WO2009157557A1 - 固体高分子形燃料電池のセパレータ用ステンレス鋼材およびそれを用いた固体高分子形燃料電池 - Google Patents

固体高分子形燃料電池のセパレータ用ステンレス鋼材およびそれを用いた固体高分子形燃料電池 Download PDF

Info

Publication number
WO2009157557A1
WO2009157557A1 PCT/JP2009/061765 JP2009061765W WO2009157557A1 WO 2009157557 A1 WO2009157557 A1 WO 2009157557A1 JP 2009061765 W JP2009061765 W JP 2009061765W WO 2009157557 A1 WO2009157557 A1 WO 2009157557A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
separator
boride
conductive
graphitic carbon
Prior art date
Application number
PCT/JP2009/061765
Other languages
English (en)
French (fr)
Inventor
上仲 秀哉
淳子 今村
東田 泰斗
Original Assignee
住友金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属工業株式会社 filed Critical 住友金属工業株式会社
Priority to EP09770267.4A priority Critical patent/EP2302721B1/en
Priority to CN200980133913.8A priority patent/CN102138238B/zh
Priority to CA2729091A priority patent/CA2729091C/en
Publication of WO2009157557A1 publication Critical patent/WO2009157557A1/ja
Priority to US12/975,608 priority patent/US9312546B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/048Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F17/00Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a polymer electrolyte fuel cell and a stainless steel material for a separator which is a constituent element thereof.
  • Fuel cells are the next generation power generation system that is expected to be introduced and spread from both energy saving and environmental measures because it uses the energy generated during the reaction of hydrogen and oxygen.
  • There are a plurality of types of fuel cells and examples include a solid electrolyte type, a molten carbonate type, a phosphoric acid type, and a solid polymer type.
  • the polymer electrolyte fuel cell has a high output density and can be miniaturized, operates at a lower temperature than other types of fuel cells, and is easy to start and stop. For this reason, the polymer electrolyte fuel cell is expected to be used for electric vehicles and small cogeneration for home use, and has attracted particular attention in recent years.
  • FIG. 1 is a diagram showing the structure of a polymer electrolyte fuel cell (hereinafter also simply referred to as “fuel cell”).
  • FIG. 1 (a) is an exploded view of a single cell constituting the fuel cell
  • FIG. b) is a perspective view of the whole fuel cell made by combining a number of single cells.
  • the fuel cell 1 is an assembly (stack) of single cells.
  • the single cell has a gas diffusion electrode layer (also referred to as a fuel electrode film, hereinafter also referred to as “anode”) 3 that acts as a battery cathode on one surface of the solid polymer electrolyte membrane 2.
  • gas diffusion electrode layers also called oxidant electrode films, hereinafter also referred to as “cathodes”
  • separators are formed on both surfaces. 5a and 5b are stacked.
  • a water-cooled fuel cell in which a water separator having a cooling water flow path is arranged between the above-described single cells or between several single cells.
  • the present invention is also directed to such a water-cooled fuel cell.
  • a fluorine-based proton conductive membrane having a hydrogen ion (proton) exchange group is used as the solid polymer electrolyte membrane (hereinafter simply referred to as “electrolyte membrane”) 2 .
  • the anode 3 and the cathode 4 are provided with a particulate platinum catalyst and graphite powder, and may be further provided with a catalyst layer made of a fluororesin having a hydrogen ion (proton) exchange group as required. In this case, the fuel gas or oxidizing gas and the catalyst layer come into contact with each other to promote the reaction.
  • the fuel gas (hydrogen or hydrogen-containing gas) A is flowed from the flow path 6a provided in the separator 5a, and hydrogen is supplied to the fuel electrode film 3. Further, an oxidizing gas B such as air is flowed from the flow path 6b provided in the separator 5b, and oxygen is supplied. The supply of these gases causes an electrochemical reaction to generate DC power.
  • the main functions required for a separator of a polymer electrolyte fuel cell are as follows. (1) Function as a “flow path” for uniformly supplying fuel gas and oxidizing gas into the battery surface, (2) A function as a “flow path” for efficiently discharging water generated on the cathode side from the fuel cell together with a carrier gas such as air and oxygen after reaction, (3) The function of becoming an electrical path in contact with the electrode films (anode 3 and cathode 4), and further serving as an electrical “connector” between single cells, (4) Between adjacent cells, function as a “partition” between the anode chamber of one cell and the cathode chamber of the adjacent cell, and (5) In the water-cooled fuel cell, the cooling water flow path and the adjacent cell Function as a “partition wall”.
  • Substrate materials for separators (hereinafter simply referred to as “separators”) used in polymer electrolyte fuel cells that are required to perform such functions are roughly classified into metal materials and carbon materials. .
  • a separator made of a metal material such as stainless steel, Ti, or carbon steel is manufactured by a method such as press working.
  • a method for manufacturing a separator using a carbon-based material there are a plurality of methods for manufacturing a separator using a carbon-based material.
  • a graphite substrate is impregnated and cured with a thermosetting resin such as phenol or furan, and the carbon powder is kneaded with phenol resin, furan resin or tar pitch, and then pressed into a plate shape or
  • a method of injection molding and firing the obtained member to form glassy carbon is exemplified.
  • metal separator made of a metal material (hereinafter referred to as “metal separator”) has a problem that contact resistance with the gas diffusion electrode layer may increase.
  • the carbon-based material has an advantage that a lightweight separator can be obtained.
  • problems such as gas permeability and low mechanical strength.
  • Patent Document 1 As one of the methods for solving the above-mentioned problems relating to the metal separator, as shown in Patent Document 1, it has been proposed to perform gold plating on the surface of the metal separator substrate that contacts the electrode.
  • the use of a large amount of gold in a mobile fuel cell and a stationary fuel cell such as an automobile has a problem from the viewpoint of economy and resource limitation.
  • a coated metal separator material for a polymer electrolyte fuel cell disclosed in Patent Document 2 is composed of a base material made of austenitic stainless steel whose surface is pickled, and a conductive coating formed on the surface of the base material at 3 to 20 ⁇ m.
  • a conductive agent in the coating film is a mixed powder of graphite powder and carbon black.
  • the fuel cell separator paint disclosed in Patent Document 3 uses graphite as a conductive material and is applied to the surface of a metal or carbon separator substrate for a fuel cell to form a conductive coating film. And containing 10% by weight or more of a copolymer (VDF-HFP copolymer) of vinylidene fluoride (VDF) and propylene hexafluoride (HFP) as a binder for the coating, Using an organic solvent compatible with the binder, the blending ratio of the conductive material and the binder is 15:85 to 90:10 by weight, and the blending ratio of the organic solvent is 50 to 95% by weight. It is.
  • VDF-HFP copolymer vinylidene fluoride
  • HFP propylene hexafluoride
  • a fuel cell separator disclosed in Patent Document 4 is a fuel cell separator that forms a gas flow path in cooperation with a flat plate electrode of a unit cell, and includes a low electrical resistance metal plate, It consists of an amorphous carbon film that covers the metal plate and forms the gas flow path forming surface, and the hydrogen content CH of the amorphous carbon film is 1 atomic% ⁇ CH ⁇ 20 atomic%.
  • This document proposes a method of depositing a carbonaceous film using a thin film forming technique (P-CVD method, ion beam deposition method, etc.) instead of the conductive coating film.
  • Patent Document 5 The means disclosed in Patent Document 5 is a means for heat-treating a base material made of stainless steel in which carbon-based particles are pressure-bonded to the surface thereof, and a diffusion layer is provided between the carbon-based particles and the base material. Since it produces
  • the metal separator disclosed in Patent Document 6 is provided with a conductive resin layer on the surface layer of a metal substrate constituting a conductive gas flow path, and carbon powder is contained in the conductive resin layer. Are dispersed, and Zr, Sn, Al, Cr compound, and Mo compound are disposed between the metal separator and the conductive resin layer.
  • the method (A) is a method in which the surface oxide film of the base material made of stainless steel is removed by pickling, and a conductive paint containing carbon is applied to the surface.
  • the material to which the conductive coating is applied after the pickling has a higher contact resistance than the material that is pickled (the conductive material is not applied).
  • the contact resistance value obtained from the material coated with the conductive paint is one digit higher than that of gold plating. For this reason, it cannot become an alternative technique of gold plating.
  • the adhesion of the formed conductive coating film to the base material is insufficient, and the MEA (Membrane-Electrode Assembly) associated with the coating film peeling at the time of assembling the fuel cell and the operation / pause of the battery. ) Swelling / shrinkage causes problems such as peeling of the coating film.
  • the above method (D) is a heat treatment in which carbon-based particles are dispersed and attached to the surface of a base material made of stainless steel, then rolled using a roll, and then a diffusion layer is formed between the base material and the carbon layer. is required.
  • the base material usually used for press-molded separators is a foil strip of 300 ⁇ m or less. If heat treatment (about 700 ° C.) is performed to form a diffusion layer, non-uniform deformation occurs and the flatness necessary for the separator is secured. Difficult to do.
  • the binder component used for disposing Zr, Sn, Al, Cr compound, and Mo compound in the conductive resin increases the contact resistance. For this reason, low contact resistance like gold plating cannot be realized.
  • Stainless steel separators are extremely practical in terms of material costs and processing costs.
  • the high corrosion resistance of a stainless steel separator is largely due to the presence of a passive film on the surface.
  • the presence of the passive film increases the contact electric resistance, and thus there is a problem that the resistance loss increases when the electric charge generated by the electrochemical reaction is collected by the stainless steel separator.
  • Patent Document 7 uses conductive boride-based precipitates and / or carbide-based precipitates so as to penetrate the passive film on the surface of the stainless steel separator on which the passive film is formed. It is exposed to the surface from the inside of the stainless steel material. For this reason, these deposits and a gas diffusion electrode layer contact, and the electroconductivity between a stainless steel separator and a gas diffusion electrode layer is ensured.
  • this method has a great effect on reducing the contact resistance, in the operating environment of the polymer electrolyte fuel cell, the oxide formed on the surface of the precipitate gradually grows with the operation. For this reason, there is a problem that the contact resistance increases during long-term operation, and the output voltage of the battery gradually decreases, and improvement is required. If this increase in contact resistance can be suppressed by an economically superior method, the problem can be solved.
  • An object of the present invention is to solve the above-mentioned problem of increased contact resistance without impairing the corrosion resistance of a stainless steel separator, and for a polymer electrolyte fuel cell separator having excellent battery characteristics with little performance deterioration during long-time operation.
  • the object is to provide a stainless steel material and a polymer electrolyte fuel cell using the same with high productivity, that is, at low cost.
  • gold plating is a technology that has a low initial contact resistance and a slight increase in contact resistance after operation of the fuel cell.
  • the electrical resistivity of carbon is 1375 ⁇ 10 ⁇ 6 ⁇ cm on average (mechanical / metal material for young engineers Maruzen Co., Ltd., page 325), while the resistivity of gold is 2.35 ⁇ 10 ⁇ 6 ⁇ cm. It is clear that it is difficult to achieve contact resistance comparable to that of gold plating by simply coating carbon on a metal separator (stainless steel separator).
  • the carbon coating method achieves a low contact resistance that is close to that of gold plating, and a means that does not cause problems such as peeling even in the battery operating environment.
  • the inventors examined. As a result, the following knowledge was obtained. By combining these, it becomes possible to solve problems that could not be achieved by the prior art.
  • a stainless steel material for a separator a stainless steel base material, an oxide film provided on the surface of the stainless steel base material, a conductive layer provided on the surface of the oxide film and provided with a nonmetallic conductive material, A conductive M 2 B type boride-based metal inclusion that penetrates the membrane and is partially embedded in the stainless steel base material and electrically connected to the stainless steel base material and the conductive layer; .
  • the “stainless steel base material” means a portion that does not include a passive film in stainless steel that is a material of a stainless steel material for a separator.
  • Oxide film provided on the surface of a stainless steel base material (hereinafter abbreviated as “oxide film”) means a passive film formed on the surface of stainless steel. Due to the presence of this passive film, the corrosion resistance of the separator in the fuel cell operating environment can be enhanced.
  • M 2 B-type boride-based metal inclusions is a metal element (specifically Fe, Cr, Ni, Mo, etc.) and a conductive compound produced by boron contained in the stainless steel material, wherein the ratio of the number of atoms of the metal element to the number of boron atoms in this compound is about 2. It has a logical relationship.
  • the M 2 B type boride dispersed and exposed on the surface of the stainless steel base material is a precipitate precipitated in the stainless steel base material. It penetrates the passive film present on the surface of the material and is exposed on the surface of the stainless steel material. For this reason, the contact resistance between the stainless steel base material forming the separator and the M 2 B type boride is particularly small.
  • the electrical contact portion between the gas diffusion electrode layer and the separator is the conductive M 2 B type. Becomes a boride. Therefore, good electrical contact is realized between the separator and the gas diffusion electrode layer via the M 2 B type boride.
  • M 2 B type borides are scattered on the surface of the separator and do not exist so as to cover the entire surface of the separator.
  • the gas diffusion electrode layer facing the separator has a predetermined surface roughness. For this reason, not all of the M 2 B type boride on the surface of the separator can be in electrical contact with the gas diffusion electrode layer. That is, there is room for further increase in the electrical contact area between the separator having such a configuration and the gas diffusion electrode layer.
  • a conductive layer comprising a nonmetallic conductive material is provided on the surface of the oxide film, and the M 2 B type boride exposed on the surface of the separator is electrically connected to the M 2 B type boride.
  • the knowledge that the contact resistance with respect to a gas diffusion electrode layer fell was obtained for the separator provided with the structure connected to this. In the separator having such a configuration, it is presumed that a current collection phenomenon (details will be described later) occurs on the surface of the stainless steel material, and the electrical contact area between the separator and the gas diffusion electrode layer is increased.
  • non-metallic conductive substance is a conductive substance in which a substance mainly responsible for conductivity does not have a metal bond, and a typical material thereof is graphitic carbon.
  • metal ions hardly flow out even when corrosion occurs during battery operation. For this reason, it is difficult for the corrosion resistance to increase the contact resistance, and it is difficult for metal ions to diffuse into the solid polymer electrolyte membrane and deteriorate the electrolyte membrane.
  • the conductive layer not only on the surface of the oxide film but also on the surface of the M 2 B type boride, from the viewpoint of reducing the contact resistance, particularly suppressing the increase in contact resistance over time. That is, an oxide formed by oxidizing the M 2 B type boride on the surface of the M 2 B type boride (hereinafter, in order to distinguish from the oxide film provided on the surface of the stainless steel base material, “Surface oxide of M 2 B-type boride”) exists, and the surface oxide of this M 2 B-type boride grows as corrosion progresses during battery operation. For this reason, the contact resistance between the separator and the gas diffusion electrode layer increases, and the battery performance may deteriorate over time.
  • an oxide formed by oxidizing the M 2 B type boride on the surface of the M 2 B type boride hereinafter, in order to distinguish from the oxide film provided on the surface of the stainless steel base material, “Surface oxide of M 2 B-type boride” exists, and the surface oxide of this M 2 B-type
  • the exposed M 2 B type boride with a nonmetallic conductive material layer, the growth of the surface oxide of the M 2 B type boride is suppressed, and the contact resistance with the member constituting the gas diffusion electrode layer Is suppressed from increasing over time.
  • the surface oxide of the M 2 B type boride has a low generation rate and is not strong as compared with the passive film on the surface of the stainless steel material. For this reason, the surface oxide of the M 2 B type boride is removed by simply pressing a soft nonmetallic conductive material such as graphitic carbon and sliding the surface, and the boride and the nonmetallic conductive material are removed. Good electrical continuity is obtained between the materials.
  • the surface oxide of the M 2 B type boride is developed excessively thick, it is difficult to obtain a low contact resistance even if the nonmetallic conductive material is coated. prior to the step of, it is desirable to carry out the pickling step of exposing the surface of the M 2 B-type boride to remove surface oxides of M 2 B-type boride.
  • the coating on the M 2 B type boride with this nonmetallic conductive material is sufficient from the viewpoint of electrical continuity if only the surface in contact with the gas diffusion electrode layer is realized when a fuel cell is constructed. It is.
  • the nonmetallic conductive material is preferably graphitic carbon.
  • non-metallic conductive materials include carbon black, conductive paint, etc. in addition to the graphitic carbon exemplified above, and the conductivity required for the separator when assembled as a fuel cell is stainless steel. Can be used without problems. Among these, it is particularly preferable to coat with graphitic carbon, that is, to make the nonmetallic conductive material graphitic carbon from the viewpoints of chemical stability, conductivity, adhesion to M 2 B type boride and the like. .
  • Patent Document 3 only describes that the mixture is defined as a mixture of carbon black and graphite powder.
  • the present inventors examined the graphitic carbon in more detail. As a result, the inventors of the present invention show that when carbon having a C plane spacing d002 ⁇ 3.390 mm is coated, particularly good adhesion can be obtained and at the same time, particularly low contact resistance can be obtained. I knew it.
  • the reason why the C-plane spacing of graphitic carbon is defined as d002 ⁇ 3.390 mm is as follows. (I) The plasticity of graphitic carbon becomes better as the C-plane spacing decreases and the ideal crystal state approaches 3.354%. In the present invention, the graphitic carbon having a C-plane spacing of d002 ⁇ 3.390 mm has good plasticity, and therefore, the surface of the M 2 B type boride can be easily coated.
  • the electrical resistance value of highly crystalline graphitic carbon has anisotropy (Characteristics and technical development of graphite, Hitachi Powdered Metallurgy Technical Report No. 3 (2004), Table 1).
  • the volume resistivity in the a-axis direction is as low as 4 to 7 ⁇ 10 ⁇ 5 ⁇ cm, and the c-axis direction is as high as 1 to 5 ⁇ 10 ⁇ 1 ⁇ cm. Since the electrical conduction in the a-axis direction is caused by conjugation of ⁇ bonds in sp2 bonds, the higher the crystallinity, the lower the volume resistivity.
  • the volume resistivity in the a-axis direction becomes particularly low by using graphitic carbon having high crystallinity of d002 ⁇ 3.390.
  • the volume resistivity of the entire graphitic carbon is lowered, resulting in a decrease in contact resistance.
  • the average carbon resistance is 1375 ⁇ 10 ⁇ 6 ⁇ cm on average, that is, about 1.4 ⁇ 10 ⁇ 3 ⁇ cm (mechanical / metal material for young engineers, Maruzen Co., Ltd., page 325).
  • the M 2 B type boride since the M 2 B type boride is electrically connected to the conductive layer, the charge flowing in the in-plane direction in the conductive layer can also flow into the M 2 B type boride. Since the M 2 B type boride is partially embedded in the stainless steel base material, the electric charge passing through the conductive layer can flow in the stainless steel base material through the M 2 B type boride. That is, the M 2 B type boride serves as a connection point for electrically connecting the conductive layer and the stainless steel base material. In other words, the M 2 B type boride functions as a current collecting point for flowing the electric charge flowing through the conductive layer to the stainless steel base material. As described above, when graphitic carbon with d002 ⁇ 3.390 mm having a particularly low volume resistivity in the a-axis direction is used, this current collecting effect becomes noticeable, and the contact resistance becomes particularly low.
  • the graphitic carbon adheres also to the M 2 B type boride by the above-described crimping operation. At this time, the surface oxide of the M 2 B type boride is removed as described above.
  • Corrosion of graphitic carbon is likely to occur in a portion where the crystallinity is disturbed, so that the higher the crystallinity, the less likely the graphitic carbon is to corrode. Therefore, the conductive layer containing graphitic carbon with d002 ⁇ 3.390 mm effectively functions as a corrosion prevention layer in the stainless steel material.
  • the conductive layer comprising a graphitic carbon is formed on the surface of the M 2 B-type boride is formed and growth of the surface oxide of the M 2 B-type boride is prevented for a long time. For this reason, it is difficult for the contact resistance to change with time.
  • the peak intensity I (110) of the (110) diffraction line in the wide-angle X-ray diffraction from the graphitic carbon crystal covering the surface of the stainless steel material When I (110) / I (004), which is the ratio of the (004) diffraction line to the peak intensity I (004), is less than 0.1, the a-axis direction of the low resistivity graphite is almost the same as that of the stainless steel material. It becomes a state parallel to the surface, and it becomes possible to actively utilize the low volume resistivity (4 to 7 ⁇ 10 ⁇ 5 ⁇ cm) of the graphitic carbon in the a-axis direction. It is particularly preferable that I (110) / I (004) is less than 0.05.
  • the material forming the conductive layer does not use a resinous binder.
  • a binder it may be preferable to use it from the viewpoint of productivity because management of manufacturing conditions in the step of forming the conductive layer becomes easy.
  • the present inventor examined a method for forming a conductive layer according to the present invention.
  • the conductive paint obtained by mixing the binder and graphitic carbon is not applied to the surface to be treated, but the binder is applied to the surface to be treated alone, and the binder is applied.
  • the graphitic carbon By adhering the graphitic carbon to the surface to be processed by the above sliding, it is possible to improve the adhesion between the conductive layer and the surface to be processed while suppressing an increase in the contact resistance of the conductive layer. . Even in this case, it is desirable to make it 2% by mass or less with respect to the mass of the graphitic carbon to be coated.
  • One aspect of the present invention is a stainless steel material for a separator of a polymer electrolyte fuel cell, which is a stainless steel base material, an oxide film provided on the surface of the stainless steel base material, and a surface of the oxide film.
  • the conductive material is preferably made of M 2 B type boride-based metal inclusions, and the M 2 B type boride-based metal inclusions are preferably partially embedded in the stainless steel base material. It is preferable that the conductive layer is also provided on the surface of the M 2 B type boride metal inclusion.
  • the boride-based metal inclusion preferably contains a Cr boride.
  • the non-metallic conductive material preferably contains graphitic carbon.
  • the interplanar spacing of the graphitic carbon is preferably d002 ⁇ 3.390 mm.
  • the peak of the diffraction line of the (110) atomic plane is less than 0.1.
  • the conductive layer is formed by sliding a member containing graphitic carbon against a surface (surface to be treated) composed of the surface of the oxide film and the surface of the boride-based metal inclusion. It is preferable.
  • the sample surface on which X-rays are incident is the steel plate surface, and the surface is made to coincide with the rotational axis of the goniometer so that measurement errors of diffraction angle and intensity do not occur. It means the ⁇ scan method.
  • the roughness of the surface (surface to be treated) composed of the surface of the oxide film and the surface of the boride-based metal inclusion is preferably 0.10 ⁇ m or more as Ra.
  • the binder preferably contains at least one of PVDF (polyvinylidene fluoride) and PTFE (polytetrafluoroethylene).
  • the present invention provides a plurality of unit cells formed by overlapping a fuel electrode membrane, a solid polymer electrolyte membrane, and an oxidizer electrode membrane in this order, and separate separators between the unit cells.
  • the requirements constituting the present invention and the reasons for limitation will be described below.
  • Conductive substance The stainless steel material according to the present invention penetrates an oxide film provided on the surface of the stainless steel base material, that is, a passive film of the stainless steel base material, while being electrically connected to the stainless steel base material.
  • conductive material Provided with conductive material provided.
  • This conductive substance is also electrically connected to a conductive layer (details will be described later) provided on the surface of the oxide film. Since the surface of the stainless steel base other than the part that is electrically connected to the conductive material is provided with an oxide film, the stainless steel material and the conductive layer are electrically connected via the conductive material. is doing.
  • the pattern formed by the conductive material is not particularly limited. As a preferable example, a surface pattern in which a conductive substance is scattered using an oxide film as a matrix can be given. In general, since an oxide film is more excellent in corrosion resistance than a conductive material, it is preferable that the area of the portion electrically connected to the conductive material on the surface of the stainless steel base material is small from the viewpoint of ensuring the corrosion resistance.
  • the conductive material functions as a current collection point, the larger the direct contact area between the conductive material and the stainless steel material, the lower the contact resistance. Therefore, the area of the portion that is electrically connected to the conductive substance may be determined as appropriate depending on the amount of current to flow. On the other hand, in order to avoid excessive current concentration, the conductive material is preferably provided so as to be scattered in the oxide film.
  • the method for dispersing the conductive substance in the oxide film is not particularly limited.
  • a simple method there is a method in which a conductive substance is dispersed and precipitated in a stainless steel base material, and after being formed into a separator, exposed to the surface of the steel base material by pickling or the like.
  • a passive film as an oxide film of the stainless steel base material is not formed on the exposed portion of the conductive material on the surface of the stainless steel base material. Therefore, the oxide film grows so as to enclose the conductive material. Therefore, as a result, the conductive substance is provided so as to penetrate the oxide film, and the conductive substance is scattered in the oxide film.
  • the composition of the conductive material is not particularly limited as long as it has (1) low electrical resistance and (2) good corrosion resistance.
  • M 2 B type boride-based metal inclusions can be mentioned.
  • This M 2 B-type boride is a conductive compound in which boron contained in a stainless steel material is generated by a metal element composing the steel, and contact resistance with the stainless steel base material is particularly small.
  • Specific examples of the M 2 B type boride include Fe 2 B, Cr 2 B, Ni 2 B, Mo 2 B, etc.
  • Cr x Ni y B (x and y are positive integers and x + y is Composite borides such as 2).
  • the M 2 B type boride containing a boride of Cr is balanced in terms of hardness and conductivity, and characteristics of the oxide formed on the surface (particularly mechanical strength). It is preferable.
  • the constituent elements of the stainless steel material forming the M 2 B type boride are not particularly limited, and may be austenitic, ferrite, or two-phase.
  • Other terms of increasing the M 2 B-type boride amount produced While it is preferable to increase than the content of the metal element to make the boron and M 2 B-type boride in the usual stainless steel, required for steel Should be determined as appropriate in relation to the characteristics (mechanical characteristics, corrosion resistance, etc.).
  • a typical steel composition is illustrated below.
  • C 0.2% or less
  • Si 2% or less
  • Mn 3% or less
  • Al 0.001% to 6%
  • P 0.06% or less
  • S 0.03% or less
  • N 0.4% or less
  • Cr 15% to 30%
  • Ni 6% to 50%
  • B 0.1% to 3.5%
  • remaining Fe and impurities Stainless steel containing is exemplified.
  • Cu 2% or less
  • W 5% or less
  • Mo 7% or less
  • V 0.5% or less
  • Ti 0.5% or less
  • Nb 0.5% or less
