WO2009107436A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2009107436A1
WO2009107436A1 PCT/JP2009/051263 JP2009051263W WO2009107436A1 WO 2009107436 A1 WO2009107436 A1 WO 2009107436A1 JP 2009051263 W JP2009051263 W JP 2009051263W WO 2009107436 A1 WO2009107436 A1 WO 2009107436A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
tire
small groove
small
circumferential
Prior art date
Application number
PCT/JP2009/051263
Other languages
English (en)
French (fr)
Inventor
浩昭 大野
将治 福島
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to CN2009801149133A priority Critical patent/CN102015330B/zh
Priority to ES09714395.2T priority patent/ES2602573T3/es
Priority to EP09714395.2A priority patent/EP2251214B1/en
Priority to US12/919,588 priority patent/US9259973B2/en
Publication of WO2009107436A1 publication Critical patent/WO2009107436A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • B60C11/0309Patterns comprising block rows or discontinuous ribs further characterised by the groove cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0311Patterns comprising tread lugs arranged parallel or oblique to the axis of rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/04Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag
    • B60C11/042Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag further characterised by the groove cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/032Patterns comprising isolated recesses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/04Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0381Blind or isolated grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/06Tyres specially adapted for particular applications for heavy duty vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/06Tyres specially adapted for particular applications for heavy duty vehicles
    • B60C2200/065Tyres specially adapted for particular applications for heavy duty vehicles for construction vehicles

