない範囲で生分解性樹脂及び天然物、例えば、ポリ乳酸、ポリカプロラクトン、ポリアミド、ポリビニルアルコール、セルロースエステル等やセルロース、紙、木粉、キチン及び/又はキトサン質、椰子殻粉末、クルミ殻粉末等の動物/植物物質微粉末又はこれらの混合物を配合することができる。
 <樹脂組成物の製造方法および成形方法>
 (樹脂組成物の製造方法(混練))
 上述した原料である脂肪族ポリエステル系樹脂(A)、澱粉(C)、及び、任意成分である脂肪族ポリエステル系樹脂(A)以外の熱可塑性樹脂(B)や澱粉の可塑剤(D)等は、溶融混合されることで本発明の樹脂組成物とされる。本発明の樹脂組成物の製造においては、脂肪族ポリエステル系樹脂(A)は、樹脂の分散性の観点から、他の成分が溶融混合された後に、別途添加されることが好ましい。すなわち、澱粉(C)と、必要に応じて添加される脂肪族ポリエステル系樹脂(A)以外の熱可塑性樹脂(B)や澱粉の可塑剤(D)等とを予め溶融混合して組成物(X)とした後、これに脂肪族ポリエステル系樹脂(A)を添加してさらに溶融混合することが好ましい。
 樹脂組成物の製造に際しては、従来公知の混合/混練技術は全て適用できる。混合機としては、水平円筒型、V字型、二重円錐型混合機やリボンブレンダー、スーパーミキサーのようなブレンダー、また各種連続式混合機等を使用できる。また、混練機としては、ロールやインターナルミキサーのようなバッチ式混練機、一段型、二段型連続式混練機、二軸スクリュー押出機、単軸スクリュー押出機等を使用できる。本発明においては、混練効率の点から二軸スクリュー押出機を使用することが好ましく、さらにスクリューの回転方向が同方向であるものが好ましい。
 図1は、本発明の樹脂組成物の製造に好ましく用いられる二軸スクリュー押出機100の概略図である。二軸スクリュー押出機100は、シリンダ1内に水平に平行に配置された相互に噛み合う2本のスクリュー軸2を備えている。シリンダ1は、送り方向上流側に位置する主原料供給部3と、送り方向下流側に位置する副原料供給部5とを備えており、副原料供給部5の上流側と下流側には、それぞれベント部4、6が設けられている。
 主原料供給部3からは、澱粉(C)と、脂肪族ポリエステル系樹脂(A)以外の熱可塑性樹脂(B)と、澱粉の可塑剤(D)が供給され、溶融混練されて組成物(X)となり、シリンダ下流方向へ送られる。溶融混練する際の温度は、少なくとも可塑化澱粉と樹脂の融点より高いことが必要であり、通常100~180℃であり、好ましくは、130~170℃である。溶融した組成物(X)に内包される空気、水蒸気や原料由来の揮発成分などのガス成分は、主原料供給部3と副原料供給部5との間に存在する、開放ベントであるベント部4から一部排出され、分離脱揮される。
 脱揮された組成物(X)は、副原料供給部5からサイドフィードされる脂肪族ポリエステル系樹脂(A)とさらに溶融混練されて樹脂組成物とされる。樹脂組成物に内包される空気、水蒸気や原料由来の揮発成分などのガス成分の一部は、吸引ベントであるベント部6より真空吸引され外部へ排気される。
 ベント部6を通過した溶融状態の樹脂組成物は、ダイスヘッド7から溶融したストランドの形態で水中へ押し出されて冷却固化し、ペレタイザー(図示せず)でカッティングされた後、乾燥されることにより樹脂組成物ペレットとされる。図示の形態では二軸スクリュー押出機100で脱揮された樹脂組成物は、ダイスヘッド7、ペレタイザーを通って一旦ペレット化されるが、溶融状態のまま引き続き成形機に供給され、フィルムなどに成形されてもよい。
 図3は、樹脂ペレット製造工程の概略図である。二軸スクリュー押出機10は、上記した押出機100と同様である。ベント部6を通過した溶融状態の樹脂組成物は、ダイスヘッド7から溶融したストランドの形態で水槽20の水中へ押し出されて冷却固化し、ペレタイザー30でカッティングされた後、乾燥機40で乾燥されることにより樹脂組成物ペレットとされる。
 得られた樹脂組成物ペレットは、フィルムに成形されるために成形機に供給されるが、本発明においては、成形機に供給される際の樹脂組成物は、水分量を1質量%未満とすることが好ましい。すなわち、本発明のフィルムは、水分量が1質量%未満である樹脂組成物を使用して製造される。水分量を上記範囲内とすることで、樹脂組成物の成形性を良好にし、ひいては引張弾性率や引裂き強度など、物性の良好なフィルムを得ることができる。
 水分量を上記範囲にするためには、樹脂組成物の製造時にベント部4、6において樹脂組成物から水分を除去し、かつ樹脂組成物ペレットを乾燥機によって十分に乾燥することが必要である。ペレット化された樹脂組成物は、乾燥機において、60~80℃で、少なくとも8時間以上乾燥されることが好ましい。また、乾燥は、ペレットの品質を保つために、窒素雰囲気下で行なうことが好ましい。ここで、樹脂ペレットの水分量は、カールフィッシャー法によって測定した値である。
 なお、図示の形態では、樹脂組成物は、ダイスヘッド7、ペレタイザー30を通って一旦ペレット化されるが、ベント部4、6で、水分が本発明に規定する水分量以下にまで水分が除去されていることが確認されれば、溶融状態のまま引き続き成形機に供給し、生分解性フィルムの成形を行ってもよい。
 また、本発明における混練方法では脱揮工程が含まれていることがこのましい。具体的にはベント部、好ましくは真空ベントが併設されていることが好ましい。真空ベントが併設されることによって、樹脂組成物中の余分な水分及び/又は環状2量体を低減することができる。
 真空ベントによる脱揮工程は、例えば真空ポンプによる真空引きにより実施される。真空ベントでの真空度は特に指定はないが、200Torr以下であることが望ましい。
 本発明の樹脂組成物の調製方法は、特に限定されないが、
 (1)すべての原料をブレンドした後に押出機のホッパーに投入し、押出機で溶融混合する方法、
 (2)脂肪族ポリエステル系樹脂(A)、澱粉(C)および澱粉の可塑剤(D)をブレンドした後、押出機のホッパーに投入し、押出機で溶融混合し、得られた樹脂組成物と脂肪族ポリエステル系樹脂(A)以外の熱可塑性樹脂(B)とをドライブレンドする方法、
(3)脂肪族ポリエステル系樹脂以外の熱可塑性樹脂(B)、澱粉(C)および澱粉の可塑剤(D)をブレンドした後、押出機のホッパーに投入し、押出機で溶融混合し、得られた樹脂組成物を脂肪族ポリエステル系樹脂(A)にドライブレンドする方法、
(4)澱粉(C)と澱粉の可塑剤(D)を混合する工程、その後、脂肪族ポリエステル系樹脂(A)と脂肪族ポリエステル系樹脂(A)以外の熱可塑性樹脂(B)を供給装置、好ましくは、サイドフィーダーなどを用いて押出機に供給する工程、その後各原料を溶融混合する工程を同一の押出機で実施し、溶融混合する方法、
(5)脂肪族ポリエステル系樹脂(A)以外の熱可塑性樹脂(B)、澱粉(C)と澱粉の可塑剤(D)を混合する工程、その後、脂肪族ポリエステル系樹脂(A)を供給装置、好ましくは、サイドフィーダーなどを用いて押出機に供給する工程、その後各原料を溶融混合する工程を同一の押出機で実施し、溶融混合する方法、
などの方法が挙げられる。とりわけ、押出機への負荷、澱粉(C)の樹脂組成物中での分散性、混練プロセスでの樹脂組成物の生産性などの観点から、(5)に記載の方法で樹脂組成物を調整することが望ましい。
 また、上記の方法で調整された樹脂組成物を、脂肪族ポリエステル樹脂(A)および脂肪族ポリエステル樹脂以外の熱可塑性樹脂(B)と混合し、望みの樹脂組成に調整しても良い。
 もちろん、各々の原料を直接成形機に供給して樹脂組成物を調製すると同時に、その成形体を得ることも可能である。各成分を混合して加熱溶融させたところに、各種添加剤、無機充填剤、有機充填剤、上記「その他の成分」、他のポリエステル等を添加して配合する方法等が挙げられる。また、この際、前記の各種添加剤を均一に分散させる目的で、ブレンド用オイル等を使用することもできる。
 (樹脂組成物中の海島構造)