  • ferritic stainless steel in mass%, C: 0.2% or less, Si: 2% or less, Mn: 3% or less, Al: 0.001% or more and 6% or less, P: 0.06% or less, S : 0.03% or less, N: 0.25% or less, Cr: 15% or more and 36% or less, Ni: 7% or less, B: 0.1% or more and 3.5% or less, balance Fe and impurities are contained Stainless steel is exemplified. From the viewpoint of strength, workability, and corrosion resistance, in place of part of Fe, in mass%, Cu: 2% or less, W: 5% or less, Mo: 7% or less, V: 0.5% or less, Ti : 0.5% or less, Nb: 0.5% or less may be contained.
  • each component is as follows.
  • % in content of an element means the mass%.
  • C is an element necessary for ensuring the strength of the steel, but if contained excessively, the workability deteriorates, so the upper limit is made 0.2%. Preferably, it is 0.15% or less.
  • Si is a component added as a deoxidizer.
  • excessive addition causes a decrease in ductility, and particularly in the two-phase system, it promotes precipitation of the ⁇ phase. Therefore, the Si content is 2% or less.
  • Mn is added because it has a function of deoxidizing and fixing S in steel as a Mn-based sulfide.
  • austenite phase stabilizing element since it is an austenite phase stabilizing element, the austenite system contributes to the stabilization of the phase. In the case of a two-phase system, it is adjusted for the purpose of adjusting the ratio of the ferrite phase. However, if it is excessively contained, the corrosion resistance is lowered, so the upper limit is made 3%. A preferred range is 2% or less.
  • P and S are elements mixed in as impurities, and are 0.06% or less and 0.03% or less, respectively, in order to reduce corrosion resistance and hot workability.
  • Al is added at the molten steel stage as a deoxidizing element.
  • the steel of the present invention contains B to form an M 2 B-type boride.
  • B is an element having a strong binding force with oxygen in the molten steel, the oxygen concentration should be lowered by Al deoxidation. Therefore, it is preferable to make it contain in 0.001 to 6% of range.
  • N is an impurity in the ferrite system. N degrades the room temperature toughness, so the upper limit is preferably 0.25%. The lower one is more preferable, and it is better to make it 0.1% or less.
  • N is an element effective for adjusting the austenite phase balance and improving corrosion resistance as an austenite forming element. However, excessive content deteriorates workability, so the upper limit is preferably made 0.4%.
  • Cr is an element necessary to ensure the corrosion resistance of stainless steel, and it is necessary to contain 15% or more in the austenite system and ferrite system and 20% in the two phase system.
  • a ferrite system if the Cr content exceeds 36%, production on a mass production scale becomes difficult.
  • the austenite system if it exceeds 30%, the austenite phase becomes unstable by adjusting other alloy components.
  • a two-phase system if it exceeds 30%, the ferrite phase increases and it becomes difficult to maintain a two-phase structure.
  • Ni is an austenite phase stabilizing element, and it becomes possible to improve the corrosion resistance in the austenite system. If it is less than 6%, the austenite phase becomes unstable, and if it exceeds 50%, production becomes difficult. Even in the ferrite system, there is an effect of improving the corrosion resistance and toughness. However, if the content exceeds 7%, the ferrite phase becomes unstable, so 7% is made the upper limit. On the other hand, even in a two-phase system, there is an effect of improving corrosion resistance and toughness, and 1% or more is contained. However, if the content exceeds 10%, an excessive increase in the austenite phase and a decrease in the ferrite phase are caused.
  • M 2 B is an important element for forming the M 2 B type boride, and is mainly composed of Cr and Fe and contains a small amount of Ni and Mo (Cr, Fe) 2 B, (Cr, Fe, Ni) 2.
  • Precipitate as M 2 B type boride such as B. This effect is exhibited at 0.1% or more, but it is difficult to contain B exceeding 3.5% in the production by a normal dissolution method.
  • Cu, W, Mo, V, Ti, and Nb are arbitrarily added elements, and are elements that improve strength, corrosion resistance, and the like. 2%, 5%, 7%, 0.5%, 0.5%, 0 The upper limit is 5%. If the content exceeds this, the above-described improvement effect is saturated, and the workability may be deteriorated.
  • the treatment for exposing the M 2 B type boride to the surface of the stainless steel base material is not particularly limited.
  • exposure treatment there is a method of selectively dissolving and exposing the stainless steel base material with an acid solution or the like that dissolves the stainless steel base material and the passive film but hardly dissolves the boride.
  • acid solution etc., hydrofluoric acid, nitric acid, sulfuric acid, hydrochloric acid, ferric chloride and the like can be used alone or in combination.
  • the exposure treatment is a treatment for dissolving the passive film
  • the passive film as an oxide film in the stainless steel material for the separator is not sufficiently formed, which may cause a problem that the stainless steel material is easily corroded.
  • the surface oxide of the M 2 B type boride grows and the contact resistance may increase.
  • a conductive layer is provided on an oxide film (passive film), and the conductive layer includes a nonmetallic conductive material.
  • the conductive substance is made of M 2 B type boride will be described as an example, but the conductive substance may be another material.
  • the non-metallic conductive material constituting the conductive layer includes carbon black, conductive paint, and compound-based conductive materials such as ITO (indium tin oxide) and WC. May be used.
  • ITO indium tin oxide
  • WC indium tin oxide
  • Use of graphitic carbon is preferred from the viewpoints of chemical stability, electrical conductivity, adhesion to M 2 B type boride and the like.
  • any of scale-like graphite, scale-like graphite, expanded graphite, natural graphite, artificial graphite, etc. may be used.
  • a graphite having a shape with a large aspect ratio (diameter / height) such as scaly graphite or scaly graphite.
  • the graphitic carbon to be coated is required to have (1) high conductivity and (2) sufficient corrosion resistance even in an atmosphere containing sulfuric acid, fluorine ions, and the like.
  • a preferable manufacturing method described later graphite carbon is slid against the surface composed of the surface of the oxide film and the surface of the M 2 B type boride, and the graphitized carbon is made by the file effect of the M 2 B type boride. From the viewpoint of scraping and fixing this to the surface of the oxide film so that the a-axis direction is preferentially parallel to the surface (3), it is preferably a soft material that can be easily covered by sliding.
  • the crystallinity of the graphitic carbon can be generally evaluated by the size of the C-plane spacing d002, and the C-plane spacing of the graphitic carbon used in the present invention is d002 ⁇ 3.390 mm.
  • the above requirements can be satisfied to a high degree, and it is particularly preferable.
  • the graphitic carbon is preferably oriented so that the direction of low resistance (a-axis direction) is parallel to the surface of the oxide film (see FIG. 3). In this case, since the a-axis direction having a low volume resistivity is parallel to the surface of the oxide film, the movement of charges in the in-plane direction is facilitated.
  • the gas diffusion electrode layer is in contact with this separator, there is no M 2 B type boride that is directly electrically connected to the stainless steel base material at the contact portion, and the gas diffusion electrode layer is Even when it is in contact with the graphitic carbon, it is possible for the charge to quickly move to the M 2 B type boride through the conductive layer having a particularly low volume resistivity in the in-plane direction. . And since the M 2 B type boride is electrically connected to the stainless steel base material, the electric charge can move to the stainless steel base material.
  • the M 2 B type boride and the gas diffusion electrode layer are not in direct contact with each other.
  • electrical contact between the separator and the gas diffusion electrode layer is achieved by the current collecting phenomenon of the M 2 B type boride by the conductive layer.
  • a separator made of a stainless steel material (hereinafter referred to as “boride-dispersed stainless steel material without a conductive layer”) having a structure in which a conventional M 2 B type boride is exposed, such a current collection phenomenon is performed. Therefore, the electrical contact state between the gas diffusion electrode layer and the separator was a plurality of point contacts. Compared with this fuel cell, in the fuel cell using the separator according to the present invention, the electrical contact area between the gas diffusion electrode layer and the separator is remarkably increased. The state changes from contact to surface contact. As a result of such an excellent electrical contact state, the separator according to the present invention shows a resistance value equivalent to that of gold plating, and a fuel cell using such a separator uses a gold plating separator. Have the same battery characteristics.
  • the electrical resistance in the in-plane direction of the conductive layer containing the nonmetallic conductive material according to the present invention is greater than the electrical resistance of the gas diffusion electrode layer. Is preferably low.
  • the electrical resistance of the gas diffusion electrode layer is about 0.08 ⁇ cm in the in-plane direction as a volume resistivity (Japan Automobile Research Institute, 2004 “Survey Report on Fuel Cell Vehicles”, Chapter 4, Technical Trend-1 214 Therefore, the conductive layer having a structure in which the C-plane spacing of the graphitic carbon is d002 ⁇ 3.390 mm and the a-axis direction of the graphitic carbon is oriented parallel to the surface is: This current collection phenomenon is presumed to have occurred effectively.
  • the orientation of the graphitic carbon in the conductive layer according to the present invention is determined by the peak intensity I (110) of the (110) diffraction line and the peak of the (004) diffraction line in wide-angle X-ray diffraction from the graphitic carbon crystal in the conductive layer. It can be known from I (110) / I (004) which is an intensity ratio with the intensity I (004).
  • the method for measuring the peak intensity of diffraction lines by wide-angle X-ray diffraction is as described above. If this index I (110) / I (004) is less than 0.1, the a-axis direction of the graphitic carbon in the graphitic carbon coating layer is substantially parallel to the surface of the stainless steel material. It is possible to actively utilize a low volume resistivity (4 to 7 ⁇ 10 ⁇ 5 ⁇ cm) in the axial direction, that is, to effectively generate a current collecting phenomenon. If the index I (110) / I (004) is less than 0.05, a stainless steel material having particularly excellent electrical characteristics can be obtained.
  • the conductive layer achieves high conductivity as a separator due to the current collection phenomenon, but the high thermal conductivity of graphitic carbon also increases the conductivity as a separator. It is thought that it has contributed.
  • the conductive layer containing graphitic carbon has a higher thermal conductivity than the passive film that is an oxide, in particular, the crystallinity of the graphitic carbon is high, and the a-axis direction of the graphitic carbon is almost the same as the surface of the stainless steel material.
  • a thermal conductivity of 100 W / mK or more is achieved in a direction parallel to the surface of the conductive layer.
  • Joule heat generated in the M 2 B type boride due to the current collecting phenomenon during use is quickly diffused into the conductive layer. Therefore, the volume resistivity of the M 2 B type boride is prevented from increasing due to Joule heat, and the volume resistivity is prevented from increasing due to thermal denaturation of the M 2 B type boride. The decrease in rate will be suppressed.
  • the degree of distribution of the M 2 B type boride electrically connected to the stainless steel base material on the surface of the stainless steel base material is the gas diffusion electrode layer. And the influence on the contact resistance between the separator and the separator is reduced. For this reason, the freedom degree of the chemical composition of a stainless steel material becomes high. Specifically, since the amount of borides in stainless steel can be reduced, the workability of the steel is improved, and the load on the hot rolling and cold rolling processes for manufacturing the stainless steel, and further the separator pressing process is reduced. it can.
  • the allowable management range of the process of forming the M 2 B type boride (such as heat treatment) and the process of exposing the M 2 B type boride is widened. Therefore, the productivity of the stainless steel material according to the present invention is improved as compared with a boride-dispersed stainless steel material having no conductive layer.
  • the separator made of the stainless steel material according to the present invention substantially comes into electrical contact with the gas diffusion electrode layer, one of the M 2 B type borides responsible for electrical conduction is the reason for oxidation or the like. Even if the conductive performance is reduced by this, the effect of contact with the boride-dispersed stainless steel material without the conductive layer in which the electrical contact state is a plurality of point contacts is slight, and the contact resistance changes with time. Hateful.
  • the conductive layer may be provided on the M 2 B type boride.
  • conductive layer is provided on the surface of the M 2 B-type boride, the formation of the surface oxide of the M 2 B-type boride is prevented. For this reason, it is suppressed that contact resistance with a gas diffusion electrode layer rises with time.
  • the coating method for realizing the conductive layer as described above is not particularly limited, but the following method is preferable because the above-described coating state can be realized efficiently and stably.
  • a base material made of stainless steel in which M 2 B type boride is dispersed in a stainless steel base material is formed by a known method.
  • a specific example is as follows. First, a melting raw material is heated and melted in a furnace, and the obtained molten steel is made into a slab by continuous casting, which is hot-rolled and annealed. The obtained steel is pickled, cold-rolled, and annealed to obtain a base material made of stainless steel.
  • ingots may be obtained from molten steel to obtain ingots, which may be forged and subjected to hot rolling. Further, cold rolling may be performed a plurality of times, and intermediate annealing may be performed during that time. Alternatively, heat treatment (for example, about 700 ° C. to 800 ° C., several hours to several tens of hours) may be performed after shape processing of the separator in order to ensure the generation of the M 2 B type boride.
  • the surface of the substrate made of stainless steel physically and / or chemically is removed, and the surface is removed.
  • Expose M 2 B type boride The method may be carried out by selecting an appropriate method from known methods based on the physical and chemical characteristics of the substrate.
  • the physical method includes surface polishing using belt grinding or the like.
  • the chemical method include washing with an acid, and examples of the treatment liquid include a ferric chloride aqueous solution and a mixed aqueous solution of nitric acid and hydrofluoric acid.
  • the substrate treatment for exposing the M 2 B-type boride is made of made of stainless steel on the surface, the surface other than the surface of M 2 B-type boride is exposed, the passive film of stainless steel base material Covered with an oxide film.
  • the method of slidingly attaching graphite is not limited to the above sliding.
  • Another example is as follows. Roll while applying back tension with a rolling mill with roll material made of graphite. Replace the tool part of the milling machine with a graphite rod and rotate and press the graphite while applying a certain load. Rub the surface with a brush with graphite powder and rubbing with a cloth (felt etc.) with graphite powder.
  • the surface roughness of the surface to be processed (the surface consisting of the surface of the oxide film and the surface of the boride metal inclusions) is 0 as the average surface roughness Ra. It is preferable to be 10 ⁇ m or more.
  • the upper limit of the surface roughness of the surface to be treated is not particularly limited from the viewpoint of adhesion. Even if the roughness is excessively increased, the effect is saturated, so about 0.1 to 3 ⁇ m is practically sufficient. Further, from the viewpoint of reducing the possibility of cracks occurring when a stainless steel material is processed into a separator shape by press molding or the like, the average surface roughness Ra is preferably 1/10 or less of the plate thickness.
  • the upper limit of the average surface roughness Ra is 2 to 3 ⁇ m. If a dull roll is used, the surface to be treated can be sufficiently given a roughness of about several tens of micrometers. In the surface treatment (for example, cleaning with an acid) performed for exposing the M 2 B type boride, a predetermined surface roughness may be simultaneously given to the surface to be treated.
  • this surface roughness should just have only the surface which contacts a gas diffusion electrode layer, when a fuel cell is comprised among stainless steel materials.
  • the method for adjusting the surface to be treated to the above surface roughness is not particularly limited, and several examples are as follows.
  • etching is performed by setting the etchant concentration, the etchant temperature, the etching time, etc. according to the etching amount.
  • Polishing by belt grinding Surface polishing is performed using a belt grinder in which polishing abrasive grains such as diamond, silicon carbide, and alumina are embedded on the surface to adjust to a predetermined surface roughness.
  • a binder when more adhesion is required under severe fuel cell operation conditions, a binder can be used when forming a conductive layer containing graphitic carbon.
  • this binder in the prior art, a method of mixing and coating a graphitic carbon and a binder is generally used, but the base material made of the above-mentioned graphite carbon block and stainless steel is used.
  • the protruding M 2 B type boride scrapes off the graphitic carbon on the surface to be treated with the binder applied on the surface.
  • the binder on the surface to be treated is peeled off from the surface to be treated.
  • the scraped graphitic carbon and the stripped binder are mixed between the surface to be treated and the graphitic carbon block; andthe graphitic carbon between the surface to be treated and the graphitic carbon block.
  • the mixture with the binder adheres to the surface to be processed and becomes a conductive layer.
  • the separator having the conductive layer having this structure is excellent in both the adhesion of the conductive layer and the contact resistance with the gas diffusion electrode.
  • the surface of the M 2 B type boride is slid with a stronger force than the surface of the oxide film.
  • the binder on the surface of the M 2 B type boride is more easily peeled off when sliding with the opposing graphitic carbon block than the binder on the surface of the oxide film. Therefore, it is considered that the conductive layer on the surface of the M 2 B type boride has a lower binder content and a higher graphitic carbon content than the conductive layer on the oxide film surface. Therefore, the conductive layer on the surface of the M 2 B type boride is expected to have a relatively low contact resistance.
  • the conductive layer on the surface of the M 2 B type boride has a relatively small binder content, there is a possibility that the adhesiveness is relatively low although the conductivity is high.
  • the conductive layer on the surface of the oxide film which is continuously formed around the conductive layer on the surface of the M 2 B-type boride the content of binder than the conductive layer on the surface of the M 2 B-type boride Therefore, it is relatively firmly attached to the oxide film. For this reason, it is considered that the conductive layer on the surface of the M 2 B type boride is held by the conductive layer on the surface of the oxide film, and peeling is suppressed.
  • the binder used is not limited as long as it is excellent in water resistance, oxidation resistance and chemical resistance.
  • Fluororesin binders such as PTFE (polytetrafluoroethylene) and PVDF (polyvinylidene fluoride) used for forming a catalyst layer of a fuel cell are preferable, and among these, PTFE is particularly preferable.
  • Material 1 is a material whose matrix is the composition of material 7 and whose composition is adjusted so that Cr 2 B boride precipitates. Specifically, boron is contained and the amount of Cr used for boride formation is increased. .
  • Material 2 is a material whose matrix is the composition of material 8 and whose composition is adjusted so that Cr 2 B boride precipitates. Specifically, boron is contained and the amount of Cr used for boride formation is increased. .
  • the steps of hot forging, cutting, hot rolling, annealing, cold rolling, intermediate annealing, cold rolling, and annealing are performed in this order according to the manufacturing conditions shown in Table 2.
  • a cold rolled steel sheet was obtained.
  • the cold-rolled steel plate obtained in the above process was pickled in a 7% by mass nitric acid, 4% by mass hydrofluoric acid aqueous solution and 60 ° C. following the final annealing.
  • the high-temperature oxide scale on the surface of the obtained steel sheet was removed to obtain a sheet material having a thickness of 0.3 mm.
  • Raw material of surface treatment liquid ferric chloride anhydride (manufactured by Wako Pure Chemical Industries, Ltd.), pure water
  • Surface treatment liquid 45 Baume ferric chloride aqueous solution
  • Surface treatment conditions 60 ° C.
  • the sheet material obtained by the surface treatment is referred to as a separator sheet material.
  • Contact Resistance Measurement Method Contact resistance was measured using the apparatus schematically shown in FIG. 2 according to the method reported in papers (eg, Titanium Vol. 54 No. 4 P259).
  • the separator sheet material was sandwiched between carbon paper (TGP-H-90, manufactured by Toray Industries, Inc.) having an area of 1 cm 2 and used for the gas diffusion electrode layer, and this was sandwiched between gold-plated electrodes.
  • a load (5 kgf / cm 2 or 20 kgf / cm 2 ) was applied to both ends of the gold-plated electrode, and then a constant current was passed between the electrodes.
  • the contact resistance value is a value obtained by adding up the contact resistances of the both sandwiched surfaces, the contact resistance value per one side of the gas diffusion electrode layer was obtained by dividing this by 2, and evaluated by this value.
  • Interplanar measurement of coated graphite Interplanar spacing of the graphite to be coated is measured by 2 ⁇ / ⁇ scanning method, and using an X-ray diffraction measuring device (RINT 2000, manufactured by Rigaku Corporation), Gakushin method 117 (lattice constant of carbon material) And 20% by mass of standard Si in accordance with the crystallite size measurement method (draft amendment 04/07/08) to perform baseline correction, profile correction, etc., and to obtain an accurate 002 plane spacing (d002), that is, The C-plane spacing was calculated.
  • RINT 2000 X-ray diffraction measuring device
  • Gakushin method 117 lanite constant of carbon material
  • d002 plane spacing 002 plane spacing
  • the graphite block itself was measured by X-ray diffraction.
  • the graphite powder used was measured by X-ray diffraction.
  • the graphitic carbon was coated by vacuum deposition, it was difficult to measure the face spacing as it was. For this reason, vapor deposition was performed thickly until the d002 peak appeared clearly, a sample exclusively for XRD measurement was made, and X-ray diffraction measurement was performed on this sample.
  • the details of the stainless steel separator plate used in the cell are as follows.
  • the separator sheet material before surface treatment is pressed on both sides (anode side and cathode side) in the shape shown in FIG. 1 to form a gas flow path having a groove width of 2 mm and a groove depth of 1 mm. It was.
  • the polymer electrolyte single cell battery was assembled using this separator.
  • evaluation was performed using a single cell. This is because in the state where multiple cells are stacked, the quality of the stacking technique is reflected in the evaluation result.
  • Initial battery voltage Characteristic evaluation is the highest in 48 hours after the start of measurement by measuring the voltage of a single cell battery from the time when an output of 0.5 A / cm 2 is obtained after flowing fuel gas into the battery.
  • the battery voltage was defined as the initial battery voltage.
  • Degree of degradation ⁇ battery voltage after 500 hours (V) ⁇ initial battery voltage (V) ⁇ / 500 hours
  • Measurement of adhesion of coated graphite The measurement of adhesion of the conductive layer formed on the surface of the separator sheet material was conducted by a cross-cut tape peeling test in accordance with JIS D0202-1988. Using cellophane tape (CT24 manufactured by Nichiban Co., Ltd.), the film was adhered to the film with the belly of the finger and then peeled off. Judgment is represented by the number of squares that do not peel out of 100 squares (10 ⁇ 10). The case where the conductive layer does not peel is represented as 100/100, and the case where the conductive layer peels completely is represented as 0/100.
  • Conventional method 1 The surface treatment described above was performed on the surface of the separator sheet material for the purpose of adjusting the surface roughness.
  • Conventional method 2 SUS316L equivalent material is degreased, washed, surface activated, and washed in this order, and further, using a commercially available cyanogen gold potassium solution, it corresponds to the electrode contact surface (contact portion with the gas diffusion electrode layer) of the unit cell.
  • the surface was plated with gold. The thickness of the gold plating was 0.05 ⁇ m.
  • the separator sheet was pickled for 10 seconds using 10 mass% hydrochloric acid at a temperature of 60 ° C.
  • Water dispersion of polyolefin resin in which 100 parts by weight of graphite powder (MCMB average particle size 6 ⁇ m manufactured by Osaka Gas Co., Ltd.) and 35 parts by weight of water dispersible carbon black were added to the front and back surfaces of the separator sheet after washing.
  • a coating obtained by mixing with a functional coating was applied in a thickness of 30 ⁇ m and baked at 120 ° C. for 1 minute.
  • PTFE dispersion solution (PTFE (Polyflon PTFE Dispersion D1) manufactured by Daikin Industries, Ltd.) is purified on the surface that contacts the gas diffusion electrode layer during use.
  • the coating material obtained by diluting to 1/15 was applied and dried to form a coating film on the surface of the separator sheet.
  • the surface of the sheet material for separator on which the graphite powder was arranged was pressed with a load of 150 kgf / cm 2 to press-bond the graphite powder to the surface of the sheet material for separator.
  • Invention 3 Graphite carbon was vacuum-deposited on the surface of the separator sheet having a conductive boride deposited on the surface thereof and in contact with the gas diffusion electrode layer during use.
  • the apparatus used is a vacuum vapor deposition apparatus AAH-C1080SB manufactured by Shinko Seiki Co., Ltd.
  • the treatment time was 20 minutes and was adjusted so that a film thickness of 1500 mm was obtained.
  • a stainless steel plate subjected to vapor deposition for 3 hours is separately prepared, Measurement was performed by performing X-ray diffraction on graphitic carbon formed on the stainless steel plate.
  • the initial contact resistance when a load of 20 kgf / cm 2 is applied and the contact resistance after the corrosion resistance test are 10 m ⁇ ⁇ cm 2 or less, compared with the conventional methods 1 and 3 to 9
  • the resistance value was low.
  • the resistance value increase was small, and the result of excellent corrosion resistance was obtained.
  • the conventional method 2 has low contact resistance, gold plating is expensive, and there is a problem in that it is economical and consumes a large amount of rare resources.
  • Inventive Examples 1 to 8 had a good battery deterioration degree ( ⁇ V / hour) ( ⁇ ⁇ 2.0 ⁇ V / hour) compared with the conventional methods 1 and 3 to 11.
  • the conventional methods 2, 7, and 8 have good battery deterioration, as described above, the conventional method 2 has problems in terms of economy and consumption of a large amount of scarce resources.
  • No. 8 has a problem that the initial battery voltage is low, the mass productivity is low, and the cost is high.
  • the present invention method shows that the contact resistance value and the battery deterioration degree after the corrosion resistance test are compared. It can be seen that is greatly improved.
  • This example was carried out in order to confirm the preferred range of the present invention, specifically the preferred interplanar spacing range of graphitic carbon covering the boride on the surface of the stainless steel plate.
  • Table 4 shows the heating temperature and the interplanar spacing of the obtained graphitic carbon. Carbons 1 to 3 are outside the scope of the present invention, and carbons 4 to 9 are within the scope of the present invention.
  • the stainless steel plate of the material 1 coated with graphitic carbon having a surface interval> 3.390 mm has a contact resistance (contact pressure: 20 kgf / cm 2 ) after the corrosion resistance test of> 10 m ⁇ ⁇ cm 2 , and the deterioration degree of the battery is ⁇
  • the result was 2.0 ⁇ V / hour.
  • d002 ⁇ 3,390 mm which can bring about excellent characteristics such as battery degradation degree> ⁇ 2.0 ⁇ V / hour, was set as a particularly preferable range of the present invention.
  • Table 6 shows the results when the kind of the binder to be contained is changed in the separator including the conductive layer containing the binder.
  • the method of using the binder is the same as in the present invention 2.
  • Table 6 when a binder composed of PTFE is used, the adhesion after the corrosion test is particularly good and no increase in the contact resistance value is observed.
  • evaluation samples having different graphitic carbon coating methods were prepared, and the influence of the orientation of the graphitic carbon to be coated was investigated.
  • the “press” in Table 7 is a sample that was press-bonded by the same method as in the present inventions 5 and 8, and the “application” was applied by a binder in the same manner as in the present inventions 2 and 6.
  • the “sliding” is a sample in which block graphite is slid in the same manner as in the first, fourth, and seventh aspects of the present invention.
  • the wide-angle X-ray diffraction measurement uses the sample surface on which X-rays are incident as the surface of the separator sheet material, and the surface coincides with the rotational axis of the goniometer so that no measurement error of diffraction angle or intensity occurs.
  • the ⁇ scan method was used.
  • Table 7 shows the relationship between orientation, contact resistance and battery characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Fuel Cell (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

