WO2010029761A1 - 炭素質フィルムの製造方法、およびこれによって得られるグラファイトフィルム - Google Patents

炭素質フィルムの製造方法、およびこれによって得られるグラファイトフィルム Download PDF

Info

Publication number
WO2010029761A1
WO2010029761A1 PCT/JP2009/004524 JP2009004524W WO2010029761A1 WO 2010029761 A1 WO2010029761 A1 WO 2010029761A1 JP 2009004524 W JP2009004524 W JP 2009004524W WO 2010029761 A1 WO2010029761 A1 WO 2010029761A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
carbonaceous film
carbonaceous
kpa
producing
Prior art date
Application number
PCT/JP2009/004524
Other languages
English (en)
French (fr)
Inventor
稲田卓
西川泰司
真琴 三代
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to US13/063,419 priority Critical patent/US8858847B2/en
Priority to JP2010528655A priority patent/JP5586469B2/ja
Priority to CN200980135947.0A priority patent/CN102149633B/zh
Publication of WO2010029761A1 publication Critical patent/WO2010029761A1/ja
Priority to US14/478,999 priority patent/US9512005B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation

Definitions

  • the present invention relates to a method for producing a carbonaceous film used as a heat radiating member in electronic equipment, precision equipment, and the like.
  • Graphite is widely used as a heat diffusion / heat dissipation material, heat-resistant sealing material, gasket, fuel cell separator, etc. because of its outstanding heat resistance, chemical resistance, thermal conductivity, electrical conductivity, and low gas permeability.
  • Graphite has greatly different thermal and electrical properties in the ab plane direction and c axis direction, and the anisotropy of thermal conductivity in the ab plane direction and c axis direction reaches 50 to 400 times.
  • the graphite heat dissipation film is used to diffuse the generated heat quickly and widely using such properties. There are two methods for producing graphite used for heat dissipation as described below.
  • an expanded graphite method One of them is a method generally called an expanded graphite method.
  • natural graphite lead is treated with a strong acid such as sulfuric acid to form an intercalation compound, and a sheet-like graphite film is obtained by rolling expanded graphite produced when this is heated and expanded (hereinafter referred to as this).
  • the graphite film produced by this method is called an expanded graphite film) (Non-patent Document 1).
  • Such an expanded graphite film exhibits a thermal conductivity of about 100 to 400 W / (m ⁇ K) in the planar direction and is used as a heat dissipation material.
  • the expanded graphite film seen as a heat dissipation material has the advantage that it is easy to produce a large-area sheet, but it is difficult to achieve a thermal conductivity of 400 W / (m ⁇ K) or more, and a thin film of 50 ⁇ m or less is produced. Has the disadvantage of being difficult.
  • Another method is to use a polymer film such as polyoxadiazole, polybenzothiazole, polybenzobisthiazole, polybenzoxazole, polybenzobisoxazole, polythiazole, polyimide, polyphenylene vinylene, or polyamide, such as argon or helium.
  • a polymer film such as polyoxadiazole, polybenzothiazole, polybenzobisthiazole, polybenzoxazole, polybenzobisoxazole, polythiazole, polyimide, polyphenylene vinylene, or polyamide, such as argon or helium.
  • Patent Documents 1, 2, and 3 in which heat treatment is performed under an inert atmosphere or under vacuum.
  • these polymer films are preliminarily heated to, for example, about 1000 ° C.
  • a graphite film is obtained by passing through two processes of the graphitization process which processes a quality film at the temperature of 2400 degreeC or more.
  • the polymer graphite film When viewed as a heat-dissipating material, the polymer graphite film exhibits a very high thermal conductivity of 600 to 1800 W / (m ⁇ K), so that a thin sheet can be produced and a sheet of 25 ⁇ m or less can be easily produced.
  • Method 1 As a method for producing a graphite film by this polymer pyrolysis method, (Method 1) Two methods are known: a method in which a single-wafer raw material film is sandwiched between graphite plates and heat-treated (Method 2). The method will be described in more detail as follows.
  • Patent Document 1 Method of heat-treating a single-wafer raw material film between graphite plates
  • Examples 1 and 2 of Patent Documents 1 and 2 disclose a method of heat-treating a raw material film with a single-wafer as follows. Yes. 25 micron PA film (poly (m-phenyleneisophthalamide)), PI (poly (pyromellitimide)), PBI (poly (m-phenylenebenzimidazole)), PBBI (poly (m-phenylenebenzobisimidazole)) Is fixed to a stainless steel frame, and a preliminary heat treatment is performed from room temperature to 700 ° C. at a rate of 10 ° C. per minute in argon using an electric furnace.
  • PA film poly (m-phenyleneisophthalamide)
  • PI poly (pyromellitimide)
  • PBI poly (m-phenylenebenzimidazole)
  • PBBI poly (m-phenylenebenzobisimidazole)
  • the PA film shrinks to 50% of its original size in this temperature range, so fixing with the stainless steel frame means that a preheating treatment was applied while applying tension.
  • the film preliminarily heat-treated in this manner is sandwiched between graphite plates, heated in an argon stream at a rate of 10 ° C. per minute, and heat-treated at a desired temperature (Tp) for 1 hour. Next, it is cooled at a temperature lowering rate of 20 ° C. per minute after the heat treatment.
  • the furnace used is an electric furnace using a carbon heater.
  • the obtained black film is brittle when Tp is 1400 ° C. or lower, but is flexible when it is 1800 ° C. or higher.
  • Method 2 Method of winding a long raw material film around a cylinder and heat-treating
  • Example 1 of Patent Document 3 a method of winding a long raw material film around a cylinder and heat-treating is disclosed as follows. .
  • a POD film with a width of 180 mm and a thickness of 50 ⁇ m is wrapped around a graphitic carbon cylinder with an outer diameter of 68 mm, an inner diameter of 64 mm, and a length of 200 mm in triplicate (three layers are stacked and not wrapped around three laps).
  • the temperature is raised from room temperature at a rate of 10 ° C./minute, treated at a desired temperature Tp for 1 hour, and then the temperature is lowered at a rate of 20 ° C./minute.
  • Patent Document 4 proposes a method in which a film as a separator is wound around a cylinder and heat-treated at the same time in order to prevent fusion of raw material films. Furthermore, in the part of the problem to be solved by the invention of Patent Document 4, it is described that it is difficult to obtain a graphite film having a length longer than the circumference of a cylinder unless a separator is used.
  • the graphite film obtained by the polymer pyrolysis method has high thermal conductivity and thinness, and can be expected to have a high heat dissipation effect in a small space compared with the expanded graphite film.
  • heat can be efficiently radiated even in a narrow space.
  • it is difficult to increase the area of the polymer graphite film, and its use is limited to a part of a small device despite its high ability.
  • it is necessary to use a number of graphite films bonded together. Since the joined portions have a large thermal resistance, the high thermal conductivity, which is an advantage, cannot be utilized, and it has become a major drawback from the viewpoint of manufacturing cost.
  • the method of obtaining a graphite film by firing a single-wafer-type raw material film is limited in the size of the graphite that can be produced by the internal dimensions of the firing part of the furnace. It was unsuitable.
  • the method of winding a long raw material film around a core and baking it is very excellent in that a large area and long graphite film that cannot be obtained with a single wafer type can be easily obtained.
  • the firing method using a cylindrical container has the following problems.
  • the film shrinks to about 60 to 80% of the length of the original raw film. If the number of windings on the core increases to obtain a long graphite film, the film may crack at the same time as shrinkage during the carbonization process, or the films may cause fusion. was there. Once the carbonaceous film has been fused, it does not return to its original state in the subsequent graphitization process, and as a result, a cracked graphite film or a graphite film with an extremely poor surface state is obtained. For the above reasons, the graphite film that can be manufactured while being wound around the core has a length limit.
  • Patent Document 4 Japanese Patent Laid-Open No. 5-132360
  • a method of performing a heat treatment by winding the film together with a film-like separator is proposed.
  • this method since it is necessary to use a separator having the same area as the raw material film, the production efficiency of the carbonaceous film is extremely deteriorated.
  • the amount of the raw material film that can be processed in the same volume is about half.
  • That the processing amount is halved means that the continuous length of the raw material film that can be processed is halved, and the advantage of the cylindrical shape that can produce a long length cannot be used.
  • Patent Document 4 describes that a graphite film can also be obtained from a separator, in practice, a good graphite film cannot be obtained from a separator containing an additive.
  • the first of the present invention is a method for producing a carbonaceous film through a carbonization step in which a heat treatment is performed in a state where a polymer film is wound around a core, wherein at least a part of the carbonization step is performed under reduced pressure. It is a manufacturing method of the carbonaceous film made into.
  • “at least a part of the carbonization step is performed under reduced pressure” means that the gas pressure in the heating device (also referred to as a furnace) is made lower than that outside the heating device in at least a part of the carbonization step.
  • the second of the present invention is a method for producing a carbonaceous film, characterized in that the reduced pressure range is -0.01 kPa to -0.08 MPa.
  • a third aspect of the present invention is a method for producing a carbonaceous film, characterized in that the pressure reduction is performed in a temperature range where carbonization thermal decomposition occurs.
  • a fourth aspect of the present invention is a method for producing a carbonaceous film, wherein the depressurization is performed in a temperature range of 500 ° C. to 700 ° C.
  • a fifth aspect of the present invention is a method for producing a carbonaceous film characterized by carbonizing under reduced pressure in a range of ⁇ 0.01 kPa to ⁇ 0.08 MPa while introducing an inert gas.
  • the value of V / V1 (s) is 0.01 or more and 1000 or less when the volume of the treated product is V (L) and the amount of the inert gas to be introduced is V1 (L / s). It is the manufacturing method of the carbonaceous film characterized by these.
  • a seventh aspect of the present invention is a method for producing a carbonaceous film, characterized in that a heat treatment is performed by placing a core in a horizontal direction.
  • Eighth of the present invention is the method for producing a carbonaceous film, wherein the polymer film has a thickness of 10 ⁇ m or more and 250 ⁇ m or less.
  • Ninth aspect of the present invention is the method for producing a carbonaceous film, wherein the polymer film has a length of 10 m or more.
  • the tenth aspect of the present invention is a method for producing a carbonaceous film, wherein the core has a diameter of 70 mm or more.
  • the eleventh aspect of the present invention is a method for producing a carbonaceous film, comprising a container constituted by the core and an outer cylinder for storing the core, wherein the container has air permeability.
  • the cause of cracking and fusing of the carbonaceous film was that the shrinkage of the film in the length direction was hindered by wrinkles and undulations in the film during carbonization. It has been found that the wrinkles of the film and the shrinkage of the corrugated film can be suppressed by providing a binding means for binding the outer peripheral end of the polymer film wound around the core when the polymer film expands and contracts.
  • a binding means for example, a container composed of an outer cylinder and a core is used, and the outer peripheral end of the polymer film can be bound by adjusting the inner diameter of the outer cylinder and the diameter of the core, It was found that carbonization of a long film can be performed without causing wrinkles or undulations.
  • a twelfth aspect of the present invention is a method for producing a carbonaceous film through a carbonization step in which a heat treatment is performed in a state where a polymer film is wound around a core, and the polymer film is expanded and contracted in the carbonization step.
  • a carbonaceous film manufacturing method comprising a binding means for binding an outer peripheral end of the polymer film.
  • the thirteenth aspect of the present invention is a method for producing a carbonaceous film, wherein at least a part of the carbonization step is performed under reduced pressure.
  • the fourteenth aspect of the present invention further includes a container having the winding core and an outer cylinder, wherein the binding means is the outer cylinder, and a value obtained by dividing (the inner diameter of the outer cylinder ⁇ the diameter of the winding core) by 2 is obtained.
  • the fifteenth aspect of the present invention is a method for producing a carbonaceous film, wherein (b / a) is in the range of 0.5 to 0.8.
  • the sixteenth aspect of the present invention is a method for producing a carbonaceous film, wherein (b / a) is in the range of 0.3 to 0.7.
  • the seventeenth aspect of the present invention is the method for producing a carbonaceous film, wherein the outer cylinder has a structure obtained by hollowing out and removing a cylindrical shape from a columnar body.
  • the eighteenth aspect of the present invention is the method for producing a carbonaceous film, wherein a vent hole is provided in at least a part of the outer cylinder.
  • the nineteenth aspect of the present invention is a method for producing a carbonaceous film, characterized in that the polymer film is heat-treated with the core placed horizontally.
  • the 20th aspect of the present invention is a method for producing a carbonaceous film, wherein the polymer film has a thickness of 10 ⁇ m to 250 ⁇ m.
  • the twenty-first aspect of the present invention is a method for producing a carbonaceous film, wherein the polymer film has a length of 10 m or more.
  • the twenty-second aspect of the present invention is a method for producing a carbonaceous film, wherein the diameter of the core is 70 mm or more.
  • 23rd aspect of the present invention is a method for producing a carbonaceous film characterized by using only one type of polymer film without using a separator film.
  • the twenty-fourth aspect of the present invention is a method for producing a carbonaceous film, wherein the reduced pressure range is -0.01 kPa to -0.08 MPa.
  • the twenty-fifth aspect of the present invention is a method for producing a carbonaceous film, characterized in that a polymer film wound around a core is held in a heater and subjected to indirect heat treatment.
  • the twenty-sixth aspect of the present invention is a graphite film obtained by treating a carbonaceous film produced by any one of the above-described methods for producing a carbonaceous film at 2400 ° C. or higher.
  • the present invention fusion of the raw material films is prevented in the carbonization step, and a long and large area carbonaceous film can be obtained with high productivity.
  • the resulting carbonaceous film can be easily converted to a good quality graphite film using known techniques.
  • a long and large-area graphite film that has been difficult to produce can be easily produced.
  • Patent Document 4 Japanese Patent Laid-Open No. 5-132360
  • Japanese Patent Laid-Open No. 5-132360 Japanese Patent Laid-Open No. 5-132360
  • Japanese Patent Laid-Open No. 5-132360 Japanese Patent Laid-Open No. 5-132360
  • Japanese Patent Laid-Open No. 5-132360 Japanese Patent Laid-Open No. 5-132360
  • Japanese Patent Laid-Open No. 63-256508 discloses that a polymer film is sandwiched between two cylindrical graphitic carbons, but the configuration according to the binding means of the present invention is disclosed. No effect is shown.
  • the polymer film that can be used in the present invention is not particularly limited, but polyimide (PI), polyamide (PA), polyoxadiazole (POD), polybenzoxazole (PBO), polybenzobisoxazal (PBBO) ), Polythiazole (PT), polybenzothiazole (PBT), polybenzobisthiazole (PBBT), polyparaphenylene vinylene (PPV), polybenzimidazole (PBI), and polybenzobisimidazole (PBBI).
  • PI polyimide
  • PA polyamide
  • POD polyoxadiazole
  • PBO polybenzoxazole
  • PBBO polybenzobisoxazal
  • Polythiazole (PT) polybenzothiazole
  • PBT polybenzobisthiazole
  • PV polyparaphenylene vinylene
  • PBI polybenzimidazole
  • PBBI polybenzobisimidazole
  • polyimide is preferable because various materials and structures can be obtained by selecting various raw material monomers.
  • the polyimide film is more likely to be graphite having excellent crystallinity and thermal conductivity because carbonization and graphitization of the film is more likely to proceed than polymer films made from other organic materials.
  • This tar component is present in the form of gas or fine mist immediately after it is generated as a decomposition gas from the film.
  • gas may stay between the films.
  • the gas component staying between the films causes agglomeration to become tar, which acts like an adhesive and solidifies as it rises in temperature to cause fusion.
  • carbonization in a reduced pressure atmosphere may be performed. By performing the carbonization under reduced pressure, the decomposition gas can be prevented from agglomerating and the occurrence of fusion can be significantly suppressed. The suppression effect is higher as the degree of decompression is larger.
  • the carbonization process is gently advanced in the carbonization process, which is the pre-process of the graphitization process, and the carbon plane is developed and oriented to some extent after the carbonization process. It is preferable to make it. Therefore, as the degree of decompression is increased, more gas is generated from the inside of the film. However, when the degree of decompression is excessively increased, a carbonaceous film in which the planar structure of carbon is partially destroyed is easily obtained. It is effective to control to some extent.
  • the reduced pressure range in the present invention may be ⁇ 0.01 kPa or more, preferably ⁇ 0.01 kPa or more and ⁇ 0.08 MPa or less, more preferably ⁇ 0.1 kPa or more and ⁇ 0.06 MPa or less, and still more preferably. -0.5 kPa to -0.04 MPa.
  • the degree of vacuum is ⁇ 0.01 kPa or more, the effect of suppressing fusion is sufficiently exerted, and when it is ⁇ 0.08 MPa or less, a graphite film having a good thermal diffusivity can be obtained.
  • reduced pressure is ⁇ 0.01 kPa
  • the pressure of the gas in the heating apparatus is 0.01 kPa lower than the pressure of the gas outside the heating apparatus (usually considered to be atmospheric pressure).
  • reduced pressure ⁇ 0.08 MPa means that the pressure of the gas in the heating device is 0.08 MPa lower than the pressure of the gas outside the heating device.
  • the pressure reduction may be performed in the entire temperature range of the carbonization step, but the lower limit of the temperature range for performing the pressure reduction is preferably 400 ° C, more preferably 500 ° C, and the upper limit of the temperature range for performing the pressure reduction is preferably 800. ° C, more preferably 700 ° C. It is particularly preferable that the reaction be carried out in a temperature range where carbonization thermal decomposition occurs or in the range of 500 ° C to 700 ° C.
  • the volume of the processed material is V, the volume of the processed material and the necessary amount of inert gas can be expressed in a proportional relationship.
  • the volume V of a processed material here represents the total volume of all the members which arrange
  • the value V / V1 (unit: s) obtained by dividing the volume V of the treated product by the flow rate V1 of the inert gas is preferably 0.01 or more and 1000 or less, more preferably 0.1 or more and 100 or less, and even more preferably 1. It is 10 or less.
  • the value of V / V1 is less than 0.01, the amount of the inert gas to be introduced is too much for the processed material, which is not good.
  • the value of V / V1 is larger than 1000, the amount of the inert gas is too small, and there is a possibility that fusion cannot be prevented sufficiently.
  • the “inert gas amount V1” refers to the introduction rate (L / s) of the inert gas at the pressure of the gas outside the heating device (usually considered to be atmospheric pressure).
  • nitrogen As for the type of inert gas used, nitrogen, argon, helium and the like can be mentioned. Any gas that is an inert gas will not affect the film during carbonization, and the same quality can be obtained. Among these, nitrogen is preferably used from the viewpoint of cost.
  • the process is performed under reduced pressure without introducing an inert gas up to around 400 ° C., and then a predetermined degree of vacuum is maintained while introducing the inert gas, or the flow rate of the inert gas when 700 ° C. is exceeded. It is possible to reduce the amount of processing. By adopting such a treatment method, it is not necessary to constantly flow the inert gas during the treatment, and the consumption of the inert gas can be reduced.
  • the inside of the furnace is temporarily at normal pressure or pressure when gas is generated. Predicting the amount of cracked gas and keeping the processing atmosphere in a reduced pressure state as much as possible is also a point for improving foreign matter and fusion. Therefore, it is preferable to optimize the inert gas flow path in the furnace in order to further exhibit the effects of the present invention. It is more effective to design the inert gas introduction port and the exhaust port in accordance with the shape of the firing part and the container to be fired, or to make the container itself into which the polyimide film is put into a structure having good air permeability.
  • the thermal diffusion capacity of the graphite film itself is expressed by thermal conductivity (unit: W / (m ⁇ K)), but the ability to actually transport heat is obtained by multiplying the value of this thermal conductivity by the thickness of the graphite film.
  • the value is an indicator. For example, even if the graphite film has the same thermal conductivity in the plane direction of 1000 W / (m ⁇ K), the 40 ⁇ m graphite film has a higher heat transport capability when the thickness is 25 ⁇ m and 40 ⁇ m.
  • the 40 ⁇ m graphite film is more likely to diffuse the heat from the heat source. From the viewpoint of carrying out a large amount of heat transport with a minimum area, it is extremely useful to produce a thick graphite film.
  • a thick polyimide film is more likely to be fused during carbonization.
  • a separator a sheet or a film sandwiched between raw material films.
  • a graphite film or a graphite plate can be used.
  • a thick polyimide film has a shorter processing length within the same volume than a thin film, it is preferable to use as few separators as possible between the films.
  • the thickness of the polymer film used in the present invention is preferably 10 ⁇ m or more and 250 ⁇ m or less, more preferably 20 ⁇ m or more and 200 ⁇ m or less, 20 ⁇ m or more and 100 ⁇ m or less, further preferably 30 ⁇ m or more and 150 ⁇ m or less, and most preferably 30 ⁇ m or more and 80 ⁇ m or less.
  • the thickness of the polymer film is 10 ⁇ m or more, the heat diffusion capability of the finished graphite film is sufficiently high. If the thickness is 250 ⁇ m or less, a highly oriented graphite layer can be formed.
  • the thickness of the polymer film is preferably 10 ⁇ m to 100 ⁇ m, more preferably 10 ⁇ m to 80 ⁇ m, still more preferably 10 ⁇ m to 60 ⁇ m, and particularly preferably 10 ⁇ m to 50 ⁇ m.
  • the method of producing a graphite film by winding a polymer film around the core of the present invention has an advantage that a long and large area graphite film, which is difficult to produce with a single wafer type, can be produced.
  • a polymer film having a certain length is not used, the area of the raw material film that can be processed within the same volume may be reduced as compared with the single wafer type.
  • the length of the raw material film used for that purpose is preferably 10 m or more, more preferably 20 m or more, and even more preferably 50 m or more.
  • the raw material films are more likely to be fused during carbonization, and in that case, the production method of the present invention becomes more effective.
  • any known method can be used as long as it does not impair the safety of the firing furnace itself, such as a method using a vacuum pump or an exhaust fan.
  • various types of vacuum pumps are commercially available from various companies, and can be suitably used in the present invention because they are easy to operate.
  • Examples of the vacuum pump that can be used in the pressure range of -0.01 kPa to -0.08 MPa of the present invention include an aspirator (water flow pump), a dry vacuum pump, a mechanical booster pump, an oil rotary pump, a sorption pump, and an oil ejector pump. Is mentioned.
  • the degree of decompression can be adjusted by attaching a valve to the exhaust part of the vacuum pump and adjusting the exhaust amount.
  • pressure ⁇ 0.01 kPa means that the pressure is reduced by 0.01 kPa with a vacuum pump
  • pressure ⁇ 0.08 MPa means that the pressure is reduced by 0.08 MPa with a vacuum pump.
  • the cracked gas of the polyimide film contains various low molecular weight substances in addition to the above-described components, and these substances are obtained as nonvolatile tar-like substances when the polyimide film is carbonized.
  • the treatment of the generated tar becomes a problem.
  • Many tar components are toxic, and it is necessary to treat the outgas efficiently considering the time and effort of cleaning and the danger to the human body. Further, if the continuous operation is continued with tar adhering to the heater or the heat insulating material, there is a risk that deterioration is promoted. For this reason, it is necessary to quickly introduce the cracked gas during the carbonization treatment to the outside of the furnace after generation.
  • a cylindrical outer cylinder is more preferable because it can be uniformly contacted with the outer peripheral edge of the film and can be uniformly constrained.
  • the outer cylinder will be further described.
  • a container including a core and an outer cylinder is referred to as a container.
  • the value of (b / a) is preferably 0.2 to 0.9. If it is 0.2 or more, even if the film is loosened, it is supported by the outer cylinder, so that it is difficult to remain loose, and a long carbonaceous film free from undulations and wrinkles can be obtained. If it is 0.9 or less, a gap through which the outgas from the film escapes is secured in the container, and the films are less likely to be fused. In the following, waving and fusion will be described in detail.
  • the frictional force does not work between the films during shrinkage (or even if it works, it becomes a disjoint vector), so a constant tension on the film Does not occur.
  • the carbonaceous film is glassy, so that the film is broken during shrinkage.
  • the wound films can move with each other when shrinking, so that the film does not tear due to shrinkage, and a constant tension acts on the film, so there is no wrinkles or undulations in the carbonaceous film Can be obtained.
  • a polymer film such as a polyimide film
  • the length eventually shrinks to about 80% as described above.
  • the polymer film undergoes thermal expansion and shrinkage due to linear expansion with heating.
  • the polymer film will stretch once before it begins.
  • a polyimide film 50 m having a linear expansion coefficient of 40 ppm / ° C. is heat-treated up to 500 ° C.
  • the elongation is about 1 m. For this reason, the raw material film first tightly wound around the core is stretched and loosened near the temperature at which carbonization shrinkage occurs.
  • the carbonaceous film can be converted into a graphite film by further treatment at 2400 ° C. or higher.
  • N2 that does not form a graphite skeleton and internal gas generation such as filler (phosphoric acid type) added to the raw material film lifts the graphite layer and foams the film.
  • a graphite film having excellent bending resistance can be obtained by compressing the expanded graphite film after graphitization. The reason why foaming is eliminated by compressing the expanded graphite film and bending resistance is obtained is that there is a small space between the graphite layers after compression, so that the distortion of the graphite layer applied during folding can be released. This is because it can.
  • the carbonized film is wavy or wrinkled in the carbonization process, the wavy and wrinkle will remain as it is after graphitization. Deep wrinkles enter.
  • the polymer film 30 is carbonized using a container having the core 10 and the outer cylinder 20 as shown in FIG. 2
  • the film 30 wound around the core 10 stretches and hangs before carbonization thermal decomposition shrinkage starts, but when the container of FIG. 2 is used, this sag can be supported by the outer cylinder 20 and the wound films It is possible to perform carbonization while adhering to each other.
  • the film shrinks while being in close contact a certain tension acts on the film, and even if the film is stretched and loosened during the processing, a carbonaceous film free from undulations and wrinkles can be obtained.
  • the value of (b / a) is more preferably 0.5 to 0.8. If it is 0.5 or more, the degree of adhesion between the film and the outer cylinder will be high, and a long carbonaceous film free from waviness and wrinkles can be obtained. If it is 0.8 or less, a flat carbonaceous film free from distortion can be obtained without receiving excessive support due to contact of the loose film with the outer cylinder.
  • the polyimide film generates various decomposition gases at the time of thermal decomposition, which becomes a non-volatile tar component after carbonization, and functions as an adhesive to fuse the films together.
  • the films are in close contact with each other, so that fusion is likely to occur.
  • the number of windings of the raw material film is increased in order to obtain a long carbonaceous film, fusion is more likely to occur.
  • the decomposition gas can be washed away to prevent fusion.
  • (b / a) is 0.9 or less, a gap through which the outgas from the film escapes is secured in the container, and the films are less likely to be fused. Further, from the viewpoint of preventing fusion of the carbonaceous film, it is more preferably 0.3 to 0.7. If it is 0.7 or less, a sufficient clearance for the outgas from the film to escape in the container is secured, and the films are less likely to be fused. If it is 0.3 or more, the film is slack and is not supported well by the outer cylinder, the film wave is excessively generated, and it is possible to prevent fusion due to the large waved films coming into contact with each other. it can.
  • the shape of the outer cylinder is not particularly limited. However, since the loose film is supported on the inner surface of the outer cylinder, the shape of the inner surface is an important factor for determining the surface of the carbonaceous film. If the inner surface of the outer cylinder is uneven, the surface of the carbonaceous film obtained may be uneven.
  • the inner surface of the outer cylinder is preferably as close to a columnar shape as possible. However, it is not always necessary to have a cylindrical shape, and may be a shape like an elliptic cylinder. As for an elliptical shape whose cross section is not circular, as shown in FIG. 4, when the center of the core is point A and the intersection of the perpendicular from the point A and the outer cylinder is point B, A value corresponding to the inner diameter of the outer cylinder can be set by the distance between the points B.
  • the shape of the inner surface of the outer cylinder may be transferred to the carbonaceous film surface. Therefore, if a large ventilation hole is opened, large irregularities may be transferred to the film surface, or the carbonaceous film may be caught and cracked.
  • opening the vent holes the area of each hole is made smaller, so that the uneven transfer onto the film can be minimized and cracking due to catching can be prevented.
  • the area is preferably 20 mm 2 or less, more preferably 10 mm 2 or less, and even more preferably 5 mm 2 or less.
  • a circular shape is more preferable than a quadrangular shape because it is less likely to catch.
  • the film is in direct contact, that is, the upper part of the outer cylinder 20 in the case of vertical installation, and both side parts of the outer cylinder 20 in the case of horizontal installation (FIG. 2).
  • a vent hole is provided in the portion of the disk 15 that becomes the lid of the outer cylinder 20, the film is not affected. In that case, since there is no possibility that the film will be caught, there is no restriction on the area of the hole, and the wider it is, the better the ventilation.
  • the core is required to have a cylindrical shape in the present invention, but the cross section does not have to be a perfect circle, and may have a slightly elliptical shape, a distorted shape, or a grooved shape. good. If the weight of the container increases, the load on the heater increases. From the viewpoint of reducing the weight of the entire container, it is effective to make the inside of the core into a hollow structure or to make fine holes in the core. By making these hollow structures and holes, the air permeability is improved, and the effect that the outgas from the film is effectively discharged out of the system is also obtained.
  • a graphite film with curl is obtained.
  • Such a wrinkled graphite film has a problem that it is likely to be wrinkled in a subsequent compression softening process. This problem can be solved by using a winding core having a certain diameter, and it is possible to make it flexible without wrinkles even in the subsequent compression process.
  • the softening method include a method of rolling a film and a method of compressing. In particular, since graphite is easily torn, a compression method is preferable in order to obtain a long graphite without variation in thickness without tearing.
  • a method of sandwiching between polymer films and compressing in a planar shape is particularly preferable.
  • the compression can soften the graphite without applying a shearing force such as rolling, and without causing cracking or thickness variation of the graphite.
  • the diameter of the core is preferably 70 mm or more, more preferably 80 mm or more, and still more preferably 90 mm or more. If the diameter is larger than 70 mm, the resulting carbonaceous film is less likely to be curled. Although there is no upper limit to the size of the diameter, the diameter of the core is preferably 300 mm or less, and more preferably 200 mm or less, in order to ensure a processing amount per unit volume. In such a case, the space can be effectively utilized by hollowing out the winding core and further providing the winding core inside, and the amount of processing at a time can be increased.
  • Container material As a condition as a material for the core used in the present invention, it is possible to withstand a continuous use environment at 500 ° C. or higher.
