WO2010024644A2 - 전기방사법에 의해 제조된 고분자 나노섬유를 포함하는 전해질 및 이를 이용한 고효율 염료감응형 태양전지 소자 - Google Patents

전기방사법에 의해 제조된 고분자 나노섬유를 포함하는 전해질 및 이를 이용한 고효율 염료감응형 태양전지 소자 Download PDF

Info

Publication number
WO2010024644A2
WO2010024644A2 PCT/KR2009/004889 KR2009004889W WO2010024644A2 WO 2010024644 A2 WO2010024644 A2 WO 2010024644A2 KR 2009004889 W KR2009004889 W KR 2009004889W WO 2010024644 A2 WO2010024644 A2 WO 2010024644A2
Authority
WO
WIPO (PCT)
Prior art keywords
dye
sensitized solar
solar cell
layer
polymer
Prior art date
Application number
PCT/KR2009/004889
Other languages
English (en)
French (fr)
Other versions
WO2010024644A3 (ko
Inventor
장영욱
김미라
김영근
장성일
박현우
원두현
Original Assignee
주식회사 솔켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 솔켐 filed Critical 주식회사 솔켐
Priority to US13/061,062 priority Critical patent/US9281131B2/en
Priority to AU2009286218A priority patent/AU2009286218B2/en
Priority to EP09810249.4A priority patent/EP2323174A4/en
Priority to CN2009801361038A priority patent/CN102160191B/zh
Priority to JP2011524913A priority patent/JP5690730B2/ja
Publication of WO2010024644A2 publication Critical patent/WO2010024644A2/ko
Publication of WO2010024644A3 publication Critical patent/WO2010024644A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2009Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/209Light trapping arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2086Photoelectrochemical cells in the form of a fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solar cell device, and more particularly, a polymer electrolyte comprising a polymer fiber having a nanoscale diameter produced by using an electrospinning method of a PVDF-HFP polymer, and a high efficiency dye-sensitized solar cell device using the same. It is about.
  • the solar cell device refers to a device that directly generates electricity by using a light-absorbing material that generates electrons and holes when light is irradiated.
  • French physicist Becquerel discovered the first photovoltaic that caused a light-induced chemical reaction to generate an electric current, after which a similar phenomenon was found in solids such as selenium.
  • 1954 after the first development of a silicon-based solar cell with about 6% efficiency at Bell Labs, solar cell research continued.
  • Such an inorganic solar cell device is composed of a p-n junction of an inorganic semiconductor such as silicon.
  • Silicon used as a solar cell material can be largely divided into crystalline silicon such as monocrystalline or polycrystalline silicon and amorphous silicon.
  • the crystalline silicon series has an excellent energy conversion efficiency for converting solar energy into electrical energy compared to the amorphous silicon series, but the productivity is decreased due to the time and energy used to grow the crystal.
  • amorphous silicon series compared with crystalline silicon, light absorption is good, large area is easy and productivity is good, but it is inefficient in terms of equipment such as requiring a vacuum processor.
  • the manufacturing cost is high and the processing and molding are difficult because the device is manufactured in a vacuum state.
  • organic photovoltaic phenomenon when light is irradiated to an organic material, photons are absorbed to generate electron-hole pairs, which are separated and transferred to the cathode and the anode, respectively. It is a phenomenon that occurs. That is, in the organic solar cell, when light is irradiated to an organic material composed of a junction structure of an electron donor and an electron acceptor material, electron-hole pairs are formed in the electron donor and electrons move to the electron acceptor, thereby separating electron-holes. Is done. This process is commonly referred to as “excitation of charge carriers by light” or “photoinduced charge transfer (PICT)”, in which carriers produced by light are separated into electron-holes and Electricity is produced through the ashes.
  • PICT photoinduced charge transfer
  • the output power produced by all solar power generation, including solar cells is regarded as the product of the flow and driving force of the photoexciter generated by light.
  • flow is related to current and driving force is directly related to voltage.
  • the voltage in a solar cell is determined by the electrode material used, and the solar conversion efficiency is the output voltage divided by the incident solar energy, and the total output current is determined by the number of photons absorbed.
  • the organic solar cell manufactured by using the photoexcitation phenomenon of the organic material described above is blended with a multilayer solar cell device which introduces an electron donor and an electron acceptor layer between the transparent electrode and the metal electrode, and blends the electron donor and the electron acceptor. It can be divided into a single layer solar cell inserted.
  • a dye-sensitized solar cell is a solar cell manufactured by using an electroelectrochemical reaction by inserting an electrolyte into an inorganic oxide layer such as titanium oxide in which dye is adsorbed between a transparent electrode and a metal electrode.
  • dye-sensitized solar cells are composed of two electrodes (photoelectrode and counter electrode), inorganic oxides, dyes, and electrolytes, which are environmentally friendly because they use environmentally harmless materials / materials. It has a high energy conversion efficiency of about 10%, which is comparable to that of amorphous silicon-based solar cells among existing inorganic solar cells, and the manufacturing cost is only about 20% of silicon solar cells. It has been.
  • the dye-sensitized solar cell device manufactured using the photochemical reaction as described above introduces an inorganic oxide layer in which dyes absorbing light are absorbed between a cathode and an anode, and an electrolyte layer for reducing electrons.
  • a conventional dye-sensitized solar cell element is briefly described as follows.
  • Conventional multi-layer dye-sensitized solar cell device may be composed of a titanium oxide layer / electrolyte / electrode adsorbed substrate / electrode / dye, for example, the lower substrate, anode, dye adsorbed titanium from the lower layer
  • An oxide layer, an electrolyte layer, a cathode, and an upper substrate are sequentially stacked.
  • the lower substrate and the upper substrate are typically made of glass or plastic, and the anode is coated with indium-tin oxide (ITO) or fluorine doped tin oxide (FTO), and the cathode is coated with platinum.
  • ITO indium-tin oxide
  • FTO fluorine doped tin oxide
  • the dye when the dye is adsorbed on the titanium oxide layer adsorbed by the dye, the dye absorbs the photons (electron-hole pair) to form an exciton (exciton), and formed The exciton is converted from the ground state to the excited state.
  • electrons and hole pairs are separated, and electrons are injected into the titanium oxide layer, and holes move to the electrolyte layer.
  • an external circuit is installed here, electrons move through the titanium oxide layer through the lead and move from anode to cathode to generate current. The electrons moved to the cathode are reduced by the electrolyte to generate current while continuously moving the electrons in the excited state.
  • the conventional dye-sensitized solar cell device using a conventional liquid electrolyte shows a high energy conversion efficiency, but there is a problem of stability, such as the leakage of the electrolyte and deterioration of the characteristics due to the evaporation of the solvent, which is a major problem in commercialization It is recognized.
  • Various studies have been conducted to prevent the leakage of the electrolyte, and in particular, the development of dye-sensitized solar cells using a semi-solid or solid electrolyte that can improve the stability and durability of the solar cell.
  • Korean Patent Publication No. 2003-65957 describes a dye-sensitized solar cell comprising polyvinylidene fluoride dissolved in a solvent such as N-methyl-2-pyrrolidone or 3-methoxypropionitrile.
  • a solvent such as N-methyl-2-pyrrolidone or 3-methoxypropionitrile.
  • the gel polymer electrolyte prepared as described above exhibits high ionic conductivity similar to that of the liquid electrolyte at room temperature, but has a disadvantage in that the manufacturing process of the battery is difficult because the mechanical properties are inferior, and the liquid retention property of the polymer electrolyte is inferior.
  • Electrospinning was patented in 1934 by a German engineer named Formhals.
  • the scientific basis of electrospinning has been developed in 1882 by Raleigh's calculations that electrostatic forces can overcome surface tensions in liquid drops.
  • the polymer fiber produced by electrospinning is part of the ultrafine nanotechnology industry, and the global market is expected to reach approximately $ 1 trillion by 2100.
  • nanofibers are defined as fibers having a fiber diameter of 20 nm to 1 ⁇ m
  • the processing method is electrospinning, which spins a low viscosity polymer instantaneously into a fiber form by electrostatic force. It is manufactured using.
  • the area of application that can be mass-produced using these technologies is nanoparticles, filters, fuel cell electrolytes and medical fields, but it is expected to be further expanded in the future.
  • nanofibers have a very fine diameter and therefore have a large surface area compared to conventional fibers. This advantage has the effect as a material that can be used for nanofibers for the filter. Electrospun nanofibers can also be used in protective clothing, antimicrobial wound dressings, drug delivery materials and the like. However, these nanofibers can be made only through the electrospinning method, which is a method of manufacturing them, and thus has a disadvantage in that the formation of the fibers is irregular and difficult to control. In order to overcome this problem, a method of sharpening the end of the rotating focusing plate to collect an electric field to one side and a method of arranging nanofibers in a predetermined direction during the process using a gap focusing plate have been studied.
  • nanofibers have a high porosity, high surface area, and can be greatly helped for cell adhesion, growth, and proliferation, and thus, are being spotlighted as biomedical implantable materials.
  • the disadvantage of nanofibers obtained through electrospinning is that the physical properties are low because it is difficult to obtain strength improvement through molecular orientation of the polymer itself. In order to overcome these problems, many researches have been conducted to fabricate various nanofibers using various process variables.
  • the solvent is removed to easily oxidize the dye by reducing electrons introduced into the anode electrode using the hole conductor material in the solid phase. By configuring the current to flow.
  • Flavia Nogueira Group has developed a solid dye-sensitized solar cell using poly (ethylene oxide-co-epichlorohydrin), which is manufactured in the form of TiO 2 nanotubes and synthesized with a polymer electrolyte ratio of ethylene oxide to epichlorohydrin of 84 to 16. The fabrication was reported to result in an energy conversion efficiency of 4.03%.
  • poly ethylene oxide-co-epichlorohydrin
  • the present invention has been newly proposed to solve the above-mentioned problems of the prior art, and an object of the present invention is to add an electrospun nanoscale polymer fiber to an electrolyte to construct a polymer membrane electrolyte, and a highly efficient dye-sensitized solar cell device. could be produced.
  • Another object of the present invention is to provide a highly efficient dye-sensitized solar cell and a method for manufacturing the same, which are prepared by using a nanofiberized polymer having a high specific surface area in the preparation of an electrolyte layer in order to efficiently induce photocurrent increase in a dye-sensitized solar cell.
  • Another object of the present invention is to introduce a light-scattering layer on the inorganic oxide layer, the dye-sensitized solar cell improved the photocurrent value by absorbing a greater amount of light transmitted from the inorganic oxide layer using the light scattering effect and It is to provide a manufacturing method thereof.
  • a first substrate and a second substrate disposed to face each other;
  • a first interfacial junction layer that facilitates interfacial bonding with the inorganic oxide layer on top of the inorganic oxide layer
  • a second interfacial junction layer provided to prevent reverse current on the first interfacial junction layer
  • a light scattering layer interposed between the first interface bonding layer and the second interface bonding layer and provided to increase light absorption
  • a nanoscale polymer fiber formed by electrospinning a polymer solution through an electrospinning layer is formed, and an electrolyte solution is applied to the polymer fiber and then evaporated to form a solid electrolyte.
  • It provides a method of manufacturing a dye-sensitized solar cell comprising a; forming a second electrode and a second substrate on the solid electrolyte.
  • the present invention was intended to solve this problem by inserting the nano-scale polymer fibers in the electrolyte layer.
  • the production of dye-sensitized solar cells using the same was completed through the examples, and nanoscale fibers were manufactured under various conditions to solve these problems.
  • the reverse current phenomenon mainly generated at the interface between the inorganic oxide layer and the electrolyte layer was prevented by introducing an interface bonding layer, and by introducing a light scattering layer, the light current value was improved by facilitating the reabsorption of light.
  • the advantages obtained by inserting the nano-scale polymer fibers into the electrolyte layer is as follows.
  • the nanofiberized polymer has a high specific surface area and many pores, it can efficiently contain and penetrate ions in the electrolyte, so the short-circuit current value and photovoltaic performance are much better than those of the spin-coated polymer film. Efficiency can be obtained.
  • nano-scale polymer fiber prevents the occurrence of short circuit due to contact between counter electrode and counter electrode caused by leakage of liquid electrolyte in dye-sensitized solar cell using liquid electrolyte.
  • durability of the long-term stability problem in the semi-solid dye-sensitized solar cell can be maintained.
  • the reverse current phenomenon can be prevented by the functional layer and the light scattering layer introduced on the inorganic oxide layer, and the light lost due to transmission can be resorbed by using the light scattering layer.
  • the overall efficiency of the battery can be improved.
  • the photovoltaic efficiency was higher under the same conditions than when using a polymer in a typical film state, which may be regarded as a possibility of developing a solid dye-sensitized solar cell.
  • FIG. 1 is a cross-sectional view showing the structure of a dye-sensitized solar cell device manufactured according to the present invention.
  • FIG. 2 is a cross-sectional view showing the structure of the electrospinning apparatus used in the present invention.
  • 3 is a SEM photograph of the surface of the inorganic oxide layer prepared according to an embodiment of the present invention and then measured.
  • Figure 5 is a SEM photograph of the side after producing a light scattering layer on the inorganic oxide layer prepared according to an embodiment of the present invention.
  • Figure 6 (A) and (B) is a SEM photograph and its diameter distribution after measuring the surface of the PVDF-HFP fibers having a nano-scale diameter produced in accordance with an embodiment of the present invention, respectively. .
  • Figure 7 (A) to (L) is a PVDF-HFP having a nano-scale diameter produced in accordance with an embodiment of the present invention, respectively, by including Ag according to the weight percent of each fiber to measure the surface One SEM picture.
  • Figure 8 (A) to (L) is a PVDF-HFP each having a nanoscale diameter manufactured according to an embodiment of the present invention by including the inorganic nano-filler Al 2 O 3 according to the weight% of each fiber SEM image of the surface after fabrication.
  • PVDF-HFP having a nano-scale diameter produced in accordance with an embodiment of the present invention each fabricated by including BaTiO 3 of inorganic nano-filler according to each weight% The SEM photograph of the surface was measured.
  • FIG. 11 is a SEM photograph of the surface of PVA fibers made of silver having a nanoscale diameter manufactured according to an embodiment of the present invention and then measured.
  • Figure 13 (A) to (C) is a SEM image of the surface after measuring the fiber blended PVDF and PMMA having a nano-scale diameter produced in accordance with an embodiment of the present invention, respectively.
  • FIG. 14 is a graph showing voltage-current density in an illumination state of 100 mW / cm 2 of a dye-sensitized solar cell device using PVDF-HFP fibers having a nanoscale diameter manufactured according to an embodiment of the present invention.
  • FIG. 15 is a graph showing voltage-current density in a dark state of a dye-sensitized solar cell device using PVDF-HFP fibers having a nanoscale diameter manufactured according to an embodiment of the present invention.
  • FIG. 16 is an illumination state of 100mW / cm 2 of a dye-sensitized solar cell device using a fiber including Al 2 O 3 , an inorganic nanofiller, in a PVDF-HFP having a nanoscale diameter manufactured according to an embodiment of the present invention. Is a graph showing the voltage-current density at.
  • FIG. 17 shows a dye-sensitized solar cell device using a fiber including BaTiO 3 , an inorganic nanofiller, in a PVDF-HFP having a nanoscale diameter manufactured according to an embodiment of the present invention in an illumination state of 100 mW / cm 2 . It is a graph showing the voltage-current density.
  • FIG. 18 is a graph showing voltage-current density in an illumination state of 100 mW / cm 2 of a dye-sensitized solar cell device using PVA fibers having a nanoscale diameter manufactured according to an embodiment of the present invention.
  • 19 is a graph showing the voltage-current density in the dark state of the dye-sensitized solar cell device using a PVA fiber having a nanoscale diameter manufactured according to an embodiment of the present invention.
  • 20 is a graph showing voltage-current density in an illumination state of 100 mW / cm 2 of a dye-sensitized solar cell device using a PVA fiber having a nanoscale diameter including Ag manufactured according to an embodiment of the present invention. to be.
  • FIG. 21 is a comparison of Bode graphs of impedance of a dye-sensitized solar cell device in which a PVDF-HFP fiber having a nanoscale diameter manufactured according to an embodiment of the present invention, a scattering layer, and an interface bonding layer are introduced.
  • FIG. 22 is a comparison of Bode graphs of impedance of dye-sensitized solar cell devices using PVDF-HFP fibers having nanoscale diameters and PVDF-HFP films prepared by spin coating according to an embodiment of the present invention.
  • FIG. 23 is a comparison of Nyquist graphs of impedance of dye-sensitized solar cell devices using PVDF-HFP fibers having nanoscale diameters and PVDF-HFP films prepared by spin coating according to an embodiment of the present invention.
  • 25 is a comparison of the Nyquist graph of the impedance of the dye-sensitized solar cell device using a PVA fiber having a nanoscale diameter manufactured according to an embodiment of the present invention and a PVA film prepared by spin coating.
  • FIG. 26 is a Bode graph comparison of impedances of dye-sensitized solar cell devices using PVA fibers having a nanoscale diameter and silver-containing PVA fibers prepared according to an embodiment of the present invention.
  • FIG. 27 is a comparison of Nyquist graphs of impedance of dye-sensitized solar cell devices using PVA fibers having nanoscale diameters and silver-containing PVA fibers prepared according to an embodiment of the present invention.
  • FIG. 28 is a comparison of Bode graphs of impedances of dye-sensitized solar cell devices using PVDF fibers containing inorganic nanofillers Al 2 O 3 having nanoscale diameters prepared according to an embodiment of the present invention.
  • FIG. 29 is a comparison of Nyquist graphs of impedances of dye-sensitized solar cell devices using PVDF fibers containing inorganic nanofillers Al 2 O 3 having nanoscale diameters prepared according to an embodiment of the present invention.
  • FIG. 30 is an electrolyte durability test photograph using PVDF-HFP fibers having a nanoscale diameter manufactured according to an embodiment of the present invention.
  • 30A is a photograph after 0 hours in which only the electrolyte is injected after the glass substrate is bonded.
  • A-1 of FIG. 30 is a photograph after 0 hours after the fiber was added and the electrolyte was injected after the glass substrate was bonded.
  • FIG. 30B is a photograph after 12 hours in which only the electrolyte is injected after the glass substrate is bonded.
  • B-1 of FIG. 30 is a photograph after 12 hours after the fiber is added and the electrolyte is injected after the glass substrate is bonded.
  • 30C is a photograph after 36 hours in which only electrolyte is injected after the glass substrate is bonded.
  • C-1 of FIG. 30 is a photograph after 36 hours after the fiber is added and the electrolyte is injected after the glass substrate is bonded.
  • 30D is a photograph after 48 hours in which only electrolyte is injected after bonding the glass substrate.
  • D-1 in FIG. 30 is a photograph after 48 hours after the fiber is added and the electrolyte is injected after the glass substrate is bonded.
  • FIG. 30E is a photograph in which fibers are preserved after removing the glass substrate in FIG. 35D-1.
  • FIG. 31 is a graph illustrating voltage-current density of a dye-sensitized solar cell device using a PVDF-HFP film prepared by spin coating according to Comparative Example 1.
  • FIG. 31 is a graph illustrating voltage-current density of a dye-sensitized solar cell device using a PVDF-HFP film prepared by spin coating according to Comparative Example 1.
  • FIG. 33 is a graph illustrating voltage-current density of a dye-sensitized solar cell device in which only an electrolyte is injected without a fiber according to Comparative Example 3.
  • FIG. 33 is a graph illustrating voltage-current density of a dye-sensitized solar cell device in which only an electrolyte is injected without a fiber according to Comparative Example 3.
  • first electrode substrate 1002 first electrode
  • the general liquid dye-sensitized solar cell device does not contain a polymer and contains a solvent in the electrolyte, which is a problem in electrolyte leakage and long-term stability. Accordingly, the contact between the first electrode and the second electrode occurs, and thus the lifetime of the device is caused. There is a problem that reduces.
  • the present inventors electrospun the polymer to produce a polymer fiber having a nano-scale diameter and then Including an electrolyte, a dye-sensitized solar cell device was fabricated to solve these problems.
  • the present invention provides an electrolyte membrane for dye-sensitized solar cell comprising the same after producing a nano-scale fiber by electrospinning a specific chemical.
  • FIG. 1 is a cross-sectional view of a dye-sensitized solar cell device fabricated by applying an electrospun nanoscale fiber added electrolyte according to a preferred embodiment of the present invention, as shown in the drawing.
  • the first electrode 1002 and the second electrode 1009 are opposed to each other between two transparent substrates, the first substrate 1001 and the second substrate 1010.
  • Inorganic oxide layer 1003, interfacial junction layers I, II (1004 and 1006), scattering layer 1005, dye layer 1007 and polymer electrolyte between the first electrode 1002 and the second electrode 1009 It has a multilayer thin film form in which the layer 1008 is interposed.
  • the first substrate 1001 is made of glass or a transparent material such as polyethylene terephthalate (PET), polyethylene naphthelate (PEN), polypropylene (PP), polyamide (PI), tri acetyl cellulose (TAC), or the like. And preferably is made of glass.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthelate
  • PP polypropylene
  • PI polyamide
  • TAC tri acetyl cellulose
  • the first electrode 1002 is an electrode formed of a transparent material on one surface of the first substrate 1001.
  • the first electrode 1002 functions as an anode, and as the first electrode 1002, a material having a lower work function than the second electrode 1005 and having transparency and conductivity, Materials can be used.
  • the first electrode 1002 may be coated on the back surface of the first substrate 1001 or coated in the form of a film using a sputtering or spin coating method.
  • Materials that may be used as the first electrode 1002 include indium-tin oxide (ITO), fluorine doped tin oxide (FTO), ZnO- (Ga 2 O 3 or Al 2 O 3 ), SnO 2 -Sb 2 O 3, and the like.
  • ITO indium-tin oxide
  • FTO fluorine doped tin oxide
  • ZnO- Ga 2 O 3 or Al 2 O 3
  • SnO 2 -Sb 2 O 3 and the like.
  • ITO indium-tin oxide
  • FTO fluorine doped tin oxide
  • ZnO- Ga 2 O 3 or Al 2 O 3
  • SnO 2 -Sb 2 O 3 SnO 2 -Sb 2 O 3
  • the inorganic oxide layer 1003 is preferably a transition metal oxide in the form of nanoparticles, for example titanium oxide, scandium oxide, vanadium oxide, zinc oxide, gallium oxide, yttrium oxide, zirconium oxide, niobium oxide, molybdenum oxide, indium Transition metal oxides such as oxides, tin oxides, lanthanide oxides, tungsten oxides, iridium oxides, as well as alkaline earth metal oxides such as magnesium oxides and strontium oxides, and aluminum oxides.
  • titanium oxide in the form of nanoparticles is used.
  • the inorganic oxide layer 1003 is coated on one surface of the first electrode 1002 and then coated on the first electrode 1002 by heat treatment. May be coated with the back surface of the first electrode 1002 to a thickness of about 5 to 30 ⁇ m, preferably 10 to 15 ⁇ m, or a spin coating method, a spray method, or a wet coating method may be used.
  • a functional layer having several functions may be introduced above the inorganic oxide layer 1003 constituting the dye-sensitized solar cell device of the present invention before the dye is adsorbed.
  • An interfacial junction layer I 1004 may be formed on the inorganic oxide layer 1003 to facilitate interfacial bonding before the light scattering layer 1005 is introduced.
  • the surface of the interfacial junction layer I 1004 should preferably have a uniform distribution of particles having a nanometer-scale particle diameter, high smoothness, and typically have a more dense structure than the inorganic oxide layer 1003.
  • the interfacial bonding layer I may be formed using any known method commonly used in the art, but in general, a paste containing an inorganic oxide is preferably about 2 to 100 nm by spin coating or immersion. Is about 10-100 nm, more preferably 30-50 nm in thickness of the inorganic oxide layer (1003), or a spin coating method, a spray method, a wet coating method and the method of heat treatment. .
  • These layers generally comprise at least inorganic oxides, preferably transition metal oxides, alkali metal oxides, or alkaline earth metal oxides, more preferably semiconductor oxides.
  • the constituents of the interfacial junction layer I may be the same as or different from the inorganic oxide layer 1003.
  • titanium oxide, scandium oxide, vanadium oxide, zinc oxide, gallium oxide, yttrium oxide, zirconium oxide, niobium oxide, molybdenum Transition metal oxides such as oxides, indium oxides, tin oxides, lanthanide oxides, tungsten oxides and iridium oxides, as well as alkaline earth metal oxides such as calcium oxides, magnesium oxides and strontium oxides, aluminum oxides, sodium oxides, cerium oxides and nickel Oxides, sodium titanate, potassium niobate, barium titanate, strontium titanate, mixtures comprising two or more of the foregoing oxides, and the like.
  • the interfacial junction layer I is formed of a component of the inorganic oxide layer 1003 or of a compound comprising a component of the inorganic oxide layer 1003.
  • the interfacial junction layer I may be formed of one or more of titanium oxide, tungsten oxide, and titanium-tungsten mixed oxide, particularly preferably the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular (LUMO) of titanium oxide. Titanium oxide is used because the orbital value has the most appropriate value for electron transfer.
  • the interfacial bonding layer I is formed from an inorganic oxide in the form of nanoparticles, wherein the average diameter of the particles has a value of 1 to 50 nm, preferably 2 to 30 nm, particularly preferably 5 to 20 nm.
  • the average diameter of the particles means a value obtained by measuring the diameter of 500 particles through a scanning micrograph and then averaging them.
  • a light scattering layer 1005 is introduced to the upper portion of the interface bonding layer I (1004) introduced to increase the absorption of light.
  • These layers generally comprise at least inorganic oxides, preferably transition metal oxides, alkali metal oxides, or alkaline earth metal oxides, more preferably semiconductor oxides.
  • the components of the light scattering layer may be the same as or different from the inorganic oxide layer 1003 or the interfacial bonding layers, for example, titanium oxide, scandium oxide, vanadium oxide, zinc oxide, gallium oxide, yttrium oxide, zirconium oxide, niobium, and the like.
  • Transition metal oxides such as oxides, molybdenum oxides, indium oxides, tin oxides, lanthanide oxides, tungsten oxides, iridium oxides, as well as alkaline earth metal oxides such as calcium oxide, magnesium oxide, strontium oxide, aluminum oxide, sodium oxide, cerium Oxides, nickel oxides, sodium titanate, potassium niobate, barium titanate, strontium titanate, mixtures comprising two or more of the foregoing oxides, and the like.
  • the light scattering layer is formed from a component of the inorganic oxide layer 1003 or from a compound comprising a component of the inorganic oxide layer 1003.
  • the light scattering layer may be formed of one or more of titanium oxide, tungsten oxide, and titanium-tungsten mixed oxide, and particularly preferably, since the HOMO and LUMO values of titanium oxide have the most suitable values for electron transfer, Oxides are used.
  • the light scattering layer is formed from an inorganic oxide in the form of fine particles, wherein the average diameter of the particles has a value of 20 nm to 1 ⁇ m, preferably 50 to 600 nm, particularly preferably 100 to 500 nm. If the average diameter of the particles is less than 20 nm, most of light is transmitted, so light scattering effects cannot be obtained. On the other hand, if the average diameter of the particles is larger than 1 ⁇ m, the amount of electrons lost in the electron transfer due to the increase in thickness and porosity increases.
  • the method for forming the light scattering layer may be formed using any known method commonly used in the art, but in general, a paste containing an inorganic oxide is preferably about 500 nm to 50 ⁇ m by a doctor blade method or a screen printing method.
  • Preferably coated on the back side on the inorganic oxide layer 1003 to which the interfacial bonding layer I 1004 is applied to a thickness of about 1-30 ⁇ m, more preferably 3-25 ⁇ m, most preferably 5 to 20 ⁇ m, or
  • the method of heat-treating after using a spin coating method, a spray method, a immersion method, and a wet coating method is mentioned.
  • interfacial junction layer II (1006) may be introduced to prevent reverse current, and may be formed in the same manner as the interfacial junction layer I (1004), and in the preferred embodiment, Component, particle diameter, etc. are the same as that of the interface bonding layer I.
  • the reverse current phenomenon is a phenomenon often occurring in the electron transfer path of dye-sensitized solar cells. In the first case, electrons transferred from the dye layer to the inorganic oxide layer are not transferred to the transparent electrode but are reversed to the electrolyte layer and collected at the transparent electrode.
  • the phenomenon can be prevented.
  • electrons collected by the transparent electrode through the inorganic oxide layer flows back into the electrolyte layer and the movement of electrons flows in reverse to reduce the photocurrent value.
  • internal voids generated when the inorganic oxide layer is applied.
  • This phenomenon can be prevented by applying a dense inorganic oxide layer, that is, an interface bonding layer, or the like before applying the inorganic oxide layer on the transparent electrode.
  • the photons are absorbed by the dye layer 1007 adsorbed to the inorganic oxide layer into which the light scattering layer and the functional layer are introduced, and the dye electrons transfer to the excited state to form electron-hole pairs.
  • the injected electrons move to the first electrode 1002 and then to the second electrode 1009 by an external circuit.
  • Electrons moved to the second electrode 1009 are moved to the electrolyte layer 1008 by redox by the electrolyte composition contained in the electrolyte layer 1008.
  • the dye is oxidized after transferring the electrons to the inorganic oxide, but receives the electrons transferred to the electrolyte layer 1008 is reduced to its original state. Accordingly, the electrolyte layer 1008 receives electrons from the second electrode 1009 and transfers the electrons to the dye.
  • the photosensitive dye chemically adsorbed to the inorganic oxide layer 1003 may be a dye such as a ruthenium composite as a material capable of absorbing light in the ultraviolet and visible light regions.
  • Photosensitive dyes adsorbed on the inorganic oxide layer 1003 include photosensitive dyes composed of ruthenium complexes such as ruthenium 535 dyes, ruthenium 535 bis-TBA dyes, and ruthenium 620-1H3TBA dyes, preferably ruthenium 535 dyes. use.
  • any dye having a charge separation function may be used as the photosensitive dye that may be chemisorbed onto the inorganic oxide layer 1003.
  • xanthene dye, cyanine dye, porphyrin dye, anthraquinone dye And the like can be used.
  • the dye may be applied to a solvent such as alcohol, nitrile, halogenated hydrocarbon, ether, amide, ester, ketone, N-methylpyrrolidone, or the like. After dissolving, a method of immersing the photoelectrode coated with the inorganic oxide layer 1003 can be used.