Definitions

  • the present invention relates to a pneumatic tire in which two circumferential narrow grooves extending in the tire circumferential direction are arranged on the tread portion with the tire equator plane interposed therebetween, and a central land portion is defined by the circumferential narrow grooves, in particular. Relates to a pneumatic tire for heavy loads, and aims to improve wear resistance and uneven wear resistance while ensuring sufficient heat dissipation of the pneumatic tire.
  • Construction vehicle heavy duty pneumatic tires are required to have significantly higher load resistance and traction performance than heavy duty pneumatic tires such as truck bus tires or light truck tires. Therefore, as a tread pattern of such a tire, conventionally, a rib-like land portion extending continuously in the tire circumferential direction is disposed in the central region from the viewpoint of wear resistance, and a plurality of tire tread patterns are provided in both side regions from the viewpoint of ensuring traction. It is common to adopt a so-called rib lug pattern by arranging the lug grooves of the book. However, if the width of the rib-shaped land portion arranged in the central area becomes too large, the traction property during climbing is impaired, and there is no groove extending in the circumferential direction in the central area. Further, there is a problem that sufficient traction cannot be obtained because there is no transverse groove in the central region.
  • the tire disclosed in Patent Document 1 is provided with a circumferential narrow groove that divides the central land portion in the central region to suppress side slip during steering, and further, a transverse narrow groove is disposed in the central land portion.
  • a transverse narrow groove is provided in the central land portion, the rigidity of the central land portion is reduced, and the wear resistance in the central land portion is reduced.
  • the groove that crosses the central land is a narrow groove, when rolling the tire, the central land is deformed in the tire circumferential direction by the frictional force with the road surface, and the transverse narrow groove is closed in the road contact area.
  • the central land portion is substantially land-continuous, and a decrease in rigidity of the central land portion is suppressed, and a decrease in wear resistance in the central land portion is suppressed. Moreover, since the transverse transverse groove is opened outside the road contact area, the heat dissipation performance in the central land portion is effectively improved.
  • Patent Document 1 suppresses a decrease in wear resistance while ensuring sufficient heat dissipation in the central land portion, but further improves wear resistance and improves uneven wear resistance. Improvement is desired.
  • an object of the present invention is to provide a pneumatic tire with improved wear resistance and uneven wear resistance while ensuring sufficient heat dissipation by optimizing the tread pattern. .
  • the pneumatic tire according to the present invention has two circumferential narrow grooves extending in the tire circumferential direction on the tread portion with the tire equatorial plane interposed therebetween, and the circumferential narrow grooves are arranged in the center.
  • a land portion is defined, and in the central land portion, a first small groove extending along the tire circumferential direction, and from one end of the first small groove toward the one circumferential narrow groove,
  • An inclined narrow groove comprising a second small groove extending obliquely with respect to the direction and a third small groove extending obliquely with respect to the tire circumferential direction from the other end of the first small groove toward the other circumferential narrow groove Is provided.
  • the heat generated in the belt layer is sufficiently radiated from the inclined narrow groove, and the destruction of the belt layer due to heat accumulation is suppressed.
  • the worn area is the tire circumferential direction. Therefore, the steps due to the difference in wear are finely distributed over the circumference, and the vibration during rolling of the tire load is reduced, and the uneven wear caused by the vibration can be suppressed and the uneven wear resistance can be improved.
  • the second small groove and the third small groove are inclined with respect to the tire circumferential direction, and the road contact area collapses and deforms in the tire circumferential direction due to friction with the road surface at the time of tire load rolling.
  • the groove width of the second and third small grooves is reduced, and the contact length difference between the tire equatorial plane side and the tread end side is reduced, resulting in wear on the tire equatorial plane side and the tread end side during tire load rolling. Since the difference is reduced, it is possible to improve the uneven wear resistance.
  • both the circumferential narrow groove and the inclined narrow groove are narrow grooves with a small groove width, the negative rate can be reduced, so that sufficient rigidity can be secured for the land portion and wear resistance can be improved. Is possible.
  • the "circumferential narrow groove extending in the tire circumferential direction" here is not only a narrow groove extending linearly along the tire circumferential direction, but also a narrow groove extending in a zigzag shape or a wave shape and making a round in the circumferential direction as a whole tire. Shall also be included.
  • the circumferential narrow groove is preferably disposed within a range of 25 to 60% of the tread width away from the tire equatorial plane, and more preferably within a range of 45 to 60% of the tread width. Set up.
  • the groove width of the circumferential narrow groove is preferably in the range of 2.5 to 15.0 mm, more preferably in the range of 2.5 to 7.0 mm.
  • angles of the second small groove and the third small groove that are inclined with respect to the tire circumferential direction are preferably in the range of 30 to 60 °, more preferably in the range of 30 to 45 °.
  • the “angle inclined with respect to the tire circumferential direction” is an angle measured from the acute angle side among the intersection angles formed by the second small groove and the third small groove intersecting the tire circumferential direction. It shall be said.
  • the groove widths of the first small groove, the second small groove and the third small groove are preferably in the range of 2.5 to 7.0 mm, more preferably in the range of 2.5 to 5.0 mm. is there.
  • first small grooves are arranged at an equal pitch on the circumference, and the distance in the tire circumferential direction of the first small grooves is preferably in the range of 15 to 25% of the pitch length, more preferably. Is in the range of 20-25%.
  • the depth of the circumferential narrow groove is in the range of 75 to 100% of the distance in the tire radial direction of the tread rubber in the tread portion, and more preferably in the range of 75 to 85%.
  • the depth of the inclined narrow groove is preferably in the range of 60 to 100%, more preferably in the range of 75 to 85% of the tire radial distance of the tread rubber in the tread portion.
  • the second small groove and the third small groove extend from the end of the first small groove toward the circumferential narrow groove, respectively, and terminate in the central land portion, and the inclined narrow groove is the tire equatorial plane. And a position 12.5% apart from the tire equatorial plane on the outer side in the tire width direction.
  • the end portions of the second small groove and the third small groove on the end side have a cylindrical shape having a diameter of 3 to 5 times the groove width of the second small groove and the third small groove. .
  • the second small groove and the third small groove extend from the end of the first small groove to the circumferential narrow groove, and in the communication position with the circumferential small groove of the second small groove and the third small groove,
  • the angles formed by the circumferential grooves of the second small groove and the third small groove are preferably in the range of 30 to 60 °, and more preferably in the range of 30 to 45 °.
  • the "angle formed between the second small groove and the circumferential small groove of the third small groove" here is an intersection angle formed by the second small groove and the third small groove intersecting the circumferential small groove, The angle measured from the acute angle side shall be said.
  • the second small groove and the third small groove are inclined at an angle with respect to the tire circumferential direction within a range of 12.5 to 25.0% of the tread width outward from the tire equatorial plane in the tire width direction. It is preferable to have each inflection part to change.
  • the “inclination angle is changed” here means that the inclination angle of the second small groove and the third small groove with respect to the tire circumferential direction is not only immediately changed at a predetermined position but also gradually at a predetermined section. It also includes changing to.
  • the “inflection portion” here means that the inclination angle of the inclined narrow groove extending from the tire equatorial plane side is changed, specifically, the tire circumferential direction is defined as the Y axis, the tire width.
  • the inclined narrow grooves are preferably arranged in the range of 32 to 40 on the circumference, more preferably in the range of 36 to 38.
  • the width of the end of the inclined narrow groove that is open on the road surface is larger than the width of the other portion of the inclined narrow groove.
  • the end of the inclined narrow groove that is open on the road surface has a step-shaped bottom-up portion as seen in the cross section in the tire width direction.
  • the width of the bottom raised portion is preferably in the range of 70 to 130% of the groove width of the other portion of the inclined narrow groove.
  • the depth of the bottom raised portion is preferably in the range of 70 to 130% of the groove width of the inclined narrow groove.
  • the width of the raised portion is preferably in the range of 3.0 to 6.0 mm.
  • the depth of the raised portion is preferably in the range of 3.0 to 6.0 mm.
  • FIG. 1 is a sectional view in the tire width direction of a typical pneumatic tire and rim assembly according to the present invention.
  • FIG. 2 is a development view of a part of the tread portion of the tire shown in FIG. 1.
  • FIG. 6 is a development view of a part of a tread portion of another tire according to the present invention.
  • (A) is a development view of a part of a tread portion of another tire according to the present invention
  • (b) is a cross-sectional view taken along line IV-IV of the tread portion shown in (a)
  • (c) is It is sectional drawing of the inclination narrow groove in the other tire according to this invention.
  • FIG. 6 is a development view of a part of a tread portion of a conventional tire. It is a development view of a part of a tread portion of a comparative example tire.
  • FIG. 1 is a sectional view in the tire width direction of a tire-rim assembly in which a typical pneumatic tire (hereinafter referred to as “tire”) according to the present invention is mounted on a rim.
  • 2 is a development view of a part of the tread portion of the tire shown in FIG. 1
  • FIG. 3 is a development view of a part of the tread portion of another tire according to the present invention.
  • 4 (a) is a development view of a part of the tread portion of another tire according to the present invention
  • FIG. 4 (b) is a cross-sectional view taken along the line IV-IV of the tread portion shown in FIG. 4 (a).
  • FIG. 4C is a cross-sectional view of the inclined narrow groove in the other tire according to the present invention.
  • a tire 1 according to the present invention includes a tread portion 2 that contacts a road surface, a pair of sidewall portions 3 that extend inward in the tire radial direction from both side portions of the tread portion 2, and a tire radial direction of each sidewall portion 3.
  • a pair of bead portions 4 are provided on the inner side and are fitted to the rim R.
  • a carcass layer 6 extending in a toroidal shape between bead cores 5, 5 embedded in each bead portion 4 to form a skeleton structure of the tire 1, and on the outer peripheral side of the crown region of the carcass layer 6
  • a belt layer 7 that is positioned and reinforces the tread portion 2 is disposed.
  • An air-impermeable inner liner 9 is disposed on the inner surface side of the tire 1, that is, the side facing the tire lumen 8 defined by the tire 1 and the rim R. Further, in the tire 1 of the present invention, as shown in FIG. 2, two circumferential narrow grooves 10 and 10 extending linearly in the tire circumferential direction are arranged in the tread portion 2 with the tire equatorial plane CL interposed therebetween.
  • the central land portion 11 is defined by the circumferential narrow grooves 10 and 10.
  • a Z-shaped inclined narrow groove 12 is disposed in the central land portion 11, and the inclined narrow groove 12 is one of a first small groove 13 extending along the tire circumferential direction and one of the first small grooves 13.
  • the second small groove 14 extending obliquely with respect to the circumferential direction of the tire toward one circumferential narrow groove 10 from the end of the first groove 13 and the other small circumferential groove 10 from the other end of the first small groove 13.
  • the third small groove 15 extending obliquely with respect to the tire circumferential direction.
  • the belt layer is a heat source that generates heat by repeatedly deforming due to tire load rolling. Due to such heat generation, excessive accumulation of heat in the belt layer 7 may cause destruction of the belt layer 7.
  • the heat generated in the belt layer 7 is sufficiently dissipated from the inclined narrow groove 12, and the thermal destruction of the belt layer 7 due to heat accumulation is performed. Suppressed.
  • the second small groove 14 and the third small groove 15 are inclined with respect to the tire circumferential direction, and the road contact area collapses and deforms in the tire circumferential direction due to friction with the road surface during rolling of the tire load. Therefore, when rolling the tire load, the groove width of the second small groove 14 and the third small groove 15 of the central land portion 11 becomes small in the road contact area, and the road surface contact length of the central land portion 11 becomes small. The contact length difference between the equatorial plane side and the tread end side is reduced. As a result, the contact shape with the road surface of the tread portion 2 becomes a substantially rectangular shape, and the contact pressure difference between the tire equator side and the tread end side becomes small.
  • the wear difference on the tread end side is also reduced, and uneven wear resistance can be improved. Furthermore, since the circumferential narrow grooves 10 and the inclined narrow grooves 12 are composed of narrow grooves having a small groove width, the negative rate can be reduced, so that the rigidity of the land portion can be sufficiently secured and the wear resistance can be reduced. It becomes possible to improve the property.
  • the circumferential narrow groove 10 is preferably disposed within a range of 25 to 60% of the tread width D1 from the tire equatorial plane CL, and more preferably within a range of 45 to 60%. It is arranged in the inside. This is because when the circumferential narrow groove 10 is disposed at a position less than 25% of the tread width on the outer side in the tire width direction from the tire equatorial plane CL, the tire in the central land portion 11 including the tire equatorial plane CL. This is because the distance in the width direction becomes too small and the rigidity of the central land portion 11 is insufficient, so that the wear resistance and uneven wear resistance of the land portion 11 may be reduced.
  • the groove width of the circumferential narrow groove 10 is preferably in the range of 2.5 to 15.0 mm, more preferably in the range of 2.5 to 7.0 mm. This is because when the circumferential narrow groove 10 has a groove width of less than 2.5 mm, even if the circumferential narrow groove 10 has a sufficient depth, heat can be dissipated when the belt layer 7 on the groove bottom side generates heat. Since the area on the groove bottom side is not sufficient, heat cannot be effectively radiated from the circumferential narrow groove 10, and the belt layer 7 may accumulate heat excessively, causing the belt layer 7 to be thermally destroyed. Because there is.
  • the angle ⁇ 1 of the second small groove 14 and the third small groove 15 inclined with respect to the tire circumferential direction is preferably in the range of 30 to 60 °, more preferably in the range of 30 to 45 °. It is in. This is because the angle ⁇ 1 inclined with respect to the tire circumference of the second small groove 14 and the third small groove 15 is set to 30 ° or more, respectively, so that the tread contact area is caused by friction with the road surface during tire load rolling. Even if the tire is pulled and deformed in the circumferential direction, the second small groove 14 and the third small groove 15 that are in contact with the road surface are closed in contact with the tire circumferential direction, so that the rigidity of the tread portion 2 in the road surface contact area is increased.
  • the groove widths of the first small groove 13, the second small groove 14, and the third small groove 15 are each preferably in the range of 2.5 to 7.0 mm, more preferably 2.5 to 5.0 mm. Is in range. Because, when the groove widths of the first small groove 13, the second small groove 14, and the third small groove 15 are each less than 2.5 mm, sufficient rigidity is ensured in the central land portion 11 to effectively improve the wear resistance. Although the area on the bottom side of the inclined narrow groove 12 is insufficient and heat dissipation is not sufficiently ensured, the belt layer 7 of the central land portion 11 stores heat excessively, and the belt layer 7 This is because there is a possibility of heat destruction.
  • the groove widths of the first small groove 13, the second small groove 14, and the third small groove 15 each exceed 7.0 mm, the area on the groove bottom side of the inclined narrow groove 12 is sufficiently ensured and the heat dissipation performance. Can effectively prevent thermal destruction of the belt layer 7 without accumulating excessive heat in the vicinity of the belt layer 7 in the central land portion 11, but the negative rate in the central land portion 11 becomes too large. This is because the rigidity of the central land portion 11 is excessively lowered, and the wear resistance may be reduced.
  • the first small grooves 13 are arranged at an equal pitch on the circumference, and the tire circumferential distance D2 of the first small grooves 13 is within a range of 15 to 25% of the pitch length D3. Preferably, it is in the range of 20 to 25%. This is because when the tire circumferential direction distance D2 of the first small groove 13 is within a range of 15 to 25% of the pitch length D3, the second small groove 14 and the third small groove 15 in which the rubber region in the vicinity of the first small groove 13 easily wears out. This is because it is sufficiently separated in the circumferential direction, so that uneven wear can be suppressed as described above by dispersing steps due to heel and toe wear in the tire circumferential direction.
  • the tire circumferential direction distance D2 of the first small groove 13 is less than 15% of the pitch length D3, the tire circumferential distance of the first small groove 13 becomes too small, and the second small groove 14 and the third small groove 15 are. Is too close to the tire circumferential direction, the steps due to heel and toe wear cannot be sufficiently dispersed in the tire circumferential direction, and the uneven wear resistance may be reduced.