 得られる樹脂組成物は、脂肪族ポリエステル系樹脂(A)が海相を形成し、澱粉(C)、と、脂肪族芳香族ポリエステル系樹脂とが(脂肪族芳香族ポリエステル系樹脂を添加した場合)それぞれ分散した島相を形成している、海島構造を有する樹脂組成物である。それぞれの島相の平均粒子径は1μm以下であり、好ましくは0.5μm以下であり、より好ましくは0.3μm以下である。このように脂肪族ポリエステル系樹脂(A)のみを後に添加することによって、樹脂組成物中の各成分の分散性を良好にすることができ、ひいては成形性、機械物性の良好な樹脂組成物を得ることができる。例えば、必要に応じて添加される脂肪族ポリエステル系樹脂(A)以外の熱可塑性樹脂(B)の配合量を調節したり、澱粉の可塑剤(D)の配合量を調節したり、澱粉(C)と、必要に応じて添加される脂肪族ポリエステル系樹脂(A)以外の熱可塑性樹脂(B)や澱粉の可塑剤(D)等を溶融混合して、平均粒子径1μm以下の澱粉(C)を含む組成物(X)とした後、これに脂肪族ポリエステル系樹脂(A)を添加してさらに溶融混合したり、これらの条件を適宜組み合わせて適用することにより、樹脂組成物中の各成分の分散性を良好にすることができる。なお、樹脂中の各成分の島相の平均粒子径は、樹脂組成物に対してイオンエッチングを行い、引き続き金蒸着を行ったものを、透過型電子顕微鏡(TEM)を用いて観察し、TEM像の5μm×5μmの範囲に存在する各成分の各島相の円相当径の平均値として求めることができる。なお、上記平均粒子径の測定は、基本的には任意に取りだした1つの樹脂組成物ペレットについて行えばよいが、ペレット毎に数値が大きくばらつく場合には、ランダムに搾取したペレット100個の平均値を平均粒子径とすることができる。
 (樹脂組成物中の環状2量体)
 本発明において、樹脂組成物を分析して得られた樹脂組成物全体中に存在する脂肪族ポリエステル系樹脂(A)由来の環状2量体(本発明では単に環状2量体という場合がある)の含量は、樹脂組成物に対して、質量で好ましくは1000ppm~9000ppmであり、より好ましくは1000ppm~7500ppmであり、さらに好ましくは1000ppm~6000ppmであり、特に好ましくは1000ppm~4500ppmである。環状2量体の含量が多過ぎる場合は、環状2量体の析出を抑制するために必要な澱粉の可塑剤(D)の添加量が多くなり過ぎるため、該澱粉の可塑剤(D)が成形体表面に偏析する、樹脂の流動性が高くなり過ぎるために成形加工性が悪くなる等の場合がある。一方、環状2量体の含量を必要以上に少なくしようとすると、適切な溶媒を使用して樹脂組成物を洗浄する必要があり、確かに成形体表面への環状2量体の偏析は抑制されるが、溶媒による洗浄のプロセスが煩雑である、洗浄に使用した溶媒が樹脂組成物ペレットに残留する等の場合がある。
 本発明における樹脂組成物中の環状2量体の含量は、実施例に記載の方法で定量した値である。
 なお、本発明において、成形体中に存在する環状2量体の含量は、成形前の樹脂組成物中に含まれる環状2量体の含量とほとんど同じである。すなわち、成形時において、樹脂組成物中に含まれる環状2量体は揮発等することなく、得られた成形体に含まれている。ただし、成形体の表面に析出していた場合は、析出している環状2量体の質量も成形体中に存在するものに加えるものとする。本発明において、成形体中の環状2量体の含量は、実施例に記載の方法で定量した値である。
 (樹脂組成物の成形方法)
 本発明における樹脂組成物は、汎用プラスチックに適用される各種成形法により成形に供することができる。その成形法としては例えば、圧縮成形(圧縮成形、積層成形、スタンパブル成形)、射出成形、押し出し成形や共押し出し成形(インフレーション法やTダイ法によるフィルム成形、ラミネート成形、パイプ成形、電線/ケーブル成形、異形材の成形)、中空成形(各種ブロー成形)、カレンダー成形、発泡成形(溶融発泡成形、固相発泡成形)、固体成形(一軸延伸成形、二軸延伸成形、ロール圧延成形、延伸配向不織布成形、熱成形(真空成形、圧空成形)、塑性加工)、粉末成形(回転成形)、各種不織布成形(乾式法、接着法、絡合法、スパンボンド法等)等が挙げられる。中でも、押し出し成形、射出成形、発泡成形、中空成形が好適に適用される。具体的な形状としては、フィルム、容器及び繊維への適用が好ましい。本発明の樹脂組成物は、良好な溶融特性及び機械物性を有しているため、インフレーション成形してなるフィルム、更にはインフレーション成形してなるフィルムから製造される製品に好ましく用いられる。
 <成形体の物性>
 成形体は、20μmの厚さのフィルムにした場合の、樹脂の流れに平行方向の引張り弾性率は、特にこれに限定されるわけではないが、50~700MPaが好ましく、80~650MPaがより好ましく、100~600MPaが特に好ましく、150~500MPaが更に好ましい。引張り弾性率が低過ぎると、ゴミ袋、レジ袋、買い物袋、コンポスト袋等の包装材料として使用した際に、フィルムの厚みによっては内容物の重量に耐えられない場合がある。また、大きすぎると、フィルムの柔軟性が損なわれ使い勝手が悪くなる場合がある。したがって、JIS K7127に準拠した引張弾性率が200MPa以上であることが特に好ましい。
 また、20μmの厚さのフィルムに成形した場合の、樹脂の流れ平行方向のエルメンドルフ引裂き強度は特にこれに限定されるわけではないが、2N/mm以上であることが好ましく、より好ましくは4N/mm以上であり、特に好ましくは6N/mm以上、最も好ましくは8N/mmである。エルメンドルフ引裂き強度が2N/mm未満では、ゴミ袋、レジ袋、買い物袋、コンポスト袋等の包装材料として実用上問題がある場合がある。したがって、JIS K7128に準拠したエルメンドルフ引裂強度が100N/mm以上であることが特に好ましい。
 本発明の製造方法によって製造された樹脂組成物からなるフィルムは、50℃の環境下で園芸用土壌中の重量減少が8日間で5%以上であることが好ましい。より好ましい重量減少率は8%以上、最も好ましくは10%以上である。重量減少率が8日間で5%未満であると、廃棄した場合に長期間土中にフィルムが残存する場合があり、一方、初期の重量減少率が低いフィルムは完全に生分解しない場合がある。
 また、これらの成形品には、化学的機能、電気的機能、磁気的機能、力学的機能、摩擦/磨耗/潤滑機能、光学的機能、熱的機能、生体適合性等の表面機能等の付与を目的として、各種合目的的二次加工を施すことも可能である。二次加工の例としては、エンボス加工、塗装、接着、印刷、メタライジング(めっき等)、機械加工、表面処理(帯電防止処理、コロナ放電処理、プラズマ処理、フォトクロミズム処理、物理蒸着、化学蒸着、コーティング等)等が挙げられる。
 <用途>
 本発明の樹脂組成物は、良好な成形性や機械強度を有し、脂肪族ポリエステル系樹脂(A)に由来するオリゴマーの表面への析出が抑制されているため、本発明の樹脂組成物を成形してなる成形体は、各種食品、薬品、雑貨用等の液状物や粉粒物、固形物の包装用資材、農業用資材、建築資材等幅広い用途において好適に用いられる。その具体的用途としては、射出成形品(例えば、生鮮食品のトレーやファーストフードの容器、野外レジャー製品等)、押出成形品(フィルム、例えば釣り糸、漁網、植生ネット、保水シート等)、中空成形品(ボトル等)等が挙げられ、更にその他農業用のフィルム、コーティング資材、肥料用コーティング材、ラミネートフィルム、板、延伸シート、モノフィラメント、不織布、フラットヤーン、ステープル、捲縮繊維、筋付きテープ、スプリットヤーン、複合繊維、ブローボトル、発泡体、ショッピングバッグ、ゴミ袋、コンポスト袋、化粧品容器、洗剤容器、漂白剤容器、ロープ、結束材、衛生用カバーストック材、保冷箱、クッション材フィルム、マルチフィラメント、合成紙、医療用として手術糸、縫合糸、人工骨、人工皮膚、マイクロカプセル等のDDS、創傷被覆材等が挙げられる。
 本発明の樹脂組成物は、良好な成形性や機械強度を有し、脂肪族ポリエステル系樹脂(A)に由来するオリゴマーの表面への析出が抑制されているため、インフレーション成形してなるフィルムから製造されるショッピングバッグ又はゴミ袋に適用されることが好ましい。
 更に、トナーバインダー、熱転写用インキバインダー等の情報電子材料、電気製品筐体、インパネ、シート、ピラー等の自動車内装部品、バンパー、フロントグリル、ホイールカバー等の自動車外装構造材料等の自動車部品等に使用できる。より好ましくは包装用資材、例えば、包装用フィルム、袋、トレー、ボトル、緩衝用発泡体、魚箱等、及び、農業用資材、例えば、マルチングフィルム、トンネルフィルム、ハウスフィルム、日覆い、防草シート、畦シート、発芽シート、植生マット、育苗床、植木鉢等が挙げられる。
 以下、実施例により本発明をさらに詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例に何ら限定されるものではない。なお、以下の諸例で採用した原料、物性及び評価項目の測定方法は次の通りである。
 <使用樹脂>
[脂肪族ポリエステル系樹脂(A-1)]
