WO2008015769A1 - Composition de floculant et procédé servant à la produire - Google Patents

Composition de floculant et procédé servant à la produire Download PDF

Info

Publication number
WO2008015769A1
WO2008015769A1 PCT/JP2006/315886 JP2006315886W WO2008015769A1 WO 2008015769 A1 WO2008015769 A1 WO 2008015769A1 JP 2006315886 W JP2006315886 W JP 2006315886W WO 2008015769 A1 WO2008015769 A1 WO 2008015769A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
polymer
group
monomer
soluble
Prior art date
Application number
PCT/JP2006/315886
Other languages
English (en)
French (fr)
Inventor
Ryousuke Yonemoto
Syougo Wakatuki
Original Assignee
Hymo Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hymo Corporation filed Critical Hymo Corporation
Priority to PCT/JP2006/315886 priority Critical patent/WO2008015769A1/ja
Priority to JP2008527639A priority patent/JP5103395B2/ja
Priority to CN2006800555225A priority patent/CN101500677B/zh
Publication of WO2008015769A1 publication Critical patent/WO2008015769A1/ja
Priority to US12/362,916 priority patent/US7745529B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D3/00Differential sedimentation
    • B03D3/06Flocculation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/147Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group

Definitions

  • the present invention utilizes the advantages of a crosslinkable water-soluble polymer and a linear water-soluble polymer to make the state of the particle size distribution of sludge particles as an index of the cross-linkable water-soluble polymer and the linear water-soluble polymer.
  • the mixing ratio is changed, the adsorption performance to suspended particles is excellent, the increase of sludge viscosity does not occur, the drainage of water is good during mechanical dewatering, the moisture content of cake can be reduced, and the aggregation can be made compatible with a wide variety of sludge.
  • the present invention relates to an agent composition and a method for producing the same.
  • a cationic polymer coagulant has conventionally been used for retention aids in papermaking and for dewatering sludge such as sewage.
  • sludge dehydrating agents have a limit in the amount of sludge that can be treated with conventional cationic polymer flocculants due to recent increase in sludge generation and deterioration of sludge properties, and dewatered cake moisture content, SS recovery
  • the treatment conditions are not necessarily satisfactory in terms of rate, peelability of the cake from the filter cloth, etc., and improvements are required.
  • various amphoteric polymeric flocculants have been proposed to ameliorate the disadvantages of these conventional cationic polymeric flocculants, these amphoteric polymeric dehydrating agents are not always sufficiently satisfactory.
  • a crosslinkable ionic polymer flocculant has been disclosed for the purpose of reducing the moisture content of the dewatered cake and improving the removability from the filter cloth (for example, JP-A-2-219887).
  • the crosslinkable water-soluble polymer has various features and functions, it may be due to the relatively small spread of the molecule in the aqueous solution, and a retention aid for sludge dewatering agent or papermaking. There is a problem that when it is applied to, etc., the amount of addition increases as compared to linear polymers.
  • the crosslinkable water-soluble polymer contains a quaternary ammonium base, and a methacrylate type.
  • an amphoteric polymer dehydrating agent in which a monomer, an acrylate type monomer and an anion type monomer are copolymerized in a fixed ratio (Japanese Patent Application Laid-Open No. 7-26529), 7-2 5 6 3 0 0)).
  • these too do not satisfy the purpose.
  • this technology does not describe the concept of changing the blending ratio of the crosslinkable water-soluble ionic polymer and the linear water-soluble ionic polymer in accordance with the particle size distribution of the sludge particles.
  • the object of the present invention is to further advance the concept of utilizing the advantages of crosslinkable water-soluble polymers and linear water-soluble polymers, and using the particle size distribution of sludge particles as an index, the crosslinkable water-soluble polymers and linearity It is an object of the present invention to develop a flocculant composition that can be compatible with a wide variety of types of sludge by making the blending ratio of the water-soluble polymer correspond, and a method for producing the same. Disclosure of the invention
  • a vinyl polymer-based crosslinkable water-soluble polymer (A) having a charge inclusion rate of 20% or more and a vinyl polymer-based linear water-soluble polymer (B) having a charge inclusion rate of 5 or more and less than 20% It is related to the first of the present invention that it has been found that it can be adapted to various types of sludge by means of a flocculant composition comprising the compounding.
  • the flocculant composition according to a second aspect of the present invention is the flocculant composition according to the first aspect of the present invention, wherein the flocculant composition is used in the sludge relative to all suspended particles in the sludge.
  • the vinyl polymerizable crosslinkable water-soluble polymer (A) having a charge inclusion ratio of 20% or more corresponding to the change in mass% of 200 meshion particles, and the vinyl polymerization linearity having a charge inclusion ratio of 5 or more and less than 20% It is characterized in that the composition with the water-soluble polymer (B) is changed.
  • a third aspect of the present invention is the first or second flocculant composition of the present invention, wherein X of the mass% of 200 mesh-on particles in the sludge is the vinyl polymerizable crosslinkable water-soluble polymer (A) When the mass% is represented by a, and the mass% of the vinyl polymerizable linear water-soluble polymer (B) is represented by X, a and b are in the relationship of the following formula.
  • the flocculant composition according to the fourth aspect of the present invention is any one of the first to third flocculant compositions according to the present invention, wherein the vinyl polymerization is performed.
  • the crosslinkable water-soluble ionic polymer (A) comprises 5 to 99. 9999 mol% of a monomer represented by the following general formula (1) and / or (2), a single monomer represented by the following general formula (3) Obtained by polymerizing a monomer mixture consisting of 0 to 50 mol% of a monomer, 0 to 95 mol% of a non-ionic monomer, and 0.2 to 0.1 mol% of a monomer having a plurality of pinyl groups It is characterized by
  • Ri is a prime or methyl group
  • R 2 and R 3 each is an alkyl or alkoxyl group having 1 to 3 carbon atoms
  • R 4 is hydrogen, an alkyl group having 1 to 3 carbon atoms, an alkoxyl group or a benzyl group May be the same or different
  • B represents an alkylene group having 2 to 4 carbon atoms, or an alkoxyl group
  • X represents an anion.
  • R 5 is hydrogen or methyl
  • R 6 and R 7 are alkyl having 1 to 3 carbon atoms, alkoxy or benzyl
  • X 2 is an anion.
  • the flocculant composition according to the fifth aspect of the present invention is any one of the first to third aspects of the present invention.
  • the vinyl polymerizable linear water-soluble ionic polymer (B) is used as the vinyl polymerizable linear water-soluble ionic polymer (B): It is characterized in that it is obtained by polymerizing a monomer mixture consisting of 0 to 50 mol% of a monomer represented by the following general formula (3) and 0 to 95 mol% of a nonionic monomer. _..
  • R 5 represents hydrogen or a methyl group
  • R 6 and R 7 each represent an alkyl group having 1 to 3 carbon atoms, an alkoxy group or a benzyl group
  • X 2 represents an anion.
  • the flocculating agent composition according to the sixth aspect of the present invention is any of the first to third aspects of the present invention.
  • a non-miscible organic liquid was produced by emulsifying the organic liquid into a continuous phase and a water-soluble monomer aqueous solution as a dispersed phase using a high HLB (hydrophilic-lipophilic balance) surfactant, and then polymerizing it. It is characterized by being a water-in-oil type emulsion.
  • a method of producing a flocculant composition comprising: a vinyl polymerizable crosslinkable water-soluble polymer (A) having a charge inclusion rate of 20% or more; Characterized in that it is blended with a linear water-soluble polymer (B).
  • the method for producing an coagulant composition according to an eighth aspect of the present invention is the method for producing the seventh coagulant composition according to the present invention, wherein the coagulant composition is the sludge relative to all suspended particles in the sludge.
  • the vinyl polymer crosslinkable water-soluble polymer (A) having a charge inclusion rate of 20% or more corresponding to a change in mass% of 200 mesh-on particles in the polymer, and the charge inclusion rate of 5 or more and less than 20%
  • the present invention is characterized in that the blending with the vinyl polymer type linear water-soluble polymer (B) is changed.
  • R 2 and R 3 each is an alkyl or alkoxyl group having 1 to 3 carbon atoms
  • R 4 is hydrogen, an alkyl group having 1 to 3 carbon atoms, alkoxyl group or benzyl group, It may be the same or different
  • A represents oxygen or NH
  • B represents an alkylene group having 2 to 4 carbon atoms, or an alkoxyl group
  • X 1 represents an anion.
  • R 5 represents hydrogen or a methyl group
  • R 6 and R 7 each represent an alkyl group having 1 to 3 carbon atoms, an alkoxy group or a benzyl group
  • X 2 represents an anion.
  • R 8 is hydrogen, methyl or CH 2 COOY 2
  • Q is S 0 3 , C 6 H 4 S 0 3 , CONHC (CH 3 ) 2 CH 2 S 0 3 , C 6 H 4 COO or COO
  • R 9 each represent hydrogen or COOYi
  • Y represents hydrogen or a cation, respectively.
  • a method for producing a flocculant composition according to a tenth aspect of the present invention is a method for producing the seventh or eighth flocculant composition according to the present invention, wherein the vinyl polymerizable linear water-soluble ionic polymer 5 to 100 mol% of a monomer represented by the following general formula (1) and ⁇ or (2), 0 to 50 mol% of a monomer represented by the following general formula (3), nonionic It is characterized in that it is obtained by polymerizing a monomer mixture consisting of 0 to 95 mol% of monomers.
  • 1 ⁇ is hydrogen or a methyl group
  • R 2 and R 3 each represent an alkyl or alkoxyl group having 1 to 3 carbon atoms
  • R 4 a hydrogen, an alkyl group having 1 to 3 carbon atoms, an alkoxyl group or a benzyl group A may be the same or different
  • A represents oxygen or NH
  • B represents an alkylene group having 2 to 4 carbon atoms, or an alkoxyl group
  • X represents an anion.
  • R 5 represents hydrogen or a methyl group
  • R 6 and R 7 each represent an alkyl group having 1 to 3 carbon atoms, an alkoxy group or a benzyl group
  • X 2 represents an anion.
  • R 8 is hydrogen, methyl or CH 2 COOY 2
  • Q is S S 3 , C 6 H 4 S 0 3 , CONHC (CH 3 ) 2 CH 2 S 0 3 , C 6 H 4 COO or C 0 ⁇
  • R 9 represents hydrogen or COOYi
  • Y 1 represents hydrogen or a cation, respectively.
  • the vinyl polymerizable crosslinkable water-soluble ionic polymer (H) or the above-mentioned vinyl polymerization type linear water-soluble water-soluble polymer (H) The organic monomer immiscible with the monomer or the monomer mixture and water is made to have high HLB (hydrophilic / lipophilic Balance) It is characterized by being a water-in-oil emulsion produced by emulsifying an organic liquid with a surfactant and making it a continuous phase and a water-soluble monomer aqueous solution into a dispersed phase, followed by polymerization.
  • HLB hydrophilic / lipophilic Balance
  • a crosslinkable water-soluble polymer When a crosslinkable water-soluble polymer is added to the sludge, it adsorbs to suspended particles and acts as an adhesive between particles, resulting in particle aggregation. At this time, it is presumed that because it is a “packed with density” molecular form, it bonds with the particle surface at multiple points to form a tighter, higher strength floc.
  • Bonding at multiple points is excellent in the ability to adsorb to suspended particles, so there is little unadsorbed water-soluble polymer, and it does not separate into sludge and increase in sludge viscosity does not occur. As a result, it is thought that the water content of the cake is good and the moisture content of the cake is low during mechanical dewatering.
  • the polymer flocculant to be used is amphoteric, it is an ionic bond by the molecule of the polymer flocculant, or the cationic group and the anion group of the polymer flocculant molecule adsorbed on the surface of the suspended particle. Ion bonding between the two also occurs, and charge neutralization occurs. In other words, it approaches the state closer to zero in terms of charge. As a result, the range of optimum additions is broadened, and the regulation of administration becomes appreciable.
  • linear polymers have a large molecular extent and excellent cross-linking adsorption, large flocs are easily formed. However, since it is large, it is easily broken up by stirring, and it is easy to take in water at the time of aggregation, which reduces the dewatering ability. In particular, it is difficult to form mechanically dewaterable flocculated floc for sludge with little fiber content such as excess sludge. As described above, it is important to blend a crosslinkable water-soluble polymer and a linear polymer in order to achieve a good aggregation state for various forms of sludge.
  • the cationic crosslinkable water-soluble ionic polymer and the crosslinkable water-soluble ionic polymer having a positive polarity difference between the cationic monomer and the anionic monomer are positive.
  • the inclusion rate is calculated by the following equation 1.
  • a crosslinkable water-soluble ionic polymer, 0.1% aqueous solution prepared by adjusting acetic acid to pH 4.0 using acetic acid is used as a mutex PCD titrator (Mut ek PCD 03, Mutek P CD- Two T itrator V ersion 2), Dropping solution: LZl 000 N Polyvinylsulfonic acid solution Lithium water solution, Dropping rate: 0.05 mL / 10 sec, End point judgment: Omv It is the titration amount determined by titration.
  • the blank value is the same as that of the sample adjusted to pH 4.0 with acetic acid.
  • An aqueous solution of polyvinyl sulfonic acid in the same concentration is added dropwise with a PCD titrator in the same manner.
  • Drop solution 1 / 1000N N diaryldimethyl ammonium
  • Droplet velocity 0. O SmL / l O sec, end point determination: Titration with Omv.
  • an anionic crosslinkable water-soluble ionic polymer and a crosslinkable water-soluble ionic polymer having an amphoteric and negative difference in the molar concentration of the cationic monomer and the anionic monomer are used.
  • the charge inclusion rate is calculated by the following equation 2.
  • a crosslinkable water-soluble ionic polymer prepared by adjusting the concentration of ⁇ to ⁇ 1 0 0 0 0 0 0 0 0 with an aqueous solution of a 0.1% aqueous solution prepared by Mutec Corporation ( ⁇ utek PCD 0 3, Mu tek P CD-Two T itrator
  • Dropout solution 1/1000 N diallyl dimethyl ammonium chloride aqueous solution, drop rate: 0.50 mL, end point determination: titration according to Omv.
  • Crosslinkable water-soluble ionic polymer ⁇ adjusted to ⁇ ⁇ 1 0 0 0 0 with ammonia Neutralization of the charge by 1 1 40 0 ⁇ diaryl dimethyl ammonium chloride aqueous solution in a 1 0 1% aqueous solution Sufficient amount to perform, sufficiently stirred, and similarly using a PCD titration device, dripping solution: potassium hydroxide solution of polyvinyl chloride at 100 ° C., dropping speed: 0.5 mL Z 10 sec, end point judgment: Titrate with Omv, and make the value obtained by subtracting this titer from the blank value.
  • a blank value means an aqueous solution of diallyldimethyl ammonium chloride having the same concentration as that of the above-mentioned sample adjusted to pH 10 with ammonia by the PCD titration apparatus in the same manner.
  • N Aqueous solution of polyvinyl sulfonic acid solution, dropping rate: 0.50 mL / l 0 sec, end point determination: Titration with O mv.
  • the concept of the charge inclusion rate used in the present invention is not that the degree of crosslinking of the polymer is accurately quantified, but it indicates that the relative degree of contrast between the high degree of crosslinking and the low degree of crosslinking is high.