 ステンレスセパレータの有する耐食性を損なうことなく、長時間運転時に性能劣化が少ない優れた電池特性を有する固体高分子形燃料電池のセパレータ用ステンレス鋼材として、ステンレス鋼母材と、このステンレス鋼母材の表面に設けられた酸化膜と、この酸化膜の表面に設けられ非金属性導電物質を備える導電層と、酸化膜を貫通するように設けられ、ステンレス鋼母材および前記導電層に電気的に接続する導電性物質とを備えるステンレス鋼材、およびそれを用いた固体高分子形燃料電池が提供される。

Description

固体高分子形燃料電池のセパレータ用ステンレス鋼材およびそれを用いた固体高分子形燃料電池
 本発明は、固体高分子形燃料電池およびその構成要素であるセパレータ用のステンレス鋼材に関する。
 燃料電池は、水素と酸素の結合反応の際に発生するエネルギーを利用するため、省エネルギーと環境対策の両面から、その導入および普及が期待されている次世代の発電システムである。燃料電池には複数のタイプがあり、固体電解質型、溶融炭酸塩型、リン酸型および固体高分子形などが例示される。
 これらの中でも固体高分子形燃料電池は、出力密度が高く小型化が可能であり、また他のタイプの燃料電池より低温で作動し、起動停止が容易である。このため、固体高分子形燃料電池は電気自動車や家庭用の小型コジェネレーションへの利用が期待されており、近年、特に注目を集めている。
 図1は、固体高分子形燃料電池(以下、単に「燃料電池」ともいう。)の構造を示す図で、図1(a)は、燃料電池を構成する単セルの分解図、図1(b)は多数の単セルを組み合わせて作られた燃料電池全体の斜視図である。
 図1に示すように、燃料電池1は単セルの集合体(スタック)である。単セルは、図1(a)に示すように固体高分子電解質膜2の一面に電池の陰極として作用するガス拡散電極層(燃料電極膜とも呼ばれ、以下、「アノード」とも記す。)3が、他面には電池の陽極として作用するガス拡散電極層(酸化剤電極膜とも呼ばれ、以下、「カソード」とも記す。)4がそれぞれ積層されており、その両面にセパレータ(バイポーラプレート)5a、5bが重ねられた構造になっている。
 なお、上記の単セルと単セルの間、または数個の単セルごとに冷却水の流通路を持つ水セパレータを配した水冷型の燃料電池もある。本発明はそのような水冷型燃料電池をも対象とする。
 固体高分子電解質膜(以下、単に「電解質膜」という。)2としては、水素イオン(プロトン)交換基を有するフッ素系プロトン伝導膜が使われている。アノード3およびカソード4には、粒子状の白金触媒および黒鉛粉が設けられ、さらに必要に応じて水素イオン(プロトン)交換基を有するフッ素樹脂からなる触媒層が設けられている場合もある。この場合には、燃料ガスまたは酸化性ガスとこの触媒層とが接触して反応が促進される。
 セパレータ5aに設けられている流路6aからは燃料ガス(水素または水素含有ガス)Aが流されて燃料電極膜3に水素が供給される。また、セパレータ5bに設けられている流路6bからは空気のような酸化性ガスBが流され、酸素が供給される。これらガスの供給により電気化学反応が生じて直流電力が発生する。
 固体高分子形燃料電池のセパレータに求められる主な機能は次のようなものである。
 (1)燃料ガス、酸化性ガスを電池面内に均一に供給する“流路”としての機能、
 (2)カソード側で生成した水を、反応後の空気、酸素といったキャリアガスとともに燃料電池から効率的に系外に排出する“流路”としての機能、
 (3)電極膜(アノード3、カソード4)と接触して電気の通り道となり、さらに単セル間の電気的“コネクタ”となる機能、
 (4)隣り合うセル間で、一方のセルのアノード室と隣接するセルのカソード室との“隔壁”としての機能、および
 (5)水冷型燃料電池では、冷却水流路と隣接するセルとの“隔壁”としての機能。
 このような機能を果たすことが求められる固体高分子形燃料電池に用いられるセパレータ(以下、単に「セパレータ」という。)の基材材料としては、大きく分けて金属系材料とカーボン系材料とがある。
 ステンレス鋼、Ti、炭素鋼などの金属系材料によるセパレータは、プレス加工等の方法により製造される。一方、カーボン系材料によるセパレータの製造方法には複数の方法がある。その方法として、黒鉛基板にフェノール系、フラン系などの熱硬化性樹脂を含浸硬化して焼成する方法、炭素粉末をフェノール樹脂、フラン樹脂またはタールピッチなどと混練して、板状にプレス成形または射出成形し、得られた部材を焼成し、ガラス状カーボンにする方法が例示される。
 ステンレス鋼をはじめとする金属系材料は、金属特有の加工性に優れ、セパレータの厚みを薄くすることができ、セパレータの軽量化が図れるなどの利点を有する。しかしながら、腐食による金属イオンの溶出や金属表面の酸化により電気伝導性が低下することが懸念される。このため、金属系材料によるセパレータ(以下「金属セパレータ」という。)はガス拡散電極層との接触抵抗が上昇する可能性があることが問題となっている。
 一方、カーボン系材料は軽量なセパレータが得られる利点がある。しかしながら、ガス透過性を有するといった問題や、機械的強度が低いといった問題があった。
 金属セパレータに関する上記の問題を解決する方法の一つとして、特許文献1に示されるように、金属セパレータ基材の電極と接する表面に、金めっきを施すことが提案されている。しかしながら、自動車等の移動体用燃料電池および定置用燃料電池に金を多量に使用することは、経済性および資源量制約の観点から問題があった。
 このため、金を用いることなく上記の問題を解決するための試みの一つとして、金属セパレータ表面を、カーボンで被覆する提案がなされている。
 以下に、これまでに金属セパレータ表面をカーボンで被覆する方法として提案されている技術を列挙する。
 (A)特許文献2に開示される固体高分子形燃料電池用塗装金属セパレータ材料は、表面を酸洗したオーステナイト系ステンレス鋼からなる基材と基材表面に3~20μm形成された導電性塗膜とを備え、この塗膜中の導電剤がグラファイト粉末とカーボンブラックとの混合粉末である。この特許文献には、金属セパレータの基材表面を酸洗し、酸洗後の基材表面にカーボンを含む導電性塗料を塗布する工程が開示されている。
 (B)特許文献3に開示される燃料電池セパレータ用塗料は、導電材として黒鉛を使用し、燃料電池用の金属製またはカーボン製セパレータ基材の表面に塗布されて導電性塗膜を形成するものであって、この塗料の結着材としてフッ化ビニリデン(VDF)と六フッ化プロピレン(HFP)との共重合体(VDF-HFP共重合体)を10重量%以上含有し、媒体として上記結着材と相溶性のある有機溶剤を用い、上記導電材と結着材との配合比率が重量比で15:85~90:10であり、上記有機溶剤の配合割合が50~95重量%である。
 (C)特許文献4に開示される燃料電池用セパレータは、単電池の平板状電極と協働してガス流路を形成する燃料電池用セパレータであって、低電気抵抗性金属板と、その金属板を被覆してガス流路形成面を構成する非晶質炭素膜とからなり、その非晶質炭素膜の水素含有量CH が1原子%≦CH≦20原子%である。当該文献では、上記の導電性塗膜の代わりに薄膜形成技術(P-CVD法、イオンビーム蒸着法等)を用いて炭素質膜を蒸着する方法が提案されている。
 (D)特許文献5に開示される手段は、カーボン系粒子がその表面に圧着されたステンレス鋼からなる基材を加熱処理する手段であり、カーボン系粒子と基材との間に拡散層が生成するため密着性が高まるとともに、カーボン系粒子と基材との間の電気的導通が確実になる。
 (E)特許文献6に開示される金属セパレータは、導電性ガス流路を構成する金属基材の表層に導電性樹脂層を設けたものであって、この導電性樹脂層内にはカーボン粉末が分散され、金属セパレータと導電性樹脂層との間にZr、Sn、Al、Cr化合物、Mo化合物が配置される。
特開平10-228914号公報 特開平11-345618公報 国際公開2003/044888パンフレット 特開2000-67881号公報 国際公開99/19927パンフレット 国際公開2001/18895パンフレット 特許第3365385号
 ステンレス鋼をはじめとする金属からなるセパレータに関する上記の問題を金めっき以外の手段で解決するために上記(A)~(E)が提案されている。しかしながら、現時点で実用化された技術はなく、それぞれが解決すべき技術的問題点があるものと推定される。本発明者らが追試等により確認したそれぞれの技術に関する問題点を以下に記載する。
 上記(A)の方法は、ステンレス鋼からなる基材の表面酸化膜を酸洗により除去し、カーボンを含有する導電性塗料をその表面に塗布する方法である。この酸洗後に導電性塗料が塗布された材料は、酸洗まま(導電性材料が塗布されない)の材料と比較して接触抵抗が上昇する。導電性塗料が塗布された材料から得られる接触抵抗値は、金めっきと比較して1桁高い値である。このため金めっきの代替技術とはなり得ない。
 上記(B)の方法は、形成された導電性塗膜の基材に対する密着性が不十分で、燃料電池の組み立て時における塗膜剥離、および電池の運転・休止に伴うMEA(Membrane-Electrode Assembly)の膨潤/収縮に起因する塗膜剥離などの問題点がある。
 上記(C)の方法は、薄膜形成技術は、処理コストが高く、処理に長時間が必要である。このため、量産には適さない方法である。
 上記(D)の方法は、ステンレス鋼からなる基材の表面にカーボン系粒子を分散付着させた後、ロールを用いて圧延し、その後基材とカーボン層との間に拡散層を生じさせる熱処理が必要である。通常プレス成型セパレータに用いる基材は300μm以下の箔帯であり、拡散層を生じさせるための熱処理(700℃程度)を施せば、不均一な変形が生じ、セパレータに必要な平坦性等を確保することが困難である。また、拡散層を生じさせるための熱処理によって基材表面に過剰な酸化皮膜が生じて接触抵抗が上昇してしまうことを回避するために、不活性ガスあるいは真空雰囲気で実施する必要がある。このためにコストが大幅に上昇する要因となる。この方法では、基材の表面に存在する不動態皮膜をカーボン系粒子に由来するカーボンが熱処理において貫通し、基材の母材表面およびその表面下にカーボン拡散層が形成されることによって、接触抵抗が低減されることが期待される。しかしながら、現実には、燃料電池の運転中に、形成されたカーボン拡散層と母材とによって局部電池が形成され、母材の腐食が進行し、接触抵抗が上昇する。このため、実用には適さない方法である。
 上記(E)の方法は、Zr、Sn、Al、Cr化合物、Mo化合物を導電性樹脂の中に配置するために使用されるバインダー成分が接触抵抗を上昇させてしまう。このため、金めっきの様な低い接触抵抗を実現することができない。
 ステンレス鋼製のセパレータ(以下、「ステンレスセパレータ」という。)は材料コストおよび加工コストの上から極めて実用性に富む。ステンレスセパレータの高耐食性は、その表面の不動態皮膜の存在によるところが大きい。しかしながら、不動態皮膜の存在は、接触電気抵抗を高くするため、電気化学反応により発生した電荷をステンレスセパレータで集電する際に抵抗損失が大きくなる問題があった。
 この様な問題点を解決するために、上記のごとく、セパレータの表面に金めっきしたりカーボンで被覆したりする方法が提案されてきたが、ステンレスセパレータの普及に繋がる解決手段に至っていない。
 なお、特許文献7に開示される方法は、不動態皮膜が形成されているステンレスセパレータの表面の不動態皮膜を貫通するように、導電性の硼化物系析出物および/または炭化物系析出物をステンレス鋼材の内部から表面に露出させる。このため、これらの析出物とガス拡散電極層とが接触し、ステンレスセパレータとガス拡散電極層との間の導電性が確保される。この方法は接触抵抗の低減に大きな効果を有するが、固体高分子形燃料電池の運転環境においては、運転に伴い析出物の表面に形成された酸化物が徐々に成長する。このため、長期間の運転では接触抵抗が高くなり、電池の出力電圧が次第に低下していく問題があり、改善が求められている。この接触抵抗上昇を経済的に優れた方法により抑制することができれば問題点を解決することかできる。
 本発明の目的は、ステンレスセパレータの有する耐食性を損なうことなく、上記の接触抵抗上昇という問題を解決し、長時間運転時に性能劣化が少ない優れた電池特性を有する固体高分子形燃料電池のセパレータ用ステンレス鋼材、およびそれを用いた固体高分子形燃料電池を生産性高く、すなわち安価に提供することにある。 
 本発明者らは、上記課題を解決すべく種々の検討を進めた。
 従来の技術を確認検証行ったところ、初期接触抵抗が低く、かつ燃料電池運転後の接触抵抗の上昇が軽微な技術は、金めっきであった。
 ところが金は鉱山建値が3068円/g(日本経済新聞2008年6月17日 朝刊参照)と高価であり、近年価格が高騰する傾向がある。しかも、そもそも稀少資源であることから、工業的な用途で大量に使うことは現実的ではない。
 金めっきを実施しないで金属セパレータ(ステンレスセパレータ)を使用する方法として、金属セパレータ表面にカーボン被覆を行う各種の方法が提案されている。
 これまで提案されているカーボンコート方法を検証したところ、効果は認められるがその改善程度は不十分であって、(1)金めっきと比較して高い接触抵抗値であること、(2)被覆方法によっては電池運転環境で剥離が生じてその効果が持続しないこと、等の問題が認められた。
 金の抵抗率2.35×10-6Ωcmに対して、カーボンの電気抵抗率は、平均1375×10-6Ωcm(若い技術者のための機械・金属材料 丸善株式会社 325ページ)であり、カーボンを単純に金属セパレータ(ステンレスセパレータ)上に被覆しただけでは、金めっきと同程度の接触抵抗を実現するのが困難なことは明らかである。
 こうした材料が持つ固有の物性差を考慮に入れた上で、カーボン被覆法により金めっきに近い低接触抵抗を実現し、かつ電池運転環境においても剥離等の問題が生じさせない手段を得るべく、本発明者らは検討を行った。その結果、以下に示す知見を得た。これら組み合わせることで従来技術では達成できなかった課題を解決することが可能となる。
 a)セパレータ用のステンレス鋼材を、ステンレス鋼母材と、このステンレス鋼母材の表面に設けられた酸化膜と、この酸化膜の表面に設けられ非金属性導電物質を備える導電層と、酸化膜を貫通するともにステンレス鋼母材に部分的に埋設され、ステンレス鋼母材および導電層に電気的に接続する、導電性を有するMB型硼化物系金属介在物とを備える構成とする。
 「ステンレス鋼母材」とは、セパレータ用のステンレス鋼材の素材であるステンレス鋼において、不動態皮膜を含まない部分を意味する。
 「ステンレス鋼母材の表面に設けられた酸化膜」(以下、「酸化膜」と略記する。)とは、ステンレス鋼の表面に形成される不動態皮膜を意味する。この不動態皮膜の存在により、燃料電池運転環境下でのセパレータの耐食性を高めることができる。
 「導電性MB型硼化物系金属介在物」(以下、「MB型硼化物」と略記する。)とは、ステンレス鋼材を構成する金属元素(具体的には、Fe,Cr,Ni,Moなどが例示される。)とステンレス鋼材に含まれる硼素とにより生成した導電性化合物であって、この化合物における金属元素の原子数の硼素の原子数に対する比が約2である化学量論的関係を有しているものをいう。
 上記の特許文献7にも記載されるように、ステンレス鋼母材の表面に分散・露出するMB型硼化物は、ステンレス鋼母材中で析出した析出物であるうえに、ステンレス鋼母材の表面に存在する不動態皮膜を貫通してステンレス鋼材の表面に露出している。このため、セパレータをなすステンレス鋼母材とMB型硼化物との間での接触抵抗が特に少ない。また、このようなMB型硼化物を有するステンレス鋼材からなるセパレータを備える固体高分子形燃料電池では、ガス拡散電極層とセパレータとの電気的な接触部はこの導電性のMB型硼化物となる。したがって、セパレータとガス拡散電極層との間でこのMB型硼化物を介した良好な電気的接触が実現される。
 しかしながら、このようなMB型硼化物はセパレータの表面に散在し、セパレータの表面全面を覆うように存在するわけではない。一方、このセパレータと対向するガス拡散電極層は所定の表面粗さを有している。このため、セパレータの表面にあるMB型硼化物の全てがガス拡散電極層と電気的に接触できるとは限らない。すなわち、かかる構成のセパレータとガス拡散電極層との電気的な接触面積はさらに増加する余地がある。
 上記知見に基づいてさらに検討を進めた結果、非金属性導電物質を備えてなる導電層を酸化膜の表面に設け、この導電層がセパレータの表面に露出するMB型硼化物と電気的に接続させる構成を備えるセパレータは、ガス拡散電極層に対する接触抵抗が低下するとの知見が得られた。かかる構成を備えるセパレータでは、ステンレス鋼材の表面において集電現象(詳細は後述。)が生じ、セパレータとガス拡散電極層との電気的な接触面積が増加していると推測される。
 ここで、「非金属性導電物質」とは、導電性を主として担う物質が金属結合を有していない導電性物質であり、その典型的な材料は黒鉛質炭素が挙げられる。非金属性導電性物質は、電池の運転に伴い腐食が発生しても、金属イオンが流出することがほとんどない。このため、腐食生成物による接触抵抗の上昇が起こりにくいばかりか、固体高分子電解質膜内に金属イオンが拡散して電解質膜を劣化させることが起こりにくい。
 また、酸化膜の表面のみならず、MB型硼化物の表面に上記の導電層を形成することも、接触抵抗の低下、特に接触抵抗の経時的な上昇の抑制の観点から好ましい。
 すなわち、MB型硼化物の表面にも、MB型硼化物が酸化することにより形成された酸化物(以下、ステンレス鋼母材の表面に設けられた酸化膜と区別するために、「MB型硼化物の表面酸化物」という。)が存在し、電池の運転に伴い腐食が進行することによってこのMB型硼化物の表面酸化物が成長する。このため、セパレータとガス拡散電極層との間の接触抵抗が増大し、電池性能が経時的に劣化する場合がある。
