WO2009104570A1 - 空気極 - Google Patents

空気極 Download PDF

Info

Publication number
WO2009104570A1
WO2009104570A1 PCT/JP2009/052618 JP2009052618W WO2009104570A1 WO 2009104570 A1 WO2009104570 A1 WO 2009104570A1 JP 2009052618 W JP2009052618 W JP 2009052618W WO 2009104570 A1 WO2009104570 A1 WO 2009104570A1
Authority
WO
WIPO (PCT)
Prior art keywords
air electrode
air
electrode
metal
alkaline
Prior art date
Application number
PCT/JP2009/052618
Other languages
English (en)
French (fr)
Inventor
藤原 直子
安田 和明
五百蔵 勉
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Priority to US12/867,376 priority Critical patent/US20100323249A1/en
Priority to EP09712401A priority patent/EP2254192A4/en
Priority to JP2009554309A priority patent/JP5207407B2/ja
Publication of WO2009104570A1 publication Critical patent/WO2009104570A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • H01M8/083Alkaline fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an air electrode having an oxygen reduction function in a metal-air battery, an alkaline fuel cell or the like using an alkaline aqueous solution as an electrolyte, an air having an oxygen generation function in a metal-air secondary battery or an alkaline water electrolysis apparatus.
  • the present invention relates to an air electrode having a novel structure useful as an electrode and the use thereof.
  • a metal-air battery is a battery that uses a metal such as zinc, aluminum, or magnesium as a negative electrode and an air electrode as a positive electrode.
  • a metal-air battery when the negative electrode metal is zinc, the discharge reaction of the battery is expressed as follows.
  • a zinc-air battery using zinc as a negative electrode is safe, environmentally friendly, and inexpensive, and thus has been put to practical use as a low-output button-type primary battery and used as a power source for hearing aids.
  • a porous electrode having a catalyst layer made of activated carbon and manganese oxide is used, and air is supplied thereto through a water repellent layer made of a porous Teflon (registered trademark) film.
  • a potassium hydroxide aqueous solution of about 30 to 35% by weight is used, and since it is affected by atmospheric humidity and carbon dioxide, it has a life of about 2 months.
  • the metal-air battery has a long life, is large, or has been successfully developed as a secondary battery that can be electrically charged, it can be used for portable power supplies for information communication devices and mobile electronic devices, and for small mobile objects such as scooters and electric wheelchairs.
  • the application fields such as the power source of the vehicle, the battery for the hybrid vehicle and the electric vehicle are expected to expand greatly. For that purpose, it is necessary to push forward improvement of durability of the metal-air battery in the atmosphere, increase of current density, improvement of electrode reactivity and stability to charge / discharge reaction, and the like.
  • an alkaline fuel cell is a fuel cell using an alkaline aqueous solution as an electrolytic solution, and an electrode reaction is as follows.
  • Alkaline fuel cells generally use about 30 to 35% by weight potassium hydroxide aqueous solution as the electrolyte, and operate in the range of room temperature to about 200 ° C. Since acid resistance is required for phosphoric acid and solid polymer fuel cells that use acidic electrolytes, platinum-based electrode catalysts are mainly used, while a wide range of materials can be selected for alkaline fuel cells. Silver, nickel, etc. can be used as an electrode catalyst. For this reason, it is a fuel cell with the highest possibility of cost reduction. Until now, it has been put to practical use in space development applications such as the Apollo project and the space shuttle. However, in alkaline fuel cells, the alkaline electrolyte reacts with carbon dioxide in the atmosphere to form carbonate, which reduces the fuel cell performance. Therefore, the use of pure hydrogen and pure oxygen is limited. Since it could not be supplied, it could not be used for general consumer use.
  • an alkaline aqueous solution such as potassium hydroxide or sodium hydroxide is used as an electrolyte, and similar constituent materials and electrodes are used for these air electrodes.
  • a structure can be adopted. Since the air electrode is disposed at the interface between the electrolyte solution and the atmosphere, it is required to play a complex role such as diffusibility of oxygen gas, securing an ionic conduction path by the electrolyte solution, and preventing leakage of the electrolyte solution.
  • a typical air electrode is composed of a separator, a catalyst layer, a metal net, a water repellent film, a diffusion film, an air distribution layer, and the like. As the catalyst layer, manganese oxide and carbon active against oxygen reduction reaction are used. Are mixed to form a conductive medium and then subjected to a water repellent treatment with Teflon (registered trademark).
  • Patent Document 1 a method of providing a porous carbon dioxide removing agent in which an alkali metal hydroxide is adhered to calcium hydroxide in the air suction path connected to the air electrode
  • Patent Document 2 a method of adding an inorganic compound of calcium as a carbon dioxide absorbent to the air electrode (Patent Document 2), a carbon dioxide filter filled with soda lime, lithium hydroxide, or a mixture of lithium hydroxide and calcium hydroxide
  • Patent Document 1 a method of adding an inorganic compound of calcium as a carbon dioxide absorbent to the air electrode
  • Patent Document 2 a method of adding an inorganic compound of calcium as a carbon dioxide absorbent to the air electrode
  • Patent Document 2 a carbon dioxide filter filled with soda lime, lithium hydroxide, or a mixture of lithium hydroxide and calcium hydroxide
  • the alkaline electrolyte concentration is switched to a low concentration during charging and to a high concentration during discharging to suppress carbonate precipitation due to the reaction between carbon dioxide in the air and the alkaline electrolyte.
  • Patent Document 3 Concerning the leakage of alkaline electrolyte, the leaked alkaline electrolyte is immediately absorbed and fixed by placing air diffusion paper that has an absorbent fixing material that absorbs and fixes the alkaline electrolyte mainly composed of cellulose.
  • a method of stopping the battery by blocking diffusion of oxygen and water vapor to the air electrode has been proposed (Patent Document 4).
  • a method of detecting the initial slight liquid leakage by changing the color by coloring the air diffusion paper with a colorant such as indigo carmine that changes color when it reacts with an alkaline electrolyte is also used (patented) Reference 5).
  • the present invention has been made in view of the current state of the prior art described above, and its main purpose is the above-mentioned that the conventional air electrode has in a metal-air battery, a fuel cell, etc. using an alkaline aqueous solution as an electrolyte. It is to provide a novel air electrode capable of reducing or eliminating various problems.
  • the present inventor has intensively studied to achieve the above-mentioned purpose.
  • carbon dioxide in the atmosphere is obtained by adopting a structure in which an anion exchange type polymer membrane is disposed at the interface between the air electrode catalyst layer and the alkaline electrolyte.
  • the precipitation of carbonate and the leakage of alkaline electrolyte can be greatly suppressed, and a novel air electrode capable of achieving the above-described object can be obtained.
  • the air electrode having the above-described structure is not only used for the oxygen reduction reaction as an air electrode in a metal-air battery, but also used for a charging reaction, that is, an oxygen generation reaction.
  • the present inventors have found that good performance can be maintained for a long time by suppressing the influence of carbon and the like. Based on these findings of the present invention, it has been completed as a result of further research.
  • this invention provides the following air electrode and its use.
  • An air electrode having a structure in which an anion exchange membrane and a catalyst layer for an air electrode are laminated, and the anion exchange membrane is disposed in contact with an alkaline aqueous solution.
  • the anion exchange membrane is a polymer membrane having at least one anion exchange group selected from the group consisting of a quaternary ammonium group, a pyridinium group, an imidazolium group, a phosphonium group, and a sulfonium group.
  • Air pole 3.
  • the air electrode according to Item 1 which is a positive electrode for an alkaline fuel cell. 5).
  • Item 2. The air electrode according to Item 1, which is an oxygen generating electrode for an alkaline water electrolysis apparatus. 6).
  • a metal-air primary battery or a metal-air secondary battery comprising an electrolytic solution comprising an alkaline aqueous solution and a positive electrode comprising the air electrode according to Item 1. 7).
  • An alkaline fuel cell comprising an electrolytic solution comprising an alkaline aqueous solution and a positive electrode comprising the air electrode according to Item 1. 8).
  • Item 8. The alkaline fuel cell according to Item 7, which is used for both a fuel cell and a water electrolysis device.
  • An alkaline water electrolysis apparatus comprising an electrolytic cell containing an electrolytic solution made of an alkaline aqueous solution, and an oxygen generating electrode made of an air electrode according to Item 1.
  • the air electrode of the present invention is an air electrode that can be used for a battery or the like using an alkaline aqueous solution as an electrolyte, and has a structure in which an anion exchange membrane and an air electrode catalyst layer are laminated.
  • FIG. 1 is a conceptual diagram schematically showing the structure of the air electrode of the present invention.
  • the air electrode of the present invention has a structure in which an anion exchange membrane and an air electrode catalyst layer are laminated, and the anion exchange membrane is in contact with an alkaline aqueous solution as an electrolyte. It is arranged with.
  • oxygen in the air is reduced by the following reaction on the catalyst surface. O 2 + 2 H 2 O + 4 e ⁇ ⁇ 4 OH ⁇
  • the anion exchange membrane of the air electrode is placed in contact with an alkaline aqueous solution, which is an electrolytic solution.
  • a fuel electrode is installed in the fuel cell. Hydroxide ions generated by oxygen reduction at the cathode side (OH -) moves the anion-exchange membrane and alkaline electrolyte, a metal - metal anode in an air battery, a fuel material such as hydrogen in the alkaline fuel cell react.
  • a battery or a fuel cell using the air electrode having the above-described structure is largely characterized by having a structure in which an anion exchange membrane is disposed between an air electrode catalyst layer and an alkaline aqueous solution.
