WO2015163679A1 - 유-무기 하이브리드 태양 전지 - Google Patents

유-무기 하이브리드 태양 전지 Download PDF

Info

Publication number
WO2015163679A1
WO2015163679A1 PCT/KR2015/003987 KR2015003987W WO2015163679A1 WO 2015163679 A1 WO2015163679 A1 WO 2015163679A1 KR 2015003987 W KR2015003987 W KR 2015003987W WO 2015163679 A1 WO2015163679 A1 WO 2015163679A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
layer
organic
solar cell
inorganic hybrid
Prior art date
Application number
PCT/KR2015/003987
Other languages
English (en)
French (fr)
Inventor
이행근
장송림
이재철
김진석
최두환
방지원
이동구
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201580021108.1A priority Critical patent/CN106233482B/zh
Priority to US15/303,191 priority patent/US20170125171A1/en
Publication of WO2015163679A1 publication Critical patent/WO2015163679A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2009Solid electrolytes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/006Palladium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/24Lead compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2036Light-sensitive devices comprising an oxide semiconductor electrode comprising mixed oxides, e.g. ZnO covered TiO2 particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/204Light-sensitive devices comprising an oxide semiconductor electrode comprising zinc oxides, e.g. ZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L2031/0344Organic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present disclosure relates to an organic-inorganic hybrid solar cell.
  • the solar cell refers to a battery that generates current-voltage using a photovoltaic effect of absorbing light energy from sunlight and generating electrons and holes.
  • np diode-type silicon (Si) single crystal-based solar cells capable of producing photovoltaic energy conversion efficiency of more than 20% are used for photovoltaic power generation, and compound semiconductors such as gallium arsenide (GaAs), which are more efficient than this, are used.
  • GaAs gallium arsenide
  • these inorganic semiconductor-based solar cells require highly refined materials for high efficiency, which requires a lot of energy to purify raw materials, and also requires expensive process equipment for single crystal or thin film using raw materials. As a result, there is a limit to lowering the manufacturing cost of solar cells, which has been an obstacle to large-scale utilization.
  • Dye-sensitized solar cells are typical of the work presented by Michael Gratzel and colleagues at the Swiss National Lausanne Institute of Advanced Technology (EPFL) in 1991. Looking at the operating principle of the dye-sensitized solar cell, the solar energy is absorbed by the photosensitive dye adsorbed to the semiconductor layer of the electrode, the photoelectron is generated, the photoelectron is conducted through the semiconductor layer is transferred to the conductive transparent substrate having a transparent electrode, The dye oxidized by losing the electrons is reduced by the oxidation-reduction pair contained in the electrolyte. On the other hand, the electrons that reach the counter electrode, the opposite electrode through the external wire, complete the operation of the solar cell by reducing the oxidation / reduction pair of the oxidized electrolyte again.
  • dye-sensitized solar cells include several interfaces such as semiconductor
  • the energy conversion efficiency of the dye-sensitized solar cell is proportional to the amount of photoelectrons generated by solar energy absorption, and in order to generate a large amount of photoelectrons, a photoelectrode including a structure capable of increasing the adsorption amount of dye molecules Manufacturing is required.
  • An object of the present specification is to provide an organic-inorganic hybrid solar cell having excellent stability and energy conversion efficiency.
  • a second electrode provided to face the first electrode
  • a photoactive layer provided between the first electrode and the second electrode
  • a silicon material layer provided between the photoactive layer and the first electrode
  • the photoactive layer provides an organic-inorganic hybrid solar cell comprising a compound of perovskite structure.
  • the organic-inorganic hybrid solar cell according to the exemplary embodiment of the present specification is excellent in charge mobility, thereby realizing an increase in high current density and / or an increase in energy conversion efficiency.
  • the organic-inorganic hybrid solar cell may absorb a wide light spectrum, thereby reducing loss of light energy and increasing high current density and / or increasing energy conversion efficiency.
  • Organic-inorganic hybrid solar cells according to one embodiment of the present specification can be manufactured in a simple manufacturing process, which is economic in time and / or cost.
  • the organic-inorganic hybrid solar cell according to one embodiment of the present specification can easily adjust the interfacial increase and / or the path of charge transfer necessary for charge transport.
  • 1 to 9 each show an example of an organic-inorganic hybrid solar cell according to one embodiment of the present specification.
  • the first electrode A second electrode provided to face the first electrode; A photoactive layer provided between the first electrode and the second electrode; And a silicon material layer provided between the photoactive layer and the first electrode, wherein the photoactive layer includes an organic-inorganic hybrid solar cell including a compound having a perovskite structure.
  • the compound of perovskite structure may be a compound of perovskite structure in which inorganic and organic substances are mixed and combined.
  • the compound of the perovskite structure is an organo-metal halide compound of the perovskite structure.
  • three ions of ions may satisfy the following Equation 1.
  • R A , R B , R O means the radius of each ion
  • t is a tolerance factor representing the contact state of ions.
  • t is 1, an ideal perovskite structure compound indicates that each ion is in contact with adjacent ions.
  • the compound of the perovskite structure is represented by the formula (1).
  • A is a monovalent organic ammonium ion or Cs + ,
  • M is a divalent metal ion
  • X is a halogen ion.
  • the compound satisfying Chemical Formula 1 has a perovskite structure, M is located at the center of a unit cell in the perovskite structure, and X is an angle of each unit cell. It is located at the center of the plane to form an octahedron (octahedron) structure around M, A may be located at each corner of the unit cell (corner).
  • Chemical Formula 1 is represented by the following Chemical Formula 2 or 3.
  • R1 and R2 are substituted or unsubstituted alkyl groups having 1 to 24 carbon atoms; A substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms; Or a substituted or unsubstituted aryl group having 6 to 20 carbon atoms,
  • R3 is hydrogen; Or an alkyl group having 1 to 24 carbon atoms,
  • M is Cu 2 +, Ni 2 +, Co 2 +, Fe 2 +, Mn 2 +.
  • X is F -, Cl -, Br - and I - is a halogen ion is 1 or 2 or more kinds are selected from the group consisting of.
  • the compound of the perovskite structure includes three X, halogen ions, three halogen ions may be the same or different from each other.
  • M is Pd 2 + .
  • R1 is an alkyl group having 1 to 24 carbon atoms.
  • R1 is a methyl group.
  • the photoactive layer includes only a compound having a perovskite structure.
  • the photoactive layer includes one or two or more species from the group consisting of a compound having a perovskite structure represented by Formula 1 and another compound having a perovskite structure.
  • the content of the compound of perovskite structure represented by the formula (1) and the compound of perovskite structure of the other structure is 1: 1,000 to 1,000: 1. In another embodiment, the content range of the compound of the perovskite structure represented by the formula (1) and the compound of the perovskite structure of the other structure is 1: 100 to 100: 1. In another embodiment, the content range of the compound of the perovskite structure represented by the formula (1) and the compound of the perovskite structure of another structure is 1: 10 to 10: 1.
  • the perovskite-structured compound has a higher extinction coefficient than a general material included in the photoactive layer, and excellent light condensing effect even in a thin film. Therefore, the organic-inorganic hybrid solar cell according to one embodiment of the present specification can expect excellent energy conversion efficiency.
  • the thickness of the photoactive layer including the compound of the perovskite structure is 50 nm to 2,000 nm. In another exemplary embodiment, the thickness of the photoactive layer including the compound of perovskite structure is 100 nm to 1,500 nm. In another exemplary embodiment, the thickness of the photoactive layer including the compound of perovskite structure is 300 nm to 1,000 nm.
  • thickness means the width between one surface facing the first electrode or the second electrode of the photoactive layer and one surface facing the surface.
  • the organic-inorganic hybrid solar cell includes a silicon material layer between the photoactive layer and the first electrode.
  • a battery including a compound of a conventional perovskite structure it is difficult to expect a current density improvement due to current loss due to low charge mobility.
  • the compound of the perovskite structure is not able to absorb the light spectrum of more than 800nm, the light energy loss is large.
  • a method of increasing the thickness of the photoactive layer may be considered. However, when the thickness of the photoactive layer is increased, current loss may occur due to a decrease in charge mobility of the photoactive layer.
  • the organic-inorganic hybrid solar cell further includes a silicon material layer having a relatively good charge mobility compared to the compound of the perovskite structure to prevent current loss to improve current density.
  • the silicon material layer can absorb a light spectrum of 800nm or more, thereby preventing the loss of light energy to implement a high energy conversion efficiency, the silicon material layer is easy to control the energy through the doping to the energy level of the photoactive layer Thus, the energy injection barrier can be easily adjusted. Thus, it is possible to easily adjust the interfacial increase and / or the path of charge transfer necessary for the transport.
  • the silicon material can be adjusted in the form of the bonding surface with the photoactive layer containing the compound of the perovskite structure using a solution process, and the current density can be increased by improving the current collection area and light absorption characteristics. And economically time and / or cost in the manufacture of solar cells.
  • charge means electrons or holes.
  • the silicon material layer is in the form of a film; Or it is provided in the form of a pattern.
  • the film form means having a smooth surface, the pattern form means having a concave-convex, it is possible to structure the surface of the nano-wire, pyramid, dome shape and the like.
  • the silicon included in the silicon material layer may be p-type or n-type, may be amorphous or crystalline, may be nanoparticle or wafer type, and is not limited thereto. Can be used.
  • a person skilled in the art can use a state in which impurities are not added to silicon as needed, and can add p-type or n-type doped silicon by adding impurities.
  • p-type amorphous silicon boron, potassium, etc., which are trivalent elements, are penetrated, and in order to form n-type amorphous silicon, phosphorus, arsenic, antimony, etc., which are pentavalent elements, are added.
  • the silicon material layer is in the form of a pattern.
  • the silicon material layer is formed by using a self-assembled monolayer (SAM), a surface oxidation method using a parallel planar discharge, and UV ultraviolet rays in a vacuum state for surface modification.
  • SAM self-assembled monolayer
  • UV ultraviolet rays UV ultraviolet rays in a vacuum state for surface modification.
  • Surface energy and / or charge recombination properties through surface modification using methods such as oxidizing the surface through ozone, oxidizing using oxygen radicals generated by plasma, and forming silicon oxide (SiO 2 ) Can be adjusted.
  • the silicon material layer is nanorods using a dry method such as lithography using oxygen, trifluoromethane, chlorine, hydrogen bromide plasma, and a wet method using hydrofluoric acid, for surface structuring. Nanostructures such as cones, pyramids, and hemispheres can be achieved.
  • an increase in current density may be expected as the collection area of charge increases.
  • light absorption may be increased and current density may be increased.
  • the thickness of the silicon material layer in the form of a film is 300 micrometers to 600 micrometers. In another embodiment, the film-like layer of silicon material has a thickness of 400 micrometers to 550 micrometers.
  • the thickness of the pattern of the silicon material layer of the pattern form is 30 nm to 1,000 nm. In another embodiment, the thickness of the pattern of the silicon material layer of the pattern form is 50 nm to 800 nm.
  • the thickness of the pattern means a width between one surface with a pattern and one surface of a pattern facing the one surface with the pattern. That is, it means the height of the pattern provided in the silicon material layer in the form of a film, and when two or more patterns are included, it means an average value of two or more pattern heights.
  • the silicon material layer and the photoactive layer are provided in contact with each other.
  • the semiconductor device may further include an intermediate layer provided between the silicon material layer and the photoactive layer.
  • the intermediate layer includes an insulating layer; Or an N / P bonding layer.
  • a material constituting the insulating layer includes an inorganic insulating material, an organic insulating material, or a mixture thereof.
  • oxide nanoparticles such as silicon oxide, silicon nitride, titanium oxide, aluminum oxide, magnesium oxide, zinc oxide, specifically alumina (Al 2 O 3 ), zirconia (ZrO), silica (SiO 2 ), and fluoride Lithium (LiF) and the like.
  • organic insulating material materials such as polystyrene (PS), poly (methylmethacrylate), polyester, ethylene vinyl acetate copolymer, acrylic, epoxy, polyurethane, or the like may be used. Materials such as conjugated polyelectrolytes can be used, and those skilled in the art can select as needed.
  • the insulating layer When the insulating layer is included, resistance contact between the silicon material layer and the photoactive layer may be improved, and a space for effectively recombining the excited electrons and holes may be provided, thereby improving energy conversion efficiency and surface energy. By adjusting the, the wettability of the solution layer coming on the top can be improved to obtain a uniform thin film.
  • the intermediate layer is an N / P bonding layer.
  • the constituent material forming the N / P junction layer includes one or two or more from the group consisting of metal oxides, metals, conductive polymers, dielectric materials, and carbon compounds.
  • the metal is titanium (Ti), zirconium (Zr), strontium (Sr), zinc (Zn), indium (In), lanthanum (La), vanadium (V), molybdenum (Mo), tungsten (W), tin (Sn), niobium (Nb), magnesium (Mg), calcium (Ca), barium (Ba), aluminum (Al), yttrium (Y), scandium (Sc), samarium (Sm), Gallium (Ga) and strontium titanium (SrTi) may be any one metal selected from the group consisting of, but is not limited thereto.
  • the metal oxides include, but are not limited to, oxides of the aforementioned metals, specifically Mo oxides, V oxides, Ni oxides, Ti oxides, and Zn oxides.
  • the metal oxide may be one selected from the group consisting of MoO 3 , V 2 O 5 , VO x , TiO 2 , TiO x, and ZnO.
  • the conductive polymer includes poly (3,4-ethylenedioxythiophene) (PEDOT) and PAA (Polyacrylic acid), but is not limited thereto.
  • PEDOT poly (3,4-ethylenedioxythiophene)
  • PAA Polyacrylic acid
  • the dielectric material is PEI (polyethyleneimine), PEIE (ethoxylated polyethyleneimine), PFN (Poly [(9,9-bis (3 '-(N, N-dimethylamino) propyl) -2,7-fluorene ) -alt-2,7- (9,9-odioctylfluorene)]), but are not limited thereto.
  • the carbon compound includes graphene and carbon nanotubes (CNT), but is not limited thereto.
  • the N / P bonding layer specifically includes ZnO / Al, Ag / PEDOT, ZnO / Al, Ag / PEI, PEIE, ZnO / conjugated polyelectrolyte / Al Without or without Al / PEDOT, ZnO / graphene, Al or Ag / conjugated polyelectrolyte, and the like.
  • the intermediate layer may form a bonding layer of ZnO / PEDOT: PSS, and may be doped with an n-type or p-type material to form a bonding layer.
  • the N / P junction layer may move carriers generated on both sides of the photoactive layer including the silicon material layer and the perovskite structure compound, and recombine in the N / P junction layer to transfer charge to the opposite electrode. It also serves to reduce interfacial resistance.