  • Container materials that satisfy this condition include isotropic graphite materials such as extrusion molded products, molded products, cold isostatic press products, alumina (Al2O3), zirconia (ZrO2), quartz (SiO2), Silicon carbide (SiC), titania (TiO2), magnesia (MgO), silicon nitride (Si3N4), aluminum nitride (AlN), yttria (Y2O3), mullite (3Al2O3, 2SiO2), cordierite (2MgO, 2Al2O3, 5SiO2) Ceramics such as steatite (MgO.SiO2) and forsterite (2MgO.SiO2), composite C / C composites in which graphite is reinforced with carbon fibers, and the like are conceivabl
  • Ceramics and some graphite materials may melt, decompose, or deform at the required processing temperature (2400 ° C or higher) during the subsequent graphitization process. Since the film does not cause new undulations or fusion even if it is heat-treated again after that, the carbonaceous film may be transferred to another container made of a material that can withstand the graphitization temperature and graphitized.
  • the graphitization process may be performed after the container is taken out once through the temperature lowering process after the carbonization treatment, or may be continuously graphitized without taking it out as it is.
  • the container setting direction in the furnace becomes very important.
  • the outer cylinder naturally supports the loosened raw material film.
  • the heat from the heater is conducted from the lower part of the container, so that temperature unevenness occurs at the lower end and upper end of the film, and wrinkles and cracks are likely to occur.
  • the outgas from the lower part of the film is difficult to escape, fusion is likely to occur compared to the case where the film is placed sideways.
  • the horizontal placement refers to a state where the core is placed almost horizontally
  • the vertical placement refers to a state where the core is placed substantially vertically.
  • the outer shape of the outer cylinder is advantageous in that the rectangular parallelepiped has higher stability and better thermal contact than the cylinder.
  • the outer cylinder is preferably cylindrical.
  • the flow volume of the nitrogen airflow in an Example and a comparative example represents the flow volume of the nitrogen gas in the atmospheric pressure outside an electric furnace.
  • a container a has an outer cylinder 20 having a shape obtained by hollowing out a cylindrical shape having a diameter of 120 mm and a height of 300 mm from a rectangular parallelepiped (columnar body) having a length of 150 mm, a width of 150 mm, and a height of 300 mm, and a diameter of 100 mm.
  • the outer cylinder 20 and the core 10 were all made of isotropic graphite.
  • a container b has an outer cylinder 20 having a shape obtained by hollowing out a cylindrical shape having a diameter of 120 mm and a height of 300 mm from a rectangular parallelepiped (columnar body) having a length of 150 mm, a width of 150 mm, and a height of 300 mm, and a diameter of 60 mm.
  • the outer cylinder 20 and the core 10 were all made of isotropic graphite.
  • a container c has an outer cylinder 20 having a shape obtained by hollowing out a cylindrical shape having a diameter of 125 mm and a height of 300 mm from a rectangular parallelepiped (columnar body) having a length of 150 mm, a width of 150 mm, and a height of 300 mm, and a diameter of 100 mm.
  • the disk 15 having a diameter of 125 mm and a thickness of 10 mm is provided with several holes having a diameter of 10 mm for ventilation.
  • the outer cylinder 20 and the core 10 were all made of isotropic graphite.
  • a container d has an outer cylinder 20 having a shape obtained by hollowing out a cylindrical shape having a diameter of 140 mm and a height of 300 mm from a rectangular parallelepiped (columnar body) having a length of 170 mm, a width of 170 mm, and a height of 300 mm, and a diameter of 100 mm.
  • several holes with a diameter of 10 mm are formed in the disk 15 having a diameter of 140 mm and a disk of 10 mm for ventilation.
  • the outer cylinder 20 and the core 10 were all made of isotropic graphite.
  • Example A1 As a polymer film, a 250 mm width polyimide film (trade name: Apical 50AH film, thickness 50 ⁇ m) was prepared. With reference to FIG. 2, this polymer film is wound around the center portion of the core 10 of the container a for 50 laps, the core 10 wound with the film is placed in the outer cylinder 20, and covered with a disk 15. Further, it was put in the inner case 55.
  • the container a set in this way is placed sideways in the electric furnace as shown in FIG. 8, and the heater 50 installed on the outside of the container is energized and heated to 1000 ° C. at a rate of 2 ° C./min and carbonized. Processing was performed.
  • the carbonization atmosphere was carried out without flowing nitrogen, and the internal pressure was reduced by a vacuum pump from the decompression hole 70, and the temperature was continuously increased while maintaining -0.01 kPa. After cooling to room temperature, the thickness and surface state of the obtained carbonaceous film and the weight per unit area (g / m 2) were measured. In addition, before and after the film processing, the contamination in the furnace was also evaluated. Subsequently, this carbonaceous film was re-introduced into the container a, and was graphitized by raising the temperature to 2900 ° C. at 2 ° C./min using a graphitization furnace.
  • Example A2 A carbonaceous film was produced in the same manner as in Example A1, except that the temperature in the carbonization atmosphere was kept while maintaining the internal pressure of ⁇ 0.1 kPa without flowing nitrogen, using the container a.
  • Table 1 summarizes the thickness and surface state of the carbonaceous film, the weight per unit area (g / m 2), and the thermal diffusivity after graphitization.
  • the internal pressure is ⁇ 0.1 kPa by the vacuum pump” means that the internal pressure of the electric furnace is 0.1 kPa lower than the outside of the electric furnace.
  • Example A3 A carbonaceous film was produced in the same manner as in Example A1, except that the temperature of the carbonization atmosphere was kept while maintaining the internal pressure of ⁇ 0.5 kPa without flowing nitrogen in the vessel a.
  • Table 1 summarizes the thickness and surface state of the carbonaceous film, the weight per unit area (g / m 2), and the thermal diffusivity after graphitization.
  • the internal pressure is ⁇ 0.5 kPa by a vacuum pump means that the internal pressure of the electric furnace is 0.5 kPa lower than that outside the electric furnace.
  • Example A4 A carbonaceous film was produced in the same manner as in Example A1, except that the temperature of the carbonization atmosphere was kept while maintaining the internal pressure of ⁇ 1 kPa without flowing nitrogen, using the container a.
  • Table 1 summarizes the thickness and surface state of the carbonaceous film, the weight per unit area (g / m 2), and the thermal diffusivity after graphitization.
  • the internal pressure is ⁇ 1 kPa by the vacuum pump means that the internal pressure of the electric furnace is 1 kPa lower than the outside of the electric furnace.
  • Example A5 A carbonaceous film was produced in the same manner as in Example A1, except that the temperature in the carbonizing atmosphere was kept while maintaining the internal pressure of ⁇ 10 kPa without using nitrogen and using the vessel a.
  • Table 1 summarizes the thickness and surface state of the carbonaceous film, the weight per unit area (g / m 2), and the thermal diffusivity after graphitization.
  • the internal pressure is ⁇ 10 kPa with a vacuum pump” means that the internal pressure of the electric furnace is 10 kPa lower than the outside of the electric furnace.
  • Example A6 A carbonaceous film was formed in the same manner as in Example A1, except that the temperature of the carbonization treatment atmosphere was maintained in a nitrogen stream (1.0 L / min) and the internal pressure was kept at ⁇ 10 kPa using the container a.
  • Table 1 summarizes the thickness and surface state of the carbonaceous film, the weight per unit area (g / m 2), and the thermal diffusivity after graphitization.
  • the internal pressure is ⁇ 10 kPa with a vacuum pump” means that the internal pressure of the electric furnace is 10 kPa lower than the outside of the electric furnace.
  • Example A7 A carbonaceous film was produced in the same manner as in Example A1, except that the temperature in the carbonization atmosphere was kept while maintaining the internal pressure of ⁇ 80 kPa without using nitrogen and using the vessel a.
  • Table 1 summarizes the thickness and surface state of the carbonaceous film, the weight per unit area (g / m 2), and the thermal diffusivity after graphitization.
  • the internal pressure is ⁇ 80 kPa by the vacuum pump” means that the internal pressure of the electric furnace is 80 kPa lower than the outside of the electric furnace.
  • Example A8 A carbonaceous film was produced in the same manner as in Example A1, except that the temperature in the carbonizing atmosphere was kept while maintaining the internal pressure of ⁇ 90 kPa without using nitrogen and using the vessel a.
  • Table 7 shows the thickness and surface state of the carbonaceous film, the weight per unit area (g / m 2 ), and the thermal diffusivity after the graphitization treatment.
  • the internal pressure is ⁇ 90 kPa by the vacuum pump means that the internal pressure of the electric furnace is ⁇ 90 kPa higher than that outside the electric furnace.
  • Example A1 Using the container a, a carbonaceous film was produced in the same manner as in Example A1, except that the temperature of the carbonization treatment atmosphere was maintained while maintaining the internal pressure ⁇ 0 kPa without flowing nitrogen.
  • Table 1 summarizes the thickness and surface state of the carbonaceous film, the weight per unit area (g / m 2), and the thermal diffusivity after graphitization.
  • Example A2 A carbonaceous film was produced in the same manner as in Example A1, except that the temperature was continued while keeping the internal pressure at +2 kPa in a nitrogen stream (1.0 L / min) using a container a. did.
  • Table 1 summarizes the thickness and surface state of the carbonaceous film, the weight per unit area (g / m 2), and the thermal diffusivity after graphitization.
  • the internal pressure is +2 kPa by the vacuum pump” means that the internal pressure of the electric furnace is 2 kPa higher than the outside of the electric furnace.
  • Example A9 As a polymer film, a 250 mm width polyimide film (trade name: Apical 75AH film, thickness 75 ⁇ m) was prepared. Referring to FIG. 2, the polymer film was wound around the center of the core of container a for 50 laps, and the core wound with the film was placed in an outer cylinder. The container a in which the film was set was placed sideways in an electric furnace, and carbonized by heating up to 1000 ° C. at 2 ° C./min. The carbonization treatment atmosphere was performed without flowing nitrogen, and the temperature was continuously raised while the internal pressure was kept at -0.01 kPa by a vacuum pump.
  • Apical 75AH film thickness 75 ⁇ m
  • the thickness and surface state of the obtained carbonaceous film and the weight per unit area (g / m 2) were measured.
  • the contamination in the furnace was also evaluated.
  • this carbonaceous film was re-introduced into the container a, and was graphitized by raising the temperature to 2900 ° C. at 2 ° C./min using a graphitization furnace.
  • a part of the heat-treated graphite film was cut into 200 mm square, sandwiched from above and below by a polymer film having a length of 250 mm ⁇ width of 250 mm ⁇ thickness of 125 ⁇ m, and a back surface pressing step was performed using a compression molding machine.
  • the applied pressure was 10 MPa.
  • the thermal diffusivity of the finally obtained graphite film was measured using an optical AC method thermal diffusivity measuring apparatus (trade name “LaserPit” available from ULVAC-RIKO Co., Ltd.) in an atmosphere of 20 ° C. The measurement was performed at 10 Hz below.
  • the results are summarized in Table 2.
  • “the internal pressure is ⁇ 0.01 kPa by a vacuum pump” means that the internal pressure of the electric furnace is 0.01 kPa lower than the outside of the electric furnace.
  • Example A10 A carbonaceous film was produced in the same manner as in Example A9, except that the temperature of the carbonization treatment was continued while maintaining the internal pressure of -0.1 kPa without flowing nitrogen.
  • Table 2 summarizes the thickness and surface state of the carbonaceous film, the weight per unit area (g / m 2), and the thermal diffusivity after the graphitization treatment.
  • the internal pressure is ⁇ 0.1 kPa by the vacuum pump” means that the internal pressure of the electric furnace is 0.1 kPa lower than the outside of the electric furnace.
  • Example A11 A carbonaceous film was produced in the same manner as in Example A9, except that the temperature of the carbonization treatment was continued while maintaining the internal pressure at -0.5 kPa without flowing nitrogen.
  • Table 2 summarizes the thickness and surface state of the carbonaceous film, the weight per unit area (g / m 2), and the thermal diffusivity after the graphitization treatment.
  • the internal pressure is ⁇ 0.5 kPa by a vacuum pump” means that the internal pressure of the electric furnace is 0.5 kPa lower than that outside the electric furnace.
  • Example A12 A carbonaceous film was produced in the same manner as in Example A9, except that the temperature of the carbonization treatment was continued while maintaining the internal pressure of ⁇ 1 kPa without flowing nitrogen.
  • Table 2 summarizes the thickness and surface state of the carbonaceous film, the weight per unit area (g / m 2), and the thermal diffusivity after the graphitization treatment.
  • the internal pressure is ⁇ 1 kPa by the vacuum pump” means that the internal pressure of the electric furnace is 1 kPa lower than the outside of the electric furnace.
  • Example A13 A carbonaceous film was produced in the same manner as in Example A9, except that the temperature of the carbonization treatment was continued while the internal pressure was maintained at ⁇ 10 kPa without flowing nitrogen.
  • Table 2 summarizes the thickness and surface state of the carbonaceous film, the weight per unit area (g / m 2), and the thermal diffusivity after the graphitization treatment.
  • the internal pressure is ⁇ 10 kPa with a vacuum pump” means that the internal pressure of the electric furnace is 10 kPa lower than the outside of the electric furnace.
  • the 75 ⁇ m polyimide film was more likely to cause fusion than 50 ⁇ m, and the fusion could not be completely suppressed at a reduced pressure of about ⁇ 10 kPa.
  • Example A14 A carbonaceous film was produced in the same manner as in Example A9, except that the temperature was continued while maintaining the carbonization atmosphere in a nitrogen stream (1.0 L / min) while maintaining the internal pressure at ⁇ 10 kPa.
  • Table 2 summarizes the thickness and surface state of the carbonaceous film, the weight per unit area (g / m 2), and the thermal diffusivity after the graphitization treatment.
  • the internal pressure is ⁇ 10 kPa with a vacuum pump” means that the internal pressure of the electric furnace is 10 kPa lower than the outside of the electric furnace.
  • Example A15 A carbonaceous film was produced in the same manner as in Example A9, except that the temperature of the carbonization treatment was continued while maintaining the internal pressure at ⁇ 80 kPa without flowing nitrogen.
  • Table 2 summarizes the thickness and surface state of the carbonaceous film, the weight per unit area (g / m 2), and the thermal diffusivity after the graphitization treatment.
  • the internal pressure is ⁇ 80 kPa by the vacuum pump” means that the internal pressure of the electric furnace is 80 kPa lower than the outside of the electric furnace.
  • Example A16 A carbonaceous film was produced in the same manner as in Example A9, except that the temperature of the carbonization treatment was continued while maintaining the internal pressure at -90 kPa without flowing nitrogen.
  • Table 7 shows the thickness and surface state of the carbonaceous film, the weight per unit area (g / m 2 ), and the thermal diffusivity after the graphitization treatment.
  • the internal pressure is ⁇ 90 kPa by the vacuum pump” means that the internal pressure of the electric furnace is ⁇ 90 kPa higher than that outside the electric furnace.
  • Example A3 A carbonaceous film was produced in the same manner as in Example A9, except that the temperature of the carbonization treatment was continued while keeping the internal pressure ⁇ 0 kPa without flowing nitrogen.
  • Table 2 summarizes the thickness and surface state of the carbonaceous film, the weight per unit area (g / m 2), and the thermal diffusivity after the graphitization treatment.
  • Example A4 A carbonaceous film was produced in the same manner as in Example A9, except that the carbonization atmosphere was maintained in a nitrogen stream (1.0 L / min) while the internal pressure was kept at +2 kPa, and the temperature was continuously raised.
  • Table 2 summarizes the thickness and surface state of the carbonaceous film, the weight per unit area (g / m 2), and the thermal diffusivity after the graphitization treatment.
  • the internal pressure is +2 kPa by the vacuum pump means that the internal pressure of the electric furnace is 2 kPa higher than the outside of the electric furnace.
  • Example A17 As a polymer film, a 250 mm width polyimide film (trade name: Apical 50AH film, thickness 50 ⁇ m) was prepared. Referring to FIG. 2, the polymer film was wound around the center of the core of container c for 75 laps, and the core wound with the film was placed in an outer cylinder. The container c in which the film was set was placed sideways in an electric furnace, and the temperature was raised to 1000 ° C. at 2 ° C./min to perform carbonization. Carbonization was performed in a nitrogen stream (flow rate: 1 L / min), and the temperature was continuously raised while the internal pressure was maintained at -0.01 kPa with a vacuum pump.
  • flow rate 1 L / min
  • Example A18 A carbonaceous film was produced in the same manner as in Example A17, except that the temperature was continued while maintaining the internal pressure at -0.1 kPa in a nitrogen stream (1.0 L / min) in a carbonization atmosphere. Whether the obtained carbonaceous film was fused or not was evaluated in three stages: ⁇ : no fusion, ⁇ : slight fusion, ⁇ : fusion entirely. Evaluations were also made on whether or not they were fused after carbonization treatment for those wound 100, 125, 150, 175, and 200 laps in the same process. The results are summarized in Table 3.
  • the internal pressure is ⁇ 0.1 kPa by the vacuum pump means that the internal pressure of the electric furnace is 0.1 kPa lower than the outside of the electric furnace.
  • Example A19 A carbonaceous film was produced in the same manner as in Example A17 except that the carbonization atmosphere was maintained in a nitrogen stream (1.0 L / min) while maintaining the internal pressure at -0.5 kPa. Whether the obtained carbonaceous film was fused or not was evaluated in three stages: ⁇ : no fusion, ⁇ : slight fusion, ⁇ : fusion entirely. Evaluations were also made on whether or not they were fused after carbonization treatment for those wound 100, 125, 150, 175, and 200 laps in the same process. The results are summarized in Table 3.
  • the internal pressure is ⁇ 0.5 kPa by a vacuum pump means that the internal pressure of the electric furnace is 0.5 kPa lower than that outside the electric furnace.
  • Example A20 A carbonaceous film was produced in the same manner as in Example A17 except that the carbonization atmosphere was maintained in a nitrogen stream (1.0 L / min) while maintaining the internal pressure at -1 kPa. Whether the obtained carbonaceous film was fused or not was evaluated in three stages: ⁇ : no fusion, ⁇ : slight fusion, ⁇ : fusion entirely. Evaluations were also made on whether or not they were fused after carbonization treatment for those wound 100, 125, 150, 175, and 200 laps in the same process. The results are summarized in Table 3.
  • “the internal pressure is ⁇ 1 kPa by the vacuum pump” means that the internal pressure of the electric furnace is 1 kPa lower than the outside of the electric furnace.
  • Example A21 A carbonaceous film was produced in the same manner as in Example A17, except that the temperature was continued while maintaining the carbonization atmosphere in a nitrogen stream (1.0 L / min) while maintaining the internal pressure at ⁇ 10 kPa. Whether the obtained carbonaceous film was fused or not was evaluated in three stages: ⁇ : no fusion, ⁇ : slight fusion, ⁇ : fusion entirely. Evaluations were also made on whether or not they were fused after carbonization treatment for those wound 100, 125, 150, 175, and 200 laps in the same process. The results are summarized in Table 3.
  • the internal pressure is ⁇ 10 kPa with a vacuum pump” means that the internal pressure of the electric furnace is 10 kPa lower than the outside of the electric furnace.
  • Example A22 A carbonaceous film was produced in the same manner as in Example A17, except that the temperature of the carbonization treatment was continued while keeping the internal pressure at ⁇ 10 kPa without flowing nitrogen. Whether the obtained carbonaceous film was fused or not was evaluated in three stages: ⁇ : no fusion, ⁇ : slight fusion, ⁇ : fusion entirely. Evaluations were also made on whether or not they were fused after carbonization treatment for those wound 100, 125, 150, 175, and 200 laps in the same process. The results are summarized in Table 3.
  • the internal pressure is ⁇ 10 kPa with a vacuum pump means that the internal pressure of the electric furnace is 10 kPa lower than the outside of the electric furnace.
  • Example A23 A carbonaceous film was produced in the same manner as in Example A17, except that the temperature of the carbonization treatment was continued while keeping the internal pressure at ⁇ 80 kPa without flowing nitrogen. Whether the obtained carbonaceous film was fused or not was evaluated in three stages: ⁇ : no fusion, ⁇ : slight fusion, ⁇ : fusion entirely. Evaluations were also made on whether or not they were fused after carbonization treatment for those wound 100, 125, 150, 175, and 200 laps in the same process. The results are summarized in Table 3.
  • “the internal pressure is ⁇ 80 kPa by the vacuum pump” means that the internal pressure of the electric furnace is 80 kPa lower than the outside of the electric furnace.
  • Example A24 A carbonaceous film was produced in the same manner as in Example A17 except that the carbonization atmosphere was continued in a nitrogen stream (5.0 L / min) while the internal pressure was kept at -10 kPa. Whether the obtained carbonaceous film was fused or not was evaluated in three stages: ⁇ : no fusion, ⁇ : slight fusion, x: fusion entirely. Evaluations were also made on whether or not they were fused after carbonization treatment for those wound 100, 125, 150, 175, and 200 laps in the same process. The results are summarized in Table 3.
  • the internal pressure is ⁇ 10 kPa with a vacuum pump” means that the internal pressure of the electric furnace is 10 kPa lower than the outside of the electric furnace.
  • Example A5 A carbonaceous film was produced in the same manner as in Example A17 except that the carbonization atmosphere was maintained in a nitrogen stream (1.0 L / min) while maintaining the internal pressure at ⁇ 0 kPa. Whether the obtained carbonaceous film was fused or not was evaluated in three stages: ⁇ : no fusion, ⁇ : slight fusion, ⁇ : fusion entirely. Evaluations were also made on whether or not they were fused after carbonization treatment for those wound 100, 125, 150, 175, and 200 laps in the same process. The results are summarized in Table 3.
  • Example A6 A carbonaceous film was produced in the same manner as in Example A17, except that the carbonization atmosphere was continued in a nitrogen stream (1.0 L / min) while the internal pressure was kept at +2 kPa. Whether the obtained carbonaceous film was fused or not was evaluated in three stages: ⁇ : no fusion, ⁇ : slight fusion, ⁇ : fusion entirely. Evaluations were also made on whether or not they were fused after carbonization treatment for those wound 100, 125, 150, 175, and 200 laps in the same process. The results are summarized in Table 3.
  • the internal pressure is +2 kPa by the vacuum pump means that the internal pressure of the electric furnace is 2 kPa higher than the outside of the electric furnace.
  • the film was fused by carbonization under normal pressure or under pressurized conditions.
  • Example A25 As a polymer film, a 250 mm width polyimide film (trade name: Apical 75AH film, thickness 75 ⁇ m) was prepared. Referring to FIG. 2, this polymer film was wound around the center of the core of container d for 75 laps, and the core wound with the film was placed in an outer cylinder. The container d in which the film was set was placed sideways in the electric furnace, and carbonized by heating up to 1000 ° C. at 2 ° C./min. Carbonization was performed in a nitrogen stream (flow rate: 1 L / min), and the temperature was continuously raised while the internal pressure was maintained at -0.01 kPa with a vacuum pump.
  • flow rate 1 L / min
  • Example A26 A carbonaceous film was produced in the same manner as in Example A25, except that the carbonization atmosphere was maintained in a nitrogen stream (1.0 L / min) while the internal pressure was kept at -0.1 kPa. Whether the obtained carbonaceous film was fused or not was evaluated in three stages: ⁇ : no fusion, ⁇ : slight fusion, ⁇ : fusion entirely. Evaluations were also made on whether or not they were fused after carbonization treatment for those wound 100, 125, 150, 175, and 200 laps in the same process. The results are summarized in Table 4.
  • the internal pressure is ⁇ 0.1 kPa by the vacuum pump means that the internal pressure of the electric furnace is 0.1 kPa lower than the outside of the electric furnace.
  • Example A27 A carbonaceous film was produced in the same manner as in Example A25, except that the carbonization atmosphere was maintained in a nitrogen stream (1.0 L / min) while the internal pressure was kept at -0.5 kPa. Whether the obtained carbonaceous film was fused or not was evaluated in three stages: ⁇ : no fusion, ⁇ : slight fusion, ⁇ : fusion entirely. Evaluations were also made on whether or not they were fused after carbonization treatment for those wound 100, 125, 150, 175, and 200 laps in the same process. The results are summarized in Table 4.
  • the internal pressure is ⁇ 0.5 kPa by a vacuum pump means that the internal pressure of the electric furnace is 0.5 kPa lower than that outside the electric furnace.
  • Example A28 A carbonaceous film was produced in the same manner as in Example A25 except that the carbonization atmosphere was maintained in a nitrogen stream (1.0 L / min) while the internal pressure was kept at -1 kPa. Whether the obtained carbonaceous film was fused or not was evaluated in three stages: ⁇ : no fusion, ⁇ : slight fusion, x: fusion entirely. Evaluations were also made on whether or not they were fused after carbonization treatment for those wound 100, 125, 150, 175, and 200 laps in the same process. The results are summarized in Table 4.
  • the internal pressure is ⁇ 1 kPa by the vacuum pump means that the internal pressure of the electric furnace is 1 kPa lower than the outside of the electric furnace.
  • Example A29 A carbonaceous film was produced in the same manner as in Example A25, except that the carbonization atmosphere was maintained in a nitrogen stream (1.0 L / min) while maintaining the internal pressure at -10 kPa. Whether the obtained carbonaceous film was fused or not was evaluated in three stages: ⁇ : no fusion, ⁇ : slight fusion, x: fusion entirely. Evaluations were also made on whether or not they were fused after carbonization treatment for those wound 100, 125, 150, 175, and 200 laps in the same process. The results are summarized in Table 4.
  • the internal pressure is ⁇ 10 kPa with a vacuum pump” means that the internal pressure of the electric furnace is 10 kPa lower than the outside of the electric furnace.
  • 75 ⁇ m polyimide film was found to be more susceptible to fusion than 50 ⁇ m. Even in the case of 75 ⁇ m, it was possible to suppress fusion by performing carbonization while flowing nitrogen under reduced pressure. It was also found that when the flow rate of nitrogen was the same, the greater the degree of vacuum, the higher the ability to suppress fusion.
  • Example A30 A carbonaceous film was produced in the same manner as in Example A25, except that the temperature of the carbonization treatment was continued while maintaining the internal pressure at ⁇ 10 kPa without flowing nitrogen. Whether the obtained carbonaceous film was fused or not was evaluated in three stages: ⁇ : no fusion, ⁇ : slight fusion, ⁇ : fusion entirely. Evaluations were also made on whether or not they were fused after carbonization treatment for those wound 100, 125, 150, 175, and 200 laps in the same process. The results are summarized in Table 4.
  • the internal pressure is ⁇ 10 kPa with a vacuum pump means that the internal pressure of the electric furnace is 10 kPa lower than the outside of the electric furnace.
  • Example A31 A carbonaceous film was produced in the same manner as in Example A25, except that the temperature of the carbonization treatment was continued while maintaining the internal pressure at ⁇ 80 kPa without flowing nitrogen. Whether the obtained carbonaceous film was fused or not was evaluated in three stages: ⁇ : no fusion, ⁇ : slight fusion, ⁇ : fusion entirely. Evaluations were also made on whether or not they were fused after carbonization treatment for those wound 100, 125, 150, 175, and 200 laps in the same process. The results are summarized in Table 4.
  • “the internal pressure is ⁇ 80 kPa by the vacuum pump” means that the internal pressure of the electric furnace is 80 kPa lower than the outside of the electric furnace.
  • Example A32 A carbonaceous film was produced in the same manner as in Example A25, except that the carbonization atmosphere was maintained in a nitrogen stream (5.0 L / min) while maintaining the internal pressure at -10 kPa. Whether the obtained carbonaceous film was fused or not was evaluated in three stages: ⁇ : no fusion, ⁇ : slight fusion, x: fusion entirely. Evaluations were also made on whether or not they were fused after carbonization treatment for those wound 100, 125, 150, 175, and 200 laps in the same process. The results are summarized in Table 4.
  • the internal pressure is ⁇ 10 kPa with a vacuum pump” means that the internal pressure of the electric furnace is 10 kPa lower than the outside of the electric furnace.
  • Example A33 As a polymer film, a 250 mm width polyimide film (trade name: Apical 75AH film, thickness 75 ⁇ m) was prepared. Referring to FIG. 3, the polymer film was wound around the lower part of the core of container a for 75 turns, and the core wound with the film was placed in an outer cylinder. The container a in which the film was set was placed vertically in an electric furnace and carbonized by raising the temperature to 1000 ° C. at 2 ° C./min. Carbonization was carried out in a nitrogen stream (flow rate 5 L / min), and the temperature was continuously raised while the internal pressure was maintained at ⁇ 10 kPa with a vacuum pump.
  • Example A7 A carbonaceous film was produced in the same manner as in Example A25, except that the temperature of the carbonization treatment was continued while maintaining the internal pressure at ⁇ 0 kPa in a nitrogen stream (1.0 L / min). Whether the obtained carbonaceous film was fused or not was evaluated in three stages: ⁇ : no fusion, ⁇ : slight fusion, ⁇ : fusion entirely. Evaluations were also made on whether or not they were fused after carbonization treatment for those wound 100, 125, 150, 175, and 200 laps in the same process. The results are summarized in Table 4.
  • Example A8 A carbonaceous film was produced in the same manner as in Example A25 except that the carbonization atmosphere was maintained in a nitrogen stream (1.0 L / min) while maintaining the internal pressure at +2 kPa. Whether the obtained carbonaceous film was fused or not was evaluated in three stages: ⁇ : no fusion, ⁇ : slight fusion, ⁇ : fusion entirely. Evaluations were also made on whether or not they were fused after carbonization treatment for those wound 100, 125, 150, 175, and 200 laps in the same process. The results are summarized in Table 4.
  • “the internal pressure is +2 kPa by the vacuum pump” means that the internal pressure of the electric furnace is 2 kPa higher than the outside of the electric furnace.
  • the film was fused by carbonization under normal pressure or under pressurized conditions.
  • Examples A1 to A33, Comparative Examples A1 to A8 may be obtained by using a polyimide film (trade name: Kapton H film, thickness of 75 ⁇ m and 50 ⁇ m) manufactured by Toray DuPont with a width of 250 mm. A similar effect could be obtained.
  • a polyimide film trade name: Kapton H film, thickness of 75 ⁇ m and 50 ⁇ m
  • the container A has an inner cylinder 155 having an inner diameter of 155 mm, an outer diameter of 165 mm, a wall thickness of 5 mm, and a height of 300 mm, and a diameter of 155 mm ⁇ height of 10 mm at both ends of a cylinder having a diameter of 80 mm ⁇ height of 280 mm. It is comprised from the core 10 which is the shape which the disk 15 of this connected. The disk 15 having a diameter of 155 mm and a height of 10 mm is provided with several holes having a diameter of 10 mm for ventilation.
  • the outer cylinder 20 and the core 10 were all made of isotropic graphite.
  • Example B1 As a polymer film, a 250 mm width polyimide film (trade name: Apical 75AH film, thickness 75 ⁇ m) was prepared. With reference to FIG. 2, this polymer film was wound around the center of the core of container A by 100 turns (winding thickness: 7.5 mm), and the core wound with the film was put in an outer cylinder. The container A in which the film was set was placed sideways in an electric furnace, and carbonized by raising the temperature from room temperature to 1000 ° C. at 1 ° C./min. Carbonization was performed in a nitrogen stream. After cooling to room temperature, the obtained carbonaceous film was examined for undulation and fusion.
  • this carbonaceous film was re-introduced into the container A, and was graphitized by raising the temperature to 2900 ° C. at 2 ° C./min using a graphitization furnace. After cooling to room temperature, a portion of the heat-treated graphite film is cut into 200 mm squares, and after examining the surface condition, it is sandwiched from above and below by a polymer film of length 250 mm ⁇ width 250 mm ⁇ thickness 125 ⁇ m using a compression molding machine. A pressure step was performed. The applied pressure was 10 MPa. The finally obtained graphite film was examined for wrinkles. The results are summarized in Table 5.
  • container A has an inner cylinder 130 having an inner diameter of 130 mm, an outer diameter of 140 mm, a thickness of 5 mm, and a height of 300 mm, and a diameter of 130 mm ⁇ height of 10 mm at both ends of a cylinder having a diameter of 80 mm ⁇ height of 280 mm. It is comprised from the core 10 which is the shape which the disk 15 of this connected. The disk 15 having a diameter of 130 mm and a height of 10 mm is provided with several holes having a diameter of 10 mm for ventilation.
  • the outer cylinder 20 and the core 10 were all made of isotropic graphite.
  • Example B2 As a polymer film, a 250 mm width polyimide film (trade name: Apical 75AH film, thickness 75 ⁇ m) was prepared. A carbonaceous film and a graphite film were produced in the same manner as in Example B1 except that the container B was used instead of the container A. Table 5 summarizes the results of the presence or absence of corrugation and fusion of the obtained carbonaceous film and the presence or absence of wrinkles of the finally obtained graphite film.
  • Example B1 Although the surface of the obtained carbonaceous film was partially undulated, the degree of undulation was smaller than in Example B1, and the compression softening treatment could be performed without wrinkles. No fusion was observed on the carbonaceous film.