  • the charge inclusion rate is 20% or more and less than 80%, when the monomer is polymerized in the presence of a plurality of vinyl group-containing monomers, the degree of crosslinking of the cationic water-soluble crosslinkable polymer is obtained. Can be represented. If the charge inclusion rate is less than 20, it indicates that the degree of crosslinking is low, or that it is a linear polymer.
  • a vinyl polymer based crosslinkable water-soluble polymer (A) having a charge inclusion rate of 20% or more the polymer obtained when the amount of monomers having multiple vinyl groups is increased and copolymerized, Since the charge inclusion rate tends to be improved, a polymer (A) having a desired charge inclusion rate can be produced by appropriately changing the type, amount and the like of other monomers.
  • Biel's linear water-soluble polymer (B), which has a charge inclusion rate of less than 20%, is manufactured by copolymerizing without using a monomer having a plurality of vinyl groups as described later. Be done.
  • sludge is a mixture of fibers and fine colloidal particles, but the proportion differs depending on the type of sludge. For example, excess sludge generated from biological treatment of paper drainage, chemical industry drainage, food industry drainage, urban sewage etc. has a high proportion of fine colloidal particles, and raw sludge from urban sewage or paper sludge has fiber content or coarseness. Particles have a high percentage.
  • floc formation by cross-linking adsorption by linear polymers is called aggregation
  • fine floc formation mainly by neutralization of surface charge of hydrophilic particles such as colloidal particles is called condensation.
  • Crosslinked polymers are in a more compact form than linear polymers. Therefore, it is also possible to neutralize the surface charge of the colloidal particles, and the linear polymer itself can be the core of condensation. As a result, a tightly packed floc is formed, and the resistance to agitation is high, so that dewatering can be achieved efficiently even when dewatering with a dehydrator. Furthermore, as a condition under which the colloidal particles are hydrophobized and the water content is reduced as a result of the surface charge neutralization action, it is in a good state. Therefore, cross-linked polymers are considered to be suitable for sludge containing many particles with small particle sizes.
  • the mass% of 200 mesh-on particles in the sludge is X
  • the mass% of the vinyl polymer-based crosslinkable water-soluble polymer (A) is a
  • the vinyl polymer-based linear water-soluble polymer (B) When the mass% is expressed as follows, the relationship between X, a and b is 0.2 ⁇ a / b ⁇ 9 when 0 ⁇ X ⁇ 10, preferably 2 ⁇ a Z b ⁇ 9.
  • the blend of the crosslinked polymer and the linear polymer is 1: 5 to 3: 1 by mass. That is, when 10 ⁇ X ⁇ 20, it is 0.4 ⁇ a / b ⁇ 3, preferably l ⁇ a / b ⁇ 3.
  • the ratio of cross-linked polymer and linear polymer is 1:10 to 2: 1, etc. by weight. That is, when 20 ⁇ X ⁇ 60, it is 0.1 ⁇ a / b ⁇ 2, preferably 0.2 0 a / b ⁇ l.
  • the flocculant composition according to the invention generally dissolves at a flocculant concentration of 0.1 to 0.5% by weight.
  • the amount added is 0.1 to 1.5% by mass, preferably 0.2 to 1.0% by mass, with respect to the sludge solid content.
  • Flocculant composition of the present invention The basic principle is to change the blending ratio of crosslinked polymer and linear polymer, but in addition to this, the molecular weight and ion equivalent of crosslinked and linear both polymers are also changed to change sludge. Can improve the accuracy of application.
  • the cation equivalent value of the crosslinked and linear both polymers is also set high. Furthermore, it is possible to make fine adjustments such as increasing the stability of the aqueous coagulant solution by adding an acid or the like according to the alkalinity of the water for dissolution.
  • the method for producing the coagulant composition according to the present invention is similar to a manufacturing plant by simply providing a coagulant composition supply base regardless of whether it is a polymer coagulant production plant or the like in Japan or foreign countries. Being able to set up is a big advantage.
  • the above-mentioned flocculant composition supply base is a raw material of several groups such as each component before mixing of the flocculant composition, ie, cross-linked polymer, linear polymer, polymer having different molecular weight, polymer having different ion equivalent, etc. Install a tank for mixing and mixing tanks for mixing them, a tank for other additives, and a coagulant composition tank after mixing.
  • the raw material flocculant is transported to the base from the plant that manufactures the polymer flocculant. This Such operations enable sales and supply of flocculant compositions that can cope with various types of sludge anywhere in the world.
  • the crosslinkable ionic water-soluble polymer (A) used in the present invention is preferably 5 to 99.9 9 mol% of the monomer represented by the general formula (1) and / or (2), preferably Is 0 to 50 mol%, preferably 0 to 35 mol% of the monomer represented by the general formula (3), and nonionic monomer 0 Copolymerizing and producing a monomer mixture comprising 95 to 5 mol%, preferably 0 to 80 mol%, and a monomer having a plurality of vinyl groups of 0.000 to 0.1 mol%.
  • the cationic monomer represented by the general formula (1) is The following is an example.
  • the monomer represented by the general formula (2) is, for example, diallyldimethyl ammonium chloride, diallyl acetyl ammonium chloride, diallyl benzyl methyl ammonium chloride and the like.
  • anionic monomer to be used when producing the amphoteric crosslinkable water-soluble polymer (A) used in the present invention either a sulfone group-containing monomer or a forcexoxyl group-containing monomer may be used. Furthermore, both may be used together.
  • the sulfone group-containing monomer are vinyl sulfonic acid, vinyl benzene sulfonic acid or 2-Acrylamide 2-Methylpropanesulfonic acid and the like.
  • carboxyl group-containing monomers are methacrylic acid, acrylic acid, itaconic acid, maleic acid or p-hydroxystyrene.
  • nonionic monomers to be copolymerized are (meth) acrylic amide, N, N-dimethyl acrylamide,. Vinyl acetate, acrylonitrile, methyl acrylate, (meth) acrylic acid 2-hydroxyethyl acrylate, diacetone acrylic And amide, N-vinyl pyrrolidone, N-vinyl formamide, N-vinyl acetate amido morpholine, acryloyl viperazine and the like.
  • the monomer having a plurality of vinyl groups used in the present invention methylene bis acryl amide, ethylene dakol di (meth) acrylate and the like can be mentioned.
  • thermally crosslinkable monomers such as N, N-dimethyl acrylamide can be used.
  • the addition amount of the monomer having a plurality of vinyl groups or the thermally crosslinkable monomer to the ionic monomer, or the ionic monomer and the nonionic monomer is generally in the monomer mixture. In contrast, it is in the range of 0.000-0.10 mol%, preferably in the range of 0.000-0.50-0.01 mol%.
  • isopropyl alcohol etc. as a chain transfer agent in combination with 0.01 to 3% by mass of a monomer to control the degree of polymerization.
  • the vinyl polymerizable linear water-soluble ionic polymer (B) having a charge inclusion ratio of 5 or more and less than 20% is an ionic monomer and a nonionic single ion of the general formulas (1) to (3).
  • the monomer or monomer mixture consisting of a monomer is produced by copolymerizing in the absence of the presence of a plurality of vinyl group-containing monomers.
  • the sex polymer (B) can be produced by blending any form of product, but the water-in-oil type emulsion is preferable considering the ease of mixing.
  • a monomer mixture comprising an ionic monomer, or an ionic monomer and a copolymerizable monomer is used.
  • examples of the oil-like substance consisting of hydrocarbon used as the dispersion medium include paraffins or kerosene, light oil, mineral oil such as medium oil, or hydrocarbon based material having boiling point and viscosity substantially in the same range as these. Synthetic oils or mixtures of these may be mentioned.
  • the content is in the range of 20% by mass to 50% by mass, preferably in the range of 20% by mass to 35% by mass, with respect to the total amount of water-in-oil emulsion.
  • At least one surfactant having an amount effective to form a water-in-oil emulsion and HLB are HLB 3 to 11 nonionic surfactants, and specific examples thereof include Sorbitan mono-borate, sorbitan mono-stearate, sorbitan mono-palmitate, etc. may be mentioned.
  • the addition amount of these surfactants is preferably from 0.5 to 10% by mass, and more preferably from 1 to 5% by mass, based on the total amount of water-in-oil emulsion.
  • phase change agent hydrophilic interface conversion agent
  • hydrophilic surfactants include cationic surfactants and nonionic surfactants of HLB 9 to 15, such as polyoxyethylene polyoxypropylene alkyl ether and polyoxyethylene alcohol ether. is there.
  • the polymerization conditions are usually determined appropriately according to the monomers used and the copolymerization mole%, and the temperature is in the range of 0 to 100 ° C.
  • the reaction is carried out in the range of 20 to 80 ° C., preferably 20 to 60 ° C.
  • the polymerization initiation uses a radical polymerization initiator.
  • These initiators may be either oil-soluble or water-soluble, and can be polymerized by any of photo-, peroxide- and redox type.
  • oil-soluble azo initiators include: 2,2'-azobisisoptyrononitrile, 1,1'-azobis (cyclohexane hydrochloride), 2,2'-azobis (2 And methyl 2'-azobis (2-methyl propionate), 4, 4-azobis (4-methoxy-2, 4 dimethyl) valeronitrile and the like.
  • water-soluble azo initiators examples include: 2,2'-azobis (amidinopropane) dihydrochloride, 2,2'-azobis [2- (5-methyl-2-imidazolin-2-yl) propane Dihydrochloride, 4,4'-azobis (41-cyanovaleric acid) and the like can be mentioned.
  • redox systems include combinations of ammonium peroxodisulfate with sodium sulfite, sodium bisulfite, trimethylamine, tetramethylethylenediamine, and the like.
  • peroxides examples include peroxodisulfate ammonium or lithium, hydrogen peroxide, benzoylperoxide, lauroylboroxide, octanoylperoxide, succinic peroxide, succinic peroxide, t-peptyl peroxide 2-Ethyl hexanoate can be mentioned.
  • the polymerization concentration of the monomer is in the range of 20 to 50% by mass, preferably in the range of 25 to 40% by mass. Depending on the composition of the monomer, the polymerization method, and the choice of the initiator Set concentration and temperature.
  • the molecular weight of the water-soluble polymer obtained by polymerizing these monomers is preferably in the range of 300,000 to 2,300,000.
  • the temperature of the monomer solution obtained is kept at 25 to 27 ° C., and nitrogen replacement is carried out for 30 minutes, then 4, 4-azobis 4-methoxy 2, 4-dimethyl valero nitritol (Wako Pure Chemical Industries, Ltd.) V-70) 0.20 g (vs. 0.10% by weight of monomer) was added to initiate the polymerization reaction.
  • the reaction was completed by polymerizing the reaction temperature at 25 ⁇ 2 ° C. for 12 hours.
  • Ion-exchanged water 10 5.5 g in five rose parabolas flasks equipped with stirrer, thermometer, reflux condenser, nitrogen inlet tube, acryloyloxytrimethylammonium chloride homopolymerization as dispersant (20% aqueous solution, molecular weight 1 20 10,000), 52.5 g (vs. 7.0% of monomers), 1250. 0 g of ammonium sulfate, 40.8 g of 50% aqueous solution of acrylamide, aqueous acryloyloxytrimethyl ammonium chloride, 80% aqueous solution 1 62. 6 g, 2. 4 g of a 0.1% aqueous solution of methylenebisacrylamide, and 0.2 g of isopropyl alcohol (relative to 0.1 mass% of monomer) were respectively charged and completely dissolved.
  • the monomer concentration of the obtained dispersion is 20%, the particle size of the polymer is 5 m or less, and the viscosity of the dispersion is measured by a B-type viscometer at 25 ° C. as a result of 735 mP ⁇ ⁇ ⁇ Hot, this.
  • the weight average molecular weight was measured by a molecular weight measuring apparatus (DL S-7000 manufactured by Otsuka Electronics Co., Ltd.) by a static light scattering method.
  • the charge inclusion rate was calculated to be 65.3% by the colloid titration method and the above formula. Let this sample be the sample 16.
  • the sample 17 was synthesized in the same manner as described above except that methylene bis acrylamide was not added. The results are shown in Table 1.
  • DMQ Acryloyl oxymethyldiethylammonium chloride
  • AAM Acrylamide
  • AAC Acrylic acid, emulsion viscosity
  • mPAs Crosslinkable monomer addition amount
  • Charge inclusion rate %
  • E M water-in-oil type Emarjo, dispersion; dispersion in saline solution Industrial applicability
  • the composition according to the present invention utilizes the advantages of a crosslinkable water-soluble polymer and a linear water-soluble polymer, and uses the state of the particle size distribution of sludge particles as an index to form a crosslinkable water-soluble polymer and linearity.
  • the adsorptivity to suspended particles is excellent, the increase in sludge viscosity does not occur, the water content is good at the time of mechanical dewatering, and the cake water content can be reduced. It can be applied to various types of coagulant used in various types of sludge.
  • a flocculant composition is produced in the form of an oil, in which a vinyl polymer-based crosslinkable water-soluble polymer (cross-linked product) and a vinyl polymer-based linear water-soluble polymer (straight chain product) are blended as shown in Table 2 It was prepared by dispersion in medium-water emulsion and brine.
  • a coagulation filtration test and a squeeze test were conducted for centrifugal dewatering machines for excess sludge (sludge property is pH 6.6, S S: 825 Omg / L, TS: 850 Omg / L) generated from sewage treatment plants.
  • this sludge are difficult-dewatered sludge because the 200 mesh-on residue is 1.3% by mass, the organic component is 86.4% by mass with respect to SS, the ratio of the organic component is large, and the sludge particles are also small.
  • composition 1 of Table 2 (Example 2-1), the composition 1 (Example 2-2), the composition 1 3 Example 2-3
  • Each sample of Composition 1-4 (Example 2-4) and Composition 1-9 (Example 2-5) (Cross-linkable water-soluble polymer: linear water-soluble high A solution of molecules 7: 3) was added, and the sludge was coagulated by stirring at 1000 rpm for 30 seconds.
  • the filtration rate was examined with a 60 mesh filter cloth beaker.
  • the water content of the dewatered cake was determined after 30 seconds of dewatering of the filtered aggregate at a pressure of 1 kgf Zcm 2 for 30 seconds.
  • sample 1 comparative test 1 to 3
  • sample 1 to 5 comparative test 1 to 5
  • Sample 1 comparative test 1 to 4
  • Sample 1 which is a crosslinkable water-soluble polymer alone, has an aggregation effect but a reduced effect compared to the flocculant composition of Example 1.
  • composition 1 of Table 2 Example 3-1
  • composition 1 Example 3-2
  • the solution was added with a polymer (5: 5), and the sludge was coagulated by stirring at 1000 rpm for 30 seconds.
  • the filtration rate was examined with a 60 mesh filter cloth beaker.
  • the water content of the dewatered cake was determined after 30 seconds of dewatering of the filtered aggregate at a pressure of 1 kgf Zcm 2 for 30 seconds.
  • Sample 1 (comparative test 2-3) and sample -5 (comparative test 2-5) in which the linear water-soluble polymer is alone have a lower aggregation effect than the composition, and the crosslinkable water-soluble polymer alone is isolated.
  • Sample 1 (comparative test 2-1), sample 1-2 (comparative test 2-2) and sample 1-4 (comparative test 2-4) have very low effects. (Table 4)
  • composition 1 of Example 2 (Example 4 1 1) to composition 1 2 (Example 4 1 2) (all are bridge bridges)
  • Sample 1 (Comparative Example 3-3) and Sample 1 (5 Comparative Example 3-5), which are linear water-soluble polymers alone, exhibited aggregation compared to the flocculant composition of Example 4-1-4 The effect is decreasing.
  • Sample 1 (Comparative Example 3-1), Sample 1 (Comparative Example 3-2) and Sample 1 (Comparative Example 3-4), which are crosslinkable water-soluble polymers alone, have very low effects. .

