WO2010015525A1 - Heizungsvorrichtung und verfahren zur herstellung der heizungsvorrichtung - Google Patents

Heizungsvorrichtung und verfahren zur herstellung der heizungsvorrichtung Download PDF

Info

Publication number
WO2010015525A1
WO2010015525A1 PCT/EP2009/059519 EP2009059519W WO2010015525A1 WO 2010015525 A1 WO2010015525 A1 WO 2010015525A1 EP 2009059519 W EP2009059519 W EP 2009059519W WO 2010015525 A1 WO2010015525 A1 WO 2010015525A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
heating device
shaped body
different
contacts
Prior art date
Application number
PCT/EP2009/059519
Other languages
English (en)
French (fr)
Inventor
Jan Ihle
Werner Kahr
Original Assignee
Epcos Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epcos Ag filed Critical Epcos Ag
Priority to JP2011521520A priority Critical patent/JP2011530150A/ja
Priority to CN200980130430.2A priority patent/CN102113407B/zh
Priority to US13/057,938 priority patent/US9363851B2/en
Priority to EP09781000.6A priority patent/EP2322012B1/de
Publication of WO2010015525A1 publication Critical patent/WO2010015525A1/de

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/02Heaters using heating elements having a positive temperature coefficient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49083Heater type

Definitions

  • the invention relates to a heating device and a method for producing a heating device.
  • PTC materials such as fluids
  • Such PTC materials can hitherto be formed as slices or rectangular elements made of a single PTC material.
  • Such discs or Recheckium can not be integrated in structurally difficult to access areas. As a result, no short heat-up times and low heat outputs can be realized, since the disks or rectangular elements can not be mounted where the heat is needed.
  • a heating device which comprises a shaped body containing a ceramic material with a positive temperature coefficient of electrical resistance.
  • the shaped body comprises at least a first area and a second area Area, wherein the first region comprises a ceramic material of a first composition and the second region comprises a ceramic material of a different from the first second composition.
  • a heating device which contains a shaped body which has at least two differently composed ceramic materials.
  • ceramic materials having a positive temperature coefficient of electrical resistance By using ceramic materials having a positive temperature coefficient of electrical resistance, a molded article is provided which can be heated by applying a voltage and dissipate this heat to the environment. In this case, the shaped body on a self-regulating behavior. When the temperature in the molding reaches a critical value, the resistance in the mold increases as well
  • Shaped body so that less current flows through the molding. This prevents further heating of the shaped body, so that no additional electronic control of the heating power has to be provided.
  • the first region may have a slow heating behavior, while the second region shows a fast heating behavior.
  • the maximum heating temperature can be different in the two areas.
  • the molded body can be produced by means of injection molding, and thus be formed in any geometric shape that is necessary for the respective structural environment.
  • a heater can thus also structurally difficult accessible areas.
  • a medium can be efficiently heated with very short heat-up times and low heat outputs.
  • Material may comprise a material and / or a stoichiometric composition.
  • the compositions may thus vary only in their material or only in their stoichiometric composition or in their material and in their stoichiometric composition. In any case, the compositions of the materials are different from each other and may have different properties.
  • a molded article which has locally different functions in at least two regions due to the electrical and thermal properties of the ceramic materials present there. For example, such varying temperature distributions can be achieved in the shaped body.
  • the ceramic material may have a structure that has the formula: Ba] _- ⁇ -y M x DyTi] __ a _] 3 N a Mn] 3 ⁇ 3.
  • x comprises the range 0 to 0.5
  • y the range 0 to 0.01, a the range 0 to 0.01, b the range 0 to 0.01,
  • M a divalent cation
  • D a trivalent or tetravalent donor
  • N is a five or six valent cation.
  • This structure has a perovskite structure.
  • M can be, for example, calcium, strontium or lead
  • D can be, for example, yttrium or lanthanum
  • examples of N are niobium or antimony.
  • the molded article may include metallic impurities present at a level of less than 10 ppm.
  • the content of metallic impurities is so low that the PTC properties of the molded article are not affected.
  • the first region and second region of the molded article may have a Curie temperature that includes a range of -30 ° C to 340 ° C. Further, the first region and the second region of the molded article may have a specific resistance at 25 °, which is in a range of 3 ⁇ cm to 100000 ⁇ cm.
  • the first region and the second region of the molded article may have the same Curie temperatures and different specific resistances at 25 ° C. or identical resistivities at 25 ° C. and mutually different Curie temperatures or different Curie temperatures and different specific resistances at 25 ° C have.
  • the two regions of the shaped body have different heating properties, either due to different electrical properties or due to different thermal properties or due to different electrical and thermal
  • first region and the second region there may be an interface region in which the ceramic material of the first region and the ceramic material of the second region are sintered together.
  • the contacts can be arranged on the molding such that each region of the molding is traversed by current. Thus, heat is generated in each region of the molded body by the PTC properties of the ceramic materials.
  • the areas can be arranged next to one another and each area can be contacted by two contacts on opposite sides.
  • a parallel connection of the areas can be realized.
  • the shaped body can be formed such that it is flowed through by a medium, for example a fluid. Then, the shaped body may be formed, for example, in the form of a pipe or a nozzle. Furthermore, the shaped body can also be surrounded by a medium and be formed in any other geometric shapes.
  • the nozzle can have different areas which have different electrical and / or thermal properties, so that a medium which is passed through the nozzle successively covers these areas flows through and thus can be gradually heated. These areas can be along the
  • the shaped body can be surrounded over a large area or over the entire surface by a passivation layer.
  • the passivation layer may comprise a material selected from glass, plastic, silicone, or a ceramic material different from the ceramic material of the molded article.
  • process step A) at least two mutually different ceramic materials, which have a positive temperature coefficient of electrical resistance, are successively injection-molded.
  • a green body is produced in a single process step, the at least two areas with ceramic
  • This green body is then sintered in the further process step B) to give a shaped body which has two areas with different heating properties.
  • a ceramic starting material is provided in process step A) for the preparation of the green body, comprising a ceramic filler material of the structure Ba] __ x x _yM DyTi] __ _ a] 3 N a Mn] 3 ⁇ 3 and a matrix.
  • a hard coating may be tungsten carbide. All surfaces of the tools which come in contact with the ceramic material may be coated with the hard coating.
  • Process step A) may comprise the steps of Al) providing the ceramic starting material, A2) injection molding the starting material into a mold, and A3) removing the matrix.
  • the ceramic starting material is converted into the material of the shaped body which has a positive temperature coefficient of electrical resistance.
  • an interface region is formed between the at least two different materials, in which the different ceramic materials are sintered together and thus form mixed crystals.
  • the interface area may have a thickness of 1 micron to 200 microns, the thickness depending on the choice of materials. A complete mixing of the two materials is avoided.
  • the interface region, in which the ceramic materials are sintered together serves to connect the regions of the molding together so that a gap-free transition between the regions and thus a monolithic molding is realized. Additional fixings between the areas are therefore not necessary.
  • FIG. 2 shows the schematic side view of a second embodiment of the heating device
  • FIG. 3 shows the schematic perspective view of an embodiment of the heating device
  • FIG. 4 shows the schematic perspective view of a further embodiment of the heating device.
  • FIG. 2 shows the schematic side view of a further embodiment of the heating device.
  • a region 10 is arranged next to a region 20, and the electrical contacts contact both of them Areas and are arranged on opposite sides of the molding.
  • the shaped body 30 a gradient of the thermal and / or electrical properties is thus generated, which runs parallel to the plane of the electrical contacts 40. This is indicated by an arrow.
  • further regions of the shaped body can be present, which are arranged next to the regions 10 and 20 and are contacted by the electrical contacts 40 (not shown here).
  • Figure 3 shows the perspective, schematic side view of an embodiment of a heating device.
  • the molded article is formed as a nozzle having the regions 10 and 20 arranged one behind the other in the longitudinal direction of the nozzle.
  • the electrical contacts 40 are not shown here. They may, for example, be mounted on the surface of the molding, on the outside and inside of the nozzle, or on its end faces. If a medium to be heated is now passed through the nozzle, for example, the region 10 could lead to a preheating of the medium and the region 20 could heat the medium to the desired final temperature. Thus, a gradual heating of a medium by a molded body with different areas is conceivable. Again, in addition to the two
  • Areas 10 and 20 more areas may be present to produce a finer tuning of the heating temperatures.
  • FIG. 4 shows a further perspective schematic side view of an embodiment of the heating device.
  • the shaped body is formed as a nozzle.
  • a part of the nozzle is recessed in the front area.
  • the areas 10 and 20 are arranged here, that a medium to be heated, which is passed through the nozzle, comes into contact with only one of the areas, while the other area is arranged on the outside of the nozzle.
  • it may be useful to select the material for the region 10 so that only a slight warming is generated by applying the voltage, while in the region 20 a strong heating is generated.
  • a strong heating of the molding is effected only in the area which is closer to the medium to be heated.
  • this specification may be useful to select the material for the region 10 so that only a slight warming is generated by applying the voltage, while in the region 20 a strong heating is generated.
  • a strong heating of the molding is effected only in the area which is closer to the medium to be heated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Resistance Heating (AREA)