  • container C has an outer cylinder 20 having an inner diameter of 110 mm, an outer diameter of 120 mm, a thickness of 5 mm, and a height of 300 mm, and a diameter of 110 mm ⁇ height of 10 mm at both ends of a cylinder having a diameter of 80 mm ⁇ height of 280 mm. It is comprised from the core 10 which is the shape which the disk 15 of this connected. Note that several holes having a diameter of 10 mm are formed in the disk 15 having a diameter of 110 mm and a height of 10 mm for ventilation.
  • the outer cylinder 20 and the core 10 were all made of isotropic graphite.
  • Example B3 As a polymer film, a 250 mm width polyimide film (trade name: Apical 75AH film, thickness 75 ⁇ m) was prepared. A carbonaceous film and a graphite film were produced in the same manner as in Example B1 except that the container C was used instead of the container A. Table 5 summarizes the results of the presence or absence of corrugation and fusion of the obtained carbonaceous film and the presence or absence of wrinkles of the finally obtained graphite film.
  • Example B3 a clean carbonaceous film without surface undulation could be obtained. There was no film fusion.
  • container D has an outer cylinder 20 having an inner diameter of 105 mm, an outer diameter of 115 mm, a thickness of 5 mm, and a height of 300 mm, and a diameter of 100 mm ⁇ height of 10 mm at both ends of a cylinder having a diameter of 80 mm ⁇ height of 280 mm. It is comprised from the core 10 which is the shape which the disk 15 of this connected. The disk 15 having a diameter of 100 mm and a height of 10 mm is provided with several holes having a diameter of 10 mm for ventilation.
  • the outer cylinder 20 and the core 10 were all made of isotropic graphite.
  • Example B4 As a polymer film, a 250 mm width polyimide film (trade name: Apical 75AH film, thickness 75 ⁇ m) was prepared. A carbonaceous film and a graphite film were produced in the same manner as in Example B1 except that the container D was used instead of the container A. Table 5 summarizes the results of the presence or absence of corrugation and fusion of the obtained carbonaceous film and the presence or absence of wrinkles of the finally obtained graphite film.
  • Example B4 a clean carbonaceous film without surface undulation could be obtained. There was no film fusion.
  • container E has an outer cylinder 20 having an inner diameter of 100 mm, an outer diameter of 110 mm, a wall thickness of 5 mm, and a height of 300 mm, and a diameter of 100 mm ⁇ height of 10 mm at both ends of a cylinder having a diameter of 80 mm ⁇ height of 280 mm. It is comprised from the core 10 which is the shape which the disk 15 of this connected. The disk 15 having a diameter of 100 mm and a height of 10 mm is provided with several holes having a diameter of 10 mm for ventilation.
  • the outer cylinder 20 and the core 10 were all made of isotropic graphite.
  • Example B5 As a polymer film, a 250 mm width polyimide film (trade name: Apical 75AH film, thickness 75 ⁇ m) was prepared. A carbonaceous film and a graphite film were produced in the same manner as in Example B1 except that the container E was used instead of the container A. Table 5 summarizes the results of the presence or absence of corrugation and fusion of the obtained carbonaceous film and the presence or absence of wrinkles of the finally obtained graphite film.
  • Example B5 a clean carbonaceous film without surface undulation could be obtained. Although the film was slightly fused, it could be peeled off by hand.
  • the container F has an inner diameter of 98.8 mm, an outer diameter of 108.8 mm, a thickness of 5 mm, a height of 300 mm, and a diameter of 97 at both ends of a cylinder having a diameter of 80 mm ⁇ height of 280 mm. It is comprised from the winding core 10 which is the shape which the disk 15 of 0.5 mm x height 10mm connected. The disk 15 having a diameter of 97.5 mm and a height of 10 mm is provided with several holes having a diameter of 10 mm for ventilation.
  • the outer cylinder 20 and the core 10 were all made of isotropic graphite.
  • Example B6 As a polymer film, a 250 mm width polyimide film (trade name: Apical 75AH film, thickness 75 ⁇ m) was prepared. A carbonaceous film and a graphite film were produced in the same manner as in Example B1, except that the container F was used instead of the container A. Table 5 summarizes the results of the presence or absence of corrugation and fusion of the obtained carbonaceous film and the presence or absence of wrinkles of the finally obtained graphite film.
  • Table 5 summarizes the results of the presence or absence of corrugation and fusion of the obtained carbonaceous film and the presence or absence of wrinkles of the finally obtained graphite film.
  • Example B6 Although there was no surface undulation of the carbonaceous film, there was a portion where the films were slightly fused. This fusion was not so great as to cause the film to tear, and could be put into the subsequent graphitization process without any problem.
  • the container G has an inner cylinder 96.6 mm, an outer diameter 106.6 mm, a wall thickness 5 mm, a height 300 mm, and a diameter 97 at both ends of a cylinder 80 mm in diameter and 280 mm in height. It is comprised from the winding core 10 which is the shape which the disk 15 of 0.5 mm x height 10mm connected.
  • the disk 15 having a diameter of 97.5 mm and a height of 10 mm is provided with several holes having a diameter of 10 mm for ventilation.
  • the outer cylinder 20 and the core 10 were all made of isotropic graphite.
  • Example B7 As a polymer film, a 250 mm width polyimide film (trade name: Apical 75AH film, thickness 75 ⁇ m) was prepared. A carbonaceous film and a graphite film were produced in the same manner as in Example B1 except that the container G was used instead of the container A. Table 5 summarizes the results of the presence or absence of corrugation and fusion of the obtained carbonaceous film and the presence or absence of wrinkles of the finally obtained graphite film.
  • Example B7 although there was no surface undulation of the carbonaceous film, there was a portion where the films were slightly fused. This fusion was not so great as to cause the film to tear, and could be put into the subsequent graphitization process without any problem.
  • the container H has an inner cylinder 280 having an inner diameter of 280 mm, an outer diameter of 290 mm, a thickness of 5 mm, and a height of 300 mm, and a diameter of 280 mm ⁇ height of 10 mm at both ends of a cylinder having a diameter of 260 mm ⁇ height of 280 mm. It is comprised from the core 10 which is the shape which the disk 15 of this connected. The disk 15 having a diameter of 280 mm and a height of 10 mm has several holes having a diameter of 10 mm for ventilation.
  • the outer cylinder 20 and the core 10 were all made of isotropic graphite.
  • Example B8 As a polymer film, a 250 mm width polyimide film (trade name: Apical 75AH film, thickness 75 ⁇ m) was prepared. A carbonaceous film and a graphite film were produced in the same manner as in Example B1 except that the container H was used instead of the container A. Table 5 summarizes the results of the presence or absence of corrugation and fusion of the obtained carbonaceous film and the presence or absence of wrinkles of the finally obtained graphite film.
  • the container I has an outer cylinder 20 having an inner diameter of 380 mm, an outer diameter of 390 mm, a thickness of 5 mm, and a height of 300 mm, and a diameter of 380 mm ⁇ height of 10 mm at both ends of a cylinder having a diameter of 80 mm ⁇ height of 280 mm. It is comprised from the core 10 which is the shape which the disk 15 of this connected. The disk 15 having a diameter of 380 mm and a height of 10 mm is provided with several holes having a diameter of 10 mm for ventilation.
  • the outer cylinder 20 and the core 10 were all made of isotropic graphite.
  • Comparative Example B1 As a polymer film, a 250 mm width polyimide film (trade name: Apical 75AH film, thickness 75 ⁇ m) was prepared. A carbonaceous film and a graphite film were produced in the same manner as in Example B1, except that the container I was used instead of the container A. Table 5 summarizes the results of the presence or absence of corrugation and fusion of the obtained carbonaceous film and the presence or absence of wrinkles of the finally obtained graphite film.
  • container J has an outer cylinder 20 having an inner diameter of 280 mm, an outer diameter of 290 mm, a wall thickness of 5 mm, and a height of 300 mm, and a diameter of 280 mm ⁇ height of 10 mm at both ends of a cylinder having a diameter of 80 mm ⁇ height of 280 mm. It is comprised from the core 10 which is the shape which the disk 15 of this connected. The disk 15 having a diameter of 280 mm and a height of 10 mm has several holes having a diameter of 10 mm for ventilation.
  • the outer cylinder 20 and the core 10 were all made of isotropic graphite.
  • Example B2 As a polymer film, a 250 mm width polyimide film (trade name: Apical 75AH film, thickness 75 ⁇ m) was prepared. A carbonaceous film and a graphite film were produced in the same manner as in Example B1 except that the container J was used instead of the container A. Table 5 summarizes the results of the presence or absence of corrugation and fusion of the obtained carbonaceous film and the presence or absence of wrinkles of the finally obtained graphite film.
  • Table 5 summarizes the results of the presence or absence of corrugation and fusion of the obtained carbonaceous film and the presence or absence of wrinkles of the finally obtained graphite film.
  • Container J In the case of using Container J, a carbon film having a large undulation as in Container I has been obtained. Wrinkles entered even after compression softening.
  • the container K has an inner diameter of 96 mm, an outer diameter of 106 mm, a wall thickness of 5 mm, and a height of 300 mm, and a diameter of 96 mm ⁇ height of 10 mm at both ends of a cylinder having a diameter of 80 mm ⁇ height of 280 mm. It is comprised from the core 10 which is the shape which the disk 15 of this connected. The disk 15 having a diameter of 96 mm and a height of 10 mm is provided with several holes having a diameter of 10 mm for ventilation.
  • the outer cylinder 20 and the core 10 were all made of isotropic graphite.
  • Example B3 As a polymer film, a 250 mm width polyimide film (trade name: Apical 75AH film, thickness 75 ⁇ m) was prepared. A carbonaceous film and a graphite film were produced in the same manner as in Example B1 except that the container K was used instead of the container A. Table 5 summarizes the results of the presence or absence of corrugation and fusion of the obtained carbonaceous film and the presence or absence of wrinkles of the finally obtained graphite film.
  • the container L has an inner tube 155 having an inner diameter of 155 mm, an outer diameter of 165 mm, a wall thickness of 5 mm, and a height of 300 mm, and a diameter of 155 mm ⁇ height of 10 mm at both ends of a cylinder having a diameter of 60 mm ⁇ height of 280 mm. It is comprised from the core 10 which is the shape which the disk 15 of this connected. The disk 15 having a diameter of 155 mm and a height of 10 mm is provided with several holes having a diameter of 10 mm for ventilation.
  • the outer cylinder 20 and the core 10 were all made of isotropic graphite.
  • Example B4 As a polymer film, a 250 mm width polyimide film (trade name: Apical 75AH film, thickness 75 ⁇ m) was prepared. A carbonaceous film and a graphite film were produced in the same manner as in Example B1, except that the container L was used instead of the container A. Table 5 summarizes the results of the presence or absence of corrugation and fusion of the obtained carbonaceous film and the presence or absence of wrinkles of the finally obtained graphite film.
  • Example B1 and Comparative Example B4 From the results of Example B1 and Comparative Example B4, even when the same size outer cylinder is used, the use of a core having a value of (b / a) smaller than 0.2 may cause the carbonaceous film to wave. I understood. Moreover, when a carbonaceous film was produced using a winding core having a diameter of 60 mm, it became a graphite film with strong curl and a lot of wrinkles entered during the compression process.
  • container M has an inner cylinder 115 having an inner diameter of 115 mm, an outer diameter of 125 mm, a thickness of 5 mm, and a height of 300 mm, and a diameter of 115 mm ⁇ height of 10 mm at both ends of a cylinder having a diameter of 80 mm ⁇ height of 280 mm. It is comprised from the core 10 which is the shape which the disk 15 of this connected. The disk 15 having a diameter of 115 mm and a height of 10 mm is provided with several holes having a diameter of 10 mm for ventilation.
  • the outer cylinder 20 and the core 10 were all made of isotropic graphite.
  • Example B9 As a polymer film, a 250 mm width polyimide film (trade name: Apical 75AH film, thickness 75 ⁇ m) was prepared. Referring to FIG. 2, this polymer film was wound around the center of the core of container M for 25 m (winding thickness: 6.7 mm), and the core wound with the film was placed in an outer cylinder. The container M in which the film was set was placed sideways in an electric furnace, and carbonized by raising the temperature from room temperature to 1000 ° C. at 1 ° C./min. Carbonization was performed in a nitrogen stream. After cooling to room temperature, the obtained carbonaceous film was examined for undulation and fusion.
  • Apical 75AH film, thickness 75 ⁇ m As a polymer film, a 250 mm width polyimide film (trade name: Apical 75AH film, thickness 75 ⁇ m) was prepared. Referring to FIG. 2, this polymer film was wound around the center of the core of container M for 25 m (winding thickness: 6.7 mm), and the core wound with the film
  • this carbonaceous film was re-introduced into the container M, and was graphitized by raising the temperature to 2900 ° C. at 2 ° C./min using a graphitization furnace. After cooling to room temperature, a portion of the heat-treated graphite film is cut into 200 mm squares, and after examining the surface condition, it is sandwiched from above and below by a polymer film of length 250 mm ⁇ width 250 mm ⁇ thickness 125 ⁇ m using a compression molding machine. A pressure step was performed. The applied pressure was 10 MPa. The finally obtained graphite film was examined for wrinkles. The results are summarized in Table 6.
  • Example B10 A carbonaceous film and a graphite film were produced in the same manner as in Example B9 except that the apical 75AH film was wound around the center of the core of the container M for 30 m (winding thickness: 8.1 mm).
  • Table 6 summarizes the results of the presence or absence of corrugation and fusion of the obtained carbonaceous film and the presence or absence of wrinkles of the finally obtained graphite film.
  • Example B11 A carbonaceous film and a graphite film were produced in the same manner as in Example B7, except that an apical 75AH film was wound around the center of the core of the container M by 40 m (winding thickness: 10.5 mm).
  • Table 6 summarizes the results of the presence or absence of corrugation and fusion of the obtained carbonaceous film and the presence or absence of wrinkles of the finally obtained graphite film.
  • Example B12 A carbonaceous film and a graphite film were produced in the same manner as in Example B9 except that an apical 75AH film was wound around the center of the core of the container M by 50 m (winding thickness 12.8 mm).
  • Table 6 summarizes the results of the presence or absence of corrugation and fusion of the obtained carbonaceous film and the presence or absence of wrinkles of the finally obtained graphite film.
  • Example B13 A carbonaceous film and a graphite film were produced in the same manner as in Example B9 except that the apical 75AH film was wound around the center of the core of the container M for 60 m (winding thickness: 15 mm).
  • Table 6 summarizes the results of the presence or absence of corrugation and fusion of the obtained carbonaceous film and the presence or absence of wrinkles of the finally obtained graphite film.
  • Example B14 A carbonaceous film and a graphite film were produced in the same manner as in Example B10 except that the container M was set vertically in the electric furnace.
  • Table 6 summarizes the results of the presence or absence of corrugation and fusion of the obtained carbonaceous film and the presence or absence of wrinkles of the finally obtained graphite film.
  • Example B10 when the carbonization treatment was performed with the container placed vertically, a carbonaceous film with a wavy surface has been obtained. A part of the film was fused. As the best mode for carrying out the present invention, it can be seen that the container setting method is better in the horizontal orientation than in the vertical orientation.
  • Example B15 Referring to FIG. 6, a carbonaceous film and a graphite film were produced in the same manner as in Example B13, except that several holes for ventilation having a diameter of 2 mm were formed in the outer half 20 of the container M in the upper half of the container. did. Table 6 summarizes the results of the presence or absence of corrugation and fusion of the obtained carbonaceous film and the presence or absence of wrinkles of the finally obtained graphite film.
  • Example B5 A carbonaceous film and a graphite film were produced in the same manner as in Example B9 except that the apical 75AH film was wound around the center of the core of the container M by 65 m (winding thickness: 16.1 mm).
  • Table 6 summarizes the results of the presence or absence of corrugation and fusion of the obtained carbonaceous film and the presence or absence of wrinkles of the finally obtained graphite film.
  • a 65 m polyimide film could not be carbonized without causing fusion.
  • a container L has an inner cylinder 125 having an inner diameter of 125 mm, an outer diameter of 135 mm, a wall thickness of 5 mm, and a height of 300 mm, and a diameter of 125 mm ⁇ height of 10 mm at both ends of a cylinder having a diameter of 80 mm ⁇ height of 280 mm. It is comprised from the core 10 which is the shape which the disk 15 of this connected. Note that several holes having a diameter of 10 mm are formed in the disk 15 having a diameter of 125 mm and a height of 10 mm for ventilation.
  • the outer cylinder 20 and the core 10 were all made of isotropic graphite.
  • Example B16 A carbonaceous film and a graphite film were produced in the same manner as in Example B9 except that the apical 75AH film was wound around the center of the core of the container L by 65 m (winding thickness: 16.1 mm).
  • Table 6 summarizes the results of the presence or absence of corrugation and fusion of the obtained carbonaceous film and the presence or absence of wrinkles of the finally obtained graphite film.
  • Example B1 to B16 Comparative Examples B1 to B5
  • Apical 50AH instead of Apical 50AH, Apical 75AH (manufactured by Kaneka Co., Ltd., thickness 75 ⁇ m) or polyimide film manufactured by Toray DuPont (trade name: The same effect was obtained even when Kapton H film (thickness 75 ⁇ m and 50 ⁇ m) was used.
  • Apical 75AH manufactured by Kaneka Co., Ltd., thickness 75 ⁇ m
  • polyimide film manufactured by Toray DuPont trade name: The same effect was obtained even when Kapton H film (thickness 75 ⁇ m and 50 ⁇ m) was used.
  • Example C1 Carburizing treatment was performed at room temperature to 500 ° C. in a nitrogen atmosphere (without flowing nitrogen during heat treatment) at an internal pressure of ⁇ 0 kPa, and from 500 ° C. to 700 ° C. without flowing nitrogen, maintaining an internal pressure of ⁇ 0.01 kPa
  • a carbonaceous film was produced in the same manner as in Example A1, except that the temperature was continuously increased, nitrogen was introduced at 700 ° C., and treatment was performed at an internal pressure of ⁇ 0 kPa up to 1000 ° C.
  • Table 7 shows the thickness and surface state of the carbonaceous film, the weight per unit area (g / m 2 ), and the thermal diffusivity after the graphitization treatment.
  • the internal pressure is ⁇ 0.01 kPa by a vacuum pump means that the internal pressure of the electric furnace is 0.01 kPa lower than the outside of the electric furnace.
  • Example A1 It turned out that the same effect as Example A1 is given even if only the carbonization thermal decomposition area
  • Example C2 The temperature of the carbonization treatment was continued from room temperature to 700 ° C. while maintaining the internal pressure of ⁇ 0.01 kPa without flowing nitrogen, nitrogen was introduced at 700 ° C., and the treatment was performed at an internal pressure of ⁇ 0 kPa up to 1000 ° C. All produced carbonaceous films by the same method as in Example A1. Table 7 shows the thickness and surface state of the carbonaceous film, the weight per unit area (g / m 2 ), and the thermal diffusivity after the graphitization treatment.
  • the internal pressure is ⁇ 0.01 kPa by a vacuum pump means that the internal pressure of the electric furnace is 0.01 kPa lower than the outside of the electric furnace.
  • the carbonization temperature pyrolysis progressed, and the temperature range of 700 ° C. or higher, which is a brittle film, was heat-treated at normal pressure, so that the treatment proceeded in a mild state, and a carbonaceous film without cracks could be obtained.
  • Example C3 Carburizing treatment is performed at room temperature to 500 ° C. in a nitrogen atmosphere (without flowing nitrogen during heat treatment) at an internal pressure of ⁇ 0 kPa, and from 500 ° C. to 1000 ° C. without flowing nitrogen, maintaining an internal pressure of ⁇ 0.01 kPa.
  • a carbonaceous film was produced in the same manner as in Example A1 except that the temperature increase was continued.
  • Table 7 shows the thickness and surface state of the carbonaceous film, the weight per unit area (g / m 2 ), and the thermal diffusivity after the graphitization treatment.
  • the internal pressure is ⁇ 0.01 kPa by a vacuum pump” means that the internal pressure of the electric furnace is 0.01 kPa lower than the outside of the electric furnace.
  • Example C4 Carburizing treatment is performed at room temperature to 400 ° C. in a nitrogen atmosphere (without flowing nitrogen during heat treatment) at an internal pressure of ⁇ 0 kPa, and from 400 ° C. to 800 ° C. without flowing nitrogen, maintaining an internal pressure of ⁇ 0.01 kPa.
  • the temperature was continued, nitrogen was introduced at 800 ° C., and a carbonaceous film was produced in the same manner as in Example A1, except that the treatment was performed at an internal pressure of ⁇ 0 kPa up to 1000 ° C.
  • Table 7 shows the thickness and surface state of the carbonaceous film, the weight per unit area (g / m 2 ), and the thermal diffusivity after the graphitization treatment.
  • the internal pressure is ⁇ 0.01 kPa by a vacuum pump means that the internal pressure of the electric furnace is 0.01 kPa lower than the outside of the electric furnace.
  • Example A1 It was found that the same effect as in Example A1 was obtained even when the reduced pressure temperature range was 400 ° C to 800 ° C.
  • Example C5 Carburizing treatment is performed at room temperature to 500 ° C in a nitrogen atmosphere (without flowing nitrogen during heat treatment) at an internal pressure of ⁇ 0 kPa, and the temperature is raised from 500 ° C to 700 ° C while maintaining an internal pressure of -10 kPa without flowing nitrogen. Then, a carbonaceous film was produced in the same manner as in Example A5 except that nitrogen was introduced at 700 ° C. and the treatment was performed at an internal pressure of ⁇ 0 kPa up to 1000 ° C. Table 7 shows the thickness and surface state of the carbonaceous film, the weight per unit area (g / m 2 ), and the thermal diffusivity after the graphitization treatment.
  • the internal pressure is ⁇ 10 kPa with a vacuum pump” means that the internal pressure of the electric furnace is 10 kPa lower than the outside of the electric furnace.
  • the carbonization temperature pyrolysis progressed, and the temperature range of 700 ° C. or higher, which is a brittle film, was heat-treated at normal pressure, so that the treatment proceeded in a mild state, and a carbonaceous film without cracks could be obtained.
  • Example C6 Carburizing treatment is performed in a nitrogen atmosphere from room temperature to 500 ° C. (without flowing nitrogen during heat treatment) at an internal pressure of ⁇ 0 kPa, and from 500 ° C. to 700 ° C. in a nitrogen stream (1.0 L / min), an internal pressure of ⁇ 10 kPa While maintaining the temperature, the temperature was continued, nitrogen was introduced at 700 ° C., and a carbonaceous film was produced in the same manner as in Example A6 except that the treatment was performed at an internal pressure of ⁇ 0 kPa up to 1000 ° C.
  • Table 7 shows the thickness and surface state of the carbonaceous film, the weight per unit area (g / m 2 ), and the thermal diffusivity after the graphitization treatment.
  • the internal pressure is ⁇ 10 kPa with a vacuum pump” means that the internal pressure of the electric furnace is 10 kPa lower than the outside of the electric furnace.
  • Example C7 Carburizing treatment was performed at room temperature to 500 ° C. in a nitrogen atmosphere (without flowing nitrogen during heat treatment) at an internal pressure of ⁇ 0 kPa, and from 500 ° C. to 700 ° C. without flowing nitrogen, maintaining an internal pressure of ⁇ 0.01 kPa
  • a carbonaceous film was produced in the same manner as in Example A9 except that the temperature was continuously increased, nitrogen was introduced at 700 ° C., and the treatment was performed at an internal pressure of ⁇ 0 kPa up to 1000 ° C.
  • Table 7 shows the thickness and surface state of the carbonaceous film, the weight per unit area (g / m 2 ), and the thermal diffusivity after the graphitization treatment.
  • the internal pressure is ⁇ 0.01 kPa by a vacuum pump means that the internal pressure of the electric furnace is 0.01 kPa lower than the outside of the electric furnace.
  • Example C8 Carburizing treatment is performed at room temperature to 500 ° C in a nitrogen atmosphere (without flowing nitrogen during heat treatment) at an internal pressure of ⁇ 0 kPa, and the temperature is raised from 500 ° C to 700 ° C while maintaining an internal pressure of -10 kPa without flowing nitrogen. Then, a carbonaceous film was produced in the same manner as in Example A13 except that nitrogen was introduced at 700 ° C. and the treatment was performed at an internal pressure of ⁇ 0 kPa up to 1000 ° C.
  • Table 7 summarizes the thickness and surface state of the carbonaceous film, the weight per unit area (g / m 2 ), and the thermal diffusivity after graphitization.
  • the internal pressure is ⁇ 10 kPa by a vacuum pump” means that the internal pressure of the electric furnace is 10 kPa lower than the outside of the electric furnace.
  • the carbonization temperature pyrolysis progressed, and the temperature range of 700 ° C. or higher, which is a brittle film, was heat-treated at normal pressure, so that the treatment proceeded in a mild state, and a carbonaceous film without cracks could be obtained.
  • Example C9 Carry out the carbonization atmosphere from room temperature to 700 ° C without flowing nitrogen while maintaining the internal pressure of -10 kPa. All the steps were carried out except that nitrogen was introduced at 700 ° C and the internal pressure was increased to 1000 ° C at an internal pressure of ⁇ 0 kPa.
  • a carbonaceous film was produced in the same manner as in Example A13.
  • Table 7 shows the thickness and surface state of the carbonaceous film, the weight per unit area (g / m 2 ), and the thermal diffusivity after the graphitization treatment.
  • the internal pressure is ⁇ 10 kPa with a vacuum pump” means that the internal pressure of the electric furnace is 10 kPa lower than the outside of the electric furnace.
  • the degree of cracking was slightly greater than Example C8 because the reduced pressure temperature region was longer than Example C8, but less than Example A13.
  • Example C10 Carburizing treatment is performed at room temperature to 500 ° C in a nitrogen atmosphere (without flowing nitrogen during heat treatment) at an internal pressure of ⁇ 0 kPa, and the temperature is raised from 500 ° C to 1000 ° C while maintaining an internal pressure of -10 kPa without flowing nitrogen.
  • a carbonaceous film was produced in the same manner as in Example A13 except that the above was continued.
  • Table 7 shows the thickness and surface state of the carbonaceous film, the weight per unit area (g / m 2 ), and the thermal diffusivity after the graphitization treatment.
  • the internal pressure is ⁇ 10 kPa with a vacuum pump” means that the internal pressure of the electric furnace is 10 kPa lower than the outside of the electric furnace.
  • Example A13 By switching to reduced pressure in the carbonization pyrolysis temperature region, the gas staying between the films was pushed out of the system together with nitrogen in the furnace, and there was less fusion than in Example A13.
  • the degree of cracking was somewhat higher than in Examples C8 and C9 because the reduced pressure temperature range was up to 1000 ° C. and higher than the carbonization decomposition temperature range.
  • Example C11 Carburizing treatment was performed at room temperature to 400 ° C in a nitrogen atmosphere (without flowing nitrogen during heat treatment) at an internal pressure of ⁇ 0 kPa, and the temperature was raised from 400 ° C to 800 ° C while maintaining an internal pressure of -10 kPa without flowing nitrogen. Then, a carbonaceous film was produced in the same manner as in Example A13 except that nitrogen was introduced at 800 ° C. and the treatment was performed at an internal pressure of ⁇ 0 kPa up to 1000 ° C. Table 7 shows the thickness and surface state of the carbonaceous film, the weight per unit area (g / m 2 ), and the thermal diffusivity after the graphitization treatment.
  • the internal pressure is ⁇ 10 kPa with a vacuum pump” means that the internal pressure of the electric furnace is 10 kPa lower than the outside of the electric furnace. Even at a reduced pressure from 400 ° C. to 800 ° C., both cracking and fusion were improved compared to Example A13.
  • Example C12 Carburizing treatment is performed in a nitrogen atmosphere from room temperature to 500 ° C. (without flowing nitrogen during heat treatment) at an internal pressure of ⁇ 0 kPa, and from 500 ° C. to 700 ° C. in a nitrogen stream (1.0 L / min), an internal pressure of ⁇ 10 kPa While maintaining the temperature, the temperature was continued, nitrogen was introduced at 700 ° C., and a carbonaceous film was produced in the same manner as in Example A14 except that the treatment was performed at an internal pressure of ⁇ 0 kPa up to 1000 ° C.
  • Table 7 shows the thickness and surface state of the carbonaceous film, the weight per unit area (g / m 2 ), and the thermal diffusivity after the graphitization treatment.
  • the internal pressure is ⁇ 10 kPa with a vacuum pump” means that the internal pressure of the electric furnace is 10 kPa lower than the outside of the electric furnace.
  • Example A14 It was also found that fusion can be suppressed similarly to Example A14 by reducing only the carbonized thermal decomposition region under reduced pressure conditions in a nitrogen stream. Further, the degree of cracking could be suppressed as compared with Example A14.
  • Example C13 Carburizing treatment is performed in a nitrogen atmosphere from room temperature to 500 ° C. (without flowing nitrogen during heat treatment) at an internal pressure of ⁇ 0 kPa, and from 500 ° C. to 700 ° C. in a nitrogen stream (1.0 L / min), an internal pressure of ⁇ 1 kPa While maintaining the temperature, the temperature was continued, nitrogen was introduced at 700 ° C., and a carbonaceous film was produced in the same manner as in Example A20 except that the treatment was performed at an internal pressure of ⁇ 0 kPa up to 1000 ° C.
  • Table 7 shows the thickness and surface state of the carbonaceous film, the weight per unit area (g / m 2 ), and the thermal diffusivity after the graphitization treatment.
  • the internal pressure is ⁇ 1 kPa by the vacuum pump means that the internal pressure of the electric furnace is 1 kPa lower than the outside of the electric furnace.
  • Example A20 By switching to reduced pressure in the carbonization pyrolysis temperature region, the gas staying between the films was pushed out of the system together with nitrogen in the furnace, and there was less fusion than in Example A20. Moreover, the cracking degree was also improved compared with Example A20 by reducing only the carbonization decomposition temperature region.
  • Example C14 A carbonaceous film was produced in the same manner as in Example C13 except that the container d was used.
  • Table 7 summarizes the thickness and surface state of the carbonaceous film, the weight per unit area (g / m 2), and the thermal diffusivity after graphitization.
  • Example C15 Carburizing treatment is performed in a nitrogen atmosphere from room temperature to 500 ° C. (without flowing nitrogen during heat treatment) at an internal pressure of ⁇ 0 kPa, and from 500 ° C. to 700 ° C. in a nitrogen stream (1.0 L / min), an internal pressure of ⁇ 1 kPa While maintaining the temperature, the temperature was continued, nitrogen was introduced at 700 ° C., and a carbonaceous film was produced in the same manner as in Example A28 except that the treatment was performed at an internal pressure of ⁇ 0 kPa up to 1000 ° C.
  • Table 7 summarizes the thickness and surface state of the carbonaceous film, the weight per unit area (g / m 2), and the thermal diffusivity after graphitization.
  • the internal pressure is ⁇ 1 kPa by the vacuum pump means that the internal pressure of the electric furnace is 1 kPa lower than the outside of the electric furnace.
  • Example A28 By switching to reduced pressure in the carbonization pyrolysis temperature region, the gas staying between the films was pushed out of the system together with nitrogen in the furnace, and there was less fusion than in Example A28. Further, by reducing the pressure only in the carbonization temperature region, the degree of cracking was also improved compared to Example A28.
  • a container e has an outer cylinder 20 having a shape obtained by hollowing out a cylindrical shape having a diameter of 160 mm ⁇ 300 mm in height from a rectangular parallelepiped (columnar body) having a length of 190 mm ⁇ width of 190 mm ⁇ height of 300 mm, and a diameter. It consists of a core 10 having a shape in which a circular plate 15 having a diameter of 160 mm and a thickness of 10 mm is connected to both ends of a cylinder having a size of 100 mm and a height of 280 mm. Note that several holes having a diameter of 10 mm are formed in the disk 15 having a diameter of 160 mm and a disk of 10 mm for ventilation.
  • the outer cylinder 20 and the core 10 were all made of isotropic graphite.
  • Example C16 A carbonaceous film was produced in the same manner as in Example C15 except that the container e was used.
  • Table 7 summarizes the thickness and surface state of the carbonaceous film, the weight per unit area (g / m 2), and the thermal diffusivity after graphitization.
  • Example A34 A carbonaceous film was produced in the same manner as in Example A13 except that the outer cylinder was not provided.
  • Table 8 shows the thickness and surface state of the carbonaceous film, the weight per unit area (g / m 2), and the thermal diffusivity after graphitization.
  • the fusion was equivalent to A13 due to the reduced pressure treatment.
  • the outer cylinder was not provided, there was no binding means at the outer peripheral edge of the film, and there were many cracks and a wavy film was obtained.
  • the undulation of the obtained carbonaceous film remained.
  • the compression treatment was performed, the undulation was not eliminated and further wrinkles were generated.
  • a carbonaceous film that can be used for the production of a graphite film that can be used as a heat radiating member in electronic equipment, precision equipment, and the like can be obtained, and thus can be used in the field of electronic components and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 高分子フィルムを巻芯に巻き付けて熱処理を行なう炭素質フィルムの製造方法において、炭化工程中における原料フィルム同士の融着を防いで長尺・大面積の炭素質フィルムを得る。  減圧下、および不活性ガスを流しながらの減圧下で高分子フィルムを熱処理することで融着を防ぐことができる。減圧の範囲は-0.08MPa~-0.01kPaであることが好ましい。不活性ガスを導入しながら-0.08MPa~-0.01kPaの範囲で減圧して炭化することが好ましい。また、巻芯に巻き付けた高分子フィルムを外筒内に収容し、(外筒の内径-巻芯の直径)を2で割った値をa(mm)、高分子フィルムの巻き厚みをb(mm)としたときにbをaで除した値(b/a)が0.2~0.9の範囲になるように設定する。