  • an anion exchange membrane By placing an anion exchange membrane at the interface between the air electrode catalyst layer and the alkaline aqueous solution, hydroxide ions, which are anions, move through the anion exchange membrane, but alkali metal ions ( For example, permeation of cations such as K + ) and negative electrode metal ions (eg, Zn 2+ ) to the air electrode side is shielded by the anion exchange membrane.
  • alkali metal ions For example, permeation of cations such as K +
  • negative electrode metal ions eg, Zn 2+
  • the anion exchange membrane itself is a hydroxide ion conductor
  • the conduction path of hydroxide ions can be maintained by contact between solids.
  • an anion exchange resin is mixed with the air electrode medium layer as described later, good hydroxide ion conductivity is ensured without impregnating the air electrode catalyst layer with an alkaline electrolyte. it can. Accordingly, since the penetration of the alkaline electrolyte into the air electrode catalyst layer is suppressed as compared with the case where the air electrode catalyst layer is in direct contact with the alkaline electrolyte, performance degradation due to wetting of the air electrode catalyst layer or strong alkali The risk of liquid leakage to the outside can be avoided.
  • the air electrode having the above structure has excellent activity not only for the oxygen reduction reaction but also for the following oxygen generation reaction, and can maintain good performance for a long period of time.
  • the air electrode of the present invention can maintain good performance for both oxygen reduction reaction and oxygen generation reaction for a long time. For this reason, in addition to being used as an air electrode (positive electrode) in a metal-air primary battery, an air electrode (positive electrode) in an alkaline fuel cell, etc., as a reversible air electrode, charging in a battery using an alkaline aqueous solution as an electrolyte is also possible. It can also be used effectively as a dischargeable positive electrode, for example, a positive electrode of a metal-air secondary battery. Furthermore, the air electrode of the present invention can be used effectively as an oxygen generation electrode in an alkaline water electrolysis apparatus because it can maintain excellent performance for oxygen generation reaction for a long period of time. Further, the alkaline fuel cell itself can be used as a water electrolysis device for oxygen and hydrogen generation reactions.
  • anion exchange membrane anion exchange membrane anion exchange membrane, anion OH - through the, cations K +, capable of shielding the like Na +, using a polymer membrane having an anion-exchange group To do.
  • the type of anion exchange membrane is not particularly limited.
  • a hydrocarbon resin having an anion exchange group such as a quaternary ammonium group, a pyridinium group, an imidazolium group, a phosphonium group, or a sulfonium group (for example, polystyrene, polysulfone, Anion exchange membranes made of a polymer compound such as polyether sulfone, polyether ether ketone, polyphenylene, polybenzimidazole, polyimide, polyarylene ether, etc.) and fluorine-based resin can be used.
  • the ion exchange capacity of the anion exchange membrane is preferably about 0.1 to 10 meq / g, and more preferably about 0.5 to 5 meq / g.
  • the film thickness of the anion exchange membrane is preferably about 5 to 300 ⁇ m, more preferably about 10 to 100 ⁇ m.
  • Catalyst component As the catalyst used in the air electrode of the present invention, various catalysts such as metals, metal alloys, metal oxides, metal complexes and the like conventionally known as catalysts for the air electrode may be used. it can.
  • metal species examples include platinum, palladium, iridium, rhodium, ruthenium, gold, silver, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, and zinc.
  • metal catalyst metal oxide, metal complex selected from these metals, or an alloy, metal oxide, or complex of metal complexes of any combination of two or more metals. Can do.
  • oxides can also be used as the air electrode catalyst.
  • a catalyst comprising these oxides has excellent activity for both oxygen reduction reaction and oxygen generation reaction, and can be used particularly effectively as a reversible air electrode catalyst.
  • perovskite oxides include oxides represented by LaCoO 3 and partially substituted products in which part of La in the oxides is substituted with Ca, Sr, Ba, etc. Partially substituted products in which a part of Co is substituted with Mn, Ni, Cu, Fe, Ir, or the like can be used.
  • Pyrochlore type oxides include oxides represented by composition formulas such as Pb 2 Ru 2 O 6.5 and Bi 2 Ru 2 O 7 , and partial substitution in which part of Ru of the oxide is substituted with Ir, Pb, etc. A body or the like can be used.
  • an oxide represented by a composition formula of LiMn 2 O 4 a partially substituted body in which a part of Mn of the oxide is substituted with Co, Fe, or the like can be used.
  • an oxide represented by the composition formula: Co 3 O 4 a partially substituted body in which a part of Co in the oxide is substituted with Ni, Cu, Mn, or the like can also be used.
  • the air electrode of the present invention has a structure in which an air electrode catalyst layer and an anion exchange membrane are laminated.
  • the air electrode catalyst layer and the anion exchange membrane may be used as an integrated joined body, or the air electrode catalyst layer and the anion exchange membrane may be joined together without being joined.
  • the joined body of the anion exchange membrane and the air electrode layer can be produced in the same manner as a known method for producing an electrode of a general polymer electrolyte fuel cell.
  • a method of hot pressing on the anion exchange membrane or a method of applying and drying directly on the anion exchange membrane can be applied.
  • the resin solution like the anion exchange membrane, a solution containing a resin having an anion exchange capacity with an ion exchange capacity of about 0.1 to 10 meq / g (more preferably 0.5 to 5 meq / g) is preferable.
  • a polymer resin such as polyvinylidene fluoride or polyvinyl butyral having no ionic group may be used.
  • the catalyst can be directly attached to the anion exchange membrane by various methods such as adsorption reduction, electroless plating, electroplating, sputtering, and CVD.
  • the thickness of the air electrode catalyst layer is not particularly limited, but can usually be about 0.1 to 100 ⁇ m. Further, the amount of catalyst is not particularly limited, but can be, for example, about 0.01 to 20 mg / cm 2 based on the surface area of the anion exchange membrane.
  • an air electrode catalyst layer is prepared by applying and drying catalyst ink directly on the gas diffusion layer or current collector, or by impregnating or reducing the precursor metal complex. You may press and integrate.
  • air electrode may be the same as those of known air electrodes.
  • a current collector such as carbon paper, carbon cloth, metal mesh, sintered metal, etc. is arranged on the catalyst layer side of the air electrode, and a water repellent film, diffusion film, air distribution layer, etc. are arranged. Can do.
  • the air electrode is disposed in a state where the anion exchange membrane of the air electrode is in contact with an alkaline aqueous solution that is an electrolytic solution.
  • permeation of cations such as alkali metal ions (for example, K + ) and negative electrode metal ions (for example, Zn 2+ ) in the aqueous alkali solution to the air electrode side is shielded by the anion exchange membrane.
  • precipitation of carbonate (K 2 CO 3 ) and metal oxide (ZnO) generated by reaction with carbon dioxide in the air can be suppressed.
  • the metal negative electrode is installed in the metal-air battery and the fuel electrode is installed in the alkaline fuel cell on the opposite side of the air electrode via an alkaline aqueous solution that is an electrolytic solution.
  • an aqueous solution containing an alkali such as potassium hydroxide or sodium hydroxide can be used.
  • concentration of the aqueous alkali solution is not particularly limited, but for example, the concentration of the alkali metal hydroxide can be about 0.1 to 40% by weight.
  • metals such as zinc, aluminum, and magnesium can be used.
  • the specific structure of the metal negative electrode may be the same as that of a known metal-air battery.
  • the structure of the fuel electrode in the fuel cell is not particularly limited, and may be the same as the structure of the fuel electrode of a known alkaline fuel cell.
  • the catalyst for the fuel electrode various conventionally known metals, metal alloys, metal complexes, and the like can be used.
  • the metal species that can be used include noble metals such as platinum, palladium, iridium, rhodium, ruthenium, and gold used in conventional PEFC, and base metals such as nickel, silver, cobalt, iron, copper, and zinc.
  • a single metal catalyst or metal complex selected from these metals, or an alloy or metal complex complex composed of any combination of two or more metals can be used. It is also possible to use a composite catalyst of a metal catalyst selected from the above and another metal oxide, or a supported catalyst in which catalyst fine particles are dispersed on a carrier such as carbon or metal oxide.
  • oxygen or air may be supplied or naturally diffused to the air electrode side.
  • a fuel substance to the fuel electrode side in the alkaline fuel cell.
  • hydrogen gas alcohols such as methanol, ethanol, isopropanol, and ethylene glycol
  • solutions of formic acid, borohydride salts, hydrazine, sugars, and the like can be used.
  • the metal-air battery having the above structure can maintain not only the oxygen reduction reaction but also the good activity against the oxygen generation reaction for a long time at the air electrode. For this reason, not only the discharge reaction but also the charge / discharge reaction is repeatedly performed, the performance is hardly lowered, and it can be effectively used not only as a primary battery but also as a metal-air secondary battery.
  • Alkaline water electrolysis apparatus When the air electrode of the present invention is used as an oxygen generating electrode of an alkaline water electrolysis apparatus, the structure of the water electrolysis apparatus may be the same as that of a known water electrolysis apparatus. That is, an electrolytic solution made of an alkaline aqueous solution is accommodated in the electrolytic cell, and the air electrode of the present invention may be installed so that the anion exchange membrane is in contact with the alkaline aqueous solution.
  • an aqueous solution containing an alkali metal hydroxide such as potassium hydroxide or sodium hydroxide at a concentration of about 0.1 to 40% by weight can be used in the same manner as the electrolytic solution of a metal-air battery or the like.
  • nickel, iron, platinum, palladium, iridium, or the like can be used as the electrode of the hydrogen generation electrode.
  • Electrolysis conditions are not particularly limited, and may be the same as known methods.
  • an oxygen generation reaction at the air electrode and a hydrogen generation reaction at the fuel electrode are caused by applying a voltage opposite to that during power generation to the air electrode and the fuel electrode. be able to.