Abstract

Es wird eine Heizungsvorrichtung bereitgestellt, die einen Formkörper aufweist, der zumindest zwei Bereiche mit unterschiedlichen Zusammensetzungen eines keramischen Materials mit positiven Temperaturkoeffizienten des elektrischen Widerstands aufweist. Es wird weiterhin ein Verfahren zur Herstellung einer Heizungsvorrichtung angegeben.

Description

Beschreibung
Heizungsvorrichtung und Verfahren zur Herstellung der Hei zungsVorrichtung
Die Erfindung betrifft eine Heizungsvorrichtung und ein Verfahren zur Herstellung einer Heizungsvorrichtung.
Medien, beispielsweise Fluide, können mittels eines thermischen Kontakts mit Materialien, die einen positiven Temperaturkoeffizienten des elektrischen Widerstands haben (PTC-Materialien) , erhitzt werden. Solche PTC-Materialien können bisher als Scheiben oder Rechteckelemente ausgeformt werden, die aus einem einzigen PTC-Material bestehen. Solche Scheiben oder Recheckelemente können an konstruktiv schwer zugänglichen Bereichen nicht integriert werden. Dadurch können keine kurzen Aufheizzeiten und geringe Heizleistungen realisiert werden, da die Scheiben oder Rechteckelemente nicht dort angebracht werden können, wo die Wärme benötigt wird.
Eine zu lösende Aufgabe besteht darin, eine
Heizungsvorrichtung mit hohem Wirkungsgrad bereitzustellen. Diese Aufgabe wird durch eine Heizungsvorrichtung gemäß dem Patentanspruch 1 gelöst. Weitere Ausführungsformen der Vorrichtung und ein Verfahren zur Herstellung einer Heizungsvorrichtung sind Gegenstand weiterer Patentansprüche.
Gemäß einer Ausführungsform wird eine Heizungsvorrichtung bereitgestellt, die einen Formkörper umfasst, der ein keramisches Material mit positivem Temperaturkoeffizienten des elektrischen Widerstands enthält. Der Formkörper umfasst dabei zumindest einen ersten Bereich und einen zweiten Bereich, wobei der erste Bereich ein keramisches Material einer ersten Zusammensetzung und der zweite Bereich ein keramisches Material einer von der ersten unterschiedlichen zweiten Zusammensetzung aufweist.
Damit wird eine Heizungsvorrichtung bereitgestellt, die einen Formkörper enthält, der mindestens zwei unterschiedlich zusammengesetzte keramische Materialien aufweist. Durch die Verwendung von keramischen Materialien mit positivem Temperaturkoeffizienten des elektrischen Widerstands wird ein Formkörper bereitgestellt, der sich durch Anlegen einer Spannung erwärmt und diese Wärme an die Umgebung abgeben kann. Dabei weist der Formkörper ein selbstregulierendes Verhalten auf. Erreicht die Temperatur in dem Formkörper einen kritischen Wert, steigt auch der Widerstand in dem
Formkörper, sodass weniger Strom durch den Formkörper fließt. Damit wird ein weiteres Aufheizen des Formkörpers verhindert, so dass keine zusätzliche elektronische Regelung der Heizleistung bereitgestellt werden muss.
Durch die Verwendung von zumindest zwei verschiedenen keramischen Materialien in einem Formkörper ist es möglich, verschiedene Heizungseigenschaften in dem einen Formkörper zu erzielen. Beispielsweise kann der erste Bereich ein langsames Aufheizverhalten aufweisen, während der zweite Bereich ein schnelles Aufheizverhalten zeigt. Auch die maximale Heiztemperatur kann in den beiden Bereichen unterschiedlich sein .
Weiterhin kann der Formkörper mittels Spritzguss hergestellt, und damit in jeder geometrischen Form, die für die jeweilige konstruktive Umgebung nötig ist, ausgeformt sein. Eine solche Heizvorrichtung kann somit auch an konstruktiv schwer zugänglichen Bereichen angeordnet werden. Somit kann ein Medium effizient mit sehr kurzen Aufheizzeiten und niedrigen Heizleistungen beheizt werden.
Durch die Verwendung eines einzigen Formkörpers, der zumindest zwei Bereiche mit verschiedenen
Heizungseigenschaften aufweist, kann vermieden werden, dass mehrere Bauteile zusammengefügt und aneinander befestigt werden müssen. Es sind in dem Formkörper bereits verschiedene Funktionen durch die verschiedenen Bereiche vorgegeben, die ohne Unterbrechung ineinander übergehen.
Das zu beheizende Medium wird, je nachdem, von welchem Bereich es beheizt wird, unterschiedlich stark oder unterschiedlich schnell beheizt. Somit kann beispielsweise eine stufenweise Beheizung realisiert werden, wenn ein Medium entlang der verschiedenen Bereiche des Formkörpers vorbeigeleitet wird.
Die erste und zweite Zusammensetzung des keramischen
Materials kann eine stoffliche und/oder eine stöchiometrische Zusammensetzung umfassen. Die Zusammensetzungen können also nur in ihrer stofflichen oder nur in ihrer stöchiometrischen Zusammensetzung oder in ihrer stofflichen und in ihrer stöchiometrischen Zusammensetzung variieren. In jedem Fall sind die Zusammensetzungen der Materialien voneinander unterschiedlich und können unterschiedliche Eigenschaften aufweisen .
Der erste Bereich und der zweite Bereich des Formkörpers können voneinander unterschiedliche thermische und/oder elektrische Eigenschaften aufweisen. Beispielsweise können die Bereiche bei gleichen elektrischen Eigenschaften unterschiedliche Aufheizraten und unterschiedliche zu erreichende maximale Temperaturen aufweisen. Andererseits können die Bereiche beispielsweise unterschiedliche Widerstände bei einer gegebenen Temperatur aufweisen. Auch alle diese genannten Eigenschaften können in den beiden Bereichen voneinander unterschiedlich sein. In einer Widerstands-Temperatur-Kennlinie eines keramischen Materials, deren Verlauf die thermischen Eigenschaften in Abhängigkeit des spezifischen elektrischen Widerstandes wiedergibt, wird die Verknüpfung der thermischen und elektrischen Eigenschaften des Materials verdeutlicht.