三菱化学(株)社製ポリブチレンサクシネート系樹脂GS Pla(グレード名;AZ91TN、樹脂中に含まれる環状2量体の含有量:7900ppm)
[脂肪族ポリエステル系樹脂(A-2)]
三菱化学社製GSPla(グレード名:AD92WN、樹脂中に含まれる環状2量体の含有量:5100ppm)
[熱可塑性樹脂(B)]
BASF社製ポリブチレンテレフタレートアジペート系樹脂Ecoflex(グレード名:FBX7011)
[澱粉(C)]
日本コーンスターチ社製コーンスターチ(グレード名:Y-3P、含水率:12%、平均粒径:15μm)なお、この原料として用いる澱粉の平均粒径は、樹脂組成物中に分散された澱粉島相の平均粒子径とは異なり、原料の澱粉粒子を光学顕微鏡を用いて観察し、任意の澱粉粒子50個について計測した最大粒子径の平均値のことである。
[澱粉の可塑剤(D)]
和光純薬社製特級グリセリン
 <水分量>
 樹脂ペレット中の水分量の測定は、カールフィッシャー法(水分気化-電量滴定法)によって行った。分析は、三菱化学アナリテック社製、CA-200(電量滴定法水分計)、VA-200(水分気化装置)を備えた装置を用いた。試薬として、三菱化学社製アクアミクロン(登録商標)AX(陽極液)と、アクアミクロン(登録商標)CXU(陰極液)を用い、EndSence=0.1μg・HO/Sec、Delay=2minの条件下、キャリアガスとして窒素を約300mL/minフローさせ、180℃にて測定を行った。
 <引裂き強度の測定方法>
 JIS K7128に準拠してエルメンドルフ引裂き強度を測定した。
 <引張弾性率の測定方法>
 JIS K7127に準拠して、株式会社島津製作所製精密万能試験機オートグラフAG-2000にて、引張弾性率を測定した。
 <海島構造の観察及び平均粒子径の算出>
 実施例に示された原料を押出機にて混練後、ストランドとして抜き出し、常温の水槽にて冷却した後、ストランドカッターにてカッティングしたペレットを、60℃、8時間、乾燥窒素フロー下にて乾燥を行った。この樹脂ペレットを、液体窒素を用いて10分間冷却し、クライオミクロトーム(LEICA社製EM-UC6ミクロトームと、LEICA社製EM-FC6クライオチャンバーからなる)を用いて、約-140℃にて樹脂組成物ペレットの超薄膜切片を作成した。この際、削りだし方向がTD方向に平行面となるようにした(ペレットのおよそ中央部を削りだし、切片を採取するように注意した。)。その後、乾燥窒素を該切片に噴きつけながら常温まで戻した(霜が付着しないようにするため)。これらにRuO染色を行い、日本電子株式会社製JEM-1230 TEM(透過型電子顕微鏡)を用いて、120KVで観察することにより海島構造を観察した。
 さらに、ここで得られたTEM像の5μm×5μmの範囲を、Mitani Corporation社製Winroofにより解析し、澱粉相の円相当径(面積を測定し、その面積をもつ真円を描いたときの直径)の平均値(平均粒子径)を求めた。この平均値を、以下、澱粉相の平均粒子径ということがある。
 <環状2量体の含有量の評価>
 サンプルの前処理として、
1)サンプル0.5gを定量し、クロロホルム5mLに溶解した。
 クロロホルムに溶けない成分がある場合、ろ過してクロロホルム不溶分を取り除いた。
2)メタノール10mLをクロロホルム溶液に加え、ポリマー部分を再沈殿した。
3)上記溶液の上澄み1mLをとり、窒素ガスでブローして乾固した。乾固した試料にアセトニトリル1mLを加え溶解した。
4)アセトニトリル可溶成分をフィルターろ過し、測定サンプルとした。
 前処理した測定サンプルを、島津製作所製液体クロマトグラフィー「LC-10A」を用い、移動相をアセトニトリル/水(容量比4/6)とし、カラムは資生堂社製「SHISEIDOCAPCELL PAK C-18 TYPE MG」を用いて、脂肪族ポリエステル系樹脂(A)および樹脂組成物に含有される環状2量体の含有量(質量でのppm)を定量した。
<オリゴマー析出の評価>
 得られた熱可塑性樹脂組成物からなるフィルムを、23℃及び50%RHの条件にて1ヶ月保管し、その後のフィルム外観を目視で観察し、以下の判断基準に従って評価した。
 良好(○):フィルムの表面に環状2量体に起因する白色の析出物が目視で確認されない。
 不良(×):フィルムの表面に環状2量体に起因する白色の析出物を目視で確認できる。
 <フィルム成形性の評価方法>
 実施例1~8及び比較例1~3では、穴あきや融着などが発生してしまい、安定してフィルムが製造できない場合を「×」、安定してフィルムが製造できる場合を「○」として成形性を評価した。
 実施例9~16及び比較例4~9において、インフレーション成形を実施した際の成形のしやすさを、以下の判断基準に従って評価した。
 良好(○):所定温度(160℃)において、所定厚み(20μm)に成形することが可能である。
 不良(×):所定温度(160℃)において、所定厚み(20μm)に成形することが不可能である。
 <表面特性の評価>
 得られた熱可塑性樹脂組成物からなるフィルムを目視及び手触りで評価し、以下の判断基準に従って評価した。
 良好(○):澱粉の凝集物や水酸基を含有する有機化合物の表面へのブリードアウトがない。
 不良(×):澱粉の凝集物や水酸基を含有する有機化合物の表面へのブリードアウトが認められる。
(実施例1)
 澱粉(C)36質量%、熱可塑性樹脂(B)18質量%、澱粉の可塑剤(D)6質量%を、日本製鋼所社製の二軸スクリュー式押出機TEX30(22シリンダー:L/D=77)を用いて混練した。混練時の設定温度は80~150℃、スクリュー回転数は150~300rpmとした。ベント部にて水蒸気を除去した後、さらに脂肪族ポリエステル系樹脂(A-2)40質量%をサイドフィードして混練を行った。得られた樹脂組成物をダイスからストランド状に押し出し、水槽にて冷却後カッティングし、白色のペレットを得た。ペレットの切片のTEM写真を図2に示す。図2より、得られたペレットは、GSPlaが海相で、澱粉とEcoflexがそれぞれ島相になった、特殊なモルフォロジーを有することが分かった。また、ペレットのTEM観察像から、澱粉相の平均粒子径は0.3μmと算出された。
 得られた樹脂組成物のペレットを、70℃、窒素雰囲気下で8時間乾燥を行った後、このペレットを用いてインフレーション成形を行って厚さ30μmのフィルムを成形した。インフレーション成形には、エンプラ産業株式会社製形式E30SPを用い、ブロー比3、折り径360mm、成形温度140℃の条件で行った。実施内容と得られたフィルムの評価結果を表1に示す。
 なお、表1において、組成[質量%]の欄で「-」と記載したものは当該物質を添加していないことを示し、プロセスの欄で[-]と記載したものは実施していないことを示し、評価結果の欄で[-]と記載したものは評価していないことを示す。
 (実施例2、3)
 各成分の量比を表1に示すように変えたこと以外は、実施例1に準ずる方法で樹脂のペレットを得た。ペレットの切片のTEM観察を行ったところ、実施例1と同様、GSPlaが海相で、澱粉とEcoflexがそれぞれ島相になった、特殊モルフォロジーを有することが確認された。また、ペレットのTEM観察像から、澱粉相の平均粒子径はそれぞれ0.3μmと算出された。さらに、ペレットを実施例1と同様にしてインフレーション成形を行った。実施内容と得られたフィルムの評価結果を表1に示す。
 (比較例1)
 澱粉(C)37質量%、脂肪族ポリエステル樹脂(A-2)18質量%、澱粉の可塑剤(D)7質量%を、二軸スクリュー式押出機に供給して混練した後、ベント部にて水蒸気を除去し、その後再度脂肪族ポリエステル樹脂(A-2)38質量%をサイドフィードして混練を行ったこと以外は実施例1に順ずる方法でペレットを得た。ペレットのTEM観察像から算出された澱粉相の平均粒子径は10μmと粗大であり、ブツが多かった。また、ペレットを実施例1と同様にしてインフレーション成形したところ、穴あきが多発して安定してフィルムを得ることができなかった。
 (比較例2)
 澱粉(C)37質量%、熱可塑性樹脂(B)18質量%、澱粉の可塑剤(D)7質量%を、二軸スクリュー式押出機に供給して混練した後、ベント部にて水蒸気を除去し、その後再度熱可塑性樹脂(B)38質量%をサイドフィードし混練を行ったこと以外は実施例1に順ずる方法でペレットを得た。ペレットのTEM観察像から算出された澱粉相の平均粒子径は0.3μmと微細であった。ペレットを実施例1と同様にしてインフレーション成形した。TEM像から得られた澱粉相の平均粒子径は0.3μmと微細で、インフレーション成形は安定して行なうことができ、表面が滑らかなフィルムを得ることができた。実施内容と得られたフィルムの評価結果を表1に示す。