  • the tire circumferential direction distance D2 of the first small groove 13 exceeds 25% of the pitch length D3, the central land portion 11 is divided in the tire circumferential direction, so that the rigidity of the central land portion 11 is reduced. , Wear resistance may be reduced.
  • the depth of the circumferential narrow groove 10 is in the range of 75 to 100% of the distance in the tire radial direction of the tread rubber of the tread portion 2, and more preferably in the range of 75 to 85%. This is because when the depth of the circumferential narrow groove 10 is less than 75% of the distance in the tire radial direction of the tread rubber, the depth of the circumferential narrow groove 10 is insufficient and the belt layer 7 generates heat. However, since the heat is stored in the rubber layer on the groove bottom side of the circumferential narrow groove 10 and sufficient heat dissipation is not ensured, the belt layer 7 may be destroyed due to excessive heat storage. Because there is.
  • the depth of the inclined narrow groove 12 is preferably in the range of 60 to 100% of the distance in the tire radial direction of the tread rubber of the tread portion 2, and more preferably in the range of 75 to 85%. Because, when the depth of the inclined narrow groove 12 is less than 60% of the distance in the tire radial direction of the tread rubber, the depth of the inclined narrow groove 12 is insufficient, and even if the belt layer 7 generates heat, Since the heat is stored in the rubber layer on the bottom side of the inclined narrow groove 12 and sufficient heat dissipation is not ensured, the belt layer 7 may be destroyed due to excessive heat storage. It is.
  • the blade for forming the inclined narrow groove 12 at the time of vulcanization molding becomes the belt layer 7 or the carcass. Since the layer 6 is pushed inward in the tire radial direction so that they have an uneven shape, the belt layer 7 is repeatedly deformed into a wave shape in the tire circumferential direction when rolling the tire, so that the durability and uneven wear resistance of the tire are increased. This is because there is a possibility that the performance may be lowered.
  • the second small groove 14 and the third small groove 15 extend from the end of the first small groove 13 toward the circumferential narrow groove 10 and terminate in the central land portion 11, respectively. Because, by terminating the second small groove 14 and the third small groove 15 in the central land portion 11, compared with the case where the second small groove 14 and the third small groove 15 extend to the circumferential narrow groove 10, This is because the rigidity of the central land portion 11 can be increased, so that the wear resistance can be improved.
  • the inclined narrow groove 12 is preferably disposed in a range between the tire equatorial plane CL and a position spaced 12.5% from the tire equatorial plane CL to the outside in the tire width direction. This is because if the slanted narrow groove 11 further extends beyond this range, the rigidity of the central land portion 11 is excessively reduced, and the wear resistance may be reduced.
  • the end portion 16 on the side where the second small groove 14 and the third small groove 15 are terminated (hereinafter, “ The end portion is preferably a cylindrical shape 17 having a diameter 3 to 5 times the groove width of the second small groove 14 and the third small groove 15. If the end portion is not cylindrical with the above dimensions, when the slanted narrow groove is pulled wide in the tire circumferential direction due to friction with the road surface during rolling with tire load, tensile stress concentrates on the end portion. Therefore, due to the concentration of the tensile stress, a crack is generated from the rubber portion at the terminal portion, which may cause the tread portion to be broken.
  • a cylindrical groove 17 having a diameter 3 to 5 times the groove width of the second small groove 14 and the third small groove 15 is disposed at the end portion 16 of the second small groove 14 and the third small groove 15. Therefore, compared with the case where the end portion 16 is not the circular groove 17 having such a size, the tensile stress concentrated on the end portion 16 when the inclined narrow groove 12 is opened due to friction with the road surface at the time of tire load rolling is effective. This is because it is possible to prevent the tread portion 2 from being broken by suppressing the occurrence of cracks in the rubber portion.
  • the diameter of the terminal end portion 16 of the cylindrical shape 17 is less than three times the groove width of the second small groove 14 and the third small groove 15, a region where the tensile stress can be dispersed is not sufficiently secured. Therefore, the occurrence of cracks in the rubber portion cannot be suppressed, and the tread portion 2 may be broken.
  • the diameter of the terminal portion 16 of the cylindrical shape 17 exceeds five times the groove width of the second small groove 14 and the third small groove 15, the tensile stress can be sufficiently dispersed, but the central land portion 11 Therefore, the land portion rigidity cannot be sufficiently ensured, and the wear resistance may be reduced.
  • the second small groove 14 and the third small groove 15 preferably extend from the end of the first small groove 13 to the circumferential narrow groove 10. This is because the second small groove 14 and the third small groove 15 extend to the circumferential narrow groove 10 so that the second small groove 14 and the third small groove 15 terminate in the central land portion 11. This is because it is possible to increase the heat dissipation in the central land portion 11 by increasing the groove area of the inclined narrow groove 12 as compared with the case where it is present.
  • the angle ⁇ 2 formed between the second small groove 14 and the third small groove 15 and the circumferential small groove 10 at the communication position of the second small groove 14 and the third small groove 15 with the circumferential small groove 10 is 30 to 60 °.
  • the angle ⁇ 2 formed between the second small groove 14 and the third small groove 15 with the circumferential narrow groove 10 is less than 30 °, the portion sandwiched between the second small groove 14 and the circumferential narrow groove 10 and the third small groove A sharpened portion is formed at each of the portions sandwiched between 15 and the circumferential narrow groove 10, and the rigidity of the portions is reduced. Then, when the road surface is grounded, the portion falls down and escapes from contact with the road surface, so that only the sandwiched portion is locally slowed down, causing a problem of uneven wear.
  • the angle ⁇ 2 formed by the second small groove 14 and the third small groove 15 with the circumferential narrow groove 10 is set to 30 ° or more.
  • the sharpened portion is not formed in the portion sandwiched between the second small groove 14 and the circumferential narrow groove 10 and the portion sandwiched between the third small groove 15 and the circumferential narrow groove 10, respectively.
  • the second small groove 14 and the third small groove 15 are inclined with respect to the tire circumferential direction within a range of 12.5 to 25.0% of the tread width D1 on the outer side in the tire width direction from the tire equatorial plane CL. It is preferable that each of the inflection portions 18 changes in angle. This is because, by adopting such a configuration, the groove wall constituting each of the second small groove 14 and the third small groove 15 is deformed so as to be closed with respect to the road surface at the time of tire load rolling, and the rigidity of the central land portion 11 is increased.
  • the inclined narrow grooves 12 are preferably arranged in the range of 32 to 40 on the circumference, more preferably in the range of 36 to 38. This is because by arranging 32 to 40 inclined narrow grooves 12 on the circumference, the rigidity in the central land portion 11 is lowered in a well-balanced manner on the circumference, and the region where the land portion rigidity is locally high is reduced. This is because it is possible to suppress uneven wear due to the rigidity difference on the circumference.
  • the width W1 of the end 19 on the side of the inclined narrow groove 12 that is open to the road surface is the groove width W2 of the other portion of the inclined narrow groove 12.
  • the inventor has provided the inclined narrow groove 12 as described above in the tread portion 2, and when a lateral force is applied to the land portion near the inclined narrow groove during cornering traveling or the like, the edge portion of the land portion near the inclined narrow groove It has been found that the edge portion wears out early because the contact pressure becomes too high. Further, as the angle of the inclined narrow groove 12 inclined with respect to the tire circumferential direction is smaller, the lateral force applied to the land portion in the vicinity of the inclined narrow groove becomes larger.
  • the width W1 of the end 19 on the side of the inclined narrow groove 12 open to the road surface larger than the groove width W2 of the other portion of the inclined narrow groove 12, the width of the land 19 near the inclined narrow groove can be reduced. Even if a force is applied, the contact pressure does not increase too much at the edge portion of the land portion near the inclined narrow groove, so that it is possible to prevent the edge portion from being worn out at an early stage.
  • the end 19 on the side of the inclined narrow groove 12 that is open to the road surface can be a step-shaped bottom-up portion 20 as seen in the cross section in the tire width direction. It is.
  • the width W3 of the bottom raised portion 20 is preferably in the range of 70 to 130% of the groove width W2 of other portions of the inclined narrow groove 12. This is because, when the width W3 of the bottom raised portion 20 exceeds 130% of the groove width W2 of the other portion of the inclined narrow groove 12, the rigidity of the land portion in the vicinity of the inclined narrow groove is excessively lowered. This is because there is a possibility of lowering. On the other hand, when the width W3 of the bottom raised portion 20 is less than 70% of the groove width W2 of the other portion of the inclined narrow groove 12, the ground pressure becomes sufficiently small at the edge portion of the land portion near the inclined narrow groove. This is because it may not be possible to prevent such early wear of the edge portion.
  • the depth D4 of the bottom raised portion 20 is preferably in the range of 70 to 130% of the groove width W2 of the inclined narrow groove 12. This is because when the depth D4 of the bottom raised portion 20 exceeds 130% of the groove width W2 of the inclined narrow groove 12, the rigidity of the land portion in the vicinity of the inclined narrow groove is excessively decreased, so that the wear resistance is decreased. Because there is a possibility.
  • the depth D4 of the bottom raised portion 20 is less than 70% of the groove width W2 of the inclined narrow groove 12, the ground pressure is not sufficiently reduced at the edge portion of the land portion near the inclined narrow groove. This is because there is a possibility that such early wear of the edge portion cannot be prevented.
  • the width W3 of the raised bottom portion 20 is preferably in the range of 3.0 to 6.0 mm. This is because, when the width W3 of the bottom raised portion 20 exceeds 6.0 mm, the rigidity of the land portion in the vicinity of the inclined narrow groove is excessively decreased, so that the wear resistance may be decreased. On the other hand, when the width W3 of the bottom raised portion 20 is less than 3.0 mm, the ground pressure is not sufficiently reduced at the edge portion of the land portion near the inclined narrow groove, and early wear of the edge portion is prevented. This is because it may not be possible.
  • the depth D4 of the raised bottom portion 20 is preferably in the range of 3.0 to 6.0 mm. This is because, when the depth D4 of the bottom raised portion 20 exceeds 6.0 mm, the rigidity of the land portion in the vicinity of the inclined narrow groove is excessively decreased, so that the wear resistance may be decreased. On the other hand, when the depth D4 of the bottom raised portion 20 is less than 3.0 mm, the ground pressure is not sufficiently reduced at the edge portion of the land portion near the inclined narrow groove, and early wear of the edge portion is prevented. This is because it may not be possible.
  • a tire having a lug groove according to the prior art (conventional tire), a central land portion, and a tire of a comparative example having an inclined narrow groove having a configuration different from the inclined narrow groove according to the present invention in the central land portion (comparison) Example tires) and a central land portion, and tires (Example tire 1) in which the central land portion has inclined narrow grooves according to the present invention were prototyped as tires for heavy loads having a tire size of 16.00R25, and performance evaluation was performed. This is explained below.
  • the conventional tire has a lug groove extending from the tread end to the tire equatorial plane side and terminating without reaching the tire equatorial plane.
  • 36 pieces are provided on the top and have the specifications shown in Table 1.
  • the comparative example tire includes two circumferential thick grooves and a central land portion defined by the circumferential grooves, and the central land portion includes only small grooves inclined with respect to the tire circumferential direction.
  • the inclined narrow groove to be configured is disposed and has the specifications shown in Table 1.
  • the example tire has a first small groove extending along the tire circumferential direction in a central land portion defined by a circumferential narrow groove, and one end portion of the first small groove.
  • the second small groove extending at an angle of 45 ° with respect to the circumferential direction of the tire toward one circumferential narrow groove from the tire
  • An inclined narrow groove comprising a third small groove extending at an angle of 45 ° with respect to the circumferential direction.
  • the second small groove and the third small groove extend from the end of the first small groove to the circumferential narrow groove, and the second small groove and the third small groove are the tire equator surface.
  • the angle of inclination with respect to the tire circumferential direction at positions spaced 75% of the tread width outwardly in the tire width direction is changed by 135 ° and extends to the circumferential narrow groove.
  • the example tire 1 has the specifications shown in Table 1.
  • Each of these test tires was attached to a rim of size 11.25 / 2.0 to form a tire wheel, and an air pressure of 1000 kPa (relative pressure) was applied for various evaluations.
  • Wear resistance and uneven wear resistance are mounted on the rear wheel, which is the driving wheel of the port container transport vehicle (so-called “Straddle Carrier”) used for the test, and loaded with luggage on such vehicle.
  • the port container transport vehicle so-called “Straddle Carrier”
  • the numerical values of the wear resistance and uneven wear resistance in the comparative example tire and the example tire 1 are values obtained by converting those in the conventional tire as 100, and the performance increases as the numerical value increases. Indicates that The evaluation results are summarized in Table 2.
  • the heat dissipation is a tire when it is rotated for 24 hours at a speed of 15 km / h with a tire load of 119 kN on a drum tester with a drum diameter of 5000 mm installed in a condition room at 31 ° C.
  • the temperature of was evaluated using a temperature measuring device.
  • the numerical value of heat dissipation in the comparative example tire and the example tire 1 is a numerical value obtained by converting that in the conventional tire as 100, and indicates that the heat dissipation is improved as the numerical value is larger.
  • Table 2 The evaluation results are summarized in Table 2.
  • Example tire 1 was effectively improved in all of wear resistance, uneven wear resistance and heat dissipation compared with the conventional tire.
  • tires (invention tires 2 to 5) having inclined narrow grooves according to the present invention were respectively prototyped and evaluated for performance as heavy duty tires having a tire size of 16.00R25, and will be described below.
  • Example tire 2 is shown in FIG. 2, and example tires 3 to 5 are shown in FIG. 4A, in the tire circumferential direction in the central land portion defined by the circumferential narrow grooves.
  • a first small groove extending along the first small groove
  • a second small groove extending from one end of the first small groove at an angle of 45 ° with respect to the tire circumferential direction toward the one circumferential narrow groove
  • An inclined narrow groove comprising a third small groove extending at an angle of 45 ° to 46 with respect to the tire circumferential direction from the other end of the small groove toward the other circumferential narrow groove is provided.
  • the second small groove and the third small groove extend from the end of the first small groove to the circumferential narrow groove
  • the second small groove and the third small groove are tires.
  • Example tire 2 From the equatorial plane, the angle of inclination with respect to the tire circumferential direction is changed by 134 ° to 135 ° at positions spaced 75% of the tread width outwardly in the tire width direction and extends to the circumferential narrow groove. .
  • Example tire 2 the width of the end of the inclined narrow groove on the road surface side and the groove width of the inclined narrow groove are the same, whereas in Example tires 3 to 5, The width of the end portion of the groove that is open on the road surface is larger than the groove width of the other portion of the inclined narrow groove, and Example Tires 3 and 4 have bottom raised portions as shown in FIG.
  • the example tire 5 has a configuration shown in FIG. 4B.
  • the tires 2 to 5 have the specifications shown in Table 3.
  • Each of these test tires was attached to a rim of size 11.25 / 2.0 to form a tire wheel, and an air pressure of 1000 kPa (relative pressure) was applied for various evaluations.
  • the wear resistance and uneven wear resistance of the entire tire is determined by attaching the tire wheel to the rear wheel, which is the driving wheel of a port container transport vehicle (so-called “Straddle Carrier”) used for the test,
  • the amount of wear on each part of the tread when running on a paved road surface at an average speed of 15 km / h for 1000 hours under the condition that the tire load is 137 kN (with no load loaded) is 137 kN. It evaluated by measuring.
  • the numerical values of the wear resistance and uneven wear resistance in Example tires 3 to 5 are values obtained by converting those in Example tire 2 as 100, and the larger the numerical value, the better the performance. Indicates that The evaluation results are summarized in Table 4.
  • the heat dissipation is a tire when it is rotated for 24 hours at a speed of 15 km / h with a tire load of 119 kN on a drum tester with a drum diameter of 5000 mm installed in a condition room at 31 ° C.
  • the temperature of was evaluated using a temperature measuring device.
  • the numerical value of heat dissipation in the example tires 3 to 5 is a numerical value obtained by converting that in the example tire 2 as 100, and the larger the value, the better the heat dissipation.
  • Table 4 The evaluation results are summarized in Table 4.
  • the conventional tires 2 to 5 had substantially the same performance with respect to wear resistance and heat dissipation.
  • the tires of Examples 3 to 5 in which the width of the end of the inclined narrow groove on the road surface side is larger than the groove width of the inclined narrow groove have improved uneven wear resistance compared to Example Tire 2.
  • the present invention provides a pneumatic tire with improved wear resistance and uneven wear resistance while effectively improving heat dissipation by optimizing the tread pattern. It became possible to do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