Somit wird ein Formkörper bereitgestellt, der lokal unterschiedliche Funktionen in zumindest zwei Bereichen aufgrund der elektrischen und thermischen Eigenschaften der dort vorhandenen keramischen Materialien aufweist. Beispielsweise können so variierende Temperaturverteilungen in dem Formkörper erzielt werden.
Das keramische Material kann eine Struktur aufweisen, die die Formel Ba]_-χ-yMxDyTi]__a_]3NaMn]3θ3 aufweist. Dabei umfasst x den Bereich 0 bis 0,5, y den Bereich 0 bis 0,01, a den Bereich 0 bis 0,01, b den Bereich 0 bis 0,01, M ein zweiwertiges Kation, D einen drei- oder vierwertigen Donor und N ein fünf- oder sechswertiges Kation. Diese Struktur weist eine Perowskitstruktur auf. M kann beispielsweise Calcium, Strontium oder Blei sein, D kann beispielsweise Yttrium oder Lanthan sein, Beispiele für N sind Niob oder Antimon. Der Formkörper kann metallische Verunreinigungen umfassen, die mit einem Gehalt von weniger als 10 ppm vorhanden sind. Der Gehalt an metallischen Verunreinigungen ist so gering, dass die PTC-Eigenschaften des Formkörpers nicht beeinflusst werden. Der erste Bereich und zweite Bereich des Formkörpers kann eine Curie-Temperatur aufweisen, die einen Bereich von -30° C bis 340° C umfasst. Weiterhin kann der erste Bereich und zweite Bereich des Formkörpers einen spezifischen Widerstand bei 25° aufweisen, der in einem Bereich von 3 Ωcm bis 100000 Ωcm liegt.
Der erste Bereich und der zweite Bereich des Formkörpers können gleiche Curie-Temperaturen und voneinander unterschiedliche spezifische Widerstände bei 25° C oder gleiche spezifische Widerstände bei 25° C und voneinander unterschiedliche Curie-Temperaturen oder voneinander unterschiedliche Curie-Temperaturen und voneinander unterschiedliche spezifische Widerstände bei 25° C aufweisen. Somit weisen die beiden Bereiche des Formkörpers unterschiedliche Heizeigenschaften auf, entweder aufgrund von unterschiedlichen elektrischen Eigenschaften oder aufgrund von unterschiedlichen thermischen Eigenschaften oder aufgrund von unterschiedlichen elektrischen und thermischen
Eigenschaften. Durch die möglichen lokal unterschiedlichen Heizeigenschaften des Formkörpers kann eine Anpassung der Heizleistung für einen stufenweisen optimalen Wärmeübergang zu dem zu beheizenden Medium realisiert werden.
Zwischen dem ersten Bereich und dem zweiten Bereich kann ein Grenzflächenbereich vorhanden sein, in dem das keramische Material des ersten Bereichs und das keramische Material des zweiten Bereichs miteinander versintert sind.
Die Heizungsvorrichtung kann weiterhin elektrische Kontaktierungen zur Erzeugung eines Stromflusses durch den Formkörper aufweisen. Diese Kontaktierungen können auf dem Formkörper angeordnet sein und umfassen an dem Formkörper angebrachte Elektroden, die elektrisch leitend mit externen elektrischen Kontakten verbunden sind.
Die Kontaktierungen können so an dem Formkörper angeordnet sein, dass jeder Bereich des Formkörpers von Strom durchflössen ist. Damit wird in jedem Bereich des Formkörpers durch die PTC-Eigenschaften der keramischen Materialien Wärme erzeugt .
Es kann jede Kontaktierung jeden der zumindest zwei Bereiche des Formkörpers kontaktieren. Beispielsweise können zwei nebeneinander angeordnete Bereiche des Formkörpers auf zwei sich gegenüberliegenden Seiten elektrische Kontaktierungen aufweisen, die jeweils beide Bereiche kontaktieren. Damit wird ein Gradient der thermischen und elektrischen Eigenschaften in den Bereichen des Formkörpers erzeugt, der parallel zu der Ebene der elektrischen Kontaktierungen verläuft .
Weiterhin können die Bereiche nebeneinander angeordnet sein und jeder Bereich von je zwei Kontaktierungen auf gegenüberliegenden Seiten kontaktiert werden. Damit kann eine Parallelschaltung der Bereiche realisiert werden.
Weiterhin können die Bereiche des Formkörpers so zwischen den Kontaktierungen angeordnet sein, dass jede Kontaktierung einen unterschiedlichen Bereich kontaktiert. Beispielsweise können zwei übereinander angeordnete Bereiche von einer ersten und zweiten elektrischen Kontaktierung kontaktiert werden, wobei die erste Kontaktierung den ersten Bereich und die zweite Kontaktierung den zweiten Bereich kontaktiert. Gleichzeitig können sich die beiden Kontaktierungen gegenüber liegen. Somit wird eine Serienschaltung der Bereiche realisiert und ein Gradient der thermischen und elektrischen Eigenschaften in dem Formkörper erzeugt, der senkrecht zu der Ebene der elektrischen Kontaktierungen verläuft. Es ist auch möglich, dass drei oder auch mehr Bereiche des Formkörpers mit unterschiedlichen elektrischen und thermischen Eigenschaften übereinander angeordnet sind, wobei nur die beiden äußeren Bereiche von elektrischen Kontaktierungen kontaktiert werden, sodass ein Stromfluss durch alle Bereiche erzeugt wird.
Der Formkörper kann so ausgeformt sein, dass er von einem Medium, beispielsweise einem Fluid, durchströmt wird. Dann kann der Formkörper beispielsweise in Form eines Rohres oder einer Düse ausgeformt sein. Weiterhin kann der Formkörper auch von einem Medium umspült werden und in beliebigen weiteren geometrischen Formen ausgeformt sein.