Description

炭素質フィルムの製造方法、およびこれによって得られるグラファイトフィルム
 本発明は、電子機器、精密機器などにおいて放熱部材として使用される炭素質フィルムの製造方法に関する。
 グラファイトは抜群の耐熱性、耐薬品性、熱伝導性、電気伝導性、低ガス透過性のため熱拡散・放熱材料、耐熱シール材、ガスケット、燃料電池用セパレータ等として広く使用されている。グラファイトはa-b面方向と、c軸方向でその熱的・電気的性質が大きく異なり、a-b面方向とc軸方向の熱伝導度の異方性は50~400倍に達する。グラファイト放熱フィルムは、この様な性質を利用して、発生した熱をすばやく広範囲に拡散させるために使用される。放熱用途として用いられるグラファイトの製造方法として、以下に述べる二つの方法がある。
 その一つは、一般に膨張グラファイト法と呼ばれる方法である。これは天然グラファイト鉛を硫酸などの強酸で処理することで層間化合物を形成させ、これを加熱・膨張させた際に生じる膨張グラファイトを圧延したシート状のグラファイトのフィルムを得る方法である(以下本発明ではこの方法で作製されたグラファイトフィルムを膨張グラファイトフィルムと呼ぶことにする)(非特許文献1)。
 この様な膨張グラファイトフィルムは面状方向に100~400W/(m・K)程度の熱伝導度を示し、放熱材料として使用されている。放熱材料として見た膨張グラファイトフィルムには、大面積シートの作製が容易であるという長所がある反面、400W/(m・K)以上の熱伝導度の実現は困難、50μm以下の薄いフィルムの作製が困難であるという欠点がある。
 もう一つの方法は、ポリオキサジアゾール、ポリベンゾチアゾール、ポリベンゾビスチアゾール、ポリベンゾオキサゾール、ポリベンゾビスオキサゾール、ポリチアゾール、ポリイミド、ポリフェニレンビニレン、またはポリアミド等の高分子フィルムをアルゴン、ヘリウム等の不活性雰囲気下や真空下で熱処理する高分子熱分解法(特許文献1、2、3)である。この方法では、これらの高分子フィルムを、例えば不活性ガス中、好ましくは窒素ガス中で1000℃程度の予備加熱を行なってガラス状の炭素質フィルムを調製する炭化工程と、その後に調製した炭素質フィルムを2400℃以上の温度で処理する黒鉛化工程の二つの工程を経ることによってグラファイトフィルムが得られる。放熱材料として見た場合、高分子グラファイトフィルムは、600~1800W/(m・K)の非常に高い熱伝導度を示し、薄いシートの作製が可能で25μm以下のシートも容易に作製できる、という長所がある反面、大面積シートの作製が困難であるという欠点がある。
 この高分子熱分解法によるグラファイトフィルムの製造方法として、
(方法1)枚葉の原料フィルムを黒鉛板に挟んで熱処理する方法
(方法2)長尺の原料フィルムを円筒に巻き付けて熱処理する方法
の二つの方法が知られている。より詳細にその方法を説明すると以下の通りである。
 (方法1)枚葉の原料フィルムを黒鉛板に挟んで熱処理する方法
 特許文献1、2の実施例1、2には、以下のように、枚葉で原料フィルムを熱処理する方法が開示されている。25ミクロンのPAフィルム(ポリ(m-フェニレンイソフタルアミド))、PI(ポリ(ピロメリットイミド)) 、PBI(ポリ(m-フェニレンベンゾイミダゾール)) 、PBBI(ポリ(m-フェニレンベンゾビスイミダゾール))をステンレスの枠に固定し、電気炉を用いて、アルゴン中毎分10℃ の速度で室温から700℃まで予備的な加熱処理が行われる。ステンレスの枠がない場合、PAフィルムはこの温度領域でもとの寸法の50%に縮むので、ステンレス枠による固定は結果的に張力を加えながら予備加熱処理をしたことを意味する。この様にして予備熱処理したフィルムは、黒鉛板でサンドイッチされ、アルゴン気流中、毎分10℃ の速度で昇温し、所望の温度(Tp)で1時間熱処理される。次に、熱処理後毎分20℃ の降温速度で冷却される。使用される炉は、カーボンヒーターを用いた電気炉である。得られた黒色のフィルムはTpが1400℃ 以下ではもろくフレキシビリティのないものであるが、1800℃ 以上ではフレキシビリティのあるフィルムである。
 (方法2)長尺の原料フィルムを円筒に巻き付けて熱処理する方法
 特許文献3の実施例1には、以下のように、長尺の原料フィルムを円筒に巻き付けて熱処理する方法が開示されている。幅180mm・厚さ50μmのPODフィルムを外径68mm・内径64mm・長さ200mmのグラファイト質炭素円筒に3重に巻き付け(3枚重ねており、3周に巻き付けているのではない)、アルゴン気流中で室温より毎分10℃ の速度で昇温し、所望の温度Tpで1時間処理し、その後、毎分20℃ の速度で降温が行われる。使用される炉は、進成電炉社製46-6型カーボンヒーター炉である。得られた黒色のフィルムは熱処理温度Tpが1600℃ 以下ではもろくフレキシビリティのないものであるが、1800℃ 以上ではフレキシビリティのあるフィルムである。フィルムの大きさは170×180mmである。また、特許文献4では、原料フィルム同士の融着を防ぐために、セパレータとしてのフィルムを共に円筒に巻きつけて同時に熱処理を行なう方法を提案している。更に、特許文献4の発明が解決しようとする課題の部分には、セパレータを用いなければ円筒の円周以上の長さのグラファイトフィルムを得ることが困難であることが記載されている。
特開昭61-275116号公報 特開昭61-275117号公報 特開昭63-256508号公報 特開平5-132360号公報
炭素材料の新展開、日本学術振興会 炭素材料 第117委員会 60周年記念出版
 高分子熱分解法で得られたグラファイトフィルムは、高い熱伝導率と薄さを有しており、膨張グラファイトフィルムと比較して省スペースで高い放熱効果が期待できる。電子機器の薄型化・高密度実装化が進む昨今の状況においては、狭いスペースにおいても効率的に熱を放熱できることは大きな利点となる。しかし高分子グラファイトフィルムは大面積化が困難であり、その高い能力にも関わらず使用が小型機器の一部等に制限されていた。従来品の高分子グラファイトフィルムを大面積部分に使用する場合は、何枚ものグラファイトフィルムを貼り合わせて使用する必要があった。つなぎ合わせた部分は大きな熱抵抗となるため、長所となる高熱伝導率が生かせなくなってしまい、また製造コストの観点から見ても大きな欠点となってしまっていた。
 枚葉型の原料フィルムを焼成してグラファイトフィルムを得る方法は、作製可能なグラファイトのサイズが炉の焼成部の内寸で限定されてしまうため、大面積のグラファイトフィルムを作製するという目的には不向きであった。一方、長尺の原料フィルムを巻芯に巻き付けて焼成する方法は、枚葉タイプでは得られない大面積および長尺のグラファイトフィルムを簡便に得られるという点で大変に優れている。しかし、円筒容器による焼成方法には以下のような問題点があった。
 前述のように高分子フィルムを焼成してグラファイトフィルムを得るには途中段階で非常に機械的強度が弱いガラス状の炭素質フィルムを経る必要がある。この炭化工程ではフィルムが元の原料フィルムの長さの6~8割ほどに収縮する。長尺のグラファイトフィルムを得るために巻芯への巻数が多くなってくると、炭化過程でフィルム同士が収縮と同時に割れてしまったり、フィルム同士が融着を起こしてしまったりするという大きな問題点があった。一度融着を起こしてしまった炭素質フィルムは、その後の黒鉛化過程においても元に戻ることはなく、結果として割れたグラファイトフィルムや、表面状態が極めて悪いグラファイトフィルムが得られてくる。以上の理由のため、巻芯に巻き付けた状態で製造できるグラファイトフィルムには長さの限界があった。
 また、上記特許文献4(特開平5-132360)の方法では、原料フィルム同士の割れおよび融着を防ぐために、フィルム状のセパレータと共に円筒状に巻きつけて熱処理を行なう方法を提案している。しかし、この方法では、原料フィルムと同じ面積のセパレータを用いる必要があるため、炭素質フィルムの生産効率が極端に悪くなってしまう。例えば、原料フィルムと同じ厚みのセパレータを使用した場合、同一容積内で処理できる原料フィルムの量は約半分となってしまう。処理量が半分になるということはすなわち、処理可能な原料フィルムの連続長さが半分になるということであり、長尺が作製可能な円筒型の長所を生かせなくなってしまう。なお、特許文献4には、セパレータからもグラファイトフィルムが得られるという記載があるが、実際には、添加剤を含むセパレータからは良好なグラファイトフィルムは得られない。
 種々の検討の結果、融着の原因は、巻いた原料フィルムからの分解ガスが系外に排出されずに炭化固着してしまったものであることを突き止め、分解ガスを速やかに系外に除去することを目的として減圧条件での炭化処理検討を行なった。
 本発明の第一は、巻芯に高分子フィルムを巻き付けた状態で熱処理を行なう炭化工程を経て炭素質フィルムを製造する方法であって、炭化工程の少なくとも一部が減圧で行なわれることを特徴とする炭素質フィルムの製造方法である。ここで「炭化工程の少なくとも一部が減圧で行なわれる」とは、炭化工程の少なくとも一部において、加熱装置(炉ともいう)内の気体の圧力を加熱装置外よりも低くすることをいう。
 本発明の第二は、減圧の範囲が-0.01kPa~-0.08MPaであることを特徴とする炭素質フィルムの製造方法である。
 本発明の第三は、炭化熱分解が生じる温度領域において前記減圧が行われることを特徴とする炭素質フィルムの製造方法である。
 本発明の第四は、500℃~700℃の温度領域において前記減圧が行われることを特徴とする炭素質フィルムの製造方法である。
 本発明の第五は、不活性ガスを導入しながら-0.01kPa~-0.08MPaの範囲で減圧して炭化することを特徴とする炭素質フィルムの製造方法である。
 本発明の第六は、処理物の体積をV(L)、導入する不活性ガスの量をV1(L/s)とした場合にV/V1(s)の値が0.01以上1000以下であることを特徴とする炭素質フィルムの製造方法である。
 本発明の第七は、巻芯を横向きに置いて熱処理を行なうことを特徴とする炭素質フィルムの製造方法である。
 本発明の第八は、高分子フィルムの厚みが10μm以上250μm以下であることを特徴とする炭素質フィルムの製造方法である。
 本発明の第九は、前記高分子フィルムの長さが10m以上であることを特徴とする炭素質フィルムの製造方法である。
 本発明の第十は、前記巻芯の直径が70mm以上であることを特徴とする炭素質フィルムの製造方法である。
 本発明の第十一は、前記巻芯と、巻芯を収納する外筒とにより構成される容器を備え、該容器が通気性を有することを特徴とする炭素質フィルムの製造方法である。
 また、炭素質フィルムの割れや融着の原因は、炭化途中でフィルムにシワや波打ちが入ることにより、長さ方向のフィルムの収縮が阻害されてしまうことであることが分かった。このフィルムのシワや波打ちフィルムの収縮は、高分子フィルムの膨張および収縮に際して、巻芯に巻き付けた高分子フィルムの外周端部を束縛する束縛手段を設けることにより抑制することができることを見出した。束縛手段として、例えば、外筒と巻芯から構成される容器を使用し、外筒の内径と巻芯の直径を調整することによって、高分子フィルムの外周端部を束縛することができ、これによってシワや波打ちを起こすことなく長尺フィルムの炭化が行なえることを見出した。
 本発明の第十二は、巻芯に高分子フィルムを巻き付けた状態で熱処理を行なう炭化工程を経て炭素質フィルムを製造する方法であって、前記炭化工程における前記高分子フィルムの膨張および収縮に際して前記高分子フィルムの外周端部を束縛する束縛手段を設けたことを特徴とする炭素質フィルムの製造方法である。
 本発明の第十三は、前記炭化工程の少なくとも一部が減圧で行なわれることを特徴とする炭素質フィルムの製造方法である。
 本発明の第十四は、前記巻芯と外筒とを有する容器を更に備え、前記束縛手段は前記外筒であり、(外筒の内径-巻芯の直径)を2で割った値をa(mm)、高分子フィルムの巻き厚みをb(mm)とした場合にbをaで除した値(b/a)が0.2~0.9の範囲にあることを特徴とする炭素質フィルムの製造方法である。
 本発明の第十五は、(b/a)が0.5~0.8の範囲にあることを特徴とする炭素質フィルムの製造方法である。
 本発明の第十六は、(b/a)が0.3~0.7の範囲にあることを特徴とする炭素質フィルムの製造方法である。
 本発明の第十七は、前記外筒は、柱状体から円柱形状をくり抜いて除去した構造であることを特徴とする炭素質フィルムの製造方法である。
 本発明の第十八は、前記外筒の少なくとも一部分に通気用の穴が設けられていることを特徴とする炭素質フィルムの製造方法である。
 本発明の第十九は、前記巻芯を横置きにして高分子フィルムを熱処理することを特徴とする炭素質フィルムの製造方法である。
 本発明の第二十は、高分子フィルムの厚みが10μm以上250μm以下であることを特徴とする炭素質フィルムの製造方法である。
 本発明の第二十一は、前記高分子フィルムの長さが10m以上であることを特徴とする炭素質フィルムの製造方法である。
 本発明の第二十二は、前記巻芯の直径が70mm以上であることを特徴とする炭素質フィルムの製造方法である。
 本発明の第二十三は、セパレータフィルムを用いることなく、一種類の高分子フィルムのみを用いることを特徴とする炭素質フィルムの製造方法である。
 本発明の第二十四は、減圧の範囲が-0.01kPa~-0.08MPaであることを特徴とする炭素質フィルムの製造方法である。
 本発明の第二十五は、巻芯に高分子フィルムを巻き付けた状態のものを、ヒーター内に保持し、間接的な熱処理を行なうことを特徴とする炭素質フィルムの製造方法である。
 本発明の第二十六は、上記何れかの炭素質フィルムの製造方法で製造した炭素質フィルムを2400℃以上で処理することによって得られるグラファイトフィルムである。
 本発明により、炭化工程で原料フィルム同士の融着が防止され、長尺・大面積の炭素質フィルムを生産性良く得ることが可能となる。得られた炭素質フィルムは既知の技術を用いて良質なグラファイトフィルムに容易に転換が可能である。本発明の方法を用いることで、これまで作製が困難であった長尺・大面積のグラファイトフィルムを容易に作製することができる。
 また、前述の特許文献4(特開平5-132360)には、他のフィルムをセパレータとして用いなければ円筒の円周以上の長さのグラファイトフィルムを得ることが困難であると記載されているが、本発明の製造方法により、長尺・大面積のグラファイトフィルムを容易に作製することが可能となった。なお、前述の特許文献3(特開昭63-256508)には、2個の円筒状グラファイト質炭素の間に高分子フィルムを挟むことが開示されているが、本発明の束縛手段に係る構成や効果は示されていない。
本発明に係る容器の一例を示す概略図である。 本発明に係る容器と原料フィルムの配置を示す概略図である。 本発明に係る容器と原料フィルムの他の配置例を示す概略図である。 本発明に係る外筒を示す概略図である。 本発明にかかる容器を示す概略図である。 本発明に係る容器と原料フィルムのさらに他の一例を示す概略図である。 本発明に係るaとbの関係を示す概略図である。 本発明の実施例A1における炭素質フィルムの製造方法を示す概略図である。 本発明に係る昇温過程でのフィルムの伸びと炭化収縮を説明するための概略図である。 本発明に係る炭素質フィルムの波打ちを示す概略図である。 本発明に係るフィルムの外周端部の束縛手段である、外周面を部分的に取り囲む一又は複数のリング状部材を示す概略図である。 本発明に係るフィルムの外周端部の束縛手段である、フィルムの外周面に沿って巻芯に平行に並べた複数の棒状部材を示す概略図である。
 (高分子フィルム)
 本発明で用いることができる高分子フィルムは、特に限定はされないが、ポリイミド(PI)、ポリアミド(PA)、ポリオキサジアゾール(POD)、ポリベンゾオキサゾール(PBO)、ポリベンゾビスオキサザール(PBBO)、ポリチアゾール(PT)、ポリベンゾチアゾール(PBT)、ポリベンゾビスチアゾール(PBBT)、ポリパラフェニレンビニレン(PPV)、ポリベンゾイミダゾール(PBI)、ポリベンゾビスイミダゾール(PBBI)が挙げられ、これらのうちから選ばれる少なくとも1種を含む耐熱芳香族性高分子フィルムであることが、最終的に得られるグラファイトの熱伝導性が大きくなることから好ましい。これらのフィルムは、公知の製造方法で製造すればよい。この中でもポリイミドは、原料モノマーを種々選択することによって様々な構造および特性を有するものを得ることができるために好ましい。また、ポリイミドフィルムは、他の有機材料を原料とする高分子フィルムよりもフィルムの炭化、黒鉛化が進行しやすいため、結晶性、熱伝導性に優れたグラファイトとなりやすい。
 (減圧度に関して)
 ポリイミドフィルムを不活性ガス下1000℃まで処理すると、500℃付近から徐々に分解が始まり、フィルムの収縮は、分解ガスが発生する500~700℃の間で大部分が進行し、700℃以降ではほとんどフィルムの収縮は起こらない。一酸化炭素や二酸化炭素、窒素やアンモニアなどの低分子気体やベンゼン、アニリンやフェノール、ベンゾニトリルなどの低分子有機物が分解ガスとして観測される。900℃付近になるとこれらの分解ガスの発生はほぼ収束し、最終的に1000℃まで処理した後は6割ほどに重量が減少した炭素質フィルムが得られてくる。上記成分の他にも同定困難な低分子量物質が多数観測され、これらの有機物成分は炭化処理後に不揮発性のタール成分として回収される。
 このタール成分はフィルムから分解ガスとして発生した直後ではガス状、もしくは微細な霧状として存在している。フィルムとフィルムが密着している場合、すなわち原料フィルムが巻芯に巻かれている状態ではフィルム間にガスが滞留してしまう虞がある。フィルム間で滞留したガス成分は凝集を起こしてタールとなり、このタールが接着剤のように働いて昇温とともにそのまま固化して融着が発生する。ガス分の凝集を抑えるためには、減圧雰囲気での炭化処理を行なえば良い。減圧下で炭化処理を行なうことによって、分解ガスの凝集を防ぎ融着の発生を大幅に抑制することができる。その抑制効果は減圧度が大きいほど高い。例えば幅の広いポリイミドフィルムを黒鉛板に挟んで炭化処理を行なう場合には、幅の狭いポリイミドフィルムに比べてガスが抜ける行程が長くなるためにより融着が発生しやすくなることが予測される。こういった場合においても、減圧度をさらに高めて炭化処理を行なうことによって融着の発生を抑えることができる。一方、熱拡散能力の高いグラファイトフィルムを得るためには、黒鉛化工程において、グラファイトを層状に配向させる必要がある。このようなグラファイト層が揃った良質なグラファイトフィルムを得るには、黒鉛化工程の前工程である炭化工程において、炭化処理を穏やかに進行させ、炭化処理後の時点である程度炭素平面を発達および配向させることが好ましい。よって、減圧度を上げていくと、フィルム内部からより多くガスが発生するが、過度に減圧度を上げると、炭素の平面構造が一部破壊された炭素質フィルムが得られやすく、減圧度をある程度に制御することが効果的である。
 本発明における減圧の範囲は、-0.01kPa以上であれば構わないが、好ましくは-0.01kPa以上-0.08MPa以下、より好ましくは-0.1kPa以上-0.06MPa以下、さらに好ましくは-0.5kPa以上-0.04MPa以下である。減圧度が-0.01kPa以上であると融着抑制効果が十分に発揮され、-0.08MPa以下であると良好な熱拡散率のグラファイトフィルムを得ることができる。ここで「減圧が-0.01kPa」とは、加熱装置内の気体の圧力が加熱装置外の気体の圧力(通常は大気圧と考えられる)よりも0.01kPa低いことをいう。同様に「減圧が-0.08MPa」は、加熱装置内の気体の圧力が加熱装置外の気体の圧力よりも0.08MPa低いことを意味する。
 また、減圧は炭化工程の全温度範囲で行っても構わないが、減圧を行う温度範囲の下限は好ましくは400℃、より好ましくは500℃であり、減圧を行う温度範囲の上限は好ましくは800℃、より好ましくは700℃である。炭化熱分解する温度領域もしくは500℃~700℃において行われていることが特に好ましい。分解ガスが多く発生する温度領域において減圧を行うことで、フィルム間での分解ガスの滞留を効果的に防ぐことができ、結果として融着を抑制することができる。また、炭化が進行するとガラス状の脆い状態となるため、この脆い状態に何らかの力が加わると割れやすい。そこで、炭化熱分解が進行してからの温度領域では、常圧や小さい減圧度で穏やかに熱処理することで、より割れの少ないフィルムを得ることができる。また、熱処理途中で常圧または加圧状態から減圧に切り替えると、フィルム間に滞留していたガスは、減圧により系外へ引っ張られるのと同時に、炉内を満たしていた気体によって押し出される。そのため、炭化熱分解によりガスが多く出る温度領域で減圧に切り替えることで、より効果的に融着を防止することができる。
 (不活性ガスの導入)
 巻芯への巻き数が増えてくるとフィルム同士の密着性が高くなり炭化処理の際に融着が起こりやすくなってくる。特に巻芯に近い部分は外側部分に比べてより力がかかるために融着が起こりやすい。ある程度の長さ以上のポリイミドフィルムを処理する場合、融着が起こりやすくなる。このような場合は、減圧下で処理を行なうと同時に不活性ガスを導入するとより効果的に融着を防止することが可能となる。焼成部の一方から不活性ガスを導入し、もう一方から排気を同時に行なうことによって焼成部に不活性ガスの流路が発生し、フィルム間に滞留する分解ガスをさらに速やかに系外に除去することができる。このとき、不活性ガスの流量V1(単位:L/s)と排気量V2(単位:L/s)を調整して、炉内部を適当な減圧状態に維持することが重要である。導入する不活性ガスの量は多いほど効果が高いが、不活性ガスの使用が多くなるとコストが高くなってしまうので好ましくない。処理物の体積をVとした場合、処理物の体積と必要な不活性ガスの量は比例関係で表わすことができる。ここでいう処理物の体積Vとは、処理するポリイミドフィルム、ポリイミドフィルムの容器など、加熱装置内に配置して加熱する全ての部材の総体積を表す。処理物の体積Vを不活性ガスの流量V1で除した値V/V1の値(単位:s)が好ましくは0.01以上1000以下、より好ましくは0.1以上100以下、さらに好ましくは1以上10以下である。V/V1の値が0.01未満である場合は、導入する不活性ガスの量が処理物に対して多すぎるので良くない。また、V/V1の値が1000より大きい場合は不活性ガスの量が少なすぎるために融着を十分に防止できない可能性がある。ここで「不活性ガスの量V1」とは、加熱装置外の気体の圧力(通常は大気圧と考えられる)における不活性ガスの導入速度(L/s)をいう。
 使用する不活性ガスの種類に関しては、窒素やアルゴン、ヘリウム等が挙げられる。前記不活性ガスであるならばどのガスを使用しても炭化処理の際にフィルムに影響を与えることはなく、同品質のものが得られてくる。この中でもコストの観点から窒素が好ましく用いられる。
 前記雰囲気条件に関して、炭化処理中において常に上記の雰囲気条件で処理を行なう必要はなく、少なくとも分解ガスが一番多く発生する400~750℃付近、好ましくは、400℃~700℃付近がこの雰囲気条件であれば良い。分解ガスが発生する温度領域において不活性ガスを流すことで、フィルム間での分解ガスの滞留を効果的に防ぐことができ、結果として融着を防ぐことができる。例えば、400℃付近まで不活性ガスを導入せず減圧下で処理を行ない、その後不活性ガスを導入しながら所定の減圧度を維持する方法や、700℃を過ぎた時点で不活性ガスの流量を減らして処理する方法が考えられる。このような処理方法にすることで不活性ガスを処理中に常に流し続ける必要性がなくなり、不活性ガスの消費量を削減することができる。
 多くの枚数のポリイミドフィルムを処理した場合はガスの発生時に一時的に炉内が常圧・もしくは加圧状態になってしまうことが想定できる。分解ガスの量を予測してなるべく処理雰囲気を減圧状態に保つことも、異物や融着を改善するポイントとなる。よって、本発明の効果をさらに発揮させるために、炉内の不活性ガス流路を最適化することは好ましい。焼成部や焼成する容器の形状に合わせて不活性ガス導入口および排気口を設計することや、ポリイミドフィルムを入れる容器自体を通気性が良くなる構造にすることはさらに効果的である。
 (フィルム厚みに関して)
 原料ポリイミドフィルムの厚みが厚いほど、炭化処理の際に発生する分解ガスの量は多くなり、より融着が起こりやすくなってくる。グラファイトフィルム自体の熱拡散能力は熱伝導率(単位:W/(m・K))で表わされるが、実際に熱を輸送する能力は、この熱伝導率の値にグラファイトフィルムの厚みを掛けた値が指標となる。例えば平面方向の熱伝導率が同じ1000W/(m・K)のグラファイトフィルムであっても、厚みが25μmと40μmでは40μmのグラファイトフィルムの方が高い熱輸送能力を有するということとなる。すなわち、同一面積を使用した場合に40μmのグラファイトフィルムはより熱源からの熱を拡散しやすいということとなる。最小限の面積で大量の熱輸送を行ないたいという観点において、厚いグラファイトフィルムを作製することは極めて有用である。
 一般的に、高分子グラファイト法によりでき上がり厚みの厚いフィルムを作製する場合、厚みの厚いポリイミドフィルムを原料として用いることが必要である。前述のように厚みの厚いポリイミドフィルムは炭化処理においてより融着が発生しやすい。これを解消するために例えばセパレーター(原料フィルム間に挟み込むシートやフィルムである。例えばグラファイトフィルムや黒鉛板を挙げることができる。)を用いることもできる。さらに厚みの厚いポリイミドフィルムは薄いものに比べて、同一容積内での処理長さが低下してしまうためにフィルム間に挟むセパレータ等はなるべく使用しないことが好まれる。本発明の減圧下での炭化方法を用いることで、厚みの厚いポリイミドフィルムでもセパレータを用いることなく炭化処理が可能となる。この場合も不活性ガスを流しながらの減圧炭化処理は極めて効果的である。厚みの厚いポリイミドフィルムを処理する場合は、薄い場合に比べ不活性ガスの流量をさらに多くすれば良い。
 本発明に使用する高分子フィルムの厚みとしては、好ましくは10μm以上250μm以下、より好ましくは20μm以上200μm以下、20μm以上100μm以下、さらに好ましくは30μm以上150μm以下、最も好ましくは30μm以上80μm以下である。高分子フィルムの厚みが10μm以上であれば、でき上がりのグラファイトフィルムの熱拡散能力は十分高いものとなる。また、厚みが250μm以下であれば、高度に配向したグラファイト層を形成することが可能となる。フィルムの融着制御の視点からは、高分子フィルムの厚みは、10μm~100μmが好ましく、10μm~80μmがより好ましく、10μm~60μmが更に好ましく、10μm~50μmが特に好ましい。
 (原料フィルムの長さ)
 本発明の巻芯に高分子フィルムを巻き付けてグラファイトフィルムを作製する方法は、枚葉タイプでは作製が困難な長尺・大面積のグラファイトフィルムを作製できる利点がある。しかし、ある程度の長さの高分子フィルムを使用しないと同一容積内で処理できる原料フィルムの面積が枚葉タイプに比べて減少してしまう場合がある。そのために使用する原料フィルムの長さは、好ましくは10m以上、より好ましくは20m以上、さらに好ましくは50m以上である。また、巻芯に巻く長さが増えるほど原料フィルム同士が炭化処理の際に融着を起こしやすいということは言うまでもなく、その際に本発明の作製方法はさらに効果的となる。
 (排気方法に関して)
 排気方法に関しては、真空ポンプや排気ファンを使用した方法など、焼成炉自体の安全性を損なわない範囲であれば既知のあらゆる方法を用いることができる。特に真空ポンプは様々な種類のものが各社から市販されており、操作も簡便なことから本発明に好適に用いられる。本発明の圧力範囲-0.01kPa~-0.08MPaで用いることができる真空ポンプとしては、アスピレーター(水流ポンプ)、ドライ真空ポンプ、メカニカルブースターポンプ、油回転ポンプ、ソープションポンプ、油エゼクタポンプなどが挙げられる。減圧度の調整は真空ポンプの排気部にバルブを取り付け、排気量を調節して使用すれば良い。ここで「圧力-0.01kPa」とは真空ポンプで0.01kPaだけ減圧することをいい、「圧力-0.08MPa」とは真空ポンプで0.08MPaだけ減圧することをいう。
 (出ガスの処理に関して)
 ポリイミドフィルムの分解ガスには前述した成分の他に様々な低分子量物質が含まれていて、ポリイミドフィルムを炭化処理した際にはこれらの物質が不揮発性のタール状物質として得られてくる。多くの枚数のポリイミドフィルムを一度に炭化する場合には、この発生したタールの処理は一つの課題となってくる。タールの成分には有毒なものも多く、掃除の手間や人体に対する危険性などを考えると出ガスは効率的に処理する必要がある。また、ヒーターや断熱材にタールが付着したまま連続運転を続けると劣化が促進するという虞もある。このことから炭化処理時の分解ガスは発生後、素早く炉の外部に誘導する必要性がある。このような場合に上手く炉の外へ出ガスを誘導するためには、一方から不活性ガスを導入し、一方から排気を行ない炉内に不活性ガスの流れを作ることが好ましい。こうすることで発生した出ガスが速やかに炉外に排出され、炉内を汚染する危険性が大幅に減少する。本発明の炭化処理方法においては分解ガスの処理も有効に行なうことができる。