  • a solvent such as alcohol, nitrile, halogenated hydrocarbon, ether, amide, ester, ketone, N-methylpyrrolidone, or the like.
  • the electrolyte layer 1008 is used an electrolyte in which the nano-scale polymer fibers electrospun according to the present invention in the electrolyte composition included in the electrolyte layer of the conventional solar cell device.
  • the electrospun polymer may use PVDF, PVDF-HFP, PAN, PEO, PMMA, PVA. More preferably, electrospinning may be performed using PVDF-HFP.
  • the nanoscale polymer fiber produced by the electrospinning method is 5 to 95% by weight, preferably 20 to 80% by weight, more preferably 40 to 60% by weight, based on the total amount of the electrolyte layer constituting the electrolyte layer 1008. Are mixed in proportion.
  • the electrospinning device is largely divided into nanoscale fibers by a voltage supply unit (2001) for applying a voltage to form nanofibers, a solution transfer unit (2002) for regularly injecting a polymer solution, and a voltage supplied with a polymer solution. It consists of an electrospinning unit (2003), and a collecting unit (2004) for collecting the spun nanofibers.
  • the nanoscale polymer fibers added to the electrolyte layer 1008 will be described in more detail.
  • the high molecular weight of the solution used during the electrospinning is 5% to 19% by weight, preferably 11% to 17% by weight.
  • Mixed with solvent in proportions in this case, for example, dimethylacetamide and acetone may be used as the solvent in a weight ratio of 3 to 7.
  • the solid electrolyte of the present invention may further include a nano scale metal additive (eg, Ag) or an inorganic nano filler.
  • a nano scale metal additive eg, Ag
  • an inorganic nano filler is not particularly limited thereto, but is preferably, for example, Al 2 O 3 or BaTiO 3 .
  • the solvent may be mixed in a proportion of 0.1 wt% to 30 wt%, preferably 1 wt% to 20 wt%, of the high molecular weight of the solution used during electrospinning.
  • the inorganic nanofiller additive is introduced into the nanoscale polymer fibers, it can be mixed with the solvent in a proportion of 1% by weight to 50% by weight, preferably 10% by weight to 40% by weight, of the high molecular weight of the solution used for electrospinning. have.
  • the weight and the distance between the tip and the collector are fixed at 15% by weight and 15cm, respectively.
  • the voltage was electrospun from 6 kV to 25 kV, preferably from 8 kV to 20 kV.
  • the weight and applied voltage are fixed at 15 wt% and 14 kV, respectively.
  • the distance between the collectors was electrospun from 9 cm to 21 cm, preferably from 13 cm to 19 cm.
  • the solution is supplied at a rate of 1 ml / h to 5 ml / h, preferably 2 ml / h.
  • the weight is 11 wt% to 17 wt%
  • the applied voltage is 8 kV to 14 kV
  • the distance between the tip and the collector is 13 cm to 19 cm
  • 2 ml Most preferably, the solution is fed at a rate of / h.
  • the electrolyte used in the electrolyte layer 1008 may be a combination of I 2 and metal iodide or organic iodide (metal iodide or organic iodide / I 2 ) as an oxidation / reduction pair.
  • a combination of Br 2 and metal bromide or organic bromide may be used as the oxidation / reduction pair.
  • Li, Na, K, Mg, Ca, Cs, etc. may be used as the metal cation forming the metal iodide or the metal bromide in the electrolyte used according to the present invention, and as the cation of the organic iodide or the organic bromide Ammonium compounds such as imidazolium, tetra-alkyl ammonium, pyridinium, and triazolium are suitable, but are not limited to these compounds. Can be used. Particularly preferably an oxidation / reduction pair combining LiI or imidazolium iodine with I 2 can be used.
  • metal iodide or metal bromide may be used as an oxidation / reduction pair in combination with iodine (I 2 ) or bromine (Br 2 ), such oxidation LiI / I 2 , KI / I 2 , NaI / I 2 , CsI / I 2 , Pr 4 NI (tetrapropyl ammonium iodine) / I 2 , TBAI (tetrabutyl ammonium iodine) / I 2 etc. And preferably TBAI / I 2 .
  • Organic halides that can be used as ionic liquids in the electrolytes that can be used according to the invention include n-methylimidazolium iodine, n-ethylimidazolium iodine, 1-benzyl-2-methylimidazolium iodine, 1 -Ethyl3-methylimidazolium iodine, 1-butyl-3-methylimidazolium iodine and the like can be used, with 1-ethyl-3-methylimidazolium iodine being particularly preferred, these being iodine (I 2 ) It can be used in combination.
  • an ionic liquid that is, a dissolved salt
  • a solid electrolyte without using a solvent in the electrolyte composition may be configured.
  • the second electrode 1009 is an electrode applied to the back surface of the second substrate 1010, and functions as a cathode.
  • the second electrode 1009 may be coated or coated on the back surface of the second substrate 1010 using a method of sputtering or spin coating.
  • a material having a work function greater than that used for the first electrode 1002 may be platinum (Pt), gold, carbon, or the like, and preferably platinum is used. do.
  • the second substrate 1010 is a transparent material similar to the first substrate 1001, and may include glass, polyethylene terephthalate (PET), polyethylene naphthelate (PEN), polypropylene (PP), polyamide (PI), and tri acetyl (TAC). cellulose) and the like, and may be made of a transparent material such as plastic, preferably made of glass.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthelate
  • PP polypropylene
  • PI polyamide
  • TAC tri acetyl
  • cellulose and the like, and may be made of a transparent material such as plastic, preferably made of glass.
  • an inorganic oxide preferably a colloidal titanium oxide
  • a first substrate to which the first electrode material is applied
  • a temperature of about 450 to 550 ° C. sintering to form a photoelectrode in which the first substrate, the first electrode, and the inorganic oxide, from which the organic matter has been removed, are sequentially applied / laminated.
  • a dye for example, ruthenium 535 dye
  • an ethanol solution prepared in advance to adsorb the dye to the prepared inorganic oxide layer to prepare a dye solution
  • a transparent substrate having an inorganic oxide layer coated with the dye solution e.g., a glass substrate coated with FTO or the like and a photoelectrode
  • the dye is completely adsorbed into the inorganic oxide layer, it is washed with ethanol or the like and dried to remove the physically adsorbed dye.
  • the polymer fiber according to the present invention is used as an electrolyte together with an electrolyte, and the platinum electrode prepared by sintering a platinum precursor material on a glass substrate is bonded.
  • Dye-sensitized solar cell device is manufactured.
  • the colloidal titanium oxide paste having a particle size of 9 nm was applied on the substrate using a doctor-blade mathod and thinned to a thickness of about 10 ⁇ m, and then placed in an electric crucible and heated up to 500 ° C. at room temperature. Lower to room temperature.
  • the colloidal titanium oxide paste having a particle size of 300 nm is coated thereon using a doctor blade method, and then put in an electric crucible, and the temperature is raised from room temperature to 500 ° C. and then lowered to room temperature.
  • a TiO 2 layer with a particle size of 300 nm or more was introduced to scatter light and increase the absorption of light.
  • a thin mixture of titanium (IV) isopropoxide and ethanol was applied thinly, and then placed in an electric crucible, the temperature was raised from room temperature to 500 ° C., and then lowered to room temperature.
  • SEM photographs and side photographs of the inorganic oxide layer having the interface bonding layer introduced therein and the light scattering layer introduced thereon can be confirmed.
  • the substrate with the organic material removed and only titanium oxide was placed in a dye solution for 24 hours at room temperature to allow the dye to adsorb onto the titanium oxide layer.
  • the dye used was cis-bis (isothiocyanato) bis (2,2'-bipyridyl-4,4'-dicarbosilato) ruthenium (II) (cis-bis (isothiocyanato) bis (2,2 '-bipyridyl-4,4'-dicarboxylato) -ruthenium (II), ruthenium 535 dye) was purchased from Solaronix, Switzerland.
  • the ruthenium 535 dye solution is prepared by dissolving ruthenium 535 dye in a concentration of 20 mg in 100 mL of ethanol. After immersion for 24 hours, the titanium oxide substrate to which the dye is adsorbed is taken out, washed again with ethanol to remove the physically adsorbed dye layer, and then dried again at 60 ° C. to prepare the substrate.
  • dye 2 was used in dye-sensitized solar cells using polyvinyl alcohol fibers.
  • the dye 2 used was cis-diisothiocyanato-bis (2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium (II) bis (tetrabutylammonium) [cis-diisothiocyanato-bis ( 2,2-bipyridyl-4,4-dicarboxylate) ruthenium (II) bis (tetrabutylammonium)] was purchased from Solaronix, Switzerland.
  • the ruthenium 535 bistiviei dye solution is prepared by dissolving the ruthenium 535 bistiviei dye in a concentration of 0.5m mol in a special ethanol. After 24 hours soaking, the dye-adsorbed titanium oxide substrate was taken out, and the surface was washed with ethanol to remove the physically adsorbed dye layer, and then dried again at 60 ° C. to prepare a substrate.
  • PVDF-HFP polymer solution polyvinylidene fluoride-hexaflopropylene was dissolved in a solution in which acetone and N, N-dimethylacetamide were mixed in a weight ratio of 7: 3. The solution was run on a stirrer for 24 hours and then sonicated for 30 minutes to dissolve completely.
  • polyvinyl alcohol (PVA) polymer solution polyvinyl alcohol was dissolved in distilled water at a weight ratio of 10%. The polyvinyl alcohol was stirred in a stirrer for 6 hours at a temperature of 80 °C to dissolve all in distilled water, the temperature was lowered to room temperature and stirred in a stirrer for 24 hours and then sonicated for 1 hour.
  • PVA polyvinyl alcohol
  • polyvinyl alcohol (PVA) polymer solution containing silver
  • PVA polyvinyl alcohol
  • polystyrene and polymethyl methacrylate polymer were added to polyvinylidene fluoride-hexaflopropylene to prepare a polymer blend solution.
  • DMF was used when PVDF-HFP and PS were blended, and dissolved in a solution in which acetone and dimethylformamide were mixed at a weight ratio of 7: 3 when PVDF-HFP and PMMA were blended.
  • the solution was run on a stirrer for 24 hours and then sonicated for 30 minutes to dissolve completely.
  • Electrospinning was performed by varying the weight percent of the polymer, the voltage supplied, and the distance between the tip and the collector to obtain various nanoscale diameters.
  • the polymer dissolved in the solvent is supplied to the electrospinning unit at a constant rate.
  • the experiment was conducted at a release rate of 2 ml / h.
  • the weight percent of the polymer to the solution varied between 11 wt% and 17 wt%, which is an appropriate range as mentioned in the composition of the invention, to produce a nanoscale polymer fiber.
  • the voltage supplied from the voltage supply part was changed to 8 kV ⁇ 14 kV and electrospun.
  • the distance between the tip and the collector was varied from 13 cm to 19 cm and electrospun.
  • nanoscale polymer fibers were electrospun based on 15 wt%, 14 kV, and 15 cm, which are optimal conditions.
  • electrospinning was carried out by varying the weight% of the polymer, the supplied voltage, and the distance between the tip and the collector. By changing the nanoscale polymer fibers were prepared. The experiment was performed at a release rate of 0.2 ⁇ 2.0ml / h in the solution transfer unit. The voltage supplied from the voltage supply part was changed to 8 kV ⁇ 20 kV and electrospun. The distance between the tip and the collector was changed to 13 cm ⁇ 21 cm to electrospun to produce a nano-scale polymer fiber.
  • inorganic nano filler Al 2 O 3 , BaTiO 3
  • 10 wt% to 40 wt% ratio to prepare a nano-scale polymer fiber.
  • the experiment was carried out at a release rate of 1.5ml / h in the solution transfer unit.
  • the voltage supplied from the voltage supply part was 12 kV ⁇ 15 kV and was electrospun.
  • the distance between the tip and the collector was changed from 15 cm to 18 cm to electrospin to produce nanoscale polymer fibers.
  • a polyvinyl alcohol (PVA) fiber was also electrospun by varying the weight percent, the voltage supplied, the distance between the tip and the collector to obtain a suitable nano-scale diameter as described above.
  • the solution transfer unit in the present experiment was carried out at a release rate of 0.6ml / h.
  • the weight percent of the polymer to the solution was changed between the range of 8 to 10% by weight to prepare a nano-scale polymer fiber.
  • the voltage supplied from the voltage supply unit was made of fiber with a voltage between 15 and 20 kV.
  • the distance between the tip and the collector was changed to 15 ⁇ 22 cm and electrospun.
  • nanoscale polymer fibers were prepared based on the optimum conditions of 9 wt%, 20 kV, and 20 cm.
  • the discharge rate at the solution transfer part was 5.0 ml / h, and the voltage supplied from the voltage supply part was changed to 13 kV ⁇ 20 kV and electrospun. .
  • the distance between the tip and the collector was changed to 15 cm ⁇ 23 cm to electrospun to produce a nano-scale polymer fiber.
  • nanoscale polymer fibers were prepared based on the optimum condition of 15 wt%, 20 kV, and 23 cm.
  • 6A and 6B are surface photographs and diameter distribution diagrams of polymer fibers when the polymer is 15% by weight.
  • the supply voltage was 14 kV
  • the distance between the tip and the collector was 15 cm
  • the solution feed rate was 2 ml / h.
  • (A) and (B) of Figure 6 it was confirmed that the produced nanofibers exhibit the most uniform diameter distribution of 800 ⁇ 1000 nm.
  • 8A to 8L are surface photographs of polymer fibers including Al 2 O 3 , which is an inorganic nanofiller, according to 10 wt% to 40 wt%.
  • the supply voltage was 12 kV
  • the distance between the tip and the collector was 15 cm
  • the solution feed rate was 1.5 ml / h.
  • the produced nanofibers showed the best fiber shape when 40 wt% of the inorganic nanofiller Al 2 O 3 is added.
  • 9A to 9L are surface photographs of polymer fibers including BaTiO 3 , an inorganic nanofiller, according to 10 wt% to 40 wt%.
  • the supply voltage was 12 kV
  • the distance between the tip and the collector was 15 cm
  • the solution feed rate was 1.5 ml / h.
  • the produced nanofibers showed the form of agglomeration of inorganic nano filler BaTiO 3 , it was confirmed that the nanofibers exhibit the most uniform diameter distribution of 500 ⁇ 1000nm It was.
  • FIGS. 10A and 10B are surface photographs and diameter distribution diagrams of polyvinyl alcohol polymer fibers.
  • the voltage supplied is 20 kV
  • the distance between the tip and the collector is 20 cm
  • the solution feed rate is 0.6 ml / h.
  • the produced nanofibers were confirmed to exhibit the most uniform diameter distribution of 180 ⁇ 200 nm.
  • FIG. 11 is a surface photograph of a polyvinyl alcohol polymer fiber containing silver.
  • the voltage supplied is 20 kV
  • the distance between the tip and the collector is 20 cm
  • the solution feed rate is 0.6 ml / h.
  • the polyvinyl alcohol polymer fiber diameter containing silver showed a range almost similar to that when no silver was contained. It was confirmed that the original morphology did not change even if silver was contained in the polyvinyl alcohol fiber.
  • 12A to 12C show surface photographs of polymer nanofibers obtained by blending PVDF-HFP and polystyrene, respectively.
  • the voltage supplied is 20 kV
  • the tip and collector distance is 21 cm
  • the solution feed rate is 5.0 ml / h.
  • the polymer fiber diameter blended with PVDF-HFP and polystyrene was thicker than the PVDF-HFP nanofibers, which were not blended to about 1000 nm, and the fiber strands were rough.
  • 13A to 13C show surface photographs of polymer nanofibers obtained by blending PVDF-HFP and PMMA, respectively.
  • the voltage supplied is 20 kV
  • the distance between the tip and the collector is 21 cm
  • the solution feed rate is 4.0 ml / h.
  • the polymer fiber diameter blended with PVDF-HFP and PMMA showed a range almost similar to that of PVDF-HFP nanofibers, which were not blended to about 600 nm.
  • 0.2 mol of tetrabutylammonium iodide, 0.05 mol of iodine and 0.3 mol of 1-propyl-3-methylimidazolium iodide are mixed with a solvent having ethylene carbonate, propylene carbonate, and acetonitrile in a volume ratio of 8: 2: 5 for 24 hours.
  • a solvent having ethylene carbonate, propylene carbonate, and acetonitrile in a volume ratio of 8: 2: 5 for 24 hours.
  • tetrabutylammonium iodide with 0.02 molar concentration, iodine with 0.08 molar concentration, and 1-propyl-3-methylimidazolium iodide with 0.03 molar concentration are added to ethylene carbonate, propylene carbonate, Acetonitrile was mixed in a solvent having a volume ratio of 8: 2: 5, and stirred for 24 hours to prepare an electrolyte.
  • Example 6-8 The polymer fiber prepared in Example 6-8 was placed on the dye-adsorbed titanium oxide substrate prepared in Example 2, followed by dropping 0.035 ml of the electrolyte solution using a micro pipette. Then, the solvent was evaporated by drying for 2 to 3 hours at 40 ⁇ 50 °C using an oven to dry the solvent.
  • Pastes containing platinum precursors were purchased from Solaronix, Switzerland.
  • Platinum was applied by heating a paste containing a platinum precursor from room temperature to 400 ° C. on a FTO glass substrate cut to a size of 15 mm ⁇ 10 mm in the same manner as in the titanium oxide layer prepared in Example 1. As a result of measuring the produced platinum electrode using Alpha Step, it was confirmed that the thickness was about 100 nm.
  • Example 22 a dye-sensitized solar cell device was fabricated by bonding a polymer electrode, an electrode substrate coated with an electrolyte, and a platinum electrode substrate prepared in Example 23 onto a titanium oxide to which dye was adsorbed.
  • Example 22 The electro-optical properties of each dye-sensitized solar cell device fabricated through Example 24 were measured.
  • the voltage-current density of the dye-sensitized solar cell device including the electrolyte containing each of the polymer fibers was corrected using a standard silicon cell equipped with Keithley and a 150 W xenon lamp (PEC). -L11, PECCELL) and measured at standard conditions (AM 1.5, 100 kW / cm 2, 25 ° C).
  • FIGS. 14 to 19 Current-voltage graphs according to the electro-optical characteristic measurement results of the dye-sensitized solar cell device are shown in FIGS. 14 to 19, respectively, and photovoltaic properties are shown in Tables 1 to 7, respectively.
  • FIG. 14 is a graph showing voltage-current density in an illumination state of 100 mW / cm 2 of a dye-sensitized solar cell device using PVDF-HFP fibers having a nanoscale diameter manufactured according to Example 9.
  • FIG. 14 it can be seen that the current density increases as the interface bonding layer (BL) and the scattering layer (SL) are introduced.
  • FIG. 15 is a graph showing voltage-current density in a dark state of a dye-sensitized solar cell device using PVDF-HFP fibers having a nanoscale diameter manufactured according to Example 9.
  • FIG. As the interfacial bonding layer (BL) and the scattering layer (SL) are introduced, it can be seen that the voltage (Voc) increases, which is the TiO 2 layer and the electrolyte layer when the interfacial bonding layer and the scattering layer are introduced. The voltage (Voc) increases because it prevents recombination between them.
  • Table 1 shows that the supply voltage is 14 kV, the distance between the tip and the collector is 15 cm, the solution supply rate is 2 ml / h, and the nanoscale PVDF-HFP polymer fiber is manufactured according to the weight% change of the polymer. It shows the characteristic value of the dye-sensitized solar cell device manufactured by adding this. The opening voltage and the fill factor did not change significantly with the introduction of the scattering layer and the interfacial junction layer, but the current density was greatly improved. Therefore, when the overall energy conversion efficiency was confirmed, the result was improved by about 60%, and a high efficiency dye-sensitized solar cell of 8.58% was produced.
  • Table 2 shows the voltage supplied from 8 kV to 20 kV, the distance from the tip collector to 13 cm to 21 cm, the solution feed rate from 0.2 to 2.0 ml / h, and the PVDF-HFP at the nanoscale according to the change in the% weight of Ag depending on the polymer.
  • the polymer fiber containing Ag was fabricated, and the characteristic value of the dye-sensitized solar cell device manufactured by adding the same was shown. According to the addition of Ag, the current density in the case of adding 1/100 wt% is most improved.
  • FIG. 16 shows a dye-sensitized solar cell device using a fiber including Al 2 O 3 , an inorganic nanofiller, in a PVDF-HFP having a nanoscale diameter manufactured according to Example 11, in an illumination state of 100 mW / cm 2 . It is a graph showing the voltage-current density.
  • Table 3 shows the voltage supplied from 12 kV to 15 kV, the distance from the tip collector to 15 cm to 18 cm, the solution feed rate to 1.5 ml / h, and the amount of inorganic nanofiller Al 2 O 3 by weight change.
  • Polymer fiber containing inorganic nanofiller was prepared in PVDF-HFP of scale, and it shows the characteristic value of dye-sensitized solar cell device manufactured by adding it.
  • 17 is a voltage in the illumination state of 100mW / cm 2 of the dye-sensitized solar cell device using a fiber containing BaTiO 3 as an inorganic nano-filler in PVDF-HFP having a nanoscale diameter prepared according to Example 11- It is a graph showing the current density.
  • Table 4 shows the same conditions as above, and the polymer fibers were manufactured according to the weight% change of the inorganic nano filler BaTiO 3 , and the characteristic values of the dye-sensitized solar cell device accordingly were shown.
  • Table 4 ⁇ u> Inorganic Nano-Filler BaTiO ⁇ / u> ⁇ sub> ⁇ u> 3 ⁇ / u> ⁇ /sub> ⁇ u> is a dye-sensitized solar cell device using nanoscale polymer fibers contained in PVDF-HFP.
  • FIG. 18 is a graph illustrating voltage-current density in an illumination state of 100 mW / cm 2 of a dye-sensitized solar cell device using PVA polymer fibers having nanoscale diameters prepared according to Example 12.
  • FIG. 18 even when the PVA polymer fiber is used, the current density increases as the interfacial bonding layer (BL) and the scattering layer (SL) are introduced.
  • FIG. 19 is a graph illustrating voltage-current density in a dark state of a dye-sensitized solar cell device using PVA fibers having a nanoscale diameter manufactured according to Example 12.
  • FIG. 19 As the interfacial bonding layer (BL) and the scattering layer (SL) are introduced, it can be seen that the voltage (Voc) increases, which is introduced between the TiO 2 layer and the electrolyte layer when the interfacial bonding layer and the scattering layer are introduced. The voltage (Voc) increases because it prevents recombination at.
  • Table 5 shows that the supply voltage is 20 kV, the distance between the tip and the collector is 20 cm, the solution supply rate is 0.6 ml / h, and nanoscale PVA polymer fibers were produced according to the weight% change of the polymer.
  • the characteristic values of the dye-sensitized solar cell element are shown. Referring to Table 5, the opening voltage and the fill factor did not change significantly with the introduction of the scattering layer and the interface bonding layer, but the current density was greatly improved. Therefore, when the overall energy conversion efficiency was confirmed, it was possible to manufacture a high efficiency dye-sensitized solar cell of 7.36%.
  • FIG. 20 is a graph showing voltage-current density in an illumination state of 100 mW / cm 2 of a dye-sensitized solar cell device using a PVA fiber having a nanoscale diameter including Ag prepared according to Example 13.
  • FIG. 20 is a graph showing voltage-current density in an illumination state of 100 mW / cm 2 of a dye-sensitized solar cell device using a PVA fiber having a nanoscale diameter including Ag prepared according to Example 13.
  • Table 6 shows the characteristic values of the dye-sensitized solar cell device fabricated by adding Ag-PVA polymer fibers and adding the same under the same conditions as those for producing PVA fibers. Referring to Table 6, it was confirmed that the energy conversion efficiency was improved to 8.12% by adding Ag to the PVA polymer fiber.
  • Table 7 shows polymer fibers blended with polystyrene in nanoscale PVDF-HFP at a supply voltage of 20 kV, a distance of 21 cm from the tip collector, and 5.0 ml / h of solution feed, and a supply voltage of 20 kV,
  • the distance from the tip collector is 20 cm and 4.0 ml / h in solution supply, and shows the characteristic value of the dye-sensitized solar cell device fabricated by adding polymer fibers blended with PMMA to nanoscale PVDF-HFP.
  • the resistance at each interface was measured by impedance measurement for each dye-sensitized solar cell device fabricated through Example 15.
  • Graphs of impedance data measured using Echem analyst (GAMRY) and obtained for Z-MAN software are shown in FIGS. 21-27.
  • FIG. 21 is an impedance Bode graph of a dye-sensitized solar cell device in which an interface bonding layer and a light scattering layer are not introduced into an inorganic oxide layer and a dye-sensitized solar cell device introduced.
  • the more vertices of the graph are located toward the lower frequencies, the faster the charges move and the longer the lifetime of the electrons.
  • Table 8 and Table 9 show the dye-sensitized solar cell device fabricated using nanoscale PVDF-HFP and PVA polymer fibers using an electrospinning method after the same interface bonding layer and light scattering layer were introduced into the inorganic oxide layer. It is the result of measuring the resistance value of the solar cell element using a polymer film using the spin coating method.
  • Rs is the series resistance of the solar cell element
  • R1 CT is the resistance between the inorganic oxide layer 1003 including the interfacial junction layer I (1004) and the light scattering layer 1005
  • R2 CT is the interfacial junction layer II (1006).
  • the resistance between the light scattering layer 1005 and the polymer electrolyte layer 1008, R3 CT is the resistance between the polymer electrolyte layer 1008 and the second electrode 1009. Looking at the resistance value, there is no significant difference between the Rs, R1 CT, and R3 CT values, but it is confirmed that the resistance of the dye-sensitized solar cell device using nano-scale polymer fibers is lower at the R2 CT value. Therefore, it has a high current density in photovoltaic properties due to the low resistance between the light scattering layer and the electrolyte layer.
  • FIGS. 23 and 25 are Nyquist graphs.
  • the Bode graph since the vertices of the low frequency region are located at the same frequency, there is no big difference in the charge transfer.However, in the Nyquist graph, the larger and larger semicircle means that the electron and hole recombine. In this case, since the half-circle of the high frequency region is larger, recombination occurs a lot, which results in a large resistance and low photovoltaic characteristics.
  • FIG. 26 is a comparison of Bode graphs of impedances of dye-sensitized solar cell devices using PVA fibers containing silver having nanoscale diameters prepared according to Examples. Since the vertices of the two graphs are at the same frequency, there is no significant difference in the charge transfer.
  • FIG. 27 is a comparison of Nyquist graphs of impedance of dye-sensitized solar cell devices using PVA fibers containing silver having nanoscale diameters prepared according to Examples. Although the two curves showed similar shapes, the interfacial resistance of PVA containing silver was smaller than that of PVA, and the resistance was generally low.
  • Table 9 ⁇ u> Resistance value characteristic by impedance measurement of dye-sensitized solar cell device using nano-scale PVA polymer fiber by electrospinning method or PVA polymer film by spin coating ⁇ / u> Rs ( ⁇ ) R1CT ( ⁇ ) R2CT ( ⁇ ) R3CT ( ⁇ ) PVA Fiber 25.643 4.606 11.825 9.811 Ag PVA Fiber 27.089 2.793 3.077 9.233 Spin coating film 21.825 73.393 24.466 33.720
  • the ion conductivity between the interfaces increased and the current density density increased. Impedance analysis can verify this result.
  • the solar cell made of nanofiber containing silver has smaller R1 CT , R2 CT and R3 CT values. Therefore, it can be seen that the resistance between the interfaces of solar cells made of nanofibers containing silver is smaller.
  • FIG. 28 is a comparison of Bode graphs of impedances of dye-sensitized solar cell devices using PVDF fibers containing inorganic nanofillers Al 2 O 3 having nanoscale diameters prepared according to Examples. Since the vertices of the two graphs are located at approximately the same frequency, there is no significant difference in the charge transfer.
  • FIG. 29 is a comparison of Nyquist graphs of impedance of dye-sensitized solar cell devices using PVDF fibers containing inorganic nanofillers Al 2 O 3 having nanoscale diameters prepared according to Examples.
  • FIG. 30 (A) shows that an electrolyte is injected after bonding only a glass substrate without inserting polymer fibers
  • FIG. 30 (A-1) shows an injection of an electrolyte after bonding a glass substrate with polymer fibers. A hole of 1 mm diameter was drilled into the glass substrate to inject the electrolyte, and the progress was observed without blocking the hole for 48 hours.
  • FIG. 30B is a photograph after 12 hours in which only electrolyte is injected after glass substrate bonding
  • FIG. 30 (B-1) is a photograph after 12 hours in which electrolyte is injected after glass substrate bonding.
  • FIG. 30C is a photograph after 36 hours in which only electrolyte is injected after glass substrate bonding
  • FIG. 30 (C-1) is a photo after 36 hours after electrolyte is injected after glass substrate bonding.
  • FIG. 30D is a photograph after 48 hours in which only electrolyte is injected after the glass substrate is bonded
  • FIG. 30 (D-1) is a photograph after 48 hours after the glass substrate is bonded and the electrolyte is injected.
  • the electrolyte only in FIG. 30 (D) is reduced by evaporation of the electrolyte
  • the electrolyte in FIG. 30 (D-1) in which the electrolyte is injected into the glass substrate is hardly evaporated. Remains.
  • Figure 30 (E) is a photograph taken off the glass substrate to check whether the fibers are preserved in the electrolyte after 48 hours. It can be seen that even after 48 hours, the fibers are present in the electrolyte without melting or disturbing the form.
  • PVDF-HFP a polymer
  • an electrolyte solution was prepared according to the same procedures and conditions as in Example, except that the polymer membrane manufactured by spin coating was used instead of the nanoscale polymer fiber, thereby manufacturing a dye-sensitized solar cell device.
  • the dye-sensitized solar cell device including the polymer film prepared by the spin coating method measured the current density intensity according to the voltage measured under the same conditions as in Example 25.
  • Voltage-current density measurement results of the dye-sensitized solar cell device manufactured according to Comparative Example 1 are shown in FIG. 31, and Table 11 shows the open circuit voltage, the short circuit current, the fill factor, and the energy conversion efficiency. It is.
  • the value of the open circuit voltage determined by the difference in the band gap energy of the two electrodes was similar to that of Example 9 including the nanoscale polymer fiber, In the case of a device to which a typical polymer film was added, it had a low short-circuit current value. This is believed to be due to the large mobility of ions due to the many pores of the nanoscale polymer fibers. For this reason, the energy conversion efficiency of Comparative Example # 1 also showed a lower tendency than the device to which the nano-scale polymer fibers were added.
  • the PVA polymer used in Example 6 was prepared by spin coating and added to a dye-sensitized solar cell to measure photovoltaic properties of the device.
  • a dye-sensitized solar cell device was fabricated from an electrolyte solution according to the same procedures and conditions as in Example, except that the polymer membrane manufactured by spin coating was used instead of the nanoscale polymer fiber.
  • the dye-sensitized solar cell device including the polymer film prepared by the spin coating method measured the current density intensity according to the voltage measured under the same conditions as in Example 25.
  • Voltage-current density measurement results of the dye-sensitized solar cell device manufactured according to Comparative Example 2 are shown in FIG. 32, and Table 12 shows the open circuit voltage, short circuit current, fill factor, and energy conversion efficiency. It is.
  • the value of the open circuit voltage determined by the difference in the band gap energy of the two electrodes was similar to that of Example 15 including the nanoscale polymer fiber, In the case of a device to which a typical polymer film was added, it had a low short-circuit current value. This is believed to be due to the large mobility of ions due to the many pores of the nanoscale polymer fibers. For this reason, the energy conversion efficiency of Comparative Example 2 also showed a lower tendency than the device to which the nano-scale polymer fibers were added.
  • dye-sensitized solar cells with only a liquid electrolyte were prepared.
  • Table 14 shows the impedance measurement value of the dye-sensitized solar cell according to Comparative Example 3. According to Table 14, the overall impedance value decreases, and this indicates that when the nanofibers are added, the resistance inside the electrolyte by the nanofibers increases, so that the overall resistance decreases when only the electrolyte without the nanofibers is used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명에서는 전기방사법을 이용하여 제작된 나노 규모의 직경을 가지는 고분자 섬유를 포함하는 전해질과 이를 이용한 고효율 염료감응형 태양전지 소자를 제공한다. 본 발명에 따라 나노 규모를 가지는 고분자 섬유를 고체 전해질로 사용하였을 때 기존의 액체 전해질을 사용한 염료감응형 태양전지와 비교하여 봉합제가 불필요하고 공정이 간단할 뿐 아니라, 특히 기존의 스핀코팅법에 의해서 제조된 필름상태의 고분자 전해질을 사용한 염료감응형 태양전지와 비교할 때 소자의 에너지 전환 효율이 크게 개선된 특성을 갖는다. 또한 산란층과 계면효과를 보완함으로써 고효율 염료감응형 태양전지를 제작할 수 있다.