 この発明の目的は、トレッドパターンの適正化を図ることにより、放熱性を有効に向上させつつも、耐摩耗性及び耐偏耗性を向上させた空気入りタイヤを提供することにある。空気入りタイヤは、トレッド部2に、タイヤ周方向に延びる2本の周方向細溝10をタイヤ赤道面CLを挟んで配設して、これら周方向細溝10で中央陸部11を区画形成している。かかる中央陸部11に、タイヤ周方向に沿って延在する第一小溝13と、第一小溝13の一方の端部から、一方の周方向細溝に向かってタイヤ周方向に対し傾斜して延びる第二小溝14と、第一小溝13の他方の端部から、他方の周方向細溝に向かって、タイヤ周方向に対し傾斜して延びる第三小溝15とからなる傾斜細溝12が配設されている。

Description

空気入りタイヤ
 この発明は、トレッド部に、タイヤ周方向に延びる2本の周方向細溝をタイヤ赤道面を挟んで配設して、これら周方向細溝で中央陸部を区画形成した空気入りタイヤ、特には重荷重用空気入りタイヤに関するものであり、かかる空気入りタイヤの放熱性を充分に確保しつつも、耐摩耗性及び耐偏摩耗性の向上を図る。
 建設車両用重荷重用空気入りタイヤは、例えばトラックバス用タイヤ、又は軽トラック用タイヤのような重荷重用空気入りタイヤと比べて、格段に高い耐負荷能力及びトラクション性能が要求される。そのため、かかるタイヤのトレッドパターンとしては、従来、耐摩耗性の観点から中央域にタイヤ周方向に連続して延びるリブ状陸部を配設し、トラクション性の確保の観点から両側方域に複数本のラグ溝を配設することによって、いわゆるリブラグパターンを採用するのが一般的である。しかし、中央域に配設したリブ状陸部の幅が大きくなりすぎると、登坂時のトラクション性が損なわれる上、中央域に周方向に延びる溝が存在しないことから、操舵時に横滑りを誘発しやすく、さらに中央域に横断溝も存在しないため十分なトラクション性が得られないという問題がある。
 そこで、特許文献1に開示されているタイヤは、中央域に中央陸部を区画する周方向細溝を配設して、操舵時の横滑りを抑制し、さらに中央陸部に横断細溝を配設して、充分なトラクション性を向上している。一般に、中央陸部に横断溝を設けると、中央陸部の剛性が低下して、中央陸部における耐摩耗性が低下する。しかし、中央陸部を横断する溝が細溝であることから、タイヤ負荷転動時に、中央陸部が路面との摩擦力によりタイヤ周方向に変形して、横断細溝が路面接地域において閉口するので、中央陸部が実質的に陸続きとなって、中央陸部の剛性の低下を抑制し、中央陸部における耐摩耗性の低下が抑制される。また、路面接地域外では、横断横溝が開口していることから、中央陸部における放熱性が有効に向上している。
特開2004-262295号公報
 特許文献1に記載の空気入りタイヤは、中央陸部における放熱性を充分に確保しつつも、耐摩耗性の低下を抑制しているが、耐摩耗性の更なる向上と耐偏摩耗性の向上が希求されている。
 したがって、この発明の目的は、トレッドパターンの適正化を図ることにより、放熱性を充分に確保しつつも、耐摩耗性及び耐偏摩耗性をより向上させた空気入りタイヤを提供することにある。
 上記目的を達成するため、この発明の空気入りタイヤは、トレッド部に、タイヤ周方向に延びる2本の周方向細溝をタイヤ赤道面を挟んで配設して、これら周方向細溝により中央陸部を区画形成しており、かかる中央陸部に、タイヤ周方向に沿って延在する第一小溝と、第一小溝の一方の端部から、一方の周方向細溝に向かってタイヤ周方向に対し傾斜して延びる第二小溝と、第一小溝の他方の端部から、他方の周方向細溝に向かって、タイヤ周方向に対し傾斜して延びる第三小溝とからなる傾斜細溝を配設してなることを特徴とする。この発明のタイヤは、中央陸部に傾斜細溝を設けることにより、ベルト層にて生じた熱を傾斜細溝から充分に放熱して、蓄熱によるベルト層の破壊を抑制している。また、第二小溝及び第三小溝がヒールアンドトウ摩耗しても、第二小溝及び第三小溝が第一小溝によりタイヤ周方向に離間していることから、摩耗している領域がタイヤ周方向に離間するので、摩耗差による段差が周上にわたり細かく分散され、タイヤ負荷転動時の振動も小さくなり、振動に起因した偏摩耗を抑制して、耐偏摩耗性を向上させることが可能となる。更に、第二小溝及び第三小溝がタイヤ周方向に対し傾斜しており、路面接地域がタイヤ負荷転動時に路面との摩擦により、タイヤ周方向に倒れ込み変形することから、タイヤ負荷転動時に第二小溝及び第三小溝の溝幅が小さくなり、タイヤ赤道面側とトレッド端側の接地長差が小さくなるので、その結果、タイヤ負荷転動時のタイヤ赤道面側とトレッド端側の摩耗差が小さくなるので、耐偏摩耗性を向上させることが可能となる。更にまた、周方向細溝も傾斜細溝も溝幅の小さな細溝であることから、ネガティブ率を小さくすることができるので、陸部剛性を充分に確保して、耐摩耗性を向上させることが可能となる。ここでいう「タイヤ周方向に延びる周方向細溝」とは、タイヤ周方向に沿って直線状に延びる細溝のみならず、ジグザグ状又は波状に延び、タイヤ全体として周方向に一周する細溝も含むものとする。
 また、周方向細溝は、タイヤ赤道面から、タイヤ幅方向外側にトレッド幅の25~60%離間した範囲内に配設することが好ましく、より好ましくは45~60%離間した範囲内に配設する。
 更に、周方向細溝の溝幅は、2.5~15.0mmの範囲内にあることが好ましく、より好ましくは2.5~7.0mmの範囲内にある。
 更にまた、第二小溝及び第三小溝のタイヤ周方向に対し傾斜している角度は、夫々30~60°の範囲内にあることが好ましく、より好ましくは30~45°の範囲内にある。なお、ここでいう「タイヤ周方向に対して傾斜している角度」とは、第二小溝及び第三小溝が、タイヤ周方向に対し交差してできる交差角のうち、鋭角側から測定した角度をいうものとする。
 加えて、第一小溝、第二小溝及び第三小溝の溝幅は、夫々2.5~7.0mmの範囲内にあることが好ましく、より好ましくは2.5~5.0mmの範囲内にある。
 加えてまた、第一小溝は周上で等ピッチにて配設されており、かかる第一小溝のタイヤ周方向距離は、ピッチ長の15~25%の範囲内にあることが好ましく、より好ましくは20~25%の範囲内にある。
 また、周方向細溝の深さは、トレッド部のトレッドゴムのタイヤ径方向距離の75~100%の範囲内にあり、より好ましくは75~85%の範囲内にある。
 更に、傾斜細溝の深さは、トレッド部のトレッドゴムのタイヤ径方向距離の60~100%の範囲内にあることが好ましく、より好ましくは75~85%の範囲内にある。
 更にまた、第二小溝及び第三小溝は、第一小溝の端部から周方向細溝に向けて延在し、夫々中央陸部内にて終端しており、かつ、傾斜細溝がタイヤ赤道面とタイヤ赤道面からタイヤ幅方向外側に12.5%離間した位置との間の範囲内に配設してなることが好ましい。
 このとき、第二小溝及び第三小溝の終端している側の端部は、第二小溝及び第三小溝の溝幅の3~5倍の長さの直径を有する円筒形状であることが好ましい。
 あるいは、第二小溝及び第三小溝が、第一小溝の端部から周方向細溝まで連通して延在しており、第二小溝及び第三小溝の周方向細溝との連通位置において、第二小溝及び第三小溝の周方向細溝とのなす角度が夫々30~60°の範囲内にあることが好ましく、より好ましくは30~45°の範囲内にある。なお、ここでいう「第二小溝及び第三小溝の周方向細溝とのなす角度」とは、第二小溝及び第三小溝が、周方向細溝に対し交差してできる交差角のうち、鋭角側から測定した角度をいうものとする。
 また、第二小溝及び第三小溝は、タイヤ赤道面から、タイヤ幅方向外側にトレッド幅の12.5~25.0%離間した範囲内にてタイヤ周方向に対して傾斜している角度が変更する変曲部分を夫々有することが好ましい。なお、ここでいう「傾斜角度が変更」とは、第二小溝及び第三小溝のタイヤ周方向に対する傾斜角度が、所定の位置にて即座に変更することのみならず、所定の区間にて徐々に変更することも含むものである。また、ここでいう「変曲部分」とは、傾斜細溝がタイヤ赤道面側から延在してきた傾斜角度を変曲させることをいい、具体的には、タイヤ周方向をY軸、タイヤ幅方向をX軸とした直交座標を仮定したとき、傾斜細溝とタイヤ周方向とのなす角のうち鋭角が、第一象限にある場合には第四象限へと、そして、第二象限にある場合には第三象限へとその傾斜角度を変更する部分をいうものとする。
 更に、傾斜細溝は、周上に32~40個の範囲内にて配設してなることが好ましく、より好ましくは36~38個の範囲内にて配設してなる。
 更にまた、傾斜細溝の路面に開口している側の端部の幅は、傾斜細溝のその他の部分の溝幅より大きいことが好ましい。
 このとき、傾斜細溝の路面に開口している側の端部は、タイヤ幅方向断面で見て、段差形状の底上げ部を有することが好ましい。
 また、底上げ部の幅は、傾斜細溝のその他の部分の溝幅の70~130%の範囲にあることが好ましい。
 更に、底上げ部の深さは、傾斜細溝の溝幅の70~130%の範囲にあることが好ましい。
 更にまた、底上げ部の幅は、3.0~6.0mmの範囲にあることが好ましい。
 加えて、底上げ部の深さは、3.0~6.0mmの範囲にあることが好ましい。
 この発明によれば、トレッドパターンの適正化を図ることにより、放熱性を充分に確保しつつも、耐摩耗性及び耐偏摩耗性をより向上させた空気入りタイヤを提供することが可能となる。
この発明に従う代表的な空気入りタイヤとリムとの組立体のタイヤ幅方向断面図である。 図1に示すタイヤのトレッド部の一部の展開図である。 この発明に従うその他のタイヤのトレッド部の一部の展開図である。 (a)は、この発明に従うその他のタイヤのトレッド部の一部の展開図であり、(b)は、(a)に示すトレッド部のIV‐IV線断面図であり、(c)は、この発明に従うその他のタイヤにおける傾斜細溝の断面図である。 従来例タイヤのトレッド部の一部の展開図である。 比較例タイヤのトレッド部の一部の展開図である。
符号の説明
1 タイヤ
2 トレッド部
3 サイドウォール部
4 ビード部
5 ビードコア
6 カーカス層
7 ベルト層
8 タイヤ内腔
9 インナーライナ
10 周方向細溝
11 中央陸部
12 傾斜細溝
13 第一小溝
14 第二小溝
15 第三小溝
16 終端部
17 円筒形の溝
18 変曲部分
19 傾斜細溝の路面に開口している側の端部
20 底上げ部
R リム
CL タイヤ赤道面
D1 トレッド幅
D2 第一小溝のタイヤ周方向距離
D3 ピッチ長
D4 底上げ部の深さ
W1 傾斜細溝の路面に開口している側の端部の幅
W2 傾斜細溝の溝幅
W3 底上げ部の幅
θ1 第二小溝及び第三小溝のタイヤ周方向に対し傾斜している角度
θ2 連通位置にて、第二小溝及び第三小溝がタイヤ周方向細溝に対し傾斜している角度
 以下、図面を参照しつつこの発明の実施の形態を説明する。図1は、この発明に従う代表的な空気入りタイヤ(以下「タイヤ」という。)をリムに装着した、タイヤとリムとの組立体のタイヤ幅方向断面図である。図2は、図1に示すタイヤのトレッド部の一部の展開図であり、図3は、この発明に従うその他のタイヤのトレッド部の一部の展開図である。図4(a)は、この発明に従うその他のタイヤのトレッド部の一部の展開図であり、図4(b)は、図4(a)に示すトレッド部のIV‐IV線断面図であり、図4(c)は、この発明に従うその他のタイヤにおける傾斜細溝の断面図である。