 (高分子フィルムの外周端部の束縛)
 ポリイミドフィルムなどの高分子フィルムを1000℃まで炭化処理した場合、高分子フィルムは加熱とともに線膨張を起こし、長尺高分子フィルムの場合は、熱分解により炭化収縮が始まる前までに図9のBのように一度伸びることとなる。例えば、50mの長さのポリイミドフィルムを500℃まで熱処理した場合、その伸びは約1mとなる。このため、初めに巻芯に緊密に巻き付けられた高分子フィルムは、炭化収縮が起こる温度付近では伸びて緩んでいることとなる。その後、炭化が進行すると、図9のCのように最終的にフィルム長さは初期の長さの約80%まで収縮する。このように、長尺高分子フィルムを巻芯に巻き付けて炭化処理する場合、フィルムの外周端部は、初期ではフィルムの伸びにより緩んだ状態となり、図9のDのように外周端部を束縛するものが何もなければ垂れ下がった状態となる。その後、炭化の進行に伴って高分子フィルムは収縮する。この収縮によりフィルムの巻き数が減少するため、フィルムの外周端部は巻いたフィルムの外周面を大きく後退し巻き数が減少することになる。このように、高分子フィルムの外周端部は、炭化処理の過程で大きく移動するため、割れが発生し易く、また、フィルム同士が密着していないためにフィルム間の摩擦も働かず、結果として、図9のEのように巻芯から広がり端部が大きく波打った炭素質フィルムが得られてくることとなる。従って、長尺高分子フィルムを巻芯に巻き付けて炭化処理する場合、フィルムの外周端部を、その移動を妨げることなく外周面に束縛することによって、長尺の炭素質フィルムは、割れや波打ちが抑制されたフィルムとして得ることができる。このようにフィルムの外周端部の束縛手段として、巻芯に巻いた高分子フィルムを収納する外筒、図11に示すようにフィルム30の外周面を部分的に取り囲む一又は複数のリング状部材81、図12に示すようにフィルム30の外周面に沿って巻芯10に平行に並べた複数の棒状部材82などを挙げることができる。これらの束縛手段のうち、フィルムの外周端部に均一に接触して一様に束縛することができるという理由から、円筒状の外筒がより好ましい。以下、外筒について更に説明する。なお、本明細書では、巻芯と外筒とを含めて容器と称している。
 尚、炭素化工程の少なくとも一部が減圧で行われて、且つ長尺高分子フィルムの外周端部にこの束縛手段を設けた場合には、割れや波打ちに加えて、フィルムの融着も抑制することができるために、より好ましい。
 (フィルムの波打ちと融着について)
 後述するように炭素質フィルムの製造においてフィルムの波打ちと融着の問題が発生しやすい。これらの問題を解決する方法として本発明においては、図7に示すように、(外筒の内径R-巻芯の直径r)を2で割った値をa(mm)、高分子フィルムの巻き厚みをb(mm)としたときにbをaで除した値(b/a)が重要な要素となる。
 炭素質フィルムの波うちと融着防止の両方の観点から考えると、(b/a)の値が好ましくは0.2~0.9である。0.2以上であれば、フィルムが弛んでも外筒に支持されるため、弛んだままになりにくく、波打ちやシワの無い長尺の炭素質フィルムを得ることができる。0.9以下であれば、容器内にフィルムからの出ガスが抜ける隙間が確保され、フィルム同士が融着を起こしにくくなる。以下で波打ちと融着について詳しく説明する。
 <フィルムの波打ちについて>
 200mm角サイズにカットしたポリイミドフィルムを全く固定しない状態で1000℃まで熱処理すると大きく波打った炭素質フィルムが得られてくる。この波打ちは上からある一定荷重の重しを加えてフィルムを熱処理することによって解決されるが、その場合においても端部に細かいシワが入るなど、枚葉タイプでシワのない表面を有する炭素質フィルムを得るのは困難である。一方、巻芯に高分子フィルムを巻き付けて熱処理を行なう長尺タイプでは処理方法を上手く選択することによって波打ちやシワのない長尺炭素質フィルムを得ることが可能となる。以下にそのメカニズムについて説明を行なう。
 巻芯に巻いた長尺原料フィルムの炭化を行なうと、フィルムの長さ方向の収縮とその収縮の力に対して逆方向にフィルム同士の摩擦が働き、結果としてフィルム上に一定の張力が発生する。一定の張力が掛かったままフィルムの炭化収縮が進行することによって、フィルムにシワや歪みのない表面を有する平面性の高い長尺の炭素質フィルムを得ることが可能となる。図9のBとD、CとEをそれぞれ比較するとわかるように、外周端部を束縛する束縛手段を備えているBとCではフィルムがある程度の範囲で接触しているので、その接触している範囲において、摩擦が働くために好ましい。枚葉タイプにおいて、フィルムを重ねて炭化処理を行なったとしても、収縮の際にフィルム間で摩擦力が働かないので(もしくは働いたとしてもバラバラのベクトルとなるので)、フィルム上に一定の張力は発生しない。また張力を発生させるために、仮に原料フィルムの端部を固定して炭化処理を行なったとしても、炭素質フィルムはガラス状なので収縮の際にフィルムが割れてしまう。長尺タイプは巻いたフィルム同士が収縮の際にお互いに動くことができるためにフィルムが収縮によって断裂することもなく、また一定の張力がフィルム上に働くことによってシワ・波打ちの無い炭素質フィルムを得ることが可能となる。
 ポリイミドフィルムなどの高分子フィルムを1000℃まで炭化処理した場合、前述のように最終的に長さが80%ほどに収縮するが、高分子フィルムは加熱とともに線膨張を起こすために熱分解収縮が始まる前までに高分子フィルムは一度伸びることとなる。例えば線膨張係数が40ppm/℃のポリイミドフィルム50mを500℃まで熱処理した場合、その伸びは約1mとなる。このために初めに巻芯に緊密に巻いた原料フィルムは炭化収縮が起こる温度付近では伸びて緩んでいることとなる。これに対して、円筒状の巻芯にポリイミドフィルムを巻いて横向きで熱処理を行なった場合、初めに原料フィルムが巻芯に緊密に巻いてあったとしても、熱分解収縮が起きる直前はフィルムが伸びているために下側にフィルムが弛んで垂れ下がった状態となる。このまま炭化処理を進めた場合、フィルム同士が密着していないためにフィルム間に摩擦力が働かず、結果として波打ちの起こった長尺炭素質フィルムが得られてくることとなる。また、長尺のフィルムにおいては炭化途中で入ったシワや波打ちによって長さ方向のフィルムの収縮が阻害されてしまい、結果としてフィルム同士が断裂を起こしてしまう虞もある。
 また、炭化処理工程の後で、炭素質フィルムはさらに2400℃以上で処理することによりグラファイトフィルムに転換することができる。黒鉛化工程の最終段階(2600℃以上)においてグラファイト骨格を形成しないN2、および原料フィルムに添加されたフィラー(リン酸系)などの内部ガス発生によりグラファイト層が持ち上げられフィルムが発泡する。黒鉛化処理後の発泡したグラファイトフィルムを圧縮処理することで耐屈曲性の優れたグラファイトフィルムを得ることができる。発泡させたグラファイトフィルムを圧縮することで発泡を無くし、耐屈曲性が得られる理由は、圧縮後のグラファイトの層間にわずかな空間が存在するために、折り曲げ時にかかるグラファイト層の歪みを逃がすことができるためである。しかし、炭化処理工程において炭素質フィルムに波打ちやシワがはいっていると、黒鉛化後も波打ちやシワがそのまま残ってしまうため、その後に圧縮処理を行っても波打ちやシワは解消されず、更に深いシワが入ってしまう。
 次に、図2に示すように、巻芯10と外筒20とを有する容器を使用して高分子フィルム30の炭化を行なう場合について説明する。巻芯10に巻いたフィルム30は、炭化熱分解収縮が始まる前に伸びて垂れ下がるが、図2の容器を使用した場合、この垂れ下がりを外筒20で支持することができ、巻かれたフィルム同士が密着したまま炭化を行なうことが可能である。密着したままフィルムが収縮を起こすことによってフィルムに一定の張力が働き、処理途中でフィルムが伸びて緩んだとしても波打ちやシワのない炭素質フィルムを得ることが可能となる。
 弛んだフィルムを支持してフィルム同士を上手く密着させるためには、外筒の内径を適切に選択する必要がある。外筒内径が大き過ぎる場合はフィルムが弛んだままになってしまうので波打ったフィルムのみが得られてくる。
 (b/a)が、0.2以上であれば、フィルムが弛んでも外筒に支持されるため、弛んだままになりにくく、波打ちやシワの無い長尺の炭素質フィルムを得ることができる。
さらに、炭素質フィルムの波うちの観点からは、(b/a)の値は、より好ましくは0.5~0.8である。0.5以上であれば、フィルムと外筒の密着度が高くなり、波打ちやシワの無い長尺の炭素質フィルムを得ることができる。0.8以下であれば、弛んだフィルムが外筒との接触で、過大な支持を受けることなく、歪みのない平坦な炭素質フィルムを得ることができる。
 <フィルムの融着について>
 前述のように、ポリイミドフィルムは熱分解時に様々な分解ガスを発生し、これが炭化処理後に不揮発性のタール成分となり、接着剤のように機能してフィルム同士を融着させる。巻芯に高分子フィルムを巻き付けて炭化処理をする場合はフィルム同士が密着するので、融着が発生しやすい。また、長尺の炭素質フィルムを得るために原料フィルムの巻き数が多くなってくると更に融着は起こりやすくなってくる。通常は、前述のように処理時に不活性ガスを流すことによって分解ガスを押し流し融着を防ぐことができる。しかし、本発明のように巻芯に巻いたポリイミドフィルム自体を外筒で覆い、容器全体のガス通気性が悪くなってしまった場合などは、不活性ガスを流しながら炭化処理を行なっても出ガスが容器内部で滞留してフィルム同士が融着を起こしてしまう虞がある。この問題は、容器内部に出ガスが抜ける隙間を設ける、すなわち外筒の内径を大きく取ることによって解決される。
 (b/a)が、0.9以下であれば、容器内にフィルムからの出ガスが抜ける隙間が確保され、フィルム同士が融着を起こしにくくなる。さらに、炭素質フィルムの融着防止の観点からは、より好ましくは、0.3~0.7である。0.7以下であれば、容器内にフィルムからの出ガスが抜ける隙間が十分確保され、フィルム同士が融着を起こしにくくなる。0.3以上であれば、フィルムが弛んで外筒にうまく支持されず、フィルムの波うちが過度に発生し、大きく波うったフィルム同士が接触してしまうことによる融着を防止することができる。
 (外筒の形状)
 外筒の形状に関しては特に制限があるわけではないが、外筒の内表面において弛んだフィルムを支持するので、内表面の形状は炭素質フィルムの表面を決める重要な要素となる。仮に外筒の内表面に凸凹があると得られる炭素質フィルムの表面も凹凸が付いてしまう虞がある。炭素質フィルムの形状を綺麗にするためにも、外筒の内表面はなるべく円柱形に近い形であることが好ましい。しかし、必ずしも円柱形である必要性はなく楕円柱のような形であっても構わない。なお、楕円形のように断面が円形でないものに関しては、図4に示すように巻芯の中心を点A、点Aからの垂線と外筒との交点を点Bとした場合に点Aと点B間の距離によって外筒の内径に相当する値を設定することができる。
 フィルム同士の融着を防止するためには、外筒の内径を大きくして容器内部のスペースを取り、ガスの抜けを良くすることが効果的である。このとき、外筒にさらに通気用の穴を設けることによってガスの抜けを良くすることはさらに好ましい。しかし、外筒の内表面の形状は炭素質フィルム表面に転写されてしまう虞がある。そのため大きな通気穴を開けてしまうとフィルム表面に大きな凹凸が転写されたり、炭素質フィルムが引っ掛って割れを起こしてしまう可能性がある。通気穴を開ける際には穴一つ一つの面積を小さくすることでフィルムへの凹凸転写を最小限に抑え、引っ掛かりによる割れを防ぐことができる。その面積としては好ましくは20mm2以下、より好ましくは10mm2以下、さらに好ましくは5mm2以下である。穴の形状に特に制限は無いが、四角形よりも円形の方が引っ掛かりが少なくなるのでより好ましい。図5に示すような容器の場合、フィルムが直接に接触する虞の無い部分、即ち、縦置きの場合の外筒20の上側部分、横置き(図2)の場合の外筒20の両側部分や、外筒20のフタとなる円板15の部分に通気穴を設ければ、フィルムに影響を与えないので良い。その場合はフィルムが引っ掛かる虞がないので穴の面積に制限は無く、広ければ広いほど通気が良くなるので好ましい。
 (巻芯に関して)
 巻芯の形状は円柱状であることが本発明において必要であるが、断面が真円である必要はなく、少し楕円形や歪んだもの、また溝が入ったもののような形であっても良い。容器の重量が増加するとヒーターへの負荷が大きくなるので、容器全体の重量を減らすという観点から巻芯内部を中空構造にしたり、さらに巻芯に細かい穴を開けたりすることは効果的である。これら中空構造や穴を開けることによって通気性が向上し、フィルムからの出ガスが効果的に系外に排出されるという効果も得られる。
 直径が小さい巻芯を使用して炭化を行ない、続いて黒鉛化処理を行なうと、巻き癖のあるグラファイトフィルムが得られてくる。このような癖の付いたグラファイトフィルムは、その後の圧縮柔軟化工程でシワが入りやすくなってしまうという問題がある。この問題はある程度の直径を有する巻芯を用いることで解決され、その後の圧縮工程においてもシワが入ることなく柔軟化を行なうことが可能となる。柔軟化処理する方法として、フィルムを圧延する方法や圧縮する方法等が挙げられる。特にグラファイトは裂けやすいため、厚みのバラツキのない長尺のグラファイトを裂けることなく取得するためには、圧縮する方法が好ましい。特に、圧縮方法としては、特に高分子フィルムで挟み、面状に圧縮する方法が好ましい。圧縮は、圧延のような剪断力が加わらず、グラファイトの裂けや厚みバラツキを発生させることなく、グラファイトを柔軟化することができる。
 巻芯の径の大きさとしては、70mm以上が好ましく、80mm以上はより好ましく、90mm以上はさらに好ましい。70mmより径が大きければ、得られる炭素質フィルムに巻き癖が付きにくくなる。径の大きさに上限は無いが、単位容積あたりの処理量を確保するためにも、巻芯の直径としては、300mm以下が好ましく、200mm以下がより好ましい。このような場合は、巻芯を中空にくり抜き内部に更に巻芯を設けることでスペースを有効に活用でき、一度の処理量を増やすことが可能となる。
 (巻芯の素材)
 本発明に使用される巻芯の素材としての条件として、500℃以上での連続使用環境に耐えることが挙げられる。この条件を満たす容器の素材としては押出成型品・型込成型品・冷間等方圧加圧品などの等方性黒鉛素材や、アルミナ(Al2O3)・ジルコニア(ZrO2)・石英(SiO2)・炭化珪素(SiC)・チタニア(TiO2)、マグネシア(MgO)・窒化珪素(Si3N4)・窒化アルミ(AlN)・イットリア(Y2O3)・ムライト(3Al2O3・2SiO2)・コージライト(2MgO・2Al2O3・5SiO2)・ステアタイト(MgO・SiO2)・フォルステライト(2MgO・SiO2)などのセラミックス、また黒鉛を炭素繊維で補強した複合材C/Cコンポジット等が考えられる。この中でも、加工の容易さや製造コスト、汎用性という観点から見てカーボンが好適に用いられる。
 セラミックスや一部の黒鉛素材は、その後の黒鉛化過程で必要な処理温度(2400℃以上)で溶融や分解、または変形を起こしてしまう可能性があるが、一度1000℃以上で処理した炭素質フィルムはその後再度熱処理を行なっても新たな波打ちや融着を起こすことはないので、炭素質フィルムを調製後に黒鉛化温度に耐える素材からなる別の容器に移し替えて黒鉛化を行なえば良い。黒鉛化過程は炭化処理後に降温過程を経て一度容器を取り出した後に行なっても良いし、そのまま取り出さずに連続で黒鉛化を行なっても良い。
 (炉内への容器設置)
 本発明の炭化処理方法を効果的なものとするためには、炉内への容器セット方向が非常に重要となってくる。本発明のように容器外側から加熱を行う場合、例えば、図3に示すように炉内に縦向きに容器をセットした場合、当然のことながら外筒は弛んで解けた原料フィルムを支持することはできないので、波打った炭素質フィルムのみが得られてくることとなる。また、縦向きに容器を置いた場合、ヒーターからの熱は容器の下部から伝導していくのでフィルム下端部と上端部で温度ムラが発生し、シワや割れが起こりやすくなってしまう。更に、フィルム下部からの出ガスが抜けにくくなるために、横向きに置いた場合に比べて融着が起こりやすくなってしまう。一方、横向きに置いた場合は縦置きに比べてフィルム内で温度差が発生しにくく、シワ・割れは起こりにくい。また、縦向きにフィルムをセットした場合はフィルムの収縮の際にフィルム下部が容器と摩擦を起こして割れてしまう虞がある。横置きで容器を置いた場合もフィルムの両端部はなるべく容器に触れさせないことが、フィルムに割れを起こさせず、出ガスの抜けを容易にして融着を防止するためのポイントとなる。以上から、縦置きよりも横置きにすることが好ましい。ここで横置きとは巻芯がほぼ水平に置かれている状態を、縦置きとは巻芯がほぼ垂直に置かれている状態をいう。
 また、容器を平らな面上に設置する場合、外筒の外側の形状は円筒よりも直方体の方が安定性が高く、また熱的接触が良いという利点がある。しかし直方体形状の場合は、円筒形状と比較して容器の重量が大きくなるためにヒーターへの負荷が大きくなってしまう虞がある。作業性および容器重量の軽減という観点から考えると外筒は円筒形状であることが好ましい。
 (その他)
 巻芯に巻いたポリイミドフィルムをそのまま電気炉に入れて炭化処理すると、上述のように巻芯から広がり端部が大きく波打った炭素質フィルムが得られてくる。ヒーターに通電して加熱する方式の炉では広がったフィルムがヒーターに接触しショートする虞があるので、接触防止のために巻芯を外筒に入れて炭化を行なうことは好ましい。
 以下、実施例および比較例により、本発明をさらに具体的に説明していく。なお実施例及び比較例における窒素気流の流量は、電気炉外の大気圧における窒素ガスの流量を表す。
 <評価>
 (融着)
 全体に融着があったものを「多い」、20周以上の範囲に融着が生じているものを「少し多い」、10周以上の範囲に融着が生じているものを「あり」、5周以下の範囲に融着が生じているものを「少しあり」、3周以下の範囲に融着が生じているものを「僅かにあり」、3周以下の範囲に融着が生じており、かつ手で剥がせる場合を「ほとんどなし」、融着のないものを「なし」とした。
 (波打ち)
 図10において、長さが30mm以下で且つ、振幅が2mm以下の波打ちが1カ所以上5カ所以下の場合を「僅かにあり」、長さが30mm以上、60mm以下波打ちが1カ所以上5カ所以下の場合を「少しあり」、長さが61mm以上の波打ちが5カ所以上10カ所以下の場合を「あり」、振幅が6mm以上で且つ、長さが61mm以上の波打ちが5カ所以上10カ所以下の場合を「大きい波打ち」、長さが61mm以上の波打ちが10カ所以上19カ所以下の場合を「あり」、長さが61mm以上の波打ちが20カ所以上の場合を「全面波打ち」、波打ちがなかったものを「なし」、フィルムに折れおよび2周以上のフィルムを跨ぐように50mm以上の割れが発生している場合を「折れと断裂」とした。
 (割れ)
 炭素質フィルム250mm*10mの範囲で、割れが11カ所以上あったものを「あり」、割れが6カ所以上10カ所以下あったものを「少しあり」、割れが5カ所以下のものを「僅かにあり」、割れがないものを「なし」とした。
 (黒鉛化フィルムプレス後シワ)
 200mm*200mm角の黒鉛化フィルムをプレスした際、シワが2カ所以下の場合を「少しあり」、シワが3カ所以上の場合を「あり」、シワが発生しなかった場合を「なし」とした。
 (容器aの作製)
 図1を参照して、容器aは縦150mm×横150mm×高さ300mmの直方体(柱状体)から直径120mm×高さ300mmの円柱形状をくり抜いて除去した形状である外筒20と、直径100mm×高さ280mmの円柱の両端に直径120mm×厚さ10mmの円板15が接続した形状である巻芯10から構成されている。なお、直径120mm×厚さ10mmの円板15には通気のために直径10mmの穴が数個ほど空けられている。外筒20および巻芯10は全て等方性黒鉛で作製した。
 (容器bの作製)
 図1を参照して、容器bは縦150mm×横150mm×高さ300mmの直方体(柱状体)から直径120mm×高さ300mmの円柱形状をくり抜いて除去した形状である外筒20と、直径60mm×高さ280mmの円柱の両端に直径120mm×厚さ10mmの円板15が接続した形状である巻芯10から構成されている。なお、直径120mm×円板10mmの円板15には通気のために直径10mmの穴が数個ほど空けられている。外筒20および巻芯10は全て等方性黒鉛で作製した。
 (容器cの作製)
 図1を参照して、容器cは縦150mm×横150mm×高さ300mmの直方体(柱状体)から直径125mm×高さ300mmの円柱形状をくり抜いて除去した形状である外筒20と、直径100mm×高さ280mmの円柱の両端に直径125mm×厚さ10mmの円板15が接続した形状である巻芯10から構成されている。なお、直径125mm×厚さ10mmの円板15には通気のために直径10mmの穴が数個ほど空けられている。外筒20および巻芯10は全て等方性黒鉛で作製した。
 (容器dの作製)
 図1を参照して、容器dは縦170mm×横170mm×高さ300mmの直方体(柱状体)から直径140mm×高さ300mmの円柱形状をくり抜いて除去した形状である外筒20と、直径100mm×高さ280mmの円柱の両端に直径140mm×厚さ10mmの円板15が接続した形状である巻芯10から構成されている。なお、直径140mm×円板10mmの円板15には通気のために直径10mmの穴が数個ほど空けられている。外筒20および巻芯10は全て等方性黒鉛で作製した。
 (実施例A1)
 高分子フィルムとして、250mm幅のカネカ社製ポリイミドフィルム(商品名:アピカル50AHフィルム、厚み50μm)を準備した。図2を参照して、この高分子フィルムを容器aの巻芯10の中央部に50周分巻き付け、フィルムを巻いた巻芯10を外筒20に入れ、円板15で蓋をした状態で、さらにインナーケース55に入れた。このようにセットした容器aを、図8のように、電気炉内に横向きに置き、容器外側に設置されたヒーター50に通電加熱を行い、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理雰囲気は窒素を流さずに行ない、内圧は減圧孔70から真空ポンプにて減圧し、-0.01kPaを保ったまま昇温を続けた。室温まで冷却後、得られた炭素質フィルムの厚みと表面状態、および単位面積当たりの重量(g/m2)を測定した。またフィルム処理前後において炉内汚れの評価も行なった。続けてこの炭素質フィルムを、容器aに再投入し、グラファイト化炉を用いて2900℃まで2℃/minで昇温してグラファイト化処理をおこなった。室温まで冷却後、熱処理後のグラファイトフィルムの一部を200mm角に切り取り、縦250mm×横250mm×厚み125μmの高分子フィルムで上下から挟み圧縮成型機を用いて後面状加圧工程を実施した。加えた圧力は10MPaとした。最終的に得られたグラファイトフィルムの熱拡散率を、光交流法による熱拡散率測定装置(アルバック理工(株)社から入手可能な(商品名)「LaserPit」)を用いて、20℃の雰囲気下、10Hzにおいて測定した。その結果を表1にまとめた。なおここで「内圧が真空ポンプにて-0.01kPaである」とは、電気炉の内圧が電気炉外よりも0.01kPa低いことをいう。
 なお、容器bを用いた場合は容器aを用いた場合と同様の結果が得られたが、グラファイト化処理後のフィルムに巻き癖が付いてしまい、後面状加圧工程でシワが入ってしまった。
 (実施例A2)
 容器aを用い、炭化処理雰囲気を、窒素を流さずに内圧-0.1kPaを保ったまま昇温を続けたこと以外は全て実施例A1と同様の方法で炭素質フィルムを作製した。炭素質フィルムの厚みと表面状態、および単位面積当たりの重量(g/m2)、またグラファイト化処理後の熱拡散率を表1にまとめた。なおここで「内圧が真空ポンプにて-0.1kPaである」とは、電気炉の内圧が電気炉外よりも0.1kPa低いことをいう。
 (実施例A3)
 容器aを用い、炭化処理雰囲気を、窒素を流さずに内圧-0.5kPaを保ったまま昇温を続けたこと以外は全て実施例A1と同様の方法で炭素質フィルムを作製した。炭素質フィルムの厚みと表面状態、および単位面積当たりの重量(g/m2)、またグラファイト化処理後の熱拡散率を表1にまとめた。なおここで「内圧が真空ポンプにて-0.5kPaである」とは、電気炉の内圧が電気炉外よりも0.5kPa低いことをいう。
 (実施例A4)
 容器aを用い、炭化処理雰囲気を、窒素を流さずに内圧-1kPaを保ったまま昇温を続けたこと以外は全て実施例A1と同様の方法で炭素質フィルムを作製した。炭素質フィルムの厚みと表面状態、および単位面積当たりの重量(g/m2)、またグラファイト化処理後の熱拡散率を表1にまとめた。なおここで「内圧が真空ポンプにて-1kPaである」とは、電気炉の内圧が電気炉外よりも1kPa低いことをいう。
 (実施例A5)
 容器aを用い、炭化処理雰囲気を、窒素を流さずに内圧-10kPaを保ったまま昇温を続けたこと以外は全て実施例A1と同様の方法で炭素質フィルムを作製した。炭素質フィルムの厚みと表面状態、および単位面積当たりの重量(g/m2)、またグラファイト化処理後の熱拡散率を表1にまとめた。なおここで「内圧が真空ポンプにて-10kPaである」とは、電気炉の内圧が電気炉外よりも10kPa低いことをいう。
 減圧下でポリイミドフィルムを炭化処理したところ、融着を起こすことなく長尺の炭素質フィルムが得られた。
 (実施例A6)
 容器aを用い、炭化処理雰囲気を、窒素気流中(1.0L/min)で内圧を-10kPaに保ったまま昇温を続けたこと以外は全て実施例A1と同様の方法で炭素質フィルムを作製した。炭素質フィルムの厚みと表面状態、および単位面積当たりの重量(g/m2)、またグラファイト化処理後の熱拡散率を表1にまとめた。なおここで「内圧が真空ポンプにて-10kPaである」とは、電気炉の内圧が電気炉外よりも10kPa低いことをいう。
 窒素気流中、減圧下でポリイミドフィルムを炭化処理したところ、融着を起こすことなく長尺の炭素質フィルムを得ることができた。また、炉内汚れが窒素を流さない場合に比べて減少した。
 (実施例A7)
 容器aを用い、炭化処理雰囲気を、窒素を流さずに内圧-80kPaを保ったまま昇温を続けたこと以外は全て実施例A1と同様の方法で炭素質フィルムを作製した。炭素質フィルムの厚みと表面状態、および単位面積当たりの重量(g/m2)、またグラファイト化処理後の熱拡散率を表1にまとめた。なおここで「内圧が真空ポンプにて-80kPaである」とは、電気炉の内圧が電気炉外よりも80kPa低いことをいう。
 比較的高い減圧度においても、融着を起こすことなく長尺の炭素質フィルムが得られた。しかし、炉内汚れは窒素を流す場合に比べて増加した。
 (実施例A8)
 容器aを用い、炭化処理雰囲気を、窒素を流さずに内圧-90kPaを保ったまま昇温を続けたこと以外は全て実施例A1と同様の方法で炭素質フィルムを作製した。炭素質フィルムの厚みと表面状態、および単位面積当たりの重量(g/m2)、またグラファイト化処理後の熱拡散率を表7にまとめた。なおここで「内圧が真空ポンプにて-90kPaである」とは、電気炉の内圧が電気炉外よりも-90kPa高いことをいう。
 減圧度が比較的高い条件であり、得られるグラファイトフィルムの熱拡散率が多少低下したが、融着は起こらず、良好な炭化フィルムを得ることができた。
 (比較例A1)
 容器aを用い、炭化処理雰囲気を、窒素を流さずに内圧±0kPaを保ったまま昇温を続けたこと以外は全て実施例A1と同様の方法で炭素質フィルムを作製した。炭素質フィルムの厚みと表面状態、および単位面積当たりの重量(g/m2)、またグラファイト化処理後の熱拡散率を表1にまとめた。
 常圧下でポリイミドフィルムを炭化処理したところ、融着が起こってしまった。
 (比較例A2)
 容器aを用い、炭化処理雰囲気を、窒素気流中(1.0L/min)で内圧を+2kPaに保ったまま昇温を続けたこと以外は全て実施例A1と同様の方法で炭素質フィルムを作製した。炭素質フィルムの厚みと表面状態、および単位面積当たりの重量(g/m2)、またグラファイト化処理後の熱拡散率を表1にまとめた。なおここで「内圧が真空ポンプにて+2kPaである」とは、電気炉の内圧が電気炉外よりも2kPa高いことをいう。
 加圧条件下では常圧下に比べてさらに融着が進行してしまった。
Figure JPOXMLDOC01-appb-T000001
 (実施例A9)