 (比較例3)
 澱粉(C)37質量%、熱可塑性樹脂(B)19質量%、澱粉の可塑剤(D)7質量%、脂肪族ポリエステル系樹脂(A-2)37質量%を、二軸スクリュー式押出機に一括供給して混練した後、ベント部にて水蒸気を除去し、引き続いて混練を行ったこと以外は実施例1に順ずる方法でペレットを得た。ペレットのTEM観察像から算出された澱粉相の平均粒子径は10μmと粗大であり、ブツが多かった。また、ペレットを実施例1と同様にしてインフレーション成形したところ、穴あきが多発して安定してフィルムを得ることができなかった。
 本発明の樹脂組成物から得られたフィルムは、全て成形性が良好であり、引張弾性率、引裂き強度ともに優れたフィルムが得られた。一方、比較例2では、引裂き強度が良好なフィルムを得ることができたものの、引張弾性率が非常に低く、引っ張ると伸びてしまうため、買い物袋などに応用することは不可能であった。
 (実施例4)
 実施例1にて得られた樹脂組成物のペレットを、乾燥せずそのまま実施例1と同様のインフレーション成形に供した。成形に供したペレットの水分量は2.1質量%であった。実施内容と得られたフィルムの評価結果を表1に示す。
 実施例4のフィルムは、筒状に成形することができたが、フィルム内部が融着しており、実施例1のフィルムより劣っていた。
 (実施例5~8)
 各成分の量比を表1に記載の割合に変えたこと以外は実施例1と同様の条件で樹脂組成物及びフィルムを作成した。実施内容と得られたフィルムの評価結果を表1に示す。
 本発明の樹脂組成物から得られたフィルムのなかでも樹脂組成物の水分量を1重量%未満に調整したものは、引張弾性率、引裂き強度ともに特に優れたものであった。
 <2.樹脂組成物の製造>
 [2.1.脂肪族ポリエステル系樹脂(A)]
 脂肪族ポリエステル系樹脂(A)としては、前記した脂肪族ポリエステル系樹脂(A-1)および脂肪族ポリエステル系樹脂(A-2)の他、以下に記載する脂肪族ポリエステル系樹脂(A-3)を使用した。
 [製造例1(脂肪族ポリエステル系樹脂(A-3)の製造方法)]
 脂肪族ポリエステル(A-1)100質量部に対して、アセトン200質量部を反応容器中に仕込み、温度を50℃まで昇温して、12時間放置した。洗浄終了後、大気下で洗浄液を濾過して、湿ペレットと洗浄濾液とを分離回収した。湿ペレットについては、80℃にて15時間真空乾燥させて、脂肪族ポリエステル系樹脂(A-3)を得た。前記した方法で測定した環状2量体の含有量は580ppmであった。
 [2.2.そのほかの添加剤]
 カルボジイミド化合物として、カルボジライト HMV-8CA(日清紡株式会社製)を使用した。
 (実施例9)
 澱粉(C)(日本コーンスターチ社製 Y-3P;含水率12%)30質量部、熱可塑性樹脂(B)(BASF社製ポリブチレンテレフタレートアジペート系樹脂Ecoflex(グレード名:FBX7011))21質量部、澱粉の可塑剤(D)(和光純薬社製特級グリセリン)6.6質量部を、スクリュー式2軸押出機(日本製鋼所社製TEX30;22シリンダー、L/D=77)のホッパーに供給して最高温度が170℃以下になるように混合する工程を経た後、それに引き続き、サイドフィーダーから脂肪族ポリエステル系樹脂(A-1)42,4質量部を供給して、コーンスターチ、Ecoflex、グリセリン、及び脂肪族ポリエステル系樹脂を最高温度が170℃以下になるように混合する工程を同一押出機内にて逐次的に行い、真空ベントによる吸引は行わず、ダイから押出することで白色の樹脂組成物を得た。得られたペレットの澱粉相の平均粒子径は0.6μmであった。その後、樹脂組成物のペレットを、60℃、窒素雰囲気下で8時間乾燥を行なった。前記した方法で測定した環状2量体の含量は、樹脂組成物全体に対して3300ppmであった。樹脂組成物中の脂肪族ポリエステル系樹脂(A-1)あたりに換算すると7783ppmであり、押出工程において環状2量体の量が大きく変わることはなかった。
 得られた樹脂組成物を、インフレーション成形機を用いて、成形温度150℃でインフレーション成形して、厚み20μmのフィルムを成形した。得られたフィルムは凝集物等の異物等も無く半透明の白色であり、23℃及び50%RH条件下に1ヶ月おいてもオリゴマーの析出は見られなかった。実施内容と得られたフィルムの評価結果を表1に示す。
 (実施例10)
 実施例9において、真空ベントによる吸引を実施したほかは、変更は行わずに樹脂組成物の押出を実施し、白色の樹脂組成物を得た。その後、樹脂組成物のペレットを、60℃、窒素雰囲気下で8時間乾燥を行なった。前記した方法で測定した環状2量体の含量は、樹脂組成物全体に対して3050ppmであった。樹脂組成物中の脂肪族ポリエステル系樹脂(A-1)あたりに換算すると7193ppmであり、真空ベントを用いた脱揮工程を入れることで、脂肪族ポリエステル系樹脂(A)あたりに換算した環状2量体の含量が変化した。得られた樹脂組成物を、インフレーション成形機を用いて、成形温度150℃でインフレーション成形して、厚み20μmのフィルムを成形した。得られたフィルムは凝集物等の異物等も無く半透明の白色であり、23℃及び50%RH条件下に1ヶ月おいてもオリゴマーの析出は見られなかった。実施内容と得られたフィルムの評価結果を表1に示す。
 (実施例11)
 実施例9において得られた樹脂組成物16.7質量部、脂肪族ポリエステル系樹脂(A-1)76.8質量部、熱可塑性樹脂(B)6.5質量部をスクリュー式二軸押出機(テクノベル社製二軸押出機(KZW15))にホッパーから投入し、最高温度が170℃以下になるように混練を実施した。得られた樹脂組成物のペレットを、60℃、窒素雰囲気下で8時間乾燥を行なった。前記した方法で測定した環状2量体の含量は、樹脂組成物全体に対して6600ppmであった。樹脂組成物中の脂肪族ポリエステル系樹脂(A-1)あたりに換算すると7867ppmであり、押出工程において環状2量体の量が大きく変わることはなかった。
 得られた樹脂組成物を、インフレーション成形機を用いて、成形温度150℃でインフレーション成形して、厚み20μmのフィルムを成形した。得られたフィルムは凝集物等の異物等も無く半透明の白色であり、23℃及び50%RH条件下に1ヶ月おいてもオリゴマーの析出は見られなかった。実施内容と得られたフィルムの評価結果を表1に示す。
 (実施例12)
 実施例9において、脂肪族ポリエステル系樹脂(A-1)33.5質量部、熱可塑性樹脂(B)15.0質量部、澱粉(C)35.5質量部、澱粉の可塑剤(D)16質量部とした以外は、実施例1と同様の方法で溶融混練して樹脂組成物を得た。前記した方法で測定した環状2量体の含量は、樹脂組成物全体に対して2600ppmであった。樹脂組成物中の脂肪族ポリエステル系樹脂(A-1)あたりに換算すると7755ppmであり、押出工程において環状2量体の量が大きく変わることはなかった。
 実施例9と同様の方法でフィルム成形を実施した。得られたフィルムは凝集物等の異物等も無く半透明の白色であり、23℃及び50%RH条件下に1ヶ月おいてもオリゴマーの析出は見られなかった。実施内容と得られたフィルムの評価結果を表1に示す。
 (実施例13)
 実施例10において、脂肪族ポリエステル系樹脂(A-1)44.2質量部、熱可塑性樹脂(B)15.0質量部、澱粉(C)35.5質量部および澱粉の可塑剤(D)5.3質量部とした以外は、実施例10と同様の方法で溶融混練して樹脂組成物を得た。前記した方法で測定した環状2量体の含量は、樹脂組成物全体に対して3180ppmであった。樹脂組成物中の脂肪族ポリエステル系樹脂(A-1)あたりに換算すると7199ppmであった。
 実施例9と同様の方法でフィルム成形を実施した。得られたフィルムは凝集物等の異物等も無く半透明の白色であり、23℃及び50%RH条件下に1ヶ月おいてもオリゴマーの析出は見られなかった。実施内容と得られたフィルムの評価結果を表1に示す。
 (実施例14)
 実施例10において、脂肪族ポリエステル系樹脂(A-1)を脂肪族ポリエステル系樹脂(A-2)43.7質量部、熱可塑性樹脂(B)25.0質量部、澱粉(C)25.0質量部、および澱粉の可塑剤(D)6.3質量部とした以外は、実施例10と同様の方法で溶融混練して樹脂組成物を得た。前記した方法で測定した環状2量体の含有量は、樹脂組成物全体に対して2000ppmであった。樹脂組成物中の脂肪族ポリエステル系樹脂(A-2)あたりに換算すると4577ppmであった。