  • the alkaline fuel cell using the air electrode of the present invention can be used as a water electrolysis device by using the air electrode as an oxygen generation electrode, and can be used as both a fuel cell and a water electrolysis device. It can be used.
  • the anion exchange membrane disposed at the interface between the air electrode catalyst layer and the alkaline aqueous solution shields the permeation of the cation component in the alkaline electrolyte toward the air electrode catalyst layer, and carbon dioxide in the air It is possible to suppress carbonate precipitation due to this reaction. For this reason, it is possible to extend the life of a metal-air battery, an alkaline fuel cell, etc. using the air electrode of the present invention.
  • the metal negative electrode elutes to form a metal cation in the alkaline electrolyte, which moves to the air electrode and precipitates as a metal oxide.
  • the permeation of the metal cation can be shielded by the anion exchange membrane, and its influence can be avoided. As a result, there is little deterioration of the air electrode performance, and a long life of the metal-air battery can be achieved.
  • the air electrode of the present invention can maintain excellent performance not only for oxygen reduction reaction but also for oxygen generation reaction for a long period of time. Therefore, the air electrode can be effectively used as an air electrode for a metal-air secondary battery, an oxygen generating electrode of an alkaline water electrolysis apparatus, or the like. Furthermore, by using the air electrode of the present invention, the alkaline fuel cell itself can be used as a water electrolysis device.
  • the air electrode of the present invention is characterized in that an anion exchange membrane is installed at the interface between the air electrode catalyst layer and the alkaline aqueous solution.
  • an anion exchange membrane is installed at the interface between the air electrode catalyst layer and the alkaline aqueous solution.
  • stable air electrode performance can be maintained over a long period of time, and leakage of the alkaline aqueous solution can be prevented. Therefore, it is possible to provide a metal-air battery, an alkaline fuel cell, etc. that are safe and easy to handle.
  • the air electrode of the present invention can maintain an excellent activity for oxygen generation reaction for a long period of time. Therefore, a metal-air secondary battery can be put into practical use, and an alkaline fuel cell can be used as a water electrolysis device.
  • the air electrode of the present invention can solve or alleviate various problems in the conventional air electrode, and is suitable as an air electrode for metal-air batteries, alkaline fuel cells and the like.
  • the metal-air battery or alkaline fuel cell using the air electrode of the present invention includes, for example, a portable small power source (mobile device, IT device), a small mobile power source (scooter, electric wheelchair), an automobile battery ( In various applications such as hybrid vehicles and electric vehicles, the power source is very useful.
  • the air electrode can be effectively used as a chargeable / dischargeable air electrode of a metal-air secondary battery or an oxygen generating electrode in an alkaline water electrolysis apparatus.
  • the mixture was mixed to obtain a catalyst ink, which was coated on a carbon cloth so that the amount of platinum supported was 3 mg / cm 2 and dried by heating to obtain an air electrode catalyst layer.
  • an anion exchange membrane a hydrocarbon membrane having a film thickness of 27 ⁇ m containing quaternary ammonium base as an ion exchange group and an ion exchange capacity of 1.4 mmol / g was used, and the air electrode catalyst layer described above was hot pressed on one side. And integrated.
  • an H-shaped cell shown as a schematic diagram in FIG. 2 was produced by the following method, and an evaluation test of the air electrode was performed.
  • a gold mesh was pressed against the air electrode catalyst layer surface of the obtained air electrode and sandwiched between H-type cells, and an electrode terminal was taken out from the gold mesh to obtain a working electrode.
  • the air electrode catalyst layer side was opened to the atmosphere, and 60 ml of 0.5 M potassium hydroxide aqueous solution was added as an electrolyte solution to the container on the opposite side, and dissolved oxygen was removed with argon gas.
  • a platinum black electrode as a counter electrode and a reversible hydrogen electrode (RHE) as a reference electrode were attached to this electrolyte solution, and the air electrode performance at room temperature was evaluated by triode measurement.
  • Table 1 below shows the oxygen reduction potential at a current density of 10 mA / cm 2 before and after supplying carbon dioxide to the air electrode catalyst layer side.
  • Comparative Example 1 The air electrode catalyst layer produced by the same method as in Example 1 was sandwiched between the H-type cells alone without being bonded to the anion exchange membrane, and the performance of the air electrode was evaluated in the same manner as in Example 1.
  • Table 1 shows the oxygen reduction potential before and after supplying carbon dioxide to the air electrode catalyst layer side.
  • Example 2 As an air electrode catalyst, platinum black treated with water repellent with polytetrafluoroethylene was used.
  • This platinum black catalyst is a 5% by weight solution of an anion exchange resin (hydrocarbon resin having an ion exchange capacity of 2 mmol / g containing a quaternary ammonium base as an ion exchange group), ethanol, and platinum black: anion exchange resin solution.
  • Ethanol (weight ratio) 1: 2.2: 2 was mixed to form a catalyst ink, and the air electrode catalyst layer was prepared by thinning.
  • the anion exchange membrane a hydrocarbon membrane having a film thickness of 27 ⁇ m and an ion exchange capacity of 1.4 mmol / g containing a quaternary ammonium base as an ion exchange group is used, and the air electrode catalyst layer obtained by the above-mentioned method on one side Were integrated by hot pressing.
  • the amount of platinum catalyst supported was 3 mg / cm 2
  • the anion exchange resin content in the electrode layer was 10% by weight
  • the electrode layer thickness was about 1 ⁇ m.
  • the air electrode was attached to the H-type cell shown in FIG. 2, and the performance of the air electrode was evaluated in the same manner as in Example 1.
  • the initial value of the oxygen reduction potential and the change in the redox potential due to the influence of carbon dioxide were observed. .
  • Table 2 below shows the oxygen reduction potential at a current density of 10 mA / cm 2 before and after the supply of carbon dioxide.
  • Comparative Example 2 An air electrode was produced in the same manner as in Example 2 except that a porous Teflon (registered trademark) membrane subjected to a hydrophilic treatment was used instead of the anion exchange membrane, and the performance of the air electrode was evaluated. In the same manner as in Example 1, it was examined how the oxygen reduction potential changes before and after the supply of carbon dioxide to the air electrode catalyst layer side. The results are shown in Table 2.
  • the oxygen reduction potential is 0.68 ⁇ ⁇ ⁇ V before and after the supply of carbon dioxide, and is not affected by carbon dioxide.
  • the oxygen reduction potential was reduced by 16% from 0.64 V to 0.54 V due to the effect of carbon dioxide. is doing. From this result, it is clear that the air electrode of the present invention is effective in extending the life of the air electrode.
  • Example 3 An air electrode integrated with the anion exchange membrane was produced in the same manner as in Example 1. This air electrode was attached to the H-type cell shown in FIG. 2, and the oxygen reduction characteristics at the air electrode were evaluated by the same tripolar measurement as in Example 1.
  • Table 3 shows the ratio (i t / i 0 ⁇ 100 (%)) of the initial value (i 0 ) of the oxygen reduction current at potential 0.6 V with respect to RHE and the measured value (i t ) after carbon dioxide supply. It shows how it changed with respect to the carbon supply time.
  • Example 4 An air electrode was produced in the same manner as in Example 1 except that a hydrocarbon film having a film thickness of 27 ⁇ m and an ion exchange capacity of 1.7 mmol / g containing a quaternary ammonium base as an ion exchange group was used as the anion exchange film. In the same manner as in Example 3, it was examined how the oxygen reduction current changes by supplying carbon dioxide for a total of 4 hours. The results are shown in Table 3.
  • Comparative Example 3 The air electrode catalyst layer produced by the same method as in Example 1 was sandwiched between the H-type cells alone without being bonded to the anion exchange membrane, and the oxygen reduction current was measured by the same method as in Example 3 to obtain a carbon dioxide meter 4 We examined how it changes with the supply of time. The results are shown in Table 3.
  • the oxygen reduction current value decreases with the supply time of carbon dioxide, and after supply for a total of 4 hours. Decreased by 29% from the initial value to 71%.
  • the rate of decrease in the oxygen reduction current value was slower than that in Comparative Example 3, and each of the initial values was maintained after carbon dioxide was supplied for a total of 4 hours. The values were maintained at 91% and 83%.
  • Example 5 An air electrode integrated with the anion exchange membrane was produced in the same manner as in Example 1. This air electrode was attached to an H-type cell, and 11 ml of 4.0 M potassium hydroxide aqueous solution was used as an electrolyte solution, and the air electrode characteristics were evaluated by the same tripolar measurement as in Example 1. As the air electrode characteristics, in addition to the oxygen reduction reaction, performance evaluation in an oxygen generation reaction was performed.
  • Table 5 shows the oxygen generation performance of the air electrode, the initial value (i 0 ) of the oxygen generation current at each potential of 1.6 V, 1.8 V, and 2.0 V with respect to RHE, and the measured value after supplying carbon dioxide. shows the (i t) and the ratio of (i t / i 0 ⁇ 100 (%)).
  • Comparative Example 4 The air electrode catalyst layer produced by the same method as in Example 1 was sandwiched between the H-type cells alone without being bonded to the anion exchange membrane, and the oxygen reduction current and the oxygen generation current were reduced by the same method as in Example 5. We investigated how it changes with the supply of carbon dioxide. The results are shown in Table 4 and Table 5, respectively.
  • Comparative Example 5 An air electrode was produced in the same manner as in Example 5 except that a porous Teflon (registered trademark) membrane subjected to hydrophilic treatment was used instead of the anion exchange membrane, and oxygen oxygen was produced in the same manner as in Example 5.
  • a porous Teflon (registered trademark) membrane subjected to hydrophilic treatment was used instead of the anion exchange membrane, and oxygen oxygen was produced in the same manner as in Example 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

