WO2007129716A1 - 高周波回路、高周波部品及び通信装置 - Google Patents

高周波回路、高周波部品及び通信装置 Download PDF

Info

Publication number
WO2007129716A1
WO2007129716A1 PCT/JP2007/059533 JP2007059533W WO2007129716A1 WO 2007129716 A1 WO2007129716 A1 WO 2007129716A1 JP 2007059533 W JP2007059533 W JP 2007059533W WO 2007129716 A1 WO2007129716 A1 WO 2007129716A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
terminal
high frequency
low noise
switch
Prior art date
Application number
PCT/JP2007/059533
Other languages
English (en)
French (fr)
Inventor
Keisuke Fukamachi
Shigeru Kemmochi
Kazuhiro Hagiwara
Original Assignee
Hitachi Metals, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals, Ltd. filed Critical Hitachi Metals, Ltd.
Priority to EP07742968.6A priority Critical patent/EP2017966A4/en
Priority to CN2007800167099A priority patent/CN101438505B/zh
Priority to US12/300,308 priority patent/US8036148B2/en
Priority to JP2008514500A priority patent/JP4618461B2/ja
Publication of WO2007129716A1 publication Critical patent/WO2007129716A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/0057Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using diplexing or multiplexing filters for selecting the desired band
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6661High-frequency adaptations for passive devices
    • H01L2223/6677High-frequency adaptations for passive devices for antenna, e.g. antenna included within housing of semiconductor device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6688Mixed frequency adaptations, i.e. for operation at different frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15313Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a land array, e.g. LGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate

Definitions

  • the present invention relates to a high frequency circuit that can be shared by at least two communication systems, a high frequency component having such a high frequency circuit, and a communication device using the same.
  • wireless LAN represented by IEEE802.il standard
  • PC personal computer
  • printer hard disk
  • peripheral device of PC such as broadband router, FAX, refrigerator
  • electronic devices such as standard television (SDTV), high definition television (HDTV), digital cameras, digital video, mobile phones and other electronic devices, and wireless communication means in cars and aircraft.
  • SDTV standard television
  • HDTV high definition television
  • digital cameras digital video
  • mobile phones and other electronic devices and wireless communication means in cars and aircraft.
  • IEEE 802.11a supports high-speed data communication of up to 54 Mbps using Orthogonal Frequency Division Multiplexing (OFDM) in a frequency band of 5 GHz.
  • IEEE 802.11b uses Direct Sequence Spread Spectrum (DSSS) in the 2.4 GHz ISM (Industrial, Scientific and Medical) band, available without a wireless license It supports high-speed communication at 5.5 Mbps and 11 Mbps
  • IEEE 802.11g supports OFDM modulation at 2.4 GHz band as well as IEEE 802.11b, and supports high-speed data communication up to 54 Mbps.
  • DSSS Direct Sequence Spread Spectrum
  • WO2006 / 003959 includes two communication systems (IEEE802.1 1 la and IEEE802. 1) of 2.4 GHz band and 5 GHz band of wireless LAN.
  • a high frequency circuit capable of performing diversity reception with a multiband communication device supporting 1 lb) is disclosed. This high frequency circuit is, as shown in FIG. 35, a branching circuit 13 between the high frequency switch circuit 10 and the transmission side circuit,
  • Lowpass filter circuit between branching circuit 13 and transmission terminal l la-T 19, power amplifier circuit A detection circuit 8 between the high frequency switch circuit 10 and the branching circuit 13;
  • WO2006 / 003959 also discloses an example in which a low noise amplifier circuit is provided in a path connected to the reception terminal 11bg-R in the 2.4 GHz band and the reception terminal lla-R in the 5 GHz band.
  • a branching circuit is provided on the input side of the low noise amplifier, and a band pass filter or low pass filter is connected between the branching circuit and the low noise amplifier.
  • Japanese Patent Application Laid-Open No. 2002-208874 discloses a band pass filter 2 between the antenna 1 and the antenna switching switch 3 and an antenna switching as a high frequency circuit common to wireless LAN and Bluetooth.
  • a diplexer connected to the low noise amplifier 7 (combination of low pass matching circuit 15 and high pass matching circuit 16) And a high-frequency circuit having
  • Reception sensitivity is greatly affected by the noise figure of the low noise amplifier and the insertion loss of the band pass filter and the branching circuit. For the reduction of the noise figure of a low noise amplifier, it is most effective to minimize the losses of its input stage.