 実施例9と同様の方法でフィルム成形を実施した。得られたフィルムは凝集物等の異物等も無く半透明の白色であり、23℃及び50%RH条件下に1ヶ月おいてもオリゴマーの析出は見られなかった。実施内容と得られたフィルムの評価結果を表1に示す。
 (実施例15)
 実施例9において、脂肪族ポリエステル系樹脂(A-1)を脂肪族ポリエステル系樹脂(A-2)33.4質量部、熱可塑性樹脂(B)19.7質量部、澱粉(C)39.4質量部、および澱粉の可塑剤(D)7.5質量部とした以外は、実施例9と同様の方法で溶融混練して樹脂組成物を得た。前記した方法で測定した環状2量体の含有量は、樹脂組成物全体に対して1700ppmであった。樹脂組成物中の脂肪族ポリエステル系樹脂(A-2)あたりに換算すると5088ppmであった。
 実施例9と同様の方法でフィルム成形を実施した。得られたフィルムは凝集物等の異物等も無く半透明の白色であり、23℃及び50%RH条件下に1ヶ月おいてもオリゴマーの析出は見られなかった。実施内容と得られたフィルムの評価結果を表1に示す。
 (実施例16)
 実施例15において、カルボジイミド化合物(カルボジライトHMV-8CA;得られる樹脂組成物に対して0.4質量部)を脂肪族ポリエステル系樹脂(A-2)に加えてサイドフィードした以外は、実施例15と同様の方法で溶融混練して樹脂組成物を得た。前記した方法で測定した環状2量体の含有量は、樹脂組成物全体に対して1650ppmであった。樹脂組成物中の脂肪族ポリエステル系樹脂(A-2)あたりに換算すると4938ppmであった。
 実施例9と同様の方法でフィルム成形を実施した。実施例15と比較して溶融膜の安定性はより良好であった。得られたフィルムは凝集物等の異物等も無く半透明の白色であり、23℃及び50%RH条件下に1ヶ月おいてもオリゴマーの析出は見られなかった。実施内容と得られたフィルムの評価結果を表1に示す。
 (比較例4)
 脂肪族ポリエステル系樹脂(A-1)100質量部を、実施例12と同じ条件でインフレーション成形を実施し、厚み20μmのフィルムを得た。得られたフィルムは凝集物等の異物等も無く半透明であったが、23℃及び50%RH条件下に1ヶ月置いたところ、多量のオリゴマーの析出が見られた。実施内容と得られたフィルムの評価結果を表1に示す。
 (比較例5)
 脂肪族ポリエステル系樹脂(A-2)100質量部を、実施例12と同じ条件でインフレーション成形を実施し、厚み20μmのフィルムを得た。得られたフィルムは凝集物等の異物等も無く半透明であったが、23℃及び50%RH条件下に1ヶ月置いたところ、多量のオリゴマーの析出が見られた。実施内容と得られたフィルムの評価結果を表1に示す。
 (比較例6)
 製造例1で得られた脂肪族ポリエステル系樹脂(A-3)100質量部を、実施例12と同じ成形条件でインフレーション成形を実施し、厚み20μmのフィルムを得た。得られたフィルムは凝集物等の異物等も無く半透明であった。得られたフィルムを23℃及び50%RH条件下に1ヶ月置いたところ、オリゴマーの析出もなく表面状態は良好であった。しかし、脂肪族ポリエステル系樹脂(A-3)の製造工程で12時間のアセトン洗浄を実施したため、樹脂組成物の生産性が低下し、また洗浄のコストが高くなり、また、アセトン臭があるという障害があった。実施内容と得られたフィルムの評価結果を表1に示す。
 (比較例7)
 実施例13において、脂肪族ポリエステル系樹脂(A-1)を脂肪族ポリエステル系樹脂(A-2)46.6質量部、熱可塑性樹脂(B)21.0質量部、澱粉(C)30.0質量部、および澱粉の可塑剤(D)2.4質量部とした以外は、実施例13と同様の方法で溶融混練して樹脂組成物を得た。
 前記した方法で測定した環状2量体の含量は、樹脂組成物全体に対して2150ppmであった。樹脂組成物中の脂肪族ポリエステル系樹脂(A-2)あたりに換算すると4614ppmであった。
 実施例9と同様の方法でフィルム成形を実施した。得られたフィルムは、澱粉に由来する凝集物が多く、澱粉相の平均粒子径は10μmであった。厚み20μmではインフレーション成形することが不可能な外観不良のサンプルであったため、厚み60μmにて成形した。得られたフィルムを23℃及び50%RH条件下に1ヶ月置いたところ、多量のオリゴマーの析出が見られた。実施内容と得られたフィルムの評価結果を表1に示す。
 (比較例8)
 比較例7で、脂肪族ポリエステル系樹脂(A-2)を脂肪族ポリエステル系樹脂(A-1)31質量部、澱粉の可塑剤(D)18質量部とした以外は、比較例7と同様にして、溶融混練して樹脂組成物を得た。前記した方法で測定した環状2量体の含量は、樹脂組成物全体に対して2200ppmであった。樹脂組成物中の脂肪族ポリエステル系樹脂(A-1)あたりに換算すると7097ppmであった。
 実施例9と同様の方法でインフレーション成形を試みたが、グリセリンを多く添加したことにより、樹脂組成物の流動性が増したため、厚み20μmではインフレーション成形することが不可能であったので、厚み60μmで成形した。またフィルム表面は、グリセリンのブリードアウトによる表面べたつきが起きた。澱粉相の平均粒子径は4μmであった。得られたフィルムを23℃及び50%RH条件下に1ヶ月置いたところ、オリゴマーの析出は見られなかった。実施内容と得られたフィルムの評価結果を表1に示す。
 (比較例9)
 比較例8において、脂肪族ポリエステル系樹脂(A-1)31質量部を使用する代わりに、製造例2で得られた脂肪族ポリエステル系樹脂(A-3)31質量部を使用した以外は、比較例8と同じ条件で溶融混練して樹脂組成物を得た。前記した方法で測定した環状2量体の含有量は、樹脂組成物全体に対して150ppmであった。樹脂組成物中の脂肪族ポリエステル系樹脂(A-3)あたりに換算すると484ppmであった。
 実施例9と同様の方法でインフレーション成形を実施し、厚み20μmのフィルムを得た。得られたフィルムは凝集物等の異物等も無く半透明であった。得られたフィルムを23℃及び50%RH条件下に1ヶ月置いたところ、オリゴマーの析出もなく表面状態は良好であった。しかし、脂肪族ポリエステル系樹脂(A-3)の製造工程で、12時間のアセトン洗浄を実施したため、生産性が低くアセトン臭があった。実施内容と得られたフィルムの評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 以上、現時点において、もっとも、実践的であり、かつ、好ましいと思われる実施形態に関連して本発明を説明したが、本発明は、本願明細書中に開示された実施形態に限定されるものではなく、請求の範囲および明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う樹脂組成物、フィルム、袋製品、および、樹脂組成物の製造方法もまた本発明の技術的範囲に包含されるものとして理解されなければならない。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2008年12月26日出願の日本国特許出願(特願2008-335336)、2008年12月26日出願の日本国特許出願(特願2008-335337)、2008年12月26日出願の日本国特許出願(特願2008-335338)及び2009年07月01日出願の日本国特許出願(特願2009-157141)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明によれば、フィルムの成形性が良好であり、および/または、フィルムとした場合の機械物性、特に引張弾性率及び引裂強度に優れた、樹脂組成物を提供することができる。この樹脂組成物は該組成物中の各成分の分散性に優れており、成形性も良好である。このため、該樹脂組成物から得られる成形体、特にフィルムは、ごみ袋、買い物袋などの各種袋製品として好適に利用することができる。
 また、本発明の好ましい形態においては、良好な成形性や機械強度を有し、脂肪族ポリエステル系樹脂(A)に由来するオリゴマーの析出が抑制された樹脂組成物及びその製造方法を提供することができる。
 よって、本発明の工業的価値は顕著である。
 100、10 二軸スクリュー押出機
 1 シリンダ
 2 スクリュー軸
 3 主原料供給部
 4 ベント部
 5 副原料供給部
 6 ベント部
 7 ダイスヘッド
 20 水槽
 30 ペレタイザー
 40 乾燥機