Wenn der Formkörper als Düse, also als Rohr mit einer Verjüngung an einem Ende, ausgeformt ist, kann die Düse verschiedene Bereiche aufweisen, die unterschiedliche elektrische und/oder thermische Eigenschaften haben, sodass ein Medium, das durch die Düse durchgeleitet wird, diese Bereiche nacheinander durchströmt und somit stufenweise erwärmt werden kann. Diese Bereiche können entlang der
Längsachse des Rohres hintereinander oder senkrecht zu der Längsachse übereinander angeordnet sein.
Der Formkörper kann groß- oder ganzflächig von einer Passivierungsschicht umgeben sein. Die Passivierungsschicht kann ein Material aufweisen, das ausgewählt ist aus Glas, Kunststoff, Silikon oder einem keramischen Material, das von dem keramischen Material des Formkörpers unterschiedlich ist. Somit wird ein direkter Kontakt zwischen dem Formkörper und dem zu beheizenden Medium verhindert. Damit kann vermieden werden, dass der Formkörper durch das zu beheizende Medium korrosiv angegriffen oder durch das Medium gelöst wird. Weiterhin wird vermieden, dass das zu beheizende Medium durch das Material des Formkörpers kontaminiert wird.
Es wird weiterhin ein Verfahren zur Herstellung einer Heizungsvorrichtung bereitgestellt mit den Verfahrensschritten
A) Spritzgießen eines Grünkörpers,
B) Sintern des Grünkörpers zur Herstellung eines Formkörpers,
C) Anordnen von elektrischen Kontaktierungen auf dem Formkörper . In dem Verfahrensschritt A) werden dabei nacheinander zumindest zwei voneinander unterschiedliche keramische Materialien, die einen positiven Temperaturkoeffizienten des elektrischen Widerstands aufweisen, spritzgegossen. Somit wird in einem einzigen Verfahrensschritt ein Grünkörper erzeugt, der zumindest zwei Bereiche mit keramischen
Materialien aufweist. Dieser Grünkörper wird dann in dem weiteren Verfahrensschritt B) zu einem Formkörper gesintert, der zwei Bereiche mit verschiedenen Heizeigenschaften aufweist .
Weiterhin wird im Verfahrensschritt A) für die Herstellung des Grünkörpers ein keramisches Ausgangsmaterial bereitgestellt, das ein keramisches Füllmaterial der Struktur Ba]__x_yMxDyTi]__a_]3NaMn]3θ3 und eine Matrix aufweist.
Um das keramische Ausgangsmaterial, mit weniger als 10 ppm metallischen Verunreinigungen herzustellen, kann es mit Werkzeugen hergestellt werden, die eine harte Beschichtung aufweisen, um einen Abrieb zu vermeiden. Eine harte Beschichtung kann beispielsweise aus Wolframcarbid bestehen. Alle Oberflächen der Werkzeuge, die mit dem keramischen Material in Berührung kommen, können mit der harten Beschichtung beschichtet sein.
Auf diese Weise kann ein keramisches Füllmaterial, das durch Sintern in ein keramisches PTC-Material überführt werden kann, mit einer Matrix vermischt und zu einem Granulat verarbeitet werden. Dieses Granulat kann zur Weiterverarbeitung spritzgegossen werden.
Die Matrix, in die das keramische Füllmaterial eingelagert ist und die einen geringeren Schmelzpunkt aufweist, als das keramische Material, kann dabei einen Anteil von weniger als 20 Massen% gegenüber dem keramischen Material aufweisen. Die Matrix kann ein Material umfassen, das aus einer Gruppe ausgewählt ist, die Wachs, Harze, Thermoplaste und wasserlösliche Polymere umfasst. Weitere Zusätze, wie Antioxidantien oder Weichmacher können ebenfalls vorhanden sein .
Der Verfahrensschritt A) kann die Schritte Al) Bereitstellen des keramischen Ausgangsmaterials, A2 ) Spritzgiessen des Ausgangsmaterials in eine Form, und A3) Entfernen der Matrix aufweisen .
Während des Sinterns im Verfahrensschritt B) wird das keramische Ausgangsmaterial in das Material des Formkörpers, das einen positiven Temperaturkoeffizienten des elektrischen Widerstands aufweist, überführt. In dem Verfahrensschritt B) wird zwischen den zumindest zwei unterschiedlichen Materialien ein Grenzflächenbereich gebildet, in dem die unterschiedlichen keramischen Materialien miteinander versintert sind und somit Mischkristalle bilden. Der Grenzflächenbereich kann eine Dicke von 1 Mikrometer bis 200 Mikrometer aufweisen, wobei die Dicke von der Auswahl der Materialien abhängt. Eine völlige Vermischung der beiden Materialien wird vermieden. Weiterhin dient der Grenzflächenbereich, in dem die keramischen Materialien miteinander versintert sind, dazu, die Bereiche des Formkörpers miteinander zu verbinden, sodass ein lückenloser Übergang zwischen den Bereichen und damit ein monolithischer Formkörper realisiert wird. Zusätzliche Befestigungen zwischen den Bereichen sind somit nicht nötig.
Anhand der Figuren und Ausführungsbeispiele soll die Erfindung noch näher erläutert werden.
Figur 1 zeigt die schematische Seitenansicht einer ersten Ausführungsform der Heizungsvorrichtung,
Figur 2 zeigt die schematische Seitenansicht einer zweiten Ausführungsform der Heizungsvorrichtung,
Figur 3 zeigt die schematische perspektivische Ansicht einer Ausführungsform der Heizungsvorrichtung,
Figur 4 zeigt die schematische perspektivische Ansicht einer weiteren Ausführungsform der Heizungsvorrichtung.
Figur 5 zeigt Widerstands-Temperatur-Kennlinien keramischer Materialien . Figur 1 zeigt die schematische Seitenansicht einer ersten Ausführungsform der Heizungsvorrichtung. Dabei ist ein erster Bereich 10 und ein zweiter Bereich 20 eines Formkörpers 30 übereinander angeordnet. Beide Bereiche umfassen keramische Materialien mit positivem Temperaturkoeffizienten des elektrischen Widerstands der Struktur Ba]__x_yMxDyTi]__a_ J3N51Mn]3C^, wobei die Zusammensetzungen der keramischen Materialien in den Bereichen unterschiedlich sind.
