WO2017073974A1 - 페로브스카이트 기반 광전변환소자의 재생방법 - Google Patents

페로브스카이트 기반 광전변환소자의 재생방법 Download PDF

Info

Publication number
WO2017073974A1
WO2017073974A1 PCT/KR2016/011983 KR2016011983W WO2017073974A1 WO 2017073974 A1 WO2017073974 A1 WO 2017073974A1 KR 2016011983 W KR2016011983 W KR 2016011983W WO 2017073974 A1 WO2017073974 A1 WO 2017073974A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
perovskite
layer
conversion device
hole transport
Prior art date
Application number
PCT/KR2016/011983
Other languages
English (en)
French (fr)
Inventor
정현석
김병조
김동회
권승리
이동건
진영운
박소연
Original Assignee
재단법인 멀티스케일 에너지시스템 연구단
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 멀티스케일 에너지시스템 연구단, 성균관대학교산학협력단 filed Critical 재단법인 멀티스케일 에너지시스템 연구단
Priority to JP2018522529A priority Critical patent/JP6997705B2/ja
Priority to US15/771,160 priority patent/US10847324B2/en
Publication of WO2017073974A1 publication Critical patent/WO2017073974A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/58Heterocyclic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a regeneration method of a photoelectric conversion device including a perovskite light absorption layer.
  • photoelectric conversion materials are light absorbers that absorb light energy and convert it into electrical energy.
  • Solar cell a representative device using photoelectric conversion material, is a tool for producing electricity by using sunlight, which is an infinite energy source, and is already widely used in our lives.
  • Silicon materials used in silicon solar cells are representative photoelectric conversion materials. Recently, studies on organic-inorganic hybrid perovskite devices using light absorbers having perovskite structures have been actively conducted.
  • a solar cell using a perovskite light absorber has attracted attention as a next-generation solar cell because not only has excellent photoelectric conversion efficiency but also has a lower process cost compared to other solar cells such as silicon solar cells and organic solar cells.
  • perovskite solar cells have to be disposed of at the end of their life due to deterioration in performance, which causes economic losses by discarding substrate components such as electron collectors such as TiO 2 and transparent electrodes such as FTO.
  • substrate components such as electron collectors such as TiO 2 and transparent electrodes such as FTO.
  • the AMX3 structure contains harmful substances such as Pb, which are mainly used in place of the metal element (M), and thus additional costs are required to deal with them.
  • the present invention is to provide a method for recovering and recycling a substrate from a perovskite photoelectric conversion device that has reached the end of its life or has already been used.
  • the present invention is to provide a photoelectric conversion device having a high efficiency despite the manufacture of the substrate recovered from the perovskite photoelectric conversion device at the end of life.
  • the present invention provides a method for regenerating a perovskite photoelectric conversion device, comprising a step of immersing the waste module of the perovskite photoelectric conversion device in a washing solvent for a time that satisfies the condition of the following equation (1). .
  • y immersion time (min)
  • x 1 is the dipole moment of the washing solvent
  • a1 is a constant of 700 to 850
  • b1 is a constant of 4 to 6.
  • the dipole moment of the washing solvent may be 1.5 or more.
  • the immersion time may satisfy the relationship between pH (x 2 ) of the washing solvent and the following Equation 2.
  • y is the immersion time (min)
  • x 2 is the pH of the washing solvent
  • c is a constant from 40 to 50
  • d is a constant from about 0.3 to 0.9.
  • the photoelectric conversion device may include a light absorption layer containing an organometallic halide, and the washing solvent may be capable of reacting with the organometallic halide and the SN 2 reaction.
  • the perovskite photoelectric conversion device may be a transparent electrode layer, a hole blocking layer, an electron collecting layer, a light absorption layer, a hole transport layer and a metal electrode layer sequentially formed on a transparent substrate.
  • the light absorbing layer, the hole transport layer, the metal electrode layer or a combination thereof may be removed by immersing the waste module in the cleaning solution, and the substrate having the transparent electrode layer and the electron collecting layer may be recovered.
  • the method may further include forming a light absorption layer, a hole transport layer, a metal electrode layer, or a combination thereof on the recovered substrate.
  • the present invention also provides a perovskite photoelectric conversion device regenerated by the above method.
  • the present invention improves the existing method of discarding the perovskite photoelectric conversion element at the end of life in the form of a module, to remove the perovskite light absorber, hole transport layer, metal electrode, etc. from the closed module of the photoelectric conversion element By recovering the to be able to re-fabricate at the initial high photoelectric conversion efficiency level can reduce the production cost of the perovskite photoelectric conversion device.
  • 1 is a cross-sectional view illustrating a general structure of a solar cell of perovskite.
  • 3 and 4 are a cross-sectional view and a plan view showing a structure of a perovskite solar cell according to an embodiment, respectively.
  • 5 and 6 are a cross-sectional view and a plan view showing the structure of a solar cell after washing according to the present invention, respectively.
  • FIG. 9 and 10 are photographs and result graphs showing an experimental procedure according to Test Example 2.
  • FIG. 11 is a photograph of a perovskite solar cell and a solar cell substrate after washing according to Examples 1 to 3 of the present invention.
  • FIG. 13 is an EDS (Energy-dispersive X-ray spectroscopy) analysis result for confirming the presence of impurities and components in the solar cell substrate washed according to Example 3 of the present invention.
  • the term “combination of these” included in the expression of the makushi form means one or more mixtures or combinations selected from the group consisting of the constituents described in the expression of the makushi form, wherein the constituents It means to include one or more selected from the group consisting of.
  • module' refers to a structure having a perovskite light absorption layer between at least the first and second electrodes
  • the term 'closed module' refers to a module which is difficult to use any more because its life is almost over. Refers to.
  • the substrate refers to a structure in which a conductive layer is formed on at least a rigid or flexible substrate, and further, a hole blocking layer, an electron collecting layer, or both may be formed. It does not contain a metal electrode layer or a light absorption layer.
  • the dye-sensitized solar cell 100 may have a sandwich structure in which two electrodes, that is, the first electrode 20 and the second electrode 50 are bonded to each other, but may not be limited thereto.
  • the first electrode 20 may be represented as a working electrode or a semiconductor electrode, but may not be limited thereto.
  • the first electrode 20 may be formed on the transparent substrate 10.
  • a light absorption layer 30 may be formed on the first electrode 20, and the light absorption layer 30 may include an organometallic halide perovskite in which electrons are excited due to absorption of visible light. .
  • a hole transport layer 40 may be formed on the light absorption layer 30, and a second electrode 50 may be formed on the hole transport layer 40.
  • the hole transport layer 40 may be formed to reduce the oxidized light absorbing layer 30, but may not be limited thereto.
  • the hole transport layer 40 may not be limited to being formed in one plane on the light absorption layer 30.
  • the perovskite solar cell when sunlight is incident, photons are first absorbed by the perovskite in the light absorption layer 30, and thus the perovskite is excited in the ground state.
  • the electron transitions to a state to form an electron-hole pair, and the electrons in the excited state may be injected into the conduction band of the semiconductor fine particle interface.
  • the injected electrons are transferred to the first electrode 20 through an interface, and then moved to the second electrode 50, which is a counter electrode facing the first electrode 20 through an external circuit.
  • the perovskite oxidized as a result of the electron transfer is reduced by the oxidation-reduction couple ions in the hole transport layer 40, and the oxidized ions of the second electrode 50 are formed to achieve charge neutrality.
  • the solar cell can be operated by causing a reduction reaction with electrons reaching the interface.
  • the first electrode 20 is also referred to as a transparent electrode, indium tin oxide (ITO), fluorine tin oxide (FTO), ZnO-Ga 2 O 3 , ZnO It may include, but is not limited to, a material selected from the group consisting of -Al 2 O 3 , tin oxide, zinc oxide, and combinations thereof.
  • the transparent electrode may be used without particular limitation as long as it has a material having conductivity and transparency.
  • the transparent substrate 10 may use a glass substrate or a plastic substrate.
  • Plastic substrates include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polypropylene (PP), and polyimide. : PI), tri-acetyl cellulose (TAC), and combinations thereof, but may be selected from the group consisting of, but is not limited thereto.
  • PVD physical vapor deposition
  • the light absorption layer 30 includes an organometallic halide perovskite represented by the following formula (1) as a light absorber.
  • A is an alkyl group of C 1-20, an alkyl group of C 1-20 substituted by an amine group, or an alkali metal, an alkaline earth metal metal, and M is a transition metal such as Pb, Sn, Ti, Nb, Zr, Ce, or after transition One selected from the group consisting of metals and combinations thereof, X is a halogen atom.
  • the perovskite represented by Formula 1 may have a structure as shown in FIG. 2 and be prepared from MX 2 and AX, but may not be limited thereto.
  • the perovskite represented by Chemical Formula 1 is an organic-inorganic composite material having an AMX 3 structure, wherein R is a C 1-20 alkyl group substituted with an C 1-20 alkyl group or an amine group, or Li, Na, K, Rb. , Alkali metals such as Cs, Fs, alkaline earth metals, transition metals such as Pb, Sn, Ti, Nb, Zr, Ce, post-transition metals and combinations thereof, and halogen in X Corresponds to The alkyl group may have 1 to 20 carbon atoms, but may not be limited thereto.
  • the carbon number may be about 1 to about 20, about 1 to about 10, about 1 to about 6, about 6 to about 20, about 6 to about 10, or about 10 to about 20, but is not limited thereto.
  • the halogen may be F, Br, Cl, or I, but may not be limited thereto.
  • the dye represented by Formula 1 may be CH 3 NH 3 PbI 3 , but may not be limited thereto.
  • the dye represented by Chemical Formula 1 has an excellent light harvesting effect even in a thin film because the absorption coefficient is higher in an index unit than a general organic dye. Thus, when the dye represented by Chemical Formula 1 is used, the dye is sensitive. Even if the solar cell has a thin light absorption layer, high energy conversion efficiency may be achieved, but may not be limited thereto.
  • the hole transport layer 40 may include a hole transport monomolecular material or a hole transport polymer material, but may not be limited thereto.