Claims (30)

  1.  少なくとも脂肪族ポリエステル系樹脂(A)と澱粉(C)とを含有し、該脂肪族ポリエステル系樹脂(A)が海相、該澱粉(C)が島相を形成する樹脂組成物であって、該島相の平均粒子径が1μm以下である、樹脂組成物。
  2.  前記脂肪族ポリエステル系樹脂(A)が、ジオール単位及びジカルボン酸単位を構成単位とする、請求項1に記載の樹脂組成物。
  3.  前記脂肪族ポリエステル系樹脂(A)が、ポリブチレンサクシネート系樹脂、ポリブチレンサクシネートアジペート系樹脂又はその両樹脂の混合物である、請求項1または請求項2に記載の樹脂組成物。
  4.  さらに、脂肪族ポリエステル系樹脂以外の熱可塑性樹脂(B)を含有し、該熱可塑性樹脂は、前記澱粉(C)の島相と別個の島相を形成する、請求項1から請求項3のいずれか1項に記載の樹脂組成物。
  5.  前記熱可塑性樹脂(B)として脂肪族芳香族ポリエステル系樹脂を含有し、該脂肪族芳香族ポリエステル系樹脂は、前記澱粉(C)の島相と別個の島相を形成する、請求項4に記載の樹脂組成物。
  6.  前記脂肪族芳香族ポリエステル系樹脂が、ジオール単位及びジカルボン酸単位を構成単位とする、請求項5に記載の樹脂組成物。
  7.  前記脂肪族芳香族ポリエステル系樹脂が、ポリブチレンアジペートテレフタレート系樹脂である、請求項5または請求項6に記載の樹脂組成物。
  8.  さらに、澱粉の可塑剤(D)を含有する、請求項1から請求項7のいずれか1項に記載の樹脂組成物。
  9.  前記脂肪族ポリエステル系樹脂(A)に含まれる環状2量体の含量が、該脂肪族ポリエステル系樹脂(A)に対して、質量で1000ppm~10000ppmである、請求項1から請求項8のいずれか1項に記載の樹脂組成物。
  10.  樹脂組成物に含まれる環状2量体の含量が、樹脂組成物全体に対して、質量で1000ppm~9000ppmである、請求項9に記載の樹脂組成物。
  11. 前記熱可塑性樹脂(B)は、脂肪族ポリエステル系樹脂(A)100質量部に対して1質量部以上100質量部以下であり、前記澱粉の可塑剤(D)が澱粉(C)に対して10~55質量%である、請求項8から請求項10のいずれか1項に記載の樹脂組成物。
  12.  前記脂肪族ポリエステル系樹脂(A)が、ポリブチレンサクシネート系樹脂であり、前記脂肪族ポリエステル系樹脂以外の熱可塑性樹脂(B)が、ポリブチレンテレフタレートアルキレート系樹脂であり、澱粉の可塑剤(D)がグリセリンであり、
    前記樹脂組成物全体に対する各成分の質量割合が、前記ポリブチレンサクシネート系樹脂30~45質量%、前記ポリブチレンテレフタレートアルキレート系樹脂15~25質量%、前記澱粉(C)30~45質量%、前記グリセリン4~8質量%である、請求項8から請求項11のいずれか1項に記載の樹脂組成物。
  13.  請求項1から請求項12のいずれか1項に記載の樹脂組成物を成形してなるフィルムであって、JIS K7127に準拠した引張弾性率が200MPa以上であり、JIS K7128に準拠したエルメンドルフ引裂強度が100N/mm以上である、フィルム。
  14.  インフレーション成形されたものである、請求項13に記載のフィルム。
  15.  請求項13または請求項14に記載のフィルムからなる袋製品。
  16.  脂肪族ポリエステル系樹脂(A)と澱粉(C)とを含む樹脂組成物の製造方法であって、平均粒子径1μm以下の澱粉(C)を含む組成物(X)と、脂肪族ポリエステル系樹脂(A)とを混合する、樹脂組成物の製造方法。
  17.  脂肪族ポリエステル系樹脂(A)と澱粉(C)とを含む樹脂組成物の製造方法であって、該樹脂組成物中の水分量を1質量%未満に調整する、請求項16に記載の樹脂組成物の製造方法。
  18.  脂肪族ポリエステル系樹脂(A)および澱粉(C)を混練する樹脂組成物の製造方法であって、脂肪族ポリエステル系樹脂(A)として、環状2量体の含有量が1000~10000ppmである脂肪族ポリエステル系樹脂(A)を用いる、請求項16または請求項17に記載の樹脂組成物の製造方法。
  19.  原料を供給するための主原料供給部、副原料供給部、および該副原料供給部とダイスヘッドとの間に脱揮工程部を有する二軸スクリュー式押出機を用い、該主原料供給部から澱粉(C)をフィードし、脂肪族ポリエステル系樹脂(A)を該副原料供給部から供給し、該脱揮工程部において脱揮を行う、請求項18に記載の樹脂組成物の製造方法。
  20.  前記脂肪族ポリエステル系樹脂(A)の融解温度が130℃以下である、請求項16から請求項19のいずれか1項に記載の樹脂組成物の製造方法。
  21. 前記脂肪族ポリエステル系樹脂(A)が、ジオール単位及びジカルボン酸単位を構成単位とする、請求項16から請求項20のいずれか1項に記載の樹脂組成物の製造方法。
  22.  前記脂肪族ポリエステル系樹脂(A)が、ポリブチレンサクシネート系樹脂、ポリブチレンサクシネートアジペート系樹脂又はその両樹脂の混合物である、請求項16から請求項21のいずれか1項に記載の樹脂組成物の製造方法。
  23.  前記樹脂組成物に、さらに澱粉の可塑剤(D)を含有させる、請求項16から請求項22のいずれか1項に記載の樹脂組成物の製造方法。
  24.  前記澱粉の可塑剤(D)が、水酸基を有する有機化合物である、請求項23に記載の樹脂組成物の製造方法。
  25.  前記澱粉の可塑剤(D)の分子量が3000以下である、請求項23または請求項24に記載の樹脂組成物の製造方法。
  26.  前記澱粉の可塑剤(D)が、グリセリン、ソルビトール、ペンタエリストール、プロピレングリコール及びエチレングリコールからなる群より選ばれる少なくとも1種である、請求項23から請求項25のいずれか1項に記載の樹脂組成物の製造方法。
  27.  さらに、脂肪族ポリエステル系樹脂(A)以外の熱可塑性樹脂(B)を配合させる樹脂組成物の製造方法であって、脂肪族ポリエステル系樹脂(A)100質量部に対して1質量部以上100質量部以下である熱可塑性樹脂(B)を配合させる、請求項16から請求項26のいずれか1項に記載の樹脂組成物の製造方法。
  28. 前記熱可塑性樹脂(B)が、脂肪族芳香族ポリエステル系樹脂である、請求項27に記載の樹脂組成物の製造方法。
  29.  前記熱可塑性樹脂(B)が、ジオール単位とジカルボン酸単位とを構成単位とする、請求項27または請求項28に記載の樹脂組成物の製造方法。
  30.  前記熱可塑性樹脂(B)が、ポリブチレンアジペートテレフタレート系樹脂である、請求項27から請求項29のいずれか1項に記載の樹脂組成物の製造方法。
PCT/JP2009/071505 2008-12-26 2009-12-24 樹脂組成物、フィルム、袋製品、および、樹脂組成物の製造方法 WO2010074185A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801514014A CN102257066A (zh) 2008-12-26 2009-12-24 树脂组合物、膜、袋制品、和树脂组合物的制造方法
US13/142,347 US8974881B2 (en) 2008-12-26 2009-12-24 Resin composition, film, bag product and production process of resin composition
EP09834982.2A EP2380932B1 (en) 2008-12-26 2009-12-24 Resin composition, film, bag product and production process of resin composition
US14/614,807 US9206306B2 (en) 2008-12-26 2015-02-05 Resin composition, film, bag product and production process of resin composition