Description

전기방사법에 의해 제조된 고분자 나노섬유를 포함하는 전해질 및 이를 이용한 고효율 염료감응형 태양전지 소자
본 발명은 태양 전지 소자에 관한 것으로, 보다 상세하게는 PVDF-HFP 고분자를 전기방사기법을 이용하여 제작된 나노 규모의 직경을 가지는 고분자 섬유를 포함하는 고분자 전해질 및 이를 이용한 고효율 염료감응형 태양 전지 소자에 관한 것이다.
화석 연료의 지속적인 사용으로 인한 지구 온난화와 같은 환경 문제가 대두되고 있다. 또한 우라늄의 사용은 방사능의 오염 및 핵폐기물 처리 시설과 같은 문제를 일으키고 있다. 이에 따라 대체 에너지에 대한 요구 및 연구가 진행되고 있는데, 그 중 대표적인 것이 태양 에너지를 이용하는 태양 전지 소자이다.
태양 전지 소자란 빛이 조사되었을 때 전자와 정공을 발생시키는 광-흡수 물질을 사용하여 직접적으로 전기를 생산하는 소자를 의미한다. 1839년 프랑스의 물리학자 Becquerel이 최초로 빛으로 유도된 화학적 반응이 전류를 발생시킨다는 광기전력을 발견하였고, 그 후 셀레늄과 같은 고체에서도 유사한 현상이 발견된 사실에 기인한다. 그 후 1954년 Bell 연구소에서 약 6%의 효율을 보인 실리콘계열의 태양전지가 최초로 개발된 이후에 무기 실리콘을 중심으로 태양 전지의 연구가 계속되었다.
이와 같은 무기계 태양 전지 소자는 실리콘과 같은 무기물 반도체의 p-n 접합으로 이루어진다. 태양 전지의 소재로 사용된 실리콘은 크게 단결정 또는 다결정 실리콘과 같은 결정 실리콘 계열과 비정질 실리콘 계열로 구분될 수 있다. 이 중 결정 실리콘계열은 태양 에너지를 전기 에너지로 전환하는 에너지 전환 효율이 비정질 실리콘계열에 비하여 우수하지만 결정을 성장시키기 위하여 소용되는 시간과 에너지로 인하여 생산성이 떨어진다. 한편, 비정질 실리콘 계열의 경우 결정 실리콘과 비교하여 광흡수성이 좋고 대면적화가 용이하고 생산성이 좋지만 진공 프로세서가 요구되는 등 설비 면에서 비효율적이다. 특히, 무기계 태양 전지 소자의 경우, 제작비용이 높고 소자가 진공 상태에서 제작되기 때문에 가공 및 성형이 어려운 문제점이 있다.
이와 같은 문제점으로 실리콘을 대신하여 유기물질의 광기전 현상을 이용한 태양전지 소자에 대한 연구가 시도된 바 있다. 유기물 광기전 현상이란 유기물질에 빛을 조사하면 광자(photon)를 흡수하여 전자(electron)-정공(hole) 쌍이 생성되어 이를 분리하여 각각 음극 및 양극으로 전달하고 이와 같은 전하의 흐름에 의하여 전류를 발생시키는 현상이다. 즉, 통상적으로 유기계 태양전지에 있어서 electron donor와 electron acceptor 물질의 접합구조로 이루어진 유기물질에 빛을 조사하였을 때 electron donor에서 전자-정공쌍이 형성되고 electron acceptor로 전자가 이동함으로써 전자-정공의 분리가 이루어진다. 이와 같은 과정을 통상 “빛에 의한 전하 캐리어(charge carrier)의 여기”또는 “광여기 전하 이동현상(photoinduced charge transfer, PICT)”라고 하는데, 빛에 의하여 생성된 캐리어들은 전자-정공으로 분리되고 외부 회를 통하여 전력을 생산하게 된다.
기초 물리학의 관점에서 볼 때, 태양전지를 포함한 모든 태양 발전에서 생산되는 출력 전력은 빛에 의하여 발생한 광여기자의 흐름(flow)과 구동력(driving force)에 의한 생산물로 간주된다. 태양전지에서 flow는 전류와 관계가 있으며 driving force는 전압과 직접적으로 관련된다. 일반적으로 태양전지에서의 전압은 사용된 전극재료에 의하여 결정되며, 태양광 전환 효율은 출력 전압을 입사된 태양에너지고 나눈 값으로서 총 출력 전류는 흡수된 광자의 수에 의하여 결정된다.
상술한 유기물질의 광여기 현상을 이용하여 제조되는 유기 태양전지는 투명 전극과 금속 전극 사이에 electron donor와 electron acceptor 층을 도입하는 다층형 태양전지 소자와 electron donor와 electron acceptor를 블렌딩(blending)하여 삽입한 단층형 태양전지로 구분될 수 있다.
그런데 통상적인 유기물질을 이용한 태양전지의 경우에 에너지 전환효율이 떨어지고 내구성에도 문제가 있었으나, 1991년 스위스의 그라첼(Gr) 연구팀에 의하여 염료를 감광제로 이용하여 광전기화학형의 태양전지인 염료감응형 태양전지가 개발된 바 있다. 그라첼 등에 의하여 제안된 광전기화학형의 태양전지는 감광성 염료 분자와 나노 입자의 이산화티탄으로 이루어지는 산화물 반도체를 이용한 광전기화학형 태양 전지이다. 즉, 염료감응형 태양전지라 하면 투명 전극과 금속 전극 사이에 염료가 흡착된 산화티타늄과 같은 무기 산화물층에 전해질을 삽입하여 광전기화학 반응을 이용하여 제조되는 태양전지이다. 일반적으로 염료감응형 태양전지는 2가지 전극(광전극과 대향전극)과, 무기 산화물, 염료 및 전해질로 구성되어 있는데, 염료감응형 태양전지는 환경적으로 무해한 물질/재료를 사용하기 때문에 환경친화적이고, 기존의 무기 태양전지 중 비정질 실리콘 계열의 태양전지에 버금가는 10% 정도의 높은 에너지 전환효율을 가지고 있고, 제조단가가 실리콘 태양전지의 20% 정도에 불과하여 상업화의 가능성이 매우 높은 것으로 보고된 바 있다.
상술한 것과 같은 광화학 반응을 이용하여 제조되는 염료감응형 태양전지 소자는 캐소드(cathode)와 애노드(anode) 사이에 빛을 흡수하는 염료들이 흡착되어 있는 무기 산화물층과 전자를 환원시키는 전해질층이 도입된 다층형 전지 소자 구조로서, 종래의 염료감응형 태양전지 소자를 간단하게 설명하면 다음과 같다.
종래 다층 형태의 염료감응형 태양전지 소자는 일례로 기판/전극/염료가 흡착된 티타늄 산화물층/전해질/전극으로 구성될 수 있는데, 보다 구체적으로 살펴보면 하층으로부터 하부기판, 애노드, 염료가 흡착된 티타늄 산화물층, 전해질층, 캐소드 및 상부기판이 순차적으로 적층된 구조를 이루고 있다. 이 때, 통상적으로 하부기판 및 상부기판은 유리 또는 플라스틱으로 제조되며, 상기 애노드는 ITO(indium-tin oxide) 또는 FTO(fluorine doped tin oxide)로 코팅되고, 캐소드는 백금으로 코팅된다.
이와 같이 구성되는 종래 염료감응형 태양전지 소자의 구동원리를 살펴보면, 염료가 흡착된 티타늄 산화물층에 광을 조사하면 염료가 광자(전자-정공쌍)들을 흡수하여 엑시톤(exciton)을 형성하고, 형성된 엑시톤은 기저상태에서 여기상태로 변환된다. 이로 인하여 전자와 정공쌍이 각각 분리되어 전자는 티타늄 산화물층으로 주입되고, 정공은 전해질층으로 이동한다. 여기에 외부회로를 설치하면 전자들이 도선을 통하여 티타늄 산화물층을 거쳐 애노드에서 캐소드로 이동하면서 전류를 발생시킨다. 캐소드로 이동한 전자는 전해질에 의하여 환원되어 여기 상태의 전자를 계속적으로 이동시키면서 전류를 발생시킨다.
그런데, 종래의 액체 전해질을 이용한 일반적인 염료감응형 태양전자 소자는 높은 에너지 전환 효율을 보이는 반면에 전해액의 누수와 용매의 증발로 인한 특성의 저하 등 안정성의 문제가 있는데, 이는 상업화에 있어서 큰 문제점으로 인식되고 있다. 이와 같은 전해액의 누설을 방지할 수 있도록 다양한 연구가 진행되고 있으며 특히 태양전지의 안정성과 내구성을 향상시킬 수 있는 반고체 또는 고체 전해질을 이용한 염료감응형 태양전지의 개발이 이루어지고 있다.
예를 들어 대한민국 공개특허공보 제2003-65957호에서는 N-메틸-2-피롤리돈 또는 3-메톡시프로피오니트릴과 같은 용매에 용해된 폴리비닐리덴 플로라이드를 포함한 염료 감응 태양 전지를 기술하고 있다. 이와 같이 제조된 겔형 고분자 전해질은 상온에서 액체 전해질과 비슷한 높은 이온 전도도를 나타내지만, 기계적 물성이 떨어지기 때문에 전지의 제조 공정을 어렵게 하며, 또한 고분자 전해질의 보액성이 떨어지는 단점을 갖는다.
이와 같은 고분자 전해질막을 제조하는 기술로서 전기방사법을 이용한 연구가 활발히 진행되고 있다. 전기방사법은 포르말스(Formhals)라는 독일의 엔지니어에 의해 1934년 특허 출원되었다. 전기방사의 과학적 토대는 1882년 Raleigh가 액체의 낙하시 정전기력이 표면장력을 극복할 수 있다는 계산으로부터 발전되어 왔다. 전기방사법에 의해 제조된 고분자 섬유는 극미세 영역의 나노기술의 일환으로, 2100년에는 전세계적인 시장 규모가 약 1조 달러에 육박할 것으로 예상하고 있다. 일반적으로 나노 섬유는 섬유직경이 20nm ~ 1μm 사이의 섬유로 정의되며 가공방법은 정진기(electrostatic force)힘에 의해 낮은 점도 상태의 폴리머를 순간적으로 섬유형태로 방사(spinning)하는 전기방사법(electrospinning)을 이용하여 제조된다. 현재 이러한 기술을 이용하여 대량생산이 가능한 적용역역은 나노 입자와 필터, 연료전지용 전해질 분야 및 의료 분야이지만 향후 적용역역은 더욱 확대 될 것으로 예상된다.
나노 섬유의 가장 큰 장점은 극세 크기의 직경을 갖기 때문에 기존 섬유에 비해 큰 표면적을 갖는다. 이러한 장점은 나노 섬유를 필터용으로 사용할 수 있게 하는 재질로서 효과를 갖게 한다. 전기방사 나노 섬유는 방호복, 항균성 상처 드레싱, 약전달 물질 등에도 사용될 수 있다. 하지만 이러한 나노 섬유는 그 제조 방법인 전기방사 방법만을 통하여 가능하지만 섬유의 형성이 불규칙적이므로 통제가 어렵다는 단점이 있다. 이러한 문제를 극복하기 위하여 회전 집속판의 끝을 날카롭게 만들어서 전기장(electric field)을 한쪽으로 모으는 방법과 간극 집속판을 사용하여 공정중에 나노 섬유를 일정방향으로 배열하는 방법 등이 검토되고 있다. 집속판에 근접한 전기장과 섬유의 정전하로 인해 상호간극이 생성되며, 결과적으로는 생산된 섬유가 제조되게 된다. 최근 이러한 나노 섬유는 다공극률, 고 표면적의 특성을 갖고, 세포의 착, 성장, 증식에 큰 도움을 줄 수 있기 때문에 생화확(biomedical)의 임플란트 물질(implantable material)로서 각광 받고 있다. 하지만 전기방사를 통해 얻어진 나노 섬유의 단점은 고분자 자체의 분자 배향을 통한 강도 향상을 얻기 어렵기 때문에 물리적인 특성이 낮은 단점을 가지고 있다. 이러한 문제점들을 극복하기 위해서 여러 가지 공정변수를 이용하여 다양한 나노 섬유를 제작에 많은 연구를 하고 있는 실정이다.
Akron 대학의 Reneker는 전기방사법을 통한 다양한 고분자 재료의 나노 파이버 제작 및 영향인자의 조절법을 발표하였고, Drexel 대학의 Ko 교수는 전기방사법으로 탄소나노튜브가 보강되어 기계적 특성이 향상된 나노 복합 물질을 제조하였다. Deitzel은 고분자 농도가 높을수록 나노 섬유의 직경은 결과적으로 크게되며, 섬유 직경이 전력법칙(Power law)관계에 따라 고분자 농도를 증가시킴으로써 증가함을 설명하였고, Doshi 및 Reneker는 고분자 용액의 표면장력을 작게 하면 섬유에서 비드를 줄일 수 있다고 발표하였다.
생체 응용에 관련된 전기방사 공정 및 제품개발에 대한 연구와 전기방사가 가능한 생체 고분자 소재에 대한 연구도 지속적으로 수행되고 있다. Commonwealth 대학의 개리 보울린 교수는 전기방사 기술을 이용하여 혈액 속에 원래부터 존재하는 나노크기의 미세한 섬유소를 플란넬 모양의 붕대로 짜내는 기술을 성공시켰다. Ethicon사는 p-dioxanon을 원료로 하여 PDO의 모노필라멘트 형태의 봉합사(PDS)를 제조하였다. Woodward(1985)등은 전기방사에 의해 제조된 부직포의 결정화도가 방사전 고분자의 결정화도에 비해 현저히 떨어지므로 열처리가 필요하다는 것을 제시하였다. Ignatious는 전기방사된 나노섬유를 이용하여 우리가 원하는 시간에 순간적으로 약물투여를 할 수 이TDma을 보였다. MIT Material Processing Center는 인공장기를 위한 scaffold에 관한 연구를 수행하였고, 하버드대는 none tissue를 이용한 나노섬유 연구를 수행하였다. MIT ISN(Institute for Soldier Nanotechnologies)의 Rutledge는 0.5 ~ 10μm 크기의 전기방사된 PCL 나노 섬유를 이용하여 PCL scaffold를 제작하고 있으며, 손상된 관절연골(articular cartlage)을 치료하기 위한 나노섬유를 개발 중에 있다. 이스라엘의 Yarin(2004)은 기존의 방사방식을 사용하지 않고 ferromagnetic 현탁액(suspension)시스템을 사용하여 아래쪽에 고분자 용액을 담아놓고 위쪽으로 방사시키는 새로운 방식을 제안하기도 하였다.
국내의 연구현황으로는 전기방사를 이용한 나노섬유 제조에 관한 연구는 국내 여러 대학과 연구소에서 진행되고 있지만, 대부분 실험에 의존한 연구로서 공정 매개 변수를 조절할 때에 실험적으로 관찰되는 나노 섬유의 특성이나 형상(morphology)에 관한 연구가 주류를 이루고 있다.
고체 전해질을 이용한 태양전지의 경우에는 제조된 전해질 용액에서 용매에 의한 효율 저하의 결점을 보완하기 위해서 용매를 제거하여 고체상에서 정공 전도체 물질을 이용하여 애노드 전극으로 들어온 전자를 쉽게 환원하여 염료를 다시 산화시킴으로써 전류가 흐르도록 구성한다.
용매가 없는 고체 고분자 전해질을 이용한 태양전지는 2001년 브라질의 De Paoli 그룹의 연구에 의하여 최초로 시도되었다. 이 그룹에서는 poly(epichlorohydrin-co-ethylene oxide)/NaI/I2로 구성되는 고분자 전해질을 제조하였으며, 100 ㎽/㎠에서 약 1.6%의 에너지 전환 효율을 갖는 것으로 보고한 바 있다. 이어서 2002년 그리스의 Flaras 그룹은 결정성이 높은 polyethylene oxide에 티타늄 산화물 나노입자를 첨가하여 고분자의 결정성을 감소시킴으로써 I-/I3 -의 이동도를 향상시키는 연구를 수행하였다. 2004년에는 KIST의 촉진수송분리막 연구단에서 수소결합을 이용하여 저분자량의 폴리에틸렌글리콜(PEG)을 염료감응형 태양전지에 효과적으로 응용하는 연구를 수행하여, 에너지 전환 효율이 약 3.5%라는 결과를 보고한 바 있다.
최근 2007년 Flavia Nogueira 그룹에서는 TiO2 nanotube형태로 제작하고 고분자 전해질로써 ethylene oxide 대 epichlorohydrin의 비를 84 대 16으로 하여 합성한 poly(ethylene oxide-co-epichlorohydrin)을 사용한 고체형 염료감응형 태양전지를 제작하여 4.03%의 에너지 전환 효율의 결과를 보고한 바 있다.
고체형태 및 이온전도도를 훼손하거나 감소시키지 않으면서, 상술한 문제점을 개선할 수 있는 고체형 염료 감응 태양전지 소자를 개발할 필요성은 여전히 당업계에서 해결하지 못한 과제로서, 이런 신소자를 개발할 필요성은 당업계에서 강하게 요구되고 있다.
본 발명은 상술한 종래 기술의 문제점을 해결하기 위하여 새롭게 제안된 것으로서, 본 발명의 일 목적은 전기방사된 나노 규모의 고분자 섬유를 전해질에 첨가하여 고분자막 전해질을 구성하였으며 고효율의 염료감응형 태양전지 소자를 제작할 수 있었다.
본 발명의 다른 목적은 염료감응형 태양전지에서 광전류 증대를 효율적으로 유도하기 위하여 비표면적이 높은 나노 섬유화된 고분자를 전해질층 제작에 사용하여 제조되는 고효율의 염료감응형 태양전지 및 그 제조 방법을 제공하는 데 있다.
본 발명의 또 다른 목적은 무기산화물층으로부터 역전류현상을 방지하는 기능층의 도입으로 광전류값을 개선시킨 염료감응형 태양전지 및 그 제조 방법을 제공하고자 하는 것이다.
본 발명의 또 다른 목적은 무기산화물층 상부에 광산란층을 도입함으로써 무기산화물층에서 투과된 빛을 광산란효과를 이용하여 보다 많은 양을 빛을 흡수하도록 함으로써 광전류값을 개선시킨 염료감응형 태양전지 및 그 제조 방법을 제공하고자 하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은
서로 대향되게 배치되는 제1기판과 제2기판;
상기 제1기판과 제2기판의 사이에 구비되고, 무기 산화물층을 포함하고 상기 무기 산화물층에 화학적으로 흡착되어 여기된 전자를 공급할 수 있는 염료층을 포함하는 제1 전극;
상기 제1전극과 대향되고 상기 제1기판과 제2기판의 사이에 마련되어 통전되도록 구비된 제2전극;
상기 무기 산화물층의 상부에서 무기 산화물층과의 계면 접합을 용이하게 하는 제1 계면접합층;
상기 제1 계면접합층의 상부에서 역전류를 방지하기 위해 구비된 제2 계면접합층;
상기 제1 계면접합층과 제2 계면접합층의 사이에 개재되고 광흡수량을 증대시키기 위해 구비된 광산란층; 및
상기 제1전극과 제2전극의 사이에 개재되고, 전기방사법에 의해 제조된 나노규모의 고분자 섬유를 포함하고 산화-환원반응에 의하여 상기 염료층에 전자를 공급해줄 수 있는 고체 전해질;을 포함하는 염료감응형 태양전지를 제공한다.
상기 목적을 달성하기 위하여, 본 발명은
제1기판을 준비하는 단계;
상기 제1기판의 일면에 무기 산화물층을 형성하고 제1 전극을 형성하는 단계;
상기 무기 산화물층의 상부에 무기 산화물층과의 계면접합을 용이하게 하는 제1 계면접합층을 형성하는 단계;
상기 제1 계면접합층의 상부에 광흡수량을 증대시키기 위해 광산란층을 형성하는 단계;
상기 광산란층 상부에 역전류를 방지하기 위해 제2 계면접합층을 형성하는 단계;
상기 제2 계면접착층 상부에 염료층을 흡착시키는 단계;
상기 염료층이 흡착된 제2 계면접착층 상부에, 고분자 용액을 전기방사장치를 통하여 전기방사하여 형성된 나노 규모의 고분자 섬유를 형성하고, 고분자 섬유에 전해질 용액을 도포한 다음 이를 증발시켜 고체 전해질을 형성하는 단계; 및
상기 고체 전해질 상부에 제2전극 및 제2기판을 형성하는 단계;를 포함하는 염료감응형 태양전지의 제조방법을 제공한다.
종래의 액체전해질 및 반고체전해질을 염료감응형 태양전지에 사용할 경우 누수의 문제점, 장기 안정성의 문제점, 전해질의 증발에 의한 대전극과 상대전극간의 접촉으로 인한 문제점 등이 대두되었다.
본 발명은 나노 규모의 고분자 섬유를 전해질층에 삽입하여 이러한 문제점을 해결하고자 하였다. 실시예를 통해서 이를 이용한 염료감응형 태양전지의 제작을 완성하였고, 다양한 조건에 의해 나노 규모의 섬유를 제작하여 이러한 문제점들을 해결하였다.
또한 무기산화물층과 전해질층의 계면에서 주로 발생하는 역전류현상을 계면접합층을 도입함으로써 방지할 수 있었고, 광산란층을 도입함으로써 빛의 재흡수를 용이하게 함으로써 광전류값을 향상시키는 장점이 있다. 또한, 나노 규모의 고분자 섬유를 전해질층에 삽입함으로써 얻어지는 장점은 다음과 같다.
첫째, 나노 섬유화된 고분자는 높은 비표면적과 많은 기공을 가지고 있으므로 전해질내의 이온을 효율적으로 함유하여 침투시킬 수 있으므로 스핀코팅법으로 제조된 고분자 필름을 사용했을 때 보다 훨씬 우수한 단락회로 전류값과 광기전 효율을 얻을 수 있다.
둘째, 나노 규모의 고분자 섬유는 액체전해질을 사용한 염료감응형 태양전지에서 액체 전해질의 누수로 인하여 발생하는 대전극과 상대전극의 접촉으로 인한 단락(short)의 발생을 막아주는 역할을 하여 기존의 액체형 또는 반고체형 염료감응형 태양전지에서의 장기안정성 문제를 해결할 수 있으므로 내구성을 유지할 수 있다.
셋째, 무기 산화물층 위에 도입된 기능층과 광산란층에 의하여 역전류 현상을 방지할 수 있고 또한 투과로 인하여 손실되는 빛을 광산란층을 이용하여 재흡수할 수 있으므로 광전류값을 향상시켜 염료감응형 태양전지의 전체적인 효율을 개선시킬 수 있다.
넷째, 전형적인 필름상태의 고분자를 사용할 때보다 같은 조건에서 높은 광기전 효율을 보였고, 이는 고체형 염료감응형 태양전지의 개발의 가능성으로 볼 수 있다.
도 1은 본 발명에 따라 제조되는 염료감응형 태양전지 소자의 구조를 도시한 단면도이다.
도 2는 본 발명에 이용된 전기 방사장치의 구조를 도시한 단면도이다.
도 3는 본 발명의 실시예에 따라 제작된 무기 산화물층을 제작한 뒤 그 표면을 측정한 SEM 사진이다.
도 4는 본 발명의 실시예에 따라 제작된 무기 산화물층 위에 광산란층을 제작한 뒤 그 표면을 측정한 SEM 사진이다.
도 5는 본 발명의 실시예에 따라 제작된 무기 산화물층위에 광산란층을 제작한 뒤 그 측면을 측정한 SEM 사진이다.
도 6의 (A) 및 (B)는 각각 본 발명의 실시예에 따라 제작된 나노 규모의 직경을 가지는 PVDF-HFP 섬유를 제작한 뒤 그 표면을 측정한 SEM 사진과 그 직경분포를 나타낸 사진이다.
도 7의 (A) 내지 (L)은 각각 본 발명의 실시예에 따라 제작된 나노 규모의 직경을 가지는 PVDF-HFP에 각각의 중량 %에 따라 Ag를 포함시켜 섬유를 제작한 뒤 그 표면을 측정한 SEM 사진이다.
도 8의 (A) 내지 (L)은 각각 본 발명의 실시예에 따라 제작된 나노 규모의 직경을 가지는 PVDF-HFP에 각각의 중량 %에 따라 무기나노필러인 Al2O3를 포함시켜 섬유를 제작한 뒤 그 표면을 측정한 SEM 사진이다.
도 9의 (A) 내지 (L)은 각각 본 발명의 실시예에 따라 제작된 나노 규모의 직경을 가지는 PVDF-HFP에 각각의 중량 %에 따라 무기나노필러인 BaTiO3를 포함시켜 섬유를 제작한 뒤 그 표면을 측정한 SEM 사진이다.
도 10의 (A) 및 (B)는 각각 본 발명의 실시예에 따라 제작된 나노 규모의 직경을 가지는 PVA 섬유를 제작한 뒤 그 표면을 측정한 SEM 사진과 그 직경 분포를 나타낸 사진이다.
도 11은 본 발명의 실시예에 따라 제작된 나노 규모의 직경을 가지는 은을 포함하는 PVA 섬유를 제작한 뒤 그 표면을 측정한 SEM 사진이다.
도 12의 (A) 내지 (C)는 각각 본 발명의 실시예에 따라 제작된 나노 규모의 직경을 가지는 PVDF와 PS를 블렌드한 섬유를 제작한 뒤 그 표면을 측정한 SEM 사진이다.
도 13의 (A) 내지 (C)는 각각 본 발명의 실시예에 따라 제작된 나노 규모의 직경을 가지는 PVDF와 PMMA를 블렌드한 섬유를 제작한 뒤 그 표면을 측정한 SEM 사진이다.
도 14는 본 발명의 실시예에 따라 제작된 나노 규모의 직경을 가지는 PVDF-HFP 섬유를 이용한 염료감응형 태양전지 소자의 100mW/cm2의 illumination 상태에서의 전압-전류밀도를 도시한 그래프이다.
도 15는 본 발명의 실시예에 따라 제작된 나노 규모의 직경을 가지는 PVDF-HFP 섬유를 이용한 염료감응형 태양전지 소자의 dark 상태에서의 전압-전류밀도를 도시한 그래프이다.
도 16은 본 발명의 실시예에 따라 제작된 나노 규모의 직경을 가지는 PVDF-HFP에 무기나노필러인 Al2O3를 포함시킨 섬유를 이용한 염료감응형 태양전지 소자의 100mW/cm2의 illumination 상태에서의 전압-전류밀도를 도시한 그래프이다.