 この発明のタイヤ1は、慣例に従い、路面に接地するトレッド部2と、このトレッド部2の両側部からタイヤ径方向内側に延びる一対のサイドウォール部3と、各サイドウォール部3のタイヤ径方向内側に設けられ、リムRに嵌合される一対のビード部4とで構成されている。このタイヤ1の内部には、各ビード部4に埋設したビードコア5、5間にトロイド状に延びてタイヤ1の骨格構造をなす、カーカス層6と、このカーカス層6のクラウン域の外周側に位置し、トレッド部2を補強するベルト層7とが配設されている。また、タイヤ1の内面側、すなわちタイヤ1とリムRとにより画定されるタイヤ内腔8に面する側には空気不透過性のインナーライナ9が配設されている。更に、この発明のタイヤ1は、図2に示すように、トレッド部2に、タイヤ周方向に直線状に延びる2本の周方向細溝10、10をタイヤ赤道面CLを挟んで配設し、これら周方向細溝10、10により中央陸部11を区画形成している。かかる中央陸部11に、Z字状の傾斜細溝12を配設しており、かかる傾斜細溝12は、タイヤ周方向に沿って延在する第一小溝13と、第一小溝13の一方の端部から、一方の周方向細溝10に向かってタイヤ周方向に対し傾斜して延びる第二小溝14と、第一小溝13の他方の端部から、他方の周方向細溝10に向かって、タイヤ周方向に対し傾斜して延びる第三小溝15とからなる。一般に、ベルト層は、タイヤ負荷転動により繰り返し変形して発熱する発熱源となる。かかる発熱に起因して、ベルト層7にて過剰に蓄熱することで、ベルト層7の破壊を招く虞がある。この発明のタイヤ1は、中央陸部11に傾斜細溝12を設けることにより、ベルト層7にて生じた熱を傾斜細溝12から充分に放熱して、蓄熱によるベルト層7の熱破壊を抑制している。また、タイヤ周方向に対し傾斜している第二小溝14及び第三小溝15近傍のゴム部分が、ヒールアンドトウ摩耗により、他の領域よりも早期に摩耗するので、周上にて摩耗差による段差がタイヤ周方向に生じる。かかる段差により、タイヤ負荷転動時に振動が発生し、振動によりトレッド部が均一に摩耗されないことから、トレッド部が偏摩耗することとなる。しかし、この発明のタイヤ1は、第一小溝13により第二小溝14及び第三小溝15がタイヤ周方向に離間していることから、ヒールアンドトウ摩耗する領域もタイヤ周方向に離間するので、タイヤ周方向に離間していない場合に比べ、摩耗差による段差が周上に細かく分散される。その結果、摩耗差によるタイヤ負荷転動時の振動も小さくなり、かかる振動に起因した偏摩耗が抑制され、耐偏摩耗性を向上させることが可能となる。更に、一般に、トレッド端側の路面接地域の路面接地長がタイヤ赤道面側の路面接地長に比べ小さいことから、タイヤ赤道面側の接地圧がトレッド端側よりも大きくなるので、トレッド端側よりもタイヤ赤道面側にて早期に摩耗し、タイヤ幅方向の内外で摩耗差が生じて偏摩耗することとなる。しかし、この発明のタイヤ1は、第二小溝14及び第三小溝15がタイヤ周方向に対し傾斜しており、タイヤ負荷転動時に路面接地域が路面との摩擦により、タイヤ周方向に倒れ込み変形することから、タイヤ負荷転動時に、路面接地域にて中央陸部11の第二小溝14及び第三小溝15の溝幅が小さくなり、中央陸部11の路面接地長が小さくなるので、タイヤ赤道面側とトレッド端側の接地長差が小さくなる。その結果、トレッド部2の路面との接地形状が実質的に矩形状となって、タイヤ赤道面側とトレッド端側との接地圧差が小さくなるので、タイヤ負荷転動時のタイヤ赤道面側とトレッド端側の摩耗差も小さくなり、耐偏摩耗性を向上させることが可能となる。更にまた、周方向細溝10及び傾斜細溝12が溝幅の小さな細溝により構成されていることから、ネガティブ率を小さくすることができるので、陸部剛性を充分に確保して、耐摩耗性を向上させることが可能となる。
 また、周方向細溝10は、タイヤ赤道面CLから、タイヤ幅方向外側にトレッド幅D1の25~60%離間した範囲内に配設することが好ましく、より好ましくは45~60%離間した範囲内に配設する。なぜなら、周方向細溝10が、タイヤ赤道面CLから、タイヤ幅方向外側にトレッド幅の25%未満の位置に配設されている場合には、タイヤ赤道面CLを含む中央陸部11のタイヤ幅方向距離が小さくなり過ぎて、中央陸部11の剛性が不足することから、かかる陸部11の耐摩耗性及び耐偏摩耗性が低下する可能性があるからである。一方、周方向細溝10が、タイヤ赤道面CLから、タイヤ幅方向外側にトレッド幅の60%を超えた位置に配設されている場合には、中央陸部11のタイヤ幅方向外側の陸部であるショルダー陸部のタイヤ幅方向距離が小さくなり過ぎて、かかるショルダー陸部の剛性が不足することから、かかる陸部の耐偏摩耗性が低下する可能性があるからである。
 更に、周方向細溝10の溝幅は、2.5~15.0mmの範囲内にあることが好ましく、より好ましくは2.5~7.0mmの範囲内にある。なぜなら、周方向細溝10の溝幅が、2.5mm未満の場合には、周方向細溝10の深さが充分であっても、溝底側のベルト層7が発熱すると、放熱可能な溝底側の面積が十分ではないことから、周方向細溝10から有効に放熱することができずに、ベルト層7にて過剰に蓄熱して、ベルト層7が熱破壊される可能性があるからである。一方、周方向細溝10の溝幅が15.0mmを超える場合には、トレッド部2のネガティブ率が大きくなり過ぎて、トレッド部2の剛性が低下することから、耐摩耗性が低下する可能性があるからである。
 更にまた、第二小溝14及び第三小溝15のタイヤ周方向に対し傾斜している角度θ1は、夫々30~60°の範囲内にあることが好ましく、より好ましくは30~45°の範囲内にある。なぜなら、第二小溝14及び第三小溝15のタイヤ周方に対して傾斜している角度θ1を、夫々30°以上に設定することで、タイヤ負荷転動時にトレッド接地域が路面との摩擦によりタイヤ周方向に引っ張られて変形しても、路面に接地している第二小溝14及び第三小溝15が夫々タイヤ周方向に当接して閉口するので、トレッド部2の路面接地域における剛性を向上させることができ、耐摩耗性を更に向上させることができるからである。また、第二小溝14及び第三小溝15のタイヤ周方に対して傾斜している角度θ1が夫々60°を超える場合には、タイヤ負荷転動時の、踏込み時及び蹴出し時のトレッド部2のゴムの変形量が大きくなり、ヒールアンドトウ摩耗に起因した偏摩耗が発生し、耐偏摩耗性が低下するからである。
 加えて、第一小溝13、第二小溝14及び第三小溝15の溝幅は、夫々2.5~7.0mmの範囲内にあることが好ましく、より好ましくは2.5~5.0mmの範囲内にある。なぜなら、第一小溝13、第二小溝14及び第三小溝15の溝幅が、夫々2.5mm未満の場合には、中央陸部11における剛性を充分に確保して、耐摩耗性を有効に向上することができるが、傾斜細溝12の溝底側の面積が不足して、放熱性が充分に確保されないので、中央陸部11のベルト層7にて過剰に蓄熱して、ベルト層7が熱破壊される可能性があるからである。一方、第一小溝13、第二小溝14及び第三小溝15の溝幅が、夫々7.0mmを超える場合には、傾斜細溝12の溝底側の面積を充分に確保して、放熱性が有効に向上するので、中央陸部11のベルト層7近傍にて過剰に蓄熱することなく、ベルト層7の熱破壊を防止することができるが、中央陸部11におけるネガティブ率が大きくなり過ぎて、中央陸部11の剛性が低下し過ぎるので、耐摩耗性が低下する可能性があるからである。
 加えてまた、第一小溝13は周上にて等ピッチで配設されており、かかる第一小溝13のタイヤ周方向距離D2は、ピッチ長D3の15~25%の範囲内にあることが好ましく、より好ましくは20~25%の範囲内にある。なぜなら、第一小溝13のタイヤ周方向距離D2が、ピッチ長D3の15~25%の範囲内にあることで、その近傍のゴム領域が摩耗し易い第二小溝14及び第三小溝15がタイヤ周方向に充分に離間するので、ヒールアンドトウ摩耗による段差をタイヤ周方向に分散させて、上述したように偏摩耗を抑制することが可能となるからである。なお、第一小溝13のタイヤ周方向距離D2が、ピッチ長D3の15%未満の場合には、第一小溝13のタイヤ周方距離が小さくなり過ぎて、第二小溝14と第三小溝15がタイヤ周方向に近付き過ぎることから、ヒールアンドトウ摩耗による段差をタイヤ周方向に充分に分散させることができずに、耐偏摩耗性が低下する可能性がある。一方、第一小溝13のタイヤ周方向距離D2が、ピッチ長D3の25%を超える場合には、中央陸部11がタイヤ周方向に分断されるため、中央陸部11の剛性が低下して、耐摩耗性が低下する可能性がある。
 また、周方向細溝10の深さは、トレッド部2のトレッドゴムのタイヤ径方向距離の75~100%の範囲内にあり、より好ましくは75~85%の範囲内にある。なぜなら、周方向細溝10の深さが、トレッドゴムのタイヤ径方向距離の75%未満の場合には、周方向細溝10の深さが不足しており、ベルト層7にて発熱しても、その熱が周方向細溝10の溝底側のゴム層にて蓄熱してしまい、充分な放熱性が確保されないことから、過剰な蓄熱に起因してベルト層7が破壊される可能性があるからである。一方、周方向細溝10の深さが、トレッドゴムのタイヤ径方距離の100%を超えるようなタイヤを製造すると、加硫成形時に周方向細溝10を形成するためのブレードがベルト層7やカーカス層6をタイヤ径方向内側に押し込んで、それらが凹凸した形状となるため、トレッド部2の剛性にばらつきが生じ、耐偏摩耗性が低下する可能性があるからである。
 更に、傾斜細溝12の深さは、トレッド部2のトレッドゴムのタイヤ径方向距離の60~100%の範囲内にあることが好ましく、より好ましくは75~85%の範囲内にある。なぜなら、傾斜細溝12の深さが、トレッドゴムのタイヤ径方向距離の60%未満の場合には、傾斜細溝12の深さが不足しており、ベルト層7にて発熱しても、その熱が傾斜細溝12の溝底側のゴム層にて蓄熱してしまい、充分な放熱性が確保されないことから、過剰な蓄熱に起因してベルト層7が破壊される可能性があるからである。一方、傾斜細溝12の深さが、トレッドゴムのタイヤ径方距離の100%を超えるようなタイヤを製造すると、加硫成形時に傾斜細溝12を形成するためのブレードがベルト層7やカーカス層6をタイヤ径方向内側に押し込んで、それらが凹凸した形状となるため、タイヤ負荷転動時に、ベルト層7がタイヤ周方向に繰返し波状に変形することから、タイヤの耐久性及び耐偏摩耗性が低下する可能性があるからである。
 更にまた、第二小溝14及び第三小溝15は、第一小溝13の端部から周方向細溝10に向けて延在し、夫々中央陸部11内にて終端していることが好ましい。なぜなら、第二小溝14及び第三小溝15を中央陸部11内にて終端させることで、第二小溝14及び第三小溝15が周方向細溝10まで連通して延在する場合に比べ、中央陸部11の剛性を高くすることができるので、耐摩耗性を向上することができるからである。このとき、傾斜細溝12は、タイヤ赤道面CLとタイヤ赤道面CLからタイヤ幅方向外側に12.5%離間した位置との間の範囲内に配設してなることが好ましい。なぜなら、傾斜細溝11がかかる範囲内から逸脱して更に延在する場合には、中央陸部11の剛性が低下し過ぎることから、耐摩耗性が低下する可能性があるからである。
 更に、第二小溝14及び第三小溝15が中央陸部11内にて終端している場合には、第二小溝14及び第三小溝15の終端している側の端部16(以下、「終端部」とする)は、第二小溝14及び第三小溝15の溝幅の3~5倍の直径を有する円筒形状17であることが好ましい。終端部が上記寸法の円筒形状となっていない場合には、タイヤ負荷転動時に傾斜細溝が路面との摩擦によりタイヤ周方向に引っ張られて大きく開口する際に、終端部に引張応力が集中することとなり、かかる引張応力の集中に起因して、終端部のゴム部分から亀裂が発生することとなり、トレッド部の破壊を招く可能性がある。そこで、第二小溝14及び第三小溝15の終端部16に、第二小溝14及び第三小溝15の溝幅の3~5倍の長さの直径を有する円筒形の溝17を配設することにより、終端部16がかかる寸法の円形溝17となっていない場合に比べ、タイヤ負荷転動時に傾斜細溝12が路面との摩擦により開口する際に終端部16に集中する引張応力を有効に分散することができ、かかるゴム部分の亀裂の発生を抑制して、トレッド部2の破壊を防止することが可能となるからである。このとき、円筒形状17の終端部16の直径が、第二小溝14及び第三小溝15の溝幅の3倍未満の場合には、引張応力を分散することができる領域が充分に確保されないことから、ゴム部分の亀裂の発生を抑制することができずに、トレッド部2が破壊される可能性がある。一方、円筒形状17の終端部16の直径が、第二小溝14及び第三小溝15の溝幅の5倍を超える場合には、引張応力は充分に分散することができるが、中央陸部11のネガティブ率が低下することから、陸部剛性を充分に確保することができずに、耐摩耗性が低下する可能性がある。
 あるいは、図3に示すように、第二小溝14及び第三小溝15が、第一小溝13の端部から周方向細溝10まで連通して延在していることが好ましい。なぜなら、第二小溝14及び第三小溝15が、周方向細溝10まで連通して延在していることで、第二小溝14及び第三小溝15が中央陸部11内にて終端している場合よりも、傾斜細溝12の溝面積を大きくして、中央陸部11における放熱性を向上することが可能となるからである。このとき、第二小溝14及び第三小溝15の周方向細溝10との連通位置において、第二小溝14及び第三小溝15の周方向細溝10とのなす角度θ2が30~60°の範囲内にあることが好ましく、より好ましくは30~45°の範囲内にある。第二小溝14及び第三小溝15の周方向細溝10とのなす角度θ2が、30°未満の場合には、第二小溝14と周方向細溝10とに挟まれた部分及び第三小溝15と周方向細溝10とに挟まれた部分に夫々先鋭部が形成され、かかる部分の剛性が低下する。そうすると、路面接地時には当該部分が倒れ込んで、路面との接触から逃げてしまうので、この挟まれた部分のみ局部的に摩耗が遅くなり、偏摩耗の問題が生じる。しかし、第二小溝14及び第三小溝15の周方向細溝10との連通位置において、第二小溝14及び第三小溝15の周方向細溝10とのなす角度θ2を30°以上に設定することにより、第二小溝14と周方向細溝10とに挟まれた部分及び第三小溝15と周方向細溝10とに挟まれた部分に夫々先鋭部が形成されず、かかる部分の剛性を増大させることができる。従って、かかる部分は路面接地時においても倒れ込むことなく路面と確実に接触し、接地圧が均一に保たれることから、耐偏摩耗性が向上する。また、第二小溝14及び第三小溝15の周方向細溝10との連通位置において、第二小溝14及び第三小溝15の周方向細溝10とのなす角度θ2が夫々60°を超える場合には、タイヤ負荷転動時の、踏込み時及び蹴出し時のトレッド部2のゴムの変形量が大きくなり、ヒールアンドトウ摩耗に起因した偏摩耗が発生し、耐偏摩耗性が低下するからである。