 本発明は、陰イオン交換膜と空気極用触媒層とを積層した構造を有し、該陰イオン交換膜がアルカリ水溶液と接触した状態で配置される空気極、該空気極を含む金属-空気電池、アルカリ形燃料電池又は水電解装置を提供するものである。  本発明の空気極によれば、アルカリ水溶液を電解液とする金属-空気電池、燃料電池等の空気極における従来の各種の問題点を軽減乃至解消して、優れた性能を長期間維持することができる。

Description

空気極
 本発明は、アルカリ水溶液を電解液として使用する金属-空気電池、アルカリ形燃料電池などにおける酸素還元機能を有する空気極、金属-空気二次電池やアルカリ形水電解装置における酸素発生機能を有する空気極等として有用な新規な構造を有する空気極、及びその用途に関する。
 金属-空気電池は、負極として亜鉛、アルミニウム、マグネシウムなどの金属を使用し、正極として空気極を使用する電池である。金属-空気電池において、負極金属が亜鉛の場合、電池の放電反応は以下のように表される。
Figure JPOXMLDOC01-appb-I000001
 上記反応において、酸素は外部の空気から供給され、正極活物質として利用される。空気正極は反応の場として働き、消耗することなく理論的には永久に使用することができる。従って、金属-空気電池の電気容量は負極容量のみで決まり、負極に大きな容量の金属を使用することができるため、極めて大きなエネルギー密度を有することになる。負極に亜鉛を用いた空気亜鉛電池は、安全で環境にやさしく安価であることから、低出力のボタン形一次電池として実用化され、補聴器用電源等に使用されている。正極材料としては、活性炭とマンガン酸化物からなる触媒層を有する多孔性電極が用いられ、ここに多孔性テフロン(登録商標)膜からなる撥水層を通して空気が供給される。電解液としては30~35重量%程度の水酸化カリウム水溶液が用いられており、大気中の湿度や二酸化炭素の影響を受けるので約2カ月で寿命となる。
 金属-空気電池の長寿命化、大型化、あるいは電気的に充電できる二次電池としての開発に成功すれば、情報通信機器やモバイル電子機器用のポータブル電源、スクーターや電動車椅子など小型移動体用の電源、ハイブリッド車や電気自動車用の電池など、その応用分野は大きく広がることが期待される。そのためには、金属-空気電池の大気雰囲気下での耐久性向上、高電流密度化、充放電反応に対する電極反応性と安定性の向上等を押し進めることが必要である。
 一方、アルカリ形燃料電池は、電解液としてアルカリ水溶液を用いた燃料電池であり、電極反応は次式の通りである。
Figure JPOXMLDOC01-appb-I000002
 アルカリ形燃料電池では、一般的には電解液として30~35重量%程度の水酸化カリウム水溶液が用いられており、常温から200℃程度の範囲で運転される。酸性電解質を使用するリン酸形や固体高分子形燃料電池では耐酸性が要求されるため、主として白金系の電極触媒が使用されるのに対し、アルカリ形燃料電池では幅広い材料を選択可能であり、銀やニッケルなどを電極触媒として使用することができる。このため、低コスト化の可能性が最も高い燃料電池である。これまで、アポロ計画、スペースシャトル等の宇宙開発の用途で実用化されている。しかしながら、アルカリ形燃料電池では、アルカリ電解質が大気中の二酸化炭素と反応して炭酸塩となり、燃料電池性能を低下させるため、純水素と純酸素の利用に限られており、正極側に空気を供給できないことから、一般民生用としてはこれまで利用できなかった。
 上述の金属-空気電池とアルカリ形燃料電池との共通点は、電解液として水酸化カリウム、水酸化ナトリウムなどのアルカリ水溶液を使用することであり、これらの空気極には同様の構成材料や電極構造を採用することができる。空気極は、電解液と大気との境界面に配置されるため、酸素ガスの拡散性、電解質溶液によるイオン導電経路の確保、電解液の漏れ防止など複合的な役割を担うことが求められる。一般的な空気極は、セパレーター、触媒層、金属網、撥水性膜、拡散膜、空気分配層等で構成されており、触媒層としては、酸素還元反応に対して活性なマンガン酸化物とカーボンを混合して導電性の媒体とした後、テフロン(登録商標)で撥水化処理を施したものなどが使用されている。
 しかしながらこのような従来の空気極では、以下に挙げる理由により、長期間の使用上様々な問題が発生する。つまり、大気中に存在する二酸化炭素は、アルカリ水溶液(例えばKOH)と反応し、アルカリ金属の炭酸塩(例えばK2CO3)を生ずる。この炭酸塩が空気極中の細孔内で析出すると、空気の拡散が妨げられるため、空気極性能が低下する。また、空気極にアルカリ水溶液が徐々に浸透すると、空気極濡れの進行に伴う濃度過電圧の上昇や液濡れが生ずる。
 これらの問題を解決するためにこれまで種々の方策がとられてきた。空気中の二酸化炭素による空気極性能の低下を抑制するために、水酸化カルシウムにアルカリ金属水酸化物を付着させた多孔性の二酸化炭素除去剤を空気極に連なる空気吸入路内に設ける方法(特許文献1)、空気極にカルシウムの無機化合物を二酸化炭素吸収剤として添加する方法(特許文献2)、ソーダライム、水酸化リチウム、または水酸化リチウムと水酸化カルシウムの混合物を充填した二酸化炭素フィルターを通して空気を供給することにより、空気中の二酸化炭素を除去する方法(非特許文献1)などが報告されている。また、再充電可能な金属-空気二次電池において、アルカリ電解液濃度を充電時には低濃度、放電時には高濃度に切り替えて空気中の二酸化炭素とアルカリ電解液との反応による炭酸塩析出を抑制する試みも行われている(特許文献3)。アルカリ電解液の漏洩に関しても、セルロースを主成分としアルカリ電解液を吸収、固定する吸収固定材を有する空気拡散紙を置くことにより、漏洩してきたアルカリ電解液を即座に吸収、固定し、その吸収量がある程度を超えると酸素及び水蒸気の空気極への拡散を遮断して電池を停止させる方法が提案されている(特許文献4)。また、アルカリ電解液と反応すると変色するインジゴカルミンなどの着色剤で空気拡散紙を着色しておくことにより、初期のわずかな漏液を色の変化で検出する方法なども採用されている(特許文献5)。
 しかしながら、上記の方法では、大気中の二酸化炭素による炭酸塩の析出やアルカリ電解液の漏洩を完全に防止することはできず、更なる改善策が必要とされている。また、特許文献1、非特許文献1のような方法では、電池本体と別に二酸化炭素除去器を設置する必要があり、小型軽量化が求められるモバイル用途には不向きである。
 以上の様に、金属-空気電池やアルカリ形燃料電池は、実用化用途の拡大と普及が期待されているが、アルカリ水溶液を電解質に使用することに起因する問題点が多く、更に改善すべき課題が多数存在しているのが現状である。
特開昭49-49128号公報 特開2000-3735号公報 特開昭53-51448号公報 特開昭62-69472号公報 特開2005-235485号公報 Phys. Chem. Chem. Phys., 3, 368 (2001)
 本発明は、上記した従来技術の現状に鑑みてなされたものであり、その主な目的は、アルカリ水溶液を電解液として用いる金属-空気電池、燃料電池等において、従来の空気極が有する上記した各種の問題点を軽減乃至解消することが可能な新規な空気極を提供することである。
 本発明者は、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、アルカリ水溶液を電解液とする電池又は燃料電池において、空気極触媒層とアルカリ電解液との界面に陰イオン交換形の高分子膜を配置した構造とすることにより、大気中の二酸化炭素による炭酸塩の析出やアルカリ電解液の漏洩を大きく抑制することが可能となり、上記した目的を達成し得る新規な空気極が得られることを見出した。更に、上記した構造の空気極は、金属-空気電池における空気極等として酸素の還元反応に利用する場合だけではなく、充電反応、即ち、酸素発生反応に利用する場合にも、大気中の二酸化炭素の影響等を抑制して、良好な性能を長期間維持できることを見出した。本発明のこれらの知見に基づいて、更に研究を重ねた結果完成されたものである。
 即ち、本発明は、下記の空気極及びその用途を提供するものである。
1. 陰イオン交換膜と空気極用触媒層とを積層した構造を有し、該陰イオン交換膜がアルカリ水溶液と接触した状態で配置されることを特徴とする空気極。
2. 陰イオン交換膜が、四級アンモニウム基、ピリジニウム基、イミダゾリウム基、ホスホニウム基及びスルホニウム基からなる群から選ばれた少なくとも一種の陰イオン交換基を有する高分子膜である上記項1に記載の空気極。
3. 金属-空気一次電池又は金属-空気二次電池用正極である上記項1に記載の空気極。
4. アルカリ形燃料電池用正極である上記項1に記載の空気極。
5. アルカリ形水電解装置用酸素発生極である上記項1に記載の空気極。
6. アルカリ水溶液からなる電解液、及び上記項1に記載の空気極からなる正極を含む金属-空気一次電池又は金属-空気二次電池。
7. アルカリ水溶液からなる電解液、及び上記項1に記載の空気極からなる正極を含むアルカリ形燃料電池。
8. 燃料電池及び水電解装置の両方の用途に用いられる上記項7に記載のアルカリ形燃料電池。
9. アルカリ水溶液からなる電解液を収容した電解槽、及び上記項1に記載の空気極からなる酸素発生極を含むアルカリ形水電解装置。
 本発明の空気極は、アルカリ水溶液を電解液とする電池等に利用できる空気極であって、陰イオン交換膜と空気極用触媒層とを積層した構造を有するものである。
 図1は、本発明の空気極の構造を模式的に示す概念図である。図1に示すように、本発明の空気極は、陰イオン交換膜と空気極触媒層とを積層した構造を有するものであり、該陰イオン交換膜は電解液であるアルカリ水溶液と接触した状態で配置される。この様な構造の空気極では、触媒表面において次式の反応で空気中の酸素が還元される。
     O2 + 2 H2O + 4 e → 4 OH
 この様な構造の空気極を用いる電池では、空気極の陰イオン交換膜は、電解液であるアルカリ水溶液に接触した状態で設置され、アルカリ水溶液を介して、金属-空気電池では金属負極、アルカリ形燃料電池では燃料極が設置される。空気極側で酸素還元により生じた水酸化物イオン(OH-)は陰イオン交換膜とアルカリ電解液中を移動し、金属-空気電池では金属負極、アルカリ形燃料電池では水素などの燃料物質と反応する。
 上記した構造の空気極を用いる電池又は燃料電池は、空気極触媒層とアルカリ水溶液との間に陰イオン交換膜が配置された構造を有することが大きな特徴である。空気極触媒層とアルカリ水溶液との界面に陰イオン交換膜を配置することにより、陰イオンである水酸化物イオンは該陰イオン交換膜中を移動するが、アルカリ電解液中のアルカリ金属イオン(例えばK+)や負極金属イオン(例えばZn2+)などの陽イオンの空気極側への透過は陰イオン交換膜によって遮蔽される。その結果、空気極上では、空気中の二酸化炭素と反応して生じる炭酸塩(K2CO3)や金属酸化物(ZnO)の析出を抑制することができる。
 また、本発明の空気極においては、陰イオン交換膜自体が水酸化物イオン伝導体であるため、固体同士の接触で水酸化物イオンの伝導経路を維持することができる。特に、後述したように空気極媒層に陰イオン交換樹脂を混合した構造とする場合には、空気極触媒層にアルカリ電解液を含浸させることなく、良好な水酸化物イオンの伝導性を確保できる。従って、アルカリ電解液の空気極触媒層への浸透は、空気極触媒層が直接アルカリ電解液と接している場合に比べて抑制されるため、空気極触媒層の濡れによる性能低下や強アルカリの外部への液漏れの危険性を回避することができる。
 更に、上記した構造の空気極は、酸素の還元反応だけではなく、下記の酸素発生反応に対しても優れた活性を有し、しかも良好な性能を長期間維持できる。