Description

明細書 凝集剤組成物およびその製造方法 技術分野
本発明は、 架橋性水溶性高分子と直鎖性水溶性高分子の長所を利用して、 汚泥粒子の粒度分布の状態を指標に架橋性水溶性高分子と直鎖性水溶性高 分子の配合比を変化させ、 懸濁粒子への吸着性能が優れ、 汚泥粘性の増加が 発生せず、 機械脱水時、 水切れが良くケーキ含水率を低下でき、 幅広い種類 の汚泥に対応させることのできる凝集剤組成物およびその製造方法に関す るものである。
背景技術
製紙における歩留向上剤や下水などの汚泥脱水には、 従来カチオン性高分 子凝集剤が使用されている。 特に汚泥脱水剤は、 近年の汚泥発生量の増加お よび汚泥性状の悪化により、 従来のカチオン性高分子凝集剤では、 汚泥の処 理量に限界があることや、 脱水ケーキ含水率、 S S回収率、 ケーキの濾布か らの剥離性などの点で処理状態は必ずしも満足できるものではなく、 改善が 求められている。 これら従来のカチオン性高分子凝集剤の欠点を改良するた めに、 両性高分子凝集剤が種々提案されているが、 これらの両性高分子脱水 剤は必ずしも十分に満足しうるものではない。
また、 脱水ケーキ含水率の低下ゃ濾布からの剥離性改善を目的として、 架 橋性のイオン性高分子凝集剤が開示されている (たとえば特開平 2— 2 1 9 8 8 7号公報 (ヨーロッパ公開特許第 3 7 4 4 5 8号 A 2 ) 、 特開昭 6 1 - 2 9 3 5 1 0号公報(アメリカ特許第 4, 7 2 0 , 3 4 6号明細書)など)。 上記のように架橋性水溶性高分子は、 種々の特徴や機能を有しているが、 水溶液中における分子の広がりが相対的に小さいためか、 汚泥脱水剤あるい は製紙における歩留向上剤などに適用した場合、 直鎖状高分子に較べ添加量 が増加してしまうという問題が存在する。 架橋性水溶性高分子のこのような 欠点を改良するために、 四級アンモニゥム塩基を含有し、 メタクリレート系 単量体、 ァクリレート系単量体およびァニオン性単量体を一定の比率で共重 合した両性高分子脱水剤が開示されている (特開平 7— 2 5 6 2 9 9号公報、 特開平 7— 2 5 6 3 0 0号公報) 。 しかし、 これらも目的を十分満足するも のではない。'
架橋性の水溶性高分子を汚泥脱水剤あるいは歩留向上剤として使用した 場合、 脱水ケーキ含水率の低下、 または地合の維持が容易に可能であるなど 優れた点が発現するが、 その反面、 効果の発現するまで添加するにはどうし ても添加量が増加し、 その結果、 コストの増大という問題が発生する。
この問題を解決しょうとして、 架橋性水溶性ィォン性高分子と直鎖性水溶 性イオン性高分子を配合し両方の長所を引き出そうとした技術が開示され ている (特開 2 0 0 4— 5 7 8 3 7号公報) 。
しかしこの技術には、 汚泥粒子の粒度分布に対応して架橋性水溶性イオン 性高分子と直鎖性水溶性イオン性高分子の配合比を変化させるという概念 は記載されていない。
本発明の目的は、 架橋性水溶性高分子と直鎖性水溶性高分子のそれぞれの 長所を活かすという概念を更に進め、 汚泥粒子の粒度分布を指標に架橋性水 溶性高分子と直鎖性水溶性高分子の配合比を対応させ、 幅広い種類の汚泥に 対応させることのできる凝集剤組成物およびその製造方法を開発すること である。 発明の開示
本発明者等は、 上記課題を解決するため検討を重ねた結果、 以下に述べる 発明に到達した。
すなわち、電荷内包率 2 0 %以上のビニル重合系架橋性水溶性高分子(A) と、電荷内包率 5以上、 2 0 %未満のビニル重合系直鎖性水溶性高分子(B ) とを配合したことからなる凝集剤組成物により種々汚泥に適合できること が分かったことが、 本発明の第 1に関する。
本発明の第 2に関する凝集剤組成物は、 本発明の第 1に関する凝集剤組成 物において、 前記凝集剤組成物が、 汚泥中の全懸濁粒子に対する該汚泥中の 200メッシユオン粒子の質量%の変化に対応して前記電荷内包率 20 % 以上のビニル重合系架橋性水溶性高分子(A)と、電荷内包率 5以上、 20 % 未満のビニル重合系直鎖性水溶性高分子 (B) との配合を変化させることを 特徴とする。
本発明の第 3は、 本発明の第 1または第 2の凝集剤組成物において、 前記 汚泥中の 200メッシュオン粒子の質量%を X、 前記ビニル重合系架橋性水 溶性高分子(A) の質量%を a、 前記ビニル重合系直鎖性水溶性高分子(B) の質量%を とそれぞれ表した場合、 X、 aおよび bが下記式の関係にある ことを特徴とする。
式:
0<X≤ 10質量%のとき 0. 2≤a/b≤9
10<X≤ 20質量%のとき 0. 4≤a/b≤3
20<X≤ 60質量%のとき 0. l≤aZb≤2 本発明の第 4にかかる凝集剤組成物は、 本発明の第 1から第 3のいずれか の凝集剤組成物において、 前記ビニル重合系架橋性水溶性イオン性高分子 (A) が下記一般式 (1) および/または (2) で表わされる単量体を 5〜 99. 9999モル%、 下記一般式 (3) で表わされる単量体を 0〜 50モ ル%、非イオン性単量体 0〜 95モル%および複数のピニル基を有する単量 体 0. 0001〜0. 1モル%からなる単量体混合物を重合したものである ことを特徴とする。
般式 ( 1 )
Figure imgf000005_0001
(上記式において、 Ri は 素またはメチル基、 R2 、 R3 は炭素数 1〜3 のアルキルあるいはアルコキシル基、 R4 は水素、 炭素数 1〜 3のアルキル 基、 アルコキシル基あるいはベンジル基であり、 同種でも異種でも良い、 A は酸素または NH、 Bは炭素数 2〜4のアルキレン基またはアルコキシレン 基を表わす、 X は陰イオンをそれぞれ表わす。 ) —般式 ( 2)
Figure imgf000006_0001
(上記式において、. R5 は水素またはメチル基、 R6 、 R7 は炭素数 1〜3 のアルキル基、 アルコキシ基あるいはベンジル基、 X2 は陰イオンをそれぞ れ表わす。 )
Figure imgf000006_0002
-Yi
I -般式 (3 )
(上記式において、 R8 は水素、 メチル基または CH2 C〇〇Y2 、 Qは S 〇3 、 C6 H4 S 03 、 CONHC (CH3 ) 2 CH2 S〇3 、 C6 H4 COOあるいは C〇〇、 R9 は水素または COOYi 、 Yi は水素または陽 イオンをそれぞれ表わす。 ) 本発明の第 5に係る凝集剤組成物は、 本発明の第 1から第 3のいずれかの 凝集剤組成物において、前記ビニル重合系直鎖性水溶性イオン性高分子(B) が下記一般式 (1) および Zまたは (2) で表わされる単量体を 5〜 1 0 0 モル%、 下記一般式 (3) で表わされる単量体を 0〜 5 0モル%、 非イオン 性単量体 0〜 9 5モル%からなる単量体混合物を重合したものであること を特徴とする。 _. .1 ヽ 一般式 ( 1 )
Figure imgf000006_0003
(上記式において、 は水素またはメチル基、 R2 、 R3 は炭素数 1〜3 のアルキルあるいはアルコキシル基、 R4 は水素、 炭素数 1〜 3のアルキル 基、 アルコキシル基あるいはベンジル基であり、 同種でも異種でも良い、 A は酸素または NH、 Bは炭素数 2〜4のアルキレン基またはアルコキシレン 基を表わす、 は陰イオンをそれぞれ表わす。 ) —般式 (2)
Figure imgf000007_0001
(上記式において、 R5 は水素またはメチル基、 R6 、 R7 は炭素数 1〜3 のアルキル基、 アルコキシ基あるいはベンジル基、 X2 は陰イオンをそれぞ れ表わす。 )
- 般式 (3)
Figure imgf000007_0002
(上記式において、 R8 は水素、 メチル基または CH2 COOY2 、 Qは S 〇3 、 C6 H4 S〇3 、 CONHC (CH3 ) 2 CH2 S 03 、 C6 H4 C〇〇あるいは C〇〇、 R9 は水素または COOYi 、 Yi は水素または陽 イオンをそれぞれ表わす。 ) 本発明の第 6にかかる凝集剤組成物は、 本発明の第 1から第 3のいずれか の凝集剤組成物において、 前記ビニル重合系架橋性水溶性イオン性高分子 (A) あるいは前記ビニル重合系直鎖性水溶性イオン性高分子 (B) 前 記単量体あるいは単量体混合物と水に非混和性の有機液体を高 HLB (親水 性親油性バランス) 界面活性剤を用い有機液体を連続相、 水溶性単量体水溶 液を分散相となるように乳化した後、 重合して製造した油中水型ェマルジョ ンであることを特徴とする。
本発明の第 7にかかる凝集剤組成物の製造方法は、 電荷内包率 20 %以上 のビニル重合系架橋性水溶性高分子 (A) と、 電荷内包率 5以上、 20 %未 満のビエル重合系直鎖性水溶性高分子(B)とを配合することを特徴とする。 本発明の第 8にかかる凝集剤組成物の製造方法は、本発明の第 7の凝集剤 組成物の製造方法において、 前記凝集剤組成物が、 汚泥中の全懸濁粒子に対 する該汚泥中の 2 0 0メッシュオン粒子の質量%の変化に対応して前記電 荷内包率 20 %以上のビニル重合系架橋性水溶性高分子 (A) と、 電荷内包 率 5以上、 2 0 %未満のビニル重合系直鎖性水溶性高分子 (B) との配合を 変化させることを特徴とする。
本発明の第 9にかかる凝集剤組成物の製造方法は、 本発明の第 7または第 8の凝集剤組成物の製造方法において、 前記ビニル重合系架橋性水溶性ィォ ン性高分子 (A) が下記一般式 (1) および/または (2) で表わされる単 量体を 5〜9 9. 9 9 9 9モル%、 下記一般式 (3) で表わされる単量体を 0〜5 0モル%、非イオン性単量体 0〜 9 5モル%ぉよび複数のビニル基を 有する単量体 0. 00 0 1〜0. 1モル%からなる単量体混合物を重合した ものであることを特徴とする。
—船式 ( 1 )
Figure imgf000008_0001
(上記式において、 は水素またはメチル基、 R2 、 R3 は炭素数 1〜3 のアルキルあるいはアルコキシル基、 R4 は水素、 炭素数 1〜 3のアルキル 基、 アルコキシル基あるいはベンジル基であり、 同種でも異種でも良い、 A は酸素または NH、 Bは炭素数 2〜4のアルキレン基またはアルコキシレン 基を表わす、 X1 は陰イオンをそれぞれ表わす。 )
(c - —般式 (2)
Figure imgf000008_0002
(上記式において、 R5 は水素またはメチル基、 R6 、 R7 は炭素数 1〜3 のアルキル基、 アルコキシ基あるいはベンジル基、 X2 は陰イオンをそれぞ れ表わす。 )
Figure imgf000009_0001
I 一般式 (3)
R9
(上記式において、 R8 は水素、 メチル基または CH2 COOY2 、 Qは S 03 、 C6 H4 S 03 、 CONHC (CH3 ) 2 CH2 S〇3 、 C6 H4 COOあるいは COO、 R9 は水素または COOYi 、 Y: は水素または陽 イオンをそれぞれ表わす。 )
本発明の第 10にかかる凝集剤組成物の製造方法は、 本発明の第 7または 第 8の凝集剤組成物の製造方法において、 前記ビニル重合系直鎖性水溶性ィ オン性高分子 (Β) が下記一般式 (1) および Ζまたは (2) で表わされる 単量体を 5〜100モル%、 下記一般式 (3) で表わされる単量体を 0〜 5 0モル%、非イオン性単量体 0〜 95モル%からなる単量体混合物を重合し たものであることを特徴とする。
一般 ΛΓ1式 ,( 1 )
Figure imgf000009_0002