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2008335337 2008-12-26
JP2008-335338 2008-12-26
JP2008-335337 2008-12-26
JP2008335336 2008-12-26
JP2008335338 2008-12-26
JP2008-335336 2008-12-26
JP2009157141 2009-07-01
JP2009-157141 2009-07-01

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/142,347 A-371-Of-International US8974881B2 (en) 2008-12-26 2009-12-24 Resin composition, film, bag product and production process of resin composition
US14/614,807 Division US9206306B2 (en) 2008-12-26 2015-02-05 Resin composition, film, bag product and production process of resin composition

Publications (1)

Publication Number Publication Date
WO2010074185A1 true WO2010074185A1 (ja) 2010-07-01

Family

ID=42287791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071505 WO2010074185A1 (ja) 2008-12-26 2009-12-24 樹脂組成物、フィルム、袋製品、および、樹脂組成物の製造方法

Country Status (5)

Country Link
US (2) US8974881B2 (ja)
EP (1) EP2380932B1 (ja)
JP (1) JP5589377B2 (ja)
CN (2) CN106046702B (ja)
WO (1) WO2010074185A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102827460A (zh) * 2012-08-09 2012-12-19 青岛顺德塑料机械有限公司 一种淀粉/pva改性pet的双向拉伸聚酯膜配方及聚酯膜的制备方法
WO2013073403A1 (ja) * 2011-11-15 2013-05-23 昭和電工株式会社 生分解性樹脂組成物及び生分解性フィルム
JP2015096584A (ja) * 2013-11-15 2015-05-21 株式会社ケイケイ 生分解性樹脂組成物およびこの樹脂組成物の製造方法並びに成形品
WO2015114719A1 (ja) * 2014-01-30 2015-08-06 株式会社カネカ ポリエステル樹脂組成物の製造方法およびポリエステル樹脂成形体

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013049759A (ja) * 2011-08-30 2013-03-14 Mitsubishi Chemicals Corp 樹脂組成物、成形体、フィルム及び袋
CN102424719B (zh) * 2011-11-29 2013-08-07 清华大学深圳研究生院 含稻草粉的改性聚乳酸复合材料及其制备方法
FR2992652B1 (fr) 2012-06-27 2014-06-20 Arkema France Utilisation d'un alliage d'amidon thermoplastique et de tpe pour la fabrication d'un film ultra-fin imper-respirant adhesif.
KR20140039826A (ko) * 2012-09-25 2014-04-02 에스케이이노베이션 주식회사 생분해성 및 인장신율이 우수한 폴리(알킬렌 카보네이트) 수지 조성물
GB201217209D0 (en) * 2012-09-26 2012-11-07 Biome Bioplastics Ltd Biodegradable material
GB201217207D0 (en) * 2012-09-26 2012-11-07 Biome Bioplastics Ltd Bio-resins
CN103044866A (zh) * 2012-12-18 2013-04-17 上海交通大学 可塑性淀粉改性pbat生物全降解材料的制备方法
JP2014136792A (ja) * 2013-01-18 2014-07-28 Fuji Xerox Co Ltd 樹脂組成物および樹脂成形体
JP2017533844A (ja) * 2014-10-27 2017-11-16 ティパ コーポレイション リミティド 生分解性シート
EP3221389A1 (fr) * 2014-11-17 2017-09-27 Roquette Frères Composition à base d'amidon thermoplastique et de polyester aliphatique
US11926940B2 (en) 2015-06-30 2024-03-12 BiologiQ, Inc. Spunbond nonwoven materials and fibers including starch-based polymeric materials
US11926929B2 (en) 2015-06-30 2024-03-12 Biologiq, Inc Melt blown nonwoven materials and fibers including starch-based polymeric materials
US11046840B2 (en) 2015-06-30 2021-06-29 BiologiQ, Inc. Methods for lending biodegradability to non-biodegradable plastic materials
US11879058B2 (en) 2015-06-30 2024-01-23 Biologiq, Inc Yarn materials and fibers including starch-based polymeric materials
FR3045201B1 (fr) * 2015-12-11 2018-01-19 Nexans Cable resistant au feu
JP6693755B2 (ja) * 2016-01-26 2020-05-13 一成 増谷 溶融積層型3dプリンタ用光沢性フィラメント
DE102016104379A1 (de) * 2016-03-10 2017-09-14 Fkur Kunststoff Gmbh Thermoplastische Zusammensetzung
CN106750635A (zh) * 2017-01-12 2017-05-31 芜湖航天特种电缆厂股份有限公司 用于电缆的改性阻燃异戊橡胶及其制备方法
CN106810735A (zh) * 2017-01-12 2017-06-09 芜湖航天特种电缆厂股份有限公司 用于电缆的改性阻燃氯丁橡胶及其制备方法
GB201801978D0 (en) * 2018-02-07 2018-03-28 Csir Biodegradable plastic
CN108795001B (zh) * 2018-05-28 2020-04-07 金发科技股份有限公司 一种可生物降解聚合物组合物及其应用
JP7461339B2 (ja) * 2019-03-28 2024-04-03 クラレファスニング株式会社 成形性に優れた生分解性フック型成形面ファスナー
CN109988400B (zh) * 2019-04-18 2021-05-14 瑞力恒生态科技(深圳)有限公司 一种环保型可降解包装复合膜及其制备方法
BR112021026312A2 (pt) * 2019-07-10 2022-03-03 Biologiq Inc Mesclagem de amido de pequena partícula e materiais à base de amido com polímeros sintéticos para força aumentada e outras propriedades
KR102116694B1 (ko) * 2019-10-21 2020-06-01 그린웨일글로벌 주식회사 재생가능 수지 조성물 및 이로부터 제조된 물품
WO2021153642A1 (ja) * 2020-01-29 2021-08-05 クラレファスニング株式会社 生分解性に優れた表裏係合型面ファスナー
CN115380060A (zh) * 2020-03-27 2022-11-22 株式会社钟化 热塑性树脂组合物的制造方法、成型体的制造方法及膜
US11820881B2 (en) * 2020-04-02 2023-11-21 Singular Solutions Inc. Plastic pro-biodegradation additives, biodegradable plastic compositions, and related methods
RU2753723C1 (ru) * 2020-09-22 2021-08-20 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет пищевых производств" Биодеградируемая полимерная композиция с антимикробными свойствами и регулируемым сроком биоразложения
CN112405931B (zh) * 2020-10-26 2022-09-20 苏州和塑美科技有限公司 一种纳米蒙脱土增强淀粉基生物降解吹膜材料的制备方法及其产品和应用
CN114015208A (zh) * 2021-11-26 2022-02-08 中广核拓普(四川)新材料有限公司 环保型保险杠外壳、其制备方法及带有该外壳的保险杠
JP7232367B1 (ja) 2022-03-29 2023-03-02 東洋インキScホールディングス株式会社 農業資材用熱可塑性樹脂組成物及び農業資材
CN114800762A (zh) * 2022-05-27 2022-07-29 广州大学 一种绿色环保的阻燃木塑板的制备方法
US12070885B2 (en) 2022-06-10 2024-08-27 Reynolds Consumer Products LLC Method for manufacturing renewable film and products
JP7285384B1 (ja) 2023-01-31 2023-06-01 日本食品化工株式会社 澱粉含有樹脂組成物、ペレット、フレーク、樹脂成形物、澱粉含有樹脂組成物の製造方法、ペレット又はフレークの製造方法、及び樹脂成形物の製造方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2941956A (en) 1956-08-15 1960-06-21 Socony Mobil Oil Co Inc Regeneration of contact material
JPS4733279B1 (ja) 1968-12-20 1972-08-24
JPH07330954A (ja) 1994-06-09 1995-12-19 Showa Highpolymer Co Ltd 生分解性脂肪族ポリエステル組成物
JP2000509427A (ja) 1996-11-05 2000-07-25 ノバモント・ソシエタ・ペル・アチオニ デンプンと熱可塑性ポリマーからなる生分解性ポリマー組成物
JP2001254005A (ja) * 2000-03-10 2001-09-18 Showa Denko Kk 脂肪族ポリエステル樹脂組成物及びそのフィルム
JP2002003606A (ja) 2000-06-23 2002-01-09 Showa Highpolymer Co Ltd 脂肪族ポリエステルまたは組成物の洗浄処理方法
JP2003055470A (ja) 2001-06-08 2003-02-26 Daito M Ii Kk 生分解性樹脂組成物
JP2006212897A (ja) * 2005-02-03 2006-08-17 Unitika Ltd ポリ乳酸系成型品の製造方法
JP2008013602A (ja) 2006-07-03 2008-01-24 Showa Highpolymer Co Ltd 生分解性樹脂組成物および生分解性フィルム
JP2008019339A (ja) * 2006-07-12 2008-01-31 Asahi Kasei Chemicals Corp 防汚性の改良された艶消しフィルムまたはシート
JP2009155530A (ja) * 2007-12-27 2009-07-16 Mitsubishi Chemicals Corp 澱粉含有組成物の製造方法及び成形体の製造方法
JP2009155531A (ja) * 2007-12-27 2009-07-16 Mitsubishi Chemicals Corp 樹脂組成物及びその製造方法並びに該樹脂組成物からなるフィルム
JP2009173911A (ja) * 2007-12-27 2009-08-06 Mitsubishi Chemicals Corp 脂肪族ポリエステル樹脂組成物及びそれを成形してなる成形体
JP2009185305A (ja) * 1998-06-17 2009-08-20 Novamont Spa 高い機械的性質を有する複合化デンプン含有組成物