    2OH- →  1/2 O2 +  H2O + 2 e
 これは、上記した酸素の還元反応の場合と同様の理由によるものであり、陰イオン交換膜と空気極用触媒層とを積層した構造とすることによって、酸素発生反応時に水酸化物イオンの移動は確保できるが、アルカリ電解液中のアルカリ金属イオンや負極金属イオンなどの陽イオンの空気極側への透過を陰イオン交換膜によって遮蔽することができるので、これらの陽イオンと二酸化炭素との反応が抑制されることが主な理由である。
 この様に、本発明の空気極は、酸素還元反応と酸素発生反応のいずれに対しても良好な性能を長期間維持できる。このため、金属-空気一次電池の空気極(正極)、アルカリ形燃料電池における空気極(正極)等として使用する他に、可逆性のある空気極として、アルカリ水溶液を電解液とする電池における充放電可能な正極、例えば、金属-空気二次電池の正極等としても有効に利用できる。更に、本発明の空気極は、酸素発生反応についても優れた性能を長期間維持できることから、アルカリ形水電解装置における酸素発生極としても有効に利用できる。また、アルカリ形燃料電池自体を水電解装置として、酸素及び水素発生反応に利用することも可能となる。
 以下、本発明の空気極の各構成要素について具体的に説明する。
 (1)陰イオン交換膜
 陰イオン交換膜としては、陰イオンのOH-を透過し、陽イオンのK+、Na+などを遮蔽することのできる、陰イオン交換基を有する高分子膜を使用する。陰イオン交換膜の種類は特に限定されないが、例えば、四級アンモニウム基、ピリジニウム基、イミダゾリウム基、ホスホニウム基、スルホニウム基などの陰イオン交換基を有する炭化水素系樹脂(例えば、ポリスチレン、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリフェニレン、ポリベンズイミダゾール、ポリイミド、ポリアリーレンエーテル等)、フッ素系樹脂などの高分子化合物からなる陰イオン交換膜を用いることができる。陰イオン交換膜のイオン交換容量は、0.1~10ミリ当量/g程度であることが好ましく、0.5~5ミリ当量/g程度であることがより好ましい。陰イオン交換膜の膜厚は5~300μm程度であることが好ましく、10~100μm程度であることがより好ましい。
 (2)触媒成分
 本発明の空気極に使用する触媒としては、従来から、空気極用の触媒として知られている金属、金属合金、金属酸化物、金属錯体などの各種の触媒を用いることができる。
 金属種としては、白金、パラジウム、イリジウム、ロジウム、ルテニウム、金、銀、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛等を例示することができる。これらの金属の中から選ばれた単一の金属触媒や金属酸化物、金属錯体、あるいは二種以上の金属の任意の組合せからなる合金や金属酸化物、金属錯体の複合体等を使用することができる。
 この他、組成式:ABO3で表されるペロブスカイト型遷移金属酸化物、組成式:A2B2O7で表されるパイロクロア型酸化物、組成式:AB2O4で表されるスピネル型酸化物などの公知の酸化物を空気極用触媒として使用することもできる。特に、これらの酸化物からなる触媒は、酸素還元反応と酸素発生反応の両方に対して優れた活性を有するものであり、可逆性のある空気極用の触媒として特に有効に利用できる。
 これらの酸化物からなる触媒の内で、ペロブスカイト型酸化物としては、LaCoO3で表される酸化物や、該酸化物のLaの一部をCa, Sr, Ba等で置換した部分置換体、Coの一部をMn, Ni, Cu, Fe, Ir等で置換した部分置換体等を用いることができる。また、パイロクロア型酸化物としてはPb2Ru2O6.5やBi2Ru2O7等の組成式で表される酸化物や該酸化物のRuの一部をIr, Pb等で置換した部分置換体等を用いることができる。また、スピネル型酸化物としてはLiMn2O4の組成式で表される酸化物や、該酸化物のMnの一部をCo, Fe等で置換した部分置換体等を用いることができる。更に、組成式:Co3O4で表される酸化物や、該酸化物のCoの一部をNi, Cu, Mn等で置換した部分置換体等も用いることができる。
 また、上記から選ばれる金属触媒と別の金属酸化物との複合触媒、触媒微粒子とカーボンなどの導電材との混合物、触媒微粒子をカーボンや金属酸化物などの担体上に分散させた担持触媒等として使用することも可能である。
 (3)空気極の構成
 本発明の空気極は、空気極触媒層と陰イオン交換膜が積層された構造を有するものである。
 空気極触媒層と陰イオン交換膜とは、一体化した接合体として用いてもよく、或いは、空気極触媒層と陰イオン交換膜とを接合せずに、重ね合わせただけの状態でもよい。
 陰イオン交換膜と空気極層との接合体は、一般的な固体高分子形燃料電池の電極作製手法として知られている方法と同様に作製することができる。例えば、触媒粉末と樹脂溶液とを混合して作製した触媒インクを薄膜化させた後、陰イオン交換膜上にホットプレスする方法や直接陰イオン交換膜上に塗布・乾燥する方法などを適用できる。樹脂溶液としては、陰イオン交換膜と同様に、イオン交換容量0.1~10ミリ当量/g(より好ましくは0.5~5ミリ当量/g)程度の陰イオン交換能を有する樹脂を含む溶液が好ましいが、イオン性基を有しないポリフッ化ビニリデン、ポリビニルブチラールなどの高分子樹脂を使用しても良い。その他、吸着還元法、無電解めっき、電気めっき、スパッター、CVDなどの各種の方法で陰イオン交換膜に直接触媒を取り付けることもできる。
 空気極触媒層の厚さについては特に限定的ではないが、通常、0.1~100μm程度とすることができる。また、触媒量についても特に限定はないが、例えば、陰イオン交換膜の表面積を基準として、0.01~20mg/cm2程度とすることができる。
 また、ガス拡散層や集電体に直接触媒インクを塗布・乾燥する方法、あるいは前駆体となる金属錯体を含浸・還元するなどの方法によって空気極触媒層を作製し、陰イオン交換膜とホットプレスして一体化させても良い。
 その他の空気極の構造については公知の空気極と同様とすればよい。例えば、空気極の触媒層側にカーボンペーパー、カーボンクロス、金属メッシュ、金属焼結体などの集電材を配置し、更に、撥水性膜、拡散膜、空気分配層等を配置した構造とすることができる。
 (4)電池及び燃料電池の構成
 本発明の空気極を用いる電池及び燃料電池では、空気極は、該空気電極の陰イオン交換膜が電解液であるアルカリ水溶液と接触した状態で配置される。この様な構成とすることによって、アルカリ水溶液中のアルカリ金属イオン(例えばK+)や負極金属イオン(例えばZn2+)などの陽イオンの空気極側への透過が陰イオン交換膜によって遮蔽されて、空気中の二酸化炭素と反応して生じる炭酸塩(K2CO3)や金属酸化物(ZnO)の析出を抑制することができる。
 空気極の反対側には、電解液であるアルカリ水溶液を介して、金属-空気電池では金属負極が設置され、アルカリ形燃料電池では燃料極が設置される。
 電解液として用いるアルカリ水溶液としては、水酸化カリウム、水酸化ナトリウムなどのアルカリを含む水溶液を用いることができる。アルカリ水溶液の濃度については特に限定的ではないが、例えば、アルカリ金属水酸化物の濃度として0.1~40重量%程度とすることができる。
 金属-空気電池における金属負極としては、亜鉛、アルミニウム、マグネシウムなどの金属を使用することができる。具体的な金属負極の構造は、公知の金属-空気電池と同様とすればよい。
 燃料電池における燃料極の構造についても特に限定はなく、公知のアルカリ形燃料電池の燃料極の構造と同様とすればよい。燃料極用の触媒としても、従来から知られている種々の金属、金属合金、金属錯体などを使用することができる。使用できる金属種としては、従来のPEFCで使用される白金、パラジウム、イリジウム、ロジウム、ルテニウム、金などの貴金属の他、ニッケル、銀、コバルト、鉄、銅、亜鉛などの卑金属が挙げられる。これらの金属の中から選ばれた単一の金属触媒や金属錯体、あるいは二種以上の金属の任意の組合せからなる合金や金属錯体の複合体等を使用することができる。また、上記から選ばれる金属触媒と別の金属酸化物との複合触媒、触媒微粒子をカーボンや金属酸化物などの担体上に分散させた担持触媒として使用することも可能である。
 上記した構造の電池及び燃料電池では、空気極側には、酸素または空気を供給あるいは自然拡散させれば良い。また、アルカリ形燃料電池には、燃料極側に燃料となる物質を供給する必要がある。燃料物質としては、水素ガスの他、メタノール、エタノール、イソプロパノール、エチレングリコールなどのアルコール類、ギ酸、水素化ホウ素塩、ヒドラジン、糖などの溶液などが使用できる。
 上記した構造の金属-空気電池は、空気極において、酸素還元反応だけではなく、酸素発生反応に対する良好な活性も長期間維持できる。このため、放電反応だけでなく、充放電反応を繰り返し行う場合にも性能の低下が少なく、一次電池だけでなく、金属-空気二次電池としても有効に利用できる。
 (5)アルカリ形水電解装置
 本発明の空気極をアルカリ形水電解装置の酸素発生極として用いる場合には、該水電解装置の構造は、公知の水電解装置と同様とすればよい。即ち、電解槽中にアルカリ水溶液からなる電解液を収容し、本発明の空気極を陰イオン交換膜がアルカリ水溶液と接する状態となるように設置すればよい。
 アルカリ水溶液としては、金属-空気電池等の電解液と同様に、例えば、水酸化カリウム、水酸化ナトリウムなどのアルカリ金属水酸化物を0.1~40重量%程度の濃度で含む水溶液を用いることができる。
 また、水素発生極の電極としては、ニッケル、鉄、白金、パラジウム、イリジウム等を用いることができる。
 電解条件についても特に限定はなく、公知の方法と同様とすればよい。
 また、本発明の空気極を用いるアルカリ形燃料電池では、発電時と反対の電圧を空気極と燃料極に付与することによって、空気極における酸素発生反応と、燃料極における水素発生反応を生じさせることができる。このため、本発明の空気極を用いるアルカリ形燃料電池は、該空気極を酸素発生極として利用することによって、水電解装置としても用いることができ、燃料電池と水電解装置として両方の用途に利用が可能である。
 (6)本発明の空気極の特徴
 上記した構成を有する本発明の空気極は、以下に示す優れた特徴を有するものである。
 (i)空気極触媒層とアルカリ水溶液との界面に配置された陰イオン交換膜によって、アルカリ電解液中の陽イオン成分の空気極触媒層側への透過が遮蔽され、空気中の二酸化炭素との反応による炭酸塩析出を抑制することができる。このため、本発明の空気極を使用した金属-空気電池、アルカリ形燃料電池等の長寿命化が可能となる。
 (ii)従来の空気極を金属-空気電池に使用する場合には、金属負極が溶出してアルカリ電解液中に金属陽イオンが生じ、空気極側に移動して金属酸化物となって析出する恐れがあるが、本発明の空気極では、金属陽イオンの透過を陰イオン交換膜によって遮蔽することができ、その影響を回避することができる。その結果、空気極性能の劣化が少なく、金属-空気電池の長寿命化が達成できる。
 (iii)固体の高分子膜である陰イオン交換膜を空気極触媒層と接触させた構造とすることによって、触媒層がアルカリ水溶液に接触することなく、固体同士の接触で水酸化物イオンの伝導経路を維持することができる。特に、空気極触媒層に陰イオン交換樹脂を混合した構造とする場合には、空気極触媒層にアルカリ電解液を含浸させることなく、良好な水酸化物イオンの伝導性を維持することができる。従って、空気極触媒層の濡れによる性能低下や強アルカリの外部への液漏れの危険性を回避することができる。