(上記式において、 1^ は水素またはメチル基、 R2 、 R3 は炭素数 1〜3 のアルキルあるいはアルコキシル基、 R4 は水素、 炭素数 1〜 3のアルキル 基、 アルコキシル基あるいはベンジル基であり、 同種でも異種でも良い、 A は酸素または NH、 Bは炭素数 2〜4のアルキレン基またはアルコキシレン 基を表わす、 X は陰イオンをそれぞれ表わす。 ) —般式 (2)
Figure imgf000009_0003
(上記式において、 R5 は水素またはメチル基、 R6 、 R7 は炭素数 1〜3 のアルキル基、 アルコキシ基あるいはベンジル基、 X2 は陰イオンをそれぞ れ表わす。 ) CH = C一 Q— Yi
一般式 ( 3 )
R9
(上記式において、 R8 は水素、 メチル基または CH2 COOY2 、 Qは S 〇3 、 C6 H4 S 03 、 CONHC (CH3 ) 2 CH2 S03 、 C6 H4 COOあるいは C0〇、 R9 は水素または COOYi 、 Y1 は水素または陽 イオンをそれぞれ表わす。 )
本発明の第 1 1にかかる凝集剤組成物の製造方法は、 本発明の第 7から第 10のいずれかの凝集剤組成物の製造方法において、 前記ビニル重合系架橋 性水溶性イオン性高分子 (Α) あるいは前記ビニル重合系直鎖性水溶性ィォ ン性高分子 (Β) 力 前記単量体あるいは単量体混合物と水に非混和性の有 機液体を高 HLB (親水性親油性バランス) 界面活性剤を用い有機液体を連 続相、 水溶性単量体水溶液を分散相となるように乳化した後、 重合して製造 した油中水型ェマルジヨンであることを特徴とする。 以下、 本発明を詳細に説明する。
水溶性高分子は、 架橋することによって水中における分子の広がりが抑制 される。 そのためにより 「密度の詰まった」 分子形態として存在し、 さらに 架橋が進めば水膨潤性の微粒子となる。通常高分子凝集剤として使用される のは、 前記の 「密度の詰まった」 分子形態で、 しかも水溶性である場合が効 率的とされる。
架橋性水溶性高分子が汚泥中に添加されると懸濁粒子に吸着し、 粒子同士 の接着剤として作用し結果として粒子の凝集が起こる。 この時 「密度の詰ま つた」 分子形態であるため粒子表面と多点で結合し、 より締つた強度の高い フロックを形成すると推定される。
多点で結合することは、 懸濁粒子への吸着性能が優れ、 そのため未吸着の 水溶性高分子が少なく、 汚泥中に遊離せず汚泥粘性の増加が発生しない。 結 果として機械脱水時、 水切れが良くケーキ含水率が低下すると考えられる。 さらに使用する高分子凝集剤が両性であるならば、高分子凝集剤の分子同 士によるイオン結合、 あるいは懸濁粒子表面に吸着している高分子凝集剤分 子のカチオン性基とァニオン性基同士によるイオン結合も発生し、 電荷の中 和が起こる。 すなわち電荷的によりゼロに近い状態に近づく。 そのため最適 添加量範囲は広がり、 薬注調節はしゃすいものとなる。
高分子凝集剤のイオン性がカチオン性のものを使用した場合も吸着、 凝集 などは同様な機構で起こると推定されるが、 カチオン性基とァニオン性基同 士によるイオン結合による電荷の中和が発生しないため、 添加しすぎると再 分散作用が起きやすく、 最適の添加量範囲は両性に較べより狭いものとなる。 しかし 「密度の詰まった」 分子形態として存在することは、 分子の広がり が小さく、 結果的に凝集剤の添加量を多くしている。 そのためコスト的には. 不利である。 そのため、 本発明では電荷内包率 20未満の直鎖状の高分子を 配合することにより、 添加量の多くなることを補足している。
直鎖状の高分子は、 分子の広がりが大きく架橋吸着作用も優れているので、 大きなフロックは容易に形成する。 しかし、 大きいために攪拌により破壌さ れ易く、 凝集時水を取り込みやすく脱水性を低下させる。 特に余剰汚泥など 繊維分の少ない汚泥に対しては、 機械的に脱水可能な凝集フロックを形成し 難い。 以上のように多様な形態の汚泥に対し良好な凝集状態を達成させる には、 架橋性水溶性高分子と直鎖状高分子を配合することが重要となる。 本発明において、 カチオン性の架橋性水溶性イオン性高分子および両性で かつカチオン性単量体とァニオン性単量体のモル濃度の差が正である架橋 性水溶性イオン性高分子では、 電荷内包率とは以下の数式 1により計算され る。
電荷内包率 [%].= (1— X 100 数式 1
上記数式 1において、 ひは酢酸にて ρΗ4. 0に調整した架橋性水溶性ィ オン性高分子 0. 0 1 %水溶液をミューテック社製 PCD滴定装置 (Mut e k PCD 03、 Mu t e k P CD-Two T i t r a t o r V e r s i o n 2) により、 滴下液: lZl 000 N ポリビニルスルホン酸力 リウム水 溶液、 滴下速度: 0. 05mL/1 0 s e c、 終点判定: Omv にて 滴定し 、 求めた滴定量である。
iSは酢酸にて PH4. 0に調整した架橋性水溶性イオン性高分子 0. 0 1 %水溶液に 1 /40 0 N ポリビニルスルホン酸力リゥム水溶液を電荷の 中和を 行うに十分な量加え、 十分に攪拌し、· 同様に PCD滴定装置により、 滴 下液: 1 Z 1 00 0 N ジァリルジメチルアンモニゥムクロライド水溶液、 滴下速度: 0. 0 5mL/l 0 s e c、 終点判定: Omvにて滴定し、 この 滴定量をブランク値から差し引いた値とする。
ブランク値とは、 酢酸にて pH4. 0に調整した前記サンプルと同濃度の ポリビニルスルホン酸力リゥム水溶液を同様に PCD滴定装置により、 滴下 液: 1 / 1 0 0 0 N ジァリルジメチルアンモニゥムクロライド水溶液、 滴下速度: 0. O SmL/l O s e c, 終点判定: Omvにて滴定し、 求め た滴定量である。
本発明において、 ァニオン性の架橋性水溶性イオン性高分子および、 両性 でかつカチオン性単量体とァニオン性単量体のモル濃度の差が負である架 橋性水溶性イオン性高分子では、 電荷内包率とは以下の数式 2により計算さ れる。
電荷内包率 [%]= ( 1 - α/β ) X I 0 0 数式 2
上記数式 2において、 αはアンモニアにて ρΗ 1 0. 0に調整した架橋性 水溶性イオン性高分子 0. 0 1 %水溶液をミューテック社製 PCD滴定装置(Μ u t e k PCD 0 3、 Mu t e k P CD-Two T i t r a t o r
V e r s i o n 2) により、 滴下液: 1 / 1 00 0 N ジァリルジメチル アンモ ニゥムクロライド水溶液、 滴下速度: 0. 0 5mLノ 1 0 s e c、 終点判定: Omvにて 滴定し、 求めた滴定量である。
βはアンモニアにて ρ Η 1 0. 0に調整した架橋性水溶性イオン性高分子 0. 0 1 %水溶液に 1 Ζ40 0 Ν ジァリルジメチルアンモニゥムクロライ ド水 溶液を電荷の中和を行うに十分な量加え、 十分に攪拌し、 同様に PCD滴 定装置 により、 滴下液: 1 Ζ 1 0 0 0 Νポリビニルスルホン酸カリウム水 溶液、滴下速度: 0. 0 5mLZl 0 s e c、終点判定: Omvにて滴定し、 この滴定量をブランク値から差し引いた値とする。 ブランク値とはアンモニアにて p H 1 0 . 0に調整した前記サンプルと同 濃度のジァリルジメチルアンモニゥムクロライド水溶液を同様に PCD滴定装 置に より、 滴下液: 1 Z 1 0 0 0 N ポリビニルスルホン酸力リゥム水溶 液、 滴下速度: 0 . 0 5 mL / l 0 s e c、 終点判定: O m vにて滴定し、 求めた滴定量である。
本発明で使用する電荷内包率の概念は、 正確に高分子の架橋度を数値化し たものではないが、 架橋度が高い高分子、 架橋度が低い高分子の相対的な目 安を示すことに使用される。
すなわち、 電荷内包率 2 0 %以上、 8 0 %未満であれば複数のビニル基を 有する単量体存在下で単量体を重合した場合、 カチオン性水溶性架橋性高分 子の架橋度を表すことができる。 また電荷内包率 2 0未満であれば架橋度と しては低く、 あるいは直鎖状高分子であることを表している。
したがって、 大略、 電荷内包率 2 0 %以上のビニル重合系架橋性水溶性高 分子 (A) については、 複数のビニル基を有する単量体の使用量を増やして 共重合すると、 得られる高分子の電荷内包率が向上する傾向があるので、 適 宜にその他のモノマーの種類、 量等を変更すれば所望の電荷内包率の高分子 (A) を製造することができる。 また、 電荷内包率 2 0 %未満のビエル重合 系直鎖性水溶性高分子 (B ) については、 後記のように複数のビニル基を有 する単量体を用いずに共重合させることにより製造される。
汚泥を脱水する場合、 汚泥を凝集させ、 フロックを生成させ水の通り道を 形成することは、 どのような脱水機でもほぼ同様に必要である。
一般的には汚泥は、 繊維分と微細なコロイド状粒子との混合物であるが、 汚泥の種類によってその割合は異なる。 例えば、 製紙排水、 化学工業排水、 食品工業排水、 都市下水などの生物処理したときに発生する余剰汚泥は微細 なコロイド状粒子の割合が高く、 都市下水の生汚泥あるいは製紙汚泥は繊維 分や粗大な粒子の割合が高い。
従って高分子凝集剤を使用する場合は、 架橋性高分子および直鎖高分子を 以下のような配合にすることが好ましい。
以下、 汚泥の粒度分布と架橋高分子および直鎖高分子の配合に関して説明 する。
本発明では、 直鎖高分子による架橋吸着作用によるフロック形成を凝集と 呼び、 コロイド粒子などの親水性粒子の主に表面電荷の中和作用による微細 なフロック形成を凝結と呼ぶことにする。
すなわち、 消化汚泥や余剰汚泥のように繊維分が少なく、 粒径の小さい粒 子が多い場合、 多くの粒子はコロイド性粒子であり、 ァニオン性は高く安定 に分散している。そのため直鎖高分子による架橋吸着作用による凝集は発現 しにくレ^ つまり粒子が疎水化されず分散したままで、 フロック形成が発現 しないと考えられる。
一方架橋高分子は、 直鎖高分子に較べ密に詰まった形態をしている。 その ためコロイド粒子の表面電荷の中和も可能であり、 直鎖高分子自体が凝結の 核となり得る。 その結果、 密に締つたフロックを形成するので、 攪拌にも抵 抗力が高いため脱水機による脱水時にも脱水が効率良く達成される。 さらに 表面電荷の中和作用の結果、 コロイド粒子が疎水化され含水率が下がる条件 としては、 良好な状態となっている。 従って粒径の小さい粒子が多い汚泥に は、 架橋高分子が適していると考えられる。
反対に繊維分や粒径の粗い粒子が多い汚泥の場合は、 直鎖高分子による架 橋吸着作用による凝集が発現しやすい。
実際の汚泥は両方の粒子が存在しているので、 架橋高分子と直鎖高分子を 配合して使用することが非常に重要となる。
すなわち食品余剰汚泥の 2 0 0メッシュオン質量%は 0 . 5 6、 下水余剰 汚泥は 5 . 4 %などの例がある。 このような汚泥には架橋高分子と直鎖高分 子の配合を質量で 3 : 1 0から 9 : 1に配合することが好ましい。
すなわち汚泥中の 2 0 0メッシュオン粒子の質量%を X、 前記ビニル重合 系架橋性水溶性高分子 (A) の質量%を a、 前記ビニル重合系直鎖性水溶性 高分子 (B ) の質量%を とそれぞれ表した場合、 X、 aおよび bの関係は 0 <X≤ 1 0のとき 0 . 2≤a / b≤9であり、 好ましくは 2≤a Z b≤9 である。
一方、 下水混合生汚泥では 2 0 0メッシュオン質量%は 1 7 . 9 %の例が ある。 この場合、 架橋高分子と直鎖高分子の配合を質量で 1 : 5から 3 : 1 である。 すなわち 10<X≤ 20のとき 0. 4≤a/b≤3であり、 好まし くは l≤a/b≤3である。