  • the configuration of the high frequency circuit of WO2006 / 003959 does not sufficiently improve the reception sensitivity. Also switch circuit etc. Since the IC is weak to electrostatic surges, in the circuit configuration of WO2006 / 003959, there is a possibility that the switch circuit and the like may be destroyed if the antenna is subjected to electrostatic discharge (ESD: Electrostatic Discharge).
  • the drive current of a logic control power supply integrated in a power RFIC or a baseband is required to supply a bias voltage of about several mA to the power amplifier circuit and the low noise amplifier circuit. As it is less than 2 mA, it can not be driven directly.
  • a high pass filter circuit is connected to the antenna terminal in order to prevent destruction of the switch circuit and the like due to electrostatic discharge.
  • a wireless LAN transmission / reception function is added to a portable device such as a cellular phone, a part of the transmission signal of the portable device is mixed into the wireless LAN system, and in particular, the low noise amplifier of the reception path is saturated and the reception sensitivity There is a risk of deterioration.
  • the circuit configuration of Japanese Patent Laid-Open No. 2003-273 687 for the purpose of countermeasure against electrostatic discharge can not sufficiently solve the pressing problem.
  • the reduction of harmonics generated on the transmission side and the attenuation of noise on the reception side are performed by one band pass filter provided between the antenna and the antenna switching switch. It can not be shared to two frequencies of 2.4 GHz band and 5 GHz band.
  • wireless LAN communication devices compliant with the IEEE802.1 In standard based on Multi-Input-Multi-Output (MIMO) technology, which uses multiple antennas to increase the speed and quality of communication, are becoming widespread.
  • MIMO Multi-Input-Multi-Output
  • the high frequency circuits of WO2006 / 003959 and JP-A-2003-273687 can not sufficiently cope with IEEE802.1In.
  • an object of the present invention is to provide a compact high-frequency circuit that can be used for wireless communication that selectively uses at least two frequency bands, has a good reception sensitivity, and consumes less current.
  • Another object of the present invention is to provide a high frequency component having an intense high frequency component.
  • Yet another object of the present invention is to provide a communication device provided with such a high frequency component. It is to be.
  • the high frequency circuit of the present invention is used for radio communication that selectively uses at least a first frequency band and a second frequency band lower than the first frequency band,
  • a first transmission terminal to which a transmission signal of the first frequency band is input;
  • a second transmission terminal to which a transmission signal of the second frequency band is input;
  • At least one diplexer circuit that routes the signal of the first frequency band and the signal of the second frequency band
  • At least one switch circuit for switching paths of a transmission signal and a reception signal; a low noise amplifier circuit provided between the switch circuit and the second reception terminal for amplifying a reception signal of at least the second frequency band;
  • Both filter circuits pass the received signal of the second frequency band, but block at least a frequency band lower than the second frequency band, and the stop band of the first filter circuit is the second filter. It is characterized by being lower than the stop band of the circuit.
  • the first filter circuit prevents damage to the switch circuit and the like due to electrostatic discharge (ESD) in the antenna, and also prevents the low noise amplifier circuit from being saturated by a signal that interferes with the antenna.
  • the first filter can further attenuate signals of, for example, 1 GHz or less. By these actions, for example, it is possible to prevent interference from an EGSM system or the like that outputs high power of about 3 W at maximum by using the 0.9 GHz band.
  • the first filter circuit close to the antenna terminal blocks unwanted radio waves of relatively low frequency such as electrostatic discharge, and the second filter circuit near the noise amplifier circuit further prevents saturation of the low noise amplifier. If it is attempted to block unnecessary radio waves with one filter, the insertion loss will be large, but it is possible to block unwanted radio waves in stages by using the first filter and the second filter in combination. it can.
  • By making the stop band of the first filter circuit lower than the stop band of the second filter circuit it is possible to suppress the loss of the signal passing through the first filter circuit. It is preferable to make the Q factor of the second filter higher than that of the first filter in order to prevent unnecessary radio waves of frequencies lower than the second frequency band from entering the low noise amplifier circuit by the second filter as much as possible.
  • the first and second filters do not include diplexer circuits.
  • the first and second filter circuits are high pass filter circuits.
  • the high pass filter is suitable for suppressing the signal loss because the noise pass filter circuit can reduce the signal loss compared to the band pass filter circuit.