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0819147T3 (da) * 1995-04-07 2003-09-29 Biotec Biolog Naturverpack Polymerblanding, som kan nedbrydes biologisk
WO2002014430A2 (de) * 2000-08-11 2002-02-21 Bio-Tec Biologische Naturverpackungen Gmbh & Co. Kg Biologisch abbaubarer polymerblend
JP2004359730A (ja) * 2003-06-02 2004-12-24 Mitsubishi Gas Chem Co Inc 樹脂組成物
CN1307246C (zh) * 2003-11-07 2007-03-28 李小鲁 含淀粉的全生物降解的吹塑成型树脂组合物及其制备方法
US7193029B2 (en) * 2004-07-09 2007-03-20 E. I. Du Pont De Nemours And Company Sulfonated copolyetherester compositions from hydroxyalkanoic acids and shaped articles produced therefrom
ITMI20050452A1 (it) * 2005-03-18 2006-09-19 Novamont Spa Poliestere biodegradabile alifatico-aromatico
EP1921103A4 (en) * 2005-08-29 2009-07-01 Mitsubishi Chem Corp POLY (BUTYLENE TEREPHTHALATE) AND METHOD FOR PRODUCING THE SAME
JP5073956B2 (ja) * 2006-03-28 2012-11-14 アキレス株式会社 生分解性フィルムまたはシート
ITMI20061844A1 (it) * 2006-09-27 2008-03-28 Novamont Spa Composizioni biodegradabili a base di amido nanoparticellare
ITMI20061845A1 (it) * 2006-09-27 2008-03-28 Novamont Spa Composizioni biodegradabili polifasiche a base di amido
US8592641B2 (en) * 2006-12-15 2013-11-26 Kimberly-Clark Worldwide, Inc. Water-sensitive biodegradable film

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2941956A (en) 1956-08-15 1960-06-21 Socony Mobil Oil Co Inc Regeneration of contact material
JPS4733279B1 (ja) 1968-12-20 1972-08-24
JPH07330954A (ja) 1994-06-09 1995-12-19 Showa Highpolymer Co Ltd 生分解性脂肪族ポリエステル組成物
JP2000509427A (ja) 1996-11-05 2000-07-25 ノバモント・ソシエタ・ペル・アチオニ デンプンと熱可塑性ポリマーからなる生分解性ポリマー組成物
JP2009185305A (ja) * 1998-06-17 2009-08-20 Novamont Spa 高い機械的性質を有する複合化デンプン含有組成物
JP2001254005A (ja) * 2000-03-10 2001-09-18 Showa Denko Kk 脂肪族ポリエステル樹脂組成物及びそのフィルム
JP2002003606A (ja) 2000-06-23 2002-01-09 Showa Highpolymer Co Ltd 脂肪族ポリエステルまたは組成物の洗浄処理方法
JP2003055470A (ja) 2001-06-08 2003-02-26 Daito M Ii Kk 生分解性樹脂組成物
JP2006212897A (ja) * 2005-02-03 2006-08-17 Unitika Ltd ポリ乳酸系成型品の製造方法
JP2008013602A (ja) 2006-07-03 2008-01-24 Showa Highpolymer Co Ltd 生分解性樹脂組成物および生分解性フィルム
JP2008019339A (ja) * 2006-07-12 2008-01-31 Asahi Kasei Chemicals Corp 防汚性の改良された艶消しフィルムまたはシート
JP2009155530A (ja) * 2007-12-27 2009-07-16 Mitsubishi Chemicals Corp 澱粉含有組成物の製造方法及び成形体の製造方法
JP2009155531A (ja) * 2007-12-27 2009-07-16 Mitsubishi Chemicals Corp 樹脂組成物及びその製造方法並びに該樹脂組成物からなるフィルム
JP2009173911A (ja) * 2007-12-27 2009-08-06 Mitsubishi Chemicals Corp 脂肪族ポリエステル樹脂組成物及びそれを成形してなる成形体

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEMICAL REVIEW, vol. 81, no. 4, 1981, pages 619 - 621
J. ORG. CHEM., vol. 28, 1963, pages 2069 - 2075
See also references of EP2380932A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073403A1 (ja) * 2011-11-15 2013-05-23 昭和電工株式会社 生分解性樹脂組成物及び生分解性フィルム
JPWO2013073403A1 (ja) * 2011-11-15 2015-04-02 昭和電工株式会社 生分解性樹脂組成物及び生分解性フィルム
CN102827460A (zh) * 2012-08-09 2012-12-19 青岛顺德塑料机械有限公司 一种淀粉/pva改性pet的双向拉伸聚酯膜配方及聚酯膜的制备方法
CN102827460B (zh) * 2012-08-09 2014-06-25 青岛顺德塑料机械有限公司 一种淀粉/pva改性pet的双向拉伸聚酯膜配方及聚酯膜的制备方法
JP2015096584A (ja) * 2013-11-15 2015-05-21 株式会社ケイケイ 生分解性樹脂組成物およびこの樹脂組成物の製造方法並びに成形品
WO2015114719A1 (ja) * 2014-01-30 2015-08-06 株式会社カネカ ポリエステル樹脂組成物の製造方法およびポリエステル樹脂成形体

Also Published As

Publication number Publication date
US8974881B2 (en) 2015-03-10
US20150210844A1 (en) 2015-07-30
EP2380932A1 (en) 2011-10-26
JP5589377B2 (ja) 2014-09-17
US9206306B2 (en) 2015-12-08
CN106046702B (zh) 2020-05-26
JP2011026538A (ja) 2011-02-10
EP2380932A4 (en) 2015-10-14
EP2380932B1 (en) 2018-03-14
US20110311743A1 (en) 2011-12-22
CN102257066A (zh) 2011-11-23
CN106046702A (zh) 2016-10-26

Similar Documents

Publication Publication Date Title
JP5589377B2 (ja) 樹脂組成物、フィルム、袋製品、および、樹脂組成物の製造方法
Briassoulis et al. Alternative optimization routes for improving the performance of poly (3-hydroxybutyrate)(PHB) based plastics
AU705499B2 (en) Biologically degradable polymer mixture
JP5390088B2 (ja) 樹脂組成物ならびに該樹脂組成物からなる成形体およびフィルム
JP2004518781A (ja) 生分解性ポリエステル類の三成分混合物とそれから製造された製品
JP2004518808A (ja) 生分解性ポリエステル類の三成分混合物とそれから製造された製品
JP2013147609A (ja) 樹脂組成物、成形体、フィルム及び袋
JP5369673B2 (ja) 脂肪族ポリエステル樹脂組成物及びそれを成形してなる成形体
JP2009221337A (ja) 樹脂組成物並びに該樹脂組成物からなる成形品及びフィルム
JP2009155531A (ja) 樹脂組成物及びその製造方法並びに該樹脂組成物からなるフィルム
JP5601017B2 (ja) 生分解性樹脂組成物およびその製造方法
JP5233335B2 (ja) 樹脂組成物並びに該樹脂組成物からなる成形品及びフィルム
JP2013049760A (ja) 樹脂組成物の製造方法、並びに、成形体、フィルム及び袋の製造方法
JPH11241009A (ja) ポリ乳酸系樹脂組成物
JP2008031456A (ja) 脂肪族芳香族ポリエステル及びその樹脂組成物
JP2013139587A (ja) 樹脂組成物ならびに該樹脂組成物からなる成形体およびフィルム
JP2012031330A (ja) 生分解性樹脂組成物及びそれを成形してなる成形体
JP5472502B2 (ja) ポリエステル系樹脂組成物を含有するフィルム
JP6260377B2 (ja) 生分解性フィルム
JP7106936B2 (ja) 成形体、シート及び容器
JP5218724B2 (ja) ポリエステル系樹脂組成物を含有するフィルム
JP2020164577A (ja) ポリエステル系樹脂組成物及び成形品
JP2012031329A (ja) 生分解性樹脂組成物及びそれを成形してなる成形体
JP2000345012A (ja) 樹脂組成物
JP5292868B2 (ja) 樹脂組成物並びに該樹脂組成物からなる成形品及びフィルム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980151401.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009834982

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13142347

Country of ref document: US