 高分子フィルムとして、250mm幅のカネカ社製ポリイミドフィルム(商品名:アピカル75AHフィルム、厚み75μm)を準備した。図2を参照して、この高分子フィルムを容器aの巻芯の中央部に50周分巻き付け、フィルムを巻いた巻芯を外筒に入れた。フィルムをセットした容器aを電気炉内に横向きに置き、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理雰囲気は窒素を流さずに行ない、内圧は真空ポンプにて-0.01kPaを保ったまま昇温を続けた。室温まで冷却後、得られた炭素質フィルムの厚みと表面状態、および単位面積当たりの重量(g/m2)を測定した。またフィルム処理前後において炉内汚れの評価も行なった。続けてこの炭素質フィルムを、容器aに再投入し、グラファイト化炉を用いて2900℃まで2℃/minで昇温してグラファイト化処理をおこなった。室温まで冷却後、熱処理後のグラファイトフィルムの一部を200mm角に切り取り、縦250mm×横250mm×厚み125μmの高分子フィルムで上下から挟み圧縮成型機を用いて後面状加圧工程を実施した。加えた圧力は10MPaとした。最終的に得られたグラファイトフィルムの熱拡散率を、光交流法による熱拡散率測定装置(アルバック理工(株)社から入手可能な(商品名)「LaserPit」)を用いて、20℃の雰囲気下、10Hzにおいて測定した。その結果を表2にまとめた。なおここで「内圧が真空ポンプにて-0.01kPaである」とは、電気炉の内圧が電気炉外よりも0.01kPa低いことをいう。
 (実施例A10)
 炭化処理雰囲気を、窒素を流さずに内圧-0.1kPaを保ったまま昇温を続けたこと以外は全て実施例A9と同様の方法で炭素質フィルムを作製した。炭素質フィルムの厚みと表面状態、および単位面積当たりの重量(g/m2)、またグラファイト化処理後の熱拡散率を表2にまとめた。なおここで「内圧が真空ポンプにて-0.1kPaである」とは、電気炉の内圧が電気炉外よりも0.1kPa低いことをいう。
 (実施例A11)
 炭化処理雰囲気を、窒素を流さずに内圧-0.5kPaを保ったまま昇温を続けたこと以外は全て実施例A9と同様の方法で炭素質フィルムを作製した。炭素質フィルムの厚みと表面状態、および単位面積当たりの重量(g/m2)、またグラファイト化処理後の熱拡散率を表2にまとめた。なおここで「内圧が真空ポンプにて-0.5kPaである」とは、電気炉の内圧が電気炉外よりも0.5kPa低いことをいう。
 (実施例A12)
 炭化処理雰囲気を、窒素を流さずに内圧-1kPaを保ったまま昇温を続けたこと以外は全て実施例A9と同様の方法で炭素質フィルムを作製した。炭素質フィルムの厚みと表面状態、および単位面積当たりの重量(g/m2)、またグラファイト化処理後の熱拡散率を表2にまとめた。なおここで「内圧が真空ポンプにて-1kPaである」とは、電気炉の内圧が電気炉外よりも1kPa低いことをいう。
 (実施例A13)
 炭化処理雰囲気を、窒素を流さずに内圧-10kPaを保ったまま昇温を続けたこと以外は全て実施例A9と同様の方法で炭素質フィルムを作製した。炭素質フィルムの厚みと表面状態、および単位面積当たりの重量(g/m2)、またグラファイト化処理後の熱拡散率を表2にまとめた。なおここで「内圧が真空ポンプにて-10kPaである」とは、電気炉の内圧が電気炉外よりも10kPa低いことをいう。
 75μmのポリイミドフィルムは50μmに比べて融着を起こしやすく、-10kPa程度の減圧では完全に融着を抑えることはできなかった。
 (実施例A14)
 炭化処理雰囲気を、窒素気流中(1.0L/min)で内圧を-10kPaに保ったまま昇温を続けたこと以外は全て実施例A9と同様の方法で炭素質フィルムを作製した。炭素質フィルムの厚みと表面状態、および単位面積当たりの重量(g/m2)、またグラファイト化処理後の熱拡散率を表2にまとめた。なおここで「内圧が真空ポンプにて-10kPaである」とは、電気炉の内圧が電気炉外よりも10kPa低いことをいう。
 窒素を流しながら-10kPaで炭化を行なった場合、融着を完全に抑えることができた。
 (実施例A15)
 炭化処理雰囲気を、窒素を流さずに内圧-80kPaを保ったまま昇温を続けたこと以外は全て実施例A9と同様の方法で炭素質フィルムを作製した。炭素質フィルムの厚みと表面状態、および単位面積当たりの重量(g/m2)、またグラファイト化処理後の熱拡散率を表2にまとめた。なおここで「内圧が真空ポンプにて-80kPaである」とは、電気炉の内圧が電気炉外よりも80kPa低いことをいう。
 減圧度をさらに高くして炭化処理を行なった場合も融着を抑えることができた。
 (実施例A16)
 炭化処理雰囲気を、窒素を流さずに内圧-90kPaを保ったまま昇温を続けたこと以外は全て実施例A9と同様の方法で炭素質フィルムを作製した。炭素質フィルムの厚みと表面状態、および単位面積当たりの重量(g/m2)、またグラファイト化処理後の熱拡散率を表7にまとめた。なおここで「内圧が真空ポンプにて-90kPaである」とは、電気炉の内圧が電気炉外よりも-90kPa高いことをいう。
 減圧度が比較的高い条件であり、得られるグラファイトフィルムの熱拡散率が多少低下したが、融着は起こらず、良好な炭化フィルムを得ることができた。
 (比較例A3)
 炭化処理雰囲気を、窒素を流さずに内圧±0kPaを保ったまま昇温を続けたこと以外は全て実施例A9と同様の方法で炭素質フィルムを作製した。炭素質フィルムの厚みと表面状態、および単位面積当たりの重量(g/m2)、またグラファイト化処理後の熱拡散率を表2にまとめた。
 (比較例A4)
 炭化処理雰囲気を、窒素気流中(1.0L/min)で内圧を+2kPaに保ったまま昇温を続けたこと以外は全て実施例A9と同様の方法で炭素質フィルムを作製した。炭素質フィルムの厚みと表面状態、および単位面積当たりの重量(g/m2)、またグラファイト化処理後の熱拡散率を表2にまとめた。なおここで「内圧が真空ポンプにて+2kPaである」とは、電気炉の内圧が電気炉外よりも2kPa高いことをいう。
 加圧条件下ではさらに融着が進行してしまった。
Figure JPOXMLDOC01-appb-T000002
 表1及び表2の結果から、75μmのポリイミドフィルムは50μmに比べて融着の度合いが大きいことが分かった。
 (実施例A17)
 高分子フィルムとして、250mm幅のカネカ社製ポリイミドフィルム(商品名:アピカル50AHフィルム、厚み50μm)を準備した。図2を参照して、この高分子フィルムを容器cの巻芯の中央部に75周分巻き付け、フィルムを巻いた巻芯を外筒に入れた。フィルムをセットした容器cを電気炉内に横向きに置き、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素気流中(流量1L/min)で行ない、内圧は真空ポンプにて-0.01kPaを保ったまま昇温を続けた。室温まで冷却後、得られた炭素質フィルムが融着しているかどうかを、○:融着なし、△:わずかに融着、×:全面的に融着の3段階で評価を行なった。同様の工程で100周、125周、150周、175周、および200周分巻き付けたものに関しても、炭化処理後に融着しているかどうかの評価を行なった。その結果を表3にまとめた。なおここで「内圧が真空ポンプにて-0.01kPaである」とは、電気炉の内圧が電気炉外よりも0.01kPa低いことをいう。
 (実施例A18)
 炭化処理雰囲気を、窒素気流中(1.0L/min)で内圧を-0.1kPaに保ったまま昇温を続けたこと以外は全て実施例A17と同様の方法で炭素質フィルムを作製した。得られた炭素質フィルムが融着しているかどうかを、○:融着なし、△:わずかに融着、×:全面的に融着の3段階で評価を行なった。同様の工程で100周、125周、150周、175周、および200周分巻き付けたものに関しても、炭化処理後に融着しているかどうかの評価を行なった。その結果を表3にまとめた。なおここで「内圧が真空ポンプにて-0.1kPaである」とは、電気炉の内圧が電気炉外よりも0.1kPa低いことをいう。
 (実施例A19)
 炭化処理雰囲気を、窒素気流中(1.0L/min)で内圧を-0.5kPaに保ったまま昇温を続けたこと以外は全て実施例A17と同様の方法で炭素質フィルムを作製した。得られた炭素質フィルムが融着しているかどうかを、○:融着なし、△:わずかに融着、×:全面的に融着の3段階で評価を行なった。同様の工程で100周、125周、150周、175周、および200周分巻き付けたものに関しても、炭化処理後に融着しているかどうかの評価を行なった。その結果を表3にまとめた。なおここで「内圧が真空ポンプにて-0.5kPaである」とは、電気炉の内圧が電気炉外よりも0.5kPa低いことをいう。
 (実施例A20)
 炭化処理雰囲気を、窒素気流中(1.0L/min)で内圧を-1kPaに保ったまま昇温を続けたこと以外は全て実施例A17と同様の方法で炭素質フィルムを作製した。得られた炭素質フィルムが融着しているかどうかを、○:融着なし、△:わずかに融着、×:全面的に融着の3段階で評価を行なった。同様の工程で100周、125周、150周、175周、および200周分巻き付けたものに関しても、炭化処理後に融着しているかどうかの評価を行なった。その結果を表3にまとめた。なおここで「内圧が真空ポンプにて-1kPaである」とは、電気炉の内圧が電気炉外よりも1kPa低いことをいう。
 (実施例A21)
 炭化処理雰囲気を、窒素気流中(1.0L/min)で内圧を-10kPaに保ったまま昇温を続けたこと以外は全て実施例A17と同様の方法で炭素質フィルムを作製した。得られた炭素質フィルムが融着しているかどうかを、○:融着なし、△:わずかに融着、×:全面的に融着の3段階で評価を行なった。同様の工程で100周、125周、150周、175周、および200周分巻き付けたものに関しても、炭化処理後に融着しているかどうかの評価を行なった。その結果を表3にまとめた。なおここで「内圧が真空ポンプにて-10kPaである」とは、電気炉の内圧が電気炉外よりも10kPa低いことをいう。
 減圧下、窒素を流しながら炭化処理を行なうことによって融着を抑制することができた。流す窒素流量が同じ場合は、減圧度が大きいほど融着抑制能力が高いということも分かった。
 (実施例A22)
 炭化処理雰囲気を、窒素を流さずに内圧を-10kPaに保ったまま昇温を続けたこと以外は全て実施例A17と同様の方法で炭素質フィルムを作製した。得られた炭素質フィルムが融着しているかどうかを、○:融着なし、△:わずかに融着、×:全面的に融着の3段階で評価を行なった。同様の工程で100周、125周、150周、175周、および200周分巻き付けたものに関しても、炭化処理後に融着しているかどうかの評価を行なった。その結果を表3にまとめた。なおここで「内圧が真空ポンプにて-10kPaである」とは、電気炉の内圧が電気炉外よりも10kPa低いことをいう。
 (実施例A23)
 炭化処理雰囲気を、窒素を流さずに内圧を-80kPaに保ったまま昇温を続けたこと以外は全て実施例A17と同様の方法で炭素質フィルムを作製した。得られた炭素質フィルムが融着しているかどうかを、○:融着なし、△:わずかに融着、×:全面的に融着の3段階で評価を行なった。同様の工程で100周、125周、150周、175周、および200周分巻き付けたものに関しても、炭化処理後に融着しているかどうかの評価を行なった。その結果を表3にまとめた。なおここで「内圧が真空ポンプにて-80kPaである」とは、電気炉の内圧が電気炉外よりも80kPa低いことをいう。
 窒素を流さずに減圧のみでの炭化処理でもいくらかは融着が抑制されるが、窒素を流しながらの場合と比較すると抑制効果は低下してしまった。
 (実施例A24)
 炭化処理雰囲気を、窒素気流中(5.0L/min)で内圧を-10kPaに保ったまま昇温を続けたこと以外は全て実施例A17と同様の方法で炭素質フィルムを作製した。得られた炭素質フィルムが融着しているかどうかを、○:融着なし、△:わずかに融着、×:全面的に融着の3段階で評価を行なった。同様の工程で100周、125周、150周、175周、および200周分巻き付けたものに関しても、炭化処理後に融着しているかどうかの評価を行なった。その結果を表3にまとめた。なおここで「内圧が真空ポンプにて-10kPaである」とは、電気炉の内圧が電気炉外よりも10kPa低いことをいう。
 流す窒素の流量を増やしたところ、さらに融着の改善効果が見られた。
 (比較例A5)
 炭化処理雰囲気を、窒素気流中(1.0L/min)で内圧を±0kPaに保ったまま昇温を続けたこと以外は全て実施例A17と同様の方法で炭素質フィルムを作製した。得られた炭素質フィルムが融着しているかどうかを、○:融着なし、△:わずかに融着、×:全面的に融着の3段階で評価を行なった。同様の工程で100周、125周、150周、175周、および200周分巻き付けたものに関しても、炭化処理後に融着しているかどうかの評価を行なった。その結果を表3にまとめた。
 (比較例A6)
 炭化処理雰囲気を、窒素気流中(1.0L/min)で内圧を+2kPaに保ったまま昇温を続けたこと以外は全て実施例A17と同様の方法で炭素質フィルムを作製した。得られた炭素質フィルムが融着しているかどうかを、○:融着なし、△:わずかに融着、×:全面的に融着の3段階で評価を行なった。同様の工程で100周、125周、150周、175周、および200周分巻き付けたものに関しても、炭化処理後に融着しているかどうかの評価を行なった。その結果を表3にまとめた。なおここで「内圧が真空ポンプにて+2kPaである」とは、電気炉の内圧が電気炉外よりも2kPa高いことをいう。
 常圧下、もしくは加圧条件下での炭化処理ではフィルムが融着を起こしてしまった。
Figure JPOXMLDOC01-appb-T000003
 (実施例A25)
 高分子フィルムとして、250mm幅のカネカ社製ポリイミドフィルム(商品名:アピカル75AHフィルム、厚み75μm)を準備した。図2を参照して、この高分子フィルムを容器dの巻芯の中央部に75周分巻き付け、フィルムを巻いた巻芯を外筒に入れた。フィルムをセットした容器dを電気炉内に横向きに置き、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素気流中(流量1L/min)で行ない、内圧は真空ポンプにて-0.01kPaを保ったまま昇温を続けた。室温まで冷却後、得られた炭素質フィルムが融着しているかどうかを、○:融着なし、△:わずかに融着、×:全面的に融着の3段階で評価を行なった。同様の工程で100周、125周、150周、175周、および200周分巻き付けたものに関しても、炭化処理後に融着しているかどうかの評価を行なった。その結果を表4にまとめた。なおここで「内圧が真空ポンプにて-0.01kPaである」とは、電気炉の内圧が電気炉外よりも0.01kPa低いことをいう。
 (実施例A26)
 炭化処理雰囲気を、窒素気流中(1.0L/min)で内圧を-0.1kPaに保ったまま昇温を続けたこと以外は全て実施例A25と同様の方法で炭素質フィルムを作製した。得られた炭素質フィルムが融着しているかどうかを、○:融着なし、△:わずかに融着、×:全面的に融着の3段階で評価を行なった。同様の工程で100周、125周、150周、175周、および200周分巻き付けたものに関しても、炭化処理後に融着しているかどうかの評価を行なった。その結果を表4にまとめた。なおここで「内圧が真空ポンプにて-0.1kPaである」とは、電気炉の内圧が電気炉外よりも0.1kPa低いことをいう。
 (実施例A27)
 炭化処理雰囲気を、窒素気流中(1.0L/min)で内圧を-0.5kPaに保ったまま昇温を続けたこと以外は全て実施例A25と同様の方法で炭素質フィルムを作製した。得られた炭素質フィルムが融着しているかどうかを、○:融着なし、△:わずかに融着、×:全面的に融着の3段階で評価を行なった。同様の工程で100周、125周、150周、175周、および200周分巻き付けたものに関しても、炭化処理後に融着しているかどうかの評価を行なった。その結果を表4にまとめた。なおここで「内圧が真空ポンプにて-0.5kPaである」とは、電気炉の内圧が電気炉外よりも0.5kPa低いことをいう。
 (実施例A28)
 炭化処理雰囲気を、窒素気流中(1.0L/min)で内圧を-1kPaに保ったまま昇温を続けたこと以外は全て実施例A25と同様の方法で炭素質フィルムを作製した。得られた炭素質フィルムが融着しているかどうかを、○:融着なし、△:わずかに融着、×:全面的に融着の3段階で評価を行なった。同様の工程で100周、125周、150周、175周、および200周分巻き付けたものに関しても、炭化処理後に融着しているかどうかの評価を行なった。その結果を表4にまとめた。なおここで「内圧が真空ポンプにて-1kPaである」とは、電気炉の内圧が電気炉外よりも1kPa低いことをいう。
 (実施例A29)
 炭化処理雰囲気を、窒素気流中(1.0L/min)で内圧を-10kPaに保ったまま昇温を続けたこと以外は全て実施例A25と同様の方法で炭素質フィルムを作製した。得られた炭素質フィルムが融着しているかどうかを、○:融着なし、△:わずかに融着、×:全面的に融着の3段階で評価を行なった。同様の工程で100周、125周、150周、175周、および200周分巻き付けたものに関しても、炭化処理後に融着しているかどうかの評価を行なった。その結果を表4にまとめた。なおここで「内圧が真空ポンプにて-10kPaである」とは、電気炉の内圧が電気炉外よりも10kPa低いことをいう。
 75μmのポリイミドフィルムは50μmに比べ融着が起こりやすいことが分かった。75μmの場合でも減圧下で窒素を流しながら炭化処理を行なうことによって融着を抑制することができた。流す窒素流量が同じ場合は、減圧度が大きいほど融着抑制能力が高いということも分かった。
 (実施例A30)
 炭化処理雰囲気を、窒素を流さずに内圧を-10kPaに保ったまま昇温を続けたこと以外は全て実施例A25と同様の方法で炭素質フィルムを作製した。得られた炭素質フィルムが融着しているかどうかを、○:融着なし、△:わずかに融着、×:全面的に融着の3段階で評価を行なった。同様の工程で100周、125周、150周、175周、および200周分巻き付けたものに関しても、炭化処理後に融着しているかどうかの評価を行なった。その結果を表4にまとめた。なおここで「内圧が真空ポンプにて-10kPaである」とは、電気炉の内圧が電気炉外よりも10kPa低いことをいう。
 (実施例A31)
 炭化処理雰囲気を、窒素を流さずに内圧を-80kPaに保ったまま昇温を続けたこと以外は全て実施例A25と同様の方法で炭素質フィルムを作製した。得られた炭素質フィルムが融着しているかどうかを、○:融着なし、△:わずかに融着、×:全面的に融着の3段階で評価を行なった。同様の工程で100周、125周、150周、175周、および200周分巻き付けたものに関しても、炭化処理後に融着しているかどうかの評価を行なった。その結果を表4にまとめた。なおここで「内圧が真空ポンプにて-80kPaである」とは、電気炉の内圧が電気炉外よりも80kPa低いことをいう。
 窒素を流さずに減圧のみでの炭化処理でもいくらかは融着が抑制されるが、窒素を流しながらの場合と比較すると抑制効果は低下してしまった。
 (実施例A32)
 炭化処理雰囲気を、窒素気流中(5.0L/min)で内圧を-10kPaに保ったまま昇温を続けたこと以外は全て実施例A25と同様の方法で炭素質フィルムを作製した。得られた炭素質フィルムが融着しているかどうかを、○:融着なし、△:わずかに融着、×:全面的に融着の3段階で評価を行なった。同様の工程で100周、125周、150周、175周、および200周分巻き付けたものに関しても、炭化処理後に融着しているかどうかの評価を行なった。その結果を表4にまとめた。なおここで「内圧が真空ポンプにて-10kPaである」とは、電気炉の内圧が電気炉外よりも10kPa低いことをいう。
 流す窒素の流量を増やしたところ、さらに融着の改善効果が見られた。
 (実施例A33)
 高分子フィルムとして、250mm幅のカネカ社製ポリイミドフィルム(商品名:アピカル75AHフィルム、厚み75μm)を準備した。図3を参照して、この高分子フィルムを容器aの巻芯の下部に75周分巻き付け、フィルムを巻いた巻芯を外筒に入れた。フィルムをセットした容器aを電気炉内に縦向きに置き、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素気流中(流量5L/min)で行ない、内圧は真空ポンプにて-10kPaを保ったまま昇温を続けた。室温まで冷却後、得られた炭素質フィルムが融着しているかどうかを、○:融着なし、△:わずかに融着、×:全面的に融着の3段階で評価を行なった。同様の工程で100周、125周、150周、175周、および200周分巻き付けたものに関しても、炭化処理後に融着しているかどうかの評価を行なった。その結果を表4にまとめた。なおここで「内圧が真空ポンプにて-10kPaである」とは、電気炉の内圧が電気炉外よりも10kPa低いことをいう。
 縦向きに容器を置いて炭化処理を行なった場合、横置きの場合に比べて融着が起こりやすいことが分かった。
 (比較例A7)
 炭化処理雰囲気を、窒素気流中(1.0L/min)で内圧を±0kPaに保ったまま昇温を続けたこと以外は全て実施例A25と同様の方法で炭素質フィルムを作製した。得られた炭素質フィルムが融着しているかどうかを、○:融着なし、△:わずかに融着、×:全面的に融着の3段階で評価を行なった。同様の工程で100周、125周、150周、175周、および200周分巻き付けたものに関しても、炭化処理後に融着しているかどうかの評価を行なった。その結果を表4にまとめた。
 (比較例A8)
 炭化処理雰囲気を、窒素気流中(1.0L/min)で内圧を+2kPaに保ったまま昇温を続けたこと以外は全て実施例A25と同様の方法で炭素質フィルムを作製した。得られた炭素質フィルムが融着しているかどうかを、○:融着なし、△:わずかに融着、×:全面的に融着の3段階で評価を行なった。同様の工程で100周、125周、150周、175周、および200周分巻き付けたものに関しても、炭化処理後に融着しているかどうかの評価を行なった。その結果を表4にまとめた。なおここで「内圧が真空ポンプにて+2kPaである」とは、電気炉の内圧が電気炉外よりも2kPa高いことをいう。
 常圧下、もしくは加圧条件下での炭化処理ではフィルムが融着を起こしてしまった。
Figure JPOXMLDOC01-appb-T000004
 これら全ての実施例および比較例(実施例A1~A33、比較例A1~A8)は、250mm幅の東レ・デュポン社製ポリイミドフィルム(商品名:カプトンHフィルム、厚み75μmおよび50μm)を用いても同様の効果を得ることができた。
 次に、束縛手段としての外筒を有する容器について、種々の実施例および比較例に基づいて説明する。
 (容器Aの作製)
 図5を参照して、容器Aは内径155mm、外径165mm、肉厚5mm、高さ300mmの形状である外筒20と、径80mm×高さ280mmの円柱の両端に径155mm×高さ10mmの円板15が接続した形状である巻芯10から構成されている。なお、径155mm×高さ10mmの円板15には通気のために直径10mmの穴が数個ほど空けられている。外筒20および巻芯10は全て等方性黒鉛で作製した。
 (実施例B1)
 高分子フィルムとして、250mm幅のカネカ社製ポリイミドフィルム(商品名:アピカル75AHフィルム、厚み75μm)を準備した。図2を参照して、この高分子フィルムを容器Aの巻芯の中央部に100周分(巻き厚み7.5mm)巻き付け、フィルムを巻いた巻芯を外筒に入れた。フィルムをセットした容器Aを電気炉内に横向きに置き、室温から1000℃までを1℃/minで昇温して炭化処理を行なった。炭化処理は窒素気流中で行なった。室温まで冷却後、得られた炭素質フィルムの波打ちと融着の有無を調べた。続けてこの炭素質フィルムを、容器Aに再投入し、グラファイト化炉を用いて2900℃まで2℃/minで昇温してグラファイト化処理をおこなった。室温まで冷却後、熱処理後のグラファイトフィルムの一部を200mm角に切り取り、表面状態を調べた後に縦250mm×横250mm×厚み125μmの高分子フィルムで上下から挟み圧縮成型機を用いて後面状加圧工程を実施した。加えた圧力は10MPaとした。最終的に得られたグラファイトフィルムのシワの有無を調べた。その結果を表5にまとめた。
 得られた炭素質フィルムは一部表面が波打っていたものの、グラファイト化後の圧縮柔軟化処理ではシワが入ることなく行なうことができた。炭素質フィルムに融着は全く見られなかった。
 (容器Bの作製)
 図5を参照して、容器Aは内径130mm、外径140mm、肉厚5mm、高さ300mmの形状である外筒20と、径80mm×高さ280mmの円柱の両端に径130mm×高さ10mmの円板15が接続した形状である巻芯10から構成されている。なお、径130mm×高さ10mmの円板15には通気のために直径10mmの穴が数個ほど空けられている。外筒20および巻芯10は全て等方性黒鉛で作製した。
 (実施例B2)
 高分子フィルムとして、250mm幅のカネカ社製ポリイミドフィルム(商品名:アピカル75AHフィルム、厚み75μm)を準備した。容器Aの代わりに容器Bを用いたこと以外は全て実施例B1と同様の方法で炭素質フィルムおよびグラファイトフィルムを作製した。得られた炭素質フィルムの波打ちと融着の有無、および最終的に得られたグラファイトフィルムのシワの有無の結果を表5にまとめた。
 得られた炭素質フィルムは一部表面が波打っていたが、実施例B1の場合よりもその波打ち度合いが小さく、シワが入ることなく圧縮柔軟化処理を行なうことができた。炭素質フィルムに融着は全く見られなかった。
 (容器Cの作製)
 図5を参照して、容器Cは内径110mm、外径120mm、肉厚5mm、高さ300mmの形状である外筒20と、径80mm×高さ280mmの円柱の両端に径110mm×高さ10mmの円板15が接続した形状である巻芯10から構成されている。なお、径110mm×高さ10mmの円板15には通気のために直径10mmの穴が数個ほど空けられている。外筒20および巻芯10は全て等方性黒鉛で作製した。
 (実施例B3)
 高分子フィルムとして、250mm幅のカネカ社製ポリイミドフィルム(商品名:アピカル75AHフィルム、厚み75μm)を準備した。容器Aの代わりに容器Cを用いたこと以外は全て実施例B1と同様の方法で炭素質フィルムおよびグラファイトフィルムを作製した。得られた炭素質フィルムの波打ちと融着の有無、および最終的に得られたグラファイトフィルムのシワの有無の結果を表5にまとめた。
 実施例B3においては表面波打ちの無い綺麗な炭素質フィルムを得ることができた。フィルムの融着も全く見られなかった。
 (容器Dの作製)(新規追加)
 図5を参照して、容器Dは内径105mm、外径115mm、肉厚5mm、高さ300mmの形状である外筒20と、径80mm×高さ280mmの円柱の両端に径100mm×高さ10mmの円板15が接続した形状である巻芯10から構成されている。なお、径100mm×高さ10mmの円板15には通気のために直径10mmの穴が数個ほど空けられている。外筒20および巻芯10は全て等方性黒鉛で作製した。
 (実施例B4)
 高分子フィルムとして、250mm幅のカネカ社製ポリイミドフィルム(商品名:アピカル75AHフィルム、厚み75μm)を準備した。容器Aの代わりに容器Dを用いたこと以外は全て実施例B1と同様の方法で炭素質フィルムおよびグラファイトフィルムを作製した。得られた炭素質フィルムの波打ちと融着の有無、および最終的に得られたグラファイトフィルムのシワの有無の結果を表5にまとめた。
 実施例B4においては表面波打ちの無い綺麗な炭素質フィルムを得ることができた。フィルムの融着も全く見られなかった。
 (容器Eの作製)
 図5を参照して、容器Eは内径100mm、外径110mm、肉厚5mm、高さ300mmの形状である外筒20と、径80mm×高さ280mmの円柱の両端に径100mm×高さ10mmの円板15が接続した形状である巻芯10から構成されている。なお、径100mm×高さ10mmの円板15には通気のために直径10mmの穴が数個ほど空けられている。外筒20および巻芯10は全て等方性黒鉛で作製した。
 (実施例B5)
 高分子フィルムとして、250mm幅のカネカ社製ポリイミドフィルム(商品名:アピカル75AHフィルム、厚み75μm)を準備した。容器Aの代わりに容器Eを用いたこと以外は全て実施例B1と同様の方法で炭素質フィルムおよびグラファイトフィルムを作製した。得られた炭素質フィルムの波打ちと融着の有無、および最終的に得られたグラファイトフィルムのシワの有無の結果を表5にまとめた。
 実施例B5においては表面波打ちの無い綺麗な炭素質フィルムを得ることができた。フィルムの融着は、わずかに存在していたが、手で剥がせる程度であった。
 (容器Fの作製)
 図5を参照して、容器Fは内径98.8mm、外径108.8mm、肉厚5mm、高さ300mmの形状である外筒20と、径80mm×高さ280mmの円柱の両端に径97.5mm×高さ10mmの円板15が接続した形状である巻芯10から構成されている。なお、径97.5mm×高さ10mmの円板15には通気のために直径10mmの穴が数個ほど空けられている。外筒20および巻芯10は全て等方性黒鉛で作製した。