도 17은 본 발명의 실시예에 따라 제작된 나노 규모의 직경을 가지는 PVDF-HFP에 무기나노필러인 BaTiO3를 포함시킨 섬유를 이용한 염료감응형 태양전지 소자의 100mW/cm2의 illumination 상태에서의 전압-전류밀도를 도시한 그래프이다.
도 18은 본 발명의 실시예에 따라 제작된 나노 규모의 직경을 가지는 PVA 섬유를 이용한 염료감응형 태양전지 소자의 100mW/cm2의 illumination 상태에서의 전압-전류밀도를 도시한 그래프이다.
도 19는 본 발명의 실시예에 따라 제작된 나노 규모의 직경을 가지는 PVA 섬유를 이용한 염료감응형 태양전지 소자의 dark 상태에서의 전압-전류밀도를 도시한 그래프이다.
도 20은 본 발명의 실시예에 따라 제작된 Ag가 포함된 나노 규모의 직경을 가지는 PVA 섬유를 이용한 염료감응형 태양전지 소자의 100mW/cm2의 illumination 상태에서의 전압-전류밀도를 도시한 그래프이다.
도 21은 본 발명의 실시예에 따라 제작된 나노 규모의 직경을 가지는 PVDF-HFP 섬유와 산란층과 계면접합층이 도입된 염료감응형 태양전지 소자의 임피던스의 Bode 그래프 비교이다.
도 22는 본 발명의 실시예에 따라 제작된 나노 규모의 직경을 가지는 PVDF-HFP 섬유와 스핀코팅법에 의해 제조된 PVDF-HFP 필름을 이용한 염료감응형 태양전지 소자의 임피던스의 Bode 그래프 비교이다.
도 23은 본 발명의 실시예에 따라 제작된 나노 규모의 직경을 가지는 PVDF-HFP 섬유와 스핀코팅법에 의해 제조된 PVDF-HFP 필름을 이용한 염료감응형 태양전지 소자의 임피던스의 Nyquist 그래프 비교이다.
도 24는 본 발명의 실시예에 따라 제작된 나노 규모의 직경을 가지는 PVA 섬유와 스핀코팅법에 의해 제조된 PVA 필름을 이용한 염료감응형 태양전지 소자의 임피던스의 Bode 그래프 비교이다.
도 25는 본 발명의 실시예에 따라 제작된 나노 규모의 직경을 가지는 PVA 섬유와 스핀코팅법에 의해 제조된 PVA 필름을 이용한 염료감응형 태양전지 소자의 임피던스의 Nyquist 그래프 비교이다.
도 26은 본 발명의 실시예에 따라 제작된 나노 규모의 직경을 가지는 PVA 섬유와 은이 함유된 PVA 섬유를 이용한 염료감응형 태양전지 소자의 임피던스의 Bode 그래프 비교이다.
도 27은 본 발명의 실시예에 따라 제작된 나노 규모의 직경을 가지는 PVA 섬유와 은이 함유된 PVA 섬유를 이용한 염료감응형 태양전지 소자의 임피던스의 Nyquist 그래프 비교이다.
도 28은 본 발명의 실시예에 따라 제작된 나노 규모의 직경을 가지는 무기나노필러 Al2O3가 함유된 PVDF 섬유를 이용한 염료감응형 태양전지 소자의 임피던스의 Bode 그래프 비교이다.
도 29는 본 발명의 실시예에 따라 제작된 나노 규모의 직경을 가지는 무기나노필러 Al2O3가 함유된 PVDF 섬유를 이용한 염료감응형 태양전지 소자의 임피던스의 Nyquist 그래프 비교이다.
도 30은 본 발명의 실시예에 따라 제작된 나노 규모의 직경을 가진 PVDF-HFP 섬유를 이용한 전해질 내구성 테스트 사진이다.
도 30의 A는 유리 기판 접합 후 전해질만 주입한 0 시간 이후의 사진이다.
도 30의 A-1은 섬유를 넣고 유리 기판 접합 후 전해질을 주입한 0시간 이후의 사진이다.
도 30의 B는 유리 기판 접합 후 전해질만 주입한 12시간 이후의 사진이다.
도 30의 B-1은 섬유를 넣고 유리 기판 접합 후 전해질을 주입한 12시간 이후의 사진이다.
도 30의 C는 유리 기판 접합 후 전해질만 주입한 36시간 이후의 사진이다.
도 30의 C-1은 섬유를 넣고 유리 기판 접합 후 전해질을 주입한 36시간 이후의 사진이다.
도 30의 D는 유리 기판 접합 후 전해질만 주입한 48시간 이후의 사진이다.
도 30의 D-1은 섬유를 넣고 유리 기판 접합 후 전해질을 주입한 48시간 이후의 사진이다.
도 30의 E는 도 35 D-1에서 유리 기판을 제거한 후 섬유가 보존되어 있는 사진이다.
도 31은 비교예 1에 따라 스핀코팅법으로 제작된 PVDF-HFP 필름을 이용한 염료감응형 태양전지 소자의 전압-전류밀도를 도시한 그래프이다.
도 32는 비교예 2에 따라 스핀코팅법으로 제작된 PVA 필름을 이용한 염료감응형 태양전지 소자의 전압-전류밀도를 도시한 그래프이다.
도 33은 비교예 3에 따라 섬유를 넣지 않고 전해질만 주입한 염료 감응형 태양전지 소자의 전압-전류 밀도를 도시한 그래프이다.
<도면의 주요부분에 대한 부호의 설명>
1001 : 제 1 전극기판 1002 : 제 1 전극
1003 : 무기 산화물층 1004 : 계면접합층 I
1005 : 광산란층 1006 : 계면접합층 Ⅱ
1007 : 염료층 1008 : 고분자 전해질층
1009 : 제 2 전극 1010 : 제 2 기판
2001 : 전압 공급부 2002 : 용액 이송부
2003 : 전기 방사부 2004 : 수집부
일반적인 액체형 염료감응형 태양전지 소자는 고분자가 포함되어 있지 않고 전해질에 용매가 포함되어 있어서 전해질의 누수와 장기 안정성에서 문제가 되고, 그에 따른 제 1전극과 제 2전극의 접촉이 발생하여 소자의 수명을 줄이는 문제점이 있다. 또한 전해질에 고분자가 첨가된 고체 상태의 염료감응형 태양전지 소자의 경우, 고분자가 무질서하게 섞여 있는 상태이므로, 이에 본 발명자들은 고분자를 전기방사하여 나노 규모의 직경을 가지는 고분자 섬유를 제작한 뒤 이를 전해질에 포함하여 이러한 문제점들을 해결하는 염료감응 태양전지 소자를 제작하였다.
본 발명에 따르면, 본 발명은 특정 화학물질을 전기 방사하여 나노 규모의 섬유를 제작한 뒤 이를 포함하는 염료감응형 태양전지용 전해질막을 제공한다.
도 1은 본 발명의 바람직한 실시예에 따라 전기방사된 나노 규모의 섬유가 첨가된 전해질을 적용하여 제작된 염료감응형 태양전지 소자의 단면도로서, 도시된 것과 같이 본 발명의 바람직한 실시예에 따라 제작된 염료감응형 태양전지 소자는 2개의 투명 기판인 제 1 기판(1001)과 제 2 기판(1010) 사이에 각각 제 1 전극(1002) 및 제 2 전극(1009)이 서로 대향적으로 구성되어 있으며, 상기 제 1 전극(1002) 및 제 2 전극(1009)의 사이로 무기 산화물층(1003), 계면접합층 Ⅰ,Ⅱ(1004과 1006), 산란층(1005), 염료층(1007)과 고분자 전해질층(1008)이 개재되어 있는 다층 박막 형태를 가지고 있다.
상기 제 1 기판(1001)은 유리 또는 예컨대 PET(polyethylene terephthalate), PEN(polyethylene naphthelate), PP(polypropylene), PI(polyamide), TAC(tri acetyl cellulose) 등을 포함하는 플라스틱과 같은 투명 물질로 제조될 수 있으며, 바람직하게는 유리로 제조된다.
상기 제 1 전극(1002)을 상기 제 1기판(1001)의 일면에 투명 물질에 의하여 형성되는 전극이다. 상기 제 1 전극(1002)은 애노드로 기능하는 부분으로서, 상기 제 1 전극(1002)으로는 상기 제 2 전극(1005)에 비하여 일함수(work function)가 작은 물질로서 투명성 및 도전성을 갖는 임의의 물질이 사용될 수 있다. 본 발명에 있어서, 상기 제 1 전극(1002)은 스퍼터링 또는 스핀코팅 방법을 사용하여 상기 제 1 기판(1001)의 이면에 도포되거나 또는 필름 형태로 코팅될 수 있다.
제 1 전극(1002)으로 사용될 수 있는 물질은 ITO(indium-tin oxide), FTO(Fluorine doped tin oxide), ZnO-(Ga2O3 또는 Al2O3), SnO2-Sb2O3 등에서 임의로 선택될 수 있으며, 특히 바람직하게는 ITO 또는 FTO이다.
무기 산화물층(1003)은 바람직하게는 나노 입자 형태의 전이금속 산화물로서, 예를 들어 티타늄 산화물, 스칸듐 산화물, 바나듐 산화물, 아연 산화물, 갈륨 산화물, 이트륨 산화물, 지르코늄 산화물, 니오브 산화물, 몰리브덴 산화물, 인듐 산화물, 주석 산화물, 란탄족 산화물, 텅스텐 산화물, 이리듐 산화물과 같은 전이금속 산화물은 물론이고, 마그네슘 산화물, 스트론튬 산화물과 같은 알칼리토금속 산화물 및 알루미늄 산화물 등을 포함한다. 특히 바람직하게는 나노 입자 형태의 티타늄 산화물을 사용한다.
무기 산화물층(1003)은 상기 제 1 전극(1002)의 일면에 코팅처리한 후 열처리에 의하여 제 1 전극(1002)으로 도포되는데, 일반적으로 닥터블레이드법 또는 스크린 프린트 방법으로 무기 산화물을 포함하는 페이스트를 약 5 ~ 30 ㎛, 바람직하게는 10~15 ㎛의 두께로 제 1 전극(1002)의 이면으로 코팅처리하거나 스핀 코팅 방법, 스프레이 방법, 습식 코팅 방법을 사용할 수 있다.
본 발명의 염료감응형 태양전지 소자를 구성하는 무기 산화물층(1003)의 상부에는 염료가 흡착되기 전 몇 가지 기능을 가지는 기능층을 도입할 수 있다. 무기 산화물층(1003) 위에는 광산란층 (1005)이 도입되기 전 계면접합을 용이하게 하기 위한 계면접합층 I (1004)이 형성될 수 있다.
계면접합층 I (1004)의 표면은 바람직하게는 나노미터 규모의 입경을 갖는 입자들이 균일하게 분포하며 평활성이 높아야 하며, 무기 산화물층 (1003)보다 통상적으로 치밀한 구조를 가지고 있어야 한다. 계면접합층 I의 형성방법으로는 당업계에서 통상적으로 사용되는 임의의 공지방법을 사용하여 형성할 수 있으나, 일반적으로 스핀코팅법 또는 담금법으로 무기 산화물을 포함하는 페이스트를 약 2 내지 100nm, 바람직하게는 약 10-100 nm, 더욱 바람직하게는 30-50 nm의 두께로 무기 산화물층 (1003)의 이면으로 코팅처리하거나 스핀 코팅 방법, 스프레이 방법, 습식 코팅 방법을 사용한 후 열처리 하는 방법을 들 수 있다. 이들 층은 일반적으로 적어도 무기 산화물, 바람직하게는 전이 금속 산화물, 알칼리 금속 산화물, 또는 알칼리토 금속 산화물, 더욱 바람직하게는 반도체 산화물을 포함한다. 상기 계면 접합층 I의 구성 성분은 무기 산화물층(1003)과 동일하거나 상이할 수 있으며, 예컨대, 티타늄 산화물, 스칸듐 산화물, 바나듐 산화물, 아연 산화물, 갈륨 산화물, 이트륨 산화물, 지르코늄 산화물, 니오브 산화물, 몰리브덴 산화물, 인듐 산화물, 주석 산화물, 란탄족 산화물, 텅스텐 산화물, 이리듐 산화물과 같은 전이금속 산화물은 물론이고, 칼슘 산화물, 마그네슘 산화물, 스트론튬 산화물과 같은 알칼리토금속 산화물, 알루미늄 산화물, 나트륨 산화물, 세륨 산화물, 니켈 산화물, 나트륨 티타네이트, 칼륨 니오베이트, 바륨 티타네이트, 스트론튬 티타네이트, 및 상기한 산화물들의 2종 이상을 포함하는 혼합물 등이 포함된다. 특정 실시태양에서 계면 접합층 I은 무기 산화물층(1003)의 구성 성분으로 형성되거나 무기 산화물층(1003)의 구성 성분을 포함하는 화합물로 형성된다. 예를 들어, 계면 접합층 I은 티타늄 산화물, 텅스텐 산화물, 티타늄-텅스텐 혼합 산화물 중 1종 이상으로 형성될 수 있으며, 특히 바람직하게는 티타늄 산화물의 HOMO(highest occupied molecular orbital)와 LUMO(lowest unoccupied molecular orbital)값이 전자이동에 가장 적절한 값을 가지므로 티타늄 산화물이 사용된다.
바람직한 실시태양에서 계면 결합층 I은 나노 입자 형태의 무기 산화물로부터 형성되며, 이때 입자의 평균 직경은 1 내지 50 nm, 바람직하게는 2 내지 30 nm, 특히 바람직하게는 5 내지 20nm의 값을 가진다. 입자의 평균 직경이 1 nm보다 작으면 입자들간의 응집현상이 발생하여 균일한 두께의 박막의 제조가 어려워지고 오히려 계면접합층 내부에서 저항의 증가로 Fill Factor(FF)가 떨어지고, 반면 입자의 평균 직경이 50 nm보다 크면 계면 결합층의 두께의 증가와 기공률의 증가로 전자이동에서 소실되는 전자의 양이 증가하여 광전류값과 FF가 떨어진다. 본 발명에 있어서 입자의 평균 직경은 주사 현미경 사진을 통해 500개의 입자의 직경을 측정한 후 이를 평균한 값을 의미한다.
그리고 도입된 계면접합층 I (1004)의 상부에 빛의 흡수량을 증대시키는 역할을 하는 광산란층(1005)이 도입되어 있다. 이들 층은 일반적으로 적어도 무기 산화물, 바람직하게는 전이 금속 산화물, 알칼리 금속 산화물, 또는 알칼리토 금속 산화물, 더욱 바람직하게는 반도체 산화물을 포함한다. 상기 광산란층의 구성 성분은 무기 산화물층(1003)이나 계면접합층들과 동일하거나 상이할 수 있으며, 예컨대, 티타늄 산화물, 스칸듐 산화물, 바나듐 산화물, 아연 산화물, 갈륨 산화물, 이트륨 산화물, 지르코늄 산화물, 니오브 산화물, 몰리브덴 산화물, 인듐 산화물, 주석 산화물, 란탄족 산화물, 텅스텐 산화물, 이리듐 산화물과 같은 전이금속 산화물은 물론이고, 칼슘 산화물, 마그네슘 산화물, 스트론튬 산화물과 같은 알칼리토금속 산화물, 알루미늄 산화물, 나트륨 산화물, 세륨 산화물, 니켈 산화물, 나트륨 티타네이트, 칼륨 니오베이트, 바륨 티타네이트, 스트론튬 티타네이트, 및 상기한 산화물들의 2종 이상을 포함하는 혼합물 등이 포함된다. 특정 실시태양에서 광산란층은 무기 산화물층(1003)의 구성 성분으로 형성되거나 무기 산화물층(1003)의 구성 성분을 포함하는 화합물로 형성된다. 예를 들어, 광산란층은 티타늄 산화물, 텅스텐 산화물, 티타늄-텅스텐 혼합 산화물 중 1종 이상으로 형성될 수 있으며, 특히 바람직하게는 티타늄 산화물의 HOMO와 LUMO 값이 전자이동에 가장 적절한 값을 가지므로 티타늄 산화물이 사용된다.
바람직한 실시태양에서 광산란층은 미세 입자 형태의 무기 산화물로부터 형성되며, 이때 입자의 평균 직경은 20 nm 내지 1 ㎛, 바람직하게는 50 내지 600 nm, 특히 바람직하게는 100 내지 500nm의 값을 가진다. 입자의 평균 직경이 20 nm보다 작으면 대부분의 빛이 투과하므로 광산란효과를 얻을 수 없으며, 반면 입자의 평균 직경이 1 ㎛보다 크면 두께의 증가와 기공률의 증가로 전자이동에서 소실되는 전자의 양이 증가하여 광전류값과 FF가 떨어져 효율을 저하시킬 뿐만 아니라 무기산화물의 입자크기의 증가는 투과도를 떨어뜨리므로 제조된 염료감응형 태양전지 소자는 불투명하게 되고 그 응용성은 제한된다. 광산란층의 형성방법으로는 당업계에서 통상적으로 사용되는 임의의 공지방법을 사용하여 형성할 수 있으나, 일반적으로 닥터블레이드법 또는 스크린 프린트 방법으로 무기 산화물을 포함하는 페이스트를 약 500nm 내지 50㎛, 바람직하게는 약 1-30 ㎛, 더욱 바람직하게는 3-25 ㎛, 가장 바람직하게는 5 내지 20 ㎛의 두께로 계면접합층 I (1004)이 도포된 무기산화물층 (1003) 위에 이면으로 코팅처리하거나 스핀 코팅 방법, 스프레이 방법, 담금법, 습식 코팅 방법을 사용한 후 열처리 하는 방법을 들 수 있다.
도입된 광산란층(1005) 위에는 역전류를 방지하기 위하여 계면접합층 Ⅱ(1006)가 도입되고 상기 계면접합층 I (1004)과 동일한 방법으로 형성될 수 있으며, 바람직한 실시태양에서 계면접합층 II의 성분, 입경 등은 계면접합층 I과 동일하다. 역전류 현상은 염료감응형 태양전지의 전자이동 경로에서 종종 발생하는 현상으로 첫번째 경우는 염료층에서 무기산화물층으로 전달된 전자가 투명전극으로 이동되지 못하고 전해질층으로 역으로 이동하여 투명전극에서 수집되는 전자의 양이 감소하는 현상으로서 주로 무기산화물층이 염료층으로 완전히 도포되지 못한 부분에서 무기산화물층과 전해질층의 직접적인 접촉으로 발생하는 현상이며, 무기산화물층을 계면접합층 등으로 보호함으로써 이러한 현상을 방지할 수 있다. 두번째 경우는 무기산화물층을 통하여 투명전극으로 수집된 전자가 다시 전해질 층으로 유입되어 전자의 이동이 역으로 흘러 광전류값을 감소시키는 현상으로서 이러한 경우는 무기산화물층을 도포함에 있어서 발생하는 내부의 공극에서 일어나며, 투명전극위에 무기산화물층을 도포하기 전에 치밀한 무기산화물층, 즉 계면접합층 등을 도포함으로써 이러한 현상을 방지할 수 있다.
이에 따라 태양광이 조사되면 광양자는 광산란층과 기능층이 도입된 무기 산화물층에 흡착된 염료층 (1007)에 흡수되어 염료가 여기상태로 전자 전이하여 전자-정공쌍을 형성하고, 여기상태의 전자는 무기 산화물층의 전도대(conduction band)로 주입되면 주입된 전자는 제 1 전극(1002)으로 이동한 후 외부 회로에 의하여 제 2 전극(1009)으로 이동한다. 제 2 전극(1009)으로 이동한 전자는 전해질층(1008)에 함유되어 있는 전해질 조성에 의한 산화환원에 의하여 전해질층(1008)으로 이동된다.
한편, 염료는 무기 산화물에 전자를 전이한 후 산화되지만, 전해질층(1008)으로 전달된 전자를 받아 원래의 상태로 환원된다. 이에 따라 전해질층(1008)은 제 2 전극(1009)으로부터 전자를 받아 이를 염료에 전달하는 역할을 수행하는 것이다.
본 발명에 따라 상기 무기 산화물층(1003)에 화학적으로 흡착되는 광감응 염료는 자외선 및 가시광선 영역의 광을 흡수할 수 있는 물질로서 루테늄 복합체와 같은 염료가 사용될 수 있다. 무기 산화물층(1003)에 흡착되는 광감응 염료로는 루테늄 535 염료, 루테늄 535 비스-TBA 염료, 루테늄 620-1H3TBA 염료 등의 루테늄 착체로 이루어지는 광감응 염료를 포함하며, 바람직하게는 루테늄 535 염료를 사용한다. 다만 무기 산화물층(1003)에 화학 흡착될 수 있는 감광응 염료는 전하 분리 기능을 갖는 임의의 염료가 사용될 수 있는데, 루테늄계 염료 외에 크산텐계 염료, 시아닌계 염료, 포르피린계 염료, 안트라퀴논계 염료 등이 사용될 수 있다.
염료를 무기 산화물층(1003)에 흡착시키기 위해서 통상적인 방법이 사용될 수 있으나, 바람직하게는 염료를 알코올, 니트릴, 할로겐화탄화수소, 에테르, 아미드, 에스테르, 케톤, N-메틸피롤리돈 등의 용매에 용해시킨 뒤, 무기 산화물층(1003)이 도포된 광전극을 침지하는 방법을 사용할 수 있다.
한편, 상기 전해질층(1008)에는 통상의 태양전지 소자의 전해질층에 포함되는 전해질 조성물에 본 발명에 따라 전기방사된 나노 규모의 고분자 섬유가 혼합된 전해질이 사용된다. 바람직하게는 전기방사된 고분자는 PVDF, PVDF-HFP, PAN, PEO, PMMA, PVA를 사용할 수 있다. 보다 바람직하게는 PVDF-HFP를 이용하여 전기방사를 할 수 있다.
전기방사법에 의하여 제작된 나노 규모의 고분자 섬유는 전해질층(1008)을 이루는 전해질층의 총량을 기준으로 5~95 중량%, 바람직하게는 20~80 중량%, 보다 바람직하게는 40~60 중량%의 비율로 혼합된다.
도 2는 전기방사기의 모식도를 나타내고 있다. 전기방사장치는 크게 나노섬유 형성을 위해 전압을 가해주는 전압공급부(2001), 고분자 용액을 규칙적으로 분사할 수 있게 해주는 용액이송부(2002), 고분자 용액을 공급받은 전압에 의해 나노 규모의 섬유로 만들어주는 전기방사부(2003), 그리고 방사된 나노섬유를 수집하는 수집부(2004)로 구성된다.
전해질층(1008)에 첨가되는 나노 규모의 고분자 섬유를 보다 구체적으로 살펴본다. 우선, 중량분율의 변화에 의해 전기방사법을 이용하여 나노 규모의 고분자 섬유를 제작할 경우, 전기방사시 사용되는 용액의 고분자량은 5 중량% ~ 19 중량%, 바람직하게는 11 중량% ~ 17 중량% 비율로 용매와 혼합된다. 이때 용매로는 예를 들어, 디메틸아세트아미드(dimethylacetamide)와 아세톤(acetone)이 3 대 7의 중량비로 사용될 수 있다.
다른 한편으로 본 발명의 고체 전해질은 나노 규모의 금속첨가물(예: Ag) 또는 무기 나노 필러를 추가로 포함할 수 있다. 무기 나노 필러는 구체적으로 이에 한정되는 것은 아니지만, 예를 들어 Al2O3 또는 BaTiO3인 것이 바람직하다.
금속첨가물을 나노 규모의 고분자 섬유에 도입할 경우, 전기방사시 사용되는 용액의 고분자량의 0.1 중량% ~ 30 중량%, 바람직하게는 1 중량% ~ 20 중량% 비율로 용매와 혼합될 수 있다. 무기 나노 필러 첨가물을 나노 규모의 고분자 섬유에 도입할 경우, 전기방사시 사용되는 용액의 고분자량의 1 중량% ~ 50 중량%, 바람직하게는 10 중량% ~ 40 중량% 비율로 용매와 혼합될 수 있다.
다음으로 전기방사시 인가되는 전압의 변화에 의해 전기방사법을 이용하여 나노 규모의 고분자 섬유를 제작할 경우, 중량과 팁과 컬렉터 사이의 거리를 각각 15 중량%와 15cm로 고정하고, 전기방사시 인가되는 전압은 6 kV ~ 25 kV, 바람직하게는 8 kV ~ 20 kV에서 전기방사 되었다.
마지막으로 전기방사부의 팁과 수집부의 컬렉터 사이의 거리의 변화에 의해 전기방사법을 이용하여 나노 규모의 고분자 섬유를 제작할 경우, 중량과 인가되는 전압을 각각 15 중량%와 14 kV로 고정하고, 팁과 컬렉터 사이의 거리를 9 cm ~ 21 cm, 바람직하게는 13 cm ~ 19 cm에서 전기방사 되었다.
용액이송부의 경우 용액을 수송 속도는 1 ml/h ~ 5 ml/h, 바람직하게는 2 ml/h의 속도로 고분자 용액을 공급한다.
이와 같이 전기방사법에 의해 나노 규모의 고분자 섬유를 제작할 경우, 중량은 11 중량% ~ 17 중량%, 인가되는 전압은 8 kV ~ 14 kV, 팁과 컬렉터 사이의 거리는 13 cm ~ 19 cm, 그리고 2 ml/h의 속도로 용액을 공급할 경우 가장 바람직하다.
또한, 상기 전해질층(1008)에 사용되는 전해질은 I2와 금속 요오드화물 또는 유기 요오드화물의 조합(금속 요오드화물 또는 유기 요오드화물/I2)이 산화/환원쌍으로 사용될 수 있다. 또한 Br2와 금속 브롬화물 또는 유기 브롬화물의 조합(금속 브롬화물 또는 유기 브롬화물/Br2)이 산화/환원쌍으로 사용될 수 있다.
본 발명에 따라 사용되는 전해질에 있어서 금속 요오드화물 또는 금속 브롬화물을 이루는 금속 양이온으로는 Li, Na, K, Mg, Ca, Cs 등이 사용될 수 있으며, 유기 요오드화물 또는 유기 브롬화물의 양이온으로는 이미다졸리움(imidazolium), 테트라알킬암모늄(tetra-alkyl ammonium), 피리디니움(pyridinium), 트리아졸리움(triazolium) 등의 암모늄 화합물이 적합하지만 이에 한정되지는 않으며, 이와 같은 화합물을 2이상 혼합하여 사용될 수 있다. 특히 바람직하게는 LiI 또는 이미다졸리움 요오드와 I2를 조합한 산화/환원쌍이 사용될 수 있다.