 また、第二小溝14及び第三小溝15は、タイヤ赤道面CLから、タイヤ幅方向外側にトレッド幅D1の12.5~25.0%離間した範囲内にてタイヤ周方向に対して傾斜している角度が変更する変曲部分18を夫々有することが好ましい。なぜなら、かかる構成を採用することにより、タイヤ負荷転動時には、第二小溝14及び第三小溝15を夫々構成する溝壁が路面に対して閉口するよう変形して、中央陸部11の剛性を充分に確保しつつも、夫々が上記変曲部分18を有することで、第二小溝14及び第三小溝15は、周方向細溝11と連通する箇所にてタイヤ周方向に対し極端な鋭角となり、偏摩耗の核となるような角部を形成することなく、周方向細溝11との連結部における偏摩耗の発生を更に抑制することができるからである。
 更に、傾斜細溝12は、周上に32~40個の範囲内にて配設してなることが好ましく、より好ましくは36~38個の範囲内にて配設してなる。なぜなら、傾斜細溝12を周上にて32~40個配設することにより、中央陸部11における剛性を周上にわたってバランス良く低下させ、局所的に陸部剛性が高い領域が小さくなることで、周上における剛性差に起因した偏摩耗を抑制することが可能となるからである。
 更にまた、図4(a)及び(b)に示すように、傾斜細溝12の路面に開口している側の端部19の幅W1は、傾斜細溝12のその他の部分の溝幅W2より大きいことが好ましい。発明者は、トレッド部2に上述したような傾斜細溝12を設け、コーナリング走行時などに傾斜細溝近傍の陸部に横力が負荷されると、傾斜細溝近傍の陸部のエッジ部分にて接地圧が大きくなり過ぎることから、かかるエッジ部分が早期に摩耗してしまうことを見出した。また、傾斜細溝12のタイヤ周方向に対し傾斜している角度が小さいほど、傾斜細溝近傍の陸部に負荷される横力が大きくなることから、タイヤ周方向に沿って延在する第一小溝13は勿論のこと、第二小溝14及び第三小溝15のタイヤ周方向に対し傾斜している角度が60°未満の場合に早期摩耗が顕著であることを見出した。そこで、傾斜細溝12の路面に開口している側の端部19の幅W1を、傾斜細溝12のその他の部分の溝幅W2より大きくすることにより、傾斜細溝近傍の陸部に横力が負荷されても、傾斜細溝近傍の陸部のエッジ部分にて接地圧が大きくなり過ぎないことから、かかるエッジ部分が早期に摩耗してしまうことを防止することが可能となる。このとき、図4(c)に示すように、傾斜細溝12の路面に開口している側の端部19は、タイヤ幅方向断面で見て、段差形状の底上げ部20とすることが可能である。
 かかる、底上げ部20の幅W3は、傾斜細溝12のその他の部分の溝幅W2の70~130%の範囲にあることが好ましい。なぜなら、底上げ部20の幅W3が、傾斜細溝12のその他の部分の溝幅W2の130%を超える場合には、傾斜細溝近傍の陸部の剛性が低下し過ぎることから、耐摩耗性が低下する可能性があるからである。一方、底上げ部20の幅W3が、傾斜細溝12のその他の部分の溝幅W2の70%未満の場合には、傾斜細溝近傍の陸部のエッジ部分にて接地圧が充分に小さくならずに、かかるエッジ部分の早期摩耗を防止することができない可能性があるからである。
 更に、底上げ部20の深さD4は、傾斜細溝12の溝幅W2の70~130%の範囲にあることが好ましい。なぜなら、底上げ部20の深さD4が、傾斜細溝12の溝幅W2の130%を超える場合には、傾斜細溝近傍の陸部の剛性が低下し過ぎることから、耐摩耗性が低下する可能性があるからである。一方、底上げ部20の深さD4が、傾斜細溝12の溝幅W2の70%未満の場合には、傾斜細溝近傍の陸部のエッジ部分にて接地圧が充分に小さくならずに、かかるエッジ部分の早期摩耗を防止することができない可能性があるからである。
 更にまた、底上げ部20の幅W3は、3.0~6.0mmの範囲にあることが好ましい。なぜなら、底上げ部20の幅W3が6.0mmを超える場合には、傾斜細溝近傍の陸部の剛性が低下し過ぎることから、耐摩耗性が低下する可能性があるからである。一方、底上げ部20の幅W3が3.0mm未満の場合には、傾斜細溝近傍の陸部のエッジ部分にて接地圧が充分に小さくならずに、かかるエッジ部分の早期摩耗を防止することができない可能性があるからである。
 加えて、底上げ部20の深さD4は、3.0~6.0mmの範囲にあることが好ましい。なぜなら、底上げ部20の深さD4が6.0mmを超える場合には、傾斜細溝近傍の陸部の剛性が低下し過ぎることから、耐摩耗性が低下する可能性があるからである。一方、底上げ部20の深さD4が3.0mm未満の場合には、傾斜細溝近傍の陸部のエッジ部分にて接地圧が充分に小さくならずに、かかるエッジ部分の早期摩耗を防止することができない可能性があるからである。
 なお、上述したところはこの発明の実施形態の一部を示したに過ぎず、この発明の趣旨を逸脱しない限り、これらの構成を交互に組み合わせたり、種々の変更を加えたりすることができる。
 次に、従来技術のラグ溝を有するタイヤ(従来例タイヤ)、中央陸部を具え、かかる中央陸部にこの発明に従う傾斜細溝とは異なる構成の傾斜細溝を有する比較例のタイヤ(比較例タイヤ)及び中央陸部を具え、かかる中央陸部がこの発明に従う傾斜細溝を具えるタイヤ(実施例タイヤ1)を、タイヤサイズ16.00R25の重荷重用タイヤとして、夫々試作し、性能評価を行ったので、以下に説明する。
 従来例タイヤは、図5に示すように、トレッド部に、トレッド端からタイヤ赤道面側に延在し、タイヤ赤道面に到達することなく終端するラグ溝を有し、かかるラグ溝は、周上に36個設けられており、表1に示す諸元を有する。比較例タイヤは、図6に示すように、2本の周方向太溝と、それにより区画形成される中央陸部を具え、かかる中央陸部には、タイヤ周方向に対し傾斜した小溝のみにより構成される傾斜細溝が配設されており、表1に示す諸元を有する。また、実施例タイヤは、図3に示すように、周方向細溝により区画形成される中央陸部に、タイヤ周方向に沿って延在する第一小溝と、第一小溝の一方の端部から、一方の周方向細溝に向かってタイヤ周方向に対し45°にて傾斜して延びる第二小溝と、第一小溝の他方の端部から、他方の周方向細溝に向かって、タイヤ周方向に対し45°にて傾斜して延びる第三小溝とからなる傾斜細溝を具える。また、実施例タイヤ1は、第二小溝及び第三小溝が、第一小溝の端部から周方向細溝まで連通して延在しており、第二小溝及び第三小溝は、タイヤ赤道面から、タイヤ幅方向外側にトレッド幅の75%離間した位置にてタイヤ周方向に対して傾斜している角度が夫々135°変更して周方向細溝まで延在している。また、実施例タイヤ1は表1に示す諸元を有する。
Figure JPOXMLDOC01-appb-T000001
 これら各供試タイヤをサイズ11.25/2.0のリムに取付けてタイヤ車輪とし、空気圧1000kPa(相対圧)を適用し、各種評価に供した。
 耐摩耗性及び耐偏摩耗性は、上記したタイヤ車輪をテストに使用する港湾コンテナ搬送車両(いわゆる「ストラドルキャリア」)の駆動車輪である後輪に装着し、かかる車両に荷物を積載して、タイヤ負荷荷重を137kN(なお、荷物無積載時には78kN)とした条件にて、舗装路面を平均時速15km/hにて1000時間走行させたときのトレッド部の各部分の摩耗量を測定することで評価した。なお、比較例タイヤ及び実施例タイヤ1における耐摩耗性及び耐偏摩耗性の数値は、従来例タイヤにおけるそれらを100として換算し比較した数値であり、かかる数値が大きいほど、それら性能が向上していることを示す。その評価結果は、表2にまとめた。
 放熱性は、31℃の条件室内に設置された、ドラム径が5000mmのドラム試験機上にて、上記車輪のタイヤ負荷荷重を119kNとして、時速15km/hにて24時間回転させた際のタイヤの温度を温度測定器を使用して測定することで評価した。なお、比較例タイヤ及び実施例タイヤ1における放熱性の数値は、従来例タイヤにおけるそれを100として換算し比較した数値であり、かかる数値が大きいほど、放熱性が向上していることを示す。その評価結果は、表2にまとめた。
Figure JPOXMLDOC01-appb-T000002
 表2の結果から明らかなように、比較例タイヤは、従来例タイヤに比べ、放熱性及び耐偏摩耗性は有効に向上しているものの、耐摩耗性が充分に向上していない。それに対し、実施例タイヤ1は、従来例タイヤに比べ、耐摩耗性、耐偏摩耗性及び放熱性のいずれもが有効に向上していた。
 次に、この発明に従う傾斜細溝を具えるタイヤ(実施例タイヤ2~5)を、タイヤサイズ16.00R25の重荷重用タイヤとして、夫々試作し、性能評価を行ったので、以下に説明する。
 実施例タイヤ2は、図2に示すように、そして、実施例タイヤ3~5は、図4(a)に示すように、周方向細溝により区画形成される中央陸部に、タイヤ周方向に沿って延在する第一小溝と、第一小溝の一方の端部から、一方の周方向細溝に向かってタイヤ周方向に対し45°にて傾斜して延びる第二小溝と、第一小溝の他方の端部から、他方の周方向細溝に向かって、タイヤ周方向に対し45°~46にて傾斜して延びる第三小溝とからなる傾斜細溝を具える。また、実施例タイヤ2~5は、第二小溝及び第三小溝が、第一小溝の端部から周方向細溝まで連通して延在しており、第二小溝及び第三小溝は、タイヤ赤道面から、タイヤ幅方向外側にトレッド幅の75%離間した位置にてタイヤ周方向に対して傾斜している角度が夫々134°~135°変更して周方向細溝まで延在している。更に、実施例タイヤ2は、傾斜細溝の路面に開口している側の端部の幅と、傾斜細溝の溝幅が同一であるのに対し、実施例タイヤ3~5は、傾斜細溝の路面に開口している側の端部の幅が、傾斜細溝のその他の部分の溝幅よりも大きく、実施例タイヤ3及び4は、図4(c)に示すように底上げ部を具えた構成を有し、実施例タイヤ5は、図4(b)に示す構成を有する。なお、実施例タイヤ2~5は夫々表3に示す諸元を有する。
Figure JPOXMLDOC01-appb-T000003
 これら各供試タイヤをサイズ11.25/2.0のリムに取付けてタイヤ車輪とし、空気圧1000kPa(相対圧)を適用し、各種評価に供した。
 タイヤ全体としての耐摩耗性及び耐偏摩耗性は、上記したタイヤ車輪をテストに使用する港湾コンテナ搬送車両(いわゆる「ストラドルキャリア」)の駆動車輪である後輪に装着し、かかる車両に荷物を積載して、タイヤ負荷荷重を137kN(なお、荷物無積載時には78kN)とした条件にて、舗装路面を平均時速15km/hにて1000時間走行させたときのトレッド部の各部分の摩耗量を測定することで評価した。なお、実施例タイヤ3~5における耐摩耗性及び耐偏摩耗性の数値は、実施例タイヤ2におけるそれらを100として換算し比較した数値であり、かかる数値が大きいほど、それら性能が向上していることを示す。その評価結果は、表4にまとめた。
 放熱性は、31℃の条件室内に設置された、ドラム径が5000mmのドラム試験機上にて、上記車輪のタイヤ負荷荷重を119kNとして、時速15km/hにて24時間回転させた際のタイヤの温度を温度測定器を使用して測定することで評価した。なお、実施例タイヤ3~5における放熱性の数値は、実施例タイヤ2におけるそれを100として換算し比較した数値であり、かかる数値が大きいほど、放熱性が向上していることを示す。その評価結果は、表4にまとめた。
Figure JPOXMLDOC01-appb-T000004
 表4の結果から明らかなように、従来例タイヤ2~5は、耐摩耗性及び放熱性については略同等の性能を有していた。また、傾斜細溝の路面に開口している側の端部の幅が、傾斜細溝の溝幅よりも大きい実施例タイヤ3~5は、実施例タイヤ2に比べ、耐偏摩耗性が向上していた。
 以上のことから明らかなように、この発明により、トレッドパターンの適正化を図ることにより、放熱性を有効に向上させつつも、耐摩耗性及び耐偏摩耗性を向上させた空気入りタイヤを提供することが可能となった。