  • a hole transport monomolecular substance inorganic materials such as NiO or CuSCN or spiro-MeOTAD [2,2'7,7'-tetrakis- (N, N-di-p-methoxyphenyl-amine) -9,9 '-spirobifluorene] may be used, and P3HT [poly (3-hexylthiophene)] may be used as the hole transport polymer material, but may not be limited thereto.
  • the hole transport layer may further include all selected from the group consisting of Li-based dopants, Co-based dopants, and combinations thereof as a doping material, but may not be limited thereto.
  • the hole transport layer may further include an additive such as tBP, but may not be limited thereto.
  • tBP a mixture of spiro-MeOTAD, tBP, and Li-TFSI may be used as a material constituting the hole transport layer, but may not be limited thereto.
  • hole transport may be efficiently performed even in a thick film, but is not limited thereto. Can be.
  • the hole transport material included in the hole transport layer 40 has a short hole transport property, it is difficult to apply when the thickness of the light absorbing layer included in the solar cell is thick, but includes a conventional ruthenium metal complex.
  • the light absorbing layer is thinner, there is a problem in that the current density is lowered to increase the energy conversion efficiency, so that the light absorbing layer has difficulty in grafting with the hole transport layer.
  • using a perovskite light absorbing layer having a high extinction coefficient instead of the ruthenium metal complex can secure a high current density and a high energy conversion efficiency even if the thickness thereof is thin, to be combined with the hole transport layer. There is an advantage to fit.
  • the second electrode 50 is from the group consisting of Pt, Au, Ni, Cu, Ag, In, Ru, Pd, Rh, Ir, Os, C, conductive polymer, and combinations thereof It may include one selected, but may not be limited thereto.
  • the second electrode that is, the counter electrode, any conductive metal material may be used without particular limitation. If the conductive material is formed only at a portion facing the first electrode, the conductive electrode may be used, but the present invention is not limited thereto. have.
  • the present invention relates to a method for efficiently recovering a substrate from a closed module of a perovskite-based photoelectric conversion device.
  • the cleaning capacity of the perovskite photoelectric conversion device waste module is different according to the dipole moment and pH of the cleaning solvent, and as a result, an optimal process time can be derived.
  • the present invention includes a method for regenerating a perovskite photoelectric conversion device waste module, comprising the step of immersing the waste module of the perovskite photoelectric conversion device in a washing solvent for a time satisfying the condition of Equation 1 below. to provide.
  • y is the dipping time (min)
  • x 1 is the dipole moment of the washing solvent
  • a is a constant of 700 to 850
  • b is a constant of 4 to 6.
  • a may be a constant of 750 to 800, b may be a constant of 4.5 to 5.5.
  • the immersion time may satisfy the relationship between pH (x 2 ) of the washing solvent and the following Equation 2.
  • y is the immersion time (min)
  • x 2 is the pH of the washing solvent
  • c is a constant from 40 to 50
  • d is a constant from about 0.3 to 0.9.
  • c may be a constant of 40 to 45
  • d may be a constant of 0.4 to 0.8.
  • the photoelectric conversion element as described above includes a light-absorbing layer containing an organic metal halide
  • the cleaning solvent may be a possible the organic metal halide and S N 2 reaction.
  • the dipole moment of the washing solvent may be 1.5 or more.
  • a solvent having a large dipole moment may have a partial positive charge ( ⁇ + ) and a partial negative charge ( ⁇ ⁇ ) charge as follows.
  • the perovskite cation component is surrounded by the partial negative charge ( ⁇ ⁇ ) of the washing solvent and is not free.
  • the halogen component of the perovskite may be free without binding to the partial positive charge ( ⁇ + ) of the washing solvent by the steric hindrance of the washing solvent.
  • the S N 2 reaction of the perovskite washing solvent is smooth as shown below, and the halogen atom (X) can be easily removed.
  • FIG. 3 schematically shows a cross section of the structure of a perovskite solar cell, which is a representative perovskite photoelectric conversion element.
  • FIG. 4 is a plan view of the perovskite solar cell shown in FIG. 3.
  • the transparent substrate 10, the transparent electrode 20, the light absorbing layer 30, the hole transport layer 40 and the metal electrode 50 are included, and the electron collecting layer between the transparent electrode 20 and the light absorbing layer 30. 60 and the hole blocking layer 70 are formed.
  • the electron collecting layer 60 is for efficiently receiving the electrons excited in the perovskite light absorbing layer to move to the transparent electrode.
  • the electron moving distance of the light absorbing layer is short, so that the generated electrons reach the transparent electrode.
  • a material having a relatively long electron moving distance is used to transfer electrons to the transparent electrode while reducing recombination.
  • the conduction band should be lower than the conduction band of the perovskite photoelectric conversion element, so that electrons can move, and metal oxides such as TiO2 and ZnO (ceramic materials)
  • a conductive polymer such as PCBM may be used.
  • a high porosity form is advantageous in which electrons can easily increase the electron collection layer / perovskite contact area, and a transparent electron collection layer is advantageous to send sufficient light to the light absorbing layer.
  • the hole blocking layer 70 is basically used to prevent the short-circuit from occurring because the valence band, the hole transport layer, or the second electrode of the light absorption layer is in direct contact with the transparent electrode. Prevents recombination with holes.
  • the form covering the transparent electrode densely in a thin form is effective so as not to inhibit the generated electrons from moving to the transparent electrode. Generally TiO 2 or ZnO is used.
  • the light absorbing layer, the hole transport layer, the metal electrode layer or a combination thereof are removed by immersing the waste module in the cleaning solution under a predetermined condition, and the substrate having the transparent electrode layer and the electron collecting layer can be recovered. have.
  • 5 and 6 are schematic cross-sectional and plan views of the module after cleaning. 3 and 4, after washing, the light absorbing layer 30, the hole transport layer 40, and the metal electrode layer 50 are removed, and the transparent electrode layer 20, the hole blocking layer ( 70) and only the electron collecting layer 60 remains.
  • the washed substrate may be rinsed with distilled water or ethanol and then subjected to a drying process.
  • the rinsing process or the drying process can be applied without limitation as long as it is generally used in the related industry, and thus detailed description thereof is omitted.
  • the substrate recovered as described above may be regenerated by a photoelectric conversion device through a process of forming a light absorption layer, a hole transport layer, a metal electrode layer, or a combination thereof in a subsequent process.
  • FTO glasses (Pilkington, TEC-8, 8 ⁇ / sq) were washed in acetone, ethanol and distilled water for 20 minutes using ultrasonic waves. The FTO substrate was then subjected to spin coating using a 0.3 M Ti (IV) bis (ethylacetoacetateto) -diisopropoxide (Aldirch) / 1-butanol (Aldrich) solution.
  • a transparent conductive substrate including a hole blocking layer was prepared by coating and heat treatment at 500 ° C. for 30 minutes.
  • the hole transport material comprises about 0.17 M spiro-MeOTAD, about 0.198 M tBP (4-tert-Butylpyridine), and about 64 mM Li-TFSI (Bis (trifluoromethane) sulfonimide lithium salt)
  • Li-TFSI Bis (trifluoromethane) sulfonimide lithium salt
  • a hole transport solution was prepared.
  • Li-TFSI was first dissolved in acetonitrile at a concentration of 0.1977 g / mL and then added in solution.
  • the prepared hole transport solution was spin coated on the light absorbing layer to form a hole transport layer.
  • the electrode layer was formed by depositing about 30 nm or more of gold (pressure of 10 ⁇ 6 torr or less) using a thermal evaporator on the hole transport layer.
  • the manufactured perovskite solar cell was used until the end of life.
  • the solar cell prepared in Preparation Example 1 was immersed in the solvent of Table 1 at room temperature (25 ° C) and then shaken (150 rpm) to measure the time at which the perovskite light absorbing layer, the hole transport layer, and the metal electrode layer were completely dissolved.
  • the time point at which the perovskite was completely dissolved was based on when the transmittance of the substrate was maintained at not less than 95%. 7 shows the state at the time point 20 seconds after washing and after the start of washing.
  • y immersion time (min)
  • x 1 is the dipole moment of the cleaning solvent
  • a1 is about 787
  • b1 is about 4.9.
  • Test Example 2- Check washing characteristics according to pH of washing solution
  • y immersion time (min)
  • x 2 pH of washing solvent
  • c1 is about 43
  • d1 is about 0.6.
  • the end-of-life perovskite solar cell prepared in Preparation Example was immersed in gamma butyrolactone (GBL), gamma butyrolactone / dimethylsulfoxide mixed solution (GBL / DMSO volume ratio 7/3), and dimethylformamide (DMF).
  • GBL gamma butyrolactone
  • GL / DMSO volume ratio 7/3 gamma butyrolactone / dimethylsulfoxide mixed solution
  • DMF dimethylformamide
  • the washing process was immersed in the vibration condition (150rpm) until the perovskite light absorbing layer, the hole transport layer and the metal electrode layer completely dissolved, rinsed with distilled water and heated at 100 °C or more for 30 minutes to remove the solution.
  • FIG. 13 shows the results of energy-dispersive X-ray spectroscopy (EDS) analysis to confirm the presence of impurities and components remaining on a substrate washed with a DMF solution.
  • the total oxygen, titanium and tin atoms were 95.95% by weight and 93.39% by atom, indicating almost no impurities.
  • a light absorbing layer, a hole transport layer, and a metal electrode layer were formed on the substrates recovered in Examples 1 to 3 in the same manner as in Preparation Example to fabricate a perovskite solar cell.
  • photocurrent-voltage characteristics were measured.
  • the measurement was performed under standard conditions of about 1.5 G AM and 1 solar condition (100 mW / cm 2 ) using a solar simulator.
  • the photocurrent density (Jsc), the photovoltage (Voc), the layer density coefficient (FF), and the photoelectric conversion efficiency (PCE) were as shown in Figs. From the above results, it can be seen that various characteristics including photoelectric conversion efficiency before and after washing were improved.
  • the present invention improves the existing method of discarding the perovskite photoelectric conversion element at the end of life in the form of a module, to remove the perovskite light absorber, hole transport layer, metal electrode, etc. from the closed module of the photoelectric conversion element By recovering the to be able to re-fabricate at the initial high photoelectric conversion efficiency level can reduce the production cost of the perovskite photoelectric conversion device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Photovoltaic Devices (AREA)
  • Processing Of Solid Wastes (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)