본 발명에 따른 전해질 조성물에 상술한 용매가 사용되는 경우에, 금속 요오드화물 또는 금속 브롬화물이 요오드(I2) 또는 브롬(Br2)과 조합되어 산화/환원쌍으로 사용될 수 있는데, 이와 같은 산화/환원쌍으로 LiI/I2, KI/I2, NaI/I2, CsI/I2, Pr4NI (테트라프로필 암모늄 요오드)/I2, TBAI(테트라부틸 암모늄 요오드)/I2 등을 사용할 수 있으며, 바람직하게는 TBAI/I2이다.
본 발명에 따라 사용될 수 있는 전해질 중 이온성 액체로 사용될 수 있는 유기 할로겐화물로는 n-메틸이디다졸리움 요오드, n-에틸이미다졸리움 요오드, 1-벤질-2-메틸이미다졸리움 요오드, 1-에틸3-메틸이미다졸리움 요오드, 1-부틸-3-메틸이미다졸리움 요오드 등을 사용할 수 있는데, 특히 바람직한 것은 1-에틸-3-메틸이미다졸리움 요오드로서, 이들을 요오드(I2)와 조합하여 사용할 수 있다. 이와 같은 이온성 액체, 즉 용해염을 사용하는 경우 전해질 조성물에 용매를 사용하지 않는 고체형 전해질을 구성할 수 있다.
한편, 상기 제 2 전극(1009)은 제 2 기판(1010)의 이면에 도포된 전극으로서, 캐소드로서 기능한다. 스퍼터링 또는 스핀코팅의 방법을 사용하여 제 2 전극(1009)을 제 2 기판(1010)의 이면으로 도포하거나 코팅할 수 있다.
제 2 전극(1009)에 사용될 수 있는 물질은 상기 제 1 전극(1002)에 사용된 물질보다 일함수 값이 큰 물질로서 백금(Pt), 금, 탄소 등이 사용될 수 있으며 바람직하게는 백금이 사용된다.
상기 제 2 기판(1010)은 상기 제 1 기판(1001)과 유사한 투명 물질로서, 유리, 또는 PET(polyethylene terephthalate), PEN(polyethylene naphthelate), PP(polypropylene), PI(polyamide), TAC(tri acetyl cellulose) 등을 포함하는 플라스틱과 같은 투명 물질로 제조될 수 있으며, 바람직하게는 유리로 제조된다.
본 발명의 바람직한 실시예에 따라 제작되는 염료감응형 태양전지 소자의 제작 공정을 살펴보면 다음과 같다.
우선, 제 1 전극 물질이 도포되어 있는 제 1 기판 상에 바람직하게는 콜로이드 상태의 티타늄 산화물인 무기 산화물을 약 5 ~ 30 ㎛의 두께로 도포하거나 캐스팅하고, 약 450 ~ 550 ℃의 온도로 소성(sintering)하여 유기물이 제거된 제 1기판-제 1전극-무기 산화물이 차례로 도포/적층된 광전극을 형성한다. 이어서 제작된 무기 산화물층에 염료를 흡착시키기 위하여 미리 준비한 에탄올 용액에 염료, 예를 들어 루테늄 535 염료를 첨가하여 염료 용액을 제조한 뒤, 이 염료 용액으로 무기 산화물층이 도포된 투명 기판(예를 들어, FTO 등으로 코팅된 유리 기판, 광전극)을 넣어서 무기 산화물층으로 염료를 흡착한다. 염료가 완전히 무기 산화물층으로 흡착된 후에 물리적으로 흡착된 염료를 제거하기 위하여 에탄올 등으로 세척한 후 건조한다.
염료가 흡착된 무기 산화물층이 도포된 투명 기판이 제작되면 본 발명에 따른 고분자 섬유를 전해액과 함께 전해질로 사용하고, 유리 기판 위에 백금 전구체 물질을 소성하여 제작한 백금 전극을 접합시킴으로써 본 발명에 따른 염료감응형 태양전지 소자가 제작된다.
실시예
실시예 1 : 계면접합층 (Blocking Layer,BL)과 산란층 (Scattering Layer,SL)이 도입된 무기 산화물층의 제조
티타늄(IV) 아이소프로폭 사이드 (titanium(IV) isopropoxide)와 에탄올이 1:10 부피비로 혼합된 용액을 제작한 후, 15mm × 15mm로 잘라서 세척된 FTO (Fluorine doped tin oxide, SnO2:F, 15 ohm/sq) 유리 기판 위에 1500 rpm에서 20초간 스핀코팅법(spin-coating method)를 이용하여 혼합 용액을 얇게 도포한다. 다음으로 전기도가니에 넣어 실온에서 500 ℃까지 승온하여 30 분 정도 유기물을 제거한 후 다시 실온으로 내린다. 온도 상승속도와 하강속도는 분당 약 5℃ 정도이다. 그 위에 입자크기가 9 nm인 콜로이드상태의 티타늄옥사이드 페이스트를 닥터블레이드법 (doctor-blade mathod)을 이용하여 두께가 10 ㎛ 정도 되도록 얇게 도포한 후 전기도가니에 넣어 실온에서 500 ℃까지 승온한 후 다시 실온으로 내린다. 그 위에 처음과 같은 방법으로 계면접합층 Ⅰ(BL)의 도입으로 티타늄(IV) 아이소프로폭 사이드와 에탄올의 혼합 용액을 얇게 도포한 후 전기도가니에 넣어 실온에서 500 ℃ 까지 승온한 후 다시 실온으로 내린다. 그 위에 입자크기가 300 nm인 콜로이드 상태의 티타늄옥사이드 페이스트를 닥터블레이드법을 이용하여 얇게 도포한 후 전기도가니에 넣어 실온에서 500 ℃까지 승온한 후 다시 실온으로 내린다. 입자 크기가 300 nm 이상의 TiO2 층은 빛을 산란하여 빛의 흡수량을 증가시키기 위해 도입되었다. 마지막으로 처음과 같은 방법으로 계면접합층 Ⅱ 를 도입하기 위하여 티타늄(IV) 아이소프로폭 사이드와 에탄올의 혼합 용액을 얇게 도포한 후 전기도가니에 넣어 실온에서 500 ℃ 까지 승온한 후 다시 실온으로 내린다. 도 3 내지 도 5에서는 계면접합층이 도입된 무기 산화물층과 그 상부에 광산란층이 도입된 후의 SEM 사진과 측면 사진을 확인할 수 있다.
실시예 2 : 염료의 흡착
유기물이 제거되고 티타늄 산화물만 도포된 기판을 염료 용액에 실온에서 24시간 넣어 두고 티타늄 산화물층에 염료가 흡착되도록 한다. 사용된 염료는 시스-비스(이소티오시아나토)비스(2,2'-비피리딜-4,4'-디카르보실라토)루테늄(II) (cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)- ruthenium(II), 루테늄 535 염료)로 스위스의 Solaronix 사로부터 구입하였다. 루테늄 535 염료 용액은 에탄올 100 mL에 루테늄 535 염료를 20 mg 의 농도로 녹여서 제조한다. 24시간 담군 후 염료가 흡착된 티타늄 산화물 기판을 꺼내서 물리적으로 흡착된 염료층을 제거하기 위해 에탄올로 다시 세척한 후 60℃에서 다시 건조하여 기판을 제작한다.
폴리 비닐 알콜 섬유를 응용한 염료 감응형 태양전지에서는 염료2를 사용하였다. 사용된 염료2는 시스-디이소티오시아나토-비스 (2,2'-비피리딜-4,4'-디카복실레이트) 루테늄 (II) 비스 (테트라부틸암모늄)[cis-diisothiocyanato-bis (2,2-bipyridyl-4,4-dicarboxylate) ruthenium (II) bis (tetrabutylammonium)]로서 스위스의 Solaronix 사로부터 구입하였다. 루테늄 535 비스 티비에이 염료 용액은 특급 에탄올에 루테늄 535 비스 티비에이 염료를 0.5m mol의 농도로 녹여서 제조한다. 24시간 담군 후 염료가 흡착된 티타늄 산화물 기판을 꺼내서 물리적으로 흡착된 염료층을 제거하기 위해 에탄올로 표면을 세척한 후 60℃에서 다시 건조하여 기판을 제작한다.
실시예 3 : 전기방사를 위한 PVDF-HFP 고분자 용액의 제조
PVDF-HFP 고분자 용액을 제조하기 위하여, 폴리비닐리덴플로우라이드-헥사플로우르프로필렌을 아세톤과 N,N-디메틸아세트아마이드가 7:3의 중량비로 섞인 용액에 용해하였다. 이 용액을 24시간 동안 교반기에 돌리고 난 뒤, 30분 동안 초음파처리 하여 완전히 용해시켰다.
실시예 4 : Ag가 포함된 PVDF-HFP 고분자 용액의 제조
고분자 용액을 제조하기 위하여, 폴리비닐리덴플로우라이드-헥사플로우르프로필렌을 아세톤과 N,N-디메틸아세트아마이드가 2:1의 중량비로 섞인 용액에 고분자에 대하여 1-20 중량의 비로 Ag를 첨가하여 용해하였다. 이 용액을 24시간 동안 교반기에 돌리고 난 뒤, 30분 동안 초음파 처리하여 완전히 용해시켰다.
실시예 5 : 무기나노필러가 포함된 PVDF-HFP 고분자 용액의 제조
무기나노필러가 포함된 고분자 용액을 제조하기 위하여, 폴리비닐리덴플로우라이드-헥사플로우르프로필렌과 무기나노필러로 Al2O3, BaTiO3를 각각 정량하여 혼합하였으며, 무기나노필러의 양은 고분자에 대하여 10 - 40 중량%의 중량비로 사용하였다. 아세톤과 N,N-디메틸아세트아마이드가 7:3의 용액에 용해하였다. 이 용액을 24시간 동안 교반기에 돌리고 난 뒤, 30분 동안 초음파처리 하여 완전히 용해시켰다.
실시예 6 : 전기방사를 위한 PVA 고분자 용액의 제조
폴리비닐알콜(PVA) 고분자 용액을 제조하기 위하여 폴리비닐알콜을 증류수에 10%의 중량비로 용해하였다. 폴리비닐알콜을 증류수에 모두 녹이기 위하여 80℃의 온도에서 6시간 동안 교반기에 교반하고, 온도를 상온으로 내려 24시간 동안 더 교반기에서 교반한 후 1시간 동안 초음파 처리하였다.
실시예 7 : 은이 함유된 PVA 고분자 용액의 제조
은이 포함된 폴리비닐알콜(PVA) 고분자 용액을 제조하기 위하여 은(Ag)을 첨가하기 전 폴리비닐알콜을 먼저 증류수에 10%의 중량비로 용해하였다. 폴리비닐알콜을 증류수에 모두 녹이기 위하여 80℃의 온도에서 6시간 동안 교반기에 돌리고 온도를 상온으로 내려주었다. 형성된 고분자 용액에 은을 고분자의 0.01% 중량비로 넣고 교반하는 동안 은이 환원되지 않게 하기 위하여 묽은 질산용액을 2 ~ 3 방울 첨가하였다. 은을 고분자와 잘 섞이게 하기 위해 24시간 동안 더 교반기에 돌린 후 1시간 동안 초음파 처리하였다.
실시예 8 : 전기방사를 위한 고분자 블랜드 용액의 제조
고분자 블랜드 용액을 제조하기 위해서 폴리비닐리덴플로우라이드-헥사플로우르프로필렌에 폴리스타이렌, 폴리메틸메타아크릴레이트 고분자를 각각 첨가하여 고분자 블렌드 용액을 제조하였다. 용매는 PVDF-HFP와 PS를 블렌드한 경우 DMF를 사용하였으며, PVDF-HFP와 PMMA를 블렌드한 경우 아세톤과 디메틸포름아마이드가 7:3의 중량비로 섞인 용액에 용해하였다. 이 용액을 24시간 동안 교반기에 돌리고 난 뒤, 30분 동안 초음파 처리하여 완전히 용해시켰다.
실시예 9 : 전기방사를 이용한 나노 규모의 PVDF-HFP 고분자 섬유 제작
다양한 나노 규모의 직경을 얻기 위해서 고분자의 중량 %, 공급되는 전압, 팁과 컬렉터 사이의 거리를 변화시켜 전기방사하였다. 용액이송부에서는 용매에 용해되어 있는 고분자를 일정한 속도로 전기방사부에 공급해 주는데, 본 실험에서는 2 ml/h의 방출 속도로 실험을 진행하였다. 고분자를 용매에 용해시킬 때, 용액에 대한 고분자의 중량 %는 발명의 구성에서 언급한 바와 같이 적절한 범위인 11 중량 % ~ 17 중량 % 사이에서 변화를 주어 나노 규모의 고분자 섬유를 제조하였다. 전압공급부에서 공급해주는 전압은 8 kV ~ 14 kV로 변화를 주어 전기방사 하였다. 팁과 컬렉터 사이의 거리는 13 cm ~ 19 cm로 변화시켜 전기방사 하였다. 그 중 최적 조건인 15 중량%, 14 kV, 15 cm를 기초로 하여 전기방사된 나노 규모의 고분자 섬유를 제작하였다.
실시예 10 : PVDF-HFP에 Ag가 포함된 전기방사를 이용한 나노 규모의 고분자 섬유 제작
은이 포함된 PVDF-HFP 나노섬유의 다양한 직경을 얻기 위해서 고분자의 중량 %, 공급되는 전압, 팁과 컬렉터 사이의 거리를 변화시켜 전기방사하였으며, 은이 1 중량% ~ 20 중량% 비율로 들어감에 따라 조건을 변화시켜서 나노 규모의 고분자 섬유를 제조하였다. 용액이송부에서 0.2 ~ 2.0ml/h의 방출 속도로 실험을 진행하였다. 전압공급부에서 공급해주는 전압은 8 kV ~ 20 kV로 변화를 주어 전기방사 하였다. 팁과 컬렉터 사이의 거리는 13 cm ~ 21 cm로 변화시켜 전기방사 하여 나노 규모의 고분자 섬유를 제작하였다.
실시예 11 : PVDF-HFP에 무기나노필러가 포함된 전기방사를 이용한 나노 규모의 고분자 섬유 제작
무기나노필러가 포함된 PVDF-HFP 나노섬유의 다양한 나노 규모의 직경을 얻기 위해서 고분자의 중량 %, 공급되는 전압, 팁과 컬렉터 사이의 거리를 변화시켜 전기방사 하였으며, 무기나노필러(Al2O3, BaTiO3)가 10 중량% ~ 40 중량% 비율에 들어감에 따라 조건을 변화시켜서 나노 규모의 고분자 섬유를 제조하였다. 용액이송부에서 1.5ml/h의 방출 속도로 실험을 진행하였다. 전압공급부에서 공급해 주는 전압은 12 kV ~ 15 kV로 변화를 주어 전기방사 하였다. 팁과 컬렉터 사이의 거리는 15 cm ~ 18 cm로 변화시켜 전기방사 하여 나노 규모의 고분자 섬유를 제작하였다.
실시예 12 : PVA 전기방사를 이용한 나노 규모의 고분자 섬유 제작
폴리비닐알콜(PVA) 섬유를 제작할 때에도 위처럼 적정한 나노 규모 직경의 섬유를 얻기 위해 중량%, 공급되는 전압, 팁과 컬렉터 사이의 거리를 변화시켜 전기방사 하였다. 본 실험에서의 용액이송부에서는 0.6ml/h의 방출 속도로 실험을 진행하였다. 고분자를 용매에 용해시킬 때, 용액에 대한 고분자의 중량 %는 범위인 8 ~ 10 중량% 사이에서 변화를 주어 나노 규모의 고분자 섬유를 제조하였다. 전압공급부에서 공급해주는 접압은 15 ~ 20 kV 사이의 전압으로 섬유를 제조하였다. 팁과 컬렉터 사이의 거리는 15 ~ 22 cm 로 변화시켜 전기방사 하였다. 그 중 최적 조건인 9중량%, 20kV, 20cm를 기초로 하여 나노 규모의 고분자 섬유를 제작하였다.
실시예 13 : 은이 함유된 PVA 전기방사를 이용한 나노 규모의 고분자 섬유 제작
은이 함유된 폴리비닐알콜 섬유를 제작할 때에도 실시예 7과 동일한 조건으로 전기방사 하였다. 원래 전기방사할 때는 스테인리스 스틸로 만들어진 팁과 노즐을 이어주는 어뎁터를 사용하는 데에 반하여 전기방사 도중 은이 환원되지 않도록 하기 위하여 흑연으로 만들어진 어뎁터를 사용하였다. 마지막으로 은이 함유된 섬유를 방사한 후에 은이 환원되게 해주기 위하여 핫 플레이트 위에서 은이 함유된 섬유를 15분 동안 프레스시켜 주었다.
실시예 14 : 고분자를 블렌드하여 전기방사를 이용한 나노 규모의 고분자 섬유 제작
PVDF-HFP와 폴리스티렌(Polystyrene)을 블렌드한 경우, 용액이송부에서의 방출속도는 5.0ml/h의 속도로 진행하였으며, 전압공급부에서 공급해 주는 전압은 13 kV ~ 20 kV로 변화를 주어 전기방사 하였다. 팁과 컬렉터 사이의 거리는 15 cm ~ 23 cm로 변화시켜 전기방사 하여 나노 규모의 고분자 섬유를 제작하였다. 그 중 최적 조건인 15중량%, 20kV, 23cm를 기초로 하여 나노 규모의 고분자 섬유를 제작하였다.
실시예 15 : 전자 주사 현미경을 이용한 나노 규모의 PVDF-HFP 고분자 섬유 표면 분석 및 나노 섬유의 분포
도 6의 (A) 및 (B)는 고분자가 15 중량%인 경우 고분자 섬유의 표면 사진과 직경 분포도이다. 공급되는 전압은 14 kV, 팁과 컬렉터와의 거리는 15 cm, 용액 공급 속도는 2 ml/h에서 고분자 중량의 변화에 따라 나노 규모의 고분자 섬유를 제작하였다. 도 6의 (A) 및 (B)에서 보는 바와 같이, 제작된 나노섬유는 800 ~ 1000 nm의 가장 균일한 직경 분포를 나타내는 것을 확인하였다.
실시예 16 : 전자 주사 현미경을 이용한 나노 규모의 PVDF-HFP에 Ag가 포함된 고분자 섬유 표면 분석 및 나노섬유의 분포
도 7의 (A) 내지 (L)은 고분자에 포함시킨 Ag를 0.3 내지 10 중량 %로 변화시킴에 따른 고분자 섬유의 표면 사진이다. 공급되는 전압은 15 ~ 20kV, 팁과 컬렉터와의 거리는 15 ~ 20cm, 용액 공급 속도는 0.3 ~ 2 ml/h에서 고분자에 포함시킨 Ag 중량의 변화에 따라 나노 규모의 고분자 섬유를 제작하였다. 도 7의 (A) 내지 (L)에서 보는 바와 같이, 제작된 나노섬유는 200 ~ 500 nm의 가장 균일한 직경 분포를 나타내는 것을 확인하였다.
실시예 17 : 전자 주사 현미경을 이용한 나노 규모의 PVDF-HFP에 무기나노필러가 포함된 고분자 섬유 표면 분석 및 나노섬유의 분포
도 8의 (A) 내지 (L)은 무기나노필러인 Al2O3를 10 중량% ~ 40 중량 %에 따라 포함시킨 고분자 섬유의 표면 사진이다. 공급되는 전압은 12 kV, 팁과 컬렉터와의 거리는 15 cm, 용액 공급 속도는 1.5 ml/h에서 무기나노필러의 중량 변화에 따라 나노 규모의 고분자 섬유를 제작하였다. 도 8의 (A) 내지 (L)에서 보는 바와 같이, 제작된 나노섬유는 무기나노필러인 Al2O3가 40 중량 % 첨가되었을 때 가장 좋은 섬유 형상을 나타내었다.
도 9의 (A) 내지 (L)은 무기나노필러인 BaTiO3를 10 중량% ~ 40 중량 %에 따라 포함시킨 고분자 섬유의 표면 사진이다. 공급되는 전압은 12 kV, 팁과 컬렉터와의 거리는 15 cm, 용액 공급 속도는 1.5 ml/h에서 무기나노필러의 중량의 변화에 따라 나노 규모의 고분자 섬유를 제작하였다. 도 9의 (A) 내지 (L)에서 보는 바와 같이, 제작된 나노섬유는 무기나노필러인 BaTiO3가 뭉치는 형태를 나타내었으며, 나노섬유는 500 ~ 1000nm의 가장 균일한 직경 분포를 나타내는 것을 확인하였다.
실시예 18 : 전자 주사 현미경을 이용한 나노 규모의 PVA 고분자 섬유 표면 분석 및 나노섬유의 분포
도 10의 (A)와 (B)는 폴리비닐알콜 고분자 섬유의 표면 사진과 직경 분포도이다. 사진의 고분자 섬유를 방사할 때 공급되는 전압은 20kV, 팁과 컬렉터와의 거리는 20 cm, 용액 공급 속도는 0.6 ml/h이다. 도 10의 (B)에서 보는 바와 같이, 제작된 나노섬유는 180 ~ 200 nm로 가장 균일한 직경 분포를 나타내는 것을 확인하였다.
실시예 19 : 전자 주사 현미경을 이용한 나노 규모의 은이 함유된 PVA 고분자 섬유 표면 분석 및 나노섬유의 분포
도 11은 은이 함유된 폴리비닐알콜 고분자 섬유의 표면사진이다. 사진의 고분자 섬유를 방사할 때 공급되는 전압은 20kV, 팁과 컬렉터와의 거리는 20 cm, 용액 공급 속도는 0.6 ml/h이다. 은이 함유된 폴리비닐알콜 고분자 섬유직경은 은이 함유되지 않았을 때와 거의 유사한 범위를 보였다. 은이 폴리비닐알콜 섬유에 함유되더라도 원래의 모폴로지는 변화하지 않는 것을 확인하였다.
실시예 20 : 전자 주사 현미경을 이용한 나노 규모의 블렌드한 고분자 섬유 표면 분석 및 나노섬유의 분포
도 12의 (A) 내지 (C)는 각각 PVDF-HFP와 Polystyrene을 블렌드한 고분자 나노 섬유의 표면사진을 도시한다. 사진의 고분자 섬유를 방사할 때 공급되는 전압은 20kV, 팁과 컬렉터와의 거리는 21 cm, 용액 공급 속도는 5.0 ml/h이다. PVDF-HFP와 Polystyrene을 블렌드한 고분자 섬유직경은 1000nm 정도로 블렌드하지 않은 PVDF-HFP 나노섬유보다 두꺼운 형태를 보였으며 섬유가닥의 형상이 거친 형태를 나타내었다.
도 13의 (A) 내지 (C)는 각각 PVDF-HFP와 PMMA를 블렌드한 고분자 나노 섬유의 표면사진을 도시한다. 사진의 고분자 섬유를 방사할 때 공급되는 전압은 20kV, 팁과 컬렉터와의 거리는 21 cm, 용액 공급 속도는 4.0 ml/h이다. PVDF-HFP와 PMMA을 블렌드한 고분자 섬유직경은 600nm 정도로 블렌드하지 않은 PVDF-HFP 나노섬유와 거의 유사한 범위를 보였으며 섬유의 형상도 거의 비슷한 형태를 나타내었다.
실시예 21 : 전해질 용액의 제조
0.2몰 농도의 tetrabutylammonium iodide, 0.05몰 농도의 iodine, 0.3몰 농도의 1-propyl-3-methylimidazolium iodide를 에틸렌카보네이트, 프로필렌 카보네이트, 아세토니트릴이 8:2:5의 부피비를 가지는 용매에 섞고, 24시간 동안 교반시켜 전해질을 제조하였다.
폴리비닐알콜 섬유를 응용하여 제작한 염료감응형 태양전지의 실시예에서는 0.02몰 농도의 tetrabutylammonium iodide, 0.08몰 농도의 iodine, 0.03몰 농도의 1-propyl-3-methylimidazolium iodide를 ethylene carbonate, propylene carbonate, acetonitrile가 8:2:5의 부피비를 가지는 용매에 섞고, 24시간 동안 교반시켜 전해질을 제조하였다.
실시예 22 : 나노 규모의 고분자 섬유를 이용한 전해질층 제작
실시예 2에서 제조된 염료가 흡착된 티타늄 산화물 기판 위에 실시예 6-8에서 제작된 고분자 섬유를 놓은 후 그 위에 마이크로 피펫을 이용하여 0.035 ml의 전해질 용액을 떨어뜨린다. 이후 용매를 건조시키기 위해 오븐을 이용하여 40 ~ 50℃에서 2 ~ 3시간 동안 건조시켜 용매를 증발 시켰다.
실시예 23 : 백금 전극의 제조
투명한 염료감응형 태양전지를 제작하기 위하여 백금 전구체를 포함하는 페이스트를 사용하였다. 백금 전구체를 포함하는 페이스트는 스위스의 Solaronix 사로부터 구입하였다.
실시예 1에서 제작한 티타늄 산화물층과 동일한 방법으로 15 ㎜ × 10 ㎜의 크기로 자른 FTO 유리 기판 위에 백금 전구체를 포함하는 페이스트를 실온에서 400 ℃까지 승온하여 백금을 도포하였다. 제작된 백금 전극을 Alpha Step을 사용하여 측정한 결과 두께가 약 100 ㎚ 정도임을 확인할 수 있었다.
실시예 24 : 고체형 염료감응형 태양전지 소자의 제작
실시예 22를 통하여 염료가 흡착된 티타늄 산화물 위에 고분자 섬유와 전해질이 도포된 전극 기판과 실시예 23에서 제작된 백금 전극 기판을 소자 접합하여 염료감응형 태양전지 소자를 제작하였다.
실시예 25 : 염료감응형 태양전지 소자의 전기광학 특성 측정
실시예 24를 통하여 제작된 각각의 염료감응형 태양전지 소자에 대한 전기 광학적 특성을 측정하였다. 실시예 22에 따라 각각의 고분자 섬유가 포함되어 있는 전해질을 포함하는 염료감응형 태양전지 소자의 전압-전류 밀도는 Keithley와 150W의 제논램프를 탑재하고 표준 실리콘 셀을 이용하여 보정한 Solar simulator (PEC-L11, PECCELL)를 사용하여 표준 조건 (AM 1.5, 100 ㎽/㎠, 25 ℃)에서 측정되었다.
전기광학 특성 결과
염료감응형 태양전지 소자의 전기광학 특성 측정결과에 따른 전류-전압 그래프는 각각 도 14 내지 도 19에 나타내었으며, 광기전 특성들은 각각 표 1 내지 표 7에 나타내었다.
도 14는 실시예 9에 따라 제작된 나노 규모의 직경을 가지는 PVDF-HFP 섬유를 이용한 염료감응형 태양전지 소자의 100mW/cm2의 illumination 상태에서의 전압-전류밀도를 도시한 그래프이다. 도 14를 참조하면, 계면접합층 (Blocking Layer,BL)과 산란층 (Scattering Layer,SL)이 도입됨에 따라 전류밀도가 증가됨을 확인할 수 있다.