 (iv)アルカリ水溶液と空気極触媒層の界面に陰イオン交換膜が配置されることにより、アルカリ水溶液の空気極側への浸透を抑制し、空気極側からのアルカリ液漏れを回避することができる。
 (v)本発明の空気極は、酸素の還元反応だけではなく、酸素発生反応に対しても優れた性能を長期間維持できる。このため、該空気極は、金属-空気二次電池用空気極、アルカリ形水電解装置の酸素発生極等としても有効に利用できる。更に、本発明の空気極を用いることによって、アルカリ形燃料電池自体を水電解装置として使用することも可能となる。
 以上の通り、本発明の空気極は、空気極触媒層とアルカリ水溶液との境界面に、陰イオン交換膜を設置することを特徴とするものである。これにより、長期間にわたって安定した空気極性能を維持することができる上、アルカリ水溶液の液漏れを防ぐことができる。このため、安全で取り扱いやすい金属-空気電池、アルカリ形燃料電池等を提供することができる。更に、本発明の空気極は、酸素発生反応に対しても優れた活性を長期間維持できる。このため、金属-空気二次電池を実用化することができ、アルカリ形燃料電池を水電解装置として利用することも可能となる。
 この様に本発明の空気極は、従来の空気極における各種の問題点を解消乃至軽減できるものであり、金属-空気電池、アルカリ形燃料電池等の空気極として好適である。本発明の空気極を使用した金属-空気電池又はアルカリ形燃料電池は、例えば、携帯用の小型電源(モバイル機器、IT機器)、小型移動体用電源(スクーター、電動車椅子)、自動車用電池(ハイブリッド車、電気自動車)等の各種の用途において、非常に有用性の高い電源となる。更に、該空気極は、金属-空気二次電池の充放電可能な空気極やアルカリ形水電解装置における酸素発生極としても有効に利用できる。
本発明の空気極の一実施態様を示す模式図である。 実施例において、空気極評価試験に用いたH形セルの概略図である。
 以下、実施例を挙げて本発明を更に詳細に説明する。
 実施例1
 空気極触媒として白金黒を用い、これを濃度60重量%のポリテトラフルオロエチレン分散液及びエタノールと、白金黒:ポリテトラフルオロエチレン分散液:エタノール(重量比)=5:1:1の割合で混合して触媒インクとし、白金担持量が3 mg/cm2となるようにカーボンクロス上に塗布し、加熱乾燥して空気極触媒層とした。
 一方、陰イオン交換膜として、四級アンモニウム塩基をイオン交換基として含む膜厚27μm、イオン交換容量1.4 mmol/gの炭化水素膜を使用し、その片面に上記した空気極触媒層をホットプレスして一体化させた。
 得られた空気極を用いて、下記の方法により、図2に概略図として示すH形セルを作製して、空気極の評価試験を行った。
 まず、得られた空気極の空気極触媒層面に金メッシュを押し当ててH型セルに挟み込み、金メッシュから電極端子を取り出して作用極とした。空気極触媒層側は大気開放し、その反対側の容器中には電解質溶液として0.5 M水酸化カリウム水溶液60 mlを加え、アルゴンガスで溶存酸素を除去した。この電解質溶液中に対極としての白金黒電極と、参照極としての可逆水素電極(RHE)を取り付け、室温における空気極性能を三極測定により評価した。
 作製した空気極における酸素還元電位の初期値を測定した後、空気極触媒層側に二酸化炭素を流量100 ml/minで1時間供給し、再び大気開放にして酸素還元電位を測定した。
 下記表1に、空気極触媒層側に二酸化炭素を供給する前後の電流密度10 mA/cm2における酸素還元電位を示す。
 比較例1
 実施例1と同様の方法で作製した空気極触媒層を、陰イオン交換膜と接合することなく単独でH型セルに挟み込み、実施例1と同様の方法で空気極の性能評価を行った。空気極触媒層側に二酸化炭素を供給する前後の酸素還元電位を下記表1に示す。
Figure JPOXMLDOC01-appb-T000003
 表1に示すように、陰イオン交換膜を使用しない従来の空気極である比較例1の空気極では、酸素還元電位は、二酸化炭素の影響を受けて、0.60 Vから0.52 Vへ13%も低下した。これに対して、実施例1の固体高分子形空気極では、二酸化炭素供給前後の酸素還元電位はそれぞれ0.58 V、0.56 Vであり、低下率はわずか3%であった。このように、本発明の空気極によれば、大気中の二酸化炭素による空気極性能の低下が緩和されることが明らかである。
 実施例2
 空気極触媒としてポリテトラフルオロエチレンで撥水化処理した白金黒を用いた。この白金黒触媒を陰イオン交換樹脂の5重量%溶液(四級アンモニウム塩基をイオン交換基として含むイオン交換容量2 mmol/gの炭化水素系樹脂)及びエタノールと、白金黒:陰イオン交換樹脂溶液:エタノール(重量比)=1:2.2:2の割合で混合して触媒インクとし、薄膜化させて空気極触媒層を作製した。
 陰イオン交換膜としては、四級アンモニウム塩基をイオン交換基として含む膜厚27μm、イオン交換容量1.4 mmol/gの炭化水素膜を使用し、その片側に上記した方法で得られた空気極触媒層をホットプレスして一体化させた。白金触媒の担持量は3 mg/cm2、電極層中の陰イオン交換樹脂含有量は10重量%、電極層厚さは約1μmであった。
 この空気極を図2に示すH型セルに取り付け、実施例1と同様の方法で空気極の性能評価を行い、酸素還元電位の初期値と二酸化炭素の影響による酸化還元電位の変化を観測した。
 下記表2に、二酸化炭素の供給前後における電流密度10 mA/cm2での酸素還元電位を示す。
 比較例2
 陰イオン交換膜に代えて、親水化処理を施した多孔性テフロン(登録商標)膜を用いる以外は実施例2と同様の方法で空気極を作製し、空気極の性能評価を行った。実施例1と同様の方法により、酸素還元電位が空気極触媒層側への二酸化炭素供給前後でどのように変化するかを調べた。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000004
 以上の通り、実施例2の空気極では、酸素還元電位は二酸化炭素供給前後とも0.68 Vで変化なく、二酸化炭素の影響を受けないことが明らかである。これに対して、陰イオン交換膜に代えて多孔性テフロン(登録商標)膜を用いた比較例2の空気極では、酸素還元電位は二酸化炭素の影響で0.64 Vから0.54 Vへ16%も低下している。この結果より、本発明の空気極は、空気極の長寿命化を図る上で効果的であることが明らかである。
 実施例3
 実施例1と同様の方法で陰イオン交換膜と一体化させた空気極を作製した。この空気極を図2に示すH型セルに取り付け、実施例1と同様の三極測定により空気極における酸素還元特性を評価した。
 作製した空気極における酸素還元電流の初期値を測定した後、空気極触媒層側に二酸化炭素を流量100 ml/minで1時間供給し、再び大気開放にして酸素還元電流を測定した。この操作を4回繰り返すことにより、二酸化炭素を計4時間供給し、二酸化炭素が酸素還元特性に及ぼす影響を観測した。
 下記表3に、RHEに対する電位0.6 Vにおける酸素還元電流の初期値(i0)と二酸化炭素供給後の測定値(it)との比(it / i0 ×100(%))が二酸化炭素の供給時間に対してどのように変化したかを示す。
 実施例4
 陰イオン交換膜として四級アンモニウム塩基をイオン交換基として含む膜厚27μm、イオン交換容量1.7 mmol/gの炭化水素膜を使用する以外は、実施例1と同様の方法で空気極を作製した。実施例3と同様の方法により、酸素還元電流が二酸化炭素計4時間の供給でどのように変化するかを調べた。結果を表3に示す。
 比較例3
 実施例1と同様の方法で作製した空気極触媒層を、陰イオン交換膜と接合することなく単独でH型セルに挟み込み、実施例3と同様の方法により、酸素還元電流が二酸化炭素計4時間の供給でどのように変化するかを調べた。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000005
 以上の結果から明らかなとおり、陰イオン交換膜を使用しない従来の空気極である比較例3の空気極では、酸素還元電流値は、二酸化炭素の供給時間と共に低下し、計4時間の供給後には初期値から29 %も低下して初期値の71 %になった。これに対して実施例3および実施例4の固体高分子形空気極では、酸素還元電流値の低下速度は比較例3の場合に比べて遅く、二酸化炭素を計4時間供給後にも、それぞれ初期値の91 %と83 %を維持した。このように、本発明の空気極によれば、二酸化炭素による酸素還元性能の低下が緩和されることが明らかである。
 実施例5
 実施例1と同様の方法で陰イオン交換膜と一体化させた空気極を作製した。この空気極をH型セルに取り付け、電解質溶液として4.0 M 水酸化カリウム水溶液 11 mlを使用し、実施例1と同様の三極測定により空気極特性を評価した。空気極特性としては、酸素還元反応に加えて、酸素発生反応における性能評価を行った。
 作製した空気極における酸素還元電流および酸素発生電流の初期値を測定した後、空気極触媒層側に二酸化炭素を流量100 ml/minで2時間供給し、再び大気開放にして酸素還元電流および酸素発生電流を測定した。
 下記表4に、空気極の酸素還元性能として、RHEに対して0.6 V、0.7 V、及び0.8 Vの各電位における酸素還元電流の初期値(i0)と二酸化炭素供給後の測定値(it)との比(it / i0 ×100(%))を示す。
 また、下記表5には、空気極の酸素発生性能として、RHEに対して1.6 V、1.8 V及び2.0 Vの各電位における酸素発生電流の初期値(i0)と二酸化炭素供給後の測定値(it)との比(it / i0 ×100(%))を示す。
 比較例4
 実施例1と同様の方法で作製した空気極触媒層を、陰イオン交換膜と接合することなく単独でH型セルに挟み込み、実施例5と同様の方法により、酸素還元電流および酸素発生電流が二酸化炭素の供給でどのように変化するかを調べた。結果を表4および表5にそれぞれ示す。
 比較例5
 陰イオン交換膜に代えて、親水性処理を施した多孔性テフロン(登録商標)膜を用いる以外は実施例5と同様の方法で空気極を作製し、実施例5と同様の方法により、酸素還元電流および酸素発生電流が二酸化炭素の供給でどのように変化するかを調べた。結果を表4および表5にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000006
 上記表4に示す通り、陰イオン交換膜を使用しない従来の空気極である比較例4の空気極では、酸素還元電流値は二酸化炭素の影響を受けて低下して46 %~49 %となった。これに対して、実施例5の空気極では二酸化炭素供給後にも酸素還元電流の比は80 %以上を維持しており、二酸化炭素の影響を受けにくいことが明らかである。また、陰イオン交換膜に代えて多孔性テフロン(登録商標)膜を用いた比較例5の空気極では、酸素還元電流の比は60 %程度であり、膜を用いない比較例4に比べると幾分優位性が認められるが、実施例5の空気極と比較すると、二酸化炭素供給後に酸素還元電流が大きく低下した。これらの結果から、本発明の空気極では、二酸化炭素の影響による酸素還元性能の低下が緩和されていることが明らかである。
Figure JPOXMLDOC01-appb-T000007
 また、上記表5に示す通り、陰イオン交換膜を使用しない従来の空気極である比較例4の空気極では、酸素発生電流は二酸化炭素の影響を受けて低下して57 %~59 %となった。また、多孔性テフロン(登録商標)膜を用いた比較例5の空気極でも酸素発生電流の比は47 %~60 %であり、40 %以上の低下が認められた。これに対して、実施例5の空気極では、二酸化炭素供給後にも酸素発生電流の比は87 %以上を維持しており、二酸化炭素の影響を受けにくいことが示されている。このように、本発明の空気極では、二酸化炭素の影響による酸素発生性能の低下が緩和されていることが明らかである。