  • the p doped layer refers to a layer doped with a p dopant.
  • the p dopant means a material that makes the host material have p semiconductor properties.
  • the p-semiconductor property refers to a property of injecting or transporting holes at a high occupied molecular orbital (HOMO) energy level, that is, a property of a material having high conductivity of holes.
  • HOMO high occupied molecular orbital
  • n doped layer means a layer doped with n dopant.
  • n dopant means a material that makes the host material have n semiconductor properties.
  • n Semiconductor property refers to a property of receiving or transporting electrons at a low unoccupied molecular orbital (LUMO) energy level, that is, a property of a material having high electron conductivity.
  • LUMO low unoccupied molecular orbital
  • the organic-inorganic hybrid solar cell may have a tandem structure. In this case, two or more layers of the photoactive layer may be included.
  • the silicon material layer is provided in contact with the first electrode.
  • the silicon material layer when the silicon material layer is provided in contact with the first electrode, the silicon material layer may serve to support the solar cell as a substrate in the solar cell. Thus, it can function as a solar cell without the provision of a separate substrate.
  • the first electrode and the second electrode is the same or different from each other, independently made of a metal electrode, a conductive polymer and a combination thereof Can be selected from the group.
  • the metal electrode is silver (Ag), gold (Au), aluminum (Al), platinum (Pt), tungsten (W), copper (Cu), molybdenum (Mo), gold (Au), nickel (Ni) ), And palladium (Pd) may include one or two or more selected from the group consisting of.
  • the conductive polymer is thiophene-based; Paraphenylenevinylene-based, carbazole-based or triphenylamine-based may be selected, but if the conductive material is not limited thereto.
  • the polymer may be P3HT (poly [3-hexylthiophene]), MDMO-PPV (poly [2-methoxy-5- (3 ', 7'-dimethyloctyloxyl)]-1,4-phenylene vinylene), MEH-PPV ( poly [2-methoxy-5- (2 ''-ethylhexyloxy) -p-phenylene vinylene]), P3OT (poly (3-octyl thiophene)), P3DT (poly (3-decyl thiophene)), P3DDT (poly (3 -dodecyl thiophene), PPV (poly (p-phenylene vinylene)), TFB (poly
  • the first electrode and the second electrode are the same or different from each other, and each independently silver (Ag), gold (Au), aluminum (Al), platinum (Pt), tungsten (W), Copper (Cu), conductive polymers, and combinations thereof.
  • the substrate further includes a surface opposite to a surface on which the photoactive layer of the first electrode is provided.
  • the first electrode may include indium tin oxide (ITO), fluorine-doped tin oxide (FTO), indium zinc oxide (IZO), and zinc oxide doped with aluminum (AZO); Aluminum-zinc oxide (ZnO: Al), aluminum tin oxide (ATO; Aluminium-tin oxide; SnO 2 : Al) and tin-based oxides, zinc oxide (ZnO), and combinations thereof,
  • the second electrode is selected from the group consisting of metal electrodes, conductive polymers, and combinations thereof.
  • the metal electrode and the conductive polymer are the same as described above.
  • an organic material such as plastic having flexibility, glass or metal may be used.
  • an organic substance polyimide (PI), polycarbonate (PC), polyether sulfone (PES), polyether ether ketone (PEEK), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyethylene (PE), ethylene copolymer, polypropylene (PP), propylene copolymer, poly (4-methyl-1-pentene) (TPX), polyarylate (PAR), polyacetal (POM), Polyphenylene oxide (PPO), polysulfone (PSF), polyphenylene sulfide (PPS), polyvinylidene chloride (PVDC), polyvinyl acetate (PVAC), polyvinyl alcohol (PVAL), polyvinyl acetal, polystyrene ( PS), AS resin, ABS resin, polymethyl methacrylate (PMMA),
  • the first electrode and the second electrode further comprises one or more layers selected from the group consisting of a hole injection layer, a hole transport layer, an electron blocking layer, an electron transport layer and an electron injection layer.
  • a hole transport layer is further included between the second electrode and the photoactive layer.
  • an electron transport layer is included between the first electrode and the silicon material layer, and further includes a hole transport layer between the second electrode and the photoactive layer.
  • FIGS. 1 to 9 the structure of the organic solar cell according to one embodiment of the present specification is illustrated in FIGS. 1 to 9, but is not limited thereto.
  • FIG. 3 illustrates a substrate 101, a first electrode 102 provided on the substrate 101, a silicon material layer 103 provided on the first electrode 102, and a silicon material layer 103 formed on the substrate 101.
  • FIG. 4 illustrates an organic solar cell including the second electrode 105 provided on the hole transport layer 107.
  • FIG. 4 illustrates a substrate 101, a first electrode 102 provided on the substrate 101, a silicon material layer 103 provided on the first electrode 102, and a silicon material layer 103 formed on the substrate 101.
  • the intermediate layer 108 provided in the, the photoactive layer 104 containing a compound of the perovskite structure provided on the intermediate layer 108, and the second electrode 105 provided on the photoactive layer 104 It is a figure which illustrates the organic solar cell containing.
  • FIG. 5 illustrates a substrate 101, a first electrode 102 provided on the substrate 101, a silicon material layer 103 provided on the first electrode 102, and a silicon material layer 103 formed on the substrate 101.
  • FIG. 4 illustrates an organic solar cell including a photoactive layer 104 including a compound having a perovskite structure and a second electrode 105 provided on the photoactive layer 104.
  • the first electrode is indium tin oxide (ITO), fluorine-doped tin oxide (FTO), indium zinc oxide (IZO), aluminum doped oxide Zinc (AZO; aluminum-zinc oxide; ZnO: Al), aluminum tin (ATO; aluminum-tin oxide; SnO 2 : Al) and tin-based oxides, zinc oxide (ZnO) and combinations thereof;
  • the second electrode may be selected from the group consisting of metal electrodes, conductive polymers, and combinations thereof.
  • the organic solar cell includes a layer 104, a hole transport layer 107 provided on the photoactive layer 104, and a second electrode 105 provided on the hole transport layer 107.
  • FIG. 8 shows a photoactive activity including a first electrode 102, a silicon material layer 103 provided on the first electrode 102, and a perovskite structure compound provided on the silicon material layer 103.
  • An illustration of an organic solar cell including a layer 104 and a second electrode 105 provided on the photoactive layer 104.
  • FIG. 9 illustrates a first electrode 102, a silicon material layer 103 provided on the first electrode 102, an intermediate layer 108 provided on the silicon material layer 103, and an upper portion of the intermediate layer 108.
  • FIG. 4 illustrates an organic solar cell including a photoactive layer 104 including a compound having a perovskite structure and a second electrode 105 provided on the photoactive layer 104.
  • the first electrode and the second electrode may be the same or different from each other, and may be independently selected from the group consisting of a metal electrode, a conductive polymer, and a combination thereof.
  • the hole transport layer and / or the electron transport layer material of the present specification may be a material that increases the probability that the generated charge is transferred to the electrode by efficiently transferring electrons and holes to the photoactive layer, but is not particularly limited.
  • the electron transport layer may include a metal oxide.
  • Metal oxides are specifically Ti oxide, Zn oxide, In oxide, Sn oxide, W oxide, Nb oxide, Mo oxide, Mg oxide, Zr oxide, Sr oxide, Yr oxide, La oxide, V oxide, Al oxide, Y oxide, One or two or more selected from Sc oxide, Sm oxide, Ga oxide, In oxide, and SrTi oxide and composites thereof can be used, but is not limited thereto.
  • the electron transport layer is selected from the group consisting of ZnO, TiO 2 , SnO 2 , WO 3 , TiSrO 3 or more.
  • the electron transport layer may be a cathode buffer layer.
  • the electron transport layer may improve the characteristics of the charge by using doping, and may be surface modified using a fullerene derivative or the like.
  • surface modification can be carried out using a method of doping ZnO with metal ions such as Cs and Al.
  • a method of doping a fullerene compound (C 60 ) in ZnO can be used.
  • the hole transport layer may include a conductive polymer.
  • Specific examples of the conductive polymer are the same as those of the electrode material described above.
  • the hole transport layer may act as a second electrode.
  • the hole transport layer may be an anode buffer layer.
  • the hole transport layer may further contain one or two or more additives selected from n dopants and p dopants.
  • the hole transport layer is one from tertiary butyl pyridine (TBP) and lithium bis (trifluoromethanesulfonyl) imide (LiTFSI; Lithium Bis (Trifluoro methanesulfonyl) Imide) Or more than two selected additives.
  • TBP tertiary butyl pyridine
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • LiTFSI Lithium Bis (Trifluoro methanesulfonyl) Imide
  • p dopant refers to a material that makes the host material have p semiconductor properties.
  • the p-semiconductor property refers to a property of injecting or transporting holes at a high occupied molecular orbital (HOMO) energy level, that is, a property of a material having high conductivity of holes.
  • HOMO high occupied molecular orbital
  • n dopant means a material that makes the host material have n semiconductor properties.
  • n Semiconductor property refers to a property of receiving or transporting electrons at a low unoccupied molecular orbital (LUMO) energy level, that is, a property of a material having high electron conductivity.
  • LUMO low unoccupied molecular orbital
  • the p dopant may be an organic, inorganic or organic-inorganic compound.
  • the inorganic material includes tungsten oxide (WO 3 ), molybdenum oxide (MoO 3 ), and rhenium oxide (ReO 2 ), but are not limited thereto.
  • the organic material is 1 or selected from the group consisting of tetrafluoro-tetracyanoquinodimethane (F4-TCNQ (tetrafluoro-tetracyanoquinodimethane) and hexafluoro-tetracycanoquinodimethane) It may be selected from two or more materials, but is not limited thereto.
  • the additive may be added from 0.05 mg to 50 mg per 1g of polymer.
  • One embodiment of the present specification comprises the steps of preparing a substrate; Forming a first electrode on the substrate; Forming a silicon material layer on the first electrode; Forming a photoactive layer comprising a compound of perovskite structure on the silicon material layer; And it provides a method for producing an organic-inorganic solar cell comprising the step of forming a second electrode on the photoactive layer.
  • the method may further include forming an electron transport layer after the forming of the first electrode and before forming the silicon material layer.
  • the method may further include forming an intermediate layer after forming the silicon material and before forming the photoactive layer.
  • the method may further include forming a hole transport layer after forming the photoactive layer and before forming the second electrode.
  • an exemplary embodiment of the present specification comprises the steps of forming a first electrode; Forming a silicon material layer on the first electrode; Forming a photoactive layer comprising a compound of perovskite structure on the silicon material layer; And it provides a method for producing an organic-inorganic solar cell comprising the step of forming a second electrode on the photoactive layer.
  • the silicon material layer when the silicon material layer is provided in contact with the silicon material layer after the forming of the first electrode, the silicon material layer may serve as a substrate, and the preparation of a separate substrate may be omitted.
  • the method may further include forming the above-described intermediate layer and / or forming the hole transport layer.
  • Organic-inorganic hybrid solar cells may be manufactured using materials and methods known in the art.
  • each step may be formed using a spin coating method, a deposition method or a printing method.
  • the printing method may include inkjet printing, gravure printing, spray coating, doctor blade, bar coating, gravure coating, brush painting, slot-die coating, and the like.
  • the present invention is not limited thereto.
  • the vapor deposition method does not limit physical and chemical vapor deposition.
  • An organic-inorganic hybrid solar cell was manufactured in the structure of Al / Si / Si NW / Perovskite / Spiro-OmeTAD / PH500 / Ag Grid.
  • silicon nanowires were manufactured by chemically etching an n-type silicon 100 wafer (Si (100) wafer) on Al in a hydrofluoric acid solution in which silver nitride was added. After spin coating a lead iodide (PbI 2 ) solution dissolved in dimethylformamide (DMF), it was dried for 5 minutes and then dipped in methyl ammonium iodide (CH 3 NH 3 I) dissolved in 2-propanol for several tens of seconds. Then dried.
  • PbI 2 lead iodide
  • DMF dimethylformamide
  • Spiro-OMeTAD (2,2 ', 7,7'-Tetrakis- (N, N-di-4-methoxyphenylamino) -9,9'-spirobifluorene) and 4-tert-butylpyridine (4-tert) in chlorobenzene -butylpyridine) and lithium bis (trifluoromethane) sulfonimide (Li-TFSI) were dissolved and spin-coated.
  • PEPOT PSS (PH500) was coated, 1x10 - 7 torr in a vacuum is deposited a grid electrode.
  • An organic-inorganic hybrid solar cell was manufactured with the structure of ITO / ZnO / Perovskite / Spiro-OmeTAD / Ag instead of the structure of the organic-inorganic hybrid solar cell prepared in Example 1.
  • the glass substrate coated with ITO was sonicated for 30 minutes in acetone and ethanol, respectively, and subjected to surface treatment for 15 minutes using UV-ozone treatment (UVO).
  • UVO UV-ozone treatment
  • Spiro-OMeTAD (2,2 ', 7,7'-Tetrakis- (N, N-di-4-methoxyphenylamino) -9,9'-spirobifluorene) and 4-tert-butylpyridine (4-tert) in chlorobenzene -butylpyridine) and lithium bis (trifluoromethane) sulfonimide (Li-TFSI) were dissolved, spin-coated, and a silver electrode was deposited at 1 ⁇ 10 ⁇ 7 torr vacuum.
  • An organic-inorganic hybrid solar cell was manufactured in the same manner as in Example 1, except that silicon nanowires (SiNW) were not processed in Example 1.
  • An organic-inorganic hybrid solar cell was manufactured in the same manner as in Example 1 except that the silicon nanowire (SiNW) was not processed in Example 1 and the perovskite layer was not coated.
  • V oc is an open voltage
  • J sc is a short-circuit current
  • FF is a fill factor
  • PCE is an energy conversion efficiency.
  • the open-circuit and short-circuit currents are the X- and Y-axis intercepts in the four quadrants of the voltage-current density curve, respectively. The higher these two values, the higher the efficiency of the solar cell.
  • the fill factor is the area of the rectangle drawn inside the curve divided by the product of the short circuit current and the open voltage. By dividing these three values by the intensity of the emitted light, the energy conversion efficiency can be obtained, and higher values are preferable.
  • Example 1 and Comparative Examples 2 and 3 like the organic-inorganic hybrid solar cell according to one embodiment of the present specification, a photoactive layer including a silicon material layer and a compound of perovskite structure at the same time
  • the charge mobility is superior to when only the photoactive layer including the compound of the perovskite structure is included or when both layers are not included, thereby increasing the high current density and / or the energy conversion efficiency. It can be seen that there is a rise.
  • Example 1 when comparing the results of Example 1 and Comparative Example 1, it was confirmed that the present invention has a higher current density increase and / or energy conversion efficiency compared to the case of including a buffer layer containing a metal oxide instead of a silicon material layer Can be.
  • the compound of the perovskite structure has a higher absorption coefficient than the general material included in the photoactive layer, and excellent light condensing effect even in a thin film, it is possible to expect excellent energy conversion efficiency, the perovskite This is because the current density can be improved by further preventing the current loss by further including a silicon material layer having a relatively good charge mobility compared to the compound of the sky structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)