 そこで、露出するMB型硼化物を非金属性導電物質層で被覆することによって、MB型硼化物の表面酸化物の成長が抑制され、ガス拡散電極層をなす部材との接触抵抗が経時的に上昇することが抑制される。
 なお、MB型硼化物の表面酸化物は、ステンレス鋼材表面の不動態皮膜に比較して生成速度が遅く強固でない。このため、例えば黒鉛質炭素のような軟質な非金属性導電物質を押し付けて表面を摺動させるだけで、MB型硼化物の表面酸化物は除去され、この硼化物と非金属性導電物質との間に良好な電気的導通が得られる。
 ただし、MB型硼化物の表面酸化物が過剰に厚く発達している場合には、非金属性導電物質を被覆しても低い接触抵抗は得にくくなるため、非金属性導電物質を被覆する工程に先立って、MB型硼化物の表面酸化物を除去してMB型硼化物の表面を露出させる酸洗工程を実施することが望ましい。
 なお、この非金属性導電物質によるMB型硼化物上への被覆は、燃料電池を構成した場合にガス拡散電極層と接触する表面のみが実現されれば電気的導通の観点からは十分である。
 b)非金属性導電物質は黒鉛質炭素であることが好ましい。
 非金属性導電物質には、先に例示した黒鉛質炭素のほかに、カーボンブラック、導電性塗料などが例示され、いずれについても、燃料電池として組み立てたときにセパレータに求められる導電性をステンレス鋼材が有すれば問題なく使用できる。この中でも特に黒鉛質炭素を用いて被覆する、すなわち非金属性導電物質を黒鉛質炭素とすることが、化学的安定性、導電性、およびMB型硼化物に対する密着性などの観点から好ましい。
 なお、金属セパレータにカーボンコートを施すことはこれまでも提案されているが、使用するカーボンの性状・構造を特に限定しているものはない。たとえば特許文献3には、カーボンブラックとグラファイト粉末の混合物と規定する記載があるのみである。
 本発明者らが、この黒鉛質炭素についてさらに詳細に検討した。その結果、黒鉛質炭素のうち特にC面間隔d002≦3.390Åの性状を有するカーボンを被覆すると、良好な密着性が得られると同時に、特に低い接触抵抗が得られることを本発明者らは知得した。
 黒鉛質炭素のC面間隔をd002≦3.390Åと規定した理由は次のとおりである。
 (i)黒鉛質炭素の可塑性は、C面間隔が小さくなり理想的な結晶状態である3.354Åに近づくほど良好になる。本発明において規定しているC面間隔がd002≦3.390Åの黒鉛質炭素は可塑性が良好であるため、MB型硼化物の表面に対する被覆が容易になる。
 (ii)結晶性の高い黒鉛質炭素の電気抵抗値には、異方性がある(黒鉛の特性と技術展開 日立粉末冶金テクニカルレポート No.3(2004) 表1 )。a軸方向の体積抵抗率は4~7×10-5Ωcmと低く、c軸方向は1~5×10-1Ωcmと高い。このa軸方向の電気伝導は、sp2結合におけるπ結合が共役することによってもたらされているので、結晶性が高いほど体積抵抗率も低くなる。このため、d002≦3.390Åの結晶性が高い黒鉛質炭素を用いることで、a軸方向の体積抵抗率が特に低くなる。その結果、黒鉛質炭素全体の体積抵抗率が低くなり、接触抵抗の低下がもたらされる。前述したように、一般的なカーボンの抵抗が平均1375×10-6Ωcm、すなわち約1.4×10-3Ωcm(若い技術者のための機械・金属材料 丸善株式会社 325ページ)であることを考慮にいれると、黒鉛質炭素のa軸方向の低い体積抵抗率(4~7×10-5Ωcm)を積極的に活用することが望まれる。
 (iii)酸化膜の表面とMB型硼化物の表面とからなる表面(以下、「被処理表面」という。)に対して、結晶性の高い黒鉛質炭素を摺動させながら圧着させると、黒鉛質炭素はちぎれて鱗片状の粉体となって、酸化膜の表面に固着する。このとき、鱗片状粉末であるため電気抵抗の低いa軸方向がステンレス鋼材の表面に平行となるように配向した形で圧着する。このため図3に示すように、表面と平行な方向(面内方向)には電気が流れやすくなる。
 ここで、MB型硼化物は導電層と電気的に接続するため、導電層において面内方向に流れた電荷はMB型硼化物にも流れ込むことができる。そして、このMB型硼化物はステンレス鋼母材に部分的に埋設されるため、導電層を通る電荷はMB型硼化物を伝ってステンレス鋼母材の中に流れることができる。すなわち、MB型硼化物は、導電層とステンレス鋼母材とを電気的に接続する連結ポイントとなっている。この点を換言すれば、MB型硼化物は導電層を流れる電荷をステンレス鋼母材へと流す集電ポイントとして機能している。上記のようにa軸方向の体積抵抗率が特に低いd002≦3.390Åの黒鉛質炭素を用いると、この集電効果が顕著に見られるようになり、接触抵抗が特に低くなる。
 なお、上記の圧着作業により、MB型硼化物上にも黒鉛質炭素が固着する。このときMB型硼化物の表面酸化物が除去されるのは前述のとおりである。
 (iv)黒鉛質炭素の腐食は結晶性が乱れた部分において発生しやすいため、結晶性が高いほど黒鉛質炭素は腐食が発生しにくい。したがって、d002≦3.390Åの黒鉛質炭素を含んでなる導電層はステンレス鋼材における腐食防止層として効果的に機能をする。また、MB型硼化物の表面に黒鉛質炭素を含む導電層が形成された場合には、MB型硼化物の表面酸化物の形成および成長が長期にわたって抑制される。このため、接触抵抗の経時変化も生じにくい。
 (v)黒鉛質炭素の配向性は、広角X線回折(2θ/θスキャン法)から得られる面内方向の回折線(110)とC軸方向の回折線(004)のピーク強度比より知ることができる。黒鉛質炭素がd002≦3.390Åの結晶性を有することに加えて、ステンレス鋼材の表面を被覆する黒鉛質炭素結晶からの広角X線回折における(110)回折線のピーク強度I(110)の(004)回折線のピーク強度I(004)に対する比であるI(110)/I(004)が0.1未満である場合には、抵抗率が低い黒鉛のa軸方向がほぼステンレス鋼材の表面と平行する状態となり、黒鉛質炭素のa軸方向の低い体積抵抗率(4~7×10-5Ωcm)を積極的に活かすことが可能となる。I(110)/I(004)が0.05未満であれば、特に好ましい。
 c)樹脂性結着剤を単独で被処理表面に塗布し、その後黒鉛質炭素を摺動圧着させることが好ましい。
 黒鉛質炭素を含んでなる導電層を基板上に被覆する場合には、黒鉛質炭素を含有する導電性塗料を作製し、この塗料を基板上に塗布して導電層を形成する方法が一般的に行われている。しかしながら、この塗料は具体的には黒鉛質炭素粉末と樹脂結着剤との混合物であり、結着剤となる樹脂は導電性を持たない。このため、黒鉛質炭素単独で被覆する場合に比べ、上記塗料による塗膜の場合には接触抵抗が高くなる傾向がある。したがって、黒鉛質炭素を含んでなる導電層により金めっきに近い接触抵抗を実現するためには、この導電層を形成する材料が樹脂性結着剤を用いないことが望ましい。ところが、結着剤を用いると、導電層を形成する工程における製造条件の管理が容易となるため、生産性の観点からは使用したほうが好ましい場合もある。
 本発明者は、本発明に係る導電層の形成方法について検討した。その結果、結着剤と黒鉛質炭素とを混合して得られる導電性塗料を被処理表面に塗布するのではなく、結着剤を単独で被処理表面に塗布し、結着剤が塗布された被処理表面に対して上記の摺動による黒鉛質炭素の固着を行うと、導電層の接触抵抗の上昇を抑制しつつ導電層と被処理表面との密着力を向上させることが可能である。この場合であっても、被覆する黒鉛質炭素の質量に対して2質量%以下にすることが望ましい。
 本発明は、上記の知見に基づき完成されたものある。
 本発明は、その一態様として、固体高分子形燃料電池のセパレータ用ステンレス鋼材であって、ステンレス鋼母材と、当該ステンレス鋼母材の表面に設けられた酸化膜と、当該酸化膜の表面に設けられ非金属性導電物質を備える導電層と、前記酸化膜を貫通するように設けられ、前記ステンレス鋼母材および前記導電層に電気的に接続する導電性物質とを備えるステンレス鋼材である。
 上記の導電性物質がMB型硼化物系金属介在物からなり、このMB型硼化物系金属介在物はステンレス鋼母材に部分的に埋設されることが好ましい。
 上記の導電層が上記のMB型硼化物系金属介在物の表面にも設けられていることが好ましい。
 上記の硼化物系金属介在物がCrの硼化物を含んでいることが好ましい。
 上記の非金属性導電物質が黒鉛質炭素を含んでいることが好ましい。
 上記の黒鉛質炭素の面間隔がd002≦3.390Åであることが好ましい。
 上記の酸化膜の表面に設けられた黒鉛質炭素の結晶について広角X線回折測定することにより得られる原子面の回折線のピーク強度を比較したときに、(110)原子面の回折線のピーク強度の(004)原子面の回折線のピーク強度に対する比率が0.1未満であることが好ましい。
 上記の導電層が、上記の酸化膜の表面と上記の硼化物系金属介在物の表面とからなる表面(被処理表面)に対して黒鉛質炭素を含む部材を摺動させることにより形成されたものであることが好ましい。ここにのべる広角X線回折測定とは、X線が入射する試料面は鋼板表面とし、またその面はゴニオメーターの回転軸に一致させ、回折角、強度の測定誤差が生じないような2θ/θスキャン法を意味する。
 上記の酸化膜の表面と硼化物系金属介在物の表面とからなる表面(被処理表面)の粗さがRaとして0.10μm以上であることが好ましい。
 上記の導電層が、上記の酸化膜の表面と上記の硼化物系金属介在物の表面とからなる表面(被処理表面)に黒鉛質炭素およびその2質量%以下の結着剤を含む塗料組成物を塗布し、当該塗布物が付着する表面に対して黒鉛質炭素を含む部材を摺動させることにより形成されたものであることが好ましい。
 上記の結着剤が、PVDF(ポリフッ化ビニリデン)およびPTFE(ポリテトラフルオロエチレン)の少なくとも一種を含むことが好ましい。
 また、本発明は、別の態様として、燃料電極膜、固体高分子電解質膜および酸化剤電極膜をこの順番で重ねあわせて形成された単位電池を複数個、この単位電池間にセパレータを個別に介在させて積層した積層体に、燃料ガスおよび酸化剤ガスを供給して直流電力を発生させる固体高分子形燃料電池であって、セパレータが上記のステンレス鋼材からなる固体高分子形燃料電池である。
 本発明に係るステンレス鋼材からなるステンレスセパレータを用いることで、金めっき等の高価な表面処理が不要で、発電性能に優れ・電池性能劣化の少ない経済性に優れた固体高分子形燃料電池を提供することができる。
固体高分子形燃料電池の構造を概念的に示す図である。 接触抵抗の測定原理を示す図である。 黒鉛質炭素を圧着したステンレス鋼材の表面のSEM画像(上)と模式図(下)である。
 以下、本発明を構成する要件とその限定理由を記載する。
 1.導電性物質
 本発明に係るステンレス鋼材は、ステンレス鋼母材と電気的に接続しつつ、ステンレス鋼母材の表面に設けられた酸化膜、すなわちステンレス鋼母材の不動態皮膜を貫通するように設けられた導電性物質を備える。この導電性物質は、酸化膜の表面に設けられた導電層(詳細は後述する。)とも電気的に接続している。導電性物質と電気的に接続している部分以外のステンレス鋼母材の表面には、酸化膜が設けられているため、導電性物質を介して、ステンレス鋼材と導電層とは電気的に接続している。
 ステンレス鋼母材の表面における導電性物質がステンレス鋼母材と電気的に接触する領域の面積比率や形状、換言すれば、ステンレス鋼母材の表面に設けられた酸化膜、すなわち不動態皮膜と導電性物質とが作るパターン、は特に限定されない。好ましい一例として、酸化膜をマトリックスとして、導電性物質が散在する表面パターンが挙げられる。一般的には、導電性物質よりも酸化膜のほうが耐食性に優れるため、耐食性の確保の観点からはステンレス鋼母材の表面における導電性物質と電気的に接続する部分の面積は少ないほうが好ましい。逆に、後述するように、本発明においては、導電性物質は集電ポイントとして機能するため、導電性物質とステンレス鋼材との直接的な接触面積は、大きいほど接触抵抗は低くなる。したがって、導電性物質と電気的に接続する部分の面積は、流す電流量によって適宜決定すればよいことになる。一方、過度の電流集中を避けるために、導電性物質は酸化膜に散在するように設けられていることが好ましい。
 酸化膜に導電性物質を散在させる方法は特に限定されない。簡便な方法の一例として、ステンレス鋼母材中に導電性物質を分散析出させておき、セパレータに成形後、酸洗等で鋼母材の表面に露出させる方法が挙げられる。この場合には、ステンレス鋼母材の表面における導電性物質が露出した部分にはステンレス鋼母材の酸化膜としての不動態皮膜は形成されない。このため、酸化膜は導電性物質を包むように成長する。したがって、結果的に導電性物質は酸化膜を貫通するように設けられることになり、しかも、導電性物質は酸化膜に散在した状態となる。
 この導電性物質の組成は、(1)低い電気抵抗および(2)良好な耐食性を有すれば特に制限はない。好ましい一例として、MB型硼化物系金属介在物(MB型硼化物)が挙げられる。このMB型硼化物は、ステンレス鋼材に含まれる硼素が鋼を組成する金属元素により生成した導電性化合物であり、ステンレス鋼母材との間での接触抵抗が特に少ない。MB型硼化物の具体例として、FeB,CrB,NiB,MoBなどが挙げられ、このほか、CrNiB(x、yは正の整数でx+yが約2である。)のような複合硼化物が例示される。これらのなかでも、Crの硼化物を含むMB型硼化物であることが、硬度および導電性、さらに表面に形成される酸化物の特性(特に機械的強度)の観点でバランスが取れていて、好ましい。
 ここで、MB型硼化物を形成するステンレス鋼材の構成元素は、特に限定されず、オーステナイト系であっても、フェライト系や2相系であってもかまわない。生成されるMB型硼化物量を増やすという観点からは硼素およびMB型硼化物を作る金属元素の含有量を通常のステンレス鋼材に比べて高めることが好ましいが、鋼材に求められる他の特性(機械特性、耐食性など)との関係で適宜決定されるべきである。
 典型的な鋼組成を以下に例示する。
 オーステナイト系ステンレス鋼として、質量%で、C:0.2%以下、Si:2%以下、Mn:3%以下、Al:0.001%以上6%以下、P:0.06%以下、S:0.03%以下、N:0.4%以下、Cr:15%以上30%以下、Ni:6%以上50%以下、B:0.1%以上3.5%以下、残部Feおよび不純物を含有するステンレス鋼が例示される。強度、加工性、耐食性の観点から、更にFeの一部に代えて、質量%で、Cu:2%以下、W:5%以下、Mo:7%以下、V:0.5%以下、Ti:0.5%以下、Nb:0.5%以下が含有されていてもよい。
 フェライト系ステンレス鋼として、質量%で、C:0.2%以下、Si:2%以下、Mn:3%以下、Al:0.001%以上6%以下、P:0.06%以下、S:0.03%以下、N:0.25%以下、Cr:15%以上36%以下、Ni:7%以下、B:0.1%以上3.5%以下、残部Feおよび不純物を含有するステンレス鋼が例示される。強度、加工性、耐食性の観点から、更にFeに一部に代えて、質量%で、Cu:2%以下、W:5%以下、Mo:7%以下、V:0.5%以下、Ti:0.5%以下、Nb:0.5%以下が含有されていてもよい。
 2相系ステンレス鋼として、質量%で、C:0.2%以下、Si:2%以下、Mn:3%以下、Al:0.001%以上6%以下、P:0.06%以下、S:0.03%以下、N:0.4%以下、Cr:20%以上30%以下、Ni:1%以上10%以下、B:0.1%以上3.5%以下、残部Feおよび不純物を含有するステンレス鋼が例示される。強度、加工性、耐食性の観点から、更にFeに一部に変えて、質量%で、Cu:2%以下、W:5%以下、Mo:7%以下、V:0.5%以下、Ti:0.5%以下、Nb:0.5%以下が含有されていてもよい。
 それぞれの成分の限定理由は、以下のとおりである。なお、元素の含有量における%は質量%を意味する。
 Cは、鋼の強度を確保するために必要な元素であるが、過剰に含有させると、加工性が劣化するので上限を0.2%とする。好ましくは、0.15%以下である。
 Siは、脱酸剤として添加される成分である。しかし、過剰な添加は延性の低下を招き、特に2相系ではσ相の析出を助長する。したがって、Siの含有量は2%以下とする。
 Mnは、脱酸や鋼中のSをMn系の硫化物として固定する作用があるために、添加される。一方で、オーステナイト相安定化元素であるために、オーステナイト系では相の安定化に寄与する。また、2相系ではフェライト相の比率を調整する目的で調整される。しかし、過剰に含有させると耐食性を低下させるため、上限を3%とする。好ましい範囲は2%以下である。
 P、Sは、不純物として混入する元素であり、耐食性や熱間加工性を低下させるために、それぞれ0.06%以下、0.03%以下とする。
 Alは、脱酸元素として溶鋼段階で添加する。本発明鋼ではBを含有させMB型硼化物を形成させるが、Bは溶鋼中酸素との結合力が強い元素であるので、Al脱酸により酸素濃度を下げておくのがよい。そのため、0.001~6%の範囲で含有させるのがよい。
 Nは、フェライト系におけるNは不純物である。Nは常温靭性を劣化させるので上限を0.25%とするのがよい。低いほうがより好ましく、0.1%以下とする方が良い。一方、オーステナイト系および2相系においては、Nはオ-ステナイト形成元素として、オーステナイト相バランスの調整や、耐食性の向上に有効な元素である。しかし、過剰な含有は加工性を劣化させるために、上限を0.4%とするのがよい。