Auf dem Bereich 10 ist eine elektrische Kontaktierung 40 angeordnet und auf dem Bereich 20 ist eine weitere elektrische Kontaktierung 40 angeordnet. Somit wird jeder Bereich von einer anderen elektrischen Kontaktierung kontaktiert. Durch diese Anordnung der Bereiche in dem
Formkörper 30 entsteht in dem Formkörper ein Gradient der elektrischen und/oder thermischen Eigenschaften, der senkrecht zu der Ebene der Kontaktierungen verläuft. Dies ist schematisch durch einen Pfeil angedeutet. Die unterschiedlichen elektrischen und/oder thermischen
Eigenschaften, wie beispielsweise die Curie-Temperatur oder der spezifische Widerstand bei 25°C der Bereiche 10 und 20 werden durch unterschiedliche Zusammensetzungen der keramischen Materialien in den beiden Bereichen erzeugt. Es ist denkbar, dass zwischen oder über bzw. unter den Bereichen 10 und 20 noch weitere Bereiche mit weiteren davon unterschiedlichen Zusammensetzungen vorhanden sind (hier nicht gezeigt) .
Figur 2 zeigt die schematische Seitenansicht einer weiteren Ausführungsform der Heizungsvorrichtung. Dabei ist ein Bereich 10 neben einem Bereich 20 angeordnet, und die elektrischen Kontaktierungen kontaktieren jeweils beide Bereiche und sind auf gegenüber liegenden Seiten des Formkörpers angeordnet. In dem Formkörper 30 wird somit ein Gradient der thermischen und/oder elektrischen Eigenschaften erzeugt, der parallel zu der Ebene der elektrischen Kontaktierungen 40 verläuft. Dies ist durch einen Pfeil angedeutet. Es können neben den Bereichen 10 und 20 weitere Bereiche des Formkörpers vorhanden sein, die neben den Bereichen 10 und 20 angeordnet sind und von den elektrischen Kontaktierungen 40 kontaktiert werden (hier nicht gezeigt) .
Figur 3 zeigt die perspektivische, schematische Seitenansicht eines Ausführungsbeispiels für eine Heizungsvorrichtung. Hier ist der Formkörper als Düse ausgeformt, der die Bereiche 10 und 20 aufweist, die hintereinander in der Längsrichtung der Düse angeordnet sind. Der Übersicht halber sind die elektrischen Kontaktierungen 40 hier nicht gezeigt. Sie können beispielsweise auf der Oberfläche des Formkörpers, an der Außen- und Innenseite der Düse, oder an dessen Stirnseiten angebracht sein. Wird nun ein zu beheizendes Medium durch die Düse hindurch geleitet, könnte beispielsweise der Bereich 10 zu einer Vorwärmung des Mediums führen und der Bereich 20 das Medium auf die gewünschte Endtemperatur erwärmen. Somit ist ein stufenweises Erwärmen eines Mediums durch einen Formkörper mit verschiedenen Bereichen denkbar. Auch hier können neben den beiden
Bereichen 10 und 20 weitere Bereiche vorhanden sein, um eine feinere Abstimmung der Heiztemperaturen zu erzeugen.
Figur 4 zeigt eine weitere perspektivische schematische Seitenansicht einer Ausführungsform der Heizungsvorrichtung. Auch hier ist der Formkörper als Düse ausgeformt. Zur Veranschaulichung wird ein Teil der Düse im vorderen Bereich ausgespart. Die Bereiche 10 und 20 sind hier so angeordnet, dass ein zu beheizendes Medium, das durch die Düse hindurchgeleitet wird, nur mit einem der Bereiche in Berührung kommt, während der andere Bereich auf der Außenseite der Düse angeordnet ist. Hier könnte es beispielsweise sinnvoll sein, das Material für den Bereich 10 so zu wählen, dass nur eine geringe Erwärmung durch Anlegen der Spannung erzeugt wird, während in dem Bereich 20 eine starke Erwärmung erzeugt wird. Somit wird nur in dem Bereich, der dem zu beheizenden Medium näher ist, eine starke Erhitzung des Formkörpers bewirkt. In diesem
Ausführungsbeispiel können die Elektroden 40 (hier nicht gezeigt) beispielsweise auf der Innen- und auf der Außenfläche der Düse angeordnet werden.
Zur Veranschaulichung der elektrischen und thermischen
Eigenschaften und deren Abhängigkeit voneinander zeigt die Figur 5 die Widerstands-Temperatur-Kennlinien (RT-Kennlinie) eines keramischen Materials mit verschieden hohen Dotierungen. Aufgetragen ist die Temperatur T in 0C gegen den spezifischen Widerstand p in Ωcm. Bei dem keramischen
Material handelt es sich um Bao, 9Sr0,iTiθ3, das nicht dotiert ist (Kurve a) und mit 0,02% (Kurve b) , 0,04% (Kurve c) , 0,06% (Kurve d) , 0,08% (Kurve e) und 0,1% (Kurve f) Mn dotiert ist. Je höher die Dotierung in dem keramischen Material ist, desto höher ist der spezifische Widerstand p bei Temperaturen unterhalb des Temperaturbereichs, bei dem der Widerstand temperaturabhängig ansteigt, und bei Temperaturen oberhalb des Temperaturbereichs, bei dem der Widerstand temperaturabhängig ansteigt.
Die in den Figuren gezeigten Ausführungsformen können beliebig variiert werden. Es ist weiterhin zu berücksichtigen, dass sich die Erfindung nicht auf die Beispiele beschränkt, sondern weitere hier nicht aufgeführte Ausgestaltungen zulässt.
Bezugs zeichenliste
10 erster Bereich
20 zweiter Bereich 30 Formkörper
40 elektrische Kontaktierung
T Temperatur p spezifischer Widerstand a RT-Kennlinie von undotiertem Bao, 9Sr0,iTiθ3 b RT-Kennlinie von Ba0, 9Sr0, 1TiO3 dotiert mit 0, 02% Mn c RT-Kennlinie von Ba0, 9Sr0,iTiO3 dotiert mit 0, 04% Mn d RT-Kennlinie von Ba0, 9Sr0, 1TiO3 dotiert mit 0, 06% Mn e RT-Kennlinie von Ba0, 9Sr0, 1TiO3 dotiert mit 0, 08% Mn f RT-Kennlinie von Ba0, 9Sr0, 1TiO3 dotiert mit 0, 1% Mn