Abstract

본 명세서는 제 1 전극, 상기 제 1 전극과 대향하여 구비되는 제 2 전극, 상기 제 1 전극과 상기 제 2 전극 사이에 구비되는 광활성층, 및 상기 광활성층과 제 1 전극 사이에 구비되는 실리콘 물질층을 포함하고, 상기 광활성층은 페로브스카이트 구조의 화합물을 포함하는 것인 유 -무기 하이브리드 태양 전지를 제공한다.

Description

유-무기 하이브리드 태양 전지
본 명세서는 2014년 4월 23일에 한국특허청에 제출된 한국 특허 출원 제 10-2014-0048916 호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 유-무기 하이브리드 태양 전지에 관한 것이다.
화석 에너지의 고갈과 이의 사용에 의한 지구 환경적인 문제를 해결하기 위해 태양에너지, 풍력, 수력과 같은 재생 가능하며, 청정한 대체 에너지원에 대한 연구가 활발히 진행되고 있다. 이 중에서 태양 빛으로부터 직접 전기적 에너지를 변화시키는 태양전지에 대한 관심이 크게 증가하고 있다. 여기서 태양전지란 태양빛으로부터 광 에너지를 흡수하여 전자와 정공을 발생하는 광기전 효과를 이용하여 전류-전압을 생성하는 전지를 의미한다.
현재 광에너지 변환효율이 20%가 넘는 n-p 다이오드형 실리콘(Si) 단결정 기반 태양전지의 제조가 가능하여 실제 태양광 발전에 사용되고 있으며, 이보다 더 변환효율이 우수한 갈륨아세나이드(GaAs)와 같은 화합물 반도체를 이용한 태양전지도 있다. 그러나 이러한 무기 반도체 기반의 태양전지는 고효율화를 위하여 매우 고순도로 정제한 소재가 필요하므로 원소재의 정제에 많은 에너지가 소비되고, 또한 원소재를 이용하여 단결정 혹은 박막화 하는 과정에 고가의 공정 장비가 요구되어 태양전지의 제조비용을 낮게 하는 데에는 한계가 있어 대규모적인 활용에 걸림돌이 되어왔다.
이에 따라 태양전지를 저가로 제조하기 위해서는 태양전지에 핵심으로 사용되는 소재 혹은 제조 공정의 비용을 대폭 감소시킬 필요가 있으며, 무기 반도체 기반 태양전지의 대안으로 저가의 소재와 공정으로 제조가 가능한 염료 감응형 태양전지와 유기태양전지가 활발히 연구되고 있다.
염료감응 태양전지는, 1991년 스위스 국립 로잔 고등기술원(EPFL)의 마이클 그라첼(Michael Gratzel) 연구팀에 의하여 발표된 것이 대표적이다. 염료감응 태양전지의 작동 원리를 살펴보면, 태양에너지가 전극의 반도체층에 흡착된 감광성 염료에 흡수됨으로써 광전자가 발생하며, 상기 광전자는 반도체층을 통해 전도되어 투명 전극이 형성된 전도성 투명 기재에 전달되고, 전자를 잃어 산화된 염료는 전해질에 포함된 산화·환원쌍에 의해 환원된다. 한편, 외부 전선을 통하여 반대편 전극인 상대 전극에 도달한 전자는 산화된 전해질의 산화·환원 쌍을 다시 환원시킴으로써 태양전지의 작동 과정을 완성한다.
한편, 염료감응 태양전지의 경우 기존 태양전지에 비해, 반도체|염료 계면, 반도체|전해질 계면, 반도체|투명 전극 계면, 전해질|상대 전극 계면 등, 여러 계면을 포함하고 있으며, 각각의 계면에서의 물리·화학적 작용을 이해하고 조절하는 것이 염료감응 태양전지 기술의 핵심이다. 또한, 염료감응 태양전지의 에너지 전환효율은 태양에너지 흡수에 의해 생성된 광전자의 양에 비례하며, 많은 양의 광전자를 생성하기 위해서는 염료분자의 흡착량을 증가시킬 수 있는 구조를 포함하는 광전극의 제조가 요구되고 있다. 다만, 액체형 염료감응태양전지의 효율은 상대적으로 높아 상용화 가능성이 있으나, 휘발성 액체전해질에 의한 시간에 따른 안정성 문제와 고가의 루테늄(Ru)계 염료 사용에 의한 저가화에도 문제가 있다. 이 문제를 해결하기 위하여 휘발성 액체 전해질 대신에 이온성 용매를 이용한 비 휘발성 전해질 사용, 고분자 젤형 전해질 사용 및 저가의 순수 유기물 염료 사용 등이 연구되고 있으나, 휘발성 액체 전해질과 Ru계 염료를 이용한 염료감응태양전지에 비하여 효율이 낮은 문제점이 있다.
이에 따라서, 종래의 루테늄 금속 착체 대신에 페로브스카이트 구조를 가지는 유-무기 하이브리드 태양 전지의 개발이 요구되고 있다.
[선행기술문헌]
[비특허문헌]
Advanced Materials, 23 (2011) 4636
Nano Letters, 11 (2011) 4789
J. Am. Chem. Soc., 131 (2009) 6050
본 명세서는 안정성 및 에너지 변환 효율이 우수한 유-무기 하이브리드 태양 전지를 제공하는 것을 목적으로 한다.
본 명세서는 제1 전극;
상기 제1 전극과 대향하여 구비되는 제2 전극;
상기 제1 전극과 상기 제2 전극 사이에 구비되는 광활성층; 및
상기 광활성층과 제1 전극 사이에 구비되는 실리콘 물질층을 포함하고,
상기 광활성층은 페로브스카이트 구조의 화합물을 포함하는 것인 유-무기 하이브리드 태양 전지를 제공한다.
본 명세서의 일 실시상태에 따른 유-무기 하이브리드 태양 전지는 전하 이동도가 우수하여, 높은 전류 밀도의 증가 및/또는 에너지 변환 효율의 상승을 구현할 수 있다.
또한, 본 명세서의 일 실시상태에 따른 유-무기 하이브리드 태양 전지는 넓은 광스펙트럼을 흡수할 수 있어, 광에너지의 손실을 줄이고 높은 전류 밀도의 증가 및/또는 에너지 변환 효율의 상승을 구현할 수 있다.
본 명세서의 일 실시상태에 따른 유-무기 하이브리드 태양 전지는 간단한 제조 공정으로 제조 가능하여, 시간 및/또는 비용상 경제적이다.
본 명세서의 일 실시상태에 따른 유-무기 하이브리드 태양 전지는 전하 수송에 필요한 계면적 증가 및/또는 전하의 이동 경로를 용이하게 조절할 수 있다.
도 1 내지 9는 각각 본 명세서의 일 실시상태에 따른 유-무기 하이브리드 태양 전지의 일 예를 도시한 것이다.
[부호의 설명]
101: 기판
102: 제1 전극
103: 실리콘 물질층
104: 광활성층
105: 제2 전극
106: 전자수송층
107: 정공수송층
108: 중간층
이하 본 명세서를 상세히 설명한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접하여 있는 경우뿐만 아니라, 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 명세서의 일 실시상태에 있어서, 제1 전극; 상기 제1 전극과 대향하여 구비되는 제2 전극; 상기 제1 전극과 상기 제2 전극 사이에 구비되는 광활성층; 및 상기 광활성층과 제1 전극 사이에 구비되는 실리콘 물질층을 포함하고, 상기 광활성층은 페로브스카이트 구조의 화합물을 포함하는 유-무기 하이브리드 태양 전지를 제공한다.
본 명세서에서 페로브스카이트 구조의 화합물은 무기물과 유기물이 혼재되어 결합된 페로브스카이트 구조의 화합물일 수 있다. 구체적으로 본 명세서의 일 실시상태에 있어서, 상기 페로브스카이트 구조의 화합물은 페로브스카이트 구조의 유기-금속할로겐 화합물이다.
또 하나의 실시상태에 있어서, 상기 페로브스카이트 구조의 화합물을 얻기 위해서는 이온 3개의 구성 이온은 하기의 식 1을 만족할 수 있다.
[식 1]
Figure PCTKR2015003987-appb-I000001
상기 식 1에 있어서,
RA, RB, RO는 각 이온들의 반경을 의미하고,
t는 이온들의 접촉상태를 나타내는 허용인자(tolerance factor)로, t가 1인 경우 이상적인 페로브스카이트 구조의 화합물로 각 이온들이 인접 이온과 접촉하고 있음을 의미한다.
하나의 실시상태에 있어서, 상기 페로브스카이트 구조의 화합물은 하기 화학식 1로 표시된다.
[화학식 1]
Figure PCTKR2015003987-appb-I000002
상기 화학식 1에 있어서,
A는 1가의 유기 암모늄 이온 또는 Cs+이고,
M은 2가의 금속이온이며,
X는 할로겐 이온이다.
본 명세서의 일시상태에 있어서, 상기 화학식 1을 만족하는 화합물은 페로브스카이트 구조를 가지며, M은 페로브스카이트 구조에서 단위 셀(unit cell) 의 중심에 위치하며, X는 단위셀의 각 면 중심에 위치하여 M을 중심으로 옥타헤드론(octahedron) 구조를 형성하며, A는 단위셀의 각 코너(corner)에 위치할 수 있다.
또 하나의 실시상태에 있어서, 상기 화학식 1은 하기 화학식 2 또는 3으로 표시된다.
[화학식 2]
Figure PCTKR2015003987-appb-I000003
[화학식 3]
Figure PCTKR2015003987-appb-I000004
화학식 2 및 3에 있어서,
R1 및 R2는 탄소수 1 내지 24의 치환 또는 비치환된 알킬기; 탄소수 3 내지 20의 치환 또는 비치환된 시클로알킬기; 또는 탄소수 6 내지 20의 치환 또는 비치환된 아릴기이고,
R3는 수소; 또는 탄소수 1 내지 24의 알킬기이며,
M은 Cu2 +, Ni2 +, Co2 +, Fe2 +, Mn2 +. Cr2 +, Pd2 +, Cd2 +, Ge2 +, Sn2 +, Pd2 + 및 Yb2 +로 이루어진 군에서 1 또는 2종 이상이 선택되는 2가의 금속이온이고,
X는 F-, Cl-, Br- 및 I-로 이루어진 군에서 1 또는 2종 이상이 선택되는 할로겐이온이다.
본 명세서의 일 실시상태에 있어서, 상기 페로브스카이트 구조의 화합물은 할로겐 이온인 X를 세 개 포함하고, 세 개의 할로겐 이온은 서로 동일하거나 상이할 수 있다.
본 명세서의 일 실시상태에 있어서, M는 Pd2 +이다.
또 하나의 실시상태에 있어서, R1은 탄소수 1 내지 24의 알킬기이다.
본 명세서의 일 실시상태에 있어서, R1은 메틸기이다.
또 하나의 실시상태에 있어서, 상기 상기 유기-금속할로겐 화합물은 CH3NH3PbIxCly, CH3NH3PbIxBry, CH3NH3PbClxBry 및 CH3NH3PbIxFy로 이루어진 군에서 1 또는 2 이상이 선택되고, x는 0 이상 3 이하의 실수이며, y는 0 이상 3 이하의 실수이고, x+y=3이다.
본 명세서의 일 실시상태에 있어서, 상기 광활성층은 페로브스카이트 구조의 화합물만을 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 광활성층은 화학식 1로 표시되는 페로브스카이트 구조의 화합물 및 다른 페로브스카이트 구조의 화합물로 이루어진 군에서 1 종 또는 2 종 이상을 포함한다.
상기 광활성층이 2 종의 페로브스카이트 구조의 화합물을 포함하는 경우, 화학식 1로 표시되는 페로브스카이트 구조의 화합물 및 다른 구조의 페로브스카이트 구조의 화합물의 함량 범위는 1: 1,000 내지 1,000:1 이다. 또 하나의 실시상태에 있어서, 화학식 1로 표시되는 페로브스카이트 구조의 화합물 및 다른 구조의 페로브스카이트 구조의 화합물의 함량 범위는 1:100 내지 100: 1 이다. 또 다른 실시상태에 있어서, 화학식 1로 표시되는 페로브스카이트 구조의 화합물 및 다른 구조의 페로브스카이트 구조의 화합물의 함량 범위는 1: 10 내지 10: 1 이다.
상기 페로브스카이트 구조의 화합물은 광활성층에 포함되는 일반적인 물질보다 흡광계수가 높아, 얇은 두께의 필름에서도 집광 효과가 우수하다. 따라서, 본 명세서의 일 실시상태에 따른 유-무기 하이브리드 태양 전지는 우수한 에너지 변환 효율을 기대할 수 있다.
하나의 실시상태에 있어서, 상기 페로브스카이트 구조의 화합물을 포함하는 광활성층의 두께는 50 nm 내지 2,000 nm이다. 또 다른 실시상태에 있어서, 상기 페로브스카이트 구조의 화합물을 포함하는 광활성층의 두께는 100 nm 내지 1,500 nm 이다. 또 하나의 실시상태에 있어서, 상기 페로브스카이트 구조의 화합물을 포함하는 광활성층의 두께는 300 nm 내지 1,000 nm 이다.