 Crは、ステンレス鋼の耐食性を確保するのに必要な元素であり、オーステナイト系およびフェライト系では15%以上、2相系では20%の含有が必要である。フェライト系においてはCr量が36%を超えると量産規模での生産が難しくなる。オーステナイト系では30%を超えるとオーステナイト相がその他合金成分の調整によっても不安定になる。また、2相系では、30%を超えるとフェライト相が増加し、2相組織を維持し難くなる。
 Niは、オーステナイト相安定化元素で、オーステナイト系では耐食性を向上させることが可能となる。6%未満では、オーステナイト相が不安定となり、また50%を超えると製造が困難となる。フェライト系においても、耐食性、靭性を改善する効果があるが、7%を超えて含有させると、フェライト相が不安定となるため、7%を上限とする。一方、2相系においても、耐食性、靭性を改善する効果があり、1%以上含有させる。しかし、10%を超えて含有すると過度のオーステナイト相の増加とフェライト相の減少を招く。
 Bは、MB型硼化物を形成させるのに重要な元素であり、Cr、Feを主体とし、Ni、Moを微量含有する(Cr,Fe)B、(Cr,Fe,Ni)BといったMB型硼化物として析出させる。この効果は、0.1%以上で発揮されるが、3.5%を超えるBを含有させることは、通常の溶解法での製造では困難である。
 Cu、W、Mo、V、TiおよびNbは任意添加元素であり、強度、耐食性等を改善する元素で、それぞれ、2%、5%、7%、0.5%、0.5%、0.5%を上限とする。これを越えた含有は、上記の改善効果が飽和するうえに、加工性を劣化させる場合もある。
 MB型硼化物をステンレス鋼母材の表面に露出させる処理(以下、「露出処理」ともいう。)は特に限定されない。一例として、ステンレス鋼母材および不動態皮膜は溶解するが硼化物を溶解しにくい酸液等でステンレス鋼母材を選択的に溶解し露出させる方法が挙げられる。この酸液等には、ふっ酸、硝酸、硫酸、塩酸、塩化第2鉄等を単体または混合して用いることができる。特に、ふっ酸、硝酸、硫酸、塩酸等の酸液で処理した場合には、電池の稼動中に固体高分子電解膜由来のF、SO 2-によるセパレータからの金属の溶出を抑制できる点で好ましい。この理由については明らかではないが、電池稼動中に生成するふっ酸や硫酸で予め酸洗を行っておくことによって、これらの酸で溶解可能な金属成分は酸洗時に溶出しているために、稼動時の金属の溶出が抑制されているものと推測される。
 露出処理は不動態皮膜を溶解する処理であるために、セパレータ用のステンレス鋼材における酸化膜としての不動態皮膜が十分に形成されず、ステンレス鋼材が腐食されやすくなる問題が生じる場合がある。このような場合には、露出処理の後に、硝酸等の酸化性酸で不動態化処理を行うことが望ましい。
 また、不動態化処理を行った場合に、MB型硼化物の表面酸化物が成長し、接触抵抗が増大する場合がある。このような場合には、酸化膜として機能する不動態皮膜を溶解しにくい硫酸等でMB型硼化物の表面酸化物を選択的に除去することが好ましい。
 2.導電層
 本発明に係るステンレス鋼材は酸化膜(不動態皮膜)上に導電層が設けられており、その導電層は非金属性導電物質を備える。なお、以下、導電性物質がMB型硼化物からなる場合を例として説明を行うが、導電性物質は他の材料であってもよい。
 導電層を構成する非金属性導電物質には、前述のように、カーボンブラックや導電性塗料、さらにはITO(酸化インジウムスズ)、WCなどの化合物系の導電物質などが含まれ、これらの材料を使用してもよい。黒鉛質炭素を用いることが化学的安定性、導電性、およびMB型硼化物に対する密着性などの観点から好ましい。
 黒鉛質炭素は種類を問わず、鱗片状黒鉛、鱗状黒鉛、膨張黒鉛、天然黒鉛、人造黒鉛等いずれを使用してもよい。後述するように、黒鉛質炭素の異方導電性を最大限に生かす観点からは鱗片状黒鉛や鱗状黒鉛のようなアスペクト比(直径/高さ)が大きな形状を有するものを用いることが好ましい。
 ここで、被覆する黒鉛質炭素には、(1)導電性が高いこと、(2)硫酸・フッ素イオン等が存在する雰囲気においても十分な耐食性を有することが求められる。さらに、後述する好ましい製造方法(酸化膜の表面とMB型硼化物の表面とからなる表面に対して黒鉛質炭素を摺動させ、MB型硼化物のやすり効果により黒鉛質炭素を削り取り、これを酸化膜の表面にa軸方向が優先的に表面と平行となるように固着させる方法)の観点から(3)摺動による被覆が容易である軟質材料であることが好ましい。
 こうした要求を同時に満たす観点からは、結晶性が高い黒鉛質炭素を用いることが好ましい。前述のように、結晶性が高いほど黒鉛質炭素は軟質であり導電性も良好であるうえ、結晶性が高いほど耐薬品性が良好で、酸・アルカリのいずれの環境下においても優れた耐食性を有する。このため、結晶性が高いほどイオン溶出等でMEA膜を汚染し性能劣化を誘引する可能性が低い。
 ここで、黒鉛質炭素は、一般的にC面間隔d002の大きさによって結晶性を評価することができ、本発明に使用する黒鉛質炭素のC面間隔をd002≦3.390Åとすることで、上記の要求を高度に満たすことができ、特に好ましい。
 また、黒鉛質炭素は、その抵抗の低い方向(a軸方向)が酸化膜の表面と平行になるように配向させることが好ましい(図3参照。)。この場合には、体積抵抗率の低いa軸方向が酸化膜の表面に平行となっているため、この面内方向での電荷の移動が容易になっている。
 このため、このセパレータにガス拡散電極層が接触すれば、その接触部分にステンレス鋼母材と直接的に電気的に接続しているMB型硼化物が存在せず、ガス拡散電極層は黒鉛質炭素と接触していた場合であったとしても、この面内方向の体積抵抗率が特に低くなっている導電層を通じて電荷がMB型硼化物に速やかに移動することが可能である。そして、MB型硼化物はステンレス鋼母材と電気的に接続しているため、電荷はステンレス鋼母材へと移動することができる。
 すなわち、結晶性が高い黒鉛質炭素を含んでなりセパレータ表面に存在する導電層にガス拡散電極層が接触すれば、MB型硼化物とガス拡散電極層とが直接的に接触していなくとも、この導電層によるMB型硼化物への集電現象によってセパレータとガス拡散電極層との電気的接触が達成されることになる。
 従来のMB型硼化物を露出させただけ構成のステンレス鋼材(以下、「導電層がない硼化物分散ステンレス鋼材」という。)からなるセパレータを用いた燃料電池では、このような集電現象が生じないため、ガス拡散電極層とセパレータとの電気的な接触状態は複数の点接触であった。この燃料電池と比べて、本発明に係るセパレータを用いた燃料電池では、ガス拡散電極層とセパレータとの電気的な接触面積が飛躍的に増大するため、その電気的な接触状態は複数の点接触から面接触に近い状態に変化する。このような優れた電気的な接触状態の結果として、本発明に係るセパレータはその表面部分は金めっきと同等の抵抗値を示し、かかるセパレータを用いた燃料電池は、金めっきセパレータを用いたものと同等の電池特性を有する。
 ここで、前記の集電現象を効果的に実現するためには、本発明に係る非金属性導電性物質を含んでなる導電層の面内方向の電気抵抗がガス拡散電極層の電気抵抗よりも低いことが好ましい。この点に関し、ガス拡散電極層の電気抵抗は体積抵抗率として面内方向0.08Ωcm程度(財団法人 日本自動車研究所 平成16年度「燃料電池自動車に関する調査報告書」第4章 技術動向-1 214ページ 表4-1-15参照)であるから、黒鉛質炭素のC面間隔をd002≦3.390Åであって黒鉛質炭素のa軸方向が表面に平行に配向した構造を有する導電層は、この集電現象が効果的に発生しているものと推測される。
 本発明に係る導電層における黒鉛質炭素の配向性は、導電層中の黒鉛質炭素結晶からの広角X線回折における(110)回折線のピーク強度I(110)と(004)回折線のピーク強度I(004)との強度比であるI(110)/I(004)により知ることができる。
 広角X線回折による回折線のピーク強度の測定方法は前述のとおりである。
 この指標I(110)/I(004)が0.1未満であれば、黒鉛質炭素被覆層における黒鉛質炭素のa軸方向がほぼステンレス鋼材の表面と平行する状態となり、黒鉛質炭素のa軸方向の低い体積抵抗率(4~7×10-5Ωcm)を積極的に活かす、すなわち集電現象を効果的に生じさせることが可能となる。指標I(110)/I(004)が0.05未満であれば、特に優れた電気特性を有するステンレス鋼材が得られる。
 以上説明したように導電層は集電現象によりセパレータとしての高い導電性を実現しているものと想定されるが、黒鉛質炭素の熱伝導率が高いこともセパレータとしての導電性を高めることに寄与していると考えられる。
 黒鉛質炭素を含んでなる導電層は酸化物である不動態皮膜に比べると熱伝導率が高く、特に黒鉛質炭素の結晶性が高く、黒鉛質炭素のa軸方向がほぼステンレス鋼材の表面と平行する場合には、導電層の表面と平行な方向について100W/mK以上の熱伝導率が達成されているものと想定される。このため、使用時に集電現象によってMB型硼化物に発生するジュール熱は速やかに導電層に拡散していることが期待される。したがって、MB型硼化物の体積抵抗率がジュール熱によって上昇したり、MB型硼化物が熱変性することによってその体積抵抗率が上昇したりすることが抑制され、セパレータとしての導電率の低下が抑制されることになる。
 また、導電層がない硼化物分散ステンレス鋼材からなるセパレータでは、表面に露出するMB型硼化物の分布がガス拡散電極層との接触抵抗に直接的に影響していた。このため、表面に露出するMB型硼化物の分布を可能な限り多くする必要があった。
 しかしながら、本願発明に係るステンレス鋼材では、この集電現象によって、ステンレス鋼母材と電気的に接続しているMB型硼化物のステンレス鋼母材の表面における分布の程度がガス拡散電極層とセパレータとの接触抵抗に与える影響が少なくなる。このため、ステンレス鋼材の化学組成の自由度が高くなる。具体的には、ステンレス鋼材中の硼化物の生成量を低減できるために鋼材の加工性が向上し、ステンレス鋼材を製造する熱延、冷延工程、更にはセパレータのプレス加工工程の負荷が低減できる。また、MB型硼化物を形成する工程(熱処理など)やこれを露出させる工程の管理許容幅が広がる。したがって、本発明に係るステンレス鋼材は、導電層がない硼化物分散ステンレス鋼材に比べて生産性が向上している。
 また、本発明に係るステンレス鋼材からなるセパレータはガス拡散電極層に対して実質的に電気的に面接触することになるため、電気伝導を担うMB型硼化物の一つが酸化などの理由により導電性能が低下しても、電気的な接触状態が複数の点接触であった導電層がない硼化物分散ステンレス鋼材に場合に比べてその影響は軽微であり、接触抵抗の経時変化が起こりにくい。
 導電層はMB型硼化物上に設けられていてもよい。MB型硼化物の表面にも導電層が設けられることによって、MB型硼化物の表面酸化物の形成が抑制される。このため、ガス拡散電極層との接触抵抗が経時的に上昇することが抑制される。
 上記のような導電層を実現する被覆方法は特に制限されないが、次の方法を用いれば、上記の被覆状態が効率的かつ安定的に実現され、好ましい。
 まず、ステンレス鋼母材にMB型硼化物が分散されたステンレス鋼からなる基材を公知の方法により形成する。具体例を示せば、次のようになる。まず、溶解原料を炉内で加熱溶解し、得られた溶鋼を連続鋳造によりスラブとし、これを熱間圧延し、焼鈍する。得られた鋼を酸洗後、冷間圧延し、焼鈍することによりステンレス鋼からなる基材が得られる。なお、連続鋳造を行わずに、溶鋼から造塊してインゴット得て、これを鍛造して熱間圧延に供してもよい。また、冷間圧延を複数回行い、その間に中間焼鈍を行ってもよい。あるいは、MB型硼化物の生成を確実にするために、セパレータへの形状加工を行った後で熱処理(例えば700℃~800℃程度、数時間~数十時間)を行ってもよい。
 次に、物理的および/または化学的にステンレス鋼からなる基材(この基材が形状加工されてセパレータの形状が付与されたものを含む。)の表面の表面、を除去し、その表面にMB型硼化物を露出させる。その方法は基材の物理的・化学的特性に基づき、公知の方法から適切な方法を選択して実施すればよい。具体例を示せば、物理的方法としてはベルトグラインディングなどを用いた表面研磨が挙げられる。化学的方法としては酸による洗浄が挙げられ、処理液として塩化第二鉄水溶液や硝酸およびフッ酸の混合水溶液が例示される。なお、表面にMB型硼化物を露出させる処理が行われたステンレス鋼からなる基材では、MB型硼化物が露出する表面以外の表面は、ステンレス鋼母材の不動態皮膜からなる酸化膜に覆われている。
 続いて、酸化膜の表面とMB型硼化物の表面とからなる表面(被処理表面)と黒鉛質炭素のブロックとを摺動させ、MB型硼化物のやすり効果によって黒鉛質炭素の表層を削り、被処理表面に圧着させる。このようにして黒鉛質炭素の被覆を行うと、摺動によるせん断力によって黒鉛質炭素はブロックからちぎれて鱗片状となって、露出したMB型硼化物の表面を含む被処理表面の全面に固着する。そして、この黒鉛質炭素が鱗片状であることにより、固着した黒鉛質炭素のa軸は被処理表面に平行になりやすい。このため、図3に示すような集電作用が生じやすくなり、特に優れた特性のセパレータが得られる。
 黒鉛を摺動付着させる方法については、上述の摺動に限定されるものではない。他の例を示すと次のようになる。
 ロール材質を黒鉛とした圧延機でバックテンションをかけながら圧延を行う、
 フライス盤の工具部分を黒鉛丸棒に交換して一定の荷重をかけながら黒鉛を回転させて圧着する、
 黒鉛粉末を付着させたブラシで表面を擦る、および
 黒鉛粉末を付着させた布(フェルト等)で擦る。
 被処理表面と導電層との密着性を高めるために、被処理表面(酸化膜の表面と硼化物系金属介在物の表面とからなる表面)の表面粗さは、平均表面粗さRaとして0.10μm以上とすることが好ましい。被処理表面の表面粗さの上限はこの密着性の観点からは特に制限されない。粗さを過度に大きくしても効果が飽和するため、実用上0.1~3μm程度で十分である。また、ステンレス鋼材をプレス成形等によりセパレータ形状へ加工した際に割れが発生する可能性を低減する観点から、平均表面粗さRaを板厚の1/10以下とすることが好ましい。通常酸洗で表面粗さを増大させる場合には、平均表面粗さRaは2~3μmが上限となる。ダルロールを用いると被処理表面に数十μm程度の粗さを十分付与できる。MB型硼化物を露出させるために行う表面処理(例えば酸による洗浄)において、同時に被処理表面に所定の表面粗さを付与してもよい。
 なお、この表面粗さは、ステンレス鋼材のうち、燃料電池を構成した場合にガス拡散電極層と接触する面のみが有すればよい。
 被処理表面を上記の表面粗度に調整する方法は特に限定されず、いくつか例を挙げると、次のようになる。
 (1)表面処理:例えば塩化鉄などステンレス鋼材をエッチングするための公知のエッチャントを用い、エッチング量に応じてエッチャント濃度、エッチング液温度、エッチング時間などを設定してエッチングを行う。
 (2)ベルトグラインドによる研磨:表面にダイヤモンド、炭化珪素、アルミナなどの研磨砥粒が埋め込まれたベルトグラインダーを用いて表面研磨を行い、所定の表面粗度まで調整する。
 (3)圧延ロールの表面粗さを調整することによる表面粗さ制御:圧延ロール研削仕上げの粗さを調整し、被圧延材の表面粗さを調整する。
 3.結着剤について
 前述のように、結着剤は導電性を有しないので、黒鉛質炭素を被覆する場合にこれを使用すると、当然に接触抵抗は高くなる。このため、被処理表面上に導電層を形成するときには結着剤を用いないことが理想的である。また、上記の好ましい態様として示したC面間隔がd002≦3.390Åである黒鉛質炭素を用いて、上記の好ましい方法で被覆すれば、通常の燃料電池に組み込み、使用される条件では剥離がほとんど発生しないセパレータを得ることが可能である。
 しかし、たとえば厳しい燃料電池運転条件でより密着性を要求される場合には黒鉛質炭素を含む導電層を形成する際に結着剤を使用することが可能である。
 この結着剤の使用に関し、従来技術においては黒鉛質炭素と結着剤とを混合して塗料化して塗布する方法が一般的であるが、上記の黒鉛質炭素ブロックとステンレス鋼からなる基材(この基材が形状加工されてセパレータの形状が付与されたものも含む。)との摺動により黒鉛質炭素を鋼材またはセパレータの表面に固着させる方法の場合には、まず、被覆するステンレス鋼からなる基材の表面、すなわち被処理表面に結着剤を塗布し、その後、黒鉛質炭素を摺動被覆することが望ましい。
 上記の摺動被覆では次の現象が生じていると想定される。
 ・結着剤が表面に塗布された被処理表面において、突出するMB型硼化物が黒鉛質炭素を削り取る、
 ・対向する黒鉛質炭素ブロックとの摺動により、被処理表面上の結着剤が被処理表面から剥がれる、
 ・被処理表面と黒鉛質炭素ブロックとの間で、削り取られた黒鉛質炭素と剥がれた結着剤とが混合される、および
 ・被処理表面と黒鉛質炭素ブロックとの間における黒鉛質炭素と結着剤との混合物が、被処理表面に固着して導電層となる。
 このほか、黒鉛質炭素ブロックから削り取られた黒鉛質炭素がそのまま、結着剤が塗布された被処理表面上に固着して導電層をなす現象も、同時に発生していると考えられる。
 このため、摺動固着後の被処理表面における導電層は、被処理表面との界面側ほど結着剤の含有量が多く、最表面側ほど黒鉛質炭素の含有量が高くなっているものと考えられる。この構造を有する導電層を備えるセパレータにおける導電層の密着性およびガス拡散電極との接触抵抗の双方に優れていることは、容易に理解される。
 ここで、被処理表面のうち、MB型硼化物の表面は、酸化膜の表面よりも強い力で摺動される。このため、MB型硼化物の表面における結着剤は酸化膜の表面における結着剤よりも、対向する黒鉛質炭素ブロックとの摺動において剥がれやすい。したがって、MB型硼化物の表面における導電層は、酸化膜の表面における導電層よりも結着剤の含有量が低く、黒鉛質炭素の含有量が高いと考えられる。それゆえ、MB型硼化物の表面における導電層は相対的に接触抵抗が低いと期待される。