Claims (9)

  1. 陰イオン交換膜と空気極用触媒層とを積層した構造を有し、該陰イオン交換膜がアルカリ水溶液と接触した状態で配置されることを特徴とする空気極。
  2. 陰イオン交換膜が、四級アンモニウム基、ピリジニウム基、イミダゾリウム基、ホスホニウム基及びスルホニウム基からなる群から選ばれた少なくとも一種の陰イオン交換基を有する高分子膜である請求項1に記載の空気極。
  3. 金属-空気一次電池又は金属-空気二次電池用正極である請求項1に記載の空気極。
  4. アルカリ形燃料電池用正極である請求項1に記載の空気極。
  5. アルカリ形水電解装置用酸素発生極である請求項1に記載の空気極。
  6. アルカリ水溶液からなる電解液、及び請求項1に記載の空気極からなる正極を含む金属-空気一次電池又は金属-空気二次電池。
  7. アルカリ水溶液からなる電解液、及び請求項1に記載の空気極からなる正極を含むアルカリ形燃料電池。
  8. 燃料電池及び水電解装置の両方の用途に用いられる請求項7に記載のアルカリ形燃料電池。
  9. アルカリ水溶液からなる電解液を収容した電解槽、及び請求項1に記載の空気極からなる酸素発生極を含むアルカリ形水電解装置。
PCT/JP2009/052618 2008-02-18 2009-02-17 空気極 WO2009104570A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/867,376 US20100323249A1 (en) 2008-02-18 2009-02-17 Air electrode
EP09712401A EP2254192A4 (en) 2008-02-18 2009-02-17 AIR ELECTRODE
JP2009554309A JP5207407B2 (ja) 2008-02-18 2009-02-17 空気極

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008035408 2008-02-18
JP2008-035408 2008-02-18

Publications (1)

Publication Number Publication Date
WO2009104570A1 true WO2009104570A1 (ja) 2009-08-27

Family

ID=40985450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052618 WO2009104570A1 (ja) 2008-02-18 2009-02-17 空気極

Country Status (4)

Country Link
US (1) US20100323249A1 (ja)
EP (1) EP2254192A4 (ja)
JP (1) JP5207407B2 (ja)
WO (1) WO2009104570A1 (ja)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011134628A (ja) * 2009-12-25 2011-07-07 National Institute Of Advanced Industrial Science & Technology リチウム−空気電池
JP2011146339A (ja) * 2010-01-18 2011-07-28 Sumitomo Chemical Co Ltd 空気電池、空気電池スタック
JP2011253713A (ja) * 2010-06-02 2011-12-15 Nippon Telegr & Teleph Corp <Ntt> リチウム空気二次電池用の正極とその製造方法ならびにリチウム空気二次電池
JP2012084261A (ja) * 2010-10-07 2012-04-26 Sumitomo Chemical Co Ltd 空気電池
WO2012066936A1 (ja) * 2010-11-18 2012-05-24 オリンパス株式会社 燃料電池
JP2012518884A (ja) * 2009-02-23 2012-08-16 セルエラ, インコーポレイテッド アルカリ膜燃料電池のための触媒被覆膜(ccm)および触媒膜/層、ならびにそれらを作製する方法
JPWO2010100752A1 (ja) * 2009-03-06 2012-09-06 トヨタ自動車株式会社 空気極および非水空気電池
JP2013069591A (ja) * 2011-09-24 2013-04-18 Imura Zairyo Kaihatsu Kenkyusho:Kk 金属―空気電池
WO2013073292A1 (ja) 2011-11-16 2013-05-23 日本碍子株式会社 亜鉛空気二次電池
EP2613389A1 (en) * 2010-08-31 2013-07-10 Shanghai Institute Of Ceramics, Chinese Academy Of Sciences Air electrode for lithium air battery and method of making the same
JP2013191408A (ja) * 2012-03-14 2013-09-26 Imura Zairyo Kaihatsu Kenkyusho:Kk バイポーラ・イオン交換膜型金属―空気電池
WO2013161516A1 (ja) 2012-04-26 2013-10-31 日本碍子株式会社 リチウム空気二次電池
JP2013541146A (ja) * 2010-09-21 2013-11-07 インペリアル イノベイションズ リミテッド 再生燃料電池
JP2014026857A (ja) * 2012-07-27 2014-02-06 Sharp Corp 電池用電極体、電池および金属空気電池
JP2014029818A (ja) * 2011-08-23 2014-02-13 Nippon Shokubai Co Ltd ゲル電解質又は負極合剤、及び、該ゲル電解質又は負極合剤を使用した電池
JP2014032914A (ja) * 2012-08-06 2014-02-20 Toyota Motor Corp 金属空気電池用空気極及び金属空気電池
JP2014056750A (ja) * 2012-09-13 2014-03-27 Hitachi Zosen Corp アルカリ形燃料電池の活性化方法
WO2014073410A1 (ja) * 2012-11-06 2014-05-15 シャープ株式会社 金属空気電池
JP2014129563A (ja) * 2012-12-28 2014-07-10 Asahi Kasei Corp アルカリ水電解用隔膜及びその製造方法
JP2014520372A (ja) * 2011-06-17 2014-08-21 フルイディック,インク. イオン交換材料を有する金属−空気セル
JP5644873B2 (ja) * 2011-02-16 2014-12-24 富士通株式会社 空気二次電池
JP2014535145A (ja) * 2011-11-09 2014-12-25 エレクトリシテ・ドゥ・フランス リチウム空気電池用の水性電解液
JP2016058211A (ja) * 2014-09-09 2016-04-21 株式会社イムラ材料開発研究所 水系リチウム―空気二次電池用正極
US9705164B2 (en) 2012-04-23 2017-07-11 Sharp Kabushiki Kaisha Metal-air battery and energy system
JP2017527701A (ja) * 2014-09-08 2017-09-21 スリーエム イノベイティブ プロパティズ カンパニー 二酸化炭素電気分解装置用のイオン性ポリマー膜
JP2019143235A (ja) * 2018-02-22 2019-08-29 旭化成株式会社 アルカリ水電解用電極の評価方法、アルカリ水電解用電極の製造方法、及びアルカリ水電解用電極
JP2020098779A (ja) * 2018-12-17 2020-06-25 日本碍子株式会社 電気化学セル
US11339483B1 (en) 2021-04-05 2022-05-24 Alchemr, Inc. Water electrolyzers employing anion exchange membranes

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2945292B1 (fr) * 2009-05-06 2011-05-27 Electricite De France Reseau interpenetre de polymeres echangeur d'anions, son procede de fabrication et son utilisation
WO2012098815A1 (ja) * 2011-01-19 2012-07-26 住友化学株式会社 アルミニウム空気電池
US8741491B2 (en) 2011-06-17 2014-06-03 Fluidic, Inc. Ionic liquid containing sulfonate ions
US20140326611A1 (en) * 2011-10-10 2014-11-06 Yushan Yan Membranes and catalysts for fuel cells, gas separation cells, electrolyzers and solar hydrogen applications
US8535851B1 (en) 2012-06-19 2013-09-17 ZAF Energy Systems, Incorporated Metal-air battery and gas impermeable anodic conductive matrix
ITRM20120318A1 (it) * 2012-07-06 2014-01-07 Sati Tek S R L Membrana polimerica selettiva, in particolare per batterie alcaline metallo-aria, e batteria metallo-aria che comprende tale membrana.
EP2875542B1 (en) * 2012-07-18 2020-09-09 AZA Holding Pte. Ltd. Gas-shield-electrode and composite bifunctional air-electrode using the same for use in metal-air batteries
WO2014106027A1 (en) * 2012-12-27 2014-07-03 Robert Bosch Gmbh AQUEOUS Li/O2 BATTERY WITH WATER STORAGE
JP2015086420A (ja) * 2013-10-29 2015-05-07 国立大学法人横浜国立大学 アルカリ水電解用陽極
CN106104909B (zh) 2014-03-28 2019-07-05 日本碍子株式会社 金属空气电池用空气极
WO2016006292A1 (ja) 2014-07-09 2016-01-14 日本碍子株式会社 金属空気電池用セパレータ付き空気極
US11725291B2 (en) * 2016-11-01 2023-08-15 Ffi Ionix Ip, Inc. Electrolysis cell assembly utilizing an anion exchange membrane
WO2018112510A1 (en) * 2016-12-22 2018-06-28 Hydra Light International Ltd Metal-air fuel cell
CN107039657A (zh) * 2017-04-21 2017-08-11 上海汉行科技有限公司 一种铝空气电池空气电极结构
KR102246992B1 (ko) 2018-11-27 2021-04-30 한국생산기술연구원 전극 적층체, 막 전극 접합체, 전자소자 및 그의 제조방법
US11424484B2 (en) 2019-01-24 2022-08-23 Octet Scientific, Inc. Zinc battery electrolyte additive
JP7198238B2 (ja) * 2020-03-19 2022-12-28 株式会社東芝 二酸化炭素電解セル用電極触媒層、ならびにそれを具備する、電解セルおよび二酸化炭素電解用電解装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4949128A (ja) 1972-09-19 1974-05-13
JPS5351448A (en) 1976-10-21 1978-05-10 Kogyo Gijutsuin Method of operating metal air battery
JPS6269472A (ja) 1985-09-24 1987-03-30 Toshiba Corp 空気電池
JPS63218165A (ja) * 1987-03-06 1988-09-12 Tosoh Corp アルカリ電解質型ホルムアルデヒド燃料電池
JPH07302601A (ja) * 1994-05-04 1995-11-14 Hoechst Ag 電気化学電池
JP2000003735A (ja) 1998-06-12 2000-01-07 Matsushita Electric Ind Co Ltd 空気亜鉛電池
JP2001266961A (ja) * 2000-03-24 2001-09-28 Sekisui Chem Co Ltd 空気電池
JP2002343452A (ja) * 2001-05-14 2002-11-29 Hitachi Maxell Ltd 空気電池
JP2003234115A (ja) * 2002-02-07 2003-08-22 Hitachi Maxell Ltd 空気−水素電池
JP2005235485A (ja) 2004-02-18 2005-09-02 Matsushita Electric Ind Co Ltd ボタン形空気亜鉛電池
JP2008300215A (ja) * 2007-05-31 2008-12-11 Toyota Motor Corp 燃料電池

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US565389A (en) * 1896-08-04 William h
US3540935A (en) * 1968-02-26 1970-11-17 Du Pont Alkaline secondary battery and electrolyte therefor
US3668014A (en) * 1968-06-10 1972-06-06 Leesona Corp Electrode and method of producing same
NL7607471A (nl) * 1976-07-07 1978-01-10 Electrochem Energieconversie Elektrochemische zink-zuurstof-cel.
US4834847A (en) * 1986-02-18 1989-05-30 The Dow Chemical Company Electrochemical cell for the electrolysis of an alkali metal halide and the production of a halogenated hydrocarbon
JP2002216833A (ja) * 2001-01-19 2002-08-02 Kansai Electric Power Co Inc:The レドックス電池
US6911273B2 (en) * 2001-04-24 2005-06-28 Reveo, Inc. Hybrid electrochemical cell system
EP1461841A1 (en) * 2001-12-31 2004-09-29 Evionyx, Inc. Rechargeable metal air electrochemical cell incorporating collapsible cathode assembly
FR2835656A1 (fr) * 2002-05-13 2003-08-08 Commissariat Energie Atomique Pile du type metal-oxygene comprenant un electrolyte apte a limiter, du cote cathodique, le passage de cations
EP1612874A1 (en) * 2004-07-02 2006-01-04 SOLVAY (Société Anonyme) Solid alkaline fuel cell comprising ion exchange membrane
US20070131541A1 (en) * 2004-10-26 2007-06-14 Kohichi Miyashita Electrolysis vessel and apparatus for generating electrolyzed water
JP4744121B2 (ja) * 2004-11-09 2011-08-10 ニッポン高度紙工業株式会社 電極並びに該電極を接合した固体電解質膜及びその製造方法並びに該固体電解質膜を使用した電気化学システム
JP2006244960A (ja) * 2005-03-07 2006-09-14 Daihatsu Motor Co Ltd 燃料電池