  • the high-pass filter is, for example, a high frequency circuit for multiband wireless communication in which a first frequency band and a second frequency band are widely separated, such as a wireless LAN utilizing 2.4 GHz and 5 GHz bands separated by 2 GHz or more. In the above, the first and second frequency bands can be shared.
  • a switch circuit for switching the connection between the antenna terminal and the first and second transmission terminals and the connection between the antenna terminal and the first and second reception terminals;
  • a first demultiplexing circuit provided between the switch circuit and the first and second transmission terminals
  • a second diplexer circuit provided between the switch circuit and the first and second receiving terminals
  • a first power amplifier circuit provided between the first branching circuit and the first transmission terminal
  • a second power amplifier circuit provided between the first branching circuit and the second transmission terminal
  • the first filter circuit is provided between the antenna terminal and the switch circuit
  • the second filter circuit is provided between the switch circuit and the low noise amplifier circuit.
  • the high pass filter circuit which is the first filter circuit, prevents damage to the switch circuit and the like due to electrostatic discharge (ESD) force S in the antenna, and a low noise amplifier circuit due to a signal mixed in the antenna. To prevent it from saturating.
  • a high pass filter circuit which is a second filter circuit, is provided between the switch circuit and the low noise amplifier circuit. It is preferable to set up.
  • the low noise amplifier circuit be provided between the switch circuit and the second branching circuit. In this arrangement, since there is no branching circuit on the input side of the low noise amplifier, the insertion loss on the input side can be greatly reduced, and the receiving sensitivity can be dramatically improved.
  • the low noise amplifier circuit comprises a bypass path connected in parallel.
  • the reception signal is weak, increase the isolation of the bypass path and activate the low noise amplifier circuit to increase the reception sensitivity.
  • the received signal is strong, if the bypass path is connected and the low noise amplifier circuit is not operated, distortion of the received signal can be prevented.
  • the second filter circuit is preferably disposed between a branch point of the bypass path and the low noise amplifier circuit and the low noise amplifier circuit.
  • This circuit configuration reduces the insertion loss of the bypass path, and can cope with the reception signal as small as that by the bypass path. Therefore, the received signal strength can be reduced during operation of the low noise amplifier circuit, and distortion of the received signal can be reduced.
  • the high frequency circuit includes a voltage supply terminal for supplying a constant voltage to the first and second power amplifier circuits, and a voltage from the voltage supply terminal for receiving the voltage from the first and second power amplifier circuits, and It is preferable to include a control circuit that outputs a control bias voltage to the low noise amplifier circuit.
  • the control circuit can perform control at a weak current of 1 mA or less and does not require a large bias current (several mA) as in the prior art, thus contributing to low current consumption.
  • the control circuit includes a voltage input terminal, a bias voltage output terminal for the first amplifier circuit, and a bias for the second power amplifier circuit.
  • a second switch, a third switch for turning on and off the bias voltage for the low noise amplifier circuit, and a fourth switch provided between the common terminal of the first and second switches and the voltage input terminal And a resistor connected in parallel to the fourth switch and first to fourth signal input terminals for on / off control of the first to fourth switches.
  • the control circuit is driven by a voltage from one voltage input terminal, and can output a bias voltage for the first and second power amplifier circuits and a bias voltage for the low noise amplifier circuit by switch control.
  • the signal for switch control can be obtained from the logic control terminal integrated in RFIC, baseband IC, etc.
  • the fourth switch By connecting a resistor in parallel with the fourth switch and setting the resistance value higher than the on-resistance value of the fourth switch, the fourth switch is low at the time of turning on of the fourth switch.
  • the resistor can set the bias voltage of the power amplifier circuit high, and when the fourth switch is off, the bias voltage can be set low via the resistors connected in parallel.
  • the operating point of the power amplifier circuit can be made variable, thereby increasing the bias voltage and increasing the output of the power amplifier circuit when the communication distance is extended or when the communication environment is poor etc. Conversely, the communication distance is relatively short. If the case or communication environment is good, the bias voltage can be lowered to reduce current consumption.
  • a resistance S can be provided between the first to third switches and each bias voltage output terminal to adjust the output voltage.
  • a first low pass filter circuit is provided between the first diplexer circuit and the first power amplifier circuit, and a second low pass filter circuit is provided between the first diplexer circuit and the second power amplifier circuit. It is preferable to have a low pass filter circuit. These low pass filter circuits can reduce harmonics generated from the power amplifier circuit.