さらに食肉処理排水汚泥では 29. 8%などの例がある。 このような汚泥 には架橋高分子と直鎖高分子の配合を質量で 1 : 10から 2 : 1などの比率 にする。 すなわち 20<X≤ 60のとき 0. l≤a/b≤2であり、 好まし くは 0. 2≤a/b≤ lである。
本発明の凝集剤組成物は一般的に凝集剤濃度 0. 1〜0. 5質量%に溶解 する。 添加量は、 汚泥固形分に対し質量で 0. 1〜1. 5%であり、 好まし くは 0. 2〜1. 0%である。
本発明の凝集剤組成物!^、 架橋高分子と直鎖高分子の配合割合を変化させ るのが基本的な機軸であるが、 これに加えて架橋および直鎖両高分子の分子 量とイオン当量も変化させて汚泥変化の適用の精度を向上させることがで きる。
すなわち、 遠心脱水機向けには直鎖高分子の分子量を高くし、 真空脱水機 向けには直鎖高分子の分子量を下げ、 また架橋および直鎖両高分子のカチォ ン当量値を高く設定するなどである。
あるいはァニオン性コロイド物質の溶存量が高い場合には、 やはり架橋お よび直鎖両高分子のカチオン当量値を高く設定する。 さらに溶解用水のアル カリ度に対応して酸などを添加し、 凝集剤水溶液の安定性を高めるなどの微 調整も可能である。
本発明の凝集剤組成物の製造方法は、 新たに高分子凝集剤製造プラントな どを建設せずに国内、 外国を問わず凝集剤組成物供給基地を設けるだけで製 造工場と同様な施設を設置可能なことが大きな利点となっている。
前記凝集剤組成物供給基地 ] は、 凝集剤組成物の混合前の各成分、 すなわ ち架橋高分子、 直鎖高分子、 分子量の異なる高分子、 イオン当量の異なる高 分子など数基の原料用タンクとそれらを混合する混合タンク、 あるいはその 他添加剤のタンク、 また混合後の凝集剤組成物タンクなどを設置する。 この 基地に高分子凝集剤を製造している工場より原料用凝集剤を輸送する。 この ような操作によって世界中どこへでも種々の汚泥に対応可能な凝集剤組成 物を販売 ·供給が可能である。
本発明で使用する架橋性イオン性水溶性高分子(A) は、 前記一般式(1 ) および/または (2 ) で表わされる単量体を 5〜 9 9 . 9 9 9モル%、 好ま しくは 2 0〜9 9 . 9 9 9 9モル%、 前記一般式 (3 ) で表わされる単量体 を 0〜5 0モル%、 好ましくは 0〜3 5モル%および非イオン性単量体 0〜 9 5モル%、 好ましくは 0〜8 0モル%、 および複数のビニル基を有する単 量体 0 . 0 0 0 1〜0 . 1モル%からなる単量体混合物を共重合し製造する ことができる。
本発明で使用するカチオン性あるいは両性架橋性水溶性高分子 (A) を製 造する際使用するイオン性単量体のうち、 前記一般式 (1 ) で表されるカチ オン性単量体は以下のような例がある。
すなわち (メタ) アクリル酸ジメチルアミノエチルゃジメチルァミノプロ ピル (メタ) アクリルアミド、 メチルジァリルァミンなどの重合体や共重合 体が上げられ、 四級アンモニゥム基含重合体の例は、 前記三級アミノ含有単 量体の塩化メチルや塩化べンジルによる四級化物である (メタ) ァクリロイ ルォキシェチルトリメチルアンモニゥム塩化物、 (メタ) ァクリロイルォキ シ 2—ヒドロキシプロピル卜リメチルアンモニゥム塩化物、 (メタ) ァクリ ロイルァミノプロピルトリメチルアンモニゥム塩化物、 (メタ) ァクリロイ ルォキシェチルジメチルベンジルアンモニゥム塩化物、 (メタ) ァクリロイ ルォキシ 2—ヒドロキシプロピルジメチルペンジルアンモニゥム塩化物、
(メタ) ァクリロイルァミノプロピルジメチルペンジルアンモニゥム塩化物 などである。 また一般式 (2 ) で表される単量体は、 ジァリルジメチルアン モニゥム塩化物、 ジァリルジェチルアンモニゥム塩化物、 ジァリルべンジル メチルアンモニゥム塩化物などである。
また本発明で使用する両性架橋性水溶性高分子 (A) を製造する際使用す るァニオン性単量体としては、 スルホン基含有単量体でも力ルポキシル基含 有単量体でもさしつかえなく、 さらには両方を併用しても良い。 スルホン基 含有単量体の例は、 ビニルスルホン酸、 ビニルベンゼンスルホン酸あるいは 2—ァクリルアミド 2—メチルプロパンスルホン酸などである。 またカルボ キシル基含有単量体の例は、 メタクリル酸、 アクリル酸、 ィタコン酸、 マレ ィン酸あるいは p—力ルポキシスチレンなどである。
共重合する非イオン性単量体の例としては、 (メタ)ァクリルアミド、 N, N—ジメチルアクリルアミド、.酢酸ビニル、 アクリロニトリル、 アクリル酸 メチル、 (メタ) アクリル酸 2—ヒドロキシェチル、 ジアセトンアクリルァ ミド、 N—ビニルピロリドン、 N—ビニルホルムアミド、 N—ビニルァセト アミドアクリロイルモルホリン、 ァクリロイルビペラジンなどがあげられる。 本発明で使用する複数のビニル基を有する単量体の例として、 メチレンビ スアクリルアミドゃエチレンダルコールジ (メタ) ァクリレートなどがあげ られる。 また N、 N—ジメチルアクリルアミドのような熱架橋性単量体など を使用することができる。
複数のビニル基を有する単量体あるいは熱架橋性単量体の、 前記イオン性 単量体、 あるいはイオン性単量体および非イオン性単量体に対する添加量は、 通常前記単量体混合物に対して 0 . 0 0 0 1〜0 . 1モル%の範囲であり、 好ましくは 0 . 0 0 0 5〜0 . 0 1モル%の範囲である。
• また、 重合度を調節するため連鎖移動剤としてイソプロピルアルコール等 を対単量体 0 . 0 1〜3質量%併用すると効果的である。
電荷内包率 5以上、 2 0 %未満のビニル重合系直鎖性水溶性イオン性高分 子 (B ) は、 前記一般式 (1 ) 〜 (3 ) のイオン性単量体および非イオン性 単量体からなる単量体あるいは単量体混合物を重合時、複数のビニル基を有 する単量体の存在なしで共重合することにより製造する。
本発明で使用する電荷内包率 2 0 %以上のビニル重合系架橋性水溶性ィ オン性高分子 (A) と、 電荷内包率 5以上、 2 0 %未満のビニル重合系直鎖 性水溶性イオン性高分子 (B ) は、 どのような形態の製品を配合しても製造 することは可能であるが、 混合の容易さを考慮すると油中水型高分子ェマル ジョンが好ましい。
油中水型高分子ェマルジヨンの製造方法としては、 イオン性単量体、 ある いはイオン性単量体および共重合可能な単量体とからなる単量体混合物を 水、 少なくとも水と非混和性の炭化水素からなる油状物質、 油中水型ェマル ジョンを形成するに有効な量と H L Bを有する少なくとも一種類の界面活 性剤を混合し、 強攪拌し油中水型ェマルジヨンを形成させた後、 重合するこ とにより合成する方法である。
また分散媒として使用する炭化水素からなる油状物質の例としては、 パラ フィン類あるいは灯油、 軽油、 中油などの鉱油、 あるいはこれらと実質的に 同じ範囲の沸点や粘度などの特性を有する炭化水素系合成油、 あるいはこれ らの混合物があげられる。 含有量としては、 油中水型ェマルジヨン全量に対 して 2 0質量%〜5 0質量%の範囲であり、好ましくは 2 0質量%〜3 5質 量%の範囲である。
油中水型ェマルジヨンを形成するに有効な量と H L Bを有する少なくと も一種類の界面活性剤の例としては、 H L B 3〜1 1のノニオン性界面活性 剤であり、 その具体例としては、 ソルビ夕ンモノォレート、 ソルビ夕ンモノ ステアレート、 ソルビ夕ンモノパルミテートなどがあげられる。 これら界面 活性剤の添加量としては、 油中水型ェマルジヨン全量に対して 0 . 5〜 1 0 質量%であり、 好ましくは 1〜5質量%の範囲である。
. 重合後は、 転相剤と呼ばれる親水性界面化成剤を添加して油の膜で被われ たェマルジヨン粒子が水になじみ易くし、 中の水溶性高分子が溶解しやすく する処理を行い、 水で希釈しそれぞれの用途に用いる。
親水性界面活性剤の例としては、 カチオン性界面活性剤や H L B 9〜 1 5 のノ二オン性界面活性剤であり、 ポリオキシエチレンポリオキシプロピレン アルキルエーテル系、 ポリオキシエチレンアルコールエーテル系などである。 重合条件は通常、 使用する単量体や共重合モル%によつて適宜決めていき、 温度としては 0〜 1 0 0 °Cの範囲で行う。
特に油中水型ェマルジヨン重合法を適用する場合は、 2 0〜8 0 °C、 好ま しくは 2 0〜6 0 °Cの範囲で行う。
重合開始はラジカル重合開始剤を使用する。 これら開始剤は油溶性あるい は水溶性のどちらでも良く、 ァゾ系、 過酸化物系、 レドックス系いずれでも 重合することが可能である。 油溶性ァゾ系開始剤の例としては、 2、 2 ' ーァゾビスイソプチロニトリ ル、 1、 1 ' —ァゾビス (シクロへキサン力ルポ二トリル) 、 2、 2 ' ーァ ゾビス (2—メチルプチ'ロニトリル) 、 2、 2 ' —ァゾビス (2—メチルプ 口ピオネート) 、 4、 4ーァゾビス (4ーメトキシー 2、 4ジメチル) バレ ロニトリルなどがあげられる。
水溶性ァゾ系開始剤の例としては、 2、 2 ' ーァゾビス (アミジノプロパ ン) 二塩化水素化物、 2、 2 ' ーァゾビス 〔2— ( 5—メチル— 2—イミダ ゾリン— 2—ィル) プロパン〕 二塩化水素化物、 4、 4 ' ーァゾビス (4一 シァノ吉草酸) などがあげられる。
またレドックス系の例としては、 ペルォクソ二硫酸アンモニゥムと亜硫酸 ナトリウム、 亜硫酸水素ナトリウム、 トリメチルァミン、 テトラメチルェチ レンジァミンなどとの組み合わせがあげられる。
さらに過酸化物の例としては、 ペルォクソ二硫酸アンモニゥムあるいは力 リウム、 過酸化水素,ベンゾィルペルオキサイド、 ラウロイルベルォキサイ ド、 ォク夕ノィルペルオキサイド、 サクシニックペルオキサイド、 t -プチ ルベルォキシ 2—ェチルへキサノエ一トなどをあげることができる。
単量体の重合濃度は 2 0〜 5 0質量%の範囲であり、 好ましくは 2 5〜4 0質量%の範囲であり、 単量体の組成、 重合法、 開始剤の選択によって適宜 重合の濃度と温度を設定する。
これらの単量体を重合して得られる水溶性高分子の分子量は、好ましくは 3 0 0万〜 2 , 0 0 0万の範囲である。 発明を実施するための最良の形態
以下、 実施例および比較例によって本発明をさらに詳しく説明するが、 本 発明はその要旨を超えない限り、 以下の実施例に制約されるものではない。
(合成例 1 )
攪拌機および温度制御装置を備えた反応槽に沸点 1 9 o r:ないし 2 3 0でのイソパラフィン 1 3 0 gにソルビ夕ンモノォレート 5 . 0 gを仕込み 溶解させた。別にァクリロイルォキシェチルトリメチルアンモニゥム塩化物 (以下 DMQと略記) 80 %水溶液 2 1 6. 7 g、 アクリルアミド (AAM と略記) 50%水溶液 54. 5 g、 メチレンビスアクリルアミド 0. 1 %水 溶液 2. 4 g、イソプロピルアルコール 0. 2 g (対単量体 0. 1質量%) 、 イオン交換水 83. 2 gを各々採取し、 混合し完全に溶解させた。 その後油 と水溶液を混合し、 ホモジナイザーにて 1 000 r pmで 1 5分間攪拌乳化 した。 この時の単量体組成は、 DMQZAAM= 70Z30 (モル%) であ る。
得られたェマルジヨンを単量体溶液の温度を 25〜27°Cに保ち、 窒素置 換を 30分行った後、 4, 4—ァゾビス 4—メトキシ 2, 4ジメチルバレロ 二トリル (和光純薬製 V— 70) 0. 02 g (対単量体 0. 0 1質量%) を 加え、 重合反応を開始させた。 反応温度を 25 ±2°Cで 1 2時間重合させ反 応を完結させた。