Claims (19)

  1.  トレッド部に、タイヤ周方向に延びる2本の周方向細溝をタイヤ赤道面を挟んで配設して、これら周方向細溝で中央陸部を区画形成した空気入りタイヤにおいて、
     前記中央陸部に、タイヤ周方向に沿って延在する第一小溝と、該第一小溝の一方の端部から、一方の前記周方向細溝に向かってタイヤ周方向に対し傾斜して延びる第二小溝と、該第一小溝の他方の端部から、他方の前記周方向細溝に向かって、タイヤ周方向に対し傾斜して延びる第三小溝とからなる傾斜細溝を配設してなることを特徴とする空気入りタイヤ。
  2.  前記周方向細溝は、タイヤ赤道面から、タイヤ幅方向外側にトレッド幅の25~60%離間した範囲内に配設してなる、請求項1に記載の空気入りタイヤ。
  3.  前記周方向細溝の溝幅は、2.5~15.0mmの範囲内にある、請求項1又は2に記載の空気入りタイヤ。
  4.  前記第二小溝及び第三小溝のタイヤ周方向に対し傾斜している角度は、夫々30~60°の範囲内にある、請求項1~3のいずれか一項に記載の空気入りタイヤ。
  5.  前記第一小溝、第二小溝及び第三小溝の溝幅は、夫々2.5~7.0mmの範囲内にある、請求項1~4のいずれか一項に記載の空気入りタイヤ。
  6.  前記第一小溝は周上に等ピッチにて配設されており、該第一小溝のタイヤ周方向距離は、ピッチ長の15~25%の範囲内にある、請求項1~5のいずれか一項に記載の空気入りタイヤ。
  7.  前記周方向細溝の深さは、前記トレッド部のトレッドゴムのタイヤ径方向距離の75~100%の範囲内にある、請求項1~6のいずれか一項に記載の空気入りタイヤ。
  8.  前記傾斜細溝の深さは、前記トレッド部のトレッドゴムのタイヤ径方向距離の60~100%の範囲内にある、請求項1~7のいずれか一項に記載の空気入りタイヤ。
  9.  前記第二小溝及び第三小溝は、前記第一小溝の端部から前記周方向細溝に向けて延在し、夫々前記中央陸部内にて終端しており、前記傾斜細溝は、タイヤ赤道面とタイヤ赤道面からタイヤ幅方向外側に12.5%離間した位置との間の範囲内に配設してなる、請求項1~8のいずれか一項に記載の空気入りタイヤ。
  10.  前記第二小溝及び第三小溝の終端している側の端部は、該第二小溝及び第三小溝の溝幅の3~5倍の長さの直径を有する円筒形状である、請求項9に記載の空気入りタイヤ。
  11.  前記第二小溝及び第三小溝が、前記第一小溝の端部から前記周方向細溝まで連通して延在しており、該第二小溝及び第三小溝の該周方向細溝との連通位置において、該第二小溝及び第三小溝の周方向細溝とのなす角度が夫々30~60°の範囲内にある、請求項1~8のいずれか一項に記載の空気入りタイヤ。
  12.  前記第二小溝及び第三小溝は、タイヤ赤道面から、タイヤ幅方向外側にトレッド幅の12.5~25.0%離間した範囲内にてタイヤ周方向に対して傾斜している角度が変更する変曲部分を夫々有する、請求項11に記載の空気入りタイヤ。
  13.  前記傾斜細溝は、周上に32~40個の範囲内にて配設してなる、請求項1~12のいずれか一項に記載の空気入りタイヤ。
  14.  前記傾斜細溝の路面に開口している側の端部の幅は、傾斜細溝のその他の部分の溝幅より大きい、請求項1~13のいずれか一項に記載の空気入りタイヤ。
  15.  前記傾斜細溝の路面に開口している側の端部は、タイヤ幅方向断面で見て、段差形状の底上げ部を有する、請求項14に記載の空気入りタイヤ。
  16.  前記底上げ部の幅は、前記傾斜細溝のその他の部分の溝幅の70~130%の範囲にある、請求項15に記載の空気入りタイヤ。
  17.  前記底上げ部の深さは、前記傾斜細溝の溝幅の70~130%の範囲にある、請求項15又は16に記載の空気入りタイヤ。
  18.  前記底上げ部の幅は、3.0~6.0mmの範囲にある、請求項15~17のいずれか一項に記載の空気入りタイヤ。
  19.  前記底上げ部の深さは、3.0~6.0mmの範囲にある、請求項15~18のいずれか一項に記載の空気入りタイヤ。
PCT/JP2009/051263 2008-02-27 2009-01-27 空気入りタイヤ WO2009107436A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801149133A CN102015330B (zh) 2008-02-27 2009-01-27 充气轮胎
ES09714395.2T ES2602573T3 (es) 2008-02-27 2009-01-27 Cubierta de neumático
EP09714395.2A EP2251214B1 (en) 2008-02-27 2009-01-27 Pneumatic tire
US12/919,588 US9259973B2 (en) 2008-02-27 2009-01-27 Heavy duty tire