 なお、MB型硼化物の表面の導電層は、結着剤の含有量が相対的に少ないため、導電性は高いものの密着性が相対的に低くなっている可能性がある。しかしながら、MB型硼化物の表面の導電層の周囲に連続的に形成される酸化膜の表面の導電層は、MB型硼化物の表面の導電層よりも結着剤の含有量が多くなるため、相対的に強固に酸化膜に対して密着している。このため、この酸化膜の表面の導電層によってMB型硼化物の表面の導電層は保持され、剥離は抑制されているものと考えられる。
 こうして、結着剤を使用しつつ、初期の接触抵抗が低く、かつ経時的変化が少ないセパレータを得ることが実現される。
 このような結着剤を予め塗布する方法を採用する場合であっても、黒鉛質炭素およびその2質量%以下の結着剤を含む塗料組成物を被処理表面に塗布することが好ましい。塗料組成物における結着剤の含有量が黒鉛質炭素の含有量の2%を超えると、導電層の抵抗が大きくなり、燃料電池用の抵抗発熱損失が大きくなって、電力としての出力が小さくなる可能性が高まる。
 なお、用いる結着剤は、耐水性、耐酸化性そして耐薬品に優れるものであれば、種類を問わない。燃料電池の触媒層形成に用いられるPTFE(ポリテトラフルオロエチレン)、PVDF(ポリフッ化ビニリデン)などフッ素樹脂系の結着剤が好ましく、これらの中でもPTFEが特に好ましい。
 以下、本発明の優位性を示すための実施例を示す。導電層に含有させる非金属性導電物質として黒鉛質炭素を用いた例を示すが、電気抵抗の低い導電性物質であれば黒鉛質炭素に限定されることは無い。
 1.ステンレス鋼材の準備
 (1)鋼板の製造
 表1に示した10種の化学組成のステンレス鋼を高周波誘導加熱方式の150kg真空溶解炉で溶解しインゴットに造塊した。なお、表中の分類Aはオーステナイト系ステンレス鋼、Fはフェライト系ステンレス鋼を意味する。
Figure JPOXMLDOC01-appb-T000001
 なお、材料1,2,7,8については、以下の関係となるように成分設計を行った。
 材料1は、マトリックスが材料7の組成でCrB系硼化物が析出するように組成調整したもの、具体的には、硼素を含有させるとともに硼化物生成に使われるCrを増量したものである。
 材料2は、マトリックスが材料8の組成でCrB系硼化物が析出するように組成調整したもの、具体的には、硼素を含有させるとともに硼化物生成に使われるCrを増量したものである。
 得られた150kgの鋳塊に対して、表2に示す製造条件に従い、熱間鍛造、切削、熱間圧延、焼鈍、冷間圧延、中間焼鈍、冷間圧延、焼鈍の工程をこの順番に行い、冷間圧延鋼板を得た。
Figure JPOXMLDOC01-appb-T000002
 上記の工程で得られた冷間圧延鋼板に対して、最終焼鈍に続いて7質量%硝酸、4質量%ふっ酸水溶液、60℃中で酸洗を実施した。得られた鋼板の表面における高温酸化スケールを除去して、厚さが0.3mmのシート材を得た。
 (2)硼化物露出のための表面処理
 得られたシート材の表面に対して、硼化物を露出させる目的および表面粗さの調整の目的で、以下の条件で表面処理を行った。
 表面処理液の原料;塩化第二鉄無水物(和光純薬工業株式会社製)、純水
 表面処理液:45ボーメの塩化第二鉄水溶液
 表面処理条件:60℃の処理液に、シート材を40秒浸漬
 処理後の水洗・乾燥条件:表面処理後のシート材を十分に流水洗浄し、洗浄後の素材を70℃のオーブンで十分に乾燥。
 以下、上記の表面処理により得られたシート材をセパレータ用シート材という。
 2.接触抵抗の測定方法
 論文等(例えば チタン Vol.54 No.4 P259)で報告されている方法に準じ、図2に模式的に示す装置を用いて、接触抵抗の測定を実施した。面積が1cmであってガス拡散電極層に使用されるカーボンペーパー(東レ(株)製 TGP-H-90)でセパレータ用シート材を狭持し、これを金めっきした電極で挟んだ。次に、この金めっき電極の両端に荷重(5kgf/cmまたは20kgf/cm)を加え、続いて電極間に一定の電流を流した。このとき生じるカーボンペーパーとセパレータ用シート材と間の電圧降下を測定し、この結果に基づいて接触抵抗を測定した。なお、得られた抵抗値は狭持した両面の接触抵抗を合算した値となるため、これを2で除してガス拡散電極層片面あたりの接触抵抗値を求め、この値で評価した。
 電流値および電圧降下は、デジタルマルチメータ((株)東陽テクニカ製 KEITHLEY2001)を用いて測定した。
 3.電池模擬環境における耐食性調査
 セパレータ素材を90℃、pH2のHSOに96時間浸漬し、十分に水洗し乾燥させた後に、前述の接触抵抗測定を行った。耐食性が良好でない場合には、セパレータ用シート材の表面には不動態皮膜が成長するため、浸漬前と比較し接触抵抗が上昇する。
 4.被覆黒鉛の面間隔測定
 被覆させる黒鉛の面間隔測定は2θ/θスキャン法で測定し、X線回折測定装置((株)リガク製 RINT 2000)を用いて学振法117(炭素材料の格子定数および結晶子の大きさ測定法(改正案)04/07/08)に従い、標準Siを20質量%添加して、ベースライン補正、プロファイル補正等を施し、正確な002面間隔(d002)、すなわちC面間隔を算出した。なお、計算には、(株)リアライズ理工センター製 Carbon-X Ver1.4.2 炭素材料X線回折データ解析プログラムを活用した。 
 ここで、摺動で黒鉛を被覆する場合には、使用する黒鉛ブロックそのものをX線回折測定した。また、塗着の場合には、使用する黒鉛粉末をX線回折測定した。黒鉛質炭素を真空蒸着により被覆させた場合には、そのままでは面間隔測定が困難であった。このため、d002ピークが明瞭に現れるまで厚く蒸着を行ってXRD測定専用のサンプルを試作して、このサンプルについてX線回折測定を行った。
 5.燃料電池セル評価
 評価に用いた固体高分子形燃料単セル電池は、米国Electrochem社製市販電池セルEFC50を改造して用いた。
 セルに用いたステンレスセパレータ板の詳細は、以下のとおりである。
 表面処理前のセパレータ用シート材に対して、図1に示す形状で両面(アノード側、カソード側)にプレス加工を行って溝幅2mm、溝深さ1mmのガス流路を形成して、セパレータとした。その後、実施例に示す表面処理法を行った後、このセパレータを用いて固体高分子形単セル電池を組み立てた。実施例においては単セルで評価を行った。多セル積層した状態では、積層の技術の善し悪しが評価結果に反映されるためである。
 アノード側燃料用ガスとしては99.9999%水素ガスを用い、カソード側ガスとしては空気を用いた。電池本体は全体を70±2℃に保温すると共に、電池内部の湿度制御は、供給時のカソード側ガスの露点を70℃とすることで調整した。電池内部の圧力は、1気圧である。
水素ガス、空気の電池への導入ガス圧は0.04~0.20barで調整した。セル性能評価は、単セル電圧で0.5A/cmにおいて0.62±0.04Vが確認できた状態を評価の開始時点とし、その後継時的に測定を行った。
 上記の単セル電池を用いて次の評価を行った。
 (1)初期電池電圧
 特性評価は、電池内に燃料ガスを流してから0.5A/cmの出力が得られたときから単セル電池の電圧を測定し、測定開始後48時間の最も高い電池電圧を初期電池電圧と定義した。
 (2)電池の劣化度
 初期電池電圧を記録した500時間後の電池電圧(0.5A/cmの出力時)を用いて、下記の定義(一時間毎の電池電圧低下割合)で燃料電池の劣化度を定義した。
  劣化度={500時間後の電池電圧(V)-初期電池電圧(V)}/500時間
 6.被覆黒鉛の密着度測定
 セパレータ用シート材の表面に形成された導電層の密着度測定は、JIS D0202-1988に準拠して碁盤目テープ剥離試験を行った。セロハンテープ(ニチバン(株)製 CT24)を用い、指の腹でフィルムに密着させた後剥離した。判定は100マス(10×10)の内、剥離しないマス目の数で表し、導電層が剥離しない場合を100/100、完全に剥離する場合を0/100として表した。
 本発明の有効性を確認するために、従来技術との比較検討を行った。評価結果を表3に示す。
 従来の発明をトレースするための従来法1~9の評価試料の準備手順を以下に示す。
 従来法1
 セパレータ用シート材の表面に表面粗さの調整の目的で、前述の表面処理を行った。
 従来法2
 SUS316L相当材に、脱脂、洗浄、表面活性化、および洗浄をこの順番で行い、さらに市販のシアン金カリウム溶液を用いて単位電池の電極接触面(ガス拡散電極層との接触部)に相当する面に金めっきを施した。金めっきの厚みは0.05μmであった。
 従来法3および4
 温度60℃であって10質量%の塩酸を用いてセパレータ用シート材を10秒酸洗した。洗浄後のセパレータ用シート材の表裏面に、100重量部のグラファィト粉末(大阪ガス(株)製 MCMB 平均粒径6μm)と、35重量部の水分散性カーボンブラックを添加したポリオレフィン樹脂の水分散性塗料とを混合して得られる塗料を30μm厚で塗布し、120℃×1分間の焼き付け処理を行った。
 従来法5および6
 14.4重量部のグラファイト粉末(大阪ガス(株)製 MCMB 平均粒径6μm)、3.6重量部のカーボンブラック、2.0重量部のフッ化ビニリデン-六フッ化プロピレン共重合体樹脂からなる結着剤、および80重量部の溶媒(NMP)を混合しその後混練して得られた塗料を、ドクターブレードを用いてセパレータ用シート材の表裏面に塗布し、150℃×15分乾燥させた。
 従来法7および8
 ターゲットにグラファイトを用い、イオンビーム蒸着法により、非晶質炭素を蒸着し、評価用試料とした。
 従来法9
 上記の酸洗までの処理が施され厚さが0.3mmであるシート材に対して、特許文献7の実施例に示される4番目の表面処理条件(硝酸8%、フッ酸4%、残部水で処理温度60℃)を実施し、表面にMBの硼化物系の導電性化合物が析出したシート材を得た。
 従来法10
 特許文献5において開示された材料の性能確認のため、当該文献の実施例1に準じて確認試験を実施した。SECカーボン製のSGP黒鉛粉末(平均粒径約3μm)をフェルトにまぶして、市販のオーステナイト系ステンレス鋼板であるSUS316Lからなる板材の表面を摺擦した。その結果、約6mg/mの黒鉛が付着した。次にこのステンレス鋼板を圧下率3%で圧延し、その後700℃まで加熱し10秒間保持した。
 従来法11
 特許文献6において開示された材料の性能確認のため、当該文献の実施例6に記載の内容に準じて確認試験を実施した。オーステナイト系ステンレス鋼であるSUS316Lからなる板材上にスパッタリング法により厚さ数μmのCr酸化物の層を形成した。鱗片状の黒鉛に、テトラフルエチレンおよびヘキサフルオロプロピレンの共重合体の水性分散液を混練し、水分の一部を蒸発させて樹脂組成物を得た。この樹脂組成物の鱗片状黒鉛と樹脂成分との重量比は50:10であった。この樹脂組成物を前述のスパッタリング処理を施したSUS316Lに塗布して、150℃で90分間乾燥させた。
 続いて、本発明の優位性を検証するための評価試料の準備手段を以下に示す。
 本発明1,4,および7
 表面に導電性硼化物が析出したセパレータ用シート材における、使用時にガス拡散電極層と接触する面に対して、ブロック状黒鉛(東洋炭素(株)製 100mm角 d002=3.36Å)を接触させて摺動させることで、セパレータ用シート材の表面を黒鉛で被覆した。
 本発明2および6
 表面に導電性硼化物が析出したセパレータ用シート材における、使用時にガス拡散電極層と接触する面に、PTFEディスパージョン溶液(ダイキン工業(株)製 PTFE(ポリフロン PTFE ディスパージョンD1))を純水で1/15に希釈して得られた塗料を塗布し、これを乾燥させて、セパレータ用シート材の表面に塗膜を形成した。塗膜が形成されたセパレータ用シート材の表面に対してブロック状黒鉛(東洋炭素(株)製 100mm角 d002=3.36Å)を接触させて摺動させることで、セパレータ用シート材の表面を結着剤および黒鉛で被覆した。
 本発明5および8
 表面に導電性硼化物が析出したセパレータ用シート材における、使用時にガス拡散電極層と接触する面上に、黒鉛粉末(中越黒鉛工業製 鱗状黒鉛 平均粒度10μm 面間隔 d=3.36Å)を配置した。黒鉛粉末が配置されたセパレータ用シート材の表面を150kgf/cmの荷重でプレスして、セパレータ用シート材の表面に黒鉛粉末を圧着させた。
 本発明3
 表面に導電性硼化物が析出したセパレータ用シート材における、使用時にガス拡散電極層と接触する面上に、黒鉛質炭素の真空蒸着を行った。用いた装置は、神港精機(株)製 真空蒸着装置 AAH-C1080SBである。処理時間は20分で、1500Åの膜厚が得られるように調整した。なお、セパレータ用シート材の表面に被覆された黒鉛質炭素の面間隔測定は、厚さが1500ÅではX線回折による測定が不可能であるため、3時間蒸着処理したステンレス鋼板を別途作製し、このステンレス鋼板上に形成された黒鉛質炭素についてX線回折を実施することで測定を行った。 
Figure JPOXMLDOC01-appb-T000003
 本発明例1~8において、荷重を20kgf/cm付加させた場合の初期接触抵抗および耐食性試験後の接触抵抗は10mΩ・cm以下であり、従来法1,および3~9と比較して低い抵抗値となった。また、耐食性試験後も抵抗値上昇も小さく、耐食性に優れる結果が得られた。なお、従来法2は低接触抵抗ではあるが、金めっきが高価であり、経済性および稀少資源を大量に消費する点で問題がある。
 本発明例1~8では初期電池電圧≧0.68Vであり、従来法1,3,4,5,6,7、8、9,10および11と比較して高い初期電池電圧が得られた。
 本発明例1~8は、従来法1,および3~11と比較して、電池劣化度(μV/時間)が良好(≧-2.0μV/時間)であった。なお、従来法2,7,および8は電池劣化度が良好ではあるが、上記のように、従来法2は経済性および稀少資源を大量に消費する点で問題があり、また従来法7および8は、初期電池電圧が低く、さらに量産性に乏しくコストも高くなる問題がある。
 セパレータ用シート材の表面に硼化物が析出しているという点で共通する従来法9と本発明法1~8とを比較すると、本発明法では、耐食性試験後の接触抵抗値および電池劣化度が大きく改善されていることがわかる。
 本実施例は、本発明の好適な範囲、具体的にはステンレス鋼板表面の硼化物を被覆する黒鉛質炭素の好適な面間隔範囲を確認するために行われた。
 石油ピッチの熱処理により生ずるメソフェーズ小球体、およびこの小球体のマトリックスであるバルクメソフェーズを加熱して炭化した炭素材を調製し、その後の黒鉛化熱処理の加熱温度、時間を変化させることで、種々の面間隔をもつ黒鉛質炭素を調整した。
 加熱温度および得られた黒鉛質炭素の面間隔を表4に示す。炭素1~3は本発明範囲外、炭素4~9は本発明範囲である。
Figure JPOXMLDOC01-appb-T000004
 材料1のセパレータ用シート材における使用時にガス拡散電極層と接触する面に対して、表4に示す9種類の黒鉛質炭素を摺動させて、セパレータ用シート材の表面に対する黒鉛質炭素被覆を行った。被覆を行った材料を評価した結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 面間隔>3.390Å以上の黒鉛質炭素で被覆した材料1のステンレス鋼板は、耐食性試験後の接触抵抗(接触圧:20kgf/cm)が>10mΩ・cmとなり、電池劣化度も<-2.0μV/時間となった。黒鉛質炭素の面間隔d002が小さいほど(理想的な黒鉛に近づくにつれ)良好な性能が得られた。
 上記の結果に基づいて、電池劣化度>-2.0μV/時間と優れた特性をもたらしうるd002≦3.390Åを本発明の特に好ましい範囲とした。
 結着剤を含有する導電層を備えるセパレータにおいて、含有させる結着剤の種類を変化させた場合の結果を表6に示す。ここで、結着剤の使用方法は、本発明2と同じである。
 表6に示されるように、PTFEからなる結着剤を用いた場合には、腐食試験後の密着性が特に良好であるとともに、接触抵抗値の上昇が認められない。
Figure JPOXMLDOC01-appb-T000006
 本発明の中でも好適な範囲を確認するため、表7に示されるように黒鉛質炭素の被覆方法が異なる評価試料を作製し、被覆する黒鉛質炭素の配向の影響を調査した。なお、表7における「プレス」とは本発明5および8と同様の方法でプレス圧着を行った試料であり、「塗布」とは本発明2および6と同様の方法で結着剤による塗布を行った試料であり、「摺動」とは本発明1,4,および7と同様の方法でブロック状黒鉛を摺動させた試料である。
 得られた導電層における黒鉛の配向を定量的にあらわす指標として、導電層が形成されたセパレータ用シート材について広角のX線回折を行い、測定によって得られる黒鉛質炭素結晶の面内方向回折線(110)面のピーク強度I(110)とC軸方向の回折線(004)面のピーク強度I(004)の強度比=I(110)/I(004)を用いた。
 広角X線回折測定は、X線が入射する試料面をセパレータ用シート材の表面とし、またその面はゴニオメーターの回転軸に一致させ、回折角、強度の測定誤差が生じないような2θ/θスキャン法により行われた。
 表7に配向性と接触抵抗および電池特性との関係を示す。本発明のうち、強度比=I(110)/I(004)<0.1を満たす試料は、接触抵抗が低く初期の電池電圧が≧0.7Vと高く、電池劣化も小さい。また、強度比<0.05とすると特に優れた特性が得られる。
Figure JPOXMLDOC01-appb-T000007