重合後、 生成した油中水型ェマルジョンに転相剤としてポリオキシェチレ ンポリオキシプロピレンアルキルエーテル 5. 0 g (対液 1質量%) を添加 混合した。
その後、 B型粘度計により製品粘度を測定すると、 33 ImP a · sであ つた。 コロイド滴定法と前記計算式により電荷内包率を求めると 52. 5 % であった。 試料一 1·とする。 結果を表 1に示す。
(合成例 2 )
合成例 1と同様の操作により DMQZAAM=70Z30 (モル%) 電荷 内包率 29. 1 % (試料— 2) 、 DMQ/AAM= 70/30 (モル%) 電 荷内包率 1 1. 3 % (試料一 3) 、 DMQ/AAM/AAC= 60/25/ 1 5 (モル%) 電荷内包率 42. 0 % (試料一 4) DMQ/AAM/AAC = 60/ 25/ 1 5 (モル%) 電荷内包率 10. 2 % (試料一 5) を合成し た。 結果を表 1に示す。
(合成例 3 )
撹拌器、 温度計、 還流冷却器、 窒素導入管を備えた五つロセパラブルフラ スコに、 イオン交換水 10 5. 5 g、 分散剤としてァクリロイルォキシェチ ルトリメチルアンモニゥム塩化物単独重合物 (20%水溶液、 分子量 1 20 万) 、 52. 5 g (対単量体 7. 0 %) 、 硫酸アンモニゥム 1 25. 0 g、 アクリルアミド 50 %水溶液 40. 8 g、 ァクリロイルォキシェチルトリメ チルアンモニゥム塩化物、 80%水溶液 1 62. 6 g、 メチレンビスァクリ ルアミド 0. 1 %水溶液 2. 4 g、 イソプロピルアルコール 0. 2 g (対単 量体 0. 1質量%) を各々仕込み完全に溶解させた。
内温を 25〜27°Cに保ち、 30分間窒素置換後、 開始剤として 2、 2 ' —ァゾビス 〔2— (5—メチルー 2—^ Γミダゾリン— 2—ィル) プロパン〕 二塩化水素化物の 1 %水溶液 1. 5 g (対単量体 0. 0 1 %) を加え重合を 開始させた。 開始 1時間後、 反応物はやや粘度の上昇が観測され、 25分間 その状態が継続したが、 その後すぐに収まり分散液に移行した。 開始 6時間 後、 前記開始剤溶液を 1. 0 g追加しさらに 8時間重合を行った。
得られた分散液のしこみ単量体濃度は 20%であり、 ポリマ一粒径は 5 m以下、 分散液の粘度は B型粘度計により 25°Cにおいて測定した結果 73 5 mP a · sであつ,こ。
また、 静的光散乱法による分子量測定器 (大塚電子製 DL S— 7000) によって重量平均分子量を測定した。 コロイド滴定法と前記計算式により電 荷内包率を求めると 65. 3%であった。 この試料を試料一 6とする。 また メチレンビスアクリルアミドを添加しない他は、 上記と同様な操作により試 料一 7を合成した。 結果を表 1に示す。
(表 1 )
Figure imgf000022_0001
DMQ :ァクリロイルォキシェチル卜リメチルアンモニゥムクロリド、 AAM: アクリルアミド、 AA C:アクリル酸、 ェマルジヨン粘度; mP a . s、 架橋 性単量体添加量;対単量体質量%、 電荷内包率;%
E M:油中水型ェマルジョ 、 分散液;塩水溶液中分散液 産業上の利用可能性
本発明にかかる組成物は、 架橋性水溶性高分子と直鎖性水溶性高分子の長所 を利用してなり、汚泥粒子の粒度分布の状態を指標に架橋性水溶性高分子と 直鎖性水溶性高分子の配合比を変化させることにより、 懸濁粒子への吸着性 能が優れ、 汚泥粘性の増加が発生せず、 機械脱水時、 水切れが良くケーキ含 水率を低下でき、 幅広い種類の汚泥に対応させることのできるものであるの で、 各種汚泥に使用される凝集剤用途に広く利用することができる。
(実施例 1 )
(凝集剤組成物の作成)
ビニル重合系架橋性水溶性高分子 (架橋品) およびビニル重合系直鎖性水 溶性高分子 (直鎖品) を表 2のような配合比で凝集剤組成物を、 製造形態と して油中水型ェマルジヨンと塩水中分散液で作成した。
その結果を表 2に示す。 (表 2)
Figure imgf000023_0001
配合比;質量比
(実施例 2 )
下水処理場より発生する余剰汚泥 (汚泥性状が pH 6. 6、 S S : 825 Omg/L, TS : 850 Omg/L) について遠心脱水機を対象とした凝 集濾過試験および圧搾試験を実施した。
この汚泥の性状は 200メッシュオン残留物が 1. 3質量%、 有機成分が S Sに対して 86. 4質量%であり有機成分の割合が多く、 また汚泥粒子も 小さいため難脱水汚泥である。
30 Oml容のポリプロピレン製ビ一カーに汚泥を 20 OmL入れた後、 表 2の組成物一 1 (実施例 2— 1) 、 組成物一 2 (実施例 2— 2) 、 組成物 一 3 (実施例 2— 3) 、 組成物一 4 (実施例 2— 4) および組成物一 9 (実 施例 2— 5 ) の各試料 (いずれも架橋性水溶性高分子:直鎖性水溶性高分子 =7 : 3である) の溶解液を添加し、 1000 r pm、 30秒間の攪拌によ り汚泥を凝集させた。
その後、 フロックの大きさを観察後、 60メッシュの濾布付きビーカ一に より濾過速度を調べた。 また濾過後の凝集物を 1 k gfZcm2 の圧搾圧力 で 3 0秒間プレス脱水後に脱水ケーキの含水率を求めた。
これらの結果を表 3に示す。
(比較試験 1 ) 表 1の試料一 1 (比較試験 1一 1) 、 試料一 2 (比較試験 1一 2) (いず れも架橋性水溶性高分子) 、 試料一 3 (比較試験 1一 3) (直鎖性水溶性高 分子) 、試料一 4 (比較試験 1一 4) (架橋性水溶性高分子) 、 試料一 5 (比 較試験 1一 5) (直鎖性水溶性高分子) に関し試験を行なった。
これらの結果を表 3に示す。
この汚泥の性状は 200メッシュオン残留物が 1. 3質量%であり、 粒径 が細かい物が多い。 そのため架橋性水溶性高分子:直鎖性水溶性高分子 = 7 : 3である組成物一 1〜組成物一 4および組成物一 9の各試料を用いた実 施例 2— 1〜 2— 5が良い効果を示している。
その反対に直鎖性水溶性高分子が単独である試料一 3 (比較試験 1一 3) および試料一 5 (比較試験 1一 5) は凝集効果が低い。 架橋性水溶性高分子 単独である試料一 4 (比較試験 1一 4) は、 凝集効果はあるが、 実施例 1の 凝集剤組成物に較べ効果が低下している。
(表 3)
Figure imgf000024_0001
フロック径; mm、 濾液量; mL、 含水率;重量%、 薬注量 対汚泥分散液
(実施例 3 )
食肉処理場より発生する余剰汚泥 (汚泥性状が PH 6. 2、 S S : 1 73 00mg/L、 T S : 1900 OmgZL) について遠心脱水機を対象とし た凝集濾過試験および圧搾試験を実施した。
この汚泥の性状は 200メッシュオン残留物が 29. 8質量%である。 3 0 Oml容のポリプロピレン製ビ一カーに汚泥を 20 OmL入れた後、 表 2 の組成物一 5 (実施例 3— 1) 〜組成物一 6 (実施例 3— 2) および組成物 -8 (実施例 3— 4) の各試料 (いずれも架橋性水溶性高分子:直鎖性水溶 性高分子 =3 : 7である) 、 組成物一 7 (実施例 3— 3) (架橋性水溶性高 分子:直鎖性水溶性高分子 = 5 : 5である) の溶解液を添加し、 1000 r pm、 30秒間の攪拌により汚泥を凝集させた。
その後、 フロックの大きさを観察後、 60メッシュの濾布付きビーカーに より濾過速度を調べた。 また濾過後の凝集物を 1 k gfZcm2 の圧搾圧力 で 3 0秒間プレス脱水後に脱水ケーキの含水率を求めた。
これらの結果を表 4に示す。
(比較試験 2 )
表 1の試料一 1 (比較試験 2— 1) 〜試料一 2 (比較試験 2— 2) (いず れも架橋性水溶性高分子) 、 試料一 3 (比較試験 2— 3) (直鎖性水溶性高 分子) 、試料一 4 (比較試験 2— 4) (架橋性水溶性高分子) 、試料一 5 (比 較試験 2— 5) (直鎖性水溶性高分子) に関し試験を行なった。
これらの結果を表 4に示す。
この汚泥の性状は 200メッシュオン残留物が 29. 8質量%であり、 粒 径が大きいものが多い。 そのため架橋性水溶性高分子:直鎖性水溶性高分子 = 3 : 7である組成物一 5〜組成物一 6および組成物一 8の各試料を用いた 実施例 3— 1〜3— 4が良い効果を示している。 また架橋性水溶性高分子: 直鎖性水溶性高分子 =5 : 5である組成物一 7を用いた実施例 3— 3は多少 効果が低下しているが良い効果を示している。
直鎖性水溶性高分子が単独である試料一 3 (比較試験 2— 3) および試料 -5 (比較試験 2— 5) は組成物に較べ凝集効果が低く、 架橋性水溶性高分 子単独である試料一 1 (比較試験 2— 1) 、 試料一 2 (比較試験 2— 2) お よび試料一 4 (比較試験 2— 4) は、 効果が非常に低い。 (表 4)
Figure imgf000026_0001
フロック径; mm、 濾液量; mL、 含水率;重量%、 薬注量;対汚泥分散液
(実施例 4)
下水処理場より発生する混合生汚泥 (汚泥性状が PH5. 25、 S S : 2 250 Omg/L, T S : 2500 Omg/L) について遠心脱水機を対象 とした凝集濾過試験および圧搾試験を実施した。
この汚泥の性状は 200メッシュオン残留物が 14. 9質量%である。 3 0 Oml容のポリプロピレン製ビ一カーに汚泥を 20 OmL入れた後、 表 2 の組成物一 1 (実施例 4一 1) 〜組成物一 2 (実施例 4一 2) (いずれも架 橋性水溶性高分子:直鎖性水溶性高分子 = 7 : 3である) 、 組成物一 5 (実 施例 4一 3) 〜組成物一 6 (実施例 4一 4) の各試料 (いずれも架橋性水溶 性高分子.:直鎖性水溶性高分子 = 3 : 7である) 、 組成物一 7 (実施例 4一 5) (架橋性水溶性高分子:直鎖性水溶性高分子 = 5 : 5である) の溶解液 を添加し、 1000 r pm、 30秒間の攪拌により汚泥を凝集させた。 その後、 フロックの大きさを観察後、 60メッシュの濾布付きビ一カーに より濾過速度を調べた。 また濾過後の凝集物を 1 k gfZcm2 の圧搾圧力 で 3 0秒間プレス脱水後 脱水ケーキの含水率を求めた。 これらの結果を表 5に示す。
(比較試験 3 )
表 1の試料一 1 (比較例 3— 1) 〜試料一 2 (比較例 3— 2) (いずれも 架橋性水溶性高分子)、試料一 3 (比較例 3 ^ 3) (直鎖性水溶性高分子)、 試料一 4 (比較例 3— 4 ) (架橋性水溶性高分子) 、 試料一 5 (比較例 3— 5) (直鎖性水溶性高分子) に関し試験を行なった。
これらの結果を表 5に示す。
この汚泥の性状は 200メッシユオン残留物が 14. 9質量%であり、 粒 径が大きいものが比較的多いが粒径の小さい粒子も多い。 そのため架橋性水 溶性高分子:直鎖性水溶性高分子 = 5 : 5である組成物一 7 (実施例 4一 5) が良い効果を示している。
また直鎖性水溶性高分子単独である試料一 3 (比較例 3— 3) および試料 一 5 (比較例 3— 5 ) は実施例 4一 1〜 4一 5の凝集剤組成物に較べ凝集効 果が低下している。 一方、 架橋性水溶性高分子単独である試料一 1 (比較例 3— 1) 、 試料一 2 (比較例 3— 2) および試料一 4 (比較例 3— 4) は、 効果が非常に低い。
(表 5)
Figure imgf000027_0001
フロック径; mm、 濾液量; mL、 含水率;重量%、 薬注量;対汚泥分散液