Claims

Patentansprüche
1. Heizungsvorrichtung, umfassend einen Formkörper (30), der ein keramisches Material mit positivem Temperaturkoeffizienten des elektrischen Widerstands enthält und zumindest einen ersten Bereich (10) und einen zweiten Bereich (20) umfasst, wobei der erste Bereich (10) ein keramisches Material einer ersten Zusammensetzung und der zweite Bereich ein keramisches Material einer von der ersten unterschiedlichen zweiten Zusammensetzung aufweist.
2. Heizungsvorrichtung nach dem vorhergehenden Anspruch, wobei die erste und zweite Zusammensetzung des keramischen Materials stoffliche und/oder stöchiometrische Zusammensetzungen umfassen.
3. Heizungsvorrichtung nach einem der vorhergehenden
Ansprüche, wobei der erste Bereich (10) und zweite Bereich (20) des Formkörpers (30) voneinander unterschiedliche thermische und/oder elektrische Eigenschaften aufweisen.
4. Heizungsvorrichtung nach einem der vorhergehenden Ansprüche, wobei das keramische Material die Struktur
Bai-x-yMxDyTii-a-bNaMnbθ3 aufweist, wobei x = 0 bis 0,5, y = 0 bis 0,01, a = 0 bis 0,01, b = 0 bis 0,01, M ein zweiwertiges Kation umfasst, D einen drei- oder vierwertigen Donor umfasst und N ein fünf- oder sechswertiges Kation umfasst.
5. Heizungsvorrichtung nach einem der vorhergehenden
Ansprüche, wobei der erste Bereich (10) und zweite Bereich (20) des Formkörpers (30) eine Curie-Temperatur aufweisen, die einen Bereich von -300C bis 3400C umfasst.
6. Heizungsvorrichtung nach einem der vorhergehenden
Ansprüche, wobei der erste Bereich (10) und zweite Bereich (20) des Formkörpers (30) einen spezifischen Widerstand bei 25°C aufweisen, der in einem Bereich von 3 Ωcm bis 100000 Ωcm liegt.
7. Heizungsvorrichtung nach den Ansprüchen 5 und 6, wobei der erste Bereich (10) und zweite Bereich (20) des Formkörpers (30) gleiche Curie-Temperaturen und voneinander unterschiedliche spezifische Widerstände bei 25°C, oder gleiche spezifische Widerstände bei 25°C und voneinander unterschiedliche Curie-Temperaturen, oder voneinander unterschiedliche Curie-Temperaturen und voneinander unterschiedliche spezifische Widerstände bei 25°C aufweisen.
8. Heizungsvorrichtung nach einem der vorhergehenden
Ansprüche, wobei der Formkörper (30) elektrische Kontaktierungen (40) zur Erzeugung eines Stromflusses durch den Formkörper aufweist.
9. Heizungsvorrichtung nach dem vorhergehenden Anspruch, wobei die Kontaktierungen (40) so an dem Formkörper (30) angeordnet sind, dass jeder Bereich des Formkörpers (30) von Strom durchflössen ist.
10. Heizungsvorrichtung nach einem der Ansprüche 8 oder 9, wobei jede Kontaktierung (40) jeden der zumindest zwei Bereiche (10, 20) des Formkörpers (30) kontaktiert.
11. Heizungsvorrichtung nach einem der Ansprüche 8 oder 9, wobei die Bereiche des Formkörpers (30) so zwischen den Kontaktierungen (40) angeordnet sind, dass jede Kontaktierung (40) einen unterschiedlichen Bereich kontaktiert.
12. Heizungsvorrichtung nach einem der vorhergehenden
Ansprüche, wobei der Formkörper (30) als Düse ausgeformt ist .
13. Heizungsvorrichtung nach einem der vorhergehenden Ansprüche, wobei auf dem Formkörper (30) eine Passivierungsschicht angeordnet ist.
14. Verfahren zur Herstellung einer Heizungsvorrichtung mit den Verfahrensschritten
A) Spritzgiessen eines Grünkörpers (30),
B) Sintern des Grünkörpers zur Herstellung eines Formkörpers (30),
C) Anordnen von elektrischen Kontaktierungen (40) auf dem Formkörper, wobei im Verfahrensschritt A) nacheinander zumindest zwei voneinander unterschiedliche keramische Materialien, die einen positiven Temperaturkoeffizienten des elektrischen Widerstands aufweisen, spritzgegossen werden.
15. Verfahren nach dem vorhergehenden Anspruch, wobei im Verfahrensschritt B) zwischen den zumindest zwei unterschiedlichen Materialien ein Grenzflächenbereich gebildet wird, in dem die keramischen Materialien miteinander versintert sind.
PCT/EP2009/059519 2008-08-07 2009-07-23 Heizungsvorrichtung und verfahren zur herstellung der heizungsvorrichtung WO2010015525A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011521520A JP2011530150A (ja) 2008-08-07 2009-07-23 加熱装置およびその製造方法
CN200980130430.2A CN102113407B (zh) 2008-08-07 2009-07-23 加热装置和用于制造加热装置的方法
US13/057,938 US9363851B2 (en) 2008-08-07 2009-07-23 Heating device and method for manufacturing the heating device
EP09781000.6A EP2322012B1 (de) 2008-08-07 2009-07-23 Heizungsvorrichtung und verfahren zur herstellung der heizungsvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008036835.0 2008-08-07
DE102008036835A DE102008036835A1 (de) 2008-08-07 2008-08-07 Heizungsvorrichtung und Verfahren zur Herstellung der Heizungsvorrichtung

Publications (1)

Publication Number Publication Date
WO2010015525A1 true WO2010015525A1 (de) 2010-02-11

Family

ID=41092011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/059519 WO2010015525A1 (de) 2008-08-07 2009-07-23 Heizungsvorrichtung und verfahren zur herstellung der heizungsvorrichtung

Country Status (6)

Country Link
US (1) US9363851B2 (de)
EP (1) EP2322012B1 (de)
JP (1) JP2011530150A (de)
CN (1) CN102113407B (de)
DE (1) DE102008036835A1 (de)
WO (1) WO2010015525A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011082937A1 (de) * 2010-01-05 2011-07-14 Epcos Ag Formkörper, heizungsvorrichtung und verfahren zur herstellung eines formkörpers
US9321689B2 (en) 2008-08-07 2016-04-26 Epcos Ag Molded object, heating device and method for producing a molded object
US9363851B2 (en) 2008-08-07 2016-06-07 Epcos Ag Heating device and method for manufacturing the heating device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3409467B1 (de) * 2017-05-30 2019-07-03 Heraeus Nexensos GmbH Heizer mit einem co-gesinterten mehrschichtenaufbau
DE102017217122A1 (de) * 2017-09-26 2019-03-28 Schunk Kohlenstofftechnik Gmbh Hochtemperaturbauteil und Verfahren zur Herstellung
US11166343B2 (en) 2018-07-11 2021-11-02 Goodrich Corporation Multi polymer positive temperature coefficient heater

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2753766A1 (de) * 1977-12-02 1979-06-07 Siemens Ag Verfahren zur gezielten einstellung der elektrischen eigenschaften keramischer kaltleiterkoerper
EP0635993A2 (de) * 1993-07-20 1995-01-25 TDK Corporation Keramisches Heizelement
DE19818375A1 (de) * 1998-04-24 1999-11-04 Dornier Gmbh PTCR-Widerstand
US6396028B1 (en) * 2001-03-08 2002-05-28 Stephen J. Radmacher Multi-layer ceramic heater
US20060182908A1 (en) * 2005-02-16 2006-08-17 Ngk Insulators, Ltd. Joined body and manufacturing method for the same