Claims (12)

  1.  固体高分子形燃料電池のセパレータ用ステンレス鋼材であって、
     ステンレス鋼母材と、
     当該ステンレス鋼母材の表面に設けられた酸化膜と、
     当該酸化膜の表面に設けられ非金属性導電物質を備える導電層と、
     前記酸化膜を貫通するように設けられ、前記ステンレス鋼母材および前記導電層に電気的に接続する導電性物質と
    を備えるステンレス鋼材。
  2.  前記導電性物質がMB型硼化物系金属介在物からなり、当該MB型硼化物系金属介在物は前記ステンレス鋼母材に部分的に埋設される、請求項1記載のステンレス鋼材。
  3.  前記導電層が前記導電性物質の表面にも設けられている請求項1または2に記載のステンレス鋼材。
  4.  前記硼化物系金属介在物がCrの硼化物を含む、請求項1から3のいずれかに記載のステンレス鋼材。
  5.  前記非金属性導電物質が黒鉛質炭素を含む、請求項1から4のいずれかに記載のステンレス鋼材。
  6.  前記黒鉛質炭素の面間隔がd002≦3.390Åである、請求項5に記載のステンレス鋼材。
  7.  前記ステンレス鋼母材の酸化膜の表面に設けられた黒鉛質炭素の結晶について広角X線回折測定することにより得られる原子面の回折線のピーク強度を比較したときに、(110)原子面の回折線のピーク強度の(004)原子面の回折線のピーク強度に対する比率が0.1未満である、請求項6に記載のステンレス鋼材。
  8.  前記導電層が、前記酸化膜の表面と前記硼化物系金属介在物の表面とからなる表面に対して黒鉛質炭素を含む部材を摺動させることにより形成されたものである請求項5から7のいずれかに記載のステンレス鋼材。
  9.  前記酸化膜の表面と硼化物系金属介在物の表面とからなる表面の粗さがRaとして0.10μm以上である請求項8に記載のステンレス鋼材。
  10.  前記導電層が、前記酸化膜の表面と前記硼化物系金属介在物の表面とからなる表面に、黒鉛質炭素およびその2質量%以下の結着剤を含む塗料組成物を塗布し、当該塗布物が付着する表面に対して黒鉛質炭素を含む部材を摺動させることにより形成されたものである、請求項5から7のいずれかに記載のステンレス鋼材。
  11.  前記結着剤が、PVDF(ポリフッ化ビニリデン)およびPTFE(ポリテトラフルオロエチレン)の少なくとも一種を含む、請求項10に記載のステンレス鋼材。
  12.  燃料電極膜、固体高分子電解質膜および酸化剤電極膜をこの順番で重ねあわせて形成された単位電池を複数個、当該単位電池間にセパレータを個別に介在させて積層した積層体に、燃料ガスおよび酸化剤ガスを供給して直流電力を発生させる固体高分子形燃料電池であって、前記セパレータが請求項1から11のいずれかに記載のステンレス鋼材からなることを特徴とする固体高分子形燃料電池。
PCT/JP2009/061765 2008-06-26 2009-06-26 固体高分子形燃料電池のセパレータ用ステンレス鋼材およびそれを用いた固体高分子形燃料電池 WO2009157557A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09770267.4A EP2302721B1 (en) 2008-06-26 2009-06-26 Stainless steel material for separator of solid polymer fuel cell and solid polymer fuel cell using the same
CN200980133913.8A CN102138238B (zh) 2008-06-26 2009-06-26 固体高分子型燃料电池的隔板用不锈钢材料以及使用其的固体高分子型燃料电池
CA2729091A CA2729091C (en) 2008-06-26 2009-06-26 Stainless steel material for a separator of a solid polymer fuel cell and a solid polymer fuel cell using the separator
US12/975,608 US9312546B2 (en) 2008-06-26 2010-12-22 Stainless steel material for a separator of a solid polymer fuel cell and a solid polymer fuel cell using the separator