Claims

請求の範囲
1. 電荷内包率 20 %以上のビニル重合系架橋性水溶性高分子(A)と、 電荷内包率 5以上、 20%未満のビニル重合系直鎖性水溶性高分子 (B) と を配合したことからなる凝集剤組成物。
2. 前記凝集剤組成物が、 汚泥中の全懸濁粒子に対する該汚泥中の 20 0メッシュオン粒子の質量%の変化に対応して前記電荷内包率 20 %以上 のビニル重合系架橋性水溶性高分子 (A) と、 電荷内包率 5以上、 20 %未 満のビニル重合系直鎖性水溶性高分子 (B) との配合を変化させることを特 徴とする請求項 1記載の凝集剤組成物。
3. 前記汚泥中の 200メッシュオン粒子の質量%を 、 前記ビニル重 合系架橋性水溶性高分子 (A) の質量%を a、 前記ビニル重合系直鎖性水溶 性高分子 (B) の質量%を13とそれぞれ表した場合、 X、 aおよび bが下記 式の関係にあることを特徴とする請求項 1あるいは請求項 2記載の凝集剤 組成物。 ·
式:
0 <X≤ 10質量%のとき 0. 2≤a/b≤9
10<X≤ 20質量%のとき 0. 4≤aZb≤ 3
20<X≤ 60質量%のとき 0. l≤a/b≤2
4. 前記ビニル重合系架橋性水溶性イオン性高分子 (A) が下記一般式 (1)および/または(2)で表わされる単量体を 5〜 99. 9999モル%、 下記一般式 (3) で表わされる単量体を 0〜50モル%、 非イオン性単量体 0〜95モル%および複数のビニル基を有する単量体 0. 0001〜0. 1 モル%からなる単量体混合物を重合したものであることを特徴とする請求 項 1から請求項 3のいずれかに記載の凝集剤組成物。 l - —般式 )
Figure imgf000029_0001
(上記式において、 Ri は水素またはメチル基、 R2 、 R3 は炭素数 1〜3 のアルキルあるいはアルコキシル基、 R4 は水素、 炭素数 1〜 3のアルキル 基、 アルコキシル基あるいはベンジル基であり、 同種でも異種でも良い、 A は酸素または NH、 Bは炭素数 2〜4のアルキレン基またはアルコキシレン 基を表わす、 は陰イオンをそれぞれ表わす。 ) —般式 (2)
Figure imgf000029_0002
(上記式において、 R5 は水素またはメチル基、 R6 、 R7 は炭素数 1〜3 のアルキル基、 アルコキシ基あるいはベンジル基、 X2 は陰イオンをそれぞ れ表わす。 )
CH = f C一 Q— Υι
| 一般式 (3)
R9
(上記式において、 R8 は水素、 メチル基または CH2 C〇〇Y2 、 Qは S 03 、 C6 H4 S〇3 、 CONHC (CH3 ) 2 CH2 S 03 、 C6 H4 COOあるいは CO〇、 R9 は水素または COOYi 、 Yi は水素または陽 イオンをそれぞれ表わす。 )
5. 前記ビニル重合系直鎖性水溶性イオン性高分子 (B) が下記一般式 (1) および/または (2) で表わされる単量体を 5〜100モル%、 下記 一般式 (3) で表わされる単量体を 0〜50モル%、 非イオン性単量体 0〜 9 5モル%からなる単量体混合物を重合したものであることを特徴とする 請求項 1から 3のいずれかに記載の凝集剤組成物。 —船式 ( 1 )
Figure imgf000030_0001
(上記式において、 は水素またはメチル基、 R2 R3 は炭素数 1 3 のアルキルあるいはアルコキシル基、 R4 は水素、 炭素数 1 3のアルキル 基、 アルコキシル基あるいはベンジル基であり、 同種でも異種でも良い、 A は酸素または NH Bは炭素数 2 4のアルキレン基またはアルコキシレン 基を表わす、 は陰イオンをそれぞれ表わす。 ) —般式 (2)
Figure imgf000030_0002
(上記式において、 R5 は水素またはメチル基、 R6 R7 は炭素数 1 3 のアルキル基、 アルコキシ基ぁるいはべンジル基、 X2 は陰イオンをそれぞ れ表わす。 )
Figure imgf000030_0003
| -一般式 (3)
Ra
(上記式において、 R8 は水素、 メチル基または CH2 COOY2 Qは S 03 C6 H4 S〇3 CONHC (CH3 ) 2 CH2 S 03 C6 H4 COOあるいは CO〇、 R9 は水素または COOY Yi は水素または陽 イオンをそれぞれ表わす。 )
6. 前記ビニル重合系架橋性水溶性イオン性高分子 (A) あるいは前記 ビニル重合系直鎖性水溶性イオン性高分子 (B) が、 前記単量体あるいは単 量体混合物と水に非混和性の有機液体を高 HLB (親水性親油性バランス) 界面活性剤を用い有機液体を連続相、 水溶性単量体水溶液を分散相となるよ うに乳化した後、 重合して製造した油中水型ェマルジヨンであることを特徴 とする請求項 1から 3のいずれかに記載の凝集剤組成物
7. 電荷内包率 20%以上のビニル重合系架橋性水溶性高分子(A)と、 電荷内包率 5以上、 20%未満のビニル重合系直鎖性水溶性高分子 (B) と を配合することを特徴とする凝集剤組成物の製造方法。
8. 前記凝集剤組成物が、 汚泥中の全懸濁粒子に対する該汚泥中の 20 0メッシユオン粒子の質量%の変化に対応して前記電荷内包率 20 %以上 のビニル重合系架橋性水溶性高分子 (A) と、 電荷内包率 5以上、 20 %未 満のビニル重合系直鎖性水溶性高分子 (B) との配合を変化させることを特 徴とする請求項 7記載の凝集剤組成物の製造方法。
9. 前記ビニル重合系架橋性水溶性イオン性高分子 (A) が下記一般式 (1)および/または(2)で表わされる単量体を 5〜99. 9999モル%、 下記一般式 (3) で表わされる単量体を 0〜50モル%、 非イオン性単量体 0〜95モル%および複数のビニル基を有する単量体 0. 0001〜0. 1 モル%からなる単量体混合物を重合したものであることを特徴とする請求 項 7あるいは請求項 8記載の凝集剤組成物の製造方法。
—般式 ( 1 )
Figure imgf000031_0001
(上記式において、 は水素またはメチル基、 R2 、 R3 は炭素数 1〜3 のアルキルあるいはアルコキシル基、 R4 は水素、 炭素数 1〜 3のアルキル 基、 アルコキシル基あるいはベンジル基であり、 同種でも異種でも良い、 A は酸素または NH、 Bは炭素数 2〜4のアルキレン基またはアルコキシレン 基を表わす、 は陰イオンをそれぞれ表わす。 ) —船式 (2)
Figure imgf000032_0001
(上記式において、 R5 は水素またはメチル基、 R6 、 R7 は炭素数 1〜3 のアルキル基、 アルコキシ基あるいはベンジル基、 x2 は陰イオンをそれぞ れ表わす。 )
Figure imgf000032_0002
I 一般式 (3)
Ra
(上記式において、 R8 は水素、 メチル基または CH2 C〇OY2 、 Qは S 〇3 、 C6 H4 S〇3 、 CONHC (CH3 ) 2 CH2 S 03 、 C6 H4 COOあるいは COO、 R9 は水素または COOYi 、 Yi は水素または陽 イオンをそれぞれ表わす。 )
1 0. 前記ビニル重合系直鎖性水溶性イオン性高分子 (B) が下記一般 式 (1) および Zまたは (2) で表わされる単量体を 5〜 1 0 0モル%、 下 記一般式 (3) で表わされる単量体を 0〜50モル%、 非イオン性単量体 0 〜 9 5モル%からなる単量体混合物を重合したものであることを特徴とす る請求項 7あるいは請求項 8記載の凝集剤組成物の製造方法。
—船式 ( 1 )
Figure imgf000032_0003
(上記式において、 は水素またはメチル基、 R2 、 R3 は炭素数 1〜3 のアルキルあるいはアルコキシル基、 R4 は水素、 炭素数 1〜 3のアルキル 基、 アルコキシル基あるいはベンジル基であり、 同種でも異種でも良い、 A は酸素または NH、 Bは炭素数 2〜4のアルキレン基またはアルコキシレン 基を表わす、 は陰イオンをそれぞれ表わす。 ) 一般式 (2 )
Figure imgf000033_0001
(上記式において、 R5 は水素またはメチル基、 R6 、 R7 は炭素数 1〜3 のアルキル基、 アルコキシ基あるいはベンジル基、 X2 は陰イオンをそれぞ れ表わす。 )
Figure imgf000033_0002
I - 般式 ( 3 ) R9
(上記式において、 R8 は水素、 メチル基または CH2 COOY2 、 Qは S 03 、 C6 H4 S 03 、 CONHC (CH3 ) 2 CH2 S 03 、 C6 H4 COOあるいは CO〇、 R9 は水素または COOYi 、 Y1 は水素または陽 イオンをそれぞれ表わす。 )
1 1. 前記ビニル重合系架橋性水溶性イオン性高分子 (Α) あるいは前 記ビニル重合系直鎖性水溶性イオン性高分子 (Β) が、 前記単量体あるいは 単量体混合物と水に非混和性の有機液体を高 HL Β (親水性親油性バラン ス) 界面活性剤を用い有機液体を連続相、 水溶性単量体水溶液を分散相とな るように乳化した後、 重合して製造した油中水型ェマルジヨンであることを 特徴とする請求項 7から請求項 1 0のいずれかに記載の凝集剤組成物の製 造方法。
PCT/JP2006/315886 2006-08-03 2006-08-03 Composition de floculant et procédé servant à la produire WO2008015769A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2006/315886 WO2008015769A1 (fr) 2006-08-03 2006-08-03 Composition de floculant et procédé servant à la produire
JP2008527639A JP5103395B2 (ja) 2006-08-03 2006-08-03 凝集剤組成物およびその製造方法
CN2006800555225A CN101500677B (zh) 2006-08-03 2006-08-03 凝集剂组合物及其制造方法
US12/362,916 US7745529B2 (en) 2006-08-03 2009-01-30 Flocculant composition and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/315886 WO2008015769A1 (fr) 2006-08-03 2006-08-03 Composition de floculant et procédé servant à la produire