Abstract

본 발명은 페로브스카이트 광전변환소자 폐모듈을 소정 조건 하에 세척 용액에 침지하여 페로브스카이트 광흡수체, 정공 이동층, 금속 전극 등을 효과적으로 제거할 수 있는 방법에 관한 것으로서, 본 발명에 따르면 폐 모듈로부터 기판을 회수하여 초기의 높은 광전 변환 효율 수준으로 재 제작이 가능하다.

Description

페로브스카이트 기반 광전변환소자의 재생방법
본 출원은 2015.10.30.자 한국 특허출원 제10-2015-0152460호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 페로브스카이트 광흡수층을 포함하는 광전변환소자의 재생 방법에 관한 것이다.
일반적으로 광전변환물질은 빛에너지 흡수해 전기에너지로 변환시키는 광흡수체이다. 광전변환물질을 사용하는 대표적인 소자인 태양전지는 무한한 에너지원인 태양광을 이용해 전기를 생산하는 도구로서, 이미 우리 생활에 널리 이용되고 있다. 실리콘 태양전지에 사용되는 실리콘 소재가 대표적 광전변환물질이다. 최근 페로브스카이트 구조를 가진 광흡수체를 적용한 유-무기 복합 페로브스카이트 소자에 대한 연구가 활발히 진행되고 있다.
특히, 페로브스카이트 광흡수체를 사용한 태양전지는 우수한 광전변환 효율뿐만 아니라 실리콘 태양전지, 유기 태양전지와 같은 기타 태양전지와 비교하여 낮은 공정 단가를 가지므로 차세대 태양전지로 주목을 받고 있다.
하지만 페로브스카이트 태양전지는 성능 저하로 인해 수명이 다할 경우 기판을 폐기 처분해야 하는데 이 과정에서 TiO2와 같은 전자수집체, FTO와 같은 투명 전극 등 기판 구성 물질이 버려지면서 경제적 손실을 가져올 뿐 아니라 AMX3 구조에서 금속원소(M) 자리에 주로 사용되는Pb와 같은 유해물질을 포함하고 있어 이를 처리하는데 추가 비용이 소요된다.
따라서 페로브스카이트 광흡수체를 사용한 광전변환소자의 상업적 이용을 위해서는 소자에 사용한 소재 재활용을 통한 단가 절감 및 Pb와 같은 유해 물질의 수거 비용 절감이 필요한 실정이다.
이에 본 발명은 수명이 다했거나 이미 사용한 페로브스카이트 광전변환소자로부터 기판을 회수하여 재활용할 수 있는 방법을 제공하고자 한다.
또한 본 발명은 수명이 다한 페로브스카이트 광전변환소자로부터 회수된 기판을 재사용하여 제조되었음에도 불구하고 효율이 우수한 광전변환소자를 제공하고자 한다.
본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명은 페로브스카이트 광전변환소자의 폐모듈을 하기 수학식 1의 조건을 만족하는 시간 동안 세척 용매에 침지하는 단계를 포함하는, 페로브스카이트 광전변환소자 폐모듈의 재생 방법을 제공한다.
[수학식 1]
y=a1x1 -b1
상기 식에서, y는 침지시간 (min), x1 은 세척용매의 쌍극자 모멘트, a1은 700 내지 850의 상수, b1은 4 내지 6의 상수임.
일 구현예에 따르면, 상기 세척 용매의 쌍극자 모멘트가 1.5 이상인 것일 수 있다.
또한, 상기 침지시간은 세척용매의 pH (x2)와 하기 수학식 2의 관계를 만족하는 것일 수 있다.
[수학식 2]
y=cedx2
상기 식에서, y는 침지시간(min), x2 는 세척용매의 pH, c는 40 내지 50 의 상수이고, d는 약 0.3 내지 0.9의 상수임.
또한, 상기 광전변환소자는 유기금속할라이드를 함유하는 광흡수층을 구비하며, 상기 세척용매는 상기 유기금속할라이드와 SN2 반응이 가능한 것일 수 있다.
일 구현예에 따르면, 상기 페로브스카이트 광전변환소자는 투명기판 상에 투명전극층, 정공차단층, 전자수집층, 광흡수층, 정공이동층 및 금속전극층이 순차적으로 형성되어 있는 것일 수 있다.
일 구현예에 따르면, 상기 세척 용액에 상기 폐모듈을 침지함으로써 광흡수층, 정공이동층, 금속전극층 또는 이들의 조합을 제거하고 투명전극층 및 전자수집층을 구비한 기판을 회수할 수 있다.
또한, 일 구현예에 따르면, 상기 회수된 기판에 광흡수층, 정공이동층, 금속전극층 또는 이들의 조합을 형성하는 단계를 더 포함할 수 있다.
본 발명은 또한, 상기 방법에 의해 재생된 페로브스카이트 광전변환소자를 제공한다.
본 발명은 수명이 다된 페로브스카이트 광전변환소자를 모듈형태로 폐기하던 기존 방식을 개선하여, 광전변환소자의 폐모듈에서 페로브스카이트 광흡수체, 정공 이동층, 금속 전극 등을 제거하고 기판을 회수하여 초기의 높은 광전 변환 효율 수준으로 재 제작할 수 있도록 함으로써 페로브스카이트 광전변환소자의 생산 단가를 낮출 수 있다.
도 1은 페로브스카이트의 태양전지의 일반적인 구조를 예시한 단면도이다.
도 2는 유기금속할라이드 페로브스카이트 구조를 개략적으로 도시한다.
도 3 및 도 4는 각각 일 실시예에 따른 페로브스카이트 태양전지의 구조를 도시한 단면도 및 평면도이다.
도 5 및 도 6은 각각 본 발명에 따라 세척한 후 태양전지의 구조를 도시한 단면도 및 평면도이다.
도 7 및 도 8은 시험예 1에 따른 실험과정을 보여주는 사진 및 결과 그래프이다.
도 9 및 도 10은 시험예 2에 따른 실험과정을 보여주는 사진 및 결과 그래프이다.
도 11은 본 발명 실시예 1 내지 3에 따라 세척 전 페로브스카이트 태양전지 및 세척 후 태양전지 기판의 사진이다.
도 12는 본 발명 실시예 1 내지 3 에 따라 세척 후 태양전지 기판에 남은 불순물 유무 확인 및 성분 확인을 위한 X선 회절 결과이다.
도 13은 본 발명 실시예 3에 따라 세척된 태양전지 기판에 남은 불순물 유무 확인 및 성분 확인을 위한 EDS (Energy-dispersive X-ray spectroscopy) 분석 결과 이다.
도 14 내지 16은 본 발명 실시예 4에서 제작한 태양전지의 전류 밀도-전압 곡선 및 광전변환효율 측정 결과이다.
아래에서는 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 “연결”되어 있다고 할 때, 이는 “직접적으로 연결”되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 “전기적으로 연결”되어 있는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부재가 다른 부재 “상에” 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. 본원 명세서 전체에서 사용되는 정도의 용어 “약”, “실질적으로” 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 본원 명세서 전체에서 사용되는 정도의 용어 “~(하는) 단계” 또는 “~의 단계”는 “~ 를 위한 단계”를 의미하지 않는다.
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 “이들의 조합”의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.
본원 명세서 전체에서, “A 및/또는 B”의 기재는 “A 또는 B, 또는 A 및 B”를 의미한다.
본원 명세서 전체에서 '모듈'이란 적어도 제1 및 제2 전극 사이에 페로브스카이트 광흡수층을 갖는 구조를 지칭하며, '폐모듈'이란 사용 후 수명이 거의 다하여 더 이상 사용하기가 곤란한 상태인 모듈을 지칭한다.
'기판'이란 적어도 단단한(rigid) 하거나 유연한(flexible) 기판 상에 도전층이 형성된 구조를 지칭하며, 추가로 정공차단층이나 전자수집층, 또는 이들 모두가 형성되어 있을 수 있다. 금속전극층이나 광흡수층을 포함하지 않는 상태이다.
이하, 첨부된 도면을 참조하여 본원의 구현예 및 실시예를 상세히 설명한다. 그러나, 본원이 이러한 구현예 및 실시예와 도면에 제한되지 않을 수 있다.
도 1은 대표적인 광전변환소자 중의 하나인 태양전지의 구조를 나타낸 것이다. 도 1을 참조하면, 염료감응 태양전지(100)는 두 개의 전극, 즉 제 1 전극(20)과 제 2 전극(50)이 면 접합된 샌드위치 구조를 가질 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 제 1 전극(20)은 작업 전극(working electrode) 또는 반도체 전극으로 표현될 수 있으나, 이에 제한되지 않을 수 있다. 상기 제 1 전극(20)은 투명 기판(10) 상에 형성될 수 있다. 또한, 상기 제 1 전극(20) 상에는 광흡수층(30)이 형성될 수 있으며, 상기 광흡수층(30)에는 가시광선 흡수로 인해 전자가 여기되는 유기금속할라이드 페로브스카이트가 포함되어 있을 수 있다. 상기 광흡수층(30) 상에는 정공이동층(hole transport material)(40)이 형성되어 있으며, 상기 정공이동층(40) 상에는 제 2 전극(50)이 형성되어 있을 수 있다. 상기 정공이동층(40)은 산화된 상기 광흡수층(30)을 환원시키기 위해 형성되는 것일 수 있으나, 이에 제한되지 않을 수 있다. 또한, 상기 정공이동층(40)은 상기 광흡수층(30) 상에 하나의 평면으로 형성되는 것에 제한되지 않을 수 있다.
상기 페로브스카이트 태양전지의 작동 원리를 예시적으로 설명하면, 태양광이 입사되면 광양자가 먼저 광흡수층(30) 내의 페로브스카이트에 흡수되고, 이에 따라 상기 페로브스카이트는 기저 상태에서 여기 상태로 전자 전이하여 전자-정공쌍을 만들며, 상기 여기 상태의 전자는 반도체 미립자 계면의 전도띠(conduction band)에 주입될 수 있다. 상기 주입된 전자는 계면을 통해 상기 제 1 전극(20)으로 전달되고, 이후 외부 회로를 통해 상기 제 1 전극(20)과 대향하고 있는 상대 전극인, 제 2 전극(50)으로 이동할 수 있다. 한편, 전자 전이 결과 산화된 페로브스카이트는 정공이동층(40) 내의 산화-환원 커플 이온에 의해 환원되고, 산화된 상기 이온은 전하 중성(charge neutrality)을 이루기 위해 상기 제 2 전극(50)의 계면에 도달한 전자와 환원 반응을 일으킴으로써 상기 태양전지가 작동할 수 있다.
일 구현예에 따르면, 상기 제1전극 (20)은 투명전극이라고도 하며, 인듐 틴 옥사이드(indium tin oxide: ITO), 플루오린 틴 옥사이드(fluorine tin oxide: FTO), ZnO-Ga2O3, ZnO-Al2O3, 주석계 산화물, 산화아연, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 물질을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 상기 투명 전극은 전도성 및 투명성을 가지는 물질이라면 특별히 제한 없이 사용할 수 있다. 예를 들어, 인듐 틴 옥사이드(indium tin oxide: ITO), 플루오린 틴 옥사이드(fluorine tin oxide: FTO), ZnO-Ga2O3, ZnO-Al2O3, 주석계 산화물, 산화아연, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 물질을 함유할 수 있다.
투명기판(10)은 유리 기재 또는 플라스틱 기재를 사용할 수 있다. 플라스틱 기재는 폴리에틸렌테레프탈레이트[Poly(ethylene terephthalate): PET], 폴리에틸렌나프탈레이트[poly (ethylene naphthalate): PEN], 폴리카보네이트(Poly Carbonate: PC), 폴리프로필렌(Polypropylene: PP), 폴리이미드(Polyimide: PI), 트리아세틸셀룰로오스(Tri-acetyl cellulose: TAC), 및 이들의 조합들로 이루어지는 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않는다.
상기 투명전극(20)을 투명 기판(10)의 일면에 형성하기 위한 방법으로는 전해 도금, 스퍼터링, 전자빔 증착법 등과 같은 물리기상증착(PVD) 방법을 이용할 수 있으나, 이에 제한되지 않는다.
광흡수층(30)은 하기 화학식 1로서 표시되는 유기금속할라이드 페로브스카이트를 광흡수체로서 포함하고 있다.
[화학식 1]
AMX3
상기 식 중,
A는 C1-20의 알킬기, 아민기에 의해 치환된 C1-20의 알킬기, 또는 알칼리 금속,알칼리 토금속 금속이고, M은 Pb, Sn, Ti, Nb, Zr, Ce 와 같은 전이 금속, 전이후 금속 및 이들의 조합들로 이루어진 군으로부터 선택되는 것을 포함하며, X는 할로겐 원자이다.
예를 들어, 상기 화학식 1로서 표시되는 페로브스카이트는 도 2에 도시된 것과 같은 구조를 가지며 MX2와 AX로부터 제조되는 것일 수 있으나, 이에 제한되지 않을 수 있다.
상기 화학식 1로서 표시되는 페로브스카이트는 AMX3 구조의 유무기 복합 물질로서, 상기 R은 C1-20의 알킬기, 아민기에 의해 치환된 C1-20의 알킬기, 또는 Li, Na, K, Rb, Cs, Fs 등의 알칼리 금속, 알칼리 토금속, 상기 M에 Pb, Sn, Ti, Nb, Zr, Ce 와 같은 전이 금속, 전이후 금속 및 이들의 조합, 상기 X에 할로겐을 대입한 것이 상기 화학식 1에 해당한다. 상기 알킬기는 1 내지 20의 탄소수를 가질 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 탄소수는 약 1 내지 약 20, 약 1 내지 약 10, 약 1 내지 약 6, 약 6 내지 약 20, 약 6 내지 약 10, 또는 약 10 내지 약 20일 수 있으나, 이에 제한되지 않을 수 있다. 상기 할로겐은 F, Br, Cl, 또는 I일 수 있으나, 이에 제한되지 않을 수 있다. 상기 화학식 1로서 표시되는 염료는 CH3NH3PbI3일 수 있으나, 이에 제한되지 않을 수 있다. 상기 화학식 1로서 표시되는 염료는 일반적인 유기 염료에 비하여 흡광 계수가 지수 단위로 높아서 얇은 필름에서도 매우 우수한 집광 효과(light harvesting)를 보이며, 이에 따라 상기 화학식 1로서 표시되는 염료를 사용하는 경우, 염료감응 태양전지가 얇은 광흡수층을 가지더라도 높은 에너지 전환효율이 달성될 수 있으나, 이에 제한되지 않을 수 있다.
일 구현예에 따르면, 상기 정공이동층(40)은 정공전달 단분자 물질 또는 정공전달 고분자 물질을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 정공전달 단분자 물질로서 NiO나 CuSCN과 같은 무기물 또는 spiro-MeOTAD[2,2’7,7’-tetrakis-(N,N-di-p-methoxyphenyl-amine)-9,9’-spirobifluorene]를 사용할 수 있고, 상기 정공전달 고분자 물질로서 P3HT[poly(3-hexylthiophene)]를 사용할 수 있으나, 이에 제한되지 않을 수 있다. 또한, 예를 들어, 상기 정공이동층에는 도핑 물질로서 Li 계열 도펀트, Co 계열 도펀트, 및 이들의 조합들로 이루어진 군에서 선택되는 것 모두가 추가 포함될 수 있으나, 이에 제한되지 않을 수 있다. 또한, 예를 들어, 상기 정공이동층에는 tBP 등의 첨가제가 추가 포함될 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 정공이동층을 구성하는 물질로서 spiro-MeOTAD, tBP, 및 Li-TFSI의 혼합물을 이용할 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, p-type의 정공전달 물질을 사용하는 경우, spiro-MeOTAD에 비해 정공 이동성(hole mobility)이 약 104 정도 크기 때문에 두꺼운 필름에서도 효율적인 정공전달이 수행될 수 있으나, 이에 제한되지 않을 수 있다.
한편, 상기 정공이동층(40)에 포함되는 상기 정공전달 물질은 짧은 정공 이동 특성을 가지므로, 상기 태양전지에 포함되는 광흡수층의 두께가 두꺼운 경우에는 적용되기 어려운데, 기존의 루테늄 금속 착체를 포함하는 광흡수층은 그 두께를 얇게 하는 경우, 전류 밀도가 저하되어 에너지 전환효율을 높일 수 없다는 문제점이 있어 정공이동층과 접목하기에 어려움이 있었다. 그러나, 상기 루테늄 금속 착체 대신 높은 흡광계수를 갖는 페로브스카이트 광흡수층을 이용하여 그 두께를 얇게 하여도 높은 전류 밀도 및 높은 에너지 전환효율을 확보할 수 있는 바, 상기 정공이동층과 접목하기에 적합하다는 이점이 있다.
일 구현예에 따르면, 상기 제 2 전극(50)은 Pt, Au, Ni, Cu, Ag, In, Ru, Pd, Rh, Ir, Os, C, 전도성 고분자, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 상기 제 2 전극, 즉 상대 전극으로서는 도전성 금속 물질이라면 특별히 제한 없이 사용할 수 있고, 절연성의 물질이라도 상기 제 1 전극과 마주보고 있는 부분에만 도전층이 형성되어 있다면 이를 이용할 수 있으며, 이에 제한되지 않을 수 있다.
본 발명은 페로브스카이트 기반의 광전변환소자의 폐모듈로부터 효율적으로 기판을 회수할 수 있는 방법에 관한 것이다. 본 발명자들의 연구에 따르면 세척용매의 쌍극자 모멘트 및 pH 에 따라서 페로브스카이트 광전변환소자 폐모듈의 세척 능력에 차이가 있음을 발견하였으며, 그 결과 최적의 공정시간을 도출할 수 있게 되었다.
구체적으로 본 발명은 페로브스카이트 광전변환소자의 폐모듈을 하기 수학식 1의 조건을 만족하는 시간 동안 세척 용매에 침지하는 단계를 포함하는, 페로브스카이트 광전변환소자 폐모듈의 재생 방법을 제공한다.
[수학식 1]
y=ax1 -b
상기 식에서, y는 침지시간 (min), x1 은 세척용매의 쌍극자 모멘트, a는 700 내지 850의 상수, b는 4 내지 6의 상수임.
바람직하게는 a가 750 내지 800의 상수이고, b가 4.5 내지 5.5의 상수일 수 있다.
또한, 상기 침지시간은 세척용매의 pH (x2)와 하기 수학식 2의 관계를 만족하는 것일 수 있다.
y=cedx2
상기 식에서, y는 침지시간(min), x2 는 세척용매의 pH, c는 40 내지 50 의 상수이고, d는 약 0.3 내지 0.9의 상수임.
바람직하게는 c가 40 내지 45의 상수이고, d가 0.4 내지 0.8의 상수일 수 있다.
또한, 상기 광전변환소자는 전술한 바와 같이 유기금속할라이드를 함유하는 광흡수층을 구비하며, 상기 세척용매는 상기 유기금속할라이드와 SN2 반응이 가능한 것일 수 있다. 일 구현예에 따르면, 상기 세척 용매의 쌍극자 모멘트가 1.5 이상인 것일 수 있다.
본 발명에 따른 공정에서 세척 용매의 SN2 반응 원리는 다음과 같다.
쌍극자 모멘트가 큰 용매는 다음과 같이 부분양전하(δ+) 및 부분음전하(δ-) 전하를 가질 수 있다.
Figure PCTKR2016011983-appb-I000001
따라서, 세척용매가 페로브스카이트와 만나면, 페로브스카이트 양이온 성분은 세척 용매의 부분 음전하 (δ-)에 둘러싸여 자유롭지 못하고,
Figure PCTKR2016011983-appb-I000002
페로브스카이트의 할로겐 성분은 세척 용매의 입체장애(Steric hindrance) 에 의해 세척 용매의 부분 양전하 (δ+)와 결합하지 않고 자유로울 수 있다.
Figure PCTKR2016011983-appb-I000003
그 결과 아래와 같이 페로브스카이트 세척 용매의 SN2 반응이 원활하며, 할로겐 원자(X)가 쉽게 제거될 수 있다.
Figure PCTKR2016011983-appb-I000004
도 3은 대표적인 페로브스카이트 광전변환소자인 페로브스카이트 태양전지의 구조의 단면을 개략적으로 도시한다. 도 4는 도 3에 도시된 페로브스카이트 태양전지의 평면도이다. 투명기판(10), 투명전극(20), 광흡수층(30), 정공이동층(40) 및 금속전극(50)을 포함하며, 투명전극(20)과 광흡수층(30) 사이에 전자수집층(60), 및 정공차단층(70)이 형성되어 있다.
전자수집층(60)은 페로브스카이트 광흡수층에서 여기 된 전자를 효과적으로 받아 투명 전극으로 이동 시키기 위한 것으로서, 일반적인 광전변환소자에서 광 흡수층이 가지는 전자 이동 거리가 짧아 생성된 전자가 투명 전극까지 가지 못하고 재결합이 일어나는 현상을 줄이기 위하여, 상대적으로 전자 이동 거리가 긴 물질을 이용해 재결합을 줄이면서 전자를 투명 전극에 전달하기 위한 목적으로 사용된다. 전자수집층(6)의 재질로는, 전도대역(Conduction band)이 페로브스카이트 광전변환소자의 전도대역 보다 낮아 전자가 이동할 수 있는 물질이어야 하며, TiO2, ZnO와 같은 금속 산화물 (세라믹 물질) 혹은 PCBM과 같은 전도성 고분자가 사용될 수 있다. 전자가 수집에 용이하게 전자 수집층/페로브스카이트 접촉면적을 높일 수 있는 다공성 (high porosity) 형태가 유리하며, 광흡수층에 충분한 빛을 보내기 위해 투명한 전자 수집층이 유리하다.
정공차단층(70)은 기본적으로 광흡수층의 가전자대, 정공이동층 혹은 제2 전극이 투명 전극과 직접적으로 맞닿아서 short-circuit 이 발생하지 않도록 하기 위해 사용되며, 또한 투명 전극으로 넘어간 전자가 정공과 재결합하는 것을 막아준다. 생성된 전자가 투명 전극으로 이동하는 것을 저해하지 않도록 얇은 형태로 조밀하게 투명 전극을 덮고 있는 형태가 효과적이다. 일반적으로 TiO2나 ZnO가 사용된다.
본 발명의 일 구현예에 따르면, 소정 조건으로 세척 용액에 폐모듈을 침지함으로써 광흡수층, 정공이동층, 금속전극층 또는 이들의 조합을 제거하고 투명전극층 및 전자수집층을 구비한 기판을 회수할 수 있다.
도 5 및 도 6은 세척 후 모듈의 개략적인 단면도 및 평면도이다. 도 3 및 4와 비교하여 보면, 세척 후에는 광흡수층(30), 정공이동층(40) 및 금속전극층(50)이 제거되고, 기판(10) 상에 투명전극층(20), 정공차단층(70) 및 전자수집층(60) 만이 남아 있다.
세척 공정 진행시에는 흔들거나 소니케이션 등 물리적 자극을 가하는 것이 보다 효율적일 수 있으며, 이에 한정되는 것은 아니다.
세척된 기판은 증류수나 에탄올로 린스한 후 건조 공정을 거칠 수 있다.
린스공정이나 건조공정은 관련 업계에서 일반적으로 사용되는 것이라면 제한없이 적용할 수 있으므로 구체적인 설명은 생략한다.
상기와 같이 회수된 기판은 후속 공정에서 광흡수층, 정공이동층, 금속전극층 또는 이들의 조합을 형성하는 공정을 거쳐 광전변환소자로 재생될 수 있다.
본 발명자들의 연구 결과에 따르면 상기와 같은 방법으로 재생된 태양전지의 효율(PCE)이 약 12% 까지 나오는 것을 확인할 수 있었다.
이하, 본 발명의 실시예를 상세히 설명한다. 그러나, 하기 실시예는 본 발명의 예시에 불과하며 본 발명의 범위가 이에 의해 제한되는 것은 아니다.
제조예 - 페로브스카이트 태양전지 제조
(1) 정공차단층이 형성된 투명전도성 기판 제조
FTO 글라스(Pilkington, TEC-8, 8 Ω/sq)를 초음파를 이용하여 아세톤, 에탄올, 증류수에서 각 20 분 동안 세척하였다. 이후, 상기 FTO 기판을 0.3 M Ti(IV) 비스(에틸아세토아세테이토)-디이소프로폭사이드(Aldirch 사의 제품)/1-부탄올(Aldrich 사의 제품) 용액을 사용하여 스핀 코팅 방법을 이용하여 코팅하고 500℃ 에서 30분 열처리 공정을 통해 정공차단층을 포함하는 투명 전도성 기판을 제조하였다.
(2) 전자수집층 형성
20nm 크기의 다공성 이산화티탄 (TiO2) 페이스트 (Dyesol 사의 18 NRT 제품) 를 무수 에탄올에 희석하여 (5.5:1 = 에탄올:TiO2 페이스트, 무게 비) 스핀 코팅 방법을 이용하여 정공차단층 상에 코팅하고 500℃에서 1시간 열처리하여 전자수집층을 형성하였다.
(3) 광흡수층 형성
전자수집층 형성 후 상기 기판(2)에 CH3NH3I와 PbI2 이 1:1몰비로 다이메틸포름아마이드 (dimethyformamide, DMF)에 42 wt% 로 용해한 용액을 스핀 코팅 후 100 ~ 120 ℃ 에서 열처리하여 광흡수층을 형성하였다.
(4) 정공이동층 형성정공전달 물질은 약 0.17 M의 spiro-MeOTAD, 약 0.198 M의 tBP (4-tert-Butylpyridine), 및 약 64 mM의 Li-TFSI(Bis(trifluoromethane)sulfonimide lithium salt)를 포함하는 정공전달 용액을 준비하였다. 여기에서, 상기 Li-TFSI는 0.1977 g/mL 농도로 아세토니트릴에 먼저 녹인 후 용액 상태로 첨가하였다. 준비된 정공전달 용액을 광흡수층 상에 스핀 코팅하여 정공이동층을 형성하였다.
(6) 전극층 형성
상기 정공전달층 상에 열증착기를 사용하여 금을 약 30nm 이상 증착 (10-6 torr 이하의 압력)하여 전극층을 형성하였다.
(7) 폐모듈 준비
제작된 페로브스카이트 태양전지를 수명이 다할 때까지 사용하였다.
시험예 1- 세척용매의 쌍극자 모멘트에 따른 세척 특성 확인
제조예에서 준비한 태양전지를 하기 표 1의 용매에 상온(25도)에서 침지한 후 흔들어주면서(150rpm) 페로브스카이트 광흡수층, 정공이동층 및 금속전극층이 완전히 용해되는 시간을 측정하였다. 페로브스카이트가 완전히 용해된 시점은 기판의 투과도가 사용하지 않은 기판의 투과도를 95% 이상 유지할 때를 기준으로 하였다. 도 7은 세척 전 및 세척시작 후 20 초 경과한 시점에서의 상태를 보여준다.
시험예 용매 쌍극자 모멘트 시간(min)
1-1 2-프로판올 1.58 120.8
1-2 메탄올 1.70 58
1-3 아세톤 2.88 1.67
1-4 디메틸포름아마이드 3.82 1.0
1-5 감마부티로락톤 4.27 1.17
상기 결과로부터 용매의 쌍극자 모멘트와 세척시간은 하기 관계를 만족하는 것을 알 수 있다(도 8 참조).
[수학식 1-1]
y=a1x1 - b1
상기 식에서, y는 침지시간 (min), x1 은 세척용매의 쌍극자 모멘트, a1은 약 787, b1은 약 4.9임.
시험예 2- 세척용액의 pH에 따른 세척특성 확인
증류수(pH7)의 pH를 조절한 후 시험예 1과 동일한 조건으로 세척 실험을 진행하여 페로브스카이트가 완전히 용해될 때까지 소요된 시간을 측정하였다. 도 9는 세척 시작 후 1시간 경과 한 시점에서의 사진이다.
시험예 pH 시간(min)
2-1 1.5 115.5
2-2 3.0 265
2-3 4.5 417.7
2-4 6.0 1850
2-5 8.0 4811
상기 결과로부터 용매의 pH와 세척시간은 하기 수학식 2의 관계를 만족하는 것을 알 수 있다(도 10 참조).
[수학식 2-1]
y=c1ed1x2
상기 식에서, y는 침지시간(min), x2 는 세척용매의 pH, c1은 약 43이고, d1은 약 0.6임.
실시예 1 내지 3
제조예에서 준비한 수명이 다된 페로브스카이트 태양전지를 감마부티로락톤(GBL), 감마부티로락톤/디메틸술폭사이드 혼합용액 (GBL/DMSO 부피비 7/3) 및 디메틸포름아마이드(DMF)에 침지하여 세척한 결과를 세척 전과 비교하여 도 11에 나타내었다.
세척과정은 페로브스카이트 광흡수층, 정공이동층 및 금속전극층이 완전히 용해될 때까지 진동조건(150rpm)에서 침지한 후 증류수로 헹구고 100 ℃ 이상에서 30 분간 가열하여 용액을 제거하였다.
세척후 기판의 불순물 유무 및 성분 확인을 위한 X선 회절 분석을 진행하였으며 그 결과를 도 12에 나타내었다. 불순물 피크가 거의 없음을 확인할 수 있다.
도 13은 DMF 용액으로 세척된 기판에 남은 불순물 유무 및 성분 확인을 위해 EDS (Energy-dispersive X-ray spectroscopy) 분석한 결과이다. 산소원자, 티타늄원자, 주석원자의 합계가 95.95 중량%, 93.39 원자%로서 불순물이 거의 없음을 확인할 수 있다.
실시예 4 - 재생 태양전지 제조 및 성능 테스트
실시예 1 내지 3에서 회수된 기판에 광흡수층, 정공이동층 및 금속전극층을 제조예에서와 동일하게 형성하여 페로브스카이트 태양전지를 제작하였다. 에너지 전환효율을 확인하기 위하여, 광전류-전압 특성을 측정하였다. 이 때, 상기 측정은 태양조사장치 (solar simulator)를 이용하여 AM 약 1.5 G 및 1 태양 조건 (100 mW/cm2)의 표준 조건에서 수행되었다. 측정 결과, 광전류밀도(Jsc), 광전압(Voc), 층밀계수(FF), 광전변환효율(PCE)은 도 14 내지 16에 나타낸 바와 같았다. 상기 결과로부터 세척 전과 세척 후 광전변환효율을 비롯한 제반 특성이 향상된 것을 알 수 있다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
본 발명은 수명이 다된 페로브스카이트 광전변환소자를 모듈형태로 폐기하던 기존 방식을 개선하여, 광전변환소자의 폐모듈에서 페로브스카이트 광흡수체, 정공 이동층, 금속 전극 등을 제거하고 기판을 회수하여 초기의 높은 광전 변환 효율 수준으로 재 제작할 수 있도록 함으로써 페로브스카이트 광전변환소자의 생산 단가를 낮출 수 있다.

Claims (9)

  1. 페로브스카이트 기반의 광전변환소자의 폐모듈을 하기 수학식 1의 조건을 만족하는 시간 동안 세척 용매에 침지하는 단계를 포함하는, 페로브스카이트 광전변환소자 폐모듈의 재생 방법:
    [수학식 1]
    y=ax1 -b
    상기 식에서, y는 침지시간 (min), x1 은 세척용매의 쌍극자 모멘트, a은 700 내지 850의 상수, b은 4 내지 6의 상수임.
  2. 제1항에 있어서,
    상기 세척 용매의 쌍극자 모멘트가 1.5 이상인 것인 페로브스카이트 광전변환소자 폐모듈의 재생 방법.
  3. 제1항에 있어서,
    상기 침지시간은 세척용매의 pH (x2)와 하기 수학식 2의 관계를 만족하는 것인, 페로브스카이트 광전변환소자 폐모듈의 재생방법:
    [수학식 2]
    y=cedx2
    상기 식에서, y는 침지시간(min), x2 는 세척용매의 pH, c는 40 내지 50 의 상수이고, d는 약 0.3 내지 0.9의 상수임.
  4. 제1항에 있어서,
    상기 광전변환소자 폐모듈은 유기금속할라이드를 함유하는 광흡수층을 구비하며, 상기 세척용매는 상기 유기금속할라이드와 SN2 반응이 가능한 것인, 페로브스카이트 광전변환소자 폐모듈의 재생방법.
  5. 제4항에 있어서,
    상기 페로브스카이트 광전변환소자는 투명기판 상에 투명전극층, 정공차단층, 전자수집층, 광흡수층, 정공이동층 및 금속전극층이 순차적으로 형성되어 있는 것인 페로브스카이트 광전변환소자 폐모듈의 재생방법.
  6. 제5항에 있어서,
    상기 세척 용액에 침지함으로써 광흡수층, 정공이동층, 금속전극층 또는 이들의 조합을 제거하고 투명전극층 및 전자수집층을 구비한 기판을 회수하는 것인 페로브스카이트 광전변환소자 폐모듈의 재생방법.
  7. 제6항에 있어서,
    회수된 기판에 광흡수층, 정공이동층, 금속전극층 또는 이들의 조합을 형성하는 단계를 더 포함하는 것인 페로브스카이트 광전변환소자 폐모듈의 재생방법.
  8. 제7항에 있어서,
    상기 페로브스카이트 광전변환소자가 페로브스카이트 태양전지인 것인 페로브스카이트 광전변환소자 폐모듈의 재생방법.
  9. 제1항 내지 제8항 중 어느 한 항의 방법에 의해 재생된 페로브스카이트 광전변환소자.
PCT/KR2016/011983 2015-10-30 2016-10-24 페로브스카이트 기반 광전변환소자의 재생방법 WO2017073974A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018522529A JP6997705B2 (ja) 2015-10-30 2016-10-24 ペロブスカイト基盤の光電変換素子の再生方法
US15/771,160 US10847324B2 (en) 2015-10-30 2016-10-24 Method for recycling perovskite-based photoelectric conversion element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0152460 2015-10-30
KR1020150152460A KR101702239B1 (ko) 2015-10-30 2015-10-30 페로브스카이트 태양전지의 재생방법

Publications (1)

Publication Number Publication Date
WO2017073974A1 true WO2017073974A1 (ko) 2017-05-04

Family

ID=58151512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011983 WO2017073974A1 (ko) 2015-10-30 2016-10-24 페로브스카이트 기반 광전변환소자의 재생방법

Country Status (4)

Country Link
US (1) US10847324B2 (ko)
JP (1) JP6997705B2 (ko)
KR (1) KR101702239B1 (ko)
WO (1) WO2017073974A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019138154A1 (en) 2018-01-09 2019-07-18 Aalto-Korkeakoulusäätiö Sr Method for refurbishing of carbon based perovskite solar cells (cpscs) and modules via recycling of active materials

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109638159A (zh) * 2018-11-06 2019-04-16 深圳华中科技大学研究院 可循环利用的钙钛矿太阳能电池及其制备与循环利用方法
CN109786561B (zh) * 2019-01-22 2023-07-11 华清创智光电科技(清远)有限公司 一种用胺类液化钙钛矿方法回收再利用钙钛矿器件中钙钛矿活性层的工艺
CN110767812B (zh) * 2019-10-31 2023-08-25 南通大学 一种新型的增加钙钛矿薄膜寿命的方法
CN114602956B (zh) * 2022-03-04 2022-12-09 湖南铱太科技有限公司 一种通用于正反式钙钛矿太阳电池的回收与再生方法
TWI810867B (zh) * 2022-03-28 2023-08-01 國立清華大學 自鈣鈦礦太陽能電池回收有價材料的方法
CN114798680A (zh) * 2022-06-27 2022-07-29 中国华能集团清洁能源技术研究院有限公司 一种卤化铅钙钛矿太阳能电池的回收处理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110031688A (ko) * 2009-09-21 2011-03-29 한국화학연구원 태양전지 폐 모듈의 셀 회수방법
KR101544317B1 (ko) * 2014-06-02 2015-08-13 서울대학교산학협력단 반도체 나노입자를 포함하는 평면 페로브스카이트 태양전지 및 그의 제조 방법
KR101557587B1 (ko) * 2013-06-14 2015-10-05 주식회사 엘지화학 유기태양전지 및 이의 제조방법

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4595076B2 (ja) 2001-03-19 2010-12-08 独立行政法人産業技術総合研究所 色素増感型太陽電池の再生方法
WO2011073716A1 (en) * 2009-12-15 2011-06-23 S.O.I. Tec Silicon On Insulator Technologies Process for recycling a substrate.
US10038150B2 (en) * 2011-02-25 2018-07-31 Ecole Polytechnique Federale De Lausanne (Epfl) Metal complexes for use as dopants and other uses
US10079320B2 (en) 2012-05-18 2018-09-18 Oxford University Innovation Limited Optoelectronic device comprising perovskites
JP2014229747A (ja) 2013-05-22 2014-12-08 ペクセル・テクノロジーズ株式会社 ペロブスカイト化合物を用いた光電変換素子およびその製造方法
JP6089007B2 (ja) 2013-07-31 2017-03-01 富士フイルム株式会社 光電変換素子、光電変換素子の製造方法および太陽電池
JP2015069824A (ja) 2013-09-28 2015-04-13 新日鉄住金化学株式会社 積層体、色素増感太陽電池用アノード電極および色素増感太陽電池ならびに積層体の製造方法
US9425396B2 (en) * 2013-11-26 2016-08-23 Hunt Energy Enterprises L.L.C. Perovskite material layer processing
CN106206950A (zh) * 2015-05-25 2016-12-07 松下电器产业株式会社 太阳能电池以及太阳能电池模块
GB201510316D0 (en) * 2015-06-12 2015-07-29 Imp Innovations Ltd Electrochemical recycling of lead-based materials
JP2017022354A (ja) * 2015-07-14 2017-01-26 パナソニック株式会社 ペロブスカイト太陽電池
US10347432B2 (en) * 2017-05-21 2019-07-09 Farzaneh Arabpour Roghabadi Recovering a degraded solar cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110031688A (ko) * 2009-09-21 2011-03-29 한국화학연구원 태양전지 폐 모듈의 셀 회수방법
KR101557587B1 (ko) * 2013-06-14 2015-10-05 주식회사 엘지화학 유기태양전지 및 이의 제조방법
KR101544317B1 (ko) * 2014-06-02 2015-08-13 서울대학교산학협력단 반도체 나노입자를 포함하는 평면 페로브스카이트 태양전지 및 그의 제조 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CONINGS, BERT ET AL.: "Perovskite-Based Hybrid Solar Ceils Exceeding 10% Efficiency with High Reproducibility Using a Thin Film Sandwich Approach", ADVANCED MATERIALS, vol. 26, no. issue 13, 2 April 2014 (2014-04-02), pages 2041 - 2046 *
MILLER, J. ET AL.: "Dipolar Aprotic Solvents in Bimolecular Aromatic Nucleophilic Substitution Reactions", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 83, no. 1, January 1961 (1961-01-01), pages 117 - 123, XP055379540 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019138154A1 (en) 2018-01-09 2019-07-18 Aalto-Korkeakoulusäätiö Sr Method for refurbishing of carbon based perovskite solar cells (cpscs) and modules via recycling of active materials

Also Published As

Publication number Publication date
JP2018533850A (ja) 2018-11-15
US10847324B2 (en) 2020-11-24
KR101702239B1 (ko) 2017-02-02
US20180308642A1 (en) 2018-10-25
JP6997705B2 (ja) 2022-01-18

Similar Documents

Publication Publication Date Title
WO2017073974A1 (ko) 페로브스카이트 기반 광전변환소자의 재생방법
WO2011102673A2 (ko) 전고체상 이종 접합 태양전지
WO2011102677A2 (ko) 나노구조 무기-유기 이종 접합 태양전지의 제조방법
KR102179571B1 (ko) 유기 금속 할로겐 페로브스카이트 헤테로 접합 태양전지 및 그 제조 방법
WO2017105053A1 (ko) 페로브스카이트 태양전지의 모노리식 타입 모듈 및 이의 제조 방법
US20170301479A1 (en) Photodetector
WO2010024644A2 (ko) 전기방사법에 의해 제조된 고분자 나노섬유를 포함하는 전해질 및 이를 이용한 고효율 염료감응형 태양전지 소자
WO2016012274A1 (en) Organic-inorganic tandem solar cell
WO2018012825A1 (ko) 유무기 복합 태양전지
EP3906584A1 (en) A double sided solar cell assembly
KR102106668B1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
WO2015130054A1 (ko) 페로브스카이트계 염료를 이용한 고체형 박막 태양전지 및 제조 방법
JP7213557B2 (ja) ペロブスカイト化合物及びこれを用いた光変換素子
Duan et al. Surface modification of SnO2 blocking layers for hysteresis elimination of MAPbI3 photovoltaics
WO2015167230A1 (ko) 태양전지 및 이의 제조방법
WO2017026766A1 (ko) 수분 및 광 안정성이 향상된 페로브스카이트 및 이를 이용한 태양전지
WO2015016542A1 (ko) 이중 소자 융합형 텐덤 태양 전지 및 그 제조 방법
WO2013169004A1 (ko) 염료감응형 태양전지 및 이의 제조방법
EP2272920B1 (en) Dye for dye-sensitized solar cell and dye-sensitized solar cell including the same
KR101794988B1 (ko) 페로브스카이트 광흡수층 제조방법 및 이를 적용한 태양전지 제조방법
WO2017069546A1 (ko) 금속 산화물 전자수집층의 일함수 저감용 조성물, 이를 이용한 역구조 유기 태양전지 및 상기 역구조 유기 태양전지의 제조방법
KR101694803B1 (ko) 금속 나노선을 광전극으로 포함하는 페로브스카이트 태양전지 및 이의 제조방법
JP4460686B2 (ja) 光電変換素子および光電気化学電池
KR20190097662A (ko) 나이트릴 화합물로 개질된 n형반도체를 갖는 페로브스카이트 태양전지 및 그 제조방법
WO2018043910A1 (ko) 페로브 스카이트 태양전지 효율 향상을 위한 정공수송물질

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16860157

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15771160

Country of ref document: US

Ref document number: 2018522529

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16860157

Country of ref document: EP

Kind code of ref document: A1