  • the low noise amplifier circuit instead of providing the low noise amplifier circuit between the switch circuit and the second branching circuit, it is provided between the switch circuit and the first reception terminal, and the first frequency band is provided.
  • Other low noise amplifier circuit for amplifying the received signal of A second branching circuit may be disposed between the low noise amplifier circuit and the other low noise amplifier circuit and the switch circuit. In this configuration, the low noise amplifier circuit is not required to have high flatness of the gain characteristics, and it is sufficient to amplify the signal in the first or second frequency band, so that high gain can be achieved.
  • the first filter circuit may be a high pass filter circuit
  • the second filter circuit may be a band pass filter circuit.
  • the band pass filter circuit can also attenuate low frequency unnecessary radio waves and prevent saturation of the low noise amplifier circuit.
  • a switch circuit for switching the connection between the antenna terminal and the first and second transmission terminals and the connection between the antenna terminal and the first and second reception terminals;
  • a first demultiplexing circuit provided between the switch circuit and the first and second transmission terminals
  • a second diplexer circuit provided between the switch circuit and the first and second receiving terminals
  • a first power amplifier circuit provided between the first branching circuit and the first transmission terminal
  • a second power amplifier circuit provided between the first branching circuit and the second transmission terminal
  • a first low noise amplifier circuit provided between the second demultiplexing circuit and a first receiving terminal
  • a second low noise amplifier circuit provided between the second demultiplexing circuit and the second receiving terminal for amplifying the reception signal of the second frequency band
  • the first filter circuit is provided between the antenna terminal and the switch circuit, and the second filter circuit is provided between the second diplexer circuit and a second low noise amplifier circuit. Is preferred.
  • a band pass filter circuit as a second filter circuit on the input side of a second low noise amplifier circuit handling a low frequency band
  • high attenuation characteristics can be obtained at frequencies lower than the second frequency band. You can get it.
  • 2.4 GHz In a wireless LAN with several bands, it is possible to remove jamming waves of 2 GHz or less generated from portable devices etc. by a band pass filter, and saturation of the second low noise amplifier circuit can be prevented.
  • a first diplexer circuit is provided on the input side of the first low noise amplifier circuit that handles high frequency bands.
  • the demultiplexing circuit has a filter characteristic of attenuating 2.5 GHz or less but passing the 5 GHz band which is the first frequency band.
  • the reception sensitivity in the first frequency band can be improved.
  • the high frequency circuit preferably includes a band pass filter circuit between the first low noise amplifier circuit and the first reception terminal.
  • the band pass filter circuit can remove harmonics from the output of the low noise amplifier circuit.
  • the high frequency circuit is a band pass filter circuit between the first power amplifier circuit and the first transmission terminal, and between the second power amplifier circuit and the second transmission terminal. Is preferred. By providing a band pass filter circuit
  • the high frequency circuit receives a voltage from a voltage supply terminal for supplying a constant voltage to the first and second power amplifier circuits, and a voltage from the voltage supply terminal to the first and second power amplifier circuits. It is preferable to include a control circuit that outputs a control bias voltage. The control circuit may further output a control bias voltage to the first and second low noise amplifier circuits.
  • the control circuit can perform control with a weak current of 1 mA or less and does not require a large bias current (several mA) as in the prior art, thus contributing to low current consumption.
  • the control circuit includes a voltage input terminal, the bias voltage output terminal for the first power amplifier circuit, and a bias voltage output terminal for the second power amplifier circuit.
  • a first switch for turning on and off the bias voltage for the first power amplifier circuit, a second switch for turning on and off the bias voltage for the second power amplifier circuit, and the first and second switches.
  • Common terminal and the voltage input terminal A third switch provided between them, a resistor connected in parallel to the third switch, and first to third signal input terminals for on / off control of the first to third switches. It is preferable to have it.
  • the control circuit further turns on and off the first low noise amplifier circuit bias voltage output terminal, the second low noise amplifier circuit bias voltage output terminal, and the first low noise amplifier circuit bias voltage.
  • the control circuit is driven by a voltage from one voltage input terminal, and bias voltage for the first and second power amplifier circuits and switch for the first and second low noise amplifier circuits by switch control.
  • a bias voltage can be output.
  • Signals for switch control can be obtained from logic control terminals integrated in RFIC, baseband IC, etc.
  • the third switch By connecting a resistor in parallel with the third switch and setting the resistance value higher than the on-resistance value of the third switch, the third switch is turned on at the low level when the third switch is turned on.
  • the resistor By the resistor, the bias voltage to the power amplifier circuit is high, but when the third switch is off, the bias voltage is lowered by passing through the parallel resistor, whereby the operating point of the power amplifier circuit becomes variable. Therefore, when the communication distance is extended or the communication environment is poor, the bias voltage is increased to increase the output of the power amplifier circuit. Conversely, when the communication distance is short or the communication environment is good, etc. It is possible to reduce the current consumption by lowering the voltage S.
  • the output voltage can be adjusted by providing a resistor between the first, second, fourth and fifth switches and each bias voltage output terminal.
  • the first filter circuit is a high pass filter circuit and the second filter circuit is a band pass filter circuit
  • the signal input from the antenna terminal is divided into the circuit of the first frequency band and the circuit of the second frequency band, and the signals from the circuits of the first and second frequency bands are the antenna terminal
  • the diplexer circuit to transmit to the
  • the first switch circuit to switch
  • a first power amplifier circuit provided between the first switch circuit and the first transmission terminal
  • a first noise amplifier circuit provided between the first switch circuit and the first receiving terminal
  • a second switch circuit provided on the circuit side of the second frequency band of the branching circuit, which switches between the transmission path and the reception path;
  • a second power amplifier circuit provided between the second switch circuit and the second transmission terminal
  • a second low noise amplifier circuit provided between the second switch circuit and the second receiving terminal for amplifying the received signal in the second frequency band, wherein the first filter It is preferable that the second filter be provided between the antenna terminal and the branching circuit, and the second filter be provided between the branching circuit and the second switch circuit.
  • the second low noise amplifier circuit handling a low frequency band high attenuation characteristics can be obtained at a frequency lower than the second frequency band by providing a band pass filter circuit as a second filter circuit on the input side.
  • a band pass filter circuit is provided to generate the mobile phone power 2 GHz By eliminating the following radio waves, saturation of the second low noise amplifier circuit can be prevented.
  • a first diplexer circuit is provided on the input side of the first low noise amplifier circuit that handles a high frequency band.
  • the diplexer circuit has a filter characteristic that attenuates 2.5 GHz or less but passes the first 5 GHz frequency band. Since the high frequency band (5 GHz) of the wireless LAN and the frequency band (about 2 GHz or less) of the mobile phone are relatively far apart, radio waves of 2 GHz or less generated from the mobile phone are It can be removed to prevent saturation of the first low noise amplifier circuit. Furthermore, since it is not necessary to use a band pass filter with a relatively large insertion loss on the input side of the first low noise amplifier circuit, the reception sensitivity of the first frequency band can be improved.
  • the high frequency circuit is a band pass filter between the first power amplifier circuit and the first transmission terminal, and between the first low noise amplifier circuit and the first reception terminal.
  • a circuit is provided.
  • a band pass filter circuit between the first power amplifier circuit and the first transmission terminal, unnecessary out-of-band noise included in the transmission signal can be removed.
  • a band pass filter circuit between the first low noise amplifier circuit and the first reception terminal, harmonics included in the output of the low noise amplifier circuit can be removed.
  • the high frequency circuit receives a voltage from a voltage supply terminal for supplying a constant voltage to the first and second power amplifier circuits, and a voltage from the voltage supply terminal to the first and second power amplifier circuits. It is preferable to include a control circuit that outputs a control bias voltage.
  • the control circuit may be configured to output a control bias voltage to the first and second low noise amplifier circuits.
  • the control circuit can perform control with a weak current of 1 mA or less and does not require a large bias current (several mA) as in the prior art, thereby contributing to low current consumption.
  • the control circuit includes a voltage input terminal, a bias voltage output terminal for the first power amplifier circuit, and a bias voltage output for the second power amplifier circuit.
  • a terminal, a first switch for turning off the bias voltage for the first power amplifier circuit, a second switch for turning on / off the bias voltage for the second power amplifier circuit, the first and second switches A third switch provided between a common terminal of the second switch and the voltage input terminal, a resistor connected in parallel to the third switch, and on / off control of the first to third switches It is preferable to have first to third signal input terminals for use.
  • the control circuit further turns on and off the bias voltage output terminal for the first low noise amplifier circuit, the bias voltage output terminal for the second low noise amplifier circuit, and the bias voltage for the first low noise amplifier circuit.
  