 (実施例B6)
 高分子フィルムとして、250mm幅のカネカ社製ポリイミドフィルム(商品名:アピカル75AHフィルム、厚み75μm)を準備した。容器Aの代わりに容器Fを用いたこと以外は全て実施例B1と同様の方法で炭素質フィルムおよびグラファイトフィルムを作製した。得られた炭素質フィルムの波打ちと融着の有無、および最終的に得られたグラファイトフィルムのシワの有無の結果を表5にまとめた。
 実施例B6においては炭素質フィルムの表面波打ちは全く無かったものの、わずかにフィルム同士が融着を起こしている部分があった。この融着はフィルムの断裂を引き起こすほど度合いの大きいものでは無く、続く黒鉛化工程にも問題なく投入することができた。
 (容器Gの作製)
 図5を参照して、容器Gは内径96.6mm、外径106.6mm、肉厚5mm、高さ300mmの形状である外筒20と、径80mm×高さ280mmの円柱の両端に径97.5mm×高さ10mmの円板15が接続した形状である巻芯10から構成されている。なお、径97.5mm×高さ10mmの円板15には通気のために直径10mmの穴が数個ほど空けられている。外筒20および巻芯10は全て等方性黒鉛で作製した。
 (実施例B7)
 高分子フィルムとして、250mm幅のカネカ社製ポリイミドフィルム(商品名:アピカル75AHフィルム、厚み75μm)を準備した。容器Aの代わりに容器Gを用いたこと以外は全て実施例B1と同様の方法で炭素質フィルムおよびグラファイトフィルムを作製した。得られた炭素質フィルムの波打ちと融着の有無、および最終的に得られたグラファイトフィルムのシワの有無の結果を表5にまとめた。
 実施例B7においては炭素質フィルムの表面波打ちは全く無かったものの、わずかにフィルム同士が融着を起こしている部分があった。この融着はフィルムの断裂を引き起こすほど度合いの大きいものでは無く、続く黒鉛化工程にも問題なく投入することができた。
 (容器Hの作製)
 図5を参照して、容器Hは内径280mm、外径290mm、肉厚5mm、高さ300mmの形状である外筒20と、径260mm×高さ280mmの円柱の両端に径280mm×高さ10mmの円板15が接続した形状である巻芯10から構成されている。なお、径280mm×高さ10mmの円板15には通気のために直径10mmの穴が数個ほど空けられている。外筒20および巻芯10は全て等方性黒鉛で作製した。
 (実施例B8)
 高分子フィルムとして、250mm幅のカネカ社製ポリイミドフィルム(商品名:アピカル75AHフィルム、厚み75μm)を準備した。容器Aの代わりに容器Hを用いたこと以外は全て実施例B1と同様の方法で炭素質フィルムおよびグラファイトフィルムを作製した。得られた炭素質フィルムの波打ちと融着の有無、および最終的に得られたグラファイトフィルムのシワの有無の結果を表5にまとめた。
 比較例B2および実施例B8の結果より、同じサイズの外筒を使用していても(b/a)の値が0.2以上0.9以下の範囲に入るような巻芯を選択すれば波打ちを起こさずに炭素質フィルムを作製可能であることが分かった。
 (容器Iの作製)
 図5を参照して、容器Iは内径380mm、外径390mm、肉厚5mm、高さ300mmの形状である外筒20と、径80mm×高さ280mmの円柱の両端に径380mm×高さ10mmの円板15が接続した形状である巻芯10から構成されている。なお、径380mm×高さ10mmの円板15には通気のために直径10mmの穴が数個ほど空けられている。外筒20および巻芯10は全て等方性黒鉛で作製した。
 (比較例B1)
 高分子フィルムとして、250mm幅のカネカ社製ポリイミドフィルム(商品名:アピカル75AHフィルム、厚み75μm)を準備した。容器Aの代わりに容器Iを用いたこと以外は全て実施例B1と同様の方法で炭素質フィルムおよびグラファイトフィルムを作製した。得られた炭素質フィルムの波打ちと融着の有無、および最終的に得られたグラファイトフィルムのシワの有無の結果を表5にまとめた。
 容器Iを用いて炭化処理を行なった場合、表面が大きく波打った炭素質フィルムが得られてきた。またフィルムの一部が融着を起こしていた。これはフィルムが波打ったためにフィルムからの出ガス抜けが悪くなった部分が発生したためであると考えられる。黒鉛化後もフィルムの波打ちが大きく、圧縮柔軟化処理後においてもフィルムに大きなシワが入ってしまった。
 (容器Jの作製)
 図5を参照して、容器Jは内径280mm、外径290mm、肉厚5mm、高さ300mmの形状である外筒20と、径80mm×高さ280mmの円柱の両端に径280mm×高さ10mmの円板15が接続した形状である巻芯10から構成されている。なお、径280mm×高さ10mmの円板15には通気のために直径10mmの穴が数個ほど空けられている。外筒20および巻芯10は全て等方性黒鉛で作製した。
 (比較例B2)
 高分子フィルムとして、250mm幅のカネカ社製ポリイミドフィルム(商品名:アピカル75AHフィルム、厚み75μm)を準備した。容器Aの代わりに容器Jを用いたこと以外は全て実施例B1と同様の方法で炭素質フィルムおよびグラファイトフィルムを作製した。得られた炭素質フィルムの波打ちと融着の有無、および最終的に得られたグラファイトフィルムのシワの有無の結果を表5にまとめた。
 容器Jを用いた場合も容器Iと同様に大きく波打った炭素質フィルムが得られてきてしまった。圧縮柔軟化処理後もシワが入ってしまった。
 (容器Kの作製)
 図5を参照して、容器Kは内径96mm、外径106mm、肉厚5mm、高さ300mmの形状である外筒20と、径80mm×高さ280mmの円柱の両端に径96mm×高さ10mmの円板15が接続した形状である巻芯10から構成されている。なお、径96mm×高さ10mmの円板15には通気のために直径10mmの穴が数個ほど空けられている。外筒20および巻芯10は全て等方性黒鉛で作製した。
 (比較例B3)
 高分子フィルムとして、250mm幅のカネカ社製ポリイミドフィルム(商品名:アピカル75AHフィルム、厚み75μm)を準備した。容器Aの代わりに容器Kを用いたこと以外は全て実施例B1と同様の方法で炭素質フィルムおよびグラファイトフィルムを作製した。得られた炭素質フィルムの波打ちと融着の有無、および最終的に得られたグラファイトフィルムのシワの有無の結果を表5にまとめた。
 容器Kを用いた場合、炭素質フィルムが全面的に融着および断裂を起こしてしまった。また得られた炭素質フィルムは大きく波打ちを起こしていた。これは容器内のスペースがほとんど無かったために、線膨張を起こしたフィルムが容器内で波打ったためであると考えられる。黒鉛化処理後に圧縮柔軟化処理を行なったがシワも入ってしまった。
 (容器Lの作製)
 図5を参照して、容器Lは内径155mm、外径165mm、肉厚5mm、高さ300mmの形状である外筒20と、径60mm×高さ280mmの円柱の両端に径155mm×高さ10mmの円板15が接続した形状である巻芯10から構成されている。なお、径155mm×高さ10mmの円板15には通気のために直径10mmの穴が数個ほど空けられている。外筒20および巻芯10は全て等方性黒鉛で作製した。
 (比較例B4)
 高分子フィルムとして、250mm幅のカネカ社製ポリイミドフィルム(商品名:アピカル75AHフィルム、厚み75μm)を準備した。容器Aの代わりに容器Lを用いたこと以外は全て実施例B1と同様の方法で炭素質フィルムおよびグラファイトフィルムを作製した。得られた炭素質フィルムの波打ちと融着の有無、および最終的に得られたグラファイトフィルムのシワの有無の結果を表5にまとめた。
 実施例B1および比較例B4の結果より、同じサイズの外筒を使用していても(b/a)の値が0.2より小さな巻芯を使用すると炭素質フィルムが波打ってしまうことが分かった。また直径が60mmの巻芯を使用して炭素質フィルムを作製した場合、巻き癖の強いグラファイトフィルムとなり圧縮工程の際にシワが多く入ってしまった。
Figure JPOXMLDOC01-appb-T000005
 (容器Mの作製)
 図5を参照して、容器Mは内径115mm、外径125mm、肉厚5mm、高さ300mmの形状である外筒20と、径80mm×高さ280mmの円柱の両端に径115mm×高さ10mmの円板15が接続した形状である巻芯10から構成されている。なお、径115mm×高さ10mmの円板15には通気のために直径10mmの穴が数個ほど空けられている。外筒20および巻芯10は全て等方性黒鉛で作製した。
 (実施例B9)
 高分子フィルムとして、250mm幅のカネカ社製ポリイミドフィルム(商品名:アピカル75AHフィルム、厚み75μm)を準備した。図2を参照して、この高分子フィルムを容器Mの巻芯の中央部に25m分(巻き厚み6.7mm)巻き付け、フィルムを巻いた巻芯を外筒に入れた。フィルムをセットした容器Mを電気炉内に横向きに置き、室温から1000℃までを1℃/minで昇温して炭化処理を行なった。炭化処理は窒素気流中で行なった。室温まで冷却後、得られた炭素質フィルムの波打ちと融着の有無を調べた。続けてこの炭素質フィルムを、容器Mに再投入し、グラファイト化炉を用いて2900℃まで2℃/minで昇温してグラファイト化処理をおこなった。室温まで冷却後、熱処理後のグラファイトフィルムの一部を200mm角に切り取り、表面状態を調べた後に縦250mm×横250mm×厚み125μmの高分子フィルムで上下から挟み圧縮成型機を用いて後面状加圧工程を実施した。加えた圧力は10MPaとした。最終的に得られたグラファイトフィルムのシワの有無を調べた。その結果を表6にまとめた。
 (実施例B10)
 アピカル75AHフィルムを容器Mの巻芯中央部に30m分(巻き厚み8.1mm)を巻き付けたこと以外は全て実施例B9と同様の方法で炭素質フィルムおよびグラファイトフィルムを作製した。得られた炭素質フィルムの波打ちと融着の有無、および最終的に得られたグラファイトフィルムのシワの有無の結果を表6にまとめた。
 (実施例B11)
 アピカル75AHフィルムを容器Mの巻芯中央部に40m分(巻き厚み10.5mm)を巻き付けたこと以外は全て実施例B7と同様の方法で炭素質フィルムおよびグラファイトフィルムを作製した。得られた炭素質フィルムの波打ちと融着の有無、および最終的に得られたグラファイトフィルムのシワの有無の結果を表6にまとめた。
 (実施例B12)
 アピカル75AHフィルムを容器Mの巻芯中央部に50m分(巻き厚み12.8mm)を巻き付けたこと以外は全て実施例B9と同様の方法で炭素質フィルムおよびグラファイトフィルムを作製した。得られた炭素質フィルムの波打ちと融着の有無、および最終的に得られたグラファイトフィルムのシワの有無の結果を表6にまとめた。
 (実施例B13)
 アピカル75AHフィルムを容器Mの巻芯中央部に60m分(巻き厚み15mm)を巻き付けたこと以外は全て実施例B9と同様の方法で炭素質フィルムおよびグラファイトフィルムを作製した。得られた炭素質フィルムの波打ちと融着の有無、および最終的に得られたグラファイトフィルムのシワの有無の結果を表6にまとめた。
 (b/a)の値が0.2以上0.9以下の範囲に入っていればポリイミドフィルムの巻き数を増やしていっても波打ちを起こすことなく、綺麗な表面を有する炭素質フィルムを得ることができた。実施例B13においては得られた炭素質フィルムの一部が融着を起こしてしまっていたが、この融着はフィルムの断裂を引き起こすほど度合いの大きいものでは無かった。
 (実施例B14)
 容器Mを電気炉内に縦置きにセットしたこと以外は全て実施例B10と同様の方法で炭素質フィルムおよびグラファイトフィルムを作製した。得られた炭素質フィルムの波打ちと融着の有無、および最終的に得られたグラファイトフィルムのシワの有無の結果を表6にまとめた。
 実施例B10と比較して、容器を縦置きにして炭化処理を行なった場合、表面の波打った炭素質フィルムが得られてきた。またフィルムの一部が融着を起こしていた。本発明を実施する最良の形態としては容器のセット方法は縦置きよりも横置きの方が良いことが分かる。
 (実施例B15)
 図6を参照して容器Mの外筒20に直径2mmの通気用の穴を容器上半分に数個ほど開けたこと以外は全て実施例B13と同様の方法で炭素質フィルムおよびグラファイトフィルムを作製した。得られた炭素質フィルムの波打ちと融着の有無、および最終的に得られたグラファイトフィルムのシワの有無の結果を表6にまとめた。
 外筒20に通気用の穴を開けたことによって融着が改善された。得られた炭素質フィルム表面には通気用の穴の跡は転写されていなかった。
 (比較例B5)
 アピカル75AHフィルムを容器Mの巻芯中央部に65m分(巻き厚み16.1mm)を巻き付けたこと以外は全て実施例B9と同様の方法で炭素質フィルムおよびグラファイトフィルムを作製した。得られた炭素質フィルムの波打ちと融着の有無、および最終的に得られたグラファイトフィルムのシワの有無の結果を表6にまとめた。
 容器Mでは融着を起こすことなく65mのポリイミドフィルムを炭化することができなかった。
 (容器Lの作製)
 図5を参照して、容器Lは内径125mm、外径135mm、肉厚5mm、高さ300mmの形状である外筒20と、径80mm×高さ280mmの円柱の両端に径125mm×高さ10mmの円板15が接続した形状である巻芯10から構成されている。なお、径125mm×高さ10mmの円板15には通気のために直径10mmの穴が数個ほど空けられている。外筒20および巻芯10は全て等方性黒鉛で作製した。
 (実施例B16)
 アピカル75AHフィルムを容器Lの巻芯中央部に65m分(巻き厚み16.1mm)を巻き付けたこと以外は全て実施例B9と同様の方法で炭素質フィルムおよびグラファイトフィルムを作製した。得られた炭素質フィルムの波打ちと融着の有無、および最終的に得られたグラファイトフィルムのシワの有無の結果を表6にまとめた。
 外筒の内径が大きい容器を使用した場合、融着を起こさず炭化をすることができた。比較例B5と実施例B16の結果より、ある程度以上の長さのポリイミドフィルムを処理する際は適切なb/aの値をとり得る容器を設計する必要があることが分かった。
 なお、これら実施例および比較例(実施例B1~B16、比較例B1~B5)においてアピカル50AHの代わりに、アピカル75AH(カネカ社製、厚み75μm)や東レ・デュポン社製ポリイミドフィルム(商品名:カプトンHフィルム、厚み75μmおよび50μm)を用いても同様の効果が得られた。
Figure JPOXMLDOC01-appb-T000006
 (実施例C1)
 炭化処理雰囲気を、室温から500℃まで窒素雰囲気中(熱処理中窒素は流さずに)内圧±0kPaで処理を行い、500℃から700℃まで窒素を流さずに内圧-0.01kPaを保ったまま昇温を続け、700℃で窒素を導入し、1000℃まで内圧±0kPaで処理をしたこと以外は全て実施例A1と同様の方法で炭素質フィルムを作製した。炭素質フィルムの厚みと表面状態、および単位面積当たりの重量(g/m2)、またグラファイト化処理後の熱拡散率を表7にまとめた。なおここで「内圧が真空ポンプにて-0.01kPaである」とは、電気炉の内圧が電気炉外よりも0.01kPa低いことをいう。
 炭化熱分解領域のみを減圧にすることでも実施例A1と同様の効果を与えることがわかった。また、炭化熱分解温度領域で減圧に切り替えたことで、フィルム間に滞留していたガスが炉内の窒素と共に系外へ押し出され、実施例A1よりも融着は少なかった。
 (実施例C2)
 炭化処理雰囲気を、室温から700℃まで窒素を流さずに内圧-0.01kPaを保ったまま昇温を続け、700℃で窒素を導入し、1000℃まで内圧±0kPaで処理をしたこと以外は全て実施例A1と同様の方法で炭素質フィルムを作製した。炭素質フィルムの厚みと表面状態、および単位面積当たりの重量(g/m2)、またグラファイト化処理後の熱拡散率を表7にまとめた。なおここで「内圧が真空ポンプにて-0.01kPaである」とは、電気炉の内圧が電気炉外よりも0.01kPa低いことをいう。
 炭化温熱分解が進行し、脆いフィルムとなっている700℃以上の温度領域を常圧で熱処理したことで、穏やかな状態で処理が進行し、割れのない炭素質フィルムを得ることができた。
 (実施例C3)
 炭化処理雰囲気を、室温から500℃まで窒素雰囲気中(熱処理中窒素は流さずに)内圧±0kPaで処理を行い、500℃から1000℃まで窒素を流さずに内圧-0.01kPaを保ったまま昇温を続けたこと以外は全て実施例A1と同様の方法で炭素質フィルムを作製した。炭素質フィルムの厚みと表面状態、および単位面積当たりの重量(g/m2)、またグラファイト化処理後の熱拡散率を表7にまとめた。なおここで「内圧が真空ポンプにて-0.01kPaである」とは、電気炉の内圧が電気炉外よりも0.01kPa低いことをいう。
 炭化熱分解温度領域で減圧に切り替えたことで、フィルム間に滞留していたガスが炉内の窒素と共に系外へ押し出され、実施例A1よりも融着は少なかった。
 (実施例C4)
 炭化処理雰囲気を、室温から400℃まで窒素雰囲気中(熱処理中窒素は流さずに)内圧±0kPaで処理を行い、400℃から800℃まで窒素を流さずに内圧-0.01kPaを保ったまま昇温を続け、800℃で窒素を導入し、1000℃まで内圧±0kPaで処理をしたこと以外は全て実施例A1と同様の方法で炭素質フィルムを作製した。炭素質フィルムの厚みと表面状態、および単位面積当たりの重量(g/m2)、またグラファイト化処理後の熱拡散率を表7にまとめた。なおここで「内圧が真空ポンプにて-0.01kPaである」とは、電気炉の内圧が電気炉外よりも0.01kPa低いことをいう。
 減圧温度領域が400℃から800℃の場合でも、実施例A1と同様の効果を与えることがわかった。
 (実施例C5)
 炭化処理雰囲気を、室温から500℃まで窒素雰囲気中(熱処理中窒素は流さずに)内圧±0kPaで処理を行い、500℃から700℃まで窒素を流さずに内圧-10kPaを保ったまま昇温を続け、700℃で窒素を導入し、1000℃まで内圧±0kPaで処理をしたこと以外は全て実施例A5と同様の方法で炭素質フィルムを作製した。炭素質フィルムの厚みと表面状態、および単位面積当たりの重量(g/m2)、またグラファイト化処理後の熱拡散率を表7にまとめた。なおここで「内圧が真空ポンプにて-10kPaである」とは、電気炉の内圧が電気炉外よりも10kPa低いことをいう。
 炭化温熱分解が進行し、脆いフィルムとなっている700℃以上の温度領域を常圧で熱処理したことで、穏やかな状態で処理が進行し、割れのない炭素質フィルムを得ることができた。
 (実施例C6)
 炭化処理雰囲気を、室温から500℃まで窒素雰囲気中(熱処理中窒素は流さずに)内圧±0kPaで処理を行い、500℃から700℃まで窒素気流中(1.0L/min)で内圧-10kPaを保ったまま昇温を続け、700℃で窒素を導入し、1000℃まで内圧±0kPaで処理をしたこと以外は全て実施例A6と同様の方法で炭素質フィルムを作製した。炭素質フィルムの厚みと表面状態、および単位面積当たりの重量(g/m2)、またグラファイト化処理後の熱拡散率を表7にまとめた。なおここで「内圧が真空ポンプにて-10kPaである」とは、電気炉の内圧が電気炉外よりも10kPa低いことをいう。
 窒素気流中の減圧条件においても、炭化熱分解領域のみを減圧にすることで融着を抑制できることがわかった。
 (実施例C7)
 炭化処理雰囲気を、室温から500℃まで窒素雰囲気中(熱処理中窒素は流さずに)内圧±0kPaで処理を行い、500℃から700℃まで窒素を流さずに内圧-0.01kPaを保ったまま昇温を続け、700℃で窒素を導入し、1000℃まで内圧±0kPaで処理をしたこと以外は全て実施例A9と同様の方法で炭素質フィルムを作製した。炭素質フィルムの厚みと表面状態、および単位面積当たりの重量(g/m2)、またグラファイト化処理後の熱拡散率を表7にまとめた。なおここで「内圧が真空ポンプにて-0.01kPaである」とは、電気炉の内圧が電気炉外よりも0.01kPa低いことをいう。
 75AHのポリイミドフィルムを用いた場合も、50AHのポリイミドフィルムを用いた場合と同様に融着と割れを抑制することができた。
 (実施例C8)
  炭化処理雰囲気を、室温から500℃まで窒素雰囲気中(熱処理中窒素は流さずに)内圧±0kPaで処理を行い、500℃から700℃まで窒素を流さずに内圧-10kPaを保ったまま昇温を続け、700℃で窒素を導入し、1000℃まで内圧±0kPaで処理をしたこと以外は全て実施例A13と同様の方法で炭素質フィルムを作製した。炭素質フィルムの厚みと表面状態、および単位面積当たりの重量(g/m2)、またグラファイト化処理後の熱拡散率を表7にまとめた。なおここで「内圧が真空ポンプにて-10kPaである」とは、電気炉の内圧が電気炉外よりも10kPa低いことをいう。
 炭化温熱分解が進行し、脆いフィルムとなっている700℃以上の温度領域を常圧で熱処理したことで、穏やかな状態で処理が進行し、割れのない炭素質フィルムを得ることができた。
 (実施例C9)
 炭化処理雰囲気を、室温から700℃まで窒素を流さずに内圧-10kPaを保ったまま昇温を続け、700℃で窒素を導入し、1000℃まで内圧±0kPaで処理をしたこと以外は全て実施例A13と同様の方法で炭素質フィルムを作製した。炭素質フィルムの厚みと表面状態、および単位面積当たりの重量(g/m2)、またグラファイト化処理後の熱拡散率を表7にまとめた。なおここで「内圧が真空ポンプにて-10kPaである」とは、電気炉の内圧が電気炉外よりも10kPa低いことをいう。
割れの程度は、減圧温度領域が実施例C8よりも長かったため、実施例C8より多少多かったが、実施例A13よりは少なくなった。
 (実施例C10)
 炭化処理雰囲気を、室温から500℃まで窒素雰囲気中(熱処理中窒素は流さずに)内圧±0kPaで処理を行い、500℃から1000℃まで窒素を流さずに内圧-10kPaを保ったまま昇温を続けたこと以外は全て実施例A13と同様の方法で炭素質フィルムを作製した。炭素質フィルムの厚みと表面状態、および単位面積当たりの重量(g/m2)、またグラファイト化処理後の熱拡散率を表7にまとめた。なおここで「内圧が真空ポンプにて-10kPaである」とは、電気炉の内圧が電気炉外よりも10kPa低いことをいう。
 炭化熱分解温度領域で減圧に切り替えたことで、フィルム間に滞留していたガスが炉内の窒素と共に系外へ押し出され、実施例A13よりも融着は少なかった。割れの程度については、減圧温度領域が1000℃までと炭化分解温度領域よりも高い温度までであったので、実施例C8、C9に比べ、多少多かった。
 (実施例C11)
 炭化処理雰囲気を、室温から400℃まで窒素雰囲気中(熱処理中窒素は流さずに)内圧±0kPaで処理を行い、400℃から800℃まで窒素を流さずに内圧-10kPaを保ったまま昇温を続け、800℃で窒素を導入し、1000℃まで内圧±0kPaで処理をしたこと以外は全て実施例A13と同様の方法で炭素質フィルムを作製した。炭素質フィルムの厚みと表面状態、および単位面積当たりの重量(g/m2)、またグラファイト化処理後の熱拡散率を表7にまとめた。なおここで「内圧が真空ポンプにて-10kPaである」とは、電気炉の内圧が電気炉外よりも10kPa低いことをいう。
400℃から800℃までの減圧でも実施例A13に比べ、割れ、融着ともに改善された。
 (実施例C12)
 炭化処理雰囲気を、室温から500℃まで窒素雰囲気中(熱処理中窒素は流さずに)内圧±0kPaで処理を行い、500℃から700℃まで窒素気流中(1.0L/min)で内圧-10kPaを保ったまま昇温を続け、700℃で窒素を導入し、1000℃まで内圧±0kPaで処理をしたこと以外は全て実施例A14と同様の方法で炭素質フィルムを作製した。炭素質フィルムの厚みと表面状態、および単位面積当たりの重量(g/m2)、またグラファイト化処理後の熱拡散率を表7にまとめた。なおここで「内圧が真空ポンプにて-10kPaである」とは、電気炉の内圧が電気炉外よりも10kPa低いことをいう。
 窒素気流中の減圧条件においても、炭化熱分解領域のみを減圧にすることで実施例A14と同様に融着を抑制できることがわかった。また、割れの程度も実施例A14に比べて抑制することができた。
 (実施例C13)
 炭化処理雰囲気を、室温から500℃まで窒素雰囲気中(熱処理中窒素は流さずに)内圧±0kPaで処理を行い、500℃から700℃まで窒素気流中(1.0L/min)で内圧-1kPaを保ったまま昇温を続け、700℃で窒素を導入し、1000℃まで内圧±0kPaで処理をしたこと以外は全て実施例A20と同様の方法で炭素質フィルムを作製した。炭素質フィルムの厚みと表面状態、および単位面積当たりの重量(g/m2)、またグラファイト化処理後の熱拡散率を表7にまとめた。なおここで「内圧が真空ポンプにて-1kPaである」とは、電気炉の内圧が電気炉外よりも1kPa低いことをいう。
 炭化熱分解温度領域で減圧に切り替えたことで、フィルム間に滞留していたガスが炉内の窒素と共に系外へ押し出され、実施例A20よりも融着は少なかった。また、炭化分解温度領域のみを減圧にしたことで、割れの程度も実施例A20に比べ改善された。
 (実施例C14)
 容器dを用いたこと以外は、実施例C13と同様の方法で炭素質フィルムを作製した。炭素質フィルムの厚みと表面状態、および単位面積当たりの重量(g/m2)、またグラファイト化処理後の熱拡散率を表7にまとめた。
 実施例C13に比べ内径の大きい容器を用いたことで、分解ガスの滞留を抑制することができ、融着なく炭化することができた。また、割れもなかった。これは、フィルムと外筒との過度な接触をさけることができたためであると考えられる。
 (実施例C15)
 炭化処理雰囲気を、室温から500℃まで窒素雰囲気中(熱処理中窒素は流さずに)内圧±0kPaで処理を行い、500℃から700℃まで窒素気流中(1.0L/min)で内圧-1kPaを保ったまま昇温を続け、700℃で窒素を導入し、1000℃まで内圧±0kPaで処理をしたこと以外は全て実施例A28と同様の方法で炭素質フィルムを作製した。炭素質フィルムの厚みと表面状態、および単位面積当たりの重量(g/m2)、またグラファイト化処理後の熱拡散率を表7にまとめた。なおここで「内圧が真空ポンプにて-1kPaである」とは、電気炉の内圧が電気炉外よりも1kPa低いことをいう。
 炭化熱分解温度領域で減圧に切り替えたことで、フィルム間に滞留していたガスが炉内の窒素と共に系外へ押し出され、実施例A28よりも融着は少なかった。また、炭化分解温度領域のみを減圧にしたことで、割れの程度も実施例A28に比べ改善された。
 (容器eの作製)
 図1を参照して、容器eは縦190mm×横190mm×高さ300mmの直方体(柱状体)から直径160mm××高さ300mmの円柱形状をくり抜いて除去した形状である外筒20と、直径100mm×高さ280mmの円柱の両端に直径160mm×厚さ10mmの円板15が接続した形状である巻芯10から構成されている。なお、直径160mm×円板10mmの円板15には通気のために直径10mmの穴が数個ほど空けられている。外筒20および巻芯10は全て等方性黒鉛で作製した。
 (実施例C16)
 容器eを用いたこと以外は、実施例C15と同様の方法で炭素質フィルムを作製した。炭素質フィルムの厚みと表面状態、および単位面積当たりの重量(g/m2)、またグラファイト化処理後の熱拡散率を表7にまとめた。
 実施例C15に比べ内径の大きい容器を用いたことで、分解ガスの滞留を抑制することができ、融着なく炭化することができた。また、割れもなかった。
Figure JPOXMLDOC01-appb-T000007
 (実施例A34)
 外筒を設けなかったこと以外は、実施例A13と同様の方法で炭素質フィルムを作製した。炭素質フィルムの厚みと表面状態、および単位面積当たりの重量(g/m2)、またグラファイト化処理後の熱拡散率を表8にまとめた。
 減圧処理を行ったことで、融着はA13と同等であった。しかし、外筒を設けなかったことで、フィルムの外周端部の束縛手段がなくなり、割れが多く、また、波打ったフィルムが得られてきた。黒鉛化後のフィルムについても得られた炭素質フィルムの波打ちが残っており、圧縮処理した場合、波打ちは解消されず、更なるシワも発生した。
Figure JPOXMLDOC01-appb-T000008
 ここに開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明でなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。
 本発明によれば、電子機器、精密機器などにおいて放熱部材として使用し得るグラファイトフィルムの製造に使用し得る炭素質フィルムを得ることができるので、電子部品等の分野で利用可能である。
 10 巻芯
 15 円板
 20 外筒
 30 フィルム
 40 通気穴
 50 ヒーター
 55 インナーケース
 60 台
 65 ガス導入孔
 70 減圧孔
 81 リング状部材
 82 棒状部材