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4949128A (ja) 1972-09-19 1974-05-13
JPS5351448A (en) 1976-10-21 1978-05-10 Kogyo Gijutsuin Method of operating metal air battery
JPS6269472A (ja) 1985-09-24 1987-03-30 Toshiba Corp 空気電池
JPS63218165A (ja) * 1987-03-06 1988-09-12 Tosoh Corp アルカリ電解質型ホルムアルデヒド燃料電池
JPH07302601A (ja) * 1994-05-04 1995-11-14 Hoechst Ag 電気化学電池
JP2000003735A (ja) 1998-06-12 2000-01-07 Matsushita Electric Ind Co Ltd 空気亜鉛電池
JP2001266961A (ja) * 2000-03-24 2001-09-28 Sekisui Chem Co Ltd 空気電池
JP2002343452A (ja) * 2001-05-14 2002-11-29 Hitachi Maxell Ltd 空気電池
JP2003234115A (ja) * 2002-02-07 2003-08-22 Hitachi Maxell Ltd 空気−水素電池
JP2005235485A (ja) 2004-02-18 2005-09-02 Matsushita Electric Ind Co Ltd ボタン形空気亜鉛電池
JP2008300215A (ja) * 2007-05-31 2008-12-11 Toyota Motor Corp 燃料電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PHYS. CHEM. CHEM. PHYS., vol. 3, 2001, pages 368
See also references of EP2254192A4

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012518884A (ja) * 2009-02-23 2012-08-16 セルエラ, インコーポレイテッド アルカリ膜燃料電池のための触媒被覆膜(ccm)および触媒膜/層、ならびにそれらを作製する方法
JPWO2010100752A1 (ja) * 2009-03-06 2012-09-06 トヨタ自動車株式会社 空気極および非水空気電池
JP5056942B2 (ja) * 2009-03-06 2012-10-24 トヨタ自動車株式会社 空気極および非水空気電池
JP2011134628A (ja) * 2009-12-25 2011-07-07 National Institute Of Advanced Industrial Science & Technology リチウム−空気電池
JP2011146339A (ja) * 2010-01-18 2011-07-28 Sumitomo Chemical Co Ltd 空気電池、空気電池スタック
US9680192B2 (en) 2010-01-18 2017-06-13 Sumitomo Chemical Company, Limited Air battery and air battery stack
JP2011253713A (ja) * 2010-06-02 2011-12-15 Nippon Telegr & Teleph Corp <Ntt> リチウム空気二次電池用の正極とその製造方法ならびにリチウム空気二次電池
US9705165B2 (en) 2010-08-31 2017-07-11 Shanghai Institute Of Ceramics, Chinese Academy Of Sciences Lithium-air battery air electrode and its preparation method
EP2613389A4 (en) * 2010-08-31 2014-06-25 Shanghai Inst Ceramics AIR ELECTRODE FOR LITHIUM-AIR BATTERY AND METHOD OF MANUFACTURE
EP2613389A1 (en) * 2010-08-31 2013-07-10 Shanghai Institute Of Ceramics, Chinese Academy Of Sciences Air electrode for lithium air battery and method of making the same
JP2013541146A (ja) * 2010-09-21 2013-11-07 インペリアル イノベイションズ リミテッド 再生燃料電池
US9379397B2 (en) 2010-10-07 2016-06-28 Sumitomo Chemical Company, Limited Air battery
JP2012084261A (ja) * 2010-10-07 2012-04-26 Sumitomo Chemical Co Ltd 空気電池
JP2012124148A (ja) * 2010-11-18 2012-06-28 Olympus Corp 燃料電池
WO2012066936A1 (ja) * 2010-11-18 2012-05-24 オリンパス株式会社 燃料電池
JP5644873B2 (ja) * 2011-02-16 2014-12-24 富士通株式会社 空気二次電池
JP2014520372A (ja) * 2011-06-17 2014-08-21 フルイディック,インク. イオン交換材料を有する金属−空気セル
JP2014029818A (ja) * 2011-08-23 2014-02-13 Nippon Shokubai Co Ltd ゲル電解質又は負極合剤、及び、該ゲル電解質又は負極合剤を使用した電池
JP2013069591A (ja) * 2011-09-24 2013-04-18 Imura Zairyo Kaihatsu Kenkyusho:Kk 金属―空気電池
US9461348B2 (en) 2011-11-09 2016-10-04 Electricite De France Aqueous electrolyte for lithium-air battery
JP2014535145A (ja) * 2011-11-09 2014-12-25 エレクトリシテ・ドゥ・フランス リチウム空気電池用の水性電解液
WO2013073292A1 (ja) 2011-11-16 2013-05-23 日本碍子株式会社 亜鉛空気二次電池
JP5574516B2 (ja) * 2011-11-16 2014-08-20 日本碍子株式会社 亜鉛空気二次電池
CN103947036A (zh) * 2011-11-16 2014-07-23 日本碍子株式会社 锌空气二次电池
US9070953B2 (en) 2011-11-16 2015-06-30 Ngk Insulators, Ltd. Zinc-air secondary battery having inorganic solid electrolyte body
JP2013191408A (ja) * 2012-03-14 2013-09-26 Imura Zairyo Kaihatsu Kenkyusho:Kk バイポーラ・イオン交換膜型金属―空気電池
US9705164B2 (en) 2012-04-23 2017-07-11 Sharp Kabushiki Kaisha Metal-air battery and energy system
CN104221214A (zh) * 2012-04-26 2014-12-17 日本碍子株式会社 锂空气二次电池
JPWO2013161516A1 (ja) * 2012-04-26 2015-12-24 日本碍子株式会社 リチウム空気二次電池
WO2013161516A1 (ja) 2012-04-26 2013-10-31 日本碍子株式会社 リチウム空気二次電池
US9391349B2 (en) 2012-04-26 2016-07-12 Ngk Insulators, Ltd. Lithium air secondary battery
JP2014026857A (ja) * 2012-07-27 2014-02-06 Sharp Corp 電池用電極体、電池および金属空気電池
JP2014032914A (ja) * 2012-08-06 2014-02-20 Toyota Motor Corp 金属空気電池用空気極及び金属空気電池
JP2014056750A (ja) * 2012-09-13 2014-03-27 Hitachi Zosen Corp アルカリ形燃料電池の活性化方法
WO2014073410A1 (ja) * 2012-11-06 2014-05-15 シャープ株式会社 金属空気電池
JP2014129563A (ja) * 2012-12-28 2014-07-10 Asahi Kasei Corp アルカリ水電解用隔膜及びその製造方法
JP2017527701A (ja) * 2014-09-08 2017-09-21 スリーエム イノベイティブ プロパティズ カンパニー 二酸化炭素電気分解装置用のイオン性ポリマー膜
JP2016058211A (ja) * 2014-09-09 2016-04-21 株式会社イムラ材料開発研究所 水系リチウム―空気二次電池用正極
JP2019143235A (ja) * 2018-02-22 2019-08-29 旭化成株式会社 アルカリ水電解用電極の評価方法、アルカリ水電解用電極の製造方法、及びアルカリ水電解用電極
JP7123338B2 (ja) 2018-02-22 2022-08-23 旭化成株式会社 アルカリ水電解用電極の評価方法、アルカリ水電解用電極の製造方法、及びアルカリ水電解用電極
JP2020098779A (ja) * 2018-12-17 2020-06-25 日本碍子株式会社 電気化学セル
US11339483B1 (en) 2021-04-05 2022-05-24 Alchemr, Inc. Water electrolyzers employing anion exchange membranes

Also Published As

Publication number Publication date
EP2254192A1 (en) 2010-11-24
JPWO2009104570A1 (ja) 2011-06-23
US20100323249A1 (en) 2010-12-23
JP5207407B2 (ja) 2013-06-12
EP2254192A4 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
JP5207407B2 (ja) 空気極
JP5037338B2 (ja) ルテニウム−ロジウム合金電極触媒及びこれを含む燃料電池
AU2009246798B2 (en) Permselective membrane-free direct fuel cell and components thereof
JP7029420B2 (ja) 二酸化炭素電解セル用電極触媒層、ならびにそれを具備する、電解セルおよび二酸化炭素電解用電解装置
JP2009518795A (ja) 2機能性空気電極
CN113493917B (zh) 二氧化碳电解池用电极催化剂层、及具备其的电解池和二氧化碳电解用电解装置
JP2002100373A (ja) 燃料電池用触媒化多孔性炭素電極製造方法
Zhang et al. An overview of non-noble metal electrocatalysts and their associated air cathodes for Mg-air batteries
Xue et al. One-pot synthesis of La0. 7Sr0. 3MnO3 supported on flower-like CeO2 as electrocatalyst for oxygen reduction reaction in aluminum-air batteries
Narayan et al. Bi-functional oxygen electrodes–challenges and prospects
JP2013201056A (ja) 金属−空気二次電池用空気極触媒層
EP2619835A1 (en) Regenerative fuel cells
JP2007284705A (ja) 電解型水素発生装置、水素ガスの発生方法及び燃料電池
US20050031921A1 (en) Hybrid fuel cell
WO2008041472A1 (fr) conducteur ionique et pile à combustible
US20120164554A1 (en) Membrane electrode assembly, fuel cell with the same, and fuel cell generating system
JP5706842B2 (ja) バイポーラ・イオン交換膜型金属―空気電池
JP6941202B1 (ja) 膜電極接合体、及び電気化学セル
JP6963596B2 (ja) 電気化学セル
JP2024039373A (ja) 膜電極接合体及びそれを用いた電解セル
JP2024047984A (ja) ガス拡散層及びその製造方法、ガス拡散電極、膜電極接合体並びにそれを用いた電解セル
WO2013099525A1 (ja) 膜/電極接合体、およびこれを用いた燃料電池
Maltseva et al. ELECTROCATALYSIS OF THE OXYGEN REACTION ON THE MULTICOMPONENT OXIDES OF TRANSITION METALS
Mechili Cathodes for zinc-air batteries
WO2004004049A9 (ja) 燃料電池及びその使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09712401

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009712401

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12867376

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009554309

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE