WO2009101729A1 - モータ駆動装置およびハイブリッド駆動装置ならびにモータ駆動装置の制御方法 - Google Patents
モータ駆動装置およびハイブリッド駆動装置ならびにモータ駆動装置の制御方法 Download PDFInfo
- Publication number
- WO2009101729A1 WO2009101729A1 PCT/JP2008/068538 JP2008068538W WO2009101729A1 WO 2009101729 A1 WO2009101729 A1 WO 2009101729A1 JP 2008068538 W JP2008068538 W JP 2008068538W WO 2009101729 A1 WO2009101729 A1 WO 2009101729A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- motor
- multiphase
- short
- switching element
- power
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/26—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/40—Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/36—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
- B60K6/365—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/44—Series-parallel type
- B60K6/445—Differential gearing distribution type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/003—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0092—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption with use of redundant elements for safety purposes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/08—Means for preventing excessive speed of the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L7/00—Electrodynamic brake systems for vehicles in general
- B60L7/003—Dynamic electric braking by short circuiting the motor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/08—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P29/00—Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
- H02P29/02—Providing protection against overload without automatic interruption of supply
- H02P29/032—Preventing damage to the motor, e.g. setting individual current limits for different drive conditions
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P5/00—Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
- H02P5/74—Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors
- H02P5/747—Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors mechanically coupled by gearing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K1/00—Arrangement or mounting of electrical propulsion units
- B60K1/02—Arrangement or mounting of electrical propulsion units comprising more than one electric motor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/421—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/08—Electric propulsion units
- B60W2510/081—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/08—Electric propulsion units
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2101/00—Special adaptation of control arrangements for generators
- H02P2101/45—Special adaptation of control arrangements for generators for motor vehicles, e.g. car alternators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Definitions
- the present invention relates to a motor drive device, a hybrid drive device, and a control method for the motor drive device, and more specifically, a motor drive configured to include a plurality of motors coupled so as to be able to output power to a common output shaft.
- the present invention relates to a control method for an apparatus, a hybrid drive apparatus, and a motor drive apparatus.
- a hybrid vehicle is a vehicle that uses a DC power source, an inverter, and a motor driven by the inverter as a power source in addition to a conventional engine.
- a power source is obtained by driving the engine, a DC voltage from a DC power source is converted into an AC voltage by an inverter, and a motor is rotated by the converted AC voltage to obtain a power source.
- Patent Document 1 discloses a so-called parallel hybrid vehicle.
- a part of the power output from the engine is transmitted to the drive shaft through the power split mechanism having the first motor generator, and the remaining power is converted into electric power by the first motor generator. It is regenerated. This electric power is used for battery charging and driving of the second motor generator as a power source other than the engine.
- Patent Document 1 when the current flowing through the inverter connected to the first motor generator becomes excessive during the retreat operation, the retreat operation by the second motor generator is limited. This prevents further damage to the device due to the occurrence of a high temperature exceeding the heat resistance temperature of the inverter component due to an excessive short-circuit current.
- Patent Document 1 in the configuration in which the operation of the second motor generator is limited according to the current flowing through the inverter connected to the first motor generator, further element damage due to an excessive short-circuit current is generated. While this can be prevented, there is a limit to the increase in travel distance due to evacuation operation. Therefore, there is a possibility that the vehicle cannot be evacuated to a safe place.
- an object of the present invention is to provide one motor in a motor drive device and a hybrid drive device including a plurality of motors coupled to a common output shaft.
- the element protection of the motor drive circuit corresponding to the abnormal motor is compatible with the increase of the movement distance due to the retreat operation.
- a motor drive device includes a plurality of multiphase AC motors coupled to be capable of outputting power to a common output shaft, and a plurality of power conversions respectively connected to the plurality of multiphase AC motors. And a control device that controls a plurality of power conversion devices.
- Each of the plurality of power conversion devices includes a plurality of arm circuits connected to each phase coil of the multiphase AC motor.
- Each of the plurality of arm circuits has first and second switching elements connected in series via a connection point with each phase coil between the first and second power supply lines.
- the control device includes a second multi-phase AC motor that is different from the first multi-phase AC motor connected to the first power converter when the first power converter out of the plurality of power converters is abnormal.
- An abnormality control unit for instructing the operation at the time of abnormality used, and a switching element in which a short-circuit failure occurs in the operation at the time of abnormality based on the current flowing through the first power converter as the second multiphase AC motor is operated.
- a short-circuit detecting unit for detecting the current and a switching element that is connected in series via a connection point with a switching element that is short-circuited in abnormal operation, thereby controlling a current that flows through the first power converter.
- the first power conversion device is connected to the motor control unit of the first power converter by connecting all the switching elements connected in parallel with the switching element that is short-circuited with respect to the power line in the abnormal operation.
- a second motor control unit that controls the current to be generated, and a selection unit that selectively sets the first motor control unit and the second motor control unit according to the rotation speed of the first multiphase AC motor Including.
- the selection unit selects the first motor control unit when the rotation speed of the first multiphase AC motor is equal to or lower than a predetermined reference rotation speed, and the rotation speed of the first multiphase AC motor is When the predetermined reference rotational speed is exceeded, the second motor control unit is selected.
- the first multi-phase AC motor has a braking torque generated in association with the operation of the second multi-phase AC motor. It has the 1st characteristic which becomes large as rotation speed becomes high.
- the first multi-phase AC motor has a braking torque generated by the operation of the second multi-phase AC motor, and the rotation speed of the first multi-phase AC motor is It has the 2nd characteristic which becomes small as it becomes high.
- the selection unit has first and second characteristics in advance, and the first multiple when the braking torque generated in the first multiphase AC motor matches between the first characteristic and the second characteristic.
- the rotational speed of the phase AC motor is set to a predetermined reference rotational speed.
- a hybrid drive device includes an engine that is operated by fuel, a first motor generator, an output member that outputs power, an output member, an output shaft of the engine, and a first engine.
- a power split mechanism for connecting output shafts of one motor generator to each other; a second motor generator connected to an output member; and a DC motor and a first motor generator connected between the first motor generator and the first motor generator.
- a first inverter that drives and controls the generator; a second inverter that is connected between the DC power source and the second motor generator to drive and control the second motor generator; and the first and second motor generators And a control device for controlling the operation.
- the first inverter includes a first plurality of arm circuits each connected to each phase coil of the first motor generator.
- the second inverter includes a second plurality of arm circuits each connected to each phase coil of the second motor generator.
- Each of the first and second plurality of arm circuits has first and second switching elements connected in series between the first and second power supply lines via connection points with respective phase coils.
- the control device includes an abnormality control unit for instructing an abnormal operation using the second motor generator when the first inverter is abnormal, and the first motor generator is operated in accordance with the operation of the second motor generator during the abnormal operation.
- a short-circuit detecting unit that detects a short-circuit faulty switching element, and in an abnormal operation, by conducting a short-circuit faulty switching element and a switching element connected in series via a connection point
- the first motor control unit for controlling the current flowing through the first inverter and the switching element connected in parallel with the switching element that is short-circuited with respect to the power supply line in the operation at the time of abnormality are electrically connected.
- the second motor control unit for controlling the current flowing through the inverter and the rotation speed of the first motor generator, And a first selection unit that sets a motor control unit and the second motor control unit selectively.
- the first selection unit selects the first motor control unit when the rotation speed of the first motor generator is equal to or lower than a predetermined reference rotation speed, and the rotation speed of the first motor generator is predetermined. When the reference rotational speed is exceeded, the second motor control unit is selected.
- the abnormality control unit instructs an abnormal operation using the engine and the first motor generator when the second inverter is abnormal.
- the short circuit detection unit detects a short circuit failure switching element based on the current flowing through the second inverter during the operation of the first motor generator during the abnormal operation.
- the control device includes a third motor control unit configured to control a current flowing through the second inverter by conducting a short-circuit faulty switching element and a switching element connected in series via a connection point in an abnormal operation, In an abnormal operation, a fourth motor control unit that controls a current flowing through the second inverter by causing all switching elements connected in parallel to the switching element that is short-circuited to the power supply line to conduct, A second selection unit that selectively sets the third motor control unit and the fourth motor control unit according to the number of rotations of the motor generator is further included.
- the second selection unit selects the third motor control unit when the rotation speed of the second motor generator is equal to or lower than a predetermined reference rotation speed, and the rotation speed of the second motor generator is predetermined.
- the fourth motor control unit is selected.
- each of a plurality of power converters includes a plurality of arm circuits connected to each phase coil of a multiphase AC motor, and each of the plurality of arm circuits includes a first First and second switching elements connected in series via connection points with respective phase coils between the first and second power supply lines.
- the control method includes a second multi-phase AC motor that is different from the first multi-phase AC motor connected to the first power converter when the first power converter among the plurality of power converters is abnormal.
- the step of instructing the operation at the time of abnormality used, and the operation of the second multiphase AC motor in the operation at the time of abnormality are detected based on the current flowing through the first power conversion device, and the switching element that is short-circuited is detected.
- a step of controlling the current flowing through the first power converter by conducting a switching element connected in series with a switching element that is short-circuited and faulty in the abnormal operation, and an abnormal operation
- the current flowing through the first power conversion device is controlled by conducting all the switching elements connected in parallel with the switching element that is short-circuited with respect to the power line.
- a current flowing through the first power conversion device by conducting a short-circuited switching element and a switching element connected in series via a connection point in accordance with the number of rotations of the first multiphase AC motor.
- the step of controlling the current flowing through the first power converter by selectively setting all the switching elements connected in parallel to the switching element that has a short-circuit fault with respect to the power supply line to be set. Steps.
- the step of selectively setting includes a switching element connected in series via a connection point with a switching element having a short circuit when the rotation speed of the first multiphase AC motor is equal to or lower than a predetermined reference rotation speed. Is selected, the step of controlling the current flowing through the first power converter is selected, and when the rotational speed of the first multiphase AC motor exceeds a predetermined reference rotational speed, The step of controlling the current flowing through the first power converter is selected by turning on all the switching elements connected in parallel with the switching element having the short-circuit fault.
- a motor drive device and a hybrid drive device including a plurality of motors connected to a common output shaft, when performing a retreat operation using another motor when an abnormality occurs in one motor, It is possible to achieve both protection of the element of the motor drive circuit corresponding to the abnormal motor and increase of the moving distance by the retreat operation.
- FIG. 1 is a block diagram showing a schematic configuration of a hybrid vehicle 10 provided with a hybrid drive device according to an embodiment of the present invention. It is a block diagram explaining the structure of the hybrid drive device shown in FIG. 1 in detail.
- FIG. 3 is a circuit diagram showing an electrical configuration of the hybrid drive device shown in FIG. 2. It is a figure explaining the short circuit current inside an inverter generated at the time of short circuit failure occurrence. It is a block diagram which shows the control structure in MGECU according to embodiment of this invention. It is a figure explaining the short circuit current inside an inverter generated at the time of execution of one phase short circuit control. It is a figure explaining the short circuit current inside an inverter generated at the time of execution of three phase ON control.
- FIG. 1 is a block diagram showing a schematic configuration of a hybrid vehicle 10 provided with a hybrid drive apparatus 100 according to an embodiment of the present invention.
- the hybrid drive device 100 is a representative example of a motor drive circuit that includes a plurality of motors coupled so as to be able to output power to a common output shaft, and a plurality of motor drive circuits respectively connected to the plurality of motors. It is shown as
- the hybrid vehicle 10 includes a hybrid drive device 100, a differential gear 30, a drive shaft 40, and drive wheels 50.
- the hybrid drive device 100 includes an engine (internal combustion engine) and two motor generators therein, and generates an output by cooperative control of the engine and the motor generator.
- the output of the hybrid drive device 100 is transmitted to the drive shaft 40 via the differential gear 30 and used for driving the drive wheels 50 to rotate.
- the differential gear 30 absorbs a difference in rotation between the left and right driving wheels 50 using a difference in resistance from the road surface.
- FIG. 2 is a block diagram illustrating in detail the configuration of the hybrid drive apparatus 100 shown in FIG.
- hybrid drive apparatus 100 includes an engine ENG such as an internal combustion engine that operates by fuel combustion, a spring-type damper device 114 that absorbs rotational fluctuations of engine ENG, and damper device 114.
- engine ENG such as an internal combustion engine that operates by fuel combustion
- spring-type damper device 114 that absorbs rotational fluctuations of engine ENG
- damper device 114 A planetary gear type power split mechanism PSD that mechanically distributes the output of the engine ENG transmitted to the motor generator MG1 and the output member 118, and a motor generator MG2 that applies a rotational force to the output member 118.
- Engine ENG, damper device 114, power split mechanism PSD, and motor generator MG1 are coaxially arranged side by side in the axial direction, and motor generator MG2 is concentrically arranged on the outer peripheral side of damper device 114 and power split mechanism PSD. It is installed.
- Power split device PSD is a single-pinion type planetary gear device, which includes three sun gear 120s connected to motor shaft 124 of motor generator MG1 as three rotating elements, carrier 120c connected to damper device 114, and motor generator MG2. Ring gear 120r connected to rotor 122r.
- the output member 118 is integrally fixed with a rotor 122r of the motor generator MG2 and a bolt or the like, and is connected to the ring gear 120r of the power split mechanism PSD via the rotor 122r.
- the output member 118 is provided with an output gear 126, and the bevel gear type differential gear 30 is decelerated and rotated through the large gear 130 and the small gear 132 of the intermediate shaft 128, and the driving wheel 50 shown in FIG. Power is distributed to.
- the output gear 126 is provided with a parking lock brake mechanism (not shown) for locking the output from the output member 118.
- the parking lock brake mechanism limits the driving force output from the hybrid drive device 100 by locking the output gear 126 when the driver selects the parking position (P position).
- Motor generator MG1 and motor generator MG2 are electrically connected to DC power supply 140 via inverter 14 and inverter 31, respectively.
- motor generators MG1 and MG2 are used as generators by a rotational drive state in which electric energy from the DC power supply 140 is supplied and rotationally driven with a predetermined torque, and by rotational braking (electric braking torque of the motor generator itself).
- the operation can be switched between a charged state that functions to charge the DC power supply 140 with electric energy and a no-load state that allows the motor shaft 124 and the rotor 122r to freely rotate.
- the HVECU (Electronic Control Unit) 200 performs signal processing according to a preset program, so that the motor generators MG1 and MG2 change the driving mode such as motor driving, charging driving, engine / motor driving, etc. according to the driving situation. Switch between.
- hybrid vehicle 10 sets motor generator MG1 in a no-load state and motor generator MG2 in a rotationally driven state, and runs using only motor generator MG2 as a power source.
- the motor generator MG1 functions as a generator, and the motor generator MG1 charges the DC power supply 140 while running with only the engine ENG as a driving force source with the motor generator MG2 in a no-load state.
- the DC power supply 140 is charged by the motor generator MG1 while running using both the engine ENG and the motor generator MG2 as power sources.
- the motor generator MG2 functions as a generator when the motor is running, and regenerative braking control is performed.
- the motor generator MG1 functions as a generator and the engine ENG is operated.
- Charge control for charging 140 is also performed by the HVECU 200.
- the HVECU 200 generates torque command values for the motor generators MG1 and MG2 so that desired driving force generation and power generation are performed in each travel mode.
- the engine ENG is automatically stopped when the vehicle is stopped, while the start timing is controlled by the HVECU 200 according to the driving situation.
- the vehicle is driven by the driving force of the motor generator MG2 without starting the engine ENG in order to avoid a region where engine efficiency is poor. To do. Then, when an operation state that requires a certain level of driving force is reached, the engine ENG is started. However, when it is necessary to drive the engine ENG for warming up or the like, the engine ENG is started in a no-load state at the time of start and is driven at idling speed until a desired warm-up is realized. The engine ENG is also started when the above charging control is performed when the vehicle is parked.
- FIG. 3 is a circuit diagram showing an electrical configuration of the hybrid drive apparatus 100 shown in FIG.
- hybrid drive device 100 includes DC power supply 140, voltage sensor 13, system relays SR1 and SR2, smoothing capacitor C2, inverters 14 and 31, current sensors 24 and 28, position Sensors 22 and 26 and MGECU 300 are further provided.
- DC power supply 140 includes a power storage device (not shown), and outputs a DC voltage between power supply line VL and earth line SL.
- the DC power supply 140 can be configured to convert the output voltage of the secondary battery and output it to the power supply line VL and the earth line SL by a combination of the secondary battery and the buck-boost converter.
- the step-up / down converter is configured to be capable of bidirectional power conversion, and the DC voltage between the power supply line VL and the earth line SL is converted to the charging voltage of the secondary battery.
- System relay SR1 is connected between the positive electrode of DC power supply 140 and power supply line VL, and system relay SR2 is connected between the negative electrode of DC power supply 140 and earth line SL. System relays SR1 and SR2 are turned on / off by a signal SE from MGECU 300.
- a smoothing capacitor C2 is connected between the power supply line VL and the earth line SL.
- the voltage sensor 13 detects the voltage Vm across the smoothing capacitor C2 (corresponding to the input voltage of the inverters 14 and 31; the same applies hereinafter) and outputs it to the MGECU 300.
- the inverter 14 connected to the motor generator MG1 includes a U-phase arm 15, a V-phase arm 16, and a W-phase arm 17.
- U-phase arm 15, V-phase arm 16 and W-phase arm 17 are provided in parallel between power supply line VL and ground line SL.
- the U-phase arm 15 includes power semiconductor switching elements (hereinafter also simply referred to as switching elements) Q1 and Q2 connected in series.
- V-phase arm 16 includes switching elements Q3 and Q4 connected in series.
- W-phase arm 17 includes switching elements Q5 and Q6 connected in series.
- diodes D1 to D6 that flow current from the emitter side to the collector side are connected between the collectors and emitters of the switching elements Q1 to Q6, respectively.
- an IGBT Insulated Gate Bipolar Transistor
- Switching elements Q1-Q6 are subjected to on / off control, that is, switching control, in response to switching control signal PWMI1 from MGECU 300.
- the intermediate point of each phase arm is connected to each phase end of each phase coil of motor generator MG1 via a conductive wire (wire harness). That is, motor generator MG1 is a three-phase permanent magnet motor, and is configured by connecting one end of three coils of U, V, and W phases in common to a neutral point.
- the other end of the U-phase coil is connected to the intermediate point of the IGBT elements Q1 and Q2 via the conductive wire 18, and the other end of the V-phase coil is connected to the intermediate point of the IGBT elements Q3 and Q4 via the conductive wire 19.
- the other end is connected to the intermediate point of IGBT elements Q5 and Q6 through conductive line 20, respectively.
- a current sensor 24 is inserted in each of the conductive wires 18 to 20.
- Current sensor 24 detects current MCRT1 flowing through motor generator MG1. Since the sum of the U-phase, V-phase, and W-phase motor currents Iu, Iv, and Iw (instantaneous values) is zero, the motor current of each phase is detected by arranging current sensors 24 in two phases. It is good also as a structure.
- the current detection value MCRT1 from the current sensor 24 is sent to the MGECU 300.
- the motor generator MG1 is further provided with a position sensor 22 for detecting the rotation angle of a rotor (not shown). The rotation angle detected by the position sensor 22 is sent to the MGECU 300.
- the inverter 31 connected to the motor generator MG2 has the same configuration as the inverter 14.
- inverter 31 includes switching elements Q1-Q6 and diodes D1-D6. Switching elements Q1-Q6 are on / off controlled (switching controlled) in response to switching control signal PWMI2 from MGECU 300.
- the motor generator MG2 is a three-phase permanent magnet motor configured by commonly connecting one end of three coils of U, V, and W phases to a neutral point, similarly to the motor generator MG1.
- An intermediate point of each phase arm of inverter 31 is electrically connected to a U-phase coil, a V-phase coil, and a W-phase coil of motor generator MG2 via conductive wires.
- a current sensor 28 similar to the current sensor 24 is inserted in a conductive wire connecting the inverter 31 and each phase coil of the motor generator MG2.
- a position sensor 26 similar to the position sensor 22 is also arranged in the motor generator MG2. The current detection value MCRT2 by the current sensor 28 and the detection value by the position sensor are sent to the MGECU 300.
- the MGECU 300 includes the input voltage Vm detected by the voltage sensor 13 and the sensors provided as appropriate.
- a voltage between coil terminals of motor generators MG1 and MG2 detected by a motor (not shown) is input and used for motor drive control.
- MGECU 300 receives an operation command for motor generator MG1 from HVECU 200 (not shown). This operation command includes an operation permission / prohibition instruction for motor generator MG1, torque command value TR1, rotation speed command MRN1, and the like. MGECU 300 generates a switching control signal PWMI1 for controlling the switching operation of switching elements Q1 to Q6 so that motor generator MG1 operates in accordance with an operation command from HVECU 200 by feedback control based on detection values of current sensor 24 and position sensor 22. appear.
- HVECU 200 issues an operation instruction for motor generator MG1
- power supply line VL and ground line are supplied so that MGECU 300 is supplied with each phase motor current in accordance with torque command value TR1 of motor generator MG1.
- a switching control signal PWMI1 for generating a DC voltage between SLs into an AC voltage applied to each phase coil of motor generator MG1 is generated.
- MGECU 300 generates switching control signal PWMI1 so as to convert the AC voltage generated by motor generator MG1 into a DC voltage between power supply line VL and ground line SL.
- the switching control signal PWMI1 is generated by feedback control using sensor detection values according to, for example, a well-known PWM control method.
- MGECU 300 switches the switching control signal so that each of switching elements Q1 to Q6 constituting inverter 14 stops the switching operation (all turned off) when HVECU 200 issues an instruction to prohibit operation of motor generator MG1. STP is generated.
- MGECU 300 when MGECU 300 receives the operation command for motor generator MG2 from HVECU 200, MGECU 300 performs feedback control based on the detection values of current sensor 28 and position sensor 26 in accordance with the operation command from HVECU 200, similarly to the control of motor generator MG1 described above.
- a switching control signal PWMI2 for controlling the switching operation of switching elements Q1-Q6 is generated so that motor generator MG2 operates.
- HVECU 200 is configured to be able to reflect such abnormality information in the operation commands of motor generators MG1 and MG2.
- motor generators MG1 and MG2 correspond to “a plurality of multi-phase AC motors” in the present invention
- inverters 14 and 31 correspond to “a plurality of power converters” in the present invention
- MGECU 300 and HVECU 200 correspond to the “control device” in the present invention.
- Hybrid vehicle evacuation operation In the hybrid vehicle 10 having the above configuration, when the motor generator MG1 cannot be used due to an abnormality of the inverter 14 connected to the motor generator MG1, as described in Patent Document 1, the engine ENG and the motor generator The operation of the MG1 is stopped, and the “evacuation operation” of the hybrid vehicle 10 can be executed by the “abnormal operation” using the power of the motor generator MG2.
- motor generator MG1 and motor generator MG2 are coupled to each other via power split mechanism PSD, motor generator MG1 is also rotated in accordance with operation (rotation) of motor generator MG2.
- FIG. 4 shows an example of a short-circuit fault in the inverter 14 in which a short-circuit fault that remains in the ON state and becomes uncontrollable occurs in the switching element Q1.
- U-phase motor current Iu flows through power supply line VL, switching element Q1 (short circuit failure), and U-phase coil.
- U-phase motor current Iu is, at neutral point of motor generator MG1, route Rt1 from V-phase coil to intermediate point of V-phase arm 16 to diode D3 to power supply line VL, and W-phase coil to W-phase arm 17 Is branched to a path Rt2 extending from the intermediate point to the diode D5 to the power supply line VL. For this reason, a short-circuit current corresponding to the induced voltage and the electrical resistance of the short-circuit path is generated.
- the induced voltage generated in each phase coil of motor generator MG1 is proportional to the rotational speed of motor generator MG1, if the rotational speed of motor generator MG2 increases during the evacuation operation, the induced voltage generated in motor generator MG1.
- the voltage also increases and the short circuit current in the inverter 14 also increases. If the short-circuit current becomes excessive, further element damage may occur due to the occurrence of a high temperature exceeding the heat resistance temperature of the components of the inverter 14.
- Patent Document 1 by monitoring the level of the short-circuit current flowing in the inverter 14, when excessive short-circuit current flows in the inverter 14, the control for limiting the retreat operation by the motor generator MG 2.
- the configuration This prevents further element damage from occurring in the inverter due to execution of the evacuation operation.
- switching elements Q1 to Q6 constituting inverter 14 are controlled to be switched in accordance with the rotational speed of motor generator MG1. According to such a configuration, an increase in short-circuit current due to an increase in the rotational speed can be suppressed. As a result, it is possible to achieve both the protection of the inverter element and the increase of the moving distance during the evacuation operation.
- FIG. 5 is a block diagram showing a control structure in MGECU 300 according to the embodiment of the present invention. Each functional block shown in FIG. 5 is typically realized by executing a program stored in advance by MGECU 300, but part or all of the functions may be implemented as dedicated hardware.
- MGECU 300 includes, as control means for inverter 14, motor control phase voltage calculation unit 32, inverter drive signal conversion unit 34, inverter abnormality detection unit 36, and short-circuit element detection unit 38. Including. Although not shown, MGECU 300 further includes control means for inverter 31 having the same configuration as in FIG.
- Motor control phase voltage calculation unit 32 receives torque command value TR1 and rotation speed command MRN1 as operation commands of motor generator MG1 from HVECU 200, receives input voltage Vm of inverter 14 from voltage sensor 13, and motors from current sensor 24. Motor currents Iu, Iv, Iw flowing in the respective phases of generator MG1 are received. Based on these input signals, motor control phase voltage calculation unit 32 manipulates the voltage applied to each phase coil of motor generator MG1 (hereinafter also referred to as a voltage command) Vu *, Vv *, Vw *. And the calculation result is output to the inverter drive signal converter 34.
- the inverter drive signal converter 34 actually turns on the switching elements Q1 to Q6 of the inverter 14 based on the voltage commands Vu *, Vv *, Vw * of the respective phase coils from the motor control phase voltage calculator 32.
- a switching control signal PWMI1 for turning off is generated, and the generated switching control signal PWMI1 is sent to the inverter 14.
- each of the switching elements Q1 to Q6 is subjected to switching control, and controls the current flowing through each phase of the motor generator MG1 so that the motor generator MG1 outputs the commanded torque.
- the motor current MCRT1 is controlled, and the motor torque corresponding to the torque command value TR1 is output.
- the inverter abnormality detection unit 36 detects an abnormality that has occurred in the inverter 14 during operation of the motor generator MG1.
- the abnormality detection of the inverter 14 is performed based on the overcurrent detection signal OVC from the self-protection circuit built in the switching elements Q1 to Q6 of the inverter 14.
- the self-protection circuit includes a current sensor (or temperature sensor), and outputs an overcurrent detection signal OVC in response to detection of an overcurrent (or overheat) in the sensor output.
- a current sensor or temperature sensor
- the inverter abnormality detection unit 36 determines that the abnormality is caused by a short circuit failure of the switching elements Q1 to Q6, and generates an abnormality signal FINV indicating the determined result. Then, inverter abnormality detection unit 36 sends the generated abnormality signal FINV to HVECU 200 and short circuit element detection unit 38.
- the HVECU 200 When the HVECU 200 receives the abnormality signal FINV, the HVECU 200 instructs the evacuation operation by the motor generator MG2. At this time, the HVECU 200 issues an instruction to stop the switching operation of the switching elements Q1 to Q6 constituting the inverter 14 to the inverter drive signal converter 34.
- the inverter drive signal converter 34 In response to this, the inverter drive signal converter 34 generates a switching control signal STP for stopping the switching operation of the switching elements Q1 to Q6 (OFF state), and outputs the switching control signal STP to the inverter 14. As a result, the inverter 14 is in an operation stop state.
- the short-circuit element detection unit 38 Upon receipt of the abnormality signal FINV from the inverter abnormality detection unit 36, the short-circuit element detection unit 38 has detected an abnormality based on the detected values Iu, Iv, Iw of each phase current between the inverter 14 and the motor generator MG1 by the current sensor 24. A switching element that has a short circuit failure is detected from the inverter. At this time, as an example, the short-circuit element detection unit 38 detects the offset value from the steady operation for each of the current waveforms of the motor currents Iu, Iv, and Iw, and based on the magnitude and polarity of the detected offset value. The switching element that has a short circuit failure is detected. Then, the short-circuit element detection unit 38 generates a signal DE indicating the detected short-circuit faulty switching element and sends it to the inverter drive signal conversion unit 34.
- the inverter drive signal conversion unit 34 When receiving the signal DE from the short-circuit element detection unit 38, the inverter drive signal conversion unit 34 switches the switching control signal Ton1 and the switching control signal according to the rotational speed Nmg1 of the motor generator MG1 derived from the detection value of the position sensor 22. Either one of Ton2 is generated.
- the switching control signal Ton1 is a signal that controls the switching operation so as to turn on only the switching elements connected in series with the switching elements that are short-circuited out of the switching elements Q1 to Q6 constituting the inverter 14. .
- the short-circuit faulty switching element and the switching element connected in series to the switching element are turned on, so that the phase constituted by these two switching elements is short-circuited.
- the switching control for short-circuiting the phase to which the switching element having the short-circuit failure belongs is also simply referred to as “one-phase short-circuit control”.
- the switching control signal Ton2 turns on all of the switching elements Q1 to Q6 constituting the inverter 14 that are connected in parallel to the short-circuit faulty switching element and the power supply line (or ground line).
- the signal is used to control the switching operation.
- all three-phase switching elements connected in parallel to the power supply line (or the earth line) are turned on.
- the switching control for turning on the switching element connected in parallel to the switching element that is short-circuited with respect to the power supply line is also simply referred to as “three-phase on control”.
- the inverter drive signal converter 34 switches between the one-phase short-circuit control and the three-phase on control according to the rotation speed Nmg1 of the motor generator MG1 derived from the detection value of the position sensor 22. Below, the detail of each switching control is demonstrated.
- FIG. 6 is a diagram for explaining a short-circuit current inside the inverter that is generated when the one-phase short-circuit control is executed.
- each phase motor current Iu, Iv, Iw becomes an AC waveform having substantially the same amplitude as during normal operation of motor generator MG1. As will be described later, the amplitude of each phase motor current is increased by increasing the rotational speed of motor generator MG1.
- FIG. 7 is a diagram for explaining a short-circuit current inside the inverter that is generated when the three-phase on control is executed.
- FIG. 8 is a diagram showing an output waveform of the motor current generated when the three-phase on control is executed. 8 is obtained by simulating motor currents Iu, Iv, Iw induced when motor generator MG1 is rotated at a predetermined rotational speed in the circuit configuration shown in FIG. is there.
- the motor currents Iu, Iv, and Iw show AC waveforms having substantially the same amplitude. As will be described later, it has been obtained from the simulation results that the amplitude of the motor current hardly changes even when the rotational speed of the motor generator MG1 is increased.
- FIG. 9 is a diagram showing the relationship between the short-circuit current inside the inverter that is generated when the one-phase short-circuit control and the three-phase on-control are executed and the rotation speed of the motor generator MG1.
- the relationship shown in FIG. 9 is that when the motor generator MG1 is rotated at various rotational speeds in the circuit configurations shown in FIG. 6 and FIG. It was obtained by simulation.
- line LN1 indicates a short-circuit current when the one-phase short-circuit control is performed
- line LN2 indicates a short-circuit current when the three-phase on control is performed.
- the short-circuit current flowing in inverter 14 increases as the rotational speed of motor generator MG1 increases.
- the three-phase on control is executed, the short-circuit current flowing in the inverter 14 increases as the rotational speed of the motor generator MG1 increases in a relatively low rotational speed range. In the high rotation speed range, there is almost no change even when the rotation speed increases.
- the short-circuit current does not increase even when the number of rotations is increased during the execution of the three-phase on control because the inductance of each phase coil of the motor generator MG1 among the electrical resistances of the short-circuit path formed by the three-phase on control.
- One factor is that the component becomes higher as the rotational speed increases.
- the short-circuit current at the time of executing the one-phase short-circuit control and the short-circuit current at the time of executing the three-phase ON control intersect at a relatively low predetermined rotation speed, and the predetermined rotation speed It can be seen that the magnitude relationship is reversed at the boundary. Therefore, according to the relationship between the short-circuit current shown in FIG. 9 and the rotation speed of motor generator MG1, one-phase short-circuit control is executed in the low-speed range, while three-phase on control is executed in the high-speed range. If it is set as the structure to carry out, it turns out that it can suppress effectively that the short circuit current which flows in the inverter 14 increases.
- braking torque is generated by rotating in accordance with rotation of motor generator MG2. Since this braking torque is a braking torque that acts on the vehicle due to the rotational resistance of motor generator MG1, it will also be referred to as “drag torque” below. A relationship as shown in FIG. 10 is established between this drag torque and the rotational speed of motor generator MG1.
- FIG. 10 is a diagram showing the relationship between the drag torque generated in the motor generator MG1 when the one-phase short-circuit control and the three-phase on control are executed and the rotation speed of the motor generator MG1.
- the relationship shown in FIG. 10 is obtained by simulating the drag torque generated in the motor generator MG1 when the short-circuit current in FIG. 9 flows for each of the one-phase short-circuit control and the three-phase on-control by using magnetic field analysis. It is obtained.
- the drag torque is represented by a negative value in order to distinguish it from torque generated during power running control of motor generator MG1.
- a line LN3 indicates a drag torque when the one-phase short-circuit control is performed
- a line LN4 indicates a drag torque when the three-phase on control is performed.
- FIG. 10 shows that when the one-phase short-circuit control is executed, the drag torque (absolute value) increases as the rotational speed of the motor generator MG1 increases.
- the drag torque has an extreme value at a predetermined rotational speed in the low rotational speed range, and becomes smaller as the rotational speed increases from the predetermined rotational speed. It shows a trend.
- the drag torque exhibits different characteristics when the one-phase short-circuit control is executed and when the three-phase on control is executed, and the magnitude relationship is reversed at the predetermined reference rotation speed Nth in the figure. Yes. According to this, at the rotation speed lower than the predetermined reference rotation speed Nth, the three-phase ON control is performed, and the drag torque is increased more than when the one-phase short-circuit control is executed. In particular, when the hybrid vehicle 10 is started, the drivability may be reduced due to the drag torque exceeding the torque generated by the motor generator MG2.
- inverter drive signal converter 34 when drive signal converter 34 for inverter receives signal DE from short circuit element detector 38, inverter drive signal converter 34 derives rotation speed Nmg1 of motor generator MG1 from the detected value of position sensor 22. Then, it is determined whether or not the derived rotational speed Nmg1 exceeds a predetermined reference rotational speed Nth. At this time, when the rotational speed Nmg1 is equal to or lower than the predetermined reference rotational speed Nth, the inverter drive signal converter 34 generates a switching control signal Ton1 for performing the one-phase short-circuit control.
- the inverter drive signal converter 34 when the rotational speed Nmg1 exceeds a predetermined reference rotational speed Nth, the inverter drive signal converter 34 generates a switching control signal Ton2 for performing three-phase on control.
- the predetermined reference rotational speed Nth can be obtained in advance by simulating the relationship shown in FIG.
- FIG. 11 is a flowchart illustrating a retreat operation when MG1 is abnormal in the hybrid drive apparatus according to the embodiment of the present invention. Note that the processing of each step shown in FIG. 11 is realized by MGECU 300 and HVECU 200 functioning as each functional block shown in FIG.
- MGECU 300 functioning as inverter abnormality detection unit 36 (FIG. 5) determines whether or not an abnormality has occurred in inverter 14 connected to motor generator MG1 (step S01). At this time, MGECU 300 determines whether or not it receives overcurrent detection signal OCV from the self-protection circuit built in switching elements Q1 to Q6. When the overcurrent detection signal OCV is not received from the inverter 14, the MGECU 300 determines that no abnormality has occurred in the inverter 14 (NO determination in step S01), and does not instruct the evacuation operation (step S02). Then, the control process related to the evacuation operation is terminated.
- the MGECU 300 determines that an abnormality has occurred in the inverter 14 (YES determination in step S01), and issues an abnormality signal FINV. Thereby, HVECU 200 instructs retreat operation by motor generator MG2 (step S03). At this time, HVECU 200 issues an instruction to stop switching operations of switching elements Q1 to Q6 constituting inverter 14 to MGECU 300. In response to this, the switching control signal PWMI1 from the MGECU 300 is turned off.
- MGECU 300 functioning as short circuit element detection unit 38 receives abnormality signal FINV, abnormality has occurred based on detected values Iu, Iv, Iw of each phase current between inverter 14 and motor generator MG1 by current sensor 24. A switching element having a short circuit failure is detected from the inverter (step S04). Then, the MGECU 300 that functions as the short-circuit element detection unit 38 generates a signal DE indicating the detected short-circuit faulty switching element and sends it to the MGECU 300 that functions as the inverter drive signal conversion unit 34.
- the MGECU 300 functioning as the inverter drive signal conversion unit 34 acquires the rotation speed Nmg1 of the motor generator MG1 based on the detection value of the position sensor 22 (step S05). Then, MGECU 300 functioning as inverter drive signal converter 34 determines whether or not rotation speed Nmg1 exceeds a predetermined reference rotation speed Nth (step S06).
- step S06 When the rotation speed Nmg1 exceeds the predetermined reference rotation speed Nth (YES in step S06), the MGECU 300 functioning as the inverter drive signal conversion unit 34 executes the three-phase on control (step S07). Specifically, MGECU 300 generates switching control signal Ton2 and outputs it to switching elements Q1 to Q6 constituting inverter 14. As a result, all the switching elements connected in parallel with the switching element that has short-circuited with respect to the power supply line (or the earth line) are turned on.
- MGECU 300 that functions as inverter drive signal conversion unit 34 performs one-phase short-circuit control (step S08). ). Specifically, MGECU 300 generates switching control signal Ton1 and outputs it to switching elements Q1 to Q6 constituting inverter 14. Thereby, the switching element connected in series with the short-circuited switching element is turned on.
- step S09 the MGECU 300 functioning as the inverter drive signal converter 34 determines whether or not the evacuation operation by the motor generator MG2 is continued (step S09). If the evacuation operation is continued (YES in step S09), the process returns to step S05.
- MGECU 300 ends the control process related to the evacuation operation.
- the drag torque generated in motor generator MG1 with the rotation of motor generator MG2 can be reduced. Thereby, at the time of start of hybrid vehicle 10, the drag torque exceeds the torque generated by motor generator MG2, and a decrease in drivability can be suppressed.
- the motor drive device in the hybrid vehicle including two motors connected to each other by the power split mechanism is illustrated, but the application of the present invention is not limited to such a form, As long as other motors are rotated by operating one motor in the evacuation operation, a hybrid drive device of any type such as a so-called electric distribution type and a plurality of motors are provided.
- the present invention is also applicable to motor drive devices other than the hybrid drive device.
- the present invention can be applied to a motor drive device and a hybrid drive device configured to include a plurality of motors coupled so as to be able to output power to a common output shaft.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Power Engineering (AREA)
- Combustion & Propulsion (AREA)
- Chemical & Material Sciences (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Automation & Control Theory (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Hybrid Electric Vehicles (AREA)
- Control Of Multiple Motors (AREA)
Abstract
インバータ(14)に短絡故障が発生した場合には、モータジェネレータ(MG2)による退避運転が実行される。MGECU(300)は、退避運転時には、位置センサ(22)の検出値から算出したモータジェネレータ(MG1)の回転数が所定の基準回転数を超える場合には、電源線に対して短絡故障したスイッチング素子と並列接続されるスイッチング素子をすべてオンさせる。回転数が基準回転数以下の場合には、MGECU(300)は、短絡故障したスイッチング素子と直列接続されるスイッチング素子のみをオンさせる。これにより、退避運転を制限することなく、インバータ(14)における過電流の発生を防止できる。
Description
この発明は、モータ駆動装置およびハイブリッド駆動装置ならびモータ駆動装置の制御方法に関し、より特定的には、共通の出力軸へ動力を出力可能に連結された複数のモータを含んで構成されたモータ駆動装置およびハイブリッド駆動装置ならびにモータ駆動装置の制御方法に関する。
最近、環境に配慮した自動車として、ハイブリッド自動車(Hybrid Vehicle)が注目されている。ハイブリッド自動車は、従来のエンジンに加え、直流電源とインバータとインバータによって駆動されるモータとを動力源とする自動車である。つまり、エンジンを駆動することにより動力源を得るとともに、直流電源からの直流電圧をインバータによって交流電圧に変換し、その変換した交流電圧によりモータを回転することによって動力源を得るものである。
このようなハイブリッド自動車の一種として、たとえば特開2007-28733号公報(特許文献1)には、いわゆるパラレルハイブリッド車両が開示される。パラレルハイブリッド車両では、エンジンから出力された動力は、第1のモータジェネレータを有する動力分割機構を介することにより、その一部が駆動軸に伝達され、残りの動力が第1のモータジェネレータにより電力として回生される。この電力は、バッテリ充電や、エンジン以外の動力源としての第2のモータジェネレータの駆動に用いられる。
しかしながら、このようなパラレルハイブリッド車両では、エンジンまたは第1のモータジェネレータに異常が生じた場合には、エンジンを主動力源とした通常の車両走行が不可能となる。このため、特許文献1には、エンジンまたは第1のモータジェネレータの異常時に、二次電池の充電量に応じて決定された性能範囲の中で第2のモータジェネレータを用いた退避運転を行なうことにより、退避運転による移動距離を延ばす技術が開示されている。
このような退避運転時においては、第1および第2のモータジェネレータが同一の出力軸に連結されるため、第2のモータジェネレータの回転に伴なって第1のモータジェネレータも回転する。このため、第1のモータジェネレータに接続されたインバータ内に短絡故障が発生している場合は、退避運転時に、第1のモータジェネレータに発生した誘起電圧により、インバータ内に短絡電流が発生するおそれがある。
そのため、特許文献1では、退避運転中に、第1のモータジェネレータに接続されたインバータを流れる電流が過大となった場合には、第2のモータジェネレータによる退避運転を制限する構成とする。これにより、過大な短絡電流により、インバータ構成部品の耐熱温度を超える高温の発生によって、さらなる素子損傷が発生するのを防止している。
特開2007-28733号公報
特開2006-170120号公報
特開2007-245966号公報
特開平8-182105号公報
特開2007-244126号公報
しかしながら、特許文献1のように、第1のモータジェネレータに接続されたインバータを流れる電流に応じて、第2のモータジェネレータの運転を制限する構成では、過大な短絡電流によるさらなる素子損傷の発生を防止できる一方で、退避運転による移動距離の増加に限界が生じることになる。そのため、車両を安全な場所まで避難させることができない可能性がある。
したがって、異常発生時の車両の安全性を保障するフェイルセーフ機能をより一層充実させるためには、インバータの素子保護と退避運転による移動距離の増加との両立が求められる。
それゆえ、この発明は、かかる課題を解決するためになされたものであり、その目的は、共通の出力軸へ連結された複数のモータを備えたモータ駆動装置およびハイブリッド駆動装置において、1つのモータの異常発生時に他のモータを用いた退避運転を実行する場合において、異常モータに対応するモータ駆動回路の素子保護と退避運転による移動距離の増加とを両立することである。
この発明のある局面に従えば、モータ駆動装置は、共通の出力軸へ動力を出力可能に連結された複数の多相交流モータと、複数の多相交流モータにそれぞれ接続された複数の電力変換装置と、複数の電力変換装置を制御する制御装置とを備える。複数の電力変換装置の各々は、各々が、多相交流モータの各相コイルに接続される複数のアーム回路を含む。複数のアーム回路の各々は、第1および第2電源線間に各相コイルとの接続点を介して直列接続された第1および第2のスイッチング素子を有する。制御装置は、複数の電力変換装置のうちの第1の電力変換装置の異常時に、第1の電力変換装置と接続された第1の多相交流モータとは異なる第2の多相交流モータを用いた異常時運転を指示する異常制御部と、異常時運転において、第2の多相交流モータの運転に伴なって、第1の電力変換装置を流れる電流に基づいて、短絡故障したスイッチング素子を検出する短絡検出部と、異常時運転において、短絡故障したスイッチング素子と接続点を介して直列接続されるスイッチング素子を導通させることにより、第1の電力変換装置を流れる電流を制御する第1のモータ制御部と、異常時運転において、電源線に対して短絡故障したスイッチング素子と並列接続されるスイッチング素子をすべて導通させることにより、第1の電力変換装置を流れる電流を制御する第2のモータ制御部と、第1の多相交流モータの回転数に応じて、第1のモータ制御部および第2のモータ制御部を選択的に設定する選択部とを含む。
好ましくは、選択部は、第1の多相交流モータの回転数が所定の基準回転数以下の場合には、第1のモータ制御部を選択し、第1の多相交流モータの回転数が所定の基準回転数を超える場合には、第2のモータ制御部を選択する。
好ましくは、第1のモータ制御部の実行時において、第1の多相交流モータは、第2の多相交流モータの運転に伴なって発生する制動トルクが、第1の多相交流モータの回転数が高くなるにつれて大きくなる第1の特性を有する。第2のモータ制御部の実行時において、第1の多相交流モータは、第2の多相交流モータの運転に伴なって発生する制動トルクが、第1の多相交流モータの回転数が高くなるにつれて小さくなる第2の特性を有する。選択部は、第1および第2の特性を予め有しており、第1の特性と第2の特性とで第1の多相交流モータに発生する制動トルクが一致するときの第1の多相交流モータの回転数を、所定の基準回転数に設定する。
この発明の別の局面に従えば、ハイブリッド駆動装置は、燃料の燃料によって作動するエンジンと、第1のモータジェネレータと、動力を出力するための出力部材と、出力部材、エンジンの出力軸および第1のモータジェネレータの出力軸を相互に連結する動力分割機構と、出力部材に連結された第2のモータジェネレータと、直流電源と第1のモータジェネレータとの間に接続されて、第1のモータジェネレータを駆動制御する第1のインバータと、直流電源と第2のモータジェネレータとの間に接続されて、第2のモータジェネレータを駆動制御する第2のインバータと、第1および第2のモータジェネレータの運転を制御する制御装置とを備える。第1のインバータは、各々が、第1のモータジェネレータの各相コイルに接続される第1の複数のアーム回路を含む。第2のインバータは、各々が、第2のモータジェネレータの各相コイルに接続される第2の複数のアーム回路を含む。第1および第2の複数のアーム回路の各々は、第1および第2電源線間に各相コイルとの接続点を介して直列接続された第1および第2のスイッチング素子を有する。制御装置は、第1のインバータの異常時に、第2のモータジェネレータを用いた異常時運転を指示する異常制御部と、異常時運転において、第2のモータジェネレータの運転に伴なって、第1のインバータを流れる電流に基づいて、短絡故障したスイッチング素子を検出する短絡検出部と、異常時運転において、短絡故障したスイッチング素子と接続点を介して直列接続されるスイッチング素子を導通させることにより、第1のインバータを流れる電流を制御する第1のモータ制御部と、異常時運転において、電源線に対して短絡故障したスイッチング素子と並列接続されるスイッチング素子をすべて導通させることにより、第1のインバータを流れる電流を制御する第2のモータ制御部と、第1のモータジェネレータの回転数に応じて、第1のモータ制御部および第2のモータ制御部を選択的に設定する第1の選択部とを含む。
好ましくは、第1の選択部は、第1のモータジェネレータの回転数が所定の基準回転数以下の場合には、第1のモータ制御部を選択し、第1のモータジェネレータの回転数が所定の基準回転数を超える場合には、第2のモータ制御部を選択する。
好ましくは、異常制御部は、第2のインバータの異常時に、エンジンおよび第1のモータジェネレータを用いた異常時運転を指示する。短絡検出部は、異常時運転において、第1のモータジェネレータの運転に伴なって、第2のインバータを流れる電流に基づいて、短絡故障したスイッチング素子を検出する。制御装置は、異常時運転において、短絡故障したスイッチング素子と接続点を介して直列接続されるスイッチング素子を導通させることにより、第2のインバータを流れる電流を制御する第3のモータ制御部と、異常時運転において、電源線に対して短絡故障したスイッチング素子と並列接続されるスイッチング素子をすべて導通させることにより、第2のインバータを流れる電流を制御する第4のモータ制御部と、第2のモータジェネレータの回転数に応じて、第3のモータ制御部および第4のモータ制御部を選択的に設定する第2の選択部とをさらに含む。
好ましくは、第2の選択部は、第2のモータジェネレータの回転数が所定の基準回転数以下の場合には、第3のモータ制御部を選択し、第2のモータジェネレータの回転数が所定の基準回転数を超える場合には、第4のモータ制御部を選択する。
この発明の別の局面に従えば、共通の出力軸へ動力を出力可能に連結された複数の多相交流モータと、複数の多相交流モータにそれぞれ接続された複数の電力変換装置とを含むモータ駆動装置の制御方法であって、複数の電力変換装置の各々は、各々が、多相交流モータの各相コイルに接続される複数のアーム回路を含み、複数のアーム回路の各々は、第1および第2電源線間に各相コイルとの接続点を介して直列接続された第1および第2のスイッチング素子を有する。制御方法は、複数の電力変換装置のうちの第1の電力変換装置の異常時に、第1の電力変換装置と接続された第1の多相交流モータとは異なる第2の多相交流モータを用いた異常時運転を指示するステップと、異常時運転において、第2の多相交流モータの運転に伴なって、第1の電力変換装置を流れる電流に基づいて、短絡故障したスイッチング素子を検出するステップと、異常時運転において、短絡故障したスイッチング素子と接続点を介して直列接続されるスイッチング素子を導通させることにより、第1の電力変換装置を流れる電流を制御するステップと、異常時運転において、電源線に対して短絡故障したスイッチング素子と並列接続されるスイッチング素子をすべて導通させることにより、第1の電力変換装置を流れる電流を制御するステップと、第1の多相交流モータの回転数に応じて、短絡故障したスイッチング素子と接続点を介して直列接続されるスイッチング素子を導通させることにより、第1の電力変換装置を流れる電流を制御するステップと、電源線に対して短絡故障したスイッチング素子と並列接続されるスイッチング素子をすべて導通させることにより、第1の電力変換装置を流れる電流を制御するステップとを選択的に設定するステップとを備える。
好ましくは、選択的に設定するステップは、第1の多相交流モータの回転数が所定の基準回転数以下の場合には、短絡故障したスイッチング素子と接続点を介して直列接続されるスイッチング素子を導通させることにより、第1の電力変換装置を流れる電流を制御するステップを選択し、第1の多相交流モータの回転数が所定の基準回転数を超える場合には、電源線に対して短絡故障したスイッチング素子と並列接続されるスイッチング素子をすべて導通させることにより、第1の電力変換装置を流れる電流を制御するステップを選択する。
この発明によれば、共通の出力軸へ連結された複数のモータを備えたモータ駆動装置およびハイブリッド駆動装置において、1つのモータの異常発生時に他のモータを用いた退避運転を実行する場合において、異常モータに対応するモータ駆動回路の素子保護と退避運転による移動距離の増加とを両立することができる。
10 ハイブリッド自動車、13 電圧センサ、14,31 インバータ、15 U相アーム、16 V相アーム、17 W相アーム、18~20 導電線、22,26 位置センサ、24,28 電流センサ、30 ディファレンシャルギヤ、32 モータ制御用相電圧演算部、34 インバータ用駆動信号変換部、36 インバータ異常検出部、38 短絡素子検出部、40 駆動軸、50 駆動輪、100 ハイブリッド駆動装置、114 ダンパ装置、118 出力部材、120c キャリア、120s サンギヤ、120r リングギヤ、122r ロータ、124 モータ軸、126 出力歯車、128 中間軸、130 大歯車、132 小歯車、140 直流電源、200 HVECU、300 MGECU、C2 平滑用コンデンサ、D1~D6 ダイオード、ENG エンジン、MG1,MG2 モータジェネレータ、PM 磁石、PSD 動力分割機構、Q1~Q6 スイッチング素子、SL アースライン、SR1,SR2 システムリレー、VL 電源ライン。
以下、この発明の実施の形態について図面を参照して詳しく説明する。なお、図中同一符号は同一または相当部分を示す。
図1は、この発明の実施の形態に従うハイブリッド駆動装置100を備えたハイブリッド自動車10の概略構成を示すブロック図である。なお、ハイブリッド駆動装置100は、共通の出力軸へ動力を出力可能に連結された複数のモータと、これら複数のモータにそれぞれ接続された複数のモータ駆動回路とを備えたモータ駆動回路の代表例として示されるものである。
図1を参照して、ハイブリッド自動車10は、ハイブリッド駆動装置100と、ディファレンシャルギヤ30と、駆動軸40と、駆動輪50とを備える。
ハイブリッド駆動装置100は、内部にエンジン(内燃機関)および2つのモータジェネレータを内蔵し、エンジンおよびモータジェネレータの協調制御により出力を発生する。ハイブリッド駆動装置100の出力は、ディファレンシャルギヤ30を介して駆動軸40に伝達されて、駆動輪50の回転駆動に用いられる。ディファレンシャルギヤ30は、路面からの抵抗の差を利用して駆動輪50の左右間の回転差を吸収する。
図2は、図1に示したハイブリッド駆動装置100の構成を詳細に説明するブロック図である。
図2を参照して、ハイブリッド駆動装置100は、燃料の燃焼によって作動する内燃機関などのエンジンENGと、そのエンジンENGの回転変動を吸収するスプリング式のダンパ装置114と、そのダンパ装置114を介して伝達されるエンジンENGの出力をモータジェネレータMG1および出力部材118に機械的に分配する遊星歯車式の動力分割機構PSDと、出力部材118に回転力を加えるモータジェネレータMG2とを備えている。
エンジンENG、ダンパ装置114、動力分割機構PSD、およびモータジェネレータMG1は同軸上において軸方向に並んで配置されており、モータジェネレータMG2は、ダンパ装置114および動力分割機構PSDの外周側に同心に配設されている。
動力分割機構PSDは、シングルピニオン型の遊星歯車装置で、3つの回転要素としてモータジェネレータMG1のモータ軸124に連結されたサンギヤ120sと、ダンパ装置114に連結されたキャリア120cと、モータジェネレータMG2のロータ122rと連結されたリングギヤ120rとを含む。
出力部材118は、モータジェネレータMG2のロータ122rとボルトなどによって一体的に固設されており、そのロータ122rを介して動力分割機構PSDのリングギヤ120rに連結されている。出力部材118には出力歯車126が設けられており、中間軸128の大歯車130および小歯車132を介して傘歯車式のディファレンシャルギヤ30が減速回転させられて、図1に示した駆動輪50に動力が分配される。
出力歯車126には、出力部材118からの出力をロックするためのパーキングロックブレーキ機構(図示せず)が設けられる。パーキングロックブレーキ機構は、運転者によるパーキングポジション(Pポジション)選択時に、出力歯車126をロックすることにより、ハイブリッド駆動装置100からの駆動力出力を制限する。
モータジェネレータMG1およびモータジェネレータMG2は、それぞれ、インバータ14およびインバータ31を介して、直流電源140に電気的に接続されている。
これらのモータジェネレータMG1,MG2は、直流電源140からの電気エネルギーが供給されて所定のトルクで回転駆動される回転駆動状態と、回転制動(モータジェネレータ自体の電気的な制動トルク)により発電機として機能して直流電源140に電気エネルギーを充電する充電状態と、モータ軸124やロータ122rが自由回転することを許容する無負荷状態との間で動作を切換えられる。
HVECU(Electronic Control Unit)200は、予め設定されたプログラムに従って信号処理を行なうことにより、運転状況に応じて、モータジェネレータMG1,MG2による走行モードを、モータ走行、充電走行やエンジン・モータ走行等の間で切換える。
たとえばモータ走行では、ハイブリッド自動車10は、モータジェネレータMG1を無負荷状態とするとともにモータジェネレータMG2を回転駆動状態とし、そのモータジェネレータMG2のみを動力源として走行する。また、充電走行では、モータジェネレータMG1を発電機として機能させるとともにモータジェネレータMG2を無負荷状態としてエンジンENGのみを駆動力源として走行しながら、モータジェネレータMG1によって直流電源140が充電される。
あるいは、エンジン・モータ走行では、モータジェネレータMG1を発電機として機能させる一方で、エンジンENGおよびモータジェネレータMG2の両方を動力源として走行しながらモータジェネレータMG1によって直流電源140が充電される。
また、上記モータ走行時にモータジェネレータMG2を発電機として機能させて回生制動する回生制動制御や、車両停止時にモータジェネレータMG1を発電機として機能させるとともにエンジンENGを作動させ、もっぱらモータジェネレータMG1によって直流電源140を充電する充電制御などもHVECU200によって行なわれる。
HVECU200は、各走行モードにおいて、所望の駆動力発生や発電が行なわれるように、各モータジェネレータMG1,MG2のトルク指令値を発生する。また、エンジンENGは、車両停止時には自動的に停止される一方で、その始動タイミングは、運転状況に応じてHVECU200によって制御される。
具体的には、発進時ならびに低速走行時あるいは緩やかな坂を下るとき等の軽負荷時には、エンジン効率の悪い領域を避けるために、エンジンENGを起動させることなく、モータジェネレータMG2による駆動力で走行する。そして、一定以上の駆動力が必要な運転状態となったときには、エンジンENGが始動される。但し、暖気等のためにエンジンENGの駆動が必要な場合には、エンジンENGは発進時に無負荷状態で始動されて、所望の暖機が実現するまでアイドリング回転数で駆動される。また、車両駐車時に上記充電制御を行なう場合にも、エンジンENGが始動される。
図3は、図2に示されたハイブリッド駆動装置100の電気的な構成を示す回路図である。
図3を参照して、ハイブリッド駆動装置100は、直流電源140と、電圧センサ13と、システムリレーSR1,SR2と、平滑用コンデンサC2と、インバータ14,31と、電流センサ24,28と、位置センサ22,26と、MGECU300とをさらに備えている。
直流電源140は、蓄電装置(図示せず)を含んで構成され、電源ラインVLおよびアースラインSLの間に直流電圧を出力する。たとえば、直流電源140を、二次電池および昇降圧コンバータの組合せにより、二次電池の出力電圧を変換して電源ラインVLおよびアースラインSLに出力する構成とすることが可能である。この場合には、昇降圧コンバータを双方向の電力変換可能なように構成して、電源ラインVLおよびアースラインSL間の直流電圧を二次電池の充電電圧に変換する。
システムリレーSR1は、直流電源140の正極と電源ラインVLとの間に接続され、システムリレーSR2は、直流電源140の負極とアースラインSLとの間に接続される。システムリレーSR1,SR2は、MGECU300からの信号SEによりオン/オフされる。
電源ラインVLおよびアースラインSLの間には、平滑用コンデンサC2が接続されている。電圧センサ13は、平滑用コンデンサC2の両端の電圧Vm(インバータ14,31の入力電圧に相当する。以下同じ。)を検出してMGECU300へ出力する。
モータジェネレータMG1と接続されるインバータ14は、U相アーム15と、V相アーム16と、W相アーム17とからなる。U相アーム15、V相アーム16およびW相アーム17は、電源ラインVLとアースラインSLとの間に並列に設けられる。
U相アーム15は、直列接続された電力用半導体スイッチング素子(以下、単にスイッチング素子とも称する)Q1,Q2からなる。V相アーム16は、直列接続されたスイッチング素子Q3,Q4からなる。W相アーム17は、直列接続されたスイッチング素子Q5,Q6からなる。また、各スイッチング素子Q1~Q6のコレクタ-エミッタ間には、エミッタ側からコレクタ側へ電流を流すダイオードD1~D6がそれぞれ接続されている。この実施の形態におけるスイッチング素子としては、たとえばIGBT(Insulated Gate Bipolar Transistor)が適用される。スイッチング素子Q1~Q6は、MGECU300からのスイッチング制御信号PWMI1に対応してオン・オフ制御、すなわちスイッチング制御される。
各相アームの中間点は、導電線(ワイヤハーネス)を介してモータジェネレータMG1の各相コイルの各相端に接続されている。すなわち、モータジェネレータMG1は、3相の永久磁石モータであり、U,V,W相の3つのコイルの一端が中性点に共通に接続されて構成される。U相コイルの他端が導電線18を介してIGBT素子Q1,Q2の中間点に、V相コイルの他端が導電線19を介してIGBT素子Q3,Q4の中間点に、W相コイルの他端が導電線20を介してIGBT素子Q5,Q6の中間点にそれぞれ接続されている。
導電線18~20の各々には、電流センサ24が介挿されている。電流センサ24は、モータジェネレータMG1に流れる電流MCRT1を検出する。なお、U相、V相、W相のモータ電流Iu,Iv,Iw(瞬時値)の和は零であることから、2相に電流センサ24を配置することによって各相のモータ電流を検出する構成としてもよい。電流センサ24による電流検出値MCRT1は、MGECU300へ送出される。
モータジェネレータMG1には、回転子(図示せず)の回転角を検出する位置センサ22がさらに配置される。位置センサ22によって検出された回転角は、MGECU300へ送出される。
モータジェネレータMG2と接続されるインバータ31は、インバータ14と同様の構成からなる。すなわち、インバータ31は、スイッチング素子Q1~Q6と、ダイオードD1~D6とを含む。スイッチング素子Q1~Q6は、MGECU300からのスイッチング制御信号PWMI2に対応してオン・オフ制御(スイッチング制御)される。
モータジェネレータMG2は、モータジェネレータMG1と同様に、U,V,W相の3つのコイルの一端が中性点に共通接続されて構成された3相の永久磁石モータである。インバータ31の各相アームの中間点は、導電線を介してモータジェネレータMG2のU相コイル、V相コイルおよびW相コイルとそれぞれ電気的に接続される。
そして、インバータ31とモータジェネレータMG2の各相コイルとを結ぶ導電線には、電流センサ24と同様の電流センサ28が介挿されている。さらに、モータジェネレータMG2にも、位置センサ22と同様の位置センサ26が配置される。電流センサ28による電流検出値MCRT2および位置センサによる検出値は、MGECU300へ送出される。
なお、MGECU300へは、電流センサ24,28および位置センサ22,26の検出値の他にも、電圧センサ13によって検出された、各インバータ14,31への入力電圧Vm、および適宜設けられたセンサ(図示せず)によって検出されたモータジェネレータMG1,MG2のコイル端子間電圧等が入力されてモータ駆動制御に用いられる。
MGECU300は、図示しないHVECU200からモータジェネレータMG1の運転指令を受ける。この運転指令には、モータジェネレータMG1の運転許可/禁止指示や、トルク指令値TR1、回転数指令MRN1等が含まれる。MGECU300は、電流センサ24および位置センサ22の検出値に基づくフィードバック制御により、HVECU200からの運転指令に従ってモータジェネレータMG1が動作するように、スイッチング素子Q1~Q6のスイッチング動作を制御するスイッチング制御信号PWMI1を発生する。
たとえば、HVECU200によりモータジェネレータMG1の運転指示が発せられている場合には、MGECU300は、モータジェネレータMG1のトルク指令値TR1に応じた各相モータ電流が供給されるように、電源ラインVLおよびアースラインSL間の直流電圧をモータジェネレータMG1の各相コイルに印加される交流電圧に変換するためのスイッチング制御信号PWMI1を発生する。
また、モータジェネレータMG1の回生制動時には、MGECU300は、モータジェネレータMG1によって発電された交流電圧を電源ラインVLおよびアースラインSL間の直流電圧に変換するように、スイッチング制御信号PWMI1を発生する。これらの際に、スイッチング制御信号PWMI1は、たとえば周知のPWM制御方式に従う、センサ検出値を用いたフィードバック制御により生成される。
一方、MGECU300は、HVECU200からモータジェネレータMG1の運転禁止指示が発せられた場合には、インバータ14を構成するスイッチング素子Q1~Q6の各々がスイッチング動作を停止(すべてオフ)するように、スイッチング制御信号STPを生成する。
さらに、MGECU300は、HVECU200からモータジェネレータMG2の運転指令を受けると、上述したモータジェネレータMG1の制御と同様に、電流センサ28および位置センサ26の検出値に基づくフィードバック制御により、HVECU200からの運転指令に従ってモータジェネレータMG2が動作するように、スイッチング素子Q1~Q6のスイッチング動作を制御するスイッチング制御信号PWMI2を発生する。
また、MGECU300によって検知された、インバータ14,31の異常に関する情報は、HVECU200に対して送出される。HVECU200は、これらの異常情報をモータジェネレータMG1,MG2の運転指令へ反映することが可能なように構成されている。
図2および図3に示した構成において、モータジェネレータMG1,MG2は、本発明における「複数の多相交流モータ」に対応し、インバータ14,31は、本発明における「複数の電力変換装置」に対応する。また、MGECU300およびHVECU200は、本発明における「制御装置」に対応する。
(ハイブリッド自動車の退避運転)
以上の構成からなるハイブリッド自動車10において、モータジェネレータMG1に接続されたインバータ14の異常によりモータジェネレータMG1が使用不能である場合には、特許文献1にも記載されるように、エンジンENGおよびモータジェネレータMG1の動作を停止して、モータジェネレータMG2による動力を用いた「異常時運転」によってハイブリッド自動車10の「退避運転」が実行可能である。
以上の構成からなるハイブリッド自動車10において、モータジェネレータMG1に接続されたインバータ14の異常によりモータジェネレータMG1が使用不能である場合には、特許文献1にも記載されるように、エンジンENGおよびモータジェネレータMG1の動作を停止して、モータジェネレータMG2による動力を用いた「異常時運転」によってハイブリッド自動車10の「退避運転」が実行可能である。
このような退避運転時には、モータジェネレータMG1およびモータジェネレータMG2が動力分割機構PSDを介して互いに連結されているので、モータジェネレータMG2を運転(回転)するのに伴なって、モータジェネレータMG1も回転される。
そして、図4に示すように、このような退避運転時のモータジェネレータMG1の回転に伴なって、その回転子に装着された磁石PMが回転する。これにより、モータジェネレータMG1の各相コイルに誘起電圧が発生する。
図4には、オン状態を維持して制御不能となる短絡故障がスイッチング素子Q1に発生したケースが、インバータ14中の短絡故障の一例として示される。
このようなケースでは、スイッチング制御信号STPにより、各スイッチング素子Q1~Q6のスイッチング動作を停止(オフ状態)するように制御しても、短絡故障したスイッチング素子Q1を介した短絡経路が形成される。具体的には、電源ラインVL~スイッチング素子Q1(短絡故障)~U相コイルを経由してU相モータ電流Iuが流れる。そして、U相モータ電流Iuは、モータジェネレータMG1の中性点において、V相コイル~V相アーム16の中間点~ダイオードD3~電源ラインVLに至る経路Rt1と、W相コイル~W相アーム17の中間点~ダイオードD5~電源ラインVLに至る経路Rt2とに分岐される。このため、誘起電圧および当該短絡経路の電気抵抗に応じた短絡電流が発生する。
ここで、モータジェネレータMG1の各相コイルに発生する誘起電圧は、モータジェネレータMG1の回転数に比例するので、退避運転時におけるモータジェネレータMG2の回転数が上昇すれば、モータジェネレータMG1に発生する誘起電圧も高くなり、インバータ14中の短絡電流も増大する。短絡電流が過大となると、インバータ14の構成部品の耐熱温度を超える高温の発生によって、さらなる素子損傷を発生してしまう可能性がある。
そのため、上述したように特許文献1では、インバータ14内を流れる短絡電流のレベルを監視することによって、インバータ14内に過大な短絡電流が流れる場合には、モータジェネレータMG2による退避運転を制限する制御構成とする。これにより、退避運転の実行によってインバータ内にさらなる素子損傷が発生するのを防止する。
しかしながら、このような制御構成では、インバータの素子保護を図ることができる一方で、退避運転による移動距離の増加には限界が生じてしまう。そのため、車両を安全な場所まで避難させることができない可能性がある。
そこで、本実施の形態に従うハイブリッド駆動装置100では、モータジェネレータMG1の回転数に応じて、インバータ14を構成するスイッチング素子Q1~Q6をスイッチング制御する構成とする。かかる構成によれば、回転数の上昇による短絡電流の増大が抑えられる。その結果、インバータの素子保護と退避運転時の移動距離の増加とを両立させることが可能となる。
以下に、本実施の形態に従うハイブリッド駆動装置100における退避運転時のインバータのスイッチング制御を実現するための制御構造について説明する。
(制御構造)
図5は、この発明の実施の形態に従うMGECU300における制御構造を示すブロック図である。図5に示す各機能ブロックは、代表的にMGECU300が予め格納されたプログラムを実行することで実現されるが、その機能の一部または全部を専用のハードウェアとして実装してもよい。
図5は、この発明の実施の形態に従うMGECU300における制御構造を示すブロック図である。図5に示す各機能ブロックは、代表的にMGECU300が予め格納されたプログラムを実行することで実現されるが、その機能の一部または全部を専用のハードウェアとして実装してもよい。
図5を参照して、MGECU300は、インバータ14の制御手段として、モータ制御用相電圧演算部32と、インバータ用駆動信号変換部34と、インバータ異常検出部36と、短絡素子検出部38とを含む。なお、図示は省略するが、MGECU300は、図5と同様の構成からなるインバータ31の制御手段をさらに含む。
モータ制御用相電圧演算部32は、HVECU200からモータジェネレータMG1の運転指令としてのトルク指令値TR1および回転数指令MRN1を受け、電圧センサ13からインバータ14の入力電圧Vmを受け、電流センサ24からモータジェネレータMG1の各相に流れるモータ電流Iu,Iv,Iwを受ける。そして、モータ制御用相電圧演算部32は、これらの入力信号に基づいて、モータジェネレータMG1の各相コイルに印加する電圧の操作量(以下、電圧指令とも称する)Vu*,Vv*,Vw*を演算し、その演算結果をインバータ用駆動信号変換部34へ出力する。
インバータ用駆動信号変換部34は、モータ制御用相電圧演算部32からの各相コイルの電圧指令Vu*,Vv*,Vw*に基づいて、実際にインバータ14のスイッチング素子Q1~Q6をオン・オフするためのスイッチング制御信号PWMI1を生成し、その生成したスイッチング制御信号PWMI1をインバータ14へ送出する。
これにより、各スイッチング素子Q1~Q6は、スイッチング制御され、モータジェネレータMG1が指令されたトルクを出力するようにモータジェネレータMG1の各相に流す電流を制御する。このようにして、モータ電流MCRT1が制御され、トルク指令値TR1に応じたモータトルクが出力される。
インバータ異常検出部36は、モータジェネレータMG1の運転時においてインバータ14に発生した異常を検知する。インバータ14の異常検知は、インバータ14のスイッチング素子Q1~Q6に内蔵された自己保護回路からの過電流検知信号OVCに基づいて行なわれる。
具体的には、自己保護回路は、電流センサ(または温度センサ)を含んで構成され、センサ出力に過電流(または過熱)が検出されたことに応じて過電流検知信号OVCを出力する。インバータ異常検出部36は、インバータ14から過電流検知信号OVCを受けると、スイッチング素子Q1~Q6の短絡故障による異常と判定し、その判定した結果を示す異常信号FINVを生成する。そして、インバータ異常検出部36は、その生成した異常信号FINVをHVECU200および短絡素子検出部38へ送出する。
HVECU200は、異常信号FINVを受けると、モータジェネレータMG2による退避運転を指示する。このとき、HVECU200は、インバータ用駆動信号変換部34に対して、インバータ14を構成するスイッチング素子Q1~Q6のスイッチング動作の停止指示を発する。
これに応答して、インバータ用駆動信号変換部34は、スイッチング素子Q1~Q6のスイッチング動作を停止(オフ状態)するためのスイッチング制御信号STPを生成してインバータ14へ出力する。これにより、インバータ14は運転停止状態となる。
短絡素子検出部38は、インバータ異常検出部36から異常信号FINVを受けると、電流センサ24によるインバータ14およびモータジェネレータMG1間の各相電流の検出値Iu,Iv,Iwに基づき、異常が発生したインバータから短絡故障したスイッチング素子を検出する。このとき、一例として、短絡素子検出部38は、モータ電流Iu,Iv,Iwの電流波形の各々について、定常運転時からのオフセット値を検出し、その検出したオフセット値の大きさと極性とに基づいて、短絡故障したスイッチング素子を検出する。そして、短絡素子検出部38は、検出した短絡故障したスイッチング素子を示す信号DEを生成してインバータ用駆動信号変換部34へ送出する。
インバータ用駆動信号変換部34は、短絡素子検出部38から信号DEを受けると、位置センサ22の検出値から導出されるモータジェネレータMG1の回転数Nmg1に応じて、スイッチング制御信号Ton1およびスイッチング制御信号Ton2のいずれか一方を発生する。
詳細には、スイッチング制御信号Ton1は、インバータ14を構成するスイッチング素子Q1~Q6のうち、短絡故障したスイッチング素子と直列接続されるスイッチング素子のみをオンするように、スイッチング動作を制御する信号である。これにより、短絡故障したスイッチング素子とこれに直列接続されるスイッチング素子とがオンされるため、これら2つのスイッチング素子により構成される相が短絡する。以下では、このように短絡故障したスイッチング素子が所属する相を短絡させるためのスイッチング制御を、単に「一相短絡制御」とも称する。
これに対して、スイッチング制御信号Ton2は、インバータ14を構成するスイッチング素子Q1~Q6のうち、短絡故障したスイッチング素子と電源ライン(またはアースライン)に対して並列接続される全てのスイッチング素子をオンするように、スイッチング動作を制御する信号である。これにより、電源ライン(またはアースライン)に対して並列接続される三相すべてのスイッチング素子がオンされる。以下では、このように電源線に対して短絡故障したスイッチング素子と並列接続されるスイッチング素子をオンさせるためのスイッチング制御を、単に「三相オン制御」とも称する。
そして、インバータ用駆動信号変換部34は、位置センサ22の検出値から導出したモータジェネレータMG1の回転数Nmg1に応じて、一相短絡制御および三相オン制御を切り換えて実行する。以下に、各々のスイッチング制御の詳細について説明する。
図6は、一相短絡制御の実行時に発生するインバータ内部の短絡電流を説明する図である。
図6を参照して、短絡故障がスイッチング素子Q1に発生している場合には、スイッチング制御信号Ton1により、スイッチング素子Q1と直列接続されるスイッチング素子Q2のみがオンされる。その結果、U相アーム15が短絡されるため、U相モータ電流Iuの経路は、図4で述べた経路Rt1,Rt2に加えて、電源ラインVL~U相アーム15の中間点~アースラインSLに至る新たな経路Rt3が形成されることになる。これにより、短絡故障したスイッチング素子Q1とダイオードD3,D5との間で形成される短絡経路を流れる電流が低減される。このとき、各相モータ電流Iu,Iv,Iwは、モータジェネレータMG1の正常運転時と同様に、略同じ振幅からなる交流波形となる。なお、後述するように、各相モータ電流の振幅は、モータジェネレータMG1の回転数を上昇させることによって大きくなる。
図7は、三相オン制御の実行時に発生するインバータ内部の短絡電流を説明する図である。
図7を参照して、図6と同様に短絡故障がスイッチング素子Q1に発生している場合には、スイッチング制御信号Ton2により、電源ラインVLに対してスイッチング素子Q1と並列接続されるスイッチング素子Q3,Q5のみがオンされる。これにより、短絡故障したスイッチング素子Q1とダイオードD3,D5との間で形成される短絡経路に加えて、スイッチング素子Q3とダイオードD1,D5との間で形成される経路、およびスイッチング素子Q5とダイオードD1,D3との間で形成される経路が新たに形成されることになる。
図8は、三相オン制御の実行時に発生するモータ電流の出力波形を示す図である。なお、図8の出力波形は、図7に示す回路構成においてモータジェネレータMG1を所定の回転数で回転させたときに誘起されるモータ電流Iu,Iv,Iwをシミュレーションすることにより得られたものである。
図8から明らかなように、モータ電流Iu,Iv,Iwは、略同じ振幅の交流波形を示している。なお、後述するように、モータ電流の振幅は、モータジェネレータMG1の回転数を上昇させることによってもほとんど変化しないことがシミュレーション結果から得られている。
図9は、一相短絡制御および三相オン制御の実行時に発生するインバータ内部の短絡電流とモータジェネレータMG1の回転数との関係を示す図である。図9に示す関係は、図6および図7に示す回路構成において、それぞれ、モータジェネレータMG1を様々な回転数で回転させたときに、各回転数において誘起されるモータ電流Iu,Iv,Iwをシミュレーションすることにより得られたものである。なお、図9において、ラインLN1は一相短絡制御を行なったときの短絡電流を示し、ラインLN2は三相オン制御を行なったときの短絡電流を示す。
図9を参照して、一相短絡制御の実行時には、インバータ14内を流れる短絡電流は、モータジェネレータMG1の回転数が上昇するにつれて増大する。これに対して、三相オン制御の実行時には、インバータ14内を流れる短絡電流は、相対的に低い回転数域では、モータジェネレータMG1の回転数の上昇に伴なって増大するが、相対的に高い回転数域では、回転数の上昇によってもほとんど変化していない。
なお、三相オン制御の実行時において、回転数の上昇によっても短絡電流が増大しないのは、三相オン制御によって形成される短絡経路の電気抵抗のうち、モータジェネレータMG1の各相コイルのインダクタンス成分が回転数の上昇に伴なって高くなることが一因として挙げられる。
さらに、図9からは、一相短絡制御の実行時の短絡電流と三相オン制御の実行時の短絡電流とは、相対的に低い所定の回転数において交差しており、当該所定の回転数を境として大小関係が反転していることが分かる。したがって、図9に示した短絡電流とモータジェネレータMG1の回転数との関係によれば、低回数域においては一相短絡制御を実行する一方で、高回転数域においては三相オン制御を実行する構成とすれば、インバータ14内を流れる短絡電流が増大するのを効果的に抑制できることが分かる。
その一方で、モータジェネレータMG1においては、モータジェネレータMG2の回転に伴なって回転することにより制動トルクが発生する。この制動トルクは、モータジェネレータMG1の回転抵抗によって車両に作用する制動トルクであることから、以下では、「引きずりトルク」とも称する。そして、この引きずりトルクは、モータジェネレータMG1の回転数との間に図10に示すような関係が成立する。
図10は、一相短絡制御および三相オン制御の実行時にモータジェネレータMG1に発生する引きずりトルクとモータジェネレータMG1の回転数との関係を示す図である。図10に示す関係は、一相短絡制御および三相オン制御の各々について、図9の短絡電流が流れているときにモータジェネレータMG1に発生する引きずりトルクを、磁場解析を用いたシミュレーションすることによって得られたものである。なお、引きずりトルクは、モータジェネレータMG1の力行制御時に生じるトルクと区別するために負の値で表わされている。
図10において、ラインLN3は一相短絡制御を行なったときの引きずりトルクを示し、ラインLN4は三相オン制御を行なったときの引きずりトルクを示す。
図10からは、一相短絡制御の実行時には、モータジェネレータMG1の回転数が上昇するにつれて、引きずりトルク(絶対値)が大きくなることが分かる。これに対して、三相オン制御の実行時には、引きずりトルクは、低回転数域の所定の回転数において極値を有しており、この所定の回転数から回転数が上昇するにつれて、小さくなる傾向を示している。
すなわち、一相短絡制御の実行時と三相オン制御の実行時とでは、引きずりトルクは互いに異なる特性を示しており、図中の所定の基準回転数Nthを境として、大小関係が反転している。これによれば、所定の基準回転数Nthよりも低い回転数においては、三相オン制御を行なうことで、却って一相短絡制御の実行時よりも引きずりトルクを増加させてしまうこととなる。特に、ハイブリッド自動車10の発進時には、引きずりトルクがモータジェネレータMG2の発生するトルクを上回ることによって、運転性が低下する可能性がある。
したがって、モータジェネレータMG1の回転数が所定の基準回転数Nth以下となる場合には、一相短絡制御を行なう一方で、回転数Nmg1が所定の基準回転数Nthよりも高い場合には、三相オン制御を行なう構成とすれば、モータジェネレータMG1の回転数に拘らず、引きずりトルクを小さく抑えることができる。
さらに、図9に示した短絡電流とモータジェネレータMG1の回転数との関係に照らせば、所定の基準回転数Nthよりも高い回転数域においては、過大な短絡電流の発生を防止することが可能となる。
実際には、再び図5を参照して、インバータ用駆動信号変換部34は、短絡素子検出部38から信号DEを受けると、位置センサ22の検出値からモータジェネレータMG1の回転数Nmg1を導出し、その導出した回転数Nmg1が所定の基準回転数Nthを超えるか否かを判定する。このとき、回転数Nmg1が所定の基準回転数Nth以下である場合には、インバータ用駆動信号変換部34は、一相短絡制御を行なうためのスイッチング制御信号Ton1を発生する。その一方で、回転数Nmg1が所定の基準回転数Nthを超える場合には、インバータ用駆動信号変換部34は、三相オン制御を行なうためのスイッチング制御信号Ton2を発生する。なお、所定の基準回転数Nthについては、予め図10に示す関係をシミュレーションすることで求めておくことができる。
図11は、本発明の実施の形態に従うハイブリッド駆動装置におけるMG1異常時の退避運転を説明するフローチャートである。なお、図11に示す各ステップの処理は、MGECU300およびHVECU200が図5に示す各機能ブロックとして機能することで実現される。
図11を参照して、インバータ異常検出部36(図5)として機能するMGECU300は、モータジェネレータMG1と接続されたインバータ14に異常が発生しているか否かを判定する(ステップS01)。このとき、MGECU300は、スイッチング素子Q1~Q6に内蔵された自己保護回路からの過電流検知信号OCVを受けているか否かを判定する。インバータ14から過電流検知信号OCVを受けていない場合には、MGECU300は、インバータ14に異常が発生していないと判定し(ステップS01でNO判定)、退避運転を指示することなく(ステップS02)、退避運転に関する制御処理を終了する。
一方、インバータ14から過電流検知信号OCVを受けている場合には、MGECU300は、インバータ14に異常が発生していると判定し(ステップS01でYES判定)、異常信号FINVを発する。これにより、HVECU200は、モータジェネレータMG2による退避運転を指示する(ステップS03)。このとき、HVECU200は、MGECU300に対して、インバータ14を構成する各スイッチング素子Q1~Q6のスイッチング動作の停止指示を発する。これに応答して、MGECU300からのスイッチング制御信号PWMI1はオフ状態とされる。
さらに、短絡素子検出部38として機能するMGECU300は、異常信号FINVを受けると、電流センサ24によるインバータ14およびモータジェネレータMG1間の各相電流の検出値Iu,Iv,Iwに基づき、異常が発生したインバータから短絡故障したスイッチング素子を検出する(ステップS04)。そして、短絡素子検出部38として機能するMGECU300は、検出した短絡故障したスイッチング素子を示す信号DEを生成してインバータ用駆動信号変換部34として機能するMGECU300へ送出する。
次に、インバータ用駆動信号変換部34として機能するMGECU300は、短絡素子検出部38から信号DEを受けると、位置センサ22の検出値に基づいてモータジェネレータMG1の回転数Nmg1を取得する(ステップS05)。そして、インバータ用駆動信号変換部34として機能するMGECU300は、回転数Nmg1が所定の基準回転数Nthを超えるか否かを判定する(ステップS06)。
回転数Nmg1が所定の基準回転数Nthを超える場合(ステップS06においてYESの場合)には、インバータ用駆動信号変換部34として機能するMGECU300は、三相オン制御を実行する(ステップS07)。具体的には、MGECU300は、スイッチング制御信号Ton2を生成してインバータ14を構成するスイッチング素子Q1~Q6へ出力する。これにより、電源ライン(またはアースライン)に対して短絡故障したスイッチング素子と並列接続されたスイッチング素子が全てオン状態とされる。
一方、回転数Nmg1が所定の基準回転数Nth以下となる場合(ステップS06においてNOの場合)には、インバータ用駆動信号変換部34として機能するMGECU300は、一相短絡制御を実行する(ステップS08)。具体的には、MGECU300は、スイッチング制御信号Ton1を生成してインバータ14を構成するスイッチング素子Q1~Q6へ出力する。これにより、短絡故障したスイッチング素子と直列接続されたスイッチング素子がオン状態とされる。
そして、インバータ用駆動信号変換部34として機能するMGECU300は、モータジェネレータMG2による退避運転が継続されているか否かを判定する(ステップS09)。退避運転が継続されている場合(ステップS09においてYESの場合)には、処理はステップS05に戻される。
一方、退避運転が継続されていない場合(ステップS09においてNOの場合)には、MGECU300は、退避運転に関する制御処理を終了する。
このような制御構成とすることにより、退避運転時におけるモータジェネレータMG2の回転数が上昇する場面においても、インバータ14内に過大な短絡電流が流れるのを防止することができる。これにより、インバータ内に素子損傷を発生させることなく、退避運転による移動距離を延ばすことができる。
また、退避運転時におけるモータジェネレータMG2の回転数が低い場面においては、モータジェネレータMG2の回転に伴なってモータジェネレータMG1に発生する引きずりトルクを小さくすることができる。これにより、ハイブリッド自動車10の発進時において、引きずりトルクがモータジェネレータMG2の発生するトルクを上回り、運転性の低下を抑制することができる。
なお、本実施の形態では、モータジェネレータMG1と接続された電力変換装置であるインバータ14に異常が発生したことにより、モータジェネレータMG2を用いた退避運転を行なう場合について説明したが、モータジェネレータMG2と接続された電力変換装置であるインバータ31に異常が発生した場合においても、図11に示したフローチャートと同様の処理を行なうことによって、エンジンENGおよびモータジェネレータMG1を用いた退避運転の実行によって、インバータ31内に過大な短絡電流が流れるのを防止しながら、退避運転による移動距離を延ばすことができる。
また、本実施の形態では、動力分割機構によって相互に連結された2つのモータを備えるハイブリッド自動車におけるモータ駆動装置を例示したが、本発明の適用はこのような形式に限定されるものでなく、退避運転に1つのモータを運転することによって他のモータがこれに伴なって回転される構成であれば、いわゆる電気分配式等の任意の形式のハイブリッド駆動装置、ならびに、複数モータを備えて構成されるハイブリッド駆動装置以外のモータ駆動装置に対しても適用可能である。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
この発明は、共通の出力軸へ動力を出力可能に連結された複数のモータを含んで構成されたモータ駆動装置およびハイブリッド駆動装置に適用することができる。
Claims (12)
- 共通の出力軸へ動力を出力可能に連結された複数の多相交流モータ(MG1,MG2)と、
前記複数の多相交流モータ(MG1,MG2)にそれぞれ接続された複数の電力変換装置(14,31)と、
前記複数の電力変換装置(14,31)を制御する制御装置(300)とを備え、
前記複数の電力変換装置(14,31)の各々は、各々が、前記多相交流モータの各相コイルに接続される複数のアーム回路(15,16,17)を含み、
前記複数のアーム回路(15,16,17)の各々は、第1および第2電源線間に前記各相コイルとの接続点を介して直列接続された第1および第2のスイッチング素子を有し、
前記制御装置(300)は、
前記複数の電力変換装置(14,31)のうちの第1の電力変換装置(14)の異常時に、前記第1の電力変換装置(14)と接続された第1の多相交流モータ(MG1)とは異なる第2の多相交流モータ(MG2)を用いた異常時運転を指示する異常制御手段と、
前記異常時運転において、前記第2の多相交流モータ(MG2)の運転に伴なって、前記第1の電力変換装置(14)を流れる電流に基づいて、短絡故障したスイッチング素子を検出する短絡検出手段と、
前記異常時運転において、前記短絡故障したスイッチング素子と前記接続点を介して直列接続されるスイッチング素子を導通させることにより、前記第1の電力変換装置(14)を流れる電流を制御する第1のモータ制御手段と、
前記異常時運転において、電源線に対して前記短絡故障したスイッチング素子と並列接続されるスイッチング素子をすべて導通させることにより、前記第1の電力変換装置(14)を流れる電流を制御する第2のモータ制御手段と、
前記第1の多相交流モータ(MG1)の回転数に応じて、前記第1のモータ制御手段および前記第2のモータ制御手段を選択的に設定する選択手段とを含む、モータ駆動装置。 - 前記選択手段は、前記第1の多相交流モータ(MG1)の回転数が所定の基準回転数以下の場合には、前記第1のモータ制御手段を選択し、前記第1の多相交流モータ(MG1)の回転数が前記所定の基準回転数を超える場合には、前記第2のモータ制御手段を選択する、請求の範囲第1項に記載のモータ駆動装置。
- 前記第1のモータ制御手段の実行時において、前記第1の多相交流モータ(MG1)は、前記第2の多相交流モータ(MG2)の運転に伴なって発生する制動トルクが、前記第1の多相交流モータ(MG1)の回転数が高くなるにつれて大きくなる第1の特性を有し、
前記第2のモータ制御手段の実行時において、前記第1の多相交流モータ(MG1)は、前記第2の多相交流モータ(MG2)の運転に伴なって発生する制動トルクが、前記第1の多相交流モータ(MG1)の回転数が高くなるにつれて小さくなる第2の特性を有し、
前記選択手段は、前記第1および第2の特性を予め有しており、前記第1の特性と前記第2の特性とで前記第1の多相交流モータに発生する制動トルクが一致するときの前記第1の多相交流モータ(MG1)の回転数を、前記所定の基準回転数に設定する、請求の範囲第2項に記載のモータ駆動装置。 - 共通の出力軸へ動力を出力可能に連結された複数の多相交流モータ(MG1,MG2)と、
前記複数の多相交流モータ(MG1,MG2)にそれぞれ接続された複数の電力変換装置(14,31)と、
前記複数の電力変換装置(14,31)を制御する制御装置(300)とを備え、
前記複数の電力変換装置(14,31)の各々は、各々が、前記多相交流モータの各相コイルに接続される複数のアーム回路(15,16,17)を含み、
前記複数のアーム回路(15,16,17)の各々は、第1および第2電源線間に前記各相コイルとの接続点を介して直列接続された第1および第2のスイッチング素子を有し、
前記制御装置(300)は、
前記複数の電力変換装置(14,31)のうちの第1の電力変換装置(14)の異常時に、前記第1の電力変換装置(14)と接続された第1の多相交流モータ(MG1)とは異なる第2の多相交流モータ(MG2)を用いた異常時運転を指示する異常制御部と、
前記異常時運転において、前記第2の多相交流モータ(MG2)の運転に伴なって、前記第1の電力変換装置(14)を流れる電流に基づいて、短絡故障したスイッチング素子を検出する短絡検出部と、
前記異常時運転において、前記短絡故障したスイッチング素子と前記接続点を介して直列接続されるスイッチング素子を導通させることにより、前記第1の電力変換装置(14)を流れる電流を制御する第1のモータ制御部と、
前記異常時運転において、電源線に対して前記短絡故障したスイッチング素子と並列接続されるスイッチング素子をすべて導通させることにより、前記第1の電力変換装置(14)を流れる電流を制御する第2のモータ制御部と、
前記第1の多相交流モータ(MG1)の回転数に応じて、前記第1のモータ制御部および前記第2のモータ制御部を選択的に設定する選択部とを含む、モータ駆動装置。 - 前記選択部は、前記第1の多相交流モータ(MG1)の回転数が所定の基準回転数以下の場合には、前記第1のモータ制御部を選択し、前記第1の多相交流モータ(MG1)の回転数が前記所定の基準回転数を超える場合には、前記第2のモータ制御部を選択する、請求の範囲第4項に記載のモータ駆動装置。
- 前記第1のモータ制御部の実行時において、前記第1の多相交流モータ(MG1)は、前記第2の多相交流モータ(MG2)の運転に伴なって発生する制動トルクが、前記第1の多相交流モータ(MG1)の回転数が高くなるにつれて大きくなる第1の特性を有し、
前記第2のモータ制御部の実行時において、前記第1の多相交流モータ(MG1)は、前記第2の多相交流モータ(MG2)の運転に伴なって発生する制動トルクが、前記第1の多相交流モータ(MG1)の回転数が高くなるにつれて小さくなる第2の特性を有し、
前記選択部は、前記第1および第2の特性を予め有しており、前記第1の特性と前記第2の特性とで前記第1の多相交流モータに発生する制動トルクが一致するときの前記第1の多相交流モータ(MG1)の回転数を、前記所定の基準回転数に設定する、請求の範囲第5項に記載のモータ駆動装置。 - 燃料の燃料によって作動するエンジン(ENG)と、
第1のモータジェネレータ(MG1)と、
動力を出力するための出力部材(118)と、
前記出力部材(118)、前記エンジン(ENG)の出力軸および前記第1のモータジェネレータ(MG1)の出力軸を相互に連結する動力分割機構(PSD)と、
前記出力部材(118)に連結された第2のモータジェネレータ(MG2)と、
直流電源(140)と前記第1のモータジェネレータ(MG1)との間に接続されて、前記第1のモータジェネレータ(MG1)を駆動制御する第1のインバータ(14)と、
前記直流電源(140)と前記第2のモータジェネレータ(MG2)との間に接続されて、前記第2のモータジェネレータ(MG2)を駆動制御する第2のインバータ(31)と、
前記第1および第2のモータジェネレータ(MG1,MG2)の運転を制御する制御装置(300)とを備え、
前記第1のインバータ(14)は、各々が、前記第1のモータジェネレータ(MG1)の各相コイルに接続される第1の複数のアーム回路(15,16,17)を含み、
前記第2のインバータ(31)は、各々が、前記第2のモータジェネレータ(MG2)の各相コイルに接続される第2の複数のアーム回路(15,16,17)を含み、
前記第1および第2の複数のアーム回路(15,16,17)の各々は、第1および第2電源線間に前記各相コイルとの接続点を介して直列接続された第1および第2のスイッチング素子を有し、
前記制御装置(300)は、
前記第1のインバータ(14)の異常時に、前記第2のモータジェネレータ(MG2)を用いた異常時運転を指示する異常制御手段と、
前記異常時運転において、前記第2のモータジェネレータ(MG2)の運転に伴なって、前記第1のインバータ(14)を流れる電流に基づいて、短絡故障したスイッチング素子を検出する短絡検出手段と、
前記異常時運転において、前記短絡故障したスイッチング素子と前記接続点を介して直列接続されるスイッチング素子を導通させることにより、前記第1のインバータ(14)を流れる電流を制御する第1のモータ制御手段と、
前記異常時運転において、電源線に対して前記短絡故障したスイッチング素子と並列接続されるスイッチング素子をすべて導通させることにより、前記第1のインバータ(14)を流れる電流を制御する第2のモータ制御手段と、
前記第1のモータジェネレータ(MG1)の回転数に応じて、前記第1のモータ制御手段および前記第2のモータ制御手段を選択的に設定する第1の選択手段とを含む、ハイブリッド駆動装置。 - 前記第1の選択手段は、前記第1のモータジェネレータ(MG1)の回転数が所定の基準回転数以下の場合には、前記第1のモータ制御手段を選択し、前記第1のモータジェネレータ(MG1)の回転数が前記所定の基準回転数を超える場合には、前記第2のモータ制御手段を選択する、請求の範囲第7項に記載のハイブリッド駆動装置。
- 前記異常制御手段は、前記第2のインバータ(31)の異常時に、前記エンジン(ENG)および前記第1のモータジェネレータ(MG1)を用いた異常時運転を指示し、
前記短絡検出手段は、前記異常時運転において、前記第1のモータジェネレータ(MG1)の運転に伴なって、前記第2のインバータ(31)を流れる電流に基づいて、短絡故障したスイッチング素子を検出し、
前記制御装置(300)は、
前記異常時運転において、前記短絡故障したスイッチング素子と前記接続点を介して直列接続されるスイッチング素子を導通させることにより、前記第2のインバータ(31)を流れる電流を制御する第3のモータ制御手段と、
前記異常時運転において、電源線に対して前記短絡故障したスイッチング素子と並列接続されるスイッチング素子をすべて導通させることにより、前記第2のインバータ(31)を流れる電流を制御する第4のモータ制御手段と、
前記第2のモータジェネレータ(MG2)の回転数に応じて、前記第3のモータ制御手段および前記第4のモータ制御手段を選択的に設定する第2の選択手段とをさらに含む、請求の範囲第7項に記載のハイブリッド駆動装置。 - 前記第2の選択手段は、前記第2のモータジェネレータ(MG2)の回転数が所定の基準回転数以下の場合には、前記第3のモータ制御手段を選択し、前記第2のモータジェネレータ(MG2)の回転数が前記所定の基準回転数を超える場合には、前記第4のモータ制御手段を選択する、請求の範囲第9項に記載のハイブリッド駆動装置。
- 共通の出力軸へ動力を出力可能に連結された複数の多相交流モータ(MG1,MG2)と、前記複数の多相交流モータ(MG1,MG2)にそれぞれ接続された複数の電力変換装置(14,31)とを含むモータ駆動装置の制御方法であって、
前記複数の電力変換装置(14,31)の各々は、各々が、前記多相交流モータの各相コイルに接続される複数のアーム回路(15,16,17)を含み、
前記複数のアーム回路(15,16,17)の各々は、第1および第2電源線間に前記各相コイルとの接続点を介して直列接続された第1および第2のスイッチング素子を有し、
前記制御方法は、
前記複数の電力変換装置(14,31)のうちの第1の電力変換装置(14)の異常時に、前記第1の電力変換装置(14)と接続された第1の多相交流モータ(MG1)とは異なる第2の多相交流モータ(MG2)を用いた異常時運転を指示するステップと、
前記異常時運転において、前記第2の多相交流モータ(MG2)の運転に伴なって、前記第1の電力変換装置(14)を流れる電流に基づいて、短絡故障したスイッチング素子を検出するステップと、
前記異常時運転において、前記短絡故障したスイッチング素子と前記接続点を介して直列接続されるスイッチング素子を導通させることにより、前記第1の電力変換装置(14)を流れる電流を制御するステップと、
前記異常時運転において、電源線に対して前記短絡故障したスイッチング素子と並列接続されるスイッチング素子をすべて導通させることにより、前記第1の電力変換装置(14)を流れる電流を制御するステップと、
前記第1の多相交流モータ(MG1)の回転数に応じて、前記短絡故障したスイッチング素子と前記接続点を介して直列接続されるスイッチング素子を導通させることにより、前記第1の電力変換装置(14)を流れる電流を制御するステップと、前記電源線に対して前記短絡故障したスイッチング素子と並列接続されるスイッチング素子をすべて導通させることにより、前記第1の電力変換装置(14)を流れる電流を制御するステップとを選択的に設定するステップとを備える、モータ駆動装置の制御方法。 - 前記選択的に設定するステップは、前記第1の多相交流モータ(MG1)の回転数が所定の基準回転数以下の場合には、前記短絡故障したスイッチング素子と前記接続点を介して直列接続されるスイッチング素子を導通させることにより、前記第1の電力変換装置(14)を流れる電流を制御するステップを選択し、前記第1の多相交流モータ(MG1)の回転数が前記所定の基準回転数を超える場合には、前記電源線に対して前記短絡故障したスイッチング素子と並列接続されるスイッチング素子をすべて導通させることにより、前記第1の電力変換装置(14)を流れる電流を制御するステップを選択する、請求の範囲第11項に記載のモータ駆動装置の制御方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08872356.4A EP2244370B1 (en) | 2008-02-14 | 2008-10-14 | Motor drive apparatus, hybrid drive apparatus and method for controlling motor drive apparatus |
US12/741,281 US8040081B2 (en) | 2008-02-14 | 2008-10-14 | Motor drive apparatus, hybrid drive apparatus and method for controlling motor drive apparatus |
CN2008801268157A CN101946397B (zh) | 2008-02-14 | 2008-10-14 | 电机驱动装置、混合动力驱动装置以及电机驱动装置的控制方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008033426A JP4240149B1 (ja) | 2008-02-14 | 2008-02-14 | モータ駆動装置およびハイブリッド駆動装置 |
JP2008-033426 | 2008-02-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009101729A1 true WO2009101729A1 (ja) | 2009-08-20 |
Family
ID=40559902
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/068538 WO2009101729A1 (ja) | 2008-02-14 | 2008-10-14 | モータ駆動装置およびハイブリッド駆動装置ならびにモータ駆動装置の制御方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8040081B2 (ja) |
EP (1) | EP2244370B1 (ja) |
JP (1) | JP4240149B1 (ja) |
CN (1) | CN101946397B (ja) |
WO (1) | WO2009101729A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015154694A (ja) * | 2014-02-19 | 2015-08-24 | 日立オートモティブシステムズ株式会社 | 電動モータの駆動制御装置 |
Families Citing this family (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4747968B2 (ja) * | 2006-06-30 | 2011-08-17 | トヨタ自動車株式会社 | モータ駆動装置 |
WO2009087775A1 (ja) * | 2008-01-10 | 2009-07-16 | Mitsubishi Electric Corporation | 電力変換装置 |
JP5075034B2 (ja) * | 2008-07-02 | 2012-11-14 | トヨタ自動車株式会社 | ハイブリッド車両の退避走行制御装置 |
JP5104647B2 (ja) * | 2008-08-20 | 2012-12-19 | トヨタ自動車株式会社 | ハイブリッド自動車の制御装置及び制御方法 |
JP5334678B2 (ja) * | 2009-05-14 | 2013-11-06 | トヨタ自動車株式会社 | 車両駆動システムの制御装置 |
JP5527883B2 (ja) * | 2009-12-08 | 2014-06-25 | 住友建機株式会社 | 建設機械 |
JP5083305B2 (ja) * | 2009-12-24 | 2012-11-28 | 株式会社デンソー | 電動機駆動装置、および、これを用いた電動パワーステアリング装置 |
US8374009B2 (en) * | 2010-03-25 | 2013-02-12 | Hamilton Sundstrand Corporation | Multi-level parallel phase converter |
JP5168307B2 (ja) * | 2010-04-07 | 2013-03-21 | 株式会社デンソー | 電動機制御装置 |
JP2011234517A (ja) * | 2010-04-28 | 2011-11-17 | Renesas Electronics Corp | 動力駆動制御装置および動力装置 |
JP5201245B2 (ja) * | 2010-09-17 | 2013-06-05 | 株式会社デンソー | 回転機の制御装置 |
JP5170192B2 (ja) * | 2010-09-17 | 2013-03-27 | 株式会社デンソー | 回転機の制御装置 |
JP5488924B2 (ja) * | 2010-11-16 | 2014-05-14 | 株式会社デンソー | 車両のモータ制御装置 |
US8976551B2 (en) * | 2010-12-07 | 2015-03-10 | Hitachi Automotive Systems, Ltd. | Power converter |
DE102010053624A1 (de) * | 2010-12-07 | 2012-06-14 | Sew-Eurodrive Gmbh & Co. Kg | Fahrzeug und Verfahren zum Betreiben eines Fahrzeugs |
JP5352570B2 (ja) * | 2010-12-13 | 2013-11-27 | 株式会社日立製作所 | 回転機の制御装置,回転機系,車両,電気自動車または発電システム |
WO2012090263A1 (ja) * | 2010-12-27 | 2012-07-05 | トヨタ自動車株式会社 | ハイブリッド車両およびその制御方法 |
US8810189B2 (en) * | 2011-02-25 | 2014-08-19 | Deere & Company | Machine systems including pre-power diagnostics |
ITTO20110213A1 (it) * | 2011-03-10 | 2012-09-11 | Gate Srl | Dispositivo e procedimento di regolazione di tensione per motori elettrici in corrente continua, in particolare per elettroventilatori |
DE102011075869A1 (de) * | 2011-05-16 | 2012-11-22 | Robert Bosch Gmbh | Verfahren und Steuergerät zur Erkennung einer geblockten Elektromaschine in einem Elektrofahrzeug |
US9130489B2 (en) * | 2011-07-12 | 2015-09-08 | Toyota Jidosha Kabushiki Kaisha | Vehicle and control method of vehicle |
DE102011085657A1 (de) * | 2011-11-03 | 2013-05-08 | Robert Bosch Gmbh | Verfahren und Vorrichtung zum Betreiben einer elektronisch kommutierten elektrischen Maschine in einem Fehlerfall |
JP5985178B2 (ja) * | 2011-11-24 | 2016-09-06 | Ntn株式会社 | モータの制御装置 |
JP5449429B2 (ja) * | 2012-02-24 | 2014-03-19 | 三菱電機株式会社 | 交流回転機の制御装置及びその方法、電動パワーステアリング装置 |
JP5974548B2 (ja) * | 2012-03-05 | 2016-08-23 | 富士電機株式会社 | 半導体装置 |
US9302588B2 (en) * | 2012-06-29 | 2016-04-05 | Ford Global Technologies, Llc | Vehicle system for evaluating a voltage converter |
US9933049B2 (en) * | 2012-10-04 | 2018-04-03 | Means Industries, Inc. | Vehicle drive system including a transmission |
CN102874249B (zh) * | 2012-10-26 | 2015-11-18 | 潍柴动力股份有限公司 | 一种用于混合动力的电机控制装置 |