도 15는 실시예 9에 따라 제작된 나노 규모의 직경을 가지는 PVDF-HFP 섬유를 이용한 염료감응형 태양전지 소자의 dark 상태에서의 전압-전류밀도를 도시한 그래프이다. 계면접합층 (Blocking Layer,BL)과 산란층 (Scattering Layer,SL)을 도입함에 따라 전압(Voc)이 증가함을 확인 할 수 있는데 이는 계면접합층과 산란층이 도입되면 TiO2 층과 전해질층 사이에서의 재결합을 막아주기 때문에 전압(Voc)이 증가한다.
표 1은 공급되는 전압이 14 kV, 팁과 컬렉터와의 거리는 15 cm, 용액 공급 속도는 2 ml/h로 일정하고, 고분자의 중량% 변화에 따라 나노 규모의 PVDF-HFP 고분자 섬유를 제작하였고, 이를 첨가하여 제작된 염료감응형 태양전지 소자의 특성치를 나타내고 있다. 산란층과 계면접합층의 도입에 따라 개방전압과 Fill Factor는 크게 변화는 없지만, 전류밀도가 매우 향상되는 결과를 보였다. 따라서 전체 에너지 전환효율을 확인했을 때 60% 가량 향상된 결과를 보였고 8.58%라는 고효율의 염료감응형 태양전지를 제작할 수 있었다.
[표 1]
계면접합층과 산란층이 도입된 무기 산화물층에 나노 규모의 PVDF-HFP 고분자 섬유를 이용한 염료감응형 태양전지 소자의 광기전 특성 비교
표 1
개방전압 (V) 전류밀도(mA/cm2) Fill Factor 에너지전환효(%)
TiO2 0.694 12.4 0.627 5.40
TiO2/BL 0.732 16.5 0.598 7.23
TiO2/BL/SL/BL 0.748 19.5 0.588 8.58
표 2는 공급되는 전압이 8 kV ~ 20 kV, 팁 컬렉터와의 거리는 13 cm ~ 21 cm, 용액 공급 속도는 0.2 ~ 2.0ml/h이며 고분자에 따른 Ag 중량 % 변화에 따라 나노 규모의 PVDF-HFP에 Ag가 포함된 고분자 섬유를 제작하였고, 이를 첨가하여 제작된 염료감응형 태양전지 소자의 특성치를 나타내고 있다. Ag의 첨가에 따라 1/100 wt% 첨가하였을 경우의 전류밀도가 가장 향상된다.
[표 2]
Ag가 PVDF-HFP에 포함된 나노 규모의 고분자 섬유를 이용한 염료감응형 태양전지 소자의 광기전 특성 비교
표 2
Ag wt% 개방전압 (V) 전류밀도(mA/cm2) Fill Factor 에너지전환효율(%)
PVDF-HFP 0.67 11.4 0.47 3.60
1/100 Ag 0.67 12.0 0.41 3.34
0.69 11.0 0.49 3.68
1/200 Ag 0.69 10.4 0.50 3.54
0.69 10.4 0.50 3.58
1/300 Ag 0.68 9.50 0.49 3.15
0.68 10.3 0.46 3.21
도 16은 실시예 11에 따라 제작된 나노 규모의 직경을 가지는 PVDF-HFP에 무기나노필러인 Al2O3를 포함시킨 섬유를 이용한 염료감응형 태양전지 소자의 100mW/cm2의 illumination 상태에서의 전압-전류밀도를 도시한 그래프이다.
표 3은 공급되는 전압이 12 kV ~ 15 kV, 팁 컬렉터와의 거리는 15 cm ~ 18 cm, 용액 공급 속도는 1.5ml/h이며 고분자에 따른 무기나노필러인 Al2O3 중량 % 변화에 따라 나노 규모의 PVDF-HFP에 무기나노필러가 포함된 고분자 섬유를 제작하였고 이를 첨가하여 제작된 염료감응형 태양전지 소자의 특성치를 나타내고 있다.
도 16 및 표 3을 참조하면, PVDF-HFP에 첨가되는 Al2O3의 함량이 20, 30중량%일 경우 단략전류가 최대가 되고, 첨가함량이 30중량%일 경우 최대효율을 나타냄을 확인할 수 있다.
도 17은 실시예 11에 따라 제작된 나노 규모의 직경을 가지는 PVDF-HFP에 무기나노필러인 BaTiO3를 포함시킨 섬유를 이용한 염료감응형 태양전지 소자의 100mW/cm2의 illumination 상태에서의 전압-전류밀도를 도시한 그래프이다.
표 3 무기나노필러 Al 2 O 3 가 PVDF-HFP에 포함된 나노 규모의 고분자 섬유를 이용한 염료감응형 태양전지 소자의 광기전 특성 비교
Al2O3 wt% 개방전압 (V) 전류밀도(mA/cm2) Fill Factor 에너지전환효율(%)
0 0.71 10.8 0.56 4.28
10 0.71 12.3 0.57 4.91
20 0.67 13.0 0.56 4.80
30 0.67 13.0 0.57 5.05
표 4는 위와 조건이 동일하며 무기나노필러인 BaTiO3의 중량 %변화에 따라 고분자 섬유를 제작하고 이에 따른 염료감응형 태양전지 소자의 특성치를 나타내고 있다.
도 17 및 표 4를 참조하면, PVDF-HFP에 첨가되는 BaTiO3의 함량이 20중량%일 경우 전류밀도 및 효율이 최대임을 확인할 수 있다.
표 4 무기나노필러 BaTiO 3 가 PVDF-HFP에 포함된 나노 규모의 고분자 섬유를 이용한 염료감응형 태양전지 소자의 광기전 특성 비교
BaTiO3 (wt%) 개방전압 (V) 전류밀도(mA/cm2) Fill Factor 에너지전환효율(%)
0 0.71 10.8 0.56 4.28
10 0.71 14.5 0.54 5.59
20 0.72 15.5 0.52 5.78
30 0.71 13.8 0.55 5.30
상기 표 2 내지 표 4를 참고하면, 은 또는 무기나노필러인 Al2O3 또는 BaTiO3가 함유된 섬유를 염료감응형 태양전지에 넣어 전해질에 응용하였을 때는 이러한 물질이 함유되지 않은 섬유를 포함하는 염료감응형 태양전지보다 전류밀도가 향상되었고, 에너지 전환효율이 개선됨을 확인할 수 있었다.
도 18은 실시예 12에 따라 제작된 나노 규모의 직경을 가지는 PVA 고분자 섬유를 이용한 염료감응형 태양전지 소자의 100mW/cm2의 illumination 상태에서의 전압-전류밀도를 도시한 그래프이다. 도 18을 참조하면, PVA 고분자 섬유를 이용하는 경우에도 계면접합층 (Blocking Layer,BL)과 산란층 (Scattering Layer,SL)이 도입됨에 따라 전류밀도가 증가됨을 확인할 수 있다.
도 19는 실시예 12에 따라 제작된 나노 규모의 직경을 가지는 PVA 섬유를 이용한 염료감응형 태양전지 소자의 dark 상태에서의 전압-전류밀도를 도시한 그래프이다. 계면접합층 (Blocking Layer,BL)과 산란층 (Scattering Layer,SL)을 도입함에 따라 전압(Voc)이 증가함을 확인할 수 있는데 이는 계면접합층과 산란층이 도입되면 TiO2 층과 전해질층 사이에서의 재결합을 막아주기 때문에 전압(Voc)이 증가한다.
표 5는 공급되는 전압이 20kV, 팁과 컬렉터와의 거리는 20cm, 용액 공급 속도는 0.6 ml/h로 일정하고 고분자의 중량% 변화에 따라 나노 규모의 PVA 고분자 섬유를 제작하였고, 이를 첨가하여 제작된 염료감응형 태양전지 소자의 특성치를 나타내고 있다. 표 5를 참조하면, 산란층과 계면접합층의 도입에 따라 개방전압과 Fill Factor는 크게 변화는 없지만, 전류밀도가 매우 향상되는 결과를 보였다. 따라서 전체 에너지 전환효율을 확인했을 때 7.36%라는 고효율의 염료감응형 태양전지를 제작할 수 있었다.
표 5 계면접합층과 산란층이 도입된 무기 산화물층에 나노 규모의 PVA 고분자 섬유를 이용한 염료감응형 태양전지 소자의 광기전 특성 비교
개방전압 (V) 전류밀도(mA/cm2) Fill Factor 에너지전환효율(%)
TiO2 0.767 12.5 0.638 6.11
TiO2/BL 0.799 12.7 0.629 6.36
TiO2/BL/SL/BL 0.792 16.1 0.577 7.36
도 20은 실시예 13에 따라 제작된 Ag가 포함된 나노 규모의 직경을 가지는 PVA 섬유를 이용한 염료감응형 태양전지 소자의 100mW/cm2의 illumination 상태에서의 전압-전류밀도를 도시한 그래프이다.
표 6은 PVA 섬유를 제작할 때와 동일한 조건으로 Ag-PVA 고분자 섬유를 제작하여 이를 첨가하여 제작된 염료 감응형 태양전지 소자의 특성치를 나타내고 있다. 표 6을 참조하면, PVA 고분자 섬유에 Ag를 첨가함으로써 에너지 전환효율이 8.12%로 개선되는 것을 확인할 수 있었다.
표 6 계면접합층과 산란층이 도입된 무기 산화물층에 나노 규모의 고분자 섬유를 이용한 염료감응형 태양전지 소자의 광기전 특성 비교 (Ag-PVA)
개방전압 (V) 전류밀도(mA/cm2) Fill Factor 에너지전환효율(%)
TiO2/BL/SL/BL 0.789 17.09 0.601 8.12
PVA 고분자섬유를 이용하여 실험한 경우에도 은(Ag)이 함유된 섬유를 염료감응형 태양전지에 넣어 전해질에 응용하였을 때(표 6) 은이 함유되지 않은 섬유를 넣은 염료감응형 태양전지(표 5)보다 전류밀도가 향상되는 결과를 보였다. 이는 은이 전해질 내에서 이온 이동성을 도와주는 매개체 역할을 하여 TiO2, 전해질, Pt전극 사이에서 이온 전도도 속도가 빨라져서 전류밀도가 향상되는 결과이다.
표 7은 공급되는 전압이 20 kV, 팁 컬렉터와의 거리는 21cm, 용액 공급 속 5.0ml/h의 조건에서 나노 규모의 PVDF-HFP에 polystyrene을 블렌드한 고분자 섬유를 제작하였고 그리고 공급전압이 20 kV, 팁 컬렉터와의 거리는 20cm, 용액 공급 속 4.0ml/h의 조건에서 나노 규모의 PVDF-HFP에 PMMA를 블렌드한 고분자 섬유를 첨가하여 제작된 염료감응형 태양전지 소자의 특성치를 나타내고 있다.
표 7 PVDF-HFP에 Polystyrene와 PMMA를 각각 블렌드한 나노 규모의 고분자 섬유를 이용한 염료감응형 태양전지 소자의 광기전 특성 비교
개방전압 (V) 전류밀도(mA/cm2) Fill Factor 에너지전환효율(%)
PVDF-PS 0.70 12.10 0.59 5.02
PVDF-PMMA 0.69 12.10 0.60 5.03
실시예 26 : 염료감응형 태양전지 소자의 임피던스 측정
실시예 15를 통하여 제작된 각각의 염료감응형 태양전지 소자에 대한 임피던스 측정으로 각 계면에서의 저항을 측정하였다. Echem analyst (GAMRY)를 사용하여 측정하고 Z-MAN 소프트웨어에 맞추어 얻은 임피던스 데이터 그래프는 도 21 내지 도 27에 나타내었다.
도 21은 무기 산화물층에 계면접합층과 광산란층을 도입하지 않은 염료감응형 태양전지소자와 도입한 염료감응형 태양전지소자의 임피던스 Bode 그래프이다. 저주파에서 그래프의 꼭지점이 보다 더 저주파 쪽으로 위치할수록 전하의 이동이 빠르고 전자의 수명이 긴데, 계면접합층과 광산란층을 도입했을 때 보다 더 저주파로 이동하므로 계면접합층과 광산란층의 도입이 빠른 전하 이동을 유발하여 높은 전류밀도와 그로 인한 높은 에너지 전환효율을 가지게 한다는 것을 알 수 있다.
표 8 및 표 9는 각각 무기 산화물층에 계면접합층과 광산란층을 동일하게 도입한 후, 전기방사법을 이용한 나노 규모의 PVDF-HFP와 PVA 고분자 섬유를 사용하여 제작한 염료감응형 태양전지 소자와 스핀코팅법을 이용해 고분자 필름을 사용한 태양전지 소자의 저항값을 측정한 결과이다. Rs는 태양전지 소자의 series 저항이며, R1CT는 계면 접합층 Ⅰ(1004)을 포함한 무기 산화물층(1003)과 광산란층 (1005) 사이의 저항, R2CT는 계면 접합층Ⅱ(1006)를 포함한 광산란층 (1005)과 고분자 전해질층 (1008) 사이의 저항, R3CT는 고분자 전해질층 (1008)과 제 2 전극 (1009) 사이의 저항이다. 저항값을 보면 Rs, R1CT, R3CT 값에는 큰 차이가 없으나, R2CT값에서 나노 규모의 고분자 섬유를 사용한 염료감응형 태양전지 소자의 저항이 더 낮음을 확인 하였다. 따라서 광산란층과 전해질층 사이의 낮은 저항으로 인해 광기전 특성에서 높은 전류밀도를 가진다.
도 22 및 24는 임피던스 Bode 그래프이며, 도 23 및 도 25는 Nyquist 그래프이다. Bode 그래프에서 저주파 영역의 꼭지점이 같은 주파수에 위치하므로 전하의 이동에는 큰 차이가 없으나, Nyquist 그래프에서 반원의 크기가 높고 클수록 전자와 정공의 재결합이 많음을 의미하는데 스핀코팅법에 의해 고분자 필름을 사용한 경우에 고주파 영역의 반원이 더 크므로 재결합이 많이 일어나고, 이로 인해 저항이 크고 낮은 광기전 특성을 가짐을 알 수 있다.
도 26은 실시예에 따라 제작된 나노 규모의 직경을 가지는 은이 함유된 PVA 섬유를 이용한 염료감응형 태양전지 소자의 임피던스의 Bode 그래프 비교이다. 두 그래프의 꼭지점이 같은 주파수에 위치하므로 전하의 이동에는 큰 차이는 보이지 않는다. 도 27은 실시예에 따라 제작된 나노 규모의 직경을 가지는 은이 함유된 PVA 섬유를 이용한 염료감응형 태양전지 소자의 임피던스의 Nyquist 그래프 비교이다. 두 곡선이 비슷한 형태를 보이나, PVA 보다 은이 함유된 PVA의 계면저항의 값이 더 작으며 대체적으로 낮은 값의 저항을 나타내었다.
표 8 전기방사법에 의한 나노 규모의 PVDF-HFP 고분자 섬유 또는 스핀코팅에 의한 PVDF-HFP 고분자 필름을 이용한 염료감응형 태양전지 소자의 임피던스 측정에 의한 저항값 특성
Rs(Ω) R1CT(Ω) R2CT(Ω) R3CT(Ω)
전기방사법 32.203 12.305 3.608 5.117
스핀코팅법 36.540 11.856 10.437 6.776
표 9 전기방사법에 의한 나노 규모의 PVA 고분자 섬유 또는 스핀코팅에 의한 PVA 고분자 필름을 이용한 염료감응형 태양전지 소자의 임피던스 측정에 의한 저항값 특성
Rs(Ω) R1CT(Ω) R2CT(Ω) R3CT(Ω)
PVA 섬유 25.643 4.606 11.825 9.811
Ag PVA 섬유 27.089 2.793 3.077 9.233
스핀코팅막 21.825 73.393 24.466 33.720
은이 들어간 섬유를 응용한 염료 감응형 태양전지는 위에서 밝힌 바와 같이 계면간의 이온전도도가 증가하여 전류밀도 밀도가 증가하였다. 임피던스 분석으로 이 결과를 증명할 수 있다. 태양전지 소자의 series 저항값에는 큰 차이가 없으나, 은을 넣은 나노섬유로 제작한 태양전지는 R1CT, R2CT, R3CT 값이 작아졌다. 따라서 은을 넣은 나노섬유로 제작한 태양전지의 계면간의 저항이 더 작음을 알 수 있다.
도 28은 실시예에 따라 제작된 나노 규모의 직경을 가지는 무기나노필러 Al2O3가 함유된 PVDF 섬유를 이용한 염료감응형 태양전지 소자의 임피던스의 Bode 그래프 비교이다. 두 그래프의 꼭지점이 거의 비슷한 주파수에 위치하므로 전하의 이동에는 큰 차이는 보이지 않는다. 도 29는 실시예에 따라 제작된 나노 규모의 직경을 가지는 무기나노필러 Al2O3가 함유된 PVDF 섬유를 이용한 염료감응형 태양전지 소자의 임피던스의 Nyquist 그래프 비교이다. 무기나노필러 Al2O3가 함유된 PVDF-HFP 섬유가 넣지 않은 것보다 작은 반원을 그리며 이것으로 보아 무기나노필러 Al2O3를 넣은 것이 재결합을 막아주는 것을 확인할 수 있다. Al2O3를 넣은 것이 대체적으로 낮은 값의 저항을 나타내었다.
표 10 전기방사법에 의한 PVDF-HFP에 무기나노필러 Al 2 O 3 를 포함한 나노섬유를 이용한 염료감응형 태양전지 소자의 임피던스 측정에 의한 저항값 특성
PVDF-HFP 10 wt% 20 wt% 30 wt% 40 wt%
Rs 34.453 30.793 31.195 29.514 32.453
R1 16.658 16.386 14.379 14.748 16.658
R2 15.479 8.480 11.173 9.465 9.174
실시예 27 : 전기방사법에 의한 나노 규모의 PVDF-HFP 고분자 섬유를 응용하여 전해질 내구성 테스트
본 발명에서 사용된 고분자인 PVDF-HFP를 전기방사법에 의해 고분자 섬유를 제작한 후 이를 유리 기판 사이에 넣고 전해질을 주입하여 내구성을 테스트하였다. 도 30의 (A)는 고분자 섬유를 넣지 않고 유리 기판만 접합한 후 전해질을 주입한 것이고, 도 30의 (A-1)은 고분자 섬유를 넣고 유리 기판을 접합한 후 전해질을 주입한 것이다. 유리 기판에 1mm 직경의 구멍을 뚫어 전해질을 주입하고 48시간 동안 구멍을 막지 않고 경과를 지켜보았다.
도 30의 (B)는 유리 기판 접합 후 전해질만 주입한 12시간 이후의 사진이고, 도 30의 (B-1)은 섬유를 넣고 유리 기판 접합 후 전해질을 주입한 12시간 이후의 사진이다.
도 30의 (C)는 유리 기판 접합 후 전해질만 주입한 36시간 이후의 사진이고, 도 30의 (C-1)는 섬유를 넣고 유리 기판 접합 후 전해질을 주입한 36시간 이후의 사진이다.
도 30의 (D)는 유리 기판 접합 후 전해질만 주입한 48시간 이후의 사진이고, 도 30의 (D-1)은 섬유를 넣고 유리 기판 접합 후 전해질을 주입한 48시간 이후의 사진이다. 48시간이 지난 후 비교해 보면, 전해질만을 넣은 도 30의 (D)는 전해질이 증발하여 줄어든 반면 고분자 섬유를 넣고 전해질을 주입한 도 30의 (D-1)은 전해질이 거의 증발하지 않고 유리 기판 속에 남아있다. 고분자 나노 규모의 섬유가 유리 기판 안에서 안정적으로 전해질을 보존할 수 있다는 것을 나타내고 있다. 도 30의 (E)는 48시간 후 전해질 안에서 섬유가 보존되어 있는지를 확인하기 위하여 유리 기판을 제거한 사진이다. 섬유가 48시간 후에도 전해질에 녹거나 형태의 흐트러짐 없이 존재한다는 것을 알 수 있다.
비교예 1 : 스핀코팅법에 의해 제조된 PVDF-HFP 고분자를 전해질 매트릭스로 사용한 염료감응형 태양전지의 광기전 특성
고분자인 PVDF-HFP를 스핀코팅법에 의해 고분자 막을 제작한 후 이를 염료감응형 태양전지에 첨가하고 그 소자의 광기전 특성을 측정하였다.
우선 나노 규모의 고분자 섬유 대신 스핀코팅법에 의해 제작된 고분자 막을 대체하는 것을 제외하고 실시예와 동일한 절차와 조건에 따라 전해질 용액을 제조하여 이로부터 염료감응형 태양전지 소자를 제작하였다. 스핀코팅법에 의해 제작된 고분자막을 포함하는 염료감응형 태양전지 소자는 실시예 25와 동일한 조건에서 측정된 전압에 따른 전류밀도 세기를 측정하였다. 비교예 1에 따라 제작된 염료감응형 태양전지 소자에 대하여 측정된 전압-전류 밀도 측정 결과는 도 31에 도시되어 있으며, 표 11은 개방회로 전압, 단락회로 전류, Fill Factor, 에너지 전환 효율이 표시되어 있다.
비교예 1에 따라 제작된 염료감응형 태양전지 소자에서 두 전극의 밴드갭 에너지 차이에 의하여 결정되는 개방회로 전압의 값은 나노 규모의 고분자 섬유가 포함된 실시예 9와 비슷하였으나, 단락회로 전류의 경우 전형적인 고분자막이 첨가되어 있는 소자의 경우 낮은 단락회로 전류값을 가졌다. 이는 나노 규모의 고분자 섬유의 많은 공극으로 인한 이온의 이동도가 크기 때문인 것으로 보여진다. 이로 인하여 비교예 1의 에너지 전환 효율도 나노 규모의 고분자 섬유가 첨가된 소자와 비교하여 낮은 경향을 나타냈다.
표 11 스핀코팅법에 의해 제조된 PVDF-HFP 고분자를 전해질 매트릭스로 사용한 염료감응 태양전지의 광기전 특성
개방회로 전압(V) 전류밀도(㎃/㎠) Fill Factor 에너지 전환 효율(%)
0.769 6.79 0.611 3.20
비교예 2 : 스핀코팅법에 의해 제조된 PVA 고분자를 전해질 매트릭스로 사용한 염료감응형 태양전지의 광기전 특성
실시예 6에서 사용한 PVA 고분자를 스핀 코팅법에 의해 고분자 막을 제조하여 염료감응형 태양전지에 첨가하여 그 소자의 광 기전 특성을 측정하였다.
우선 나노 규모의 고분자 섬유 대신 스핀 코팅법에 의해 제작된 고분자 막을 대체하는 것을 제외하고 실시예와 동일한 절차와 조건에 따라 전해질 용액을 제조하여 이로부터 염료감응형 태양전지 소자를 제작하였다. 스핀 코팅법에 의해 제작된 고분자막을 포함하는 염료감응형 태양전지 소자는 실시예 25과 동일한 조건에서 측정된 전압에 따른 전류밀도 세기를 측정하였다. 비교예 2에 따라 제작된 염료감응형 태양전지 소자에 대하여 측정된 전압-전류 밀도 측정 결과는 도 32에 도시되어 있으며, 표 12는 개방회로 전압, 단락회로 전류, Fill Factor, 에너지 전환 효율이 표시되어 있다.
비교예 2에 따라 제작된 염료 감응형 태양전지 소자에서 두 전극의 밴드갭 에너지 차이에 의하여 결정되는 개방회로 전압의 값은 나노 규모의 고분자 섬유가 포함된 실시예 15와 비슷하였으나, 단락회로 전류의 경우 전형적인 고분자막이 첨가되어 있는 소자의 경우 낮은 단락회로 전류값을 가졌다. 이는 나노 규모의 고분자 섬유의 많은 공극으로 인한 이온의 이동도가 크기 때문인 것으로 보여진다. 이로 인하여 비교예 2의 에너지 전환 효율도 나노 규모의 고분자 섬유가 첨가된 소자와 비교하여 낮은 경향을 나타냈다.
표 12 스핀코팅법에 의해 제조된 PVA 고분자를 전해질 매트릭스로 사용한 염료감응 태양전지의 광기전 특성
개방회로 전압(V) 전류밀도(㎃/㎠) Fill Factor 에너지 전환 효율(%)
0.749 3.24 0.537 1.37
비교예 3: 액체 전해질을 사용한 염료감응형 태양전지의 광기전 특성
고분자 섬유를 넣지 않은 염료감응형 태양전지의 에너지 전환 효율을 알아보고 고분자 섬유가 들어가지 않은 염료감응형 태양전지의 에너지 전환 효율과 비교하기 위하여 액체 전해질만을 투입한 염료감응형 태양전지를 제작하였다.
실시예 25와 동일한 조건에서 측정된 전압에 따른 전류밀도 세기를 측정하였다. 비교예 3에 따라 제작된 염료감응형 태양전지 소자에 대하여 측정된 전압-전류 밀도 측정 결과는 도 33에 도시되어 있으며, 하기 표 13에는 개방회로전압, 단락회로전류, Fill Factor, 에너지 전환 효율이 표시되어 있다.
표 14는 비교예 3에 따른 염료감응형 태양전지의 임피던스 측정값을 나타내고 있다. 표 14에 따르면 전체적인 임피던스 값은 감소되고 이러한 것은 나노섬유를 넣었을 때 나노섬유에 의한 전해질 내부의 저항이 증가함으로 나노섬유가 없는 전해질만 사용했을 경우는 전체적인 저항이 감소함을 알 수 있다.
표 13 액체 전해질을 사용한 염료감응형 태양전지의 광기전 특성
개방회로 전압(V) 전류밀도(㎃/㎠) Fill Factor 에너지 전환 효율(%)
0.745 17.67 0.508 6.69
표 14 액체 전해질을 사용한 염료감응형 태양전지의 임피던스 측정
Rs(Ω) R1CT(Ω) R2CT(Ω) R3CT(Ω)
21.472 2.213 9.483 3.549
본 발명의 바람직한 실시예에 대하여 기술하였으나, 이는 어디까지나 예시에 불과한 것으로 본 발명에 대한 다양한 변형과 변경이 가능하다. 그러나, 그와 같은 변형과 변경은 본 발명의 정신을 훼손하지 않는 범위 내에서 본 발명의 권리범위에 속한다는 사실은 첨부하는 청구의 범위를 통하여 보다 분명해 질 것이다.