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008046042 2008-02-27
JP2008-046042 2008-02-27
JP2008-307452 2008-12-02
JP2008307452A JP5297778B2 (ja) 2008-02-27 2008-12-02 空気入りタイヤ

Publications (1)

Publication Number Publication Date
WO2009107436A1 true WO2009107436A1 (ja) 2009-09-03

Family

ID=41015842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051263 WO2009107436A1 (ja) 2008-02-27 2009-01-27 空気入りタイヤ

Country Status (6)

Country Link
US (1) US9259973B2 (ja)
EP (1) EP2251214B1 (ja)
JP (1) JP5297778B2 (ja)
CN (1) CN102015330B (ja)
ES (1) ES2602573T3 (ja)
WO (1) WO2009107436A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105008149A (zh) * 2013-03-13 2015-10-28 株式会社普利司通 充气轮胎
US11179970B2 (en) 2016-09-16 2021-11-23 The Yokohama Rubber Co., Ltd. Pneumatic tire

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2754567B1 (en) 2011-09-09 2017-05-10 Bridgestone Corporation Pneumatic tire
JP5956765B2 (ja) * 2012-02-10 2016-07-27 株式会社ブリヂストン 建設車両用空気入りラジアルタイヤ
JP5667617B2 (ja) * 2012-11-20 2015-02-12 住友ゴム工業株式会社 空気入りタイヤ
JP5785577B2 (ja) * 2013-03-13 2015-09-30 株式会社ブリヂストン 空気入りタイヤ
JP5799043B2 (ja) * 2013-03-13 2015-10-21 株式会社ブリヂストン 空気入りタイヤ
JP5805123B2 (ja) * 2013-03-13 2015-11-04 株式会社ブリヂストン 空気入りタイヤ
JP5977696B2 (ja) * 2013-03-13 2016-08-24 株式会社ブリヂストン 空気入りタイヤ
FR3012767B1 (fr) * 2013-11-05 2015-10-23 Michelin & Cie Bande de roulement comportant un bloc presentant une pluralite d'incisions
FR3012768B1 (fr) * 2013-11-05 2016-12-23 Michelin & Cie Bande de roulement comportant un bloc presentant une pluralite d'incisions
JP6194279B2 (ja) * 2014-05-21 2017-09-06 株式会社ブリヂストン 空気入りタイヤ
JP6060138B2 (ja) * 2014-12-02 2017-01-11 株式会社ブリヂストン 空気入りタイヤ
JP5985005B2 (ja) * 2015-05-25 2016-09-06 株式会社ブリヂストン 空気入りタイヤ
JP6317295B2 (ja) * 2015-05-25 2018-04-25 株式会社ブリヂストン 空気入りタイヤ
JP6527758B2 (ja) * 2015-06-13 2019-06-05 株式会社ブリヂストン 空気入りタイヤ
JP6825434B2 (ja) * 2017-03-16 2021-02-03 住友ゴム工業株式会社 タイヤ
JP6854221B2 (ja) 2017-08-30 2021-04-07 株式会社ブリヂストン 建設車両用タイヤ
CN111132855B (zh) 2017-09-25 2022-03-25 米其林集团总公司 具有改进的耐久性能的用于越野车辆的轮胎
JP7323789B2 (ja) * 2019-08-08 2023-08-09 横浜ゴム株式会社 空気入りタイヤ
JP7385107B2 (ja) 2019-08-08 2023-11-22 横浜ゴム株式会社 空気入りタイヤ
JP7298381B2 (ja) * 2019-08-08 2023-06-27 横浜ゴム株式会社 空気入りタイヤ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01153304A (ja) * 1987-12-09 1989-06-15 Bridgestone Corp 不整地走行用空気入りタイヤ
JPH06171315A (ja) * 1992-12-04 1994-06-21 Yokohama Rubber Co Ltd:The 空気入りラジアルタイヤ
JP2004262295A (ja) 2003-02-28 2004-09-24 Bridgestone Corp 建設車両用重荷重用空気入りタイヤ
JP2008013037A (ja) * 2006-07-05 2008-01-24 Bridgestone Corp 建設車両用空気入りタイヤ

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244901A (en) * 1975-10-04 1977-04-08 Bridgestone Corp High durable tread pattern of two grooves rip type pneumtic tire
JPS60234005A (ja) * 1984-05-02 1985-11-20 Bridgestone Corp ウエツト性能に優れる空気入りタイヤ
JPH0532105A (ja) * 1991-07-29 1993-02-09 Ohtsu Tire & Rubber Co Ltd :The 重荷重用空気入タイヤ
JPH0781324A (ja) * 1993-09-14 1995-03-28 Sumitomo Rubber Ind Ltd 重荷重用タイヤ
JPH0958222A (ja) * 1995-08-28 1997-03-04 Yokohama Rubber Co Ltd:The 重荷重用空気入りラジアルタイヤ
JPH08276709A (ja) * 1995-12-11 1996-10-22 Koichi Nakazato タイヤ
DE69617752D1 (de) 1996-06-07 2002-01-17 Goodyear Tire & Rubber Eine umwandelbare lauffläche für lkw-reifen oder anhängerreifen
JP3833785B2 (ja) * 1997-07-15 2006-10-18 株式会社ブリヂストン 空気入りタイヤ
JP4046248B2 (ja) * 1997-08-07 2008-02-13 東洋ゴム工業株式会社 空気入りタイヤ
US6264453B1 (en) * 1997-10-27 2001-07-24 The Goodyear Tire & Rubber Company Article and method for composite tire mold blades
EP1403098B1 (en) * 2001-06-07 2007-01-03 Bridgestone Corporation Off the road tire
JP4149219B2 (ja) * 2002-09-11 2008-09-10 株式会社ブリヂストン 重荷重用タイヤ
JP4274355B2 (ja) * 2003-04-09 2009-06-03 東洋ゴム工業株式会社 空気入りタイヤ
JP2006007882A (ja) * 2004-06-23 2006-01-12 Bridgestone Corp 空気入りタイヤ
ES2334369T3 (es) * 2004-06-23 2010-03-09 Bridgestone Corporation Neumatico.
KR20070010560A (ko) * 2005-07-19 2007-01-24 한국타이어 주식회사 중하중용 공기입 타이어
JP2008110625A (ja) * 2006-10-27 2008-05-15 Toyo Tire & Rubber Co Ltd 空気入りタイヤ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01153304A (ja) * 1987-12-09 1989-06-15 Bridgestone Corp 不整地走行用空気入りタイヤ
JPH06171315A (ja) * 1992-12-04 1994-06-21 Yokohama Rubber Co Ltd:The 空気入りラジアルタイヤ
JP2004262295A (ja) 2003-02-28 2004-09-24 Bridgestone Corp 建設車両用重荷重用空気入りタイヤ
JP2008013037A (ja) * 2006-07-05 2008-01-24 Bridgestone Corp 建設車両用空気入りタイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2251214A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105008149A (zh) * 2013-03-13 2015-10-28 株式会社普利司通 充气轮胎
US10647160B2 (en) 2013-03-13 2020-05-12 Bridgestone Corporation Pneumatic tire
US11179970B2 (en) 2016-09-16 2021-11-23 The Yokohama Rubber Co., Ltd. Pneumatic tire

Also Published As

Publication number Publication date
ES2602573T3 (es) 2017-02-21
CN102015330B (zh) 2013-10-30
US9259973B2 (en) 2016-02-16
EP2251214B1 (en) 2016-08-24
EP2251214A1 (en) 2010-11-17
JP5297778B2 (ja) 2013-09-25
JP2009227264A (ja) 2009-10-08
EP2251214A4 (en) 2015-02-25
CN102015330A (zh) 2011-04-13
US20110005652A1 (en) 2011-01-13

Similar Documents

Publication Publication Date Title
JP5297778B2 (ja) 空気入りタイヤ
JP5435877B2 (ja) 空気入りタイヤ
US10252579B2 (en) Heavy duty tire
US8813799B2 (en) Heavy duty radial tire
US20130118664A1 (en) Heavy duty tire
WO2015033818A1 (ja) 空気入りタイヤ
JP4769080B2 (ja) 横方向の剛性を有するサイプ付きタイヤトレッド
WO2015182024A1 (ja) 空気入りタイヤ
WO2018225371A1 (ja) 空気入りタイヤ
JP4843661B2 (ja) 重荷重用タイヤ
WO2013157544A1 (ja) タイヤ
US20220227180A1 (en) Pneumatic tire
JP2009280009A (ja) 重荷重用タイヤ
US20220227176A1 (en) Pneumatic tire
JP6431435B2 (ja) 重荷重用タイヤ
JP2010116065A (ja) 空気入りタイヤ
JP7110699B2 (ja) タイヤ
WO2017022206A1 (ja) 自動二輪車用空気入りタイヤ
JP7053238B2 (ja) 空気入りタイヤ
US11142023B2 (en) Pneumatic tire
JP2011068349A (ja) 重荷重用タイヤ
CN110087910B (zh) 改善空气动力学的胎面
JP2009274503A (ja) 空気入りタイヤ
US11420482B2 (en) Pneumatic tire
JP4286588B2 (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980114913.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09714395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009714395

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009714395

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12919588

Country of ref document: US