Claims (26)

  1.  巻芯に高分子フィルムを巻き付けた状態で熱処理を行なう炭化工程を経て炭素質フィルムを製造する方法であって、炭化工程の少なくとも一部が減圧で行なわれることを特徴とする炭素質フィルムの製造方法。
  2.  減圧の範囲が-0.01kPa~-0.08MPaであることを特徴とする請求項1記載の炭素質フィルムの製造方法。
  3.  炭化熱分解が生じる温度領域において前記減圧が行われることを特徴とする請求項1又は2に記載の炭素質フィルムの製造方法。
  4.  500℃~700℃の温度領域において前記減圧が行われることを特徴とする請求項1~3の何れかに記載の炭素質フィルムの製造方法。
  5.  不活性ガスを導入しながら-0.01kPa~-0.08MPaの範囲で減圧して炭化することを特徴とする請求項1~4記載の炭素質フィルムの製造方法。
  6.  処理物の体積をV(L)、導入する不活性ガスの量をV1(L/s)とした場合にV/V1(s)の値が0.01以上1000以下であることを特徴とする請求項5記載の炭素質フィルムの製造方法。
  7.  巻芯を横向きに置いて熱処理を行なうことを特徴とする請求項1~6の何れかに記載の炭素質フィルムの製造方法。
  8.  高分子フィルムの厚みが10μm以上250μm以下であることを特徴とする請求項1~7の何れかに記載の炭素質フィルムの製造方法。
  9.  前記高分子フィルムの長さが10m以上であることを特徴とする請求項1~8の何れかに記載の炭素質フィルムの製造方法。
  10.  前記巻芯の直径が70mm以上であることを特徴とする請求項1~9の何れかに記載の炭素質フィルムの製造方法。
  11.  前記巻芯と、巻芯を収納する外筒とにより構成される容器を備え、該容器が通気性を有することを特徴とする請求項1~10の何れかに記載の炭素質フィルムの製造方法。
  12.  巻芯に高分子フィルムを巻き付けた状態で熱処理を行なう炭化工程を経て炭素質フィルムを製造する方法であって、前記炭化工程における前記高分子フィルムの膨張および収縮に際して前記高分子フィルムの外周端部を束縛する束縛手段を設けたことを特徴とする炭素質フィルムの製造方法。
  13.  前記炭化工程の少なくとも一部が減圧で行なわれることを特徴とする請求項12に記載の炭素質フィルムの製造方法。
  14.  前記巻芯と外筒とを有する容器を更に備え、前記束縛手段は前記外筒であり、(外筒の内径-巻芯の直径)を2で割った値をa(mm)、高分子フィルムの巻き厚みをb(mm)とした場合にbをaで除した値(b/a)が0.2~0.9の範囲にあることを特徴とする請求項12又は13に記載の炭素質フィルムの製造方法。
  15.  (b/a)が0.5~0.8の範囲にあることを特徴とする請求項14記載の炭素質フィルムの製造方法。
  16.  (b/a)が0.3~0.7の範囲にあることを特徴とする請求項14記載の炭素質フィルムの製造方法。
  17.  前記外筒は、柱状体から円柱形状をくり抜いて除去した構造であることを特徴とする請求項14~16記載の炭素質フィルムの製造方法。
  18.  前記外筒の少なくとも一部分に通気用の穴が設けられていることを特徴とする請求項14~17の何れかに記載の炭素質フィルムの製造方法。
  19.  前記巻芯を横置きにして高分子フィルムを熱処理することを特徴とする請求項12~18の何れかに記載の炭素質フィルムの製造方法。
  20.  高分子フィルムの厚みが10μm以上250μm以下であることを特徴とする請求項12~19の何れかに記載の炭素質フィルムの製造方法。
  21.  前記高分子フィルムの長さが10m以上であることを特徴とする請求項12~20の何れかに記載の炭素質フィルムの製造方法。
  22.  前記巻芯の直径が70mm以上であることを特徴とする請求項12~21の何れかに記載の炭素質フィルムの製造方法。
  23.  セパレータフィルムを用いることなく、一種類の高分子フィルムのみを用いることを特徴とする請求項12~22の何れかに記載の炭素質フィルムの製造方法。
  24.  減圧の範囲が-0.01kPa~-0.08MPaであることを特徴とする請求項13~23記載の炭素質フィルムの製造方法。
  25.  巻芯に高分子フィルムを巻き付けた状態のものを、ヒーター内に保持し、間接的な熱処理を行なうことを特徴とする請求項1~24記載の炭素質フィルムの製造方法。
  26.  請求項1~25の炭素質フィルムの製造方法で製造した炭素質フィルムを2400℃以上で処理することによって得られるグラファイトフィルム。
PCT/JP2009/004524 2008-09-11 2009-09-11 炭素質フィルムの製造方法、およびこれによって得られるグラファイトフィルム WO2010029761A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/063,419 US8858847B2 (en) 2008-09-11 2009-09-11 Method for producing carbonaceous film, and graphite film obtained by the same
JP2010528655A JP5586469B2 (ja) 2008-09-11 2009-09-11 炭素質フィルムの製造方法、およびグラファイトフィルムの製造方法
CN200980135947.0A CN102149633B (zh) 2008-09-11 2009-09-11 碳质膜的制造方法及由其制得的石墨膜
US14/478,999 US9512005B2 (en) 2008-09-11 2014-09-05 Method for manufacturing carbonaceous film and graphite film obtained thereby

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008233557 2008-09-11
JP2008-233557 2008-09-11
JP2008276202 2008-10-28
JP2008-276202 2008-10-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/063,419 A-371-Of-International US8858847B2 (en) 2008-09-11 2009-09-11 Method for producing carbonaceous film, and graphite film obtained by the same
US14/478,999 Division US9512005B2 (en) 2008-09-11 2014-09-05 Method for manufacturing carbonaceous film and graphite film obtained thereby

Publications (1)

Publication Number Publication Date
WO2010029761A1 true WO2010029761A1 (ja) 2010-03-18

Family

ID=42005025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004524 WO2010029761A1 (ja) 2008-09-11 2009-09-11 炭素質フィルムの製造方法、およびこれによって得られるグラファイトフィルム

Country Status (5)

Country Link
US (2) US8858847B2 (ja)
JP (1) JP5586469B2 (ja)
KR (1) KR101624212B1 (ja)
CN (1) CN102149633B (ja)
WO (1) WO2010029761A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111380A1 (ja) * 2010-03-10 2011-09-15 株式会社カネカ 炭化フィルムの製造方法およびグラファイトフィルムの製造方法
WO2012132390A1 (ja) * 2011-03-28 2012-10-04 株式会社カネカ 炭素質フィルムの製造方法、およびグラファイトフィルムの製造方法、並びにロール状高分子フィルムおよびロール状炭素質フィルム
WO2012132391A1 (ja) * 2011-03-28 2012-10-04 株式会社カネカ 炭素質フィルムの製造方法、およびグラファイトフィルムの製造方法、並びにロール状高分子フィルム及びロール状炭素質フィルム
JP2012246186A (ja) * 2011-05-27 2012-12-13 Kaneka Corp 炭素質フィルムの製造方法
JP2013056797A (ja) * 2011-09-08 2013-03-28 Kaneka Corp 炭素質フィルムの製造方法、及びグラファイトフィルムの製造方法
JP2014019613A (ja) * 2012-07-19 2014-02-03 Kaneka Corp 炭素質フィルムの製造方法および、グラファイトフィルムの製造方法
JPWO2020183911A1 (ja) * 2019-03-13 2020-09-17
CN113865357A (zh) * 2021-11-08 2021-12-31 江西昌大高新能源材料技术有限公司 一种人工石墨膜卷材的生产冶具及利用其生产人工石墨膜卷材的工艺

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148581A1 (ja) * 2010-05-28 2011-12-01 株式会社カネカ グラファイトフィルムの平坦性を改善する方法、並びにグラファイトフィルム及びその製造方法
MY192217A (en) * 2011-08-24 2022-08-09 Kaneka Corp Graphite film and method for producing graphite film
CN103764555B (zh) * 2011-09-08 2015-08-19 株式会社钟化 碳质膜的制造方法及石墨膜的制造方法
EP2636643A1 (en) * 2012-03-06 2013-09-11 Beijing Jones Co., Ltd. A method for fabricating a pyrolytic graphite film and the pyrolytic graphit film fabricated thereby
CN102745674B (zh) * 2012-06-25 2014-07-09 孙伟峰 片状石墨膜的制造模具及制造方法
CN103096691B (zh) * 2012-06-25 2015-04-29 北京中石伟业科技无锡有限公司 一种石墨膜导热体
WO2014036739A1 (zh) * 2012-09-10 2014-03-13 北京中石伟业技术有限公司 一种导热体
WO2014036738A1 (zh) * 2012-09-10 2014-03-13 北京中石伟业科技股份有限公司 一种散热器
US9807878B2 (en) * 2013-09-26 2017-10-31 Kaneka Corporation Graphite sheet, method for producing same, laminated board for wiring, graphite wiring material, and process for producing wiring board
US9623585B2 (en) * 2014-01-27 2017-04-18 Jiaxing Zhongyi Carbon Technology Co., Ltd. Method for preparing graphite film
CN103864067B (zh) * 2014-03-26 2017-01-11 苏州格优碳素新材料有限公司 一种高导热石墨膜-铜复合材料的制备方法
CN104003381A (zh) * 2014-06-13 2014-08-27 江苏悦达新材料科技有限公司 一种高导热石墨膜卷材的制备方法
KR101550282B1 (ko) * 2014-08-27 2015-09-07 가드넥(주) 단일 연속로를 이용한 그라파이트 필름 제조 방법
WO2016088845A1 (ja) 2014-12-04 2016-06-09 株式会社カネカ 高真空用層間熱接合性グラファイトシート
CN105992490A (zh) * 2015-02-04 2016-10-05 苏州驭奇材料科技有限公司 一种高热辐射合成石墨散热膜及其制作方法
JP7465862B2 (ja) * 2019-03-12 2024-04-11 株式会社カネカ 加熱炉およびグラファイトの製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63256508A (ja) * 1987-04-15 1988-10-24 Res Dev Corp Of Japan グラフアイトフイルムの製造方法
JPH05132360A (ja) * 1991-11-08 1993-05-28 Matsushita Electric Ind Co Ltd グラフアイトフイルムの製造方法
JP2008024571A (ja) * 2006-07-25 2008-02-07 Kaneka Corp グラファイトフィルムおよびグラファイトフィルムの製造方法
JP2008207967A (ja) * 2007-02-23 2008-09-11 Matsushita Electric Ind Co Ltd グラファイトシートの製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61275117A (ja) 1985-05-30 1986-12-05 Res Dev Corp Of Japan グラフアイトフイルムの製造方法
JPS61275116A (ja) 1985-05-30 1986-12-05 Res Dev Corp Of Japan グラフアイトフイルムおよび繊維の製造方法
DE3650278T2 (de) * 1985-05-30 1995-09-28 Japan Res Dev Corp Verfahren zum Herstellen von Graphitfolien.
JP2976481B2 (ja) 1989-05-10 1999-11-10 松下電器産業株式会社 フィルム状グラファイトの製造方法
JP3152316B2 (ja) * 1991-05-31 2001-04-03 東邦レーヨン株式会社 炭素フィルム及びその製造方法
JP4238416B2 (ja) * 1999-05-27 2009-03-18 宇部興産株式会社 多孔質炭化膜およびその製造方法
US6432327B2 (en) * 1999-12-29 2002-08-13 Younger Mfg. Co. Formed polyethylene terephthalate polarizing film for incorporation in optical-grade plastic parts
JP4864700B2 (ja) * 2004-06-16 2012-02-01 株式会社カネカ グラファイトフィルムの製造方法
JP4657649B2 (ja) 2004-08-05 2011-03-23 株式会社カネカ グラファイトフィルムの製造方法
US8105565B2 (en) * 2004-11-24 2012-01-31 Kaneka Corporation Process for producing graphite film
JP4846269B2 (ja) * 2005-05-30 2011-12-28 株式会社カネカ グラファイトフィルムの製造方法、およびその方法で製造されたグラファイトフィルム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63256508A (ja) * 1987-04-15 1988-10-24 Res Dev Corp Of Japan グラフアイトフイルムの製造方法
JPH05132360A (ja) * 1991-11-08 1993-05-28 Matsushita Electric Ind Co Ltd グラフアイトフイルムの製造方法
JP2008024571A (ja) * 2006-07-25 2008-02-07 Kaneka Corp グラファイトフィルムおよびグラファイトフィルムの製造方法
JP2008207967A (ja) * 2007-02-23 2008-09-11 Matsushita Electric Ind Co Ltd グラファイトシートの製造方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5079164B2 (ja) * 2010-03-10 2012-11-21 株式会社カネカ 炭化フィルムの製造方法およびグラファイトフィルムの製造方法
WO2011111380A1 (ja) * 2010-03-10 2011-09-15 株式会社カネカ 炭化フィルムの製造方法およびグラファイトフィルムの製造方法
TWI458679B (zh) * 2011-03-28 2014-11-01 鐘化股份有限公司 A method for producing a carbonaceous film and a method for producing a graphite film, and a method for producing a carbonaceous film
WO2012132390A1 (ja) * 2011-03-28 2012-10-04 株式会社カネカ 炭素質フィルムの製造方法、およびグラファイトフィルムの製造方法、並びにロール状高分子フィルムおよびロール状炭素質フィルム
WO2012132391A1 (ja) * 2011-03-28 2012-10-04 株式会社カネカ 炭素質フィルムの製造方法、およびグラファイトフィルムの製造方法、並びにロール状高分子フィルム及びロール状炭素質フィルム
US8992876B2 (en) 2011-03-28 2015-03-31 Kaneka Corporation Method for producing carbonaceous film, method for producing graphite film, roll of polymer film, and roll of carbonaceous film
CN103380082A (zh) * 2011-03-28 2013-10-30 株式会社钟化 碳质膜的制造方法、及石墨膜的制造方法、以及辊状高分子膜及辊状碳质膜
CN103402915A (zh) * 2011-03-28 2013-11-20 株式会社钟化 碳质膜的制造方法、及石墨膜的制造方法、以及辊状高分子膜及辊状碳质膜
CN103402915B (zh) * 2011-03-28 2014-12-03 株式会社钟化 碳质膜的制造方法、及石墨膜的制造方法、以及辊状高分子膜及辊状碳质膜
JP5420111B2 (ja) * 2011-03-28 2014-02-19 株式会社カネカ 炭素質フィルムの製造方法、およびグラファイトフィルムの製造方法、並びにロール状高分子フィルムおよびロール状炭素質フィルム
JP2012246186A (ja) * 2011-05-27 2012-12-13 Kaneka Corp 炭素質フィルムの製造方法
JP2013056797A (ja) * 2011-09-08 2013-03-28 Kaneka Corp 炭素質フィルムの製造方法、及びグラファイトフィルムの製造方法
JP2014019613A (ja) * 2012-07-19 2014-02-03 Kaneka Corp 炭素質フィルムの製造方法および、グラファイトフィルムの製造方法
JPWO2020183911A1 (ja) * 2019-03-13 2020-09-17
WO2020183911A1 (ja) * 2019-03-13 2020-09-17 株式会社カネカ グラファイトの製造方法および製造装置
CN113865357A (zh) * 2021-11-08 2021-12-31 江西昌大高新能源材料技术有限公司 一种人工石墨膜卷材的生产冶具及利用其生产人工石墨膜卷材的工艺
CN113865357B (zh) * 2021-11-08 2024-04-09 江西民强新材料技术有限公司 一种人工石墨膜卷材的生产冶具及利用其生产人工石墨膜卷材的工艺

Also Published As

Publication number Publication date
KR20110059716A (ko) 2011-06-03
US8858847B2 (en) 2014-10-14
CN102149633A (zh) 2011-08-10
US20150054187A1 (en) 2015-02-26
US9512005B2 (en) 2016-12-06
US20110169180A1 (en) 2011-07-14
JP5586469B2 (ja) 2014-09-10
JPWO2010029761A1 (ja) 2012-02-02
CN102149633B (zh) 2015-04-15
KR101624212B1 (ko) 2016-05-25

Similar Documents

Publication Publication Date Title
JP5586469B2 (ja) 炭素質フィルムの製造方法、およびグラファイトフィルムの製造方法
US9845267B2 (en) Method for producing graphite film
JP5519883B1 (ja) グラファイトフィルム及びグラファイトフィルムの製造方法
JP5420111B2 (ja) 炭素質フィルムの製造方法、およびグラファイトフィルムの製造方法、並びにロール状高分子フィルムおよびロール状炭素質フィルム
WO2011111380A1 (ja) 炭化フィルムの製造方法およびグラファイトフィルムの製造方法
JP2009113459A (ja) 炭素系複合部材
JP5241392B2 (ja) 炭素質フィルムの製造方法
JP5624679B2 (ja) 炭素質フィルムの製造方法、およびグラファイトフィルムの製造方法
JP5444504B2 (ja) 炭素質フィルムの製造方法、およびグラファイトフィルムの製造方法、並びにロール状高分子フィルム及びロール状炭素質フィルム
WO2008015952A1 (fr) Feuille de démoulage
JP5658782B2 (ja) 炭素質フィルムの製造方法
JP5236402B2 (ja) 炭素質フィルムの製造方法
JP5782343B2 (ja) 炭素質フィルムの製造方法、及びグラファイトフィルムの製造方法
JP5677200B2 (ja) 炭素質フィルムの製造方法
KR20130074706A (ko) 진공 열처리 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980135947.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09812910

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010528655

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117006013

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13063419

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09812910

Country of ref document: EP

Kind code of ref document: A1