Claims (21)

  1. 서로 대향되게 배치되는 제1기판과 제2기판;
    상기 제1기판과 제2기판의 사이에 구비되고, 무기 산화물층을 포함하고 상기 무기 산화물층에 화학적으로 흡착되어 여기된 전자를 공급할 수 있는 염료층을 포함하는 제1 전극;
    상기 제1전극과 대향되고 상기 제1기판과 제2기판의 사이에 마련되어 통전되도록 구비된 제2전극;
    상기 무기 산화물층의 상부에서 무기 산화물층과의 계면 접합을 용이하게 하는 제1 계면접합층;
    상기 제1 계면접합층의 상부에서 역전류를 방지하기 위해 구비된 제2 계면접합층;
    상기 제1 계면접합층과 제2 계면접합층의 사이에 개재되고 광흡수량을 증대시키기 위해 구비된 광산란층; 및
    상기 제1전극과 제2전극의 사이에 개재되고, 전기방사법에 의해 제조된 나노규모의 고분자 섬유를 포함하고 산화-환원반응에 의하여 상기 염료층에 전자를 공급해줄 수 있는 고체 전해질;을 포함하는 염료감응형 태양전지.
  2. 제1항에 있어서, 상기 고분자 섬유는 폴리비닐리덴플루오로-헥사플루오로프로필렌(PVDF-HFP), 폴리에틸렌옥사이드(polyethylene oxide: PEO), 폴리아크릴로니트릴(polyacrylonitrile: PAN), 폴리메틸 메타아크릴레이트(polymethyl methacrylate: PMMA), 폴리비닐알콜(polyvinylalcohol: PVA), 및 이들의 고분자 블렌드로 이루어진 군에서 선택된 하나 이상인 것을 특징으로 하는 염료감응형 태양전지.
  3. 제1항에 있어서, 상기 고분자의 함량은 고체 전해질에 대하여 5 내지 95중량%인 것을 특징으로 하는 염료감응형 태양전지.
  4. 제1항에 있어서, 상기 고분자의 중량평균분자량은 50,000 내지 1,000,000인 것을 특징으로 하는 염료감응형 태양전지.
  5. 제1항에 있어서, 상기 고분자 섬유의 직경은 20 내지 1500nm인 것을 특징으로 하는 염료감응형 태양전지.
  6. 제1항에 있어서, 상기 고체 전해질은 나노 규모의 Ag을 포함하는 것을 특징으로 하는 염료감응형 태양전지.
  7. 제1항에 있어서, 상기 고체 전해질은 무기 나노 필러를 추가로 포함하는 것을 특징으로 하는 염료감응형 태양전지.
  8. 제7항에 있어서, 상기 무기 나노 필러는 Al2O3 또는 BaTiO3인 것을 특징으로 하는 염료감응형 태양전지.
  9. 제1항에 있어서, 상기 제1 계면접착층 및 제2 계면접착층의 두께는 10 내지 100nm인 것을 특징으로 하는 염료감응형 태양전지.
  10. 제1항에 있어서, 상기 광산란층을 형성하는 입자의 입경은 100 내지 500nm인 것을 특징으로 하는 염료감응형 태양전지.
  11. 제1항에 있어서, 상기 염료층은 루테늄계 염료, 크산텐계 염료, 시아닌계 염료, 포르피린계 염료, 및 안트라퀴논계 염료로 이루어진 군에서 선택된 하나 이상인 것을 특징으로 하는 염료감응형 태양전지.
  12. 제1기판을 준비하는 단계;
    상기 제1기판의 일면에 무기 산화물층을 형성하고 제1 전극을 형성하는 단계;
    상기 무기 산화물층의 상부에 무기 산화물층과의 계면접합을 용이하게 하는 제1 계면접합층을 형성하는 단계;
    상기 제1 계면접합층의 상부에 광흡수량을 증대시키기 위해 광산란층을 형성하는 단계;
    상기 광산란층 상부에 역전류를 방지하기 위해 제2 계면접합층을 형성하는 단계;
    상기 제2 계면접착층 상부에 염료층을 흡착시키는 단계;
    상기 염료층이 흡착된 제2 계면접착층 상부에, 고분자 용액을 전기방사장치를 통하여 전기방사하여 형성된 나노 규모의 고분자 섬유를 형성하고, 고분자 섬유에 전해질 용액을 도포한 다음 이를 증발시켜 고체 전해질을 형성하는 단계; 및
    상기 고체 전해질 상부에 제2전극 및 제2기판을 형성하는 단계;를 포함하는 염료감응형 태양전지의 제조방법.
  13. 제12항에 있어서, 상기 고체 전해질을 형성하는 단계는 고분자를 용매에 용해하여 고분자 용액을 형성하고 이를 전기방사부에 공급하여 방사하는 것을 특징으로 하는 염료감응형 태양전지의 제조방법.
  14. 제12항에 있어서, 상기 고체 전해질을 형성하는 단계에서 상기 고분자 용액이 나노 규모의 Ag을 포함하는 것을 특징으로 하는 염료감응형 태양전지.
  15. 제12항에 있어서, 상기 고체 전해질을 형성하는 단계에서 상기 고분자 용액이 무기 나노 필러를 추가로 포함하는 것을 특징으로 하는 염료감응형 태양전지.
  16. 제15항에 있어서, 상기 무기 나노 필러는 Al2O3 또는 BaTiO3인 것을 특징으로 하는 염료감응형 태양전지.
  17. 제12항에 있어서, 상기 전기방사장치는 나노섬유 형성을 위해 전압을 가해주는 전압공급부, 상기 고분자 용액을 규칙적으로 분사할 수 있게 해주는 용액이송부, 상기 용액이송부로부터 이송된 고분자 용액을 상기 전앙공급부로부터 공급된 전압을 이용하여 나노규모의 섬유로 만들어주는 전기방사부, 및 상기 전기방사부로부터 방사된 나노섬유를 수집하는 수집부를 구비하는 것을 특징으로 하는 염료감응형 태양전지의 제조방법.
  18. 제12항에 있어서, 상기 전기방사부는 방사 팁과 컬렉터 사이의 거리를 조절할 수 있는 것을 특징으로 하는 염료감응형 태양전지의 제조방법.
  19. 제12항에 있어서, 상기 고분자는 폴리비닐리덴플루오로-헥사플루오로프로필렌(PVDF-HFP), 폴리에틸렌옥사이드(polyethylene oxide: PEO), 폴리아크릴로니트릴(polyacrylonitrile: PAN), 폴리메틸 메타아크릴레이트(polymethyl methacrylate: PMMA) 및 폴리비닐알콜(polyvinylalcohol: PVA)로 이루어진 군에서 선택된 하나 이상인 것을 특징으로 하는 염료감응형 태양전지의 제조방법.
  20. 제12항에 있어서, 상기 제1 계면접착층 및 제2 계면접착층의 두께는 10 내지 100nm인 것을 특징으로 하는 염료감응형 태양전지의 제조방법.
  21. 제12항에 있어서, 상기 광산란층을 형성하는 입자의 입경은 100 내지 500nm인 것을 특징으로 하는 염료감응형 태양전지의 제조방법.
PCT/KR2009/004889 2008-08-29 2009-08-31 전기방사법에 의해 제조된 고분자 나노섬유를 포함하는 전해질 및 이를 이용한 고효율 염료감응형 태양전지 소자 WO2010024644A2 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/061,062 US9281131B2 (en) 2008-08-29 2009-08-31 Electrolyte-comprising polymer nanofibers fabricated by electrospinning method and high performance dye-sensitized solar cells device using same
AU2009286218A AU2009286218B2 (en) 2008-08-29 2009-08-31 Electrolyte-containing polymer nanofibers produced by an electrospin process, and high efficiency dye-sensitized solar cells using same
EP09810249.4A EP2323174A4 (en) 2008-08-29 2009-08-31 Electrolyte-containing polymer nanofibers produced by an electrospin process, and high efficiency dye-sensitized solar cells using same
CN2009801361038A CN102160191B (zh) 2008-08-29 2009-08-31 含电纺丝法生产的聚合物纳米纤维的电解质以及使用它的高效率染料敏化太阳能电池
JP2011524913A JP5690730B2 (ja) 2008-08-29 2009-08-31 エレクトロスピニングプロセスにより生成される電解質含有ポリマーおよびその電解質含有ポリマーを使用する高効率の色素増感太陽電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0085340 2008-08-29
KR1020080085340A KR100997843B1 (ko) 2008-08-29 2008-08-29 전기방사법에 의해 제조된 고분자 전해질을 포함한 염료감응형 태양전지 소자 및 이의 제조방법

Publications (2)

Publication Number Publication Date
WO2010024644A2 true WO2010024644A2 (ko) 2010-03-04
WO2010024644A3 WO2010024644A3 (ko) 2010-04-29

Family

ID=41722159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/004889 WO2010024644A2 (ko) 2008-08-29 2009-08-31 전기방사법에 의해 제조된 고분자 나노섬유를 포함하는 전해질 및 이를 이용한 고효율 염료감응형 태양전지 소자

Country Status (8)

Country Link
US (1) US9281131B2 (ko)
EP (1) EP2323174A4 (ko)
JP (1) JP5690730B2 (ko)
KR (1) KR100997843B1 (ko)
CN (1) CN102160191B (ko)
AU (1) AU2009286218B2 (ko)
TW (1) TWI476937B (ko)
WO (1) WO2010024644A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104078566A (zh) * 2014-07-02 2014-10-01 厦门大学 一种电纺制备聚合物薄膜太阳能电池活性层的方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102365750B (zh) * 2009-03-27 2014-03-12 惠普开发有限公司 具有本征二极管的可切换结
KR101078873B1 (ko) * 2010-10-22 2011-11-01 한국과학기술연구원 염료감응 태양전지용 상대 전극의 제작 방법
KR101286075B1 (ko) 2011-04-04 2013-07-15 포항공과대학교 산학협력단 이온층을 포함하는 염료 감응형 태양전지 및 그 제조 방법
TWI528382B (zh) * 2011-07-29 2016-04-01 碩禾電子材料股份有限公司 導電組合物及其製造方法
KR101347478B1 (ko) * 2012-01-31 2014-02-17 한국기술교육대학교 산학협력단 염료감응형 태양전지의 제조방법 및 제조장치
WO2013165604A1 (en) * 2012-05-02 2013-11-07 Massachusetts Institute Of Technology Electroprocessing of active pharmaceutical ingredients
KR101388598B1 (ko) * 2012-07-27 2014-04-24 포항공과대학교 산학협력단 다공성 고분자 박막으로 도포된 금속산화물 반도체전극 및 이를 이용한 염료감응 태양전지의 제조 방법
GB201216177D0 (en) * 2012-09-11 2012-10-24 Solarprint Ltd Dye sensitized solar cell (dssc) for indoor sensor energy harvesting device applications
KR101462072B1 (ko) * 2013-05-02 2014-11-17 서울대학교산학협력단 염료감응 태양전지용 3차원 구조의 광전극 및 이것의 제조방법
CN103390504B (zh) * 2013-07-23 2016-01-13 中国科学院长春应用化学研究所 纳米结构的宽禁带半导体的表面分子层缺陷的填充方法
US10069459B1 (en) * 2013-10-21 2018-09-04 University Of South Florida Solar cells having internal energy storage capacity
WO2015179461A1 (en) 2014-05-20 2015-11-26 Massachusetts Institute Of Technology Plasticity induced bonding
FR3039318B1 (fr) * 2015-07-24 2017-07-21 Commissariat Energie Atomique Procede de controle de cristallisation d’une couche par incorporation d’un element
US10886073B2 (en) * 2016-04-13 2021-01-05 King Saud University Flexible solar panel
CN106531446A (zh) * 2016-12-30 2017-03-22 湖北工程学院 用于染料敏化太阳能电池的准固态电解质及其制备方法
CN107039189B (zh) * 2017-04-21 2019-02-12 柳州博泽科技有限公司 一种基于双层复合结构的光阳极
CN107093519A (zh) * 2017-04-27 2017-08-25 深圳市创艺工业技术有限公司 一种太阳能供电的显示装置
CN107068409B (zh) * 2017-04-27 2019-01-08 江苏百福能源科技有限公司 一种包含优化结构光电极的染料敏化太阳能电池
TWI657591B (zh) * 2017-11-29 2019-04-21 住華科技股份有限公司 太陽能光學膜疊層及其製造方法
CN109988196A (zh) * 2018-02-15 2019-07-09 湖南辰砾新材料有限公司 (4-二茂铁乙炔基)苯胺改性富勒烯的制备方法与应用
CN113562690B (zh) * 2020-04-28 2022-05-31 清华大学 纳米操纵器
CN113005536A (zh) * 2021-03-11 2021-06-22 南开大学 一种新型纳米级塑料颗粒及其制备方法
CN113280838B (zh) * 2021-05-17 2022-10-11 武汉纺织大学 全纤维基自供电传感器
CN114289077B (zh) * 2021-12-23 2022-12-27 浙江大学 一种染料敏化二氧化钛复合纤维的制备方法
CN115385442B (zh) * 2022-05-25 2023-07-04 天津大学 复合功能性微纳米纤维载体及其制备方法、应用
KR20230175019A (ko) * 2022-06-22 2023-12-29 울산과학기술원 초음파 스프레이 증착 기술을 활용한 염료감응형 태양전지 TiO2 전극 및 이의 제조방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030065957A (ko) 2002-02-02 2003-08-09 한국전자통신연구원 폴리비닐리덴 플로라이드 함유 겔형 고분자 전해질을포함하는 염료감응 태양전지

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US312340A (en) * 1885-02-17 Apparatus for emptying and charging galvanic elements
US2469269A (en) * 1943-04-17 1949-05-03 Lear Inc Unitary mechanical actuator device
US5187993A (en) * 1991-08-12 1993-02-23 Addco Manufacturing, Inc. Actuator for remote control
JP2000357544A (ja) * 1999-04-16 2000-12-26 Idemitsu Kosan Co Ltd 色素増感型太陽電池
JP4415482B2 (ja) * 2000-03-28 2010-02-17 パナソニック電工株式会社 光電変換素子
JP2001273938A (ja) * 2000-03-28 2001-10-05 Hitachi Maxell Ltd 光電変換素子
US6453761B1 (en) * 2000-11-16 2002-09-24 Thomson Saginaw Ball Screw Company, L.L.C. Direct attachment electric motor operated ball nut and screw linear actuator
JP2002222968A (ja) * 2001-01-25 2002-08-09 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池
JP4010170B2 (ja) * 2002-04-11 2007-11-21 ソニー株式会社 光電変換素子の製造方法
JP2003303629A (ja) 2002-04-11 2003-10-24 Sony Corp 色素増感太陽電池
EP1511116A4 (en) 2002-06-04 2010-05-05 Nippon Oil Corp PHOTOELECTRIC TRANSFORMER
AU2003252477B2 (en) * 2002-07-09 2007-04-05 Fujikura Ltd. Solar cell
US7825330B2 (en) * 2002-07-09 2010-11-02 Fujikura Ltd. Solar cell
EP1536508B1 (en) 2002-08-13 2014-06-25 Bridgestone Corporation Improvement of dye-sensitized solar cell
JP4344120B2 (ja) * 2002-08-23 2009-10-14 シャープ株式会社 色素増感型太陽電池
JP4593566B2 (ja) * 2003-06-17 2010-12-08 ナノフィル カンパニー リミテッド 電気化学素子用複合膜、その製造方法及びこれを備えた電気化学素子
EP1513171A1 (en) * 2003-09-05 2005-03-09 Sony International (Europe) GmbH Tandem dye-sensitised solar cell and method of its production
KR101056440B1 (ko) 2003-09-26 2011-08-11 삼성에스디아이 주식회사 염료감응 태양전지
KR100543218B1 (ko) 2003-10-31 2006-01-20 한국과학기술연구원 전기방사된 초극세 산화티타늄 섬유로 이루어진 반도체전극을 가지는 염료감응형 태양전지 및 그 제조방법
US7615703B2 (en) * 2004-03-03 2009-11-10 Canon Kabushiki Kaisha Electrolyte composition, dye-sensitized solar cell and production method thereof
EP1589548A1 (en) * 2004-04-23 2005-10-26 Sony Deutschland GmbH A method of producing a porous semiconductor film on a substrate
KR101042959B1 (ko) 2004-06-03 2011-06-20 삼성에스디아이 주식회사 태양전지 및 그 제조방법
JP5029015B2 (ja) 2004-10-15 2012-09-19 株式会社ブリヂストン 色素増感型金属酸化物半導体電極及びその製造方法並びに色素増感型太陽電池
KR100657949B1 (ko) 2005-02-05 2006-12-14 삼성전자주식회사 원통형 연질 태양전지 및 그의 제조방법
JP2006236807A (ja) 2005-02-25 2006-09-07 Ngk Spark Plug Co Ltd 色素増感型太陽電池
US20060219294A1 (en) 2005-03-30 2006-10-05 Dai Nippon Printing Co., Ltd. Oxide semiconductor electrode, dye-sensitized solar cell, and, method of producing the same
JP2006331790A (ja) 2005-05-25 2006-12-07 Bridgestone Corp 色素増感型太陽電池用対向電極及び色素増感型太陽電池
JP2006331791A (ja) * 2005-05-25 2006-12-07 Bridgestone Corp 色素増感型太陽電池用セパレータ及びその利用
KR20070019868A (ko) 2005-08-11 2007-02-15 삼성에스디아이 주식회사 연료전지용 고분자 전해질막, 이를 포함하는 막-전극어셈블리, 이를 포함하는 연료전지 시스템, 및 이의제조방법
KR101156529B1 (ko) * 2005-10-18 2012-06-20 삼성에스디아이 주식회사 신규한 홀 전달물질 및 이를 이용한 고체전해질 및광전변환소자
KR100656361B1 (ko) * 2005-11-07 2006-12-13 한국전자통신연구원 타이타니아 나노입자가 충진된 고분자 전해질 용액과 이를포함하는 염료감응 태양전지
JP4523549B2 (ja) * 2006-01-18 2010-08-11 シャープ株式会社 色素増感太陽電池および色素増感太陽電池モジュール
JPWO2008007448A1 (ja) 2006-07-13 2009-12-10 帝人デュポンフィルム株式会社 色素増感太陽電池およびそのための電極と積層フィルム
US20080072960A1 (en) * 2006-09-26 2008-03-27 Mi-Ra Kim Phthalocyanine compound for solar cells
KR100825731B1 (ko) 2006-09-29 2008-04-29 한국전자통신연구원 염료감응 태양전지 및 그 제조 방법
JP2008091162A (ja) 2006-09-29 2008-04-17 Dainippon Printing Co Ltd 酸化物半導体電極、および、これを用いた色素増感型太陽電池セル
KR100854711B1 (ko) 2006-10-30 2008-08-27 한국과학기술연구원 차단층을 포함하는 염료감응 태양전지용 광전극 및 이의제조방법
KR100830946B1 (ko) 2006-11-15 2008-05-20 한국과학기술연구원 염료감응 태양전지 및 그 제조방법
KR100838158B1 (ko) 2007-01-04 2008-06-13 한국과학기술연구원 메조 다공성 금속산화물 박막을 포함하는 염료감응태양전지용 광전극 및 이의 제조방법
JP2008186669A (ja) 2007-01-29 2008-08-14 Mitsubishi Electric Corp 色素増感型太陽電池の製造方法
KR20080079894A (ko) 2007-02-28 2008-09-02 삼성에스디아이 주식회사 염료감응 태양전지 및 이의 제조방법
JP5140886B2 (ja) * 2007-05-07 2013-02-13 帝人株式会社 複合繊維構造体
KR100927212B1 (ko) 2007-07-24 2009-11-16 한국과학기술연구원 속빈 구 형태의 금속산화물 나노입자를 포함하는 염료감응태양전지용 광전극 및 이의 제조방법
KR100898280B1 (ko) 2007-07-30 2009-05-19 주식회사 솔켐 전기방사법에 의해 제조된 고분자 나노섬유를 포함하는고체 전해질 및 이를 이용한 염료감응형 태양전지
JP5175498B2 (ja) * 2007-07-31 2013-04-03 セイコーエプソン株式会社 光電変換素子、光電変換素子の製造方法および電子機器
KR100921476B1 (ko) 2007-08-29 2009-10-13 한국과학기술연구원 전기방사에 의한 금속산화물 나노입자를 포함하는금속산화물층을 구비한 염료감응형 태양전지 및 그 제조방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030065957A (ko) 2002-02-02 2003-08-09 한국전자통신연구원 폴리비닐리덴 플로라이드 함유 겔형 고분자 전해질을포함하는 염료감응 태양전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2323174A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104078566A (zh) * 2014-07-02 2014-10-01 厦门大学 一种电纺制备聚合物薄膜太阳能电池活性层的方法

Also Published As

Publication number Publication date
KR100997843B1 (ko) 2010-12-01
TW201021223A (en) 2010-06-01
AU2009286218A1 (en) 2010-03-04
CN102160191B (zh) 2013-09-25
EP2323174A2 (en) 2011-05-18
WO2010024644A3 (ko) 2010-04-29
KR20100026364A (ko) 2010-03-10
US20110220205A1 (en) 2011-09-15
CN102160191A (zh) 2011-08-17
AU2009286218B2 (en) 2014-11-20
JP5690730B2 (ja) 2015-03-25
US9281131B2 (en) 2016-03-08
EP2323174A4 (en) 2017-09-20
TWI476937B (zh) 2015-03-11
JP2012501518A (ja) 2012-01-19

Similar Documents

Publication Publication Date Title
WO2010024644A2 (ko) 전기방사법에 의해 제조된 고분자 나노섬유를 포함하는 전해질 및 이를 이용한 고효율 염료감응형 태양전지 소자
Huang et al. Understanding and countering illumination-sensitive dark current: toward organic photodetectors with reliable high detectivity
WO2014200312A1 (ko) 유기태양전지 및 이의 제조방법
Castro-Hermosa et al. Perovskite solar cells on paper and the role of substrates and electrodes on performance
WO2014109610A1 (ko) 고효율 무-유기 하이브리드 태양전지의 제조 방법
WO2015163679A1 (ko) 유-무기 하이브리드 태양 전지
WO2011102673A2 (ko) 전고체상 이종 접합 태양전지
WO2017105053A1 (ko) 페로브스카이트 태양전지의 모노리식 타입 모듈 및 이의 제조 방법
WO2011102677A2 (ko) 나노구조 무기-유기 이종 접합 태양전지의 제조방법
KR101544317B1 (ko) 반도체 나노입자를 포함하는 평면 페로브스카이트 태양전지 및 그의 제조 방법
WO2014200309A1 (ko) 유기태양전지 및 이의 제조방법
WO2017073974A1 (ko) 페로브스카이트 기반 광전변환소자의 재생방법
WO2014003294A1 (ko) 페로브스카이트 기반 메조다공 박막 태양전지 제조 기술
WO2015167230A1 (ko) 태양전지 및 이의 제조방법
WO2018012825A1 (ko) 유무기 복합 태양전지
Xiao et al. Room temperature ferroelectricity of hybrid organic–inorganic perovskites with mixed iodine and bromine
WO2015167225A1 (ko) 유기태양전지 및 이의 제조방법
Duan et al. Surface modification of SnO2 blocking layers for hysteresis elimination of MAPbI3 photovoltaics
WO2013012271A2 (ko) 태양전지용 광흡수층의 제조방법, 광흡수층을 포함하는 태양전지 및 이의 제조방법
KR101045849B1 (ko) 고효율의 플렉시블 염료감응형 태양전지 및 이의 제조방법
WO2021162215A1 (ko) 페로브스카이트 용액, 이를 이용한 페로브스카이트 막의 제조방법 및 이를 이용한 페로브스카이트 태양전지의 제조방법
KR100898280B1 (ko) 전기방사법에 의해 제조된 고분자 나노섬유를 포함하는고체 전해질 및 이를 이용한 염료감응형 태양전지
WO2016209005A1 (ko) 그래핀을 전도성 투명전극으로 사용하는 페로브스카이트 기반 태양전지
WO2015163658A1 (ko) 적층형 유기태양전지
WO2022035239A1 (ko) 페로브스카이트 광전 소자의 제조 방법 및 이를 통하여 제조된 페로브스카이트 광전 소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980136103.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09810249

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2009810249

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011524913

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009286218

Country of ref document: AU

Date of ref document: 20090831

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13061062

Country of ref document: US