Family Cites Families (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE511613A (de) * 1951-05-23
US2805165A (en) 1955-04-25 1957-09-03 Gen Electric Ceramic composition
US3044968A (en) 1958-05-13 1962-07-17 Westinghouse Electric Corp Positive temperature coefficient thermistor materials
BE668892A (de) * 1964-09-11
DE1490659B2 (de) 1964-09-17 1972-01-13 Siemens AG, 1000 Berlin u. 8000 München Gesinterter elektrischer kaltleiterwiderstandskoerper und verfahren zu seiner herstellung
DE2308073B2 (de) 1973-02-19 1976-09-02 Siemens AG, 1000 Berlin und 8000 München Keramischer elektrischer widerstandskoerper mit positivem temperaturkoeffizienten des elektrischen widerstandswertes und verfahren zu seiner herstellung
US4017715A (en) 1975-08-04 1977-04-12 Raychem Corporation Temperature overshoot heater
JPS5220291A (en) * 1975-08-08 1977-02-16 Tdk Corp Semiconductor porcelain composition
US4035613A (en) 1976-01-08 1977-07-12 Kyoto Ceramic Co., Ltd. Cylindrical ceramic heating device
JPS609641B2 (ja) 1979-05-04 1985-03-12 松下電器産業株式会社 チタン酸バリウム系半導体磁器の製造方法
JPS55165602A (en) 1979-06-11 1980-12-24 Nippon Denso Co Positive temperature coefficient porcelain semiconductor
US4502430A (en) * 1982-11-08 1985-03-05 Ngk Spark Plug Co., Ltd. Ceramic heater
JPS6014784A (ja) 1983-07-06 1985-01-25 株式会社日立製作所 セラミツクヒ−タ
JPS6086788A (ja) * 1983-10-19 1985-05-16 松下電器産業株式会社 Ptc抵抗発熱体組成物
JPS60216484A (ja) 1984-04-09 1985-10-29 株式会社日本自動車部品総合研究所 セラミツクヒ−タ
EP0186095B1 (de) 1984-12-26 1990-08-29 Nippondenso Co., Ltd. Reduktionswiderstandsfähiges Halbleiterporzellan mit positivem Temperaturkoeffizienten des Widerstandes
JPH0782905B2 (ja) 1985-02-28 1995-09-06 日本電装株式会社 セラミックヒータおよびセラミックヒータ用発熱体の製造方法
US4960736A (en) 1986-09-16 1990-10-02 Lanxide Technology Company, Lp Surface bonding of ceramic bodies
JPS6468419A (en) * 1987-09-09 1989-03-14 Daido Steel Co Ltd Heat resistant supporting member
US4842888A (en) * 1988-04-07 1989-06-27 Dow Corning Corporation Ceramic coatings from the pyrolysis in ammonia of mixtures of silicate esters and other metal oxide precursors
DE3820918A1 (de) * 1988-06-21 1989-12-28 Siemens Ag Heizvorrichtung mit wenigstens zwei einzelnen ptc-heizelementen und selbstregelnder temperaturstabilisierung
JPH0761903B2 (ja) 1988-08-25 1995-07-05 本田技研工業株式会社 高温高強度窒化珪素質焼結体及びその製造方法
JPH0297461A (ja) 1988-10-03 1990-04-10 Nishimura Togyo Kk チタン酸バリウム系半導体セラミックス成形体の製造方法
JP3119265B2 (ja) * 1989-04-19 2000-12-18 藤井金属化工株式会社 管状発熱体
JPH075363B2 (ja) 1989-07-20 1995-01-25 日本鋼管株式会社 Ptc磁器組成物及びその製造方法
JP2714209B2 (ja) * 1990-03-07 1998-02-16 株式会社東芝 温度制御装置
JP2541344B2 (ja) 1990-06-08 1996-10-09 株式会社村田製作所 チタン酸バリウム系半導体磁器を用いた電子部品
JP2864731B2 (ja) 1990-11-30 1999-03-08 松下電器産業株式会社 正特性サーミスタ及びその製造方法
JP2898106B2 (ja) 1990-12-28 1999-05-31 日本特殊陶業株式会社 サーミスタセラミックスセンサ及びその製造方法
JPH04247602A (ja) 1991-02-01 1992-09-03 Fujikura Ltd Ptcサーミスタの製造方法
JP2962605B2 (ja) * 1991-11-28 1999-10-12 株式会社デンソー Ptc発熱体
JP2613343B2 (ja) 1992-03-06 1997-05-28 積水化成品工業株式会社 Ptc素子
JPH065181A (ja) 1992-06-16 1994-01-14 Fuji Electric Co Ltd 制御機器のソケット
JPH07106055A (ja) 1993-07-20 1995-04-21 Tdk Corp 急速昇温発熱素子およびその製造方法
DE4340346A1 (de) 1993-11-26 1995-06-01 Audi Ag Verwendung und Herstellverfahren für ein Deformationselement im Fahrzeugbau sowie Deformationselement
JP2938754B2 (ja) * 1994-04-20 1999-08-25 株式会社ユニシアジェックス セラミックスヒータの製造方法
DE4414284A1 (de) 1994-04-23 1995-10-26 Inocermic Ges Fuer Innovative Chemisch, thermisch und/oder mechanisch hoch belastbarer Verbundkörper mit elektrischer Leitfähigkeit und dessen Verwendung
JP2783980B2 (ja) 1994-09-01 1998-08-06 日本碍子株式会社 接合体およびその製造方法
JPH09180907A (ja) 1995-10-27 1997-07-11 Murata Mfg Co Ltd 積層複合セラミックとそれを用いた積層複合セラミック素子
JPH10101413A (ja) * 1996-09-27 1998-04-21 Toyota Central Res & Dev Lab Inc Ptcセラミック、その製造法およびヒータ
JPH10188707A (ja) 1996-12-27 1998-07-21 Ngk Insulators Ltd 複合碍子の成形方法およびそれに用いる金型装置
JPH10222005A (ja) * 1997-02-12 1998-08-21 Canon Inc 定着装置
US6891138B2 (en) * 1997-04-04 2005-05-10 Robert C. Dalton Electromagnetic susceptors with coatings for artificial dielectric systems and devices
US7714258B2 (en) * 1997-04-04 2010-05-11 Robert Dalton Useful energy product
JPH10276826A (ja) * 1997-04-10 1998-10-20 Matsushita Electric Works Ltd ヘアーカール器
DE19739758C1 (de) * 1997-09-10 1999-06-24 Siemens Matsushita Components Kaltleiter-Widerstandselement und Verfahren zur Herstellung solcher Kaltleiter-Widerstandselemente
JPH11317302A (ja) 1998-03-02 1999-11-16 Murata Mfg Co Ltd 正特性サ―ミスタ素子およびそれを用いた加熱装置
US6908960B2 (en) 1999-12-28 2005-06-21 Tdk Corporation Composite dielectric material, composite dielectric substrate, prepreg, coated metal foil, molded sheet, composite magnetic substrate, substrate, double side metal foil-clad substrate, flame retardant substrate, polyvinylbenzyl ether resin composition, thermosettin
WO2001058212A1 (de) 2000-02-01 2001-08-09 E.G.O. Elektro-Gerätebau GmbH Elektrisches heizelement und verfahren zu seiner herstellung
US6394784B1 (en) 2000-03-08 2002-05-28 Mold-Masters Limited Compact cartridge hot runner nozzle
DE10012675A1 (de) * 2000-03-15 2001-09-20 Votup & Co Innovative Keramik Elektrisches Durchfluß-Widerstandsheizelement
JP3361091B2 (ja) 2000-06-20 2003-01-07 ティーディーケイ株式会社 誘電体磁器および電子部品
JP3449350B2 (ja) 2000-11-09 2003-09-22 株式会社村田製作所 積層セラミック電子部品の製造方法及び積層セラミック電子部品
JP3636075B2 (ja) 2001-01-18 2005-04-06 株式会社村田製作所 積層ptcサーミスタ
JP3958040B2 (ja) 2001-12-17 2007-08-15 京セラ株式会社 セラミック製ノズルの製造方法
DE10315220A1 (de) * 2003-03-31 2004-10-14 E.G.O. Elektro-Gerätebau GmbH Dickschichtpaste zur Herstellung von elektrischen Bauteilen
DE102005040685A1 (de) 2005-08-26 2007-03-01 Epcos Ag Elektrisches Bauelement und Verfahren zur Herstellung von elektrischen Bauelementen
US8066498B2 (en) 2005-09-29 2011-11-29 Tdk Corporation Magnetic field molding device, method for producing ferrite magnet, and die
KR20090009294A (ko) * 2006-05-04 2009-01-22 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 세라믹 가열 요소
KR101083553B1 (ko) 2006-07-07 2011-11-14 가부시키가이샤 무라타 세이사쿠쇼 유전체 세라믹, 및 세라믹 전자부품, 및 적층 세라믹 콘덴서
TW200815310A (en) 2006-09-29 2008-04-01 Delta Electronics Inc Fabricating method for ceramic thin plate
US7659507B2 (en) * 2006-10-02 2010-02-09 Jeol Ltd. Automatic method of axial adjustments in electron beam system
US20090146042A1 (en) 2007-12-05 2009-06-11 Jan Ihle Mold comprising a ptc-ceramic
DE102008036835A1 (de) 2008-08-07 2010-02-18 Epcos Ag Heizungsvorrichtung und Verfahren zur Herstellung der Heizungsvorrichtung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2753766A1 (de) * 1977-12-02 1979-06-07 Siemens Ag Verfahren zur gezielten einstellung der elektrischen eigenschaften keramischer kaltleiterkoerper
EP0635993A2 (de) * 1993-07-20 1995-01-25 TDK Corporation Keramisches Heizelement
DE19818375A1 (de) * 1998-04-24 1999-11-04 Dornier Gmbh PTCR-Widerstand
US6396028B1 (en) * 2001-03-08 2002-05-28 Stephen J. Radmacher Multi-layer ceramic heater
US20060182908A1 (en) * 2005-02-16 2006-08-17 Ngk Insulators, Ltd. Joined body and manufacturing method for the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9321689B2 (en) 2008-08-07 2016-04-26 Epcos Ag Molded object, heating device and method for producing a molded object
US9363851B2 (en) 2008-08-07 2016-06-07 Epcos Ag Heating device and method for manufacturing the heating device
WO2011082937A1 (de) * 2010-01-05 2011-07-14 Epcos Ag Formkörper, heizungsvorrichtung und verfahren zur herstellung eines formkörpers