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/362,916 Continuation US7745529B2 (en) 2006-08-03 2009-01-30 Flocculant composition and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2008015769A1 true WO2008015769A1 (fr) 2008-02-07

Family

ID=38996957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315886 WO2008015769A1 (fr) 2006-08-03 2006-08-03 Composition de floculant et procédé servant à la produire

Country Status (4)

Country Link
US (1) US7745529B2 (ja)
JP (1) JP5103395B2 (ja)
CN (1) CN101500677B (ja)
WO (1) WO2008015769A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008221172A (ja) * 2007-03-15 2008-09-25 Hymo Corp 汚泥脱水剤および汚泥脱水方法
JP2010000425A (ja) * 2008-06-19 2010-01-07 Hymo Corp 汚泥脱水剤組成物および汚泥脱水方法
JP2010053234A (ja) * 2008-08-28 2010-03-11 Hymo Corp 粉末状イオン性水溶性高分子およびその用途
JP2010159387A (ja) * 2008-07-10 2010-07-22 Hymo Corp 粉末状イオン性水溶性高分子およびその用途
JP2010195915A (ja) * 2009-02-25 2010-09-09 Hymo Corp 粉末状水溶性高分子
JP2010214341A (ja) * 2009-03-19 2010-09-30 Hymo Corp 汚泥の脱水方法
JP2010215867A (ja) * 2009-03-19 2010-09-30 Hymo Corp 水溶性高分子組成物
JP2010222505A (ja) * 2009-03-25 2010-10-07 Hymo Corp 水溶性高分子組成物
JP2011012354A (ja) * 2009-06-30 2011-01-20 Hymo Corp 濾水性向上方法
JP2012254430A (ja) * 2011-06-10 2012-12-27 Hymo Corp 凝集処理剤およびそれを用いた汚泥脱水方法
JP2013039539A (ja) * 2011-08-18 2013-02-28 Hymo Corp 脱離液の発泡抑制方法
JP2013248583A (ja) * 2012-06-01 2013-12-12 Hymo Corp 凝集処理剤および排水処理方法
JP2015150534A (ja) * 2014-02-18 2015-08-24 ハイモ株式会社 凝集処理剤及びそれを用いた汚泥の脱水方法
JP2017100111A (ja) * 2015-12-04 2017-06-08 Mtアクアポリマー株式会社 架橋型高分子凝集剤及びその製造方法並びにそれを用いる廃水処理方法
WO2018168447A1 (ja) 2017-03-14 2018-09-20 栗田工業株式会社 汚泥脱水剤及び汚泥脱水方法
JP2018149531A (ja) * 2017-03-14 2018-09-27 栗田工業株式会社 汚泥脱水剤及び汚泥脱水方法
KR20190022613A (ko) * 2016-06-27 2019-03-06 엠티 아쿠아포리마 가부시키가이샤 고분자 응집제 분말의 제조 방법 및 오니의 탈수 방법
JP2019209287A (ja) * 2018-06-06 2019-12-12 栗田工業株式会社 汚泥脱水剤、及び汚泥脱水方法
JP2020025939A (ja) * 2018-08-16 2020-02-20 栗田工業株式会社 汚泥脱水方法
WO2020217772A1 (ja) 2019-04-24 2020-10-29 栗田工業株式会社 汚泥脱水剤及び汚泥脱水方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010087371A1 (ja) * 2009-01-30 2012-08-02 帝人株式会社 黒鉛化短繊維およびその組成物
JP2017000914A (ja) * 2015-06-04 2017-01-05 Mtアクアポリマー株式会社 高分子凝集剤及びその製造方法並びにそれを用いる汚泥脱水方法
CN111621269B (zh) * 2020-06-12 2022-04-19 保定市三拓化工产品有限公司 一种大阳离子包被絮凝剂及制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004025094A (ja) * 2002-06-27 2004-01-29 Hymo Corp 架橋性イオン性水溶性高分子からなる凝集処理剤及びその使用方法
JP2004025097A (ja) * 2002-06-27 2004-01-29 Hymo Corp 凝集処理薬剤及びその使用方法
JP2004025095A (ja) * 2002-06-27 2004-01-29 Hymo Corp 凝集処理薬剤及びその使用方法
JP2004057837A (ja) * 2002-07-24 2004-02-26 Hymo Corp 凝集処理剤及びその使用方法
JP2004059719A (ja) * 2002-07-29 2004-02-26 Hymo Corp 架橋性イオン性水溶性高分子粉末、その製造方法及びその使用方法
JP2004290823A (ja) * 2003-03-27 2004-10-21 Hymo Corp 汚泥の脱水処理方法
JP2005144346A (ja) * 2003-11-17 2005-06-09 Hymo Corp 凝集処理剤及びその使用方法
JP2005177666A (ja) * 2003-12-22 2005-07-07 Hymo Corp 有機汚泥の脱水方法
JP2005199185A (ja) * 2004-01-16 2005-07-28 Hymo Corp 有機汚泥の脱水方法
JP2006000759A (ja) * 2004-06-17 2006-01-05 Tomoe Engineering Co Ltd 回転式圧縮濾過機用汚泥脱水剤およびそれを用いた汚泥脱水方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3677046D1 (de) 1985-04-25 1991-02-28 Allied Colloids Ltd Flockungsverfahren.
ES2067517T5 (es) 1988-12-19 2004-09-16 Cytec Technology Corp. Agentes floculantes polimericos de alto rendimiento.
JP3247795B2 (ja) 1994-03-24 2002-01-21 日本下水道事業団 両性高分子汚泥脱水剤及びこれを用いた汚泥脱水方法
JP2991611B2 (ja) 1994-03-24 1999-12-20 日本下水道事業団 無機凝集剤と両性高分子凝集剤を併用する汚泥の脱水方法
AU2002323937A1 (en) * 2002-07-24 2004-02-09 Oda, Setuko Coagulant and coagulation method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004025094A (ja) * 2002-06-27 2004-01-29 Hymo Corp 架橋性イオン性水溶性高分子からなる凝集処理剤及びその使用方法
JP2004025097A (ja) * 2002-06-27 2004-01-29 Hymo Corp 凝集処理薬剤及びその使用方法
JP2004025095A (ja) * 2002-06-27 2004-01-29 Hymo Corp 凝集処理薬剤及びその使用方法
JP2004057837A (ja) * 2002-07-24 2004-02-26 Hymo Corp 凝集処理剤及びその使用方法
JP2004059719A (ja) * 2002-07-29 2004-02-26 Hymo Corp 架橋性イオン性水溶性高分子粉末、その製造方法及びその使用方法
JP2004290823A (ja) * 2003-03-27 2004-10-21 Hymo Corp 汚泥の脱水処理方法
JP2005144346A (ja) * 2003-11-17 2005-06-09 Hymo Corp 凝集処理剤及びその使用方法
JP2005177666A (ja) * 2003-12-22 2005-07-07 Hymo Corp 有機汚泥の脱水方法
JP2005199185A (ja) * 2004-01-16 2005-07-28 Hymo Corp 有機汚泥の脱水方法
JP2006000759A (ja) * 2004-06-17 2006-01-05 Tomoe Engineering Co Ltd 回転式圧縮濾過機用汚泥脱水剤およびそれを用いた汚泥脱水方法

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008221172A (ja) * 2007-03-15 2008-09-25 Hymo Corp 汚泥脱水剤および汚泥脱水方法
JP2010000425A (ja) * 2008-06-19 2010-01-07 Hymo Corp 汚泥脱水剤組成物および汚泥脱水方法
JP2010159387A (ja) * 2008-07-10 2010-07-22 Hymo Corp 粉末状イオン性水溶性高分子およびその用途
JP2010053234A (ja) * 2008-08-28 2010-03-11 Hymo Corp 粉末状イオン性水溶性高分子およびその用途
JP2010195915A (ja) * 2009-02-25 2010-09-09 Hymo Corp 粉末状水溶性高分子
JP2010214341A (ja) * 2009-03-19 2010-09-30 Hymo Corp 汚泥の脱水方法
JP2010215867A (ja) * 2009-03-19 2010-09-30 Hymo Corp 水溶性高分子組成物
JP2010222505A (ja) * 2009-03-25 2010-10-07 Hymo Corp 水溶性高分子組成物
JP2011012354A (ja) * 2009-06-30 2011-01-20 Hymo Corp 濾水性向上方法
JP2012254430A (ja) * 2011-06-10 2012-12-27 Hymo Corp 凝集処理剤およびそれを用いた汚泥脱水方法
JP2013039539A (ja) * 2011-08-18 2013-02-28 Hymo Corp 脱離液の発泡抑制方法
JP2013248583A (ja) * 2012-06-01 2013-12-12 Hymo Corp 凝集処理剤および排水処理方法
JP2015150534A (ja) * 2014-02-18 2015-08-24 ハイモ株式会社 凝集処理剤及びそれを用いた汚泥の脱水方法
JP2017100111A (ja) * 2015-12-04 2017-06-08 Mtアクアポリマー株式会社 架橋型高分子凝集剤及びその製造方法並びにそれを用いる廃水処理方法
KR20190022613A (ko) * 2016-06-27 2019-03-06 엠티 아쿠아포리마 가부시키가이샤 고분자 응집제 분말의 제조 방법 및 오니의 탈수 방법
KR102357817B1 (ko) 2016-06-27 2022-01-28 엠티 아쿠아포리마 가부시키가이샤 고분자 응집제 분말의 제조 방법 및 오니의 탈수 방법
WO2018168447A1 (ja) 2017-03-14 2018-09-20 栗田工業株式会社 汚泥脱水剤及び汚泥脱水方法
JP2018149531A (ja) * 2017-03-14 2018-09-27 栗田工業株式会社 汚泥脱水剤及び汚泥脱水方法
KR20190124710A (ko) 2017-03-14 2019-11-05 쿠리타 고교 가부시키가이샤 오니 탈수제 및 오니 탈수 방법
JP2019209287A (ja) * 2018-06-06 2019-12-12 栗田工業株式会社 汚泥脱水剤、及び汚泥脱水方法
WO2019235345A1 (ja) 2018-06-06 2019-12-12 栗田工業株式会社 汚泥脱水剤、及び汚泥脱水方法
KR20210018191A (ko) 2018-06-06 2021-02-17 쿠리타 고교 가부시키가이샤 오니 탈수제, 및 오니 탈수 방법
JP2020025939A (ja) * 2018-08-16 2020-02-20 栗田工業株式会社 汚泥脱水方法
WO2020217772A1 (ja) 2019-04-24 2020-10-29 栗田工業株式会社 汚泥脱水剤及び汚泥脱水方法
KR20220002281A (ko) 2019-04-24 2022-01-06 쿠리타 고교 가부시키가이샤 오니 탈수제 및 오니 탈수 방법

Also Published As

Publication number Publication date
JPWO2008015769A1 (ja) 2009-12-17
US7745529B2 (en) 2010-06-29
CN101500677A (zh) 2009-08-05
US20090137720A1 (en) 2009-05-28
JP5103395B2 (ja) 2012-12-19
CN101500677B (zh) 2012-04-25

Similar Documents

Publication Publication Date Title
WO2008015769A1 (fr) Composition de floculant et procédé servant à la produire
JP4141141B2 (ja) 浄化及び脱水用陰イオン性及び非イオン性分散ポリマー
US6617402B2 (en) Polymer flocculants with improved dewatering characteristics
JP4167969B2 (ja) 凝集処理剤及びその使用方法
WO2004000944A1 (ja) 水溶性重合体分散液、その製造方法およびその使用方法
EP1236748A1 (en) Polymer flocculents and preparation thereof
WO2002100944A1 (en) Amphoteric water-soluble polymer dispersion and use thereof
JP5279024B2 (ja) 汚泥の脱水方法
JP4897523B2 (ja) 汚泥脱水剤および汚泥脱水方法
TWI743324B (zh) 污泥脫水劑及污泥脫水方法
JP2009039652A (ja) 汚泥脱水剤および汚泥脱水方法
JP2009039653A (ja) 汚泥脱水方法
JP2003155689A (ja) 紙の製造方法
JP6308585B2 (ja) 歩留向上剤及びそれを用いた製紙原料の歩留向上方法
JP2008025054A (ja) 抄紙用薬剤
JP3714612B2 (ja) 汚泥脱水方法
JP4878422B2 (ja) 水溶性高分子分散液及びその製造方法
JP5601704B2 (ja) 汚泥脱水剤および汚泥脱水方法
JP5187927B2 (ja) 水溶性高分子分散液及びその製造方法
JP2009039651A (ja) 汚泥脱水剤および汚泥脱水方法
JP5709257B2 (ja) 汚泥処理剤および汚泥脱水処理方法
JP5866096B2 (ja) 廃水処理方法
JP2008221171A (ja) 有機汚泥の脱水方法
JP4380048B2 (ja) 一級アミノ基含有重合体エマルジョン型凝集剤
JP4753401B2 (ja) 油中水型水溶性高分子エマルジョンの使用方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680055522.5

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06782672

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008527639

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06782672

Country of ref document: EP

Kind code of ref document: A1