본 명세서에서 "두께" 란 광활성층의 제1 전극 또는 제2 전극과 대향하는 일 표면과 상기 표면과 대향하는 일 표면 사이의 너비를 의미한다.
본 명세서의 일 실시상태에 따른 유-무기 하이브리드 태양 전지는 광활성층과 제1 전극 사이에 실리콘 물질층을 포함한다.
종래의 페로브스카이트 구조의 화합물을 포함하는 전지의 경우, 낮은 전하 이동도로 인한 전류 손실로 전류밀도 향상을 기대하기 어렵다. 또한, 페로브스카이 구조의 화합물은 800nm 이상의 광스펙트럼을 흡수할 수 없어 광에너지 손실이 크다. 광에너지 손실을 방지하기 위하여, 광활성층의 두께를 두껍게 하는 하는 방안을 고려할 수 있으나, 광활성층의 두께가 증가하는 경우에는 광활성층의 전하이동도의 감소로 전류 손실이 발생할 수 있다.
본 명세서의 일 실시상태에 따른 유-무기 하이브리드 태양 전지는 상기 페로브스카이트 구조의 화합물에 비하여 상대적으로 우수한 전하이동도를 가지고 있는 실리콘 물질층을 더 포함하여 전류 손실을 방지하여 전류 밀도가 향상될 수 있다. 또한, 실리콘 물질층은 800nm 이상의 광스펙트럼을 흡수할 수 있어, 광에너지의 손실을 방지하여 높은 에너지 변환 효율을 구현할 수 있으며, 실리콘 물질층은 도핑을 통한 에너지 조절이 용이하여 광활성층의 에너지 레벨에 따라 에너지 주입 장벽을 용이하게 조절할 수 있다. 따라서, 수송에 필요한 계면적 증가 및/또는 전하의 이동 경로를 용이하게 조절할 수 있다.
또한, 실리콘 물질은 용액 공정을 이용하여, 페로브스카이트 구조의 화합물을 포함하는 광활성층과의 접합면 형태의 조절이 가능하고, 전류 수집 면적 및 광흡수 특성의 개선을 통해 전류 밀도를 높일 수 있으며, 태양 전지의 제조에 있어 시간 및/또는 비용적으로 경제적이다.
본 명세서에서 "전하"란 전자 또는 정공을 의미한다.
본 명세서의 일 실시상태에 있어서, 실리콘 물질층은 필름 형태; 또는 패턴 형태로 구비된다.
상기 필름 형태는 매끄러운 표면을 갖는 것을 의미하고, 패턴 형태는 요철을 갖는 것을 의미하며, 나노 와이어, 피라미드, 돔 형태 등의 표면 구조화가 가능하다.
상기 실리콘 물질층에 포함되는 실리콘은 p형 또는 n형일 수 있고, 비정질(amorphous) 또는 결정질(crystalline)일 수 있으며, 나노입자 또는 웨이퍼(wafer)타입일 수 있으며 이를 한정하지 않고, 필요에 따라서 조절하여 사용할 수 있다.
예컨대, 필요에 따라 당업자는 실리콘에 불순물이 첨가되지 않은 상태를 사용할 수 있으며, 불순물을 첨가하여, p형 또는 n형의 도핑된 실리콘을 사용할 수 있다. p형 비정질 실리콘을 형성하기 위해서는 3가 원소인 붕소, 칼륨 등을 침투시키며, n형 비정질 실리콘을 형성하기 위해서는 5가 원소인 인, 비소, 안티몬 등을 첨가시켜 만든다.
본 명세서의 일 실시상태에 있어서, 상기 실리콘 물질층은 패턴 형태이다.
본 명세서의 일 실시상태에 있어서, 상기 실리콘 물질층은 표면 개질을 위하여, 자기조립단분자막(SAM; self-assembled monolayer), 평행 평판형 방전을 이용한 표면 산화법, 진공상태에서 UV 자외선을 이용하여 생성된 오존을 통해 표면을 산화하는 방법, 플라즈마에 의해 생성된 산소 라디칼을 이용하여 산화하는 방법, 실리콘 산화물(SiO2)형성하는 등의 방법을 이용하여 표면 개질을 통해, 표면 에너지 및/또는 전하 재결합 특성을 조절할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 실리콘 물질층은 표면 구조화를 위하여, 산소, 트리플루오르메탄, 클로린, 하이드로겐 브로마이드 플라즈마 등을 이용한 리소그라피 등 건식 방법과, 불산 등을 이용한 습식 방법을 이용해 나노로드, 콘, 피라비드, 반구 형태 등의 나노 구조화를 할 수 있다.
패턴 형태의 실리콘 물질층을 포함하는 경우, 나노 구조화를 통하여 접합 면적이 향상됨에 따라, 전하의 수집 면적의 증가에 따른 전류 밀도의 증가를 기대할 수 있다. 또한, 광포획(light trapping) 및 또는 반사방지 효과로 인하여, 광흡수율이 증가하고, 전류 밀도가 증가할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 필름 형태의 실리콘 물질층의 두께는 300 마이크로미터 내지 600 마이크로미터이다. 또 다른 실시상태에 있어서, 상기 필름형태의 실리콘 물질층의 두께는 400 마이크로미터 내지 550 마이크로미터이다.
본 명세서의 일 실시상태에 있어서, 상기 패턴 형태의 실리콘 물질층의 패턴의 두께는 30 nm 내지 1,000 nm 이다. 또 다른 실시상태에 있어서, 상기 패턴 형태의 실리콘 물질층의 패턴의 두께는 50 nm 내지 800 nm 이다.
상기 패턴의 두께란, 패턴이 구비된 일면과 패턴이 구비된 일면과 대향하는 패턴의 일 표면 사이의 너비를 의미한다. 즉 필름 형태의 실리콘 물질층에 구비된 패턴의 높이를 의미하고, 2 이상의 패턴을 포함하는 경우에는 2 이상의 패턴 높이의 평균값을 의미한다.
본 명세서의 일 실시상태에 있어서, 상기 실리콘 물질층과 상기 광활성층은 서로 접하여 구비된다.
다른 실시상태에 있어서, 상기 실리콘 물질층과 상기 광활성층 사이에 구비되는 중간층을 더 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 중간층은 절연층; 또는 N/P 접합층이다.
본 명세서의 일 실시상태에 있어서, 상기 절연층을 구성하는 재료로서, 무기 절연성 재료, 유기 절연성 재료 또는 이들의 혼합물을 포함한다.
구체적으로 무기 절연성 재료로서는 산화실리콘, 질화실리콘, 산화티탄, 산화알루미늄, 산화마그네슘, 산화아연, 구체적으로 알루미나(Al2O3), 지르코니아(ZrO), 실리카(SiO2)등 산화물 나노입자 및 불화리튬(LiF) 등으로 이루어지는 군에서 선택될 수 있다. 유기 절연성 재료로서는 PS(Polystyrene), 폴리메틸메타크릴레이트(poly(methylmethacrylate), 폴리에스테르, 에틸렌초산비닐 공중합체, 아크릴, 에폭시, 폴리우레탄 등의 재료를 이용할 수도 있고, 비공액 고분자 전해질(non-conjugated polyelectrolyte)등의 재료를 이용할 수 있으며, 당업자가 필요에 따라서 선택할 수 있다.
상기 절연층을 포함하는 경우, 실리콘 물질층과 광활성층 간의 저항 접촉을 향상시킬 수 있고, 여기된 전자와 정공이 효과적으로 재결합할 수 있는 공간을 제공하여, 에너지 변환 효율을 향상시킬 수 있으며, 표면 에너지를 조절하여, 상부에 오는 용액층의 젖음성을 개선하여 균일한 박막을 얻을 수 있다.
또 하나의 실시상태에 있어서, 상기 중간층은 N/P 접합층이다.
본 명세서의 일 실시상태에 있어서, 상기 N/P 접합층을 이루는 구성 물질은 금속산화물, 금속, 전도성 고분자, 유전체 (dielectric) 물질 및 탄소화합물로 이루어진 군에서 1 또는 2 이상을 포함한다.
본 명세서에서 상기 금속은 타이타늄(Ti), 지르코늄(Zr), 스트론튬(Sr), 징크(Zn), 인듐(In), 란타넘(La), 바나듐(V), 몰리브데넘(Mo), 텅스텐(W), 틴(Sn), 나이오븀(Nb), 마그네슘(Mg), 칼슘(Ca), 바륨(Ba), 알루미늄(Al), 이트륨(Y), 스칸듐(Sc), 사마륨(Sm), 갈륨(Ga) 및 스트론튬타이타늄(SrTi)로 이루어진 군에서 선택되는 어느 하나의 금속일 수 있으며, 이에 한정하지 않는다.
본 명세서에서 상기 금속 산화물은 전술한 금속의 산화물, 구체적으로 Mo 산화물, V 산화물, Ni 산화물, Ti 산화물 및 Zn 산화물 등이 있으며 이를 한정하지 않는다. 구체적으로 상기 금속 산화물은 MoO3, V2O5, VOx, TiO2, TiOx 및 ZnO로 이루어진 군에서 선택되는 1 종일 수 있다.
본 명세서에서 전도성 고분자는 폴리(3,4-에틸렌디옥시티오펜) (PEDOT) 및 PAA(Polyacrylic acid) 등이 있으며, 이에 한정되지 않는다.
본 명세서에서 상기 유전체 (dielectric) 물질은 PEI(polyethyleneimine), PEIE(ethoxylated polyethyleneimine), PFN(Poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-ㅇdioctylfluorene)]) 등이 있으며 이에 한정하지 않는다.
본 명세서에서 탄소 화합물은 그래핀(Graphene) 및 탄소나노튜브(CNT) 등이 있으나, 이에 한정하지 않는다.
본 명세서의 일 실시상태에 있어서, 상기 N/P 접합층은 구체적으로 ZnO/Al, Ag/PEDOT, ZnO/Al, Ag/ PEI, PEIE, ZnO/공액 고분자 전해질(conjugated polyelectrolyte)/Al을 포함하거나 포함하지 않고(with or without Al)/PEDOT, ZnO/그래핀(graphene), Al 또는 Ag / 공액 고분자 전해질(conjugated polyelectrolyte) 등이 있으며 이에 한정하지 않는다.
구체적으로 상기 중간층은 ZnO/PEDOT:PSS의 접합층을 형성할 수 있으며, n 형 또는 p형 물질을 도핑하여, 접합층을 형성할 수 있다.
본 명세서에서 N/P 접합층이란 실리콘 물질층과 페로브스카이트 구조의 화합물을 포함하는 광활성층 양 쪽에서 생성된 캐리어가 이동되어, N/P 접합층에서 재결합하여 반대쪽 전극으로 전하가 이동될 수 있게 해주는 역할을 하며, 계면 저항을 감소시키는 역할을 한다.
본 명세서에서 p 도핑층은 p 도펀트가 도핑된 층을 의미한다. p 도펀트는 호스트 물질을 p 반도체 특성을 갖도록 하는 물질을 의미한다. p 반도체 특성이란 HOMO(highest occupied molecular orbital) 에너지 준위로 정공을 주입받거나 수송하는 특성 즉, 정공의 전도도가 큰 물질의 특성을 의미한다.
본 명세서에서 n 도핑층은 n 도펀트가 도핑된 층을 의미한다. n 도펀트는 호스트 물질을 n 반도체 특성을 갖도록 하는 물질을 의미한다. n 반도체 특성이란 LUMO(lowest unoccupied molecular orbital)에너지 준위로 전자를 주입받거나 수송하는 특성 즉, 전자의 전도도가 큰 물질의 특성을 의미한다.
본 명세서의 일 실시상태에 있어서, 상기 유-무기 하이브리드 태양 전지는 탠덤(tandem)구조일 수 있다. 이 경우, 광활성층을 2층 이상 포함할 수 있다.
또 하나의 실시상태에 있어서, 실리콘 물질층은 상기 제1 전극과 접하여 구비된다.
본 명세서에서 상기 실리콘 물질층이 상기 제1 전극과 접하여 구비되는 경우, 실리콘 물질층은 태양 전지 내에서 기판의 역할로 태양 전지를 지지하는 역할을 할 수 있다. 따라서, 별도의 기판의 구비 없이 태양 전지로서 작용할 수 있다.
하나의 실시상태에 있어서, 상기 실리콘 물질층이 상기 제1 전극과 접하여 구비되는 경우, 제1 전극과 상기 제2 전극은 서로 동일하거나 상이하고, 독립적으로 금속 전극, 전도성 고분자 및 이들의 조합으로 이루어진 군에서 선택될 수 있다.
본 명세서에서 상기 금속 전극은 은(Ag), 금 (Au), 알루미늄(Al), 백금(Pt), 텅스텐(W), 구리(Cu), 몰리브덴(Mo), 금(Au), 니켈(Ni), 및 팔라듐(Pd)으로 이루어진 군에서 선택되는 1종 또는 2종 이상을 포함할 수 있다.
본 명세서에서 상기 전도성 고분자는 티오펜계; 파라페닐렌비닐렌계, 카바졸계 또는 트리페닐아민계에서 선택될 수 있으나, 전도성 물질이라면 이에 한정하지 않는다. 구체적으로, 고분자는 P3HT(poly[3-hexylthiophene]), MDMO-PPV(poly[2-methoxy-5-(3',7'- dimethyloctyloxyl)]-1,4-phenylene vinylene), MEH-PPV(poly[2-methoxy-5-(2''-ethylhexyloxy)-p-phenylene vinylene]), P3OT(poly(3-octyl thiophene)), P3DT(poly(3-decyl thiophene)), P3DDT(poly(3-dodecyl thiophene), PPV(poly(p-phenylene vinylene)), TFB(poly(9,9'-dioctylfluorene-co-N-(4-butylphenyl)diphenyl amine), PCPDTBT(Poly[2,1,3-benzothiadiazole- 4,7-diyl[4,4-bis(2-ethylhexyl-4H- cyclopenta [2,1-b:3,4-b']dithiophene-2,6-diyl]], Si-PCPDTBT(poly[(4,4'-bis(2-ethylhexyl)dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl]), PBDTTPD(poly((4,8-diethylhexyloxyl) benzo([1,2-b:4,5-b']dithiophene)-2,6-diyl)-alt-((5-octylthieno[3,4-c]pyrrole-4,6-dione)-1,3-diyl)), PFDTBT(poly[2,7-(9-(2-ethylhexyl)-9-hexyl-fluorene)-alt-5,5-(4', 7, -di-2-thienyl-2',1', 3'-benzothiadiazole)]), PFO-DBT(poly[2,7-.9,9-(dioctyl-fluorene)-alt-5,5-(4',7'-di-2-.thienyl-2', 1', 3'-benzothiadiazole)]), PSiFDTBT(poly[(2,7-dioctylsilafluorene)-2,7-diyl-alt-(4,7-bis(2-thienyl)-2,1,3-benzothiadiazole)-5,5′-diyl]), PSBTBT(poly[(4,4′-bis(2-ethylhexyl)dithieno[3,2-b:2′,3′-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl]), PCDTBT(Poly [[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl]), PFB(poly(9,9′-dioctylfluorene-co-bis(N,N′-(4,butylphenyl))bis(N,N′-phenyl-1,4-phenylene)diamine), F8BT(poly(9,9′-dioctylfluorene-co-benzothiadiazole), PEDOT (poly(3,4-ethylenedioxythiophene)), PEDOT:PSS poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate), PTAA (poly(triarylamine)), Poly(4-butylphenyl-diphenyl-amine) 및 이들의 공중합체 등이 있으며 이를 한정하지 않는다.
하나의 실시상태에 있어서, 상기 제1 전극 및 제2 전극은 서로 동일하거나 상이하고, 각각 독립적으로 은(Ag), 금(Au), 알루미늄(Al), 백금(Pt), 텅스텐(W), 구리(Cu), 전도성 고분자 및 이들의 조합으로 이루어진 군에서 선택되는 것을 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 제1 전극의 광활성층이 구비되는 면과 대향하는 면에 기판을 더 포함한다.
이 경우, 상기 제1 전극은 인듐 주석 산화물(ITO;indium-tin oxide), 불소함유 산화주석(FTO; Fluorine-doped tin oxide), 인듐 아연 산화물(IZO), 알루미늄이 도핑된 산화아연(AZO; Aluminium-zinc oxide;ZnO:Al), 산화알루미늄주석(ATO;Aluminium-tin oxide; SnO2:Al) 및 주석계 산화물, 산화아연(ZnO) 및 이들의 조합으로 이루어진 군에서 선택되고,
상기 제2 전극은 금속 전극, 전도성 고분자 및 이들의 조합으로 이루어진 군에서 선택된다.
상기 금속 전극, 전도성 고분자는 전술한 바와 동일하다.
본 명세서에서 기판으로서는 유연성을 갖는 플라스틱 등의 유기물, 유리 또는 금속이 사용될 수 있다. 이때, 유기물로서는 폴리이미드(PI), 폴리카보네이트(PC), 폴리에테르설폰(PES), 폴리에테르에테르케톤(PEEK), 폴리부틸렌테레프탈레이트(PBT), 폴리에틸렌테레프탈레이트(PET), 폴리염화비닐(PVC), 폴리에틸렌(PE), 에틸렌 공중합체, 폴리프로필렌(PP), 프로필렌 공중합체, 폴리(4-메틸-1-펜텐)(TPX), 폴리아릴레이트(PAR), 폴리아세탈(POM), 폴리페닐렌옥사이드(PPO), 폴리설폰(PSF), 폴리페닐렌설파이드(PPS), 폴리염화비닐리덴(PVDC), 폴리초산비닐(PVAC), 폴리비닐알콜(PVAL), 폴리비닐아세탈, 폴리스티렌(PS), AS수지, ABS수지, 폴리메틸메타크릴레이트(PMMA), 불소수지, 페놀수지(PF), 멜라민수지(MF), 우레아수지(UF), 불포화폴리에스테르(UP), 에폭시수지(EP), 디알릴프탈레이트수지(DAP), 폴리우레탄(PUR), 폴리아미드(PA), 실리콘수지(SI) 또는 이것들의 혼합물 및 화합물을 이용할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제1 전극과 제2 전극 사이에 정공주입층, 정공수송층, 전자차단층, 전자수송층 및 전자주입층으로 이루어진 군에서 선택되는 1 이상의 층을 더 포함한다.
하나의 실시상태에 있어서, 상기 제1 전극과 실리콘 물질층 사이에 전자수송층을 더 포함한다.
다른 실시상태에 있어서, 상기 제2 전극과 광활성층 사이에 정공수송층을 더 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 제1 전극과 실리콘 물질층 사이에 전자수송층을 포함하고, 상기 제2 전극과 광활성층 사이에 정공수송층을 더 포함한다.
예컨대, 본 명세서의 일 실시상태에 따른 유기 태양 전지의 구조는 도 1 내지 9에 예시되어 있으나, 이에 한정하지 않는다.
도 1은 기판(101), 상기 기판(101) 상에 구비된 제1 전극(102), 상기 제1 전극(102) 상에 구비된 전자수송층(106), 상기 전자수송층(106) 상에 구비된 실리콘 물질층(103), 상기 실리콘 물질층(103)상에 구비된 페로브스카이트 구조의 화합물을 포함하는 광활성층(104), 상기 광활성층(104) 상에 구비된 정공수송층(107), 및 상기 정공수송층(107) 상에 구비된 제2 전극(105)을 포함하는 유기 태양 전지를 예시한 도이다.
도 2는 기판(101), 상기 기판(101) 상에 구비된 제1 전극(102), 상기 제1 전극(102) 상에 구비된 실리콘 물질층(103), 상기 실리콘 물질층(103)상에 구비된 페로브스카이트 구조의 화합물을 포함하는 광활성층(104), 상기 광활성층(104) 상에 구비된 정공수송층(107), 및 상기 정공수송층(107) 상에 구비된 제2 전극(105)을 포함하는 유기 태양 전지를 예시한 도이다.
도 3은 기판(101), 상기 기판(101) 상에 구비된 제1 전극(102), 상기 제1 전극(102) 상에 구비된 실리콘 물질층(103), 상기 실리콘 물질층(103)상에 구비된 중간층(108), 상기 중간층(108) 상에 구비된 페로브스카이트 구조의 화합물을 포함하는 광활성층(104), 상기 광활성층(104) 상에 구비된 정공수송층(107), 및 상기 정공수송층(107) 상에 구비된 제2 전극(105)을 포함하는 유기 태양 전지를 예시한 도이다.
도 4는 기판(101), 상기 기판(101) 상에 구비된 제1 전극(102), 상기 제1 전극(102) 상에 구비된 실리콘 물질층(103), 상기 실리콘 물질층(103)상에 구비된 중간층(108), 상기 중간층(108) 상에 구비된 페로브스카이트 구조의 화합물을 포함하는 광활성층(104), 및 상기 광활성층(104) 상에 구비된 제2 전극(105)을 포함하는 유기 태양 전지를 예시한 도이다.
도 5는 기판(101), 상기 기판(101) 상에 구비된 제1 전극(102), 상기 제1 전극(102) 상에 구비된 실리콘 물질층(103), 상기 실리콘 물질층(103)상에 구비된 페로브스카이트 구조의 화합물을 포함하는 광활성층(104), 및 상기 광활성층(104) 상에 구비된 제2 전극(105)을 포함하는 유기 태양 전지를 예시한 도이다.
도 1 내지 5의 경우, 상기 제1 전극은 인듐 주석 산화물(ITO;indium-tin oxide), 불소함유 산화주석(FTO; Fluorine-doped tin oxide), 인듐 아연 산화물(IZO), 알루미늄이 도핑된 산화아연(AZO; Aluminium-zinc oxide;ZnO:Al), 산화알루미늄주석(ATO;Aluminium-tin oxide; SnO2:Al) 및 주석계 산화물, 산화아연(ZnO) 및 이들의 조합으로 이루어진 군에서 선택되고, 상기 제2 전극은 금속 전극, 전도성 고분자 및 이들의 조합으로 이루어진 군에서 선택될 수 있다.
도 6은 제1 전극(102), 상기 제1 전극(102) 상에 구비된 실리콘 물질층(103), 상기 실리콘 물질층(103)상에 구비된 페로브스카이트 구조의 화합물을 포함하는 광활성층(104), 상기 광활성층(104) 상에 구비된 정공수송층(107), 및 상기 정공수송층(107) 상에 구비된 제2 전극(105)을 포함하는 유기 태양 전지를 예시한 도이다.
도 7은 제1 전극(102), 상기 제1 전극(102) 상에 구비된 실리콘 물질층(103), 상기 실리콘 물질층(103)상에 구비된 중간층(108), 상기 중간층(108) 상에 구비된 페로브스카이트 구조의 화합물을 포함하는 광활성층(104), 상기 광활성층(104) 상에 구비된 정공수송층(107), 및 상기 정공수송층(107) 상에 구비된 제2 전극(105)을 포함하는 유기 태양 전지를 예시한 도이다.
도 8은 제1 전극(102), 상기 제1 전극(102) 상에 구비된 실리콘 물질층(103), 상기 실리콘 물질층(103)상에 구비된 페로브스카이트 구조의 화합물을 포함하는 광활성층(104), 및 상기 광활성층(104) 상에 구비된 제2 전극(105)을 포함하는 유기 태양 전지를 예시한 도이다.
도 9는 제1 전극(102), 상기 제1 전극(102) 상에 구비된 실리콘 물질층(103), 상기 실리콘 물질층(103)상에 구비된 중간층(108), 상기 중간층(108) 상에 구비된 페로브스카이트 구조의 화합물을 포함하는 광활성층(104), 및 상기 광활성층(104) 상에 구비된 제2 전극(105)을 포함하는 유기 태양 전지를 예시한 도이다.
도 6 내지 9의 경우, 제1 전극과 상기 제2 전극은 서로 동일하거나 상이하고, 독립적으로 금속 전극, 전도성 고분자 및 이들의 조합으로 이루어진 군에서 선택될 수 있다.
본 명세서에서 어떤 부재가 다른 부재 “상에” 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 명세서의 상기 정공수송층 및/또는 전자수송층 물질은 전자와 정공을 광활성층으로 효율적으로 전달시킴으로써, 생성되는 전하가 전극으로 이동되는 확률을 높이는 물질이 될 수 있으나, 특별히 제한되지는 않는다.
본 명세서의 일 실시상태에 있어서, 상기 전자수송층은 금속 산화물을 포함할 수 있다. 금속 산화물은 구체적으로 Ti산화물, Zn산화물, In산화물, Sn산화물, W산화물, Nb산화물, Mo산화물, Mg산화물, Zr산화물, Sr산화물, Yr산화물, La산화물, V산화물, Al산화물, Y산화물, Sc산화물, Sm산화물, Ga산화물, In산화물, 및 SrTi산화물 및 이들의 복합물 중에서 1 또는 2 이상 선택된 것이 사용 가능하며, 이에 한정하지 않는다.
하나의 실시상태에 있어서, 상기 전자수송층은 ZnO, TiO2, SnO2, WO3, TiSrO3 로 이루어진 군에서 1 또는 2 이상이 선택된다.
본 명세서의 일 실시상태에 따르면, 상기 전자수송층은 캐소드 버퍼층일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 전자수송층은 도핑을 이용하여 전하의 특성을 개선할 수 있으며, 플러렌 유도체 등을 이용하여 표면 개질을 할 수 있다. 구체적으로 J. Mater. Chem. A, 2013 1, 11802에 기재된 것과 같이, ZnO에 Cs, Al 등의 금속 이온을 도핑하는 방법을 이용하여, 표면개질을 할 수 있다. 또한, Adv. Mater. 2013, 25, 4766또는 Appl. Phys. Lett. 93, 233304 에 기재된 바와 같이 ZnO 내에 플러렌 화합물(C60)을 도핑하는 방법을 이용할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 정공수송층은 전도성 고분자를 포함할 수 있다. 상기 전도성 고분자의 구체적인 예시는 전술한 전극 재료와 동일하다.
하나의 실시상태에 있어서, 상기 정공수송층은 제2 전극으로 작용할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 정공수송층은 애노드 버퍼층일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 정공수송층은 n 도펀트 및 p 도펀트에서 선택되는 1 종 또는 2 종 이상의 첨가제를 더 함유할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 정공수송층은 터셔리부틸피리딘 (TBP; tertiary butyl pyridine) 및 리튬 비스(트리플루오로메탄술포닐)이미드 (LiTFSI; Lithium Bis(Trifluoro methanesulfonyl)Imide)에서 하나 또는 둘 이상 선택된 첨가제를 더 함유할 수 있다.
본 명세서에서 p 도펀트는 호스트 물질을 p 반도체 특성을 갖도록 하는 물질을 의미한다. p 반도체 특성이란 HOMO(highest occupied molecular orbital) 에너지 준위로 정공을 주입받거나 수송하는 특성 즉, 정공의 전도도가 큰 물질의 특성을 의미한다.
본 명세서에서 n 도펀트는 호스트 물질을 n 반도체 특성을 갖도록 하는 물질을 의미한다. n 반도체 특성이란 LUMO(lowest unoccupied molecular orbital)에너지 준위로 전자를 주입받거나 수송하는 특성 즉, 전자의 전도도가 큰 물질의 특성을 의미한다.
본 명세서의 일 실시상태에 있어서, 상기 p 도펀트는 유기물, 무기물 또는 유무기 합성물일 수 있다.
본 명세서에서 상기 무기물은 산화텅스텐(WO3), 산화몰리브덴(MoO3) 및 산화레늄(ReO2) 등이 있으며, 이에 한정되지 않는다.
본 명세서에서 상기 유기물은 테트라플루오로-테트라시아노퀴노디메탄 (F4-TCNQ(tetrafluoro-tetracyanoquinodimethane)) 및 헥사플루오로-테트라시아노퀴노디메탄(hexafluoro-tetracyanoquinodimethane)으로 이루어진 군에서 선택되는 1 또는 2 이상의 물질로 선택될 수 있으나, 이에 한정하지 않는다.
상기 정공전달층이 상기 첨가제를 함유함으로써, 개방전압을 증가시킬 수 있다. 상기 첨가제는 고분자 1g 당 0.05 mg 내지 50 mg 첨가될 수 있다.
본 명세서의 일 실시상태는 기판을 준비하는 단계; 상기 기판 상에 제1 전극을 형성하는 단계; 상기 제1 전극 상에 실리콘 물질층을 형성하는 단계; 상기 실리콘 물질층 상에 페로브스카이트 구조의 화합물을 포함하는 광활성층을 형성하는 단계; 및 상기 광활성층 상에 제2 전극을 형성하는 단계를 포함하는 유-무기 태양 전지의 제조 방법을 제공한다.
하나의 실시상태에 있어서, 상기 제1 전극 형성하는 단계 후, 상기 실리콘 물질층을 형성하는 단계 전에 전자수송층을 형성하는 단계를 더 포함한다.
또 하나의 실시상태에 있어서, 상기 실리콘 물질을 형성하는 단계 후, 광활성층을 형성하는 단계 전에 중간층을 형성하는 단계를 더 포함한다.
또 하나의 실시상태에 있어서, 상기 광활성층을 형성하는 단계 후, 제2 전극을 형성하는 단계 전에 정공수송층을 형성하는 단계를 더 포함한다.
또한, 본 명세서의 일 실시상태는 제1 전극을 형성하는 단계; 상기 제1 전극 상에 실리콘 물질층을 형성하는 단계; 상기 실리콘 물질층 상에 페로브스카이트 구조의 화합물을 포함하는 광활성층을 형성하는 단계; 및 상기 광활성층 상에 제2 전극을 형성하는 단계를 포함하는 유-무기 태양 전지의 제조 방법을 제공한다.
상기와 같이, 제1 전극을 형성하는 단계 이후에 실리콘 물질층을 접하여 구비하는 경우에는 실리콘 물질층이 기판으로서 작용할 수 있으며, 별도의 기판을 준비하는 단계는 생략할 수 있다. 이 경우, 전술한 중간층을 형성하는 단계 및/또는 정공수송층을 형성하는 단계를 더 포함할 수 있다.
본 명세서의 일 실시상태에 따른 유-무기 하이브리드 태양 전지는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다.
본 명세서의 일 실시상태에 있어서, 각 단계는 스핀코팅법, 증착법 또는 인쇄법을 이용하여 형성될 수 있다.
상기 인쇄법은 잉크젯 프린팅, 그라비아 프린팅, 스프레이 코팅, 닥터 블레이드, 바 코팅, 그라비아 코팅, 브러쉬 페인팅 및 슬롯-다이 코팅 등을 포함할 수 있다. 다만, 이에 한정되는 것은 아니다.
증착법은 물리적, 화학적 증착 등을 한정하지 않는다.
이하, 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.
실시예 1.
Al/Si/Si NW/Perovskite/Spiro-OmeTAD/PH500/Ag Grid 의 구조로 유-무기 하이브리드 태양 전지를 제조하였다.
구체적으로 Al 상에 n 타입의 실리콘(100) 웨이퍼(Si(100) Wafer)를 질화은(silver nitride)가 첨가된 불산 용액에 담가 화학적 식각을 이용하여 실리콘 나노 와이어(SiNW)를 제조하였다. 디메틸포름아미드(DMF)에 녹인 요오드화납(PbI2) 용액을 스핀 코팅한 후, 5분간 건조시킨 다음 2-프로판올(2-propanol)에 녹인 요오드화메틸암모늄(CH3NH3I)에 수십 초간 담근 뒤 건조하였다.
클로로 벤젠에 Spiro-OMeTAD (2,2',7,7'-Tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene)와 4-터셔리-부틸피리딘(4-tert-butylpyridine) 및 리튬 비스(트리플루오로메탄)설폰이미드(Li-TFSI)를 녹인 후, 스핀코팅 하였다. PEPOT:PSS (PH500) 코팅 한 후, 1x10- 7torr 진공에서 은 그리드 전극을 증착하였다.
비교예 1.
실시예 1에서 제조한 유-무기 하이브리드 태양 전지의 구조 대신에ITO/ZnO/Perovskite/Spiro-OmeTAD/Ag의 구조로 유-무기 하이브리드 태양 전지를 제조하였다.
구체적으로 ITO가 코팅된 유리 기판을 아세톤 및 에탄올에 각각 30분씩 초음파(sonication) 세척하고, UV-오존처리(UVO)를 이용하여 15 분간 표면처리를 하였다.
디메틸포름아미드(DMF)에 녹인 요오드화납(PbI2) 용액을 스핀 코팅한 후, 5분간 건조시킨 다음 2-프로판올(2-propanol)에 녹인 요오드화메틸암모늄(CH3NH3I)에 수십 초간 담근 뒤 건조하였다.
클로로 벤젠에 Spiro-OMeTAD (2,2',7,7'-Tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene)와 4-터셔리-부틸피리딘(4-tert-butylpyridine) 및 리튬 비스(트리플루오로메탄)설폰이미드(Li-TFSI)를 녹인 후, 스핀코팅 한 후, 1x10-7torr 진공에서 은 전극을 증착하였다.
비교예 2.
실시예 1에서 실리콘 나노 와이어(SiNW)를 제조 공정을 진행하지 않은 것을 제외하고, 실시예 1과 동일한 방법으로 유-무기 하이브리드 태양전지를 제조하였다.
비교예 3.
실시예 1에서 실리콘 나노 와이어(SiNW)를 제조 공정을 진행하지 않고, 페로브스카이트 층을 코팅하지 않은 것을 제외하고, 실시예 1과 동일한 방법으로 유-무기 하이브리드 태양전지를 제조하였다.
상기 실시예 1 및 비교예 1 내지 3에서 제조된 유-무기 하이브리드 태양전지의광전변환 특성을 100 mW/cm2(AM 1.5) 조건에서 측정하고, 하기 표 1에 그 결과를 나타내었다.
Voc (V) Jsc (mA/cm2) FF PCE (%)
실시예 1 1.011 20.3 0.701 14.3
비교예 1 0.99 17.8 0.631 11.12
비교예 2 1.011 18.8 0.677 12.87
비교예 3 0.532 24.4 0.432 5.61
상기 Voc는 개방전압을, Jsc는 단락전류를, FF는 충전율(Fill factor)를, PCE는 에너지 변환 효율을 의미한다. 개방전압과 단락전류는 각각 전압-전류 밀도 곡선의 4사분면에서 X축과 Y축 절편이며, 이 두 값이 높을수록 태양전지의 효율은 바람직하게 높아진다. 또한 충전율(Fill factor)은 곡선 내부에 그릴 수 있는 직사각형의 넓이를 단락전류와 개방전압의 곱으로 나눈 값이다. 이 세 가지 값을 조사된 빛의 세기로 나누면 에너지 변환 효율을 구할 수 있으며, 높은 값일수록 바람직하다.
상기 실시예 1 및 비교예 2와 3의 결과로 보아, 본 명세서의 일 실시상태에 따른 유-무기 하이브리드 태양전지와 같이, 실리콘 물질층과 페로브스카이트 구조의 화합물을 포함하는 광활성층을 동시에 포함하는 경우, 페로브스카이트 구조의 화합물을 포함하는 광활성층 만을 포함하는 경우 또는 두 층을 모두 포함하지 않는 경우보다, 전하 이동도가 우수하여, 높은 전류 밀도의 증가 및/또는 에너지 변환 효율의 상승을 갖는 것을 확인할 수 있다.
또한, 상기 실시예 1과 비교예 1의 결과를 비교하면, 실리콘 물질층 대신에 금속 산화물을 포함하는 버퍼층을 포함하는 경우에 비하여 높은 전류 밀도의 증가 및/또는 에너지 변환 효율의 상승을 갖는 것을 확인할 수 있다.
상기와 같은 결과는 상기 페로브스카이트 구조의 화합물은 광활성층에 포함되는 일반적인 물질보다 흡광계수가 높아, 얇은 두께의 필름에서도 집광 효과가 우수하므로, 우수한 에너지 변환 효율을 기대할 수 있으며, 상기 페로브스카이트 구조의 화합물에 비하여 상대적으로 우수한 전하이동도를 가지고 있는 실리콘 물질층을 더 포함하여 전류 손실을 방지하여 전류 밀도가 향상될 수 있기 때문이다.

Claims (16)

  1. 제1 전극;
    상기 제1 전극과 대향하여 구비되는 제2 전극;
    상기 제1 전극과 상기 제2 전극 사이에 구비되는 광활성층; 및
    상기 광활성층과 제1 전극 사이에 구비되는 실리콘 물질층을 포함하고,
    상기 광활성층은 페로브스카이트 구조의 화합물을 포함하는 것인 유-무기 하이브리드 태양 전지.
  2. 청구항 1에 있어서,
    상기 페로브스카이트 구조의 화합물은 페로브스카이트 구조의 유기-금속할로겐 화합물인 것인 유-무기 하이브리드 태양 전지.
  3. 청구항 1에 있어서,
    상기 페로브스카이트 구조의 화합물은 하기 화학식 1로 표시되는 것인 유-무기 하이브리드 태양 전지:
    [화학식 1]
    Figure PCTKR2015003987-appb-I000005
    화학식 1에 있어서,
    A는 1가의 유기 암모늄 이온 또는 Cs+이고,
    M은 2가의 금속이온이며,
    X는 할로겐 이온이다.
  4. 청구항 3에 있어서,
    상기 화학식 1로 표시되는 페로브스카이트 구조의 화합물은 하기 화학식 2 또는 하기 화학식 3으로 표시되는 것인 유-무기 하이브리드 태양전지:
    [화학식 2]
    Figure PCTKR2015003987-appb-I000006
    [화학식 3]
    Figure PCTKR2015003987-appb-I000007
    화학식 2 및 3에 있어서,
    R1 및 R2는 탄소수 1 내지 24의 치환 또는 비치환된 알킬기; 탄소수 3 내지 20의 치환 또는 비치환된 시클로알킬기; 또는 탄소수 6 내지 20의 치환 또는 비치환된 아릴기이고,
    R3는 수소; 또는 탄소수 1 내지 24의 알킬기이며,
    M은 Cu2 +, Ni2 +, Co2 +, Fe2 +, Mn2 +. Cr2 +, Pd2 +, Cd2 +, Ge2 +, Sn2 +, Pd2 + 및 Yb2 +로 이루어진 군에서 1 또는 2종 이상이 선택되는 2가의 금속이온이고,
    X는 F-, Cl-, Br- 및 I-로 이루어진 군에서 1 또는 2종 이상이 선택되는 할로겐이온이다.
  5. 청구항 2에 있어서,
    상기 유기-금속할로겐 화합물은 CH3NH3PbIxCly, CH3NH3PbIxBry, CH3NH3PbClxBry 및 CH3NH3PbIxFy로 이루어진 군에서 1 또는 2 이상이 선택되고,
    x는 0 이상 3 이하의 실수이며,
    y는 0 이상 3 이하의 실수이고,
    x+y는 3인 것인 유-무기 하이브리드 태양 전지.
  6. 청구항 1에 있어서,
    상기 광활성층의 두께는 50 nm 내지 2,000 nm인 것인 유-무기 하이브리드 태양 전지.
  7. 청구항 1에 있어서,
    상기 실리콘 물질층은 필름 형태; 또는 패턴 형태로 구비되는 것인 유-무기 하이브리드 태양전지.
  8. 청구항 1에 있어서,
    상기 실리콘 물질층과 광활성층은 접하여 구비되는 것인 유-무기 하이브리드 태양 전지.
  9. 청구항 1에 있어서,
    상기 실리콘 물질층은 상기 제1 전극과 접하여 구비되는 것인 유-무기 하이브리드 태양전지.
  10. 청구항 9에 있어서,
    상기 제1 전극과 상기 제2 전극은 서로 동일하거나 상이하고, 독립적으로 금속 전극, 전도성 고분자 및 이들의 조합으로 이루어진 군에서 선택되는 것을 포함하는 것인 유-무기 하이브리드 태양 전지.
  11. 청구항 1에 있어서,
    제 1 전극의 광활성층이 구비되는 면과 대향하는 면에 기판을 더 포함하는 것인 유-무기 하이브리드 태양 전지.
  12. 청구항 11에 있어서,
    상기 제1 전극은 인듐 주석 산화물(ITO;indium-tin oxide), 불소함유 산화주석(FTO; Fluorine-doped tin oxide), 인듐 아연 산화물(IZO), 알루미늄이 도핑된 산화아연(AZO; Aluminium-zinc oxide;ZnO:Al), 산화알루미늄주석(ATO;Aluminium-tin oxide; SnO2:Al) 및 주석계 산화물, 산화아연(ZnO) 및 이들의 조합으로 이루어진 군에서 선택되고,
    상기 제2 전극은 금속 전극, 전도성 고분자 및 이들의 조합으로 이루어진 군에서 선택되는 것인 유-무기 하이브리드 태양 전지.
  13. 청구항 1에 있어서,
    상기 실리콘 물질층과 광활성층 사이에 중간층을 더 포함하는 것인 유-무기 하이브리드 태양 전지.
  14. 청구항 13에 있어서,
    상기 중간층은 절연층; 또는 N/P 접합층인 것인 유-무기 하이브리드 태양전지.
  15. 청구항 1에 있어서,
    상기 유-무기 하이브리드 태양 전지는 탠덤형인 것인 유-무기 하이브리드 태양 전지.
  16. 청구항 1에 있어서,
    상기 제1 전극과 제2 전극 사이에 정공주입층, 정공수송층, 전자차단층, 전자수송층 및 전자주입층으로 이루어진 군에서 선택되는 1 이상의 층을 더 포함하는 것인 유-무기 하이브리드 태양 전지.
PCT/KR2015/003987 2014-04-23 2015-04-21 유-무기 하이브리드 태양 전지 WO2015163679A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580021108.1A CN106233482B (zh) 2014-04-23 2015-04-21 有机无机混合太阳能电池
US15/303,191 US20170125171A1 (en) 2014-04-23 2015-04-21 Organic-inorganic hybrid solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0048916 2014-04-23
KR20140048916 2014-04-23