Also Published As

Publication number Publication date
DE102008036835A1 (de) 2010-02-18
US20110174803A1 (en) 2011-07-21
US9363851B2 (en) 2016-06-07
EP2322012A1 (de) 2011-05-18
CN102113407B (zh) 2015-09-09
JP2011530150A (ja) 2011-12-15
EP2322012B1 (de) 2016-01-06
CN102113407A (zh) 2011-06-29

Similar Documents

Publication Publication Date Title
EP2322012B1 (de) Heizungsvorrichtung und verfahren zur herstellung der heizungsvorrichtung
DE68907905T2 (de) Heizelement und verfahren zur herstellung eines heizelementes.
EP2298026B1 (de) Heizungsvorrichtung und verfahren zur herstellung der heizungsvorrichtung
EP0350528B1 (de) Radiator
EP0017057B1 (de) Vorrichtung zum Vorwärmen von Heizöl
DE69708218T2 (de) Selbstregelendes elektrisches Heizelement in Form einer Kartusche oder Probenröhrchen
EP0649150A1 (de) Verbundwerkstoff
EP3631318A1 (de) Heizgerät und verfahren zur herstellung desselben
DE2809449A1 (de) Heizelement
DE60028360T2 (de) Ptk-chipthermistor
EP0194507A1 (de) Heizelement zum Erwärmen von strömenden, insbesondere gasförmigen Medien
DE102013209957A1 (de) PTC-Heizvorrichtung
EP0085980A1 (de) Elektrischer Widerstand, der niederohmig ist und insbesondere zum Schutz eines elektrischen Verbrauchers gegen elektrische Überlastung dient
DE19818375A1 (de) PTCR-Widerstand
DE2941196C2 (de)
DE102010004051B4 (de) Formkörper, Heizungsvorrichtung und Verfahren zur Herstellung eines Formkörpers
EP2310337B1 (de) Heizungsvorrichtung und verfahren zur herstellung einer heizungsvorrichtung
DE102009036620A1 (de) Funktionsmodul und Verfahren zur Herstellung des Funktionsmoduls
DE19823494A1 (de) Heizwalze
DE2912000C2 (de) Vorrichtung zum Vorwärmen von Heizöl vor der Düse eines Brenners
DE68911008T2 (de) Strombegrenzung bei Dickschichtfilmheizelementen.
EP0670209B1 (de) Heizeinrichtung, insbesondere zum Einsatz in Spritzgiessformen zum Verarbeiten thermoplastischer Materialien
DE69932704T2 (de) Organischer PTC-Thermistor
EP1082876B1 (de) Vorrichtung zum erwärmen von medien
DE102009035636A1 (de) Heizmodul und Verfahren zur Herstellung des Heizmoduls

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980130430.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09781000

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 326/KOLNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2011521520

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009781000

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13057938

Country of ref document: US