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2008167944 2008-06-26
JP2008-167944 2008-06-26
JP2008260872 2008-10-07
JP2008-260872 2008-10-07
JP2008-292368 2008-11-14
JP2008292368 2008-11-14
JP2009-152047 2009-06-26
JP2009152047A JP5343731B2 (ja) 2008-06-26 2009-06-26 固体高分子形燃料電池のセパレータ用ステンレス鋼材およびそれを用いた固体高分子形燃料電池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/975,608 Continuation US9312546B2 (en) 2008-06-26 2010-12-22 Stainless steel material for a separator of a solid polymer fuel cell and a solid polymer fuel cell using the separator

Publications (1)

Publication Number Publication Date
WO2009157557A1 true WO2009157557A1 (ja) 2009-12-30

Family

ID=41444617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061765 WO2009157557A1 (ja) 2008-06-26 2009-06-26 固体高分子形燃料電池のセパレータ用ステンレス鋼材およびそれを用いた固体高分子形燃料電池

Country Status (6)

Country Link
US (1) US9312546B2 (ja)
EP (1) EP2302721B1 (ja)
JP (1) JP5343731B2 (ja)
CN (1) CN102138238B (ja)
CA (1) CA2729091C (ja)
WO (1) WO2009157557A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017051810A1 (ja) * 2015-09-25 2017-03-30 新日鐵住金株式会社 固体高分子形燃料電池用カーボンセパレータ、固体高分子形燃料電池セル、および固体高分子形燃料電池
WO2017170067A1 (ja) * 2016-03-29 2017-10-05 新日鐵住金株式会社 固体高分子形燃料電池用セルおよび固体高分子形燃料電池スタック
WO2017170066A1 (ja) * 2016-03-29 2017-10-05 新日鐵住金株式会社 固体高分子形燃料電池用セルおよび固体高分子形燃料電池スタック
JP6278172B1 (ja) * 2016-08-30 2018-02-14 新日鐵住金株式会社 フェライト系ステンレス鋼材、セパレーター、セルおよび燃料電池
WO2018043285A1 (ja) * 2016-08-30 2018-03-08 新日鐵住金株式会社 フェライト系ステンレス鋼材、セパレーター、セルおよび燃料電池
JP2020181785A (ja) * 2019-04-26 2020-11-05 木内 学 炭素質材料層を備えた複層薄板状成形品およびその製造方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012212644A (ja) * 2010-10-26 2012-11-01 Kobe Steel Ltd 燃料電池セパレータの製造方法
WO2013027253A1 (ja) 2011-08-22 2013-02-28 日本冶金工業株式会社 熱間加工性および表面性状に優れるボロン含有ステンレス鋼
JP6163934B2 (ja) * 2013-07-18 2017-07-19 トヨタ車体株式会社 燃料電池のセパレータの製造方法
JP6225716B2 (ja) * 2014-01-23 2017-11-08 新日鐵住金株式会社 固体高分子形燃料電池のセパレータ用チタン材およびその製造方法
KR20160122843A (ko) 2014-04-03 2016-10-24 신닛테츠스미킨 카부시키카이샤 연료 전지 세퍼레이터용 복합 금속박, 연료 전지 세퍼레이터, 연료 전지 및 연료 전지 세퍼레이터용 복합 금속박의 제조 방법
EP3202940A4 (en) * 2014-10-01 2018-05-09 Nippon Steel & Sumitomo Metal Corporation Ferritic stainless steel material, separator for solid polymer fuel cells which uses same, and solid polymer fuel cell
KR20170122802A (ko) * 2015-03-03 2017-11-06 신닛테츠스미킨 카부시키카이샤 고체 고분자형 연료 전지 세퍼레이터용 스테인리스 박강판
JP6390648B2 (ja) * 2016-03-18 2018-09-19 トヨタ自動車株式会社 燃料電池用のメタルセパレータ
JP7016813B2 (ja) * 2016-11-22 2022-02-07 住友電気工業株式会社 炭素材料及び炭素材料の製造方法
KR102385477B1 (ko) * 2017-02-09 2022-04-11 제이에프이 스틸 가부시키가이샤 연료 전지의 세퍼레이터용 강판의 기재 스테인리스 강판 및 그 제조 방법
JP6315158B1 (ja) * 2017-09-19 2018-04-25 新日鐵住金株式会社 ステンレス鋼板及びその製造方法、固体高分子型燃料電池用セパレータ、固体高分子型燃料電池セル、並びに固体高分子型燃料電池
JP2020061230A (ja) * 2018-10-05 2020-04-16 日鉄日新製鋼株式会社 ステンレス鋼、固体高分子形燃料電池用セパレータ及び固体高分子形燃料電池
JP7257261B2 (ja) * 2019-06-05 2023-04-13 三菱重工業株式会社 ガスタービンの翼の補修方法
US20220131161A1 (en) * 2020-10-28 2022-04-28 Phillips 66 Company High performing cathode contact material for fuel cell stacks
EP4389927A1 (en) * 2022-12-20 2024-06-26 Höganäs AB (publ) Novel iron-chromium based alloys for laser cladding
WO2024133109A1 (en) * 2022-12-20 2024-06-27 Höganäs Ab (Publ) Novel iron-chromium based alloys for laser cladding

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10228914A (ja) 1997-02-13 1998-08-25 Aisin Takaoka Ltd 燃料電池用セパレータ
WO1999019927A1 (en) 1997-10-14 1999-04-22 Nisshin Steel Co., Ltd. Separator for low temperature type fuel cell and method of production thereof
JPH11260382A (ja) * 1998-03-09 1999-09-24 Nisshin Steel Co Ltd 低温型燃料電池用セパレータ
JPH11345618A (ja) 1998-06-03 1999-12-14 Nisshin Steel Co Ltd 固体高分子型燃料電池用塗装金属セパレータ材料
JP2000067881A (ja) 1998-08-24 2000-03-03 Honda Motor Co Ltd 燃料電池用セパレータ
JP2001052721A (ja) * 1999-08-12 2001-02-23 Osaka Gas Co Ltd 燃料電池用セパレータおよびその製造方法
WO2001018895A1 (fr) 1999-09-02 2001-03-15 Matsushita Electric Industrial Co., Ltd. Pile a combustible a electrolyte polymere
JP3365385B2 (ja) 2000-01-31 2003-01-08 住友金属工業株式会社 固体高分子型燃料電池のセパレータ用ステンレス鋼材の製造方法
WO2003044888A1 (fr) 2001-11-21 2003-05-30 Hitachi Powdered Metals Co.,Ltd. Materiau de revetement pour separateur de pile a combustible
JP2003532528A (ja) * 2000-05-09 2003-11-05 スリーエム イノベイティブ プロパティズ カンパニー コーティングおよび方法
JP2005209394A (ja) * 2004-01-20 2005-08-04 Toshiba Corp 非水電解質二次電池
JP2005243595A (ja) * 2003-03-31 2005-09-08 Isamu Uchida 固体高分子型燃料電池用セパレータおよびそれを用いた固体高分子型燃料電池
JP2007031233A (ja) * 2005-07-28 2007-02-08 Jfe Chemical Corp 黒鉛材料の製造方法
JP2007165275A (ja) * 2005-04-28 2007-06-28 Kurimoto Ltd セパレータ、それを用いた固体高分子型燃料電池およびそのセパレータの製造方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5521027A (en) * 1990-10-25 1996-05-28 Matsushita Electric Industrial Co., Ltd. Non-aqueous secondary electrochemical battery
JP3890622B2 (ja) * 1996-04-16 2007-03-07 日本精工株式会社 耐食転動部材の製造方法
CN1118880C (zh) * 1997-05-30 2003-08-20 松下电器产业株式会社 非水电解质二次电池
DE69812017T2 (de) * 1997-09-19 2003-12-11 Matsushita Electric Ind Co Ltd Nichtwässrige Sekundär Batterie und ihre Anode
JP4457429B2 (ja) * 1999-03-31 2010-04-28 パナソニック株式会社 非水電解質二次電池とその負極
KR100361548B1 (ko) * 1999-04-19 2002-11-21 스미토모 긴조쿠 고교 가부시키가이샤 고체고분자형 연료전지용 스텐레스 강재
JP4495796B2 (ja) * 1999-05-12 2010-07-07 日新製鋼株式会社 ステンレス鋼製低温型燃料電池用セパレータ及びその製造方法
DE10194846B4 (de) * 2000-11-10 2008-02-28 Honda Giken Kogyo K.K. Verfahren zur Oberflächenbehandlung eines rostfreien Stahlprodukts für eine Brennstoffzelle
DE10297507T5 (de) * 2001-12-07 2004-11-25 Honda Giken Kogyo K.K. Metallischer Separator für Brennstoffzelle und Herstellungsverfahren für denselben
US7838171B2 (en) * 2001-12-12 2010-11-23 Honda Giken Kogyo Kabushiki Kaisha Metal separator for fuel cell and its production method
WO2003052848A1 (en) * 2001-12-18 2003-06-26 Honda Giken Kogyo Kabushiki Kaisha Method of producing fuel cell-use separator and device for producing it
JP4274737B2 (ja) * 2002-03-29 2009-06-10 本田技研工業株式会社 燃料電池用金属製セパレータおよびその製造方法
US7713658B2 (en) * 2002-04-02 2010-05-11 Nippon Shokubai Co., Ltd. Material for electrolytic solutions and use thereof
JP4147925B2 (ja) * 2002-12-04 2008-09-10 トヨタ自動車株式会社 燃料電池用セパレータ
US20040013935A1 (en) * 2002-07-19 2004-01-22 Siyu Ye Anode catalyst compositions for a voltage reversal tolerant fuel cell
WO2004035883A2 (en) * 2002-10-17 2004-04-29 Nexen Nano Tech Co., Ltd Fibrous nano-carbon and preparation method thereof
AU2003304337A1 (en) * 2003-07-10 2005-01-28 Seoul National University Industry Foundation Nanostructured carbon materials having good crystallinity and large surface area suitable for electrodes, and method for synthesizing the same using catalytic graphitization of polymeric carbon precursors
KR101015899B1 (ko) * 2004-12-22 2011-02-23 삼성에스디아이 주식회사 연료전지용 금속제 분리판
US7807281B2 (en) * 2005-06-22 2010-10-05 Nippon Steel Corporation Stainless steel, titanium, or titanium alloy solid polymer fuel cell separator and its method of production and method of evaluation of warp and twist of separator
JP5014644B2 (ja) * 2006-02-27 2012-08-29 新日本製鐵株式会社 固体高分子型燃料電池用セパレータおよびその製造方法
US8900771B2 (en) * 2006-08-17 2014-12-02 GM Global Technology Operations LLC Non-noble metal inexpensive conductive coatings for fuel cell bipolar plates
JP4702304B2 (ja) * 2007-02-22 2011-06-15 トヨタ自動車株式会社 燃料電池用セパレータ、燃料電池用セパレータの製造方法及び燃料電池
AU2010281356A1 (en) * 2009-08-04 2012-03-01 Commonwealth Scientific And Industrial Research Organisation A process for producing a carbonaceous product from biomass
WO2012093372A2 (en) * 2011-01-05 2012-07-12 Ecolab Usa Inc. Aqueous acid cleaning, corrosion and stain inhibiting compositions in the vapor phase comprising a blend of nitric and sulfuric acid

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10228914A (ja) 1997-02-13 1998-08-25 Aisin Takaoka Ltd 燃料電池用セパレータ
WO1999019927A1 (en) 1997-10-14 1999-04-22 Nisshin Steel Co., Ltd. Separator for low temperature type fuel cell and method of production thereof
JPH11260382A (ja) * 1998-03-09 1999-09-24 Nisshin Steel Co Ltd 低温型燃料電池用セパレータ
JPH11345618A (ja) 1998-06-03 1999-12-14 Nisshin Steel Co Ltd 固体高分子型燃料電池用塗装金属セパレータ材料
JP2000067881A (ja) 1998-08-24 2000-03-03 Honda Motor Co Ltd 燃料電池用セパレータ
JP2001052721A (ja) * 1999-08-12 2001-02-23 Osaka Gas Co Ltd 燃料電池用セパレータおよびその製造方法
WO2001018895A1 (fr) 1999-09-02 2001-03-15 Matsushita Electric Industrial Co., Ltd. Pile a combustible a electrolyte polymere
JP3365385B2 (ja) 2000-01-31 2003-01-08 住友金属工業株式会社 固体高分子型燃料電池のセパレータ用ステンレス鋼材の製造方法
JP2003532528A (ja) * 2000-05-09 2003-11-05 スリーエム イノベイティブ プロパティズ カンパニー コーティングおよび方法
WO2003044888A1 (fr) 2001-11-21 2003-05-30 Hitachi Powdered Metals Co.,Ltd. Materiau de revetement pour separateur de pile a combustible
JP2005243595A (ja) * 2003-03-31 2005-09-08 Isamu Uchida 固体高分子型燃料電池用セパレータおよびそれを用いた固体高分子型燃料電池
JP2005209394A (ja) * 2004-01-20 2005-08-04 Toshiba Corp 非水電解質二次電池
JP2007165275A (ja) * 2005-04-28 2007-06-28 Kurimoto Ltd セパレータ、それを用いた固体高分子型燃料電池およびそのセパレータの製造方法
JP2007031233A (ja) * 2005-07-28 2007-02-08 Jfe Chemical Corp 黒鉛材料の製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"KEITHELEY", 2001, TOYO CORPORATION
"The Properties of Graphite and Deployment of Technology Thereof", HITACHI POWDER METALLURGY TECHNICAL REPORT, 2004
"Wakai Gijutsusha no Tameno Kikai Kinzoku Zairyou", MARUZEN COMPANY, LTD., pages: 325
See also references of EP2302721A4 *
TITAN, vol. 54, no. 4, pages 259

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017051810A1 (ja) * 2015-09-25 2017-03-30 新日鐵住金株式会社 固体高分子形燃料電池用カーボンセパレータ、固体高分子形燃料電池セル、および固体高分子形燃料電池
JPWO2017051810A1 (ja) * 2015-09-25 2018-02-08 新日鐵住金株式会社 固体高分子形燃料電池用カーボンセパレータ、固体高分子形燃料電池セル、および固体高分子形燃料電池
US10622643B2 (en) 2015-09-25 2020-04-14 Nippon Steel Corporation Carbon separator for solid polymer fuel cell, solid polymer fuel cell, and solid polymer fuel cell stack
WO2017170067A1 (ja) * 2016-03-29 2017-10-05 新日鐵住金株式会社 固体高分子形燃料電池用セルおよび固体高分子形燃料電池スタック
WO2017170066A1 (ja) * 2016-03-29 2017-10-05 新日鐵住金株式会社 固体高分子形燃料電池用セルおよび固体高分子形燃料電池スタック
JP6278157B1 (ja) * 2016-03-29 2018-02-14 新日鐵住金株式会社 固体高分子形燃料電池用セルおよび固体高分子形燃料電池スタック
JP6278158B1 (ja) * 2016-03-29 2018-02-14 新日鐵住金株式会社 固体高分子形燃料電池用セルおよび固体高分子形燃料電池スタック
JP6278172B1 (ja) * 2016-08-30 2018-02-14 新日鐵住金株式会社 フェライト系ステンレス鋼材、セパレーター、セルおよび燃料電池
WO2018043285A1 (ja) * 2016-08-30 2018-03-08 新日鐵住金株式会社 フェライト系ステンレス鋼材、セパレーター、セルおよび燃料電池
JP2020181785A (ja) * 2019-04-26 2020-11-05 木内 学 炭素質材料層を備えた複層薄板状成形品およびその製造方法
JP7222805B2 (ja) 2019-04-26 2023-02-15 学 木内 炭素質材料層を備えた複層薄板状成形品およびその製造方法

Also Published As

Publication number Publication date
JP5343731B2 (ja) 2013-11-13
EP2302721A1 (en) 2011-03-30
CA2729091A1 (en) 2009-12-30
EP2302721B1 (en) 2016-03-30
EP2302721A4 (en) 2014-04-02
CN102138238A (zh) 2011-07-27
US9312546B2 (en) 2016-04-12
US20110159397A1 (en) 2011-06-30
CN102138238B (zh) 2014-04-16
CA2729091C (en) 2013-08-20
JP2010140886A (ja) 2010-06-24

Similar Documents

Publication Publication Date Title
JP5343731B2 (ja) 固体高分子形燃料電池のセパレータ用ステンレス鋼材およびそれを用いた固体高分子形燃料電池
JP5338607B2 (ja) 固体高分子型燃料電池のセパレータ用ステンレス鋼板およびそれを用いた固体高分子型燃料電池
Wang et al. Molybdenum carbide coated 316L stainless steel for bipolar plates of proton exchange membrane fuel cells
KR101597721B1 (ko) 고체 고분자형 연료 전지 세퍼레이터용 티탄재 및 그 제조 방법 및 이를 이용한 고체 고분자형 연료 전지
WO2000001025A1 (fr) Pile a combustible electrolytique en polymere solide
JP2012028046A (ja) チタン製燃料電池セパレータ
CN101488570A (zh) 一种质子交换膜燃料电池不锈钢双极板的表面处理方法
JPH11121018A (ja) 低温型燃料電池用セパレータ
WO2018147087A1 (ja) 燃料電池のセパレータ用鋼板の基材ステンレス鋼板およびその製造方法
JP6225716B2 (ja) 固体高分子形燃料電池のセパレータ用チタン材およびその製造方法
JP5573039B2 (ja) 固体高分子形燃料電池セパレータ用ステンレス鋼およびその製造方法
US20100122911A1 (en) Method for coating metallic interconnect of solid oxide fuel cell
JPH11219713A (ja) 低温型燃料電池用セパレータ
JP5699624B2 (ja) 固体高分子形燃料電池セパレータ用金属板およびその製造方法
JP5560533B2 (ja) 固体高分子形燃料電池セパレータ用ステンレス鋼およびそれを用いた固体高分子形燃料電池
JP6753165B2 (ja) 固体高分子形燃料電池のセパレータ用チタン材、およびそれを用いたセパレータ
JP2020152999A (ja) 電極板
JP6939747B2 (ja) 電極板
KR100867819B1 (ko) 연료전지용 금속분리판의 표면층 및 이의 형성방법
JP5077207B2 (ja) ステンレス鋼材
JP2020111805A (ja) ステンレス鋼板、燃料電池用セパレータ、燃料電池セル、及び燃料電池スタック
JP2021039917A (ja) 電極板
JP2012212644A (ja) 燃料電池セパレータの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980133913.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09770267

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2729091

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009770267

Country of ref document: EP