Publications (1)

Publication Number Publication Date
WO2015163679A1 true WO2015163679A1 (ko) 2015-10-29

Family

ID=54332770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/003987 WO2015163679A1 (ko) 2014-04-23 2015-04-21 유-무기 하이브리드 태양 전지

Country Status (4)

Country Link
US (1) US20170125171A1 (ko)
KR (1) KR101645872B1 (ko)
CN (1) CN106233482B (ko)
WO (1) WO2015163679A1 (ko)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101976115B1 (ko) * 2015-10-23 2019-05-07 주식회사 엘지화학 흡수체로서 아크릴기를 포함하는 화합물, 이의 제조 방법 및 이를 포함하는 태양전지
KR101857052B1 (ko) * 2015-11-24 2018-06-25 재단법인 멀티스케일 에너지시스템 연구단 페로브스카이트, 이의 제조방법 및 이를 포함하는 태양전지
KR101853342B1 (ko) * 2015-11-25 2018-04-30 재단법인 멀티스케일 에너지시스템 연구단 페로브스카이트 태양전지 및 이의 제조방법
KR102024978B1 (ko) 2016-05-23 2019-09-24 주식회사 엘지화학 유무기 복합 태양전지
EP3482427B1 (en) 2016-07-07 2023-06-21 Nederlandse Organisatie voor Toegepast-Natuurwetenschappelijk Onderzoek TNO Perovskite contacting passivating barrier layer for solar cells
KR102068871B1 (ko) 2016-07-14 2020-01-21 주식회사 엘지화학 유무기 복합 태양전지
WO2018056667A1 (ko) * 2016-09-23 2018-03-29 주식회사 엘지화학 유-무기 복합 태양전지 및 유-무기 복합 태양전지 제조방법
KR20180033074A (ko) * 2016-09-23 2018-04-02 주식회사 엘지화학 유-무기 복합 태양전지 및 유-무기 복합 태양전지 제조방법
KR102629585B1 (ko) 2016-10-04 2024-01-25 삼성전자주식회사 광전 변환 소자 및 이를 포함하는 촬상 장치
US20180301288A1 (en) * 2017-04-14 2018-10-18 Hunt Energy Enterprises, L.L.C. Photovoltaic Device Encapsulation
US11171297B2 (en) * 2017-06-30 2021-11-09 Northwestern University Organic-inorganic hybrid perovskite compounds
CN109326773B (zh) * 2017-08-01 2021-12-28 天极新能源实业(深圳)有限公司 一种电极活性材料、电池电极及半导体纳米电池
CN107768521B (zh) * 2017-10-20 2019-05-07 吉林大学 一种基于电子俘获诱导空穴注入形成光增益的钙钛矿光电器件及其制备方法
KR20190078493A (ko) * 2017-12-26 2019-07-04 주식회사 엘지화학 광흡수층용 전구체, 이를 이용한 유-무기 복합 태양전지 제조방법 및 유-무기 복합 태양전지
US20200082995A1 (en) * 2018-09-06 2020-03-12 Ascent Solar Technologies, Inc. Chalcopyrite-perovskite pn-junction thin-film photovoltaic device
KR20200047365A (ko) * 2018-10-26 2020-05-07 주식회사 엘지화학 리튬-황 이차전지
CN111244276A (zh) * 2018-11-28 2020-06-05 东泰高科装备科技有限公司 一种钙钛矿太阳能电池及其制备方法
EP4358645A2 (en) 2019-03-05 2024-04-24 Kabushiki Kaisha Toshiba Graphene-containing film, production method thereof, graphene-containing film laminate, and photoelectric conversion element
JP6906210B2 (ja) * 2019-10-08 2021-07-21 Jfeスチール株式会社 積層体、有機薄膜太陽電池、積層体の製造方法および有機薄膜太陽電池の製造方法
KR102228799B1 (ko) * 2019-10-18 2021-03-18 울산과학기술원 고효율 대면적 페로브스카이트 태양전지 및 이의 제조방법
KR102233022B1 (ko) * 2019-10-23 2021-03-30 울산과학기술원 공액고분자 전해질 전하수송층을 갖는 고효율 대면적 페로브스카이트 태양전지 및 이의 제조방법
CN111244285B (zh) * 2020-01-20 2023-04-18 遵义师范学院 一种用于太阳能电池的双层电子传输层及其应用
CN111540832A (zh) * 2020-05-27 2020-08-14 扬州大学 一种硅纳米线复合CsPbBr3量子点有机杂化的太阳能电池
WO2022009636A1 (ja) * 2020-07-06 2022-01-13 パナソニックIpマネジメント株式会社 太陽電池および光電変換素子
CN112382728A (zh) * 2020-11-13 2021-02-19 中国科学院大连化学物理研究所 一种修饰钙钛矿电池电子传输层的电池方法
CN115884648B (zh) * 2023-03-03 2023-05-12 江西省科学院能源研究所 一种有机硅掺杂空穴传输层及钙钛矿太阳能电池制备方法
CN117202676B (zh) * 2023-11-08 2024-01-23 电子科技大学 基于三层导电聚合物和栅线电极结构的钙钛矿太阳能电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120085411A1 (en) * 2010-10-08 2012-04-12 Konica Minolta Business Technologies, Inc. Photoelectric conversion element and solar cell
US20120211730A1 (en) * 2009-08-11 2012-08-23 Ideal Star Inc. Hole Blocking Layer and Method for Producing Same, and Photoelectric Conversion Element Comprising the Hole Blocking Layer and Method for Manufacturing Same
WO2014003294A1 (ko) * 2012-06-29 2014-01-03 성균관대학교산학협력단 페로브스카이트 기반 메조다공 박막 태양전지 제조 기술
WO2014020499A1 (en) * 2012-08-03 2014-02-06 Ecole Polytechnique Federale De Lausanne (Epfl) Organo metal halide perovskite heterojunction solar cell and fabrication thereof
WO2014045021A1 (en) * 2012-09-18 2014-03-27 Isis Innovation Limited Optoelectronic device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008244258A (ja) * 2007-03-28 2008-10-09 Kyocera Corp 光電変換装置及び光発電装置
KR100995833B1 (ko) * 2009-03-26 2010-11-22 한양대학교 산학협력단 유기물-무기물 복합재료를 이용한 태양전지 및 그 제조방법
KR101023020B1 (ko) * 2009-07-17 2011-03-24 한국과학기술원 인버티드 투명 유기 태양전지 및 인버티드 투명 유기 태양전지 제조방법
KR20140007045A (ko) * 2012-07-05 2014-01-16 한국화학연구원 나노구조 유-무기 하이브리드 태양전지
CN103594630B (zh) * 2013-12-06 2016-03-30 山东力诺太阳能电力股份有限公司 一种硅基有机太阳电池及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120211730A1 (en) * 2009-08-11 2012-08-23 Ideal Star Inc. Hole Blocking Layer and Method for Producing Same, and Photoelectric Conversion Element Comprising the Hole Blocking Layer and Method for Manufacturing Same
US20120085411A1 (en) * 2010-10-08 2012-04-12 Konica Minolta Business Technologies, Inc. Photoelectric conversion element and solar cell
WO2014003294A1 (ko) * 2012-06-29 2014-01-03 성균관대학교산학협력단 페로브스카이트 기반 메조다공 박막 태양전지 제조 기술
WO2014020499A1 (en) * 2012-08-03 2014-02-06 Ecole Polytechnique Federale De Lausanne (Epfl) Organo metal halide perovskite heterojunction solar cell and fabrication thereof
WO2014045021A1 (en) * 2012-09-18 2014-03-27 Isis Innovation Limited Optoelectronic device

Also Published As

Publication number Publication date
KR101645872B1 (ko) 2016-08-04
CN106233482A (zh) 2016-12-14
US20170125171A1 (en) 2017-05-04
KR20150122598A (ko) 2015-11-02
CN106233482B (zh) 2019-07-26

Similar Documents

Publication Publication Date Title
WO2015163679A1 (ko) 유-무기 하이브리드 태양 전지
WO2014109610A1 (ko) 고효율 무-유기 하이브리드 태양전지의 제조 방법
WO2011102673A2 (ko) 전고체상 이종 접합 태양전지
WO2011102677A2 (ko) 나노구조 무기-유기 이종 접합 태양전지의 제조방법
WO2014200309A1 (ko) 유기태양전지 및 이의 제조방법
KR20110133717A (ko) 유기 태양 전지 및 그 제조 방법
KR101753643B1 (ko) Sn계 페로브스카이트 태양전지, 및 이의 제조방법
WO2015167225A1 (ko) 유기태양전지 및 이의 제조방법
KR101743481B1 (ko) 하이브리드형 태양전지 및 이의 제조방법
KR100927721B1 (ko) 광전변환소자 및 이의 제조방법
WO2018012825A1 (ko) 유무기 복합 태양전지
WO2015167230A1 (ko) 태양전지 및 이의 제조방법
US20140137919A1 (en) Solar cell and solar cell module
Li et al. Fully printable organic and perovskite solar cells with transfer-printed flexible electrodes
KR20170092471A (ko) 유무기 하이브리드 페로브스카이트 태양 전지
WO2019039907A2 (ko) 유기전자소자 및 이의 제조 방법
US20160268532A1 (en) Solar cell module and method for manufacturing the same
JP6791256B2 (ja) 有機太陽電池およびこの製造方法
KR101434090B1 (ko) 세슘카보네이트가 블랜딩된 산화아연 전자수송층이 구비된 유기 태양전지 및 그의 제조방법
WO2022010326A1 (ko) 산염기 부산물로 도핑된 유기 정공 수송물질 및 이를 이용한 광소자
WO2022019618A1 (ko) 보호층을 가지는 광소자
KR101982767B1 (ko) 태양 전지 및 그 제조 방법
WO2014193131A1 (ko) 적층 유기태양전지
KR20190001126A (ko) 유기 태양전지 및 이의 제조방법
WO2022220449A1 (ko) 페로브스카이트 태양전지 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15783252

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15303191

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15783252

Country of ref document: EP

Kind code of ref document: A1