DE102012224336A1 (de) * | 2012-12-21 | 2014-06-26 | Ge Energy Power Conversion Gmbh | Verfahren zum Betreiben eines elektrischen Stromrichters sowie elektrischer Stromrichter |
DE102013103698A1 (de) * | 2013-04-12 | 2014-10-16 | Zf Lenksysteme Gmbh | Endstufenansteuerung im störfall |
CN104167978A (zh) * | 2013-05-20 | 2014-11-26 | 安川电机(中国)有限公司 | 马达控制装置和马达驱动系统 |
JPWO2015020009A1 (ja) * | 2013-08-07 | 2017-03-02 | 株式会社東芝 | 車両用制御装置及び鉄道車両 |
JP2015082943A (ja) * | 2013-10-24 | 2015-04-27 | トヨタ自動車株式会社 | 車両制御装置 |
JP6056734B2 (ja) * | 2013-10-25 | 2017-01-11 | トヨタ自動車株式会社 | 車両制御装置 |
JP6362349B2 (ja) | 2014-02-19 | 2018-07-25 | 日立オートモティブシステムズ株式会社 | 電動モータの駆動制御装置 |
AT515415B1 (de) * | 2014-10-30 | 2015-09-15 | Ge Jenbacher Gmbh & Co Og | Verfahren zum Betreiben einer Brennkraftmaschine |
JP2016097699A (ja) * | 2014-11-18 | 2016-05-30 | トヨタ自動車株式会社 | 自動車 |
KR101494780B1 (ko) | 2014-11-27 | 2015-02-23 | 국방과학연구소 | 무인항공기의 전기식 구동장치와 그것의 제어방법 |
JP6119778B2 (ja) | 2015-02-24 | 2017-04-26 | トヨタ自動車株式会社 | インバータの制御装置 |
DE102015213304A1 (de) * | 2015-04-30 | 2016-11-03 | Thyssenkrupp Ag | Elektromechanische Servolenkung |
EP3131198B1 (en) * | 2015-08-10 | 2022-06-08 | Goodrich Actuation Systems Limited | Control strategy of a dual lane fault tolerant permanent magnet motor to reduce drag torque under fault condition |
JP6365502B2 (ja) * | 2015-10-21 | 2018-08-01 | トヨタ自動車株式会社 | ハイブリッド車両 |
US20170194882A1 (en) * | 2016-01-05 | 2017-07-06 | ZEROTECH (Chongqing) Intelligence Technology Co., Ltd. | Platform motor driving module, platform controlling system, and platform system |
JP6418196B2 (ja) * | 2016-04-15 | 2018-11-07 | トヨタ自動車株式会社 | 電気自動車 |
EP3266643A1 (en) * | 2016-07-06 | 2018-01-10 | Volvo Car Corporation | Power dissipating torque controller |
JP2018085891A (ja) * | 2016-11-25 | 2018-05-31 | パナソニックIpマネジメント株式会社 | モータ駆動装置、及びモータ駆動装置の制御装置 |
JP6944657B2 (ja) * | 2017-09-14 | 2021-10-06 | 日本精工株式会社 | モータ制御装置及びそれを搭載した電動パワーステアリング装置 |
JP7003863B2 (ja) * | 2018-07-20 | 2022-02-04 | トヨタ自動車株式会社 | 車両の制御装置、制御方法および制御プログラム |
TWI666460B (zh) * | 2018-08-10 | 2019-07-21 | 東元電機股份有限公司 | 馬達層間短路快篩方法 |
CN109278561B (zh) * | 2018-11-22 | 2021-10-12 | 科力远混合动力技术有限公司 | 双电机功率分流式混合动力汽车电机故障处理控制方法 |
JP7102053B2 (ja) * | 2018-12-05 | 2022-07-19 | 日立建機株式会社 | 回生制動システム、及び、それを用いた電気駆動作業車両 |
KR20220023912A (ko) * | 2020-08-21 | 2022-03-03 | 현대자동차주식회사 | 하이브리드 차량의 고장 감지 방법 |
JP7559520B2 (ja) | 2020-11-17 | 2024-10-02 | 株式会社Soken | 電力変換装置 |
JP7479272B2 (ja) | 2020-11-17 | 2024-05-08 | 株式会社Soken | 電力変換装置 |
JP2022080187A (ja) * | 2020-11-17 | 2022-05-27 | 株式会社Soken | 電力変換装置及び電力変換システム |
US11575330B1 (en) * | 2021-07-29 | 2023-02-07 | Rivian Ip Holdings, Llc | Dual inverter with common control |
FR3132470A1 (fr) * | 2022-02-07 | 2023-08-11 | Psa Automobiles Sa | Détermination du couple demandé à une machine motrice électrique d’un véhicule dans un mode de déplacement dégradé |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08182105A (ja) | 1994-12-21 | 1996-07-12 | Toshiba Corp | 電気車制御装置 |
JP2002051569A (ja) * | 2000-08-03 | 2002-02-15 | Toshiba Corp | 電力変換装置 |
JP2006170120A (ja) | 2004-12-17 | 2006-06-29 | Nissan Motor Co Ltd | ハイブリッド車のエンジン始動制御装置 |
JP2007028733A (ja) | 2005-07-13 | 2007-02-01 | Toyota Motor Corp | モータ駆動装置およびハイブリッド駆動装置 |
JP2007244126A (ja) | 2006-03-09 | 2007-09-20 | Toyota Motor Corp | 車両の駆動制御装置、車両の駆動制御方法、および車両 |
JP2007245966A (ja) | 2006-03-16 | 2007-09-27 | Nissan Motor Co Ltd | 車両用駆動制御装置 |
JP2007287333A (ja) | 2004-06-30 | 2007-11-01 | Media Com International:Kk | 蓄光ネオン管 |
JP2008011683A (ja) * | 2006-06-30 | 2008-01-17 | Toyota Motor Corp | モータ駆動装置 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5448442A (en) * | 1988-06-22 | 1995-09-05 | Siemens Energy & Automation, Inc. | Motor controller with instantaneous trip protection |
US4896089A (en) * | 1989-01-31 | 1990-01-23 | General Electric Company | Fault management system for a switched reluctance motor |
JPH02299498A (ja) * | 1989-05-11 | 1990-12-11 | Shinko Electric Co Ltd | 電動機駆動用電力変換装置 |
US5708576A (en) * | 1996-07-10 | 1998-01-13 | Sundstrand Corporation | Fault tolerant power converter |
JPH1189003A (ja) * | 1997-09-10 | 1999-03-30 | Toshiba Transport Eng Kk | 電気車制御装置 |
GB0316407D0 (en) * | 2003-07-12 | 2003-08-13 | Rolls Royce Plc | Electrical machine |
US7893561B2 (en) * | 2003-07-31 | 2011-02-22 | L-3 Communications Titan Corporation | Modular electronically reconfigurable battery system |
JP2007533284A (ja) * | 2004-04-09 | 2007-11-15 | エス エム シー エレクトリカル プロダクツ インコーポレーテッド | インバータ・ブリッジ短絡保護スキーム |
US7095206B2 (en) * | 2004-05-26 | 2006-08-22 | Delphi Technologies, Inc. | Switched reluctance motor control with partially disabled operation capability |
JP4622884B2 (ja) * | 2006-02-06 | 2011-02-02 | トヨタ自動車株式会社 | 電動機駆動装置およびそれを備えたハイブリッド自動車ならびに電力変換装置の停止制御方法 |
DE102006018053A1 (de) * | 2006-04-19 | 2007-10-31 | Daimlerchrysler Ag | Ansteuersystem für eine elektrische Maschine |
JP4784478B2 (ja) * | 2006-04-20 | 2011-10-05 | 株式会社デンソー | 多相回転電機の制御装置 |
JP2008054420A (ja) * | 2006-08-24 | 2008-03-06 | Toyota Motor Corp | モータ駆動装置 |
JP4760723B2 (ja) * | 2006-11-20 | 2011-08-31 | トヨタ自動車株式会社 | 電源回路の制御装置 |
JP4179378B2 (ja) * | 2007-01-04 | 2008-11-12 | トヨタ自動車株式会社 | 車両の駆動制御装置、および、車両 |
JP4757815B2 (ja) * | 2007-03-05 | 2011-08-24 | 本田技研工業株式会社 | 電動機の制御装置および車両 |
WO2008129658A1 (ja) * | 2007-04-16 | 2008-10-30 | Mitsubishi Electric Corporation | 電動機制御装置 |
JP4438833B2 (ja) * | 2007-07-04 | 2010-03-24 | トヨタ自動車株式会社 | 電力変換装置の異常検出装置および異常検出方法 |
JP4965363B2 (ja) * | 2007-07-12 | 2012-07-04 | トヨタ自動車株式会社 | 車両およびその制御方法並びに駆動装置 |
JP4288333B1 (ja) * | 2007-12-18 | 2009-07-01 | トヨタ自動車株式会社 | 車両の電源装置 |
JP2011045212A (ja) * | 2009-08-24 | 2011-03-03 | Denso Corp | 駆動制御装置 |
JP4831503B2 (ja) * | 2009-09-30 | 2011-12-07 | 株式会社デンソー | 多相回転機の制御装置、および、これを用いた電動パワーステアリング装置 |
-
2008
- 2008-02-14 JP JP2008033426A patent/JP4240149B1/ja active Active
- 2008-10-14 US US12/741,281 patent/US8040081B2/en active Active
- 2008-10-14 EP EP08872356.4A patent/EP2244370B1/en active Active
- 2008-10-14 WO PCT/JP2008/068538 patent/WO2009101729A1/ja active Application Filing
- 2008-10-14 CN CN2008801268157A patent/CN101946397B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08182105A (ja) | 1994-12-21 | 1996-07-12 | Toshiba Corp | 電気車制御装置 |
JP2002051569A (ja) * | 2000-08-03 | 2002-02-15 | Toshiba Corp | 電力変換装置 |
JP2007287333A (ja) | 2004-06-30 | 2007-11-01 | Media Com International:Kk | 蓄光ネオン管 |
JP2006170120A (ja) | 2004-12-17 | 2006-06-29 | Nissan Motor Co Ltd | ハイブリッド車のエンジン始動制御装置 |
JP2007028733A (ja) | 2005-07-13 | 2007-02-01 | Toyota Motor Corp | モータ駆動装置およびハイブリッド駆動装置 |
JP2007244126A (ja) | 2006-03-09 | 2007-09-20 | Toyota Motor Corp | 車両の駆動制御装置、車両の駆動制御方法、および車両 |
JP2007245966A (ja) | 2006-03-16 | 2007-09-27 | Nissan Motor Co Ltd | 車両用駆動制御装置 |
JP2008011683A (ja) * | 2006-06-30 | 2008-01-17 | Toyota Motor Corp | モータ駆動装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015154694A (ja) * | 2014-02-19 | 2015-08-24 | 日立オートモティブシステムズ株式会社 | 電動モータの駆動制御装置 |
WO2015125541A1 (ja) * | 2014-02-19 | 2015-08-27 | 日立オートモティブシステムズ株式会社 | 電動モータの駆動制御装置及び駆動制御方法 |
US10243503B2 (en) | 2014-02-19 | 2019-03-26 | Hitachi Automotive Systems, Ltd. | Drive controller and drive control method for electric motor |
Also Published As
Publication number | Publication date |
---|---|
CN101946397A (zh) | 2011-01-12 |
JP2009195026A (ja) | 2009-08-27 |
CN101946397B (zh) | 2013-04-10 |
EP2244370A4 (en) | 2017-07-19 |
EP2244370A1 (en) | 2010-10-27 |
JP4240149B1 (ja) | 2009-03-18 |
EP2244370B1 (en) | 2019-10-09 |
US8040081B2 (en) | 2011-10-18 |
US20100263953A1 (en) | 2010-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4240149B1 (ja) | モータ駆動装置およびハイブリッド駆動装置 | |
JP4747968B2 (ja) | モータ駆動装置 | |
JP6296169B2 (ja) | インバータ制御装置及び車両用制御装置 | |
JP4665809B2 (ja) | 電動機駆動制御システム | |
US20090195199A1 (en) | Motor drive device | |
JP4784478B2 (ja) | 多相回転電機の制御装置 | |
JP2007028733A (ja) | モータ駆動装置およびハイブリッド駆動装置 | |
JP6426584B2 (ja) | ハイブリッド車両 | |
JP5277817B2 (ja) | モータ制御装置 | |
JP2012136064A (ja) | ハイブリッド車両およびその制御方法 | |
JP2009201194A (ja) | 回転電機の異常検出装置および異常検出方法 | |
JP2009171769A (ja) | モータ駆動装置およびハイブリッド駆動装置 | |
US10611365B2 (en) | Hybrid vehicle and method of controlling the same | |
JP2013207833A (ja) | ハイブリッド車両およびその制御方法 | |
JP2013240162A (ja) | 電圧変換装置 | |
JP2011211839A (ja) | 電動車両の駆動装置 | |
JP2012186905A (ja) | 電動車両の電気システムおよびその制御方法 | |
JP2016165180A (ja) | 電動車両 | |
JP6398924B2 (ja) | ハイブリッド車両 | |
JP2015006021A (ja) | モータ駆動装置及びモータ | |
JP2008022640A (ja) | 車両駆動装置、車両駆動装置の制御方法、車両駆動装置の制御方法をコンピュータに実行させるためのプログラム、およびそのプログラムを記録したコンピュータ読み取り可能な記録媒体 | |
JP2017070048A (ja) | 電動機駆動制御システム | |
JP2017128193A (ja) | ハイブリッド車両 | |
JP2017061186A (ja) | ハイブリッド車両 | |
JP2008131689A (ja) | 電動車両 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880126815.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08872356 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12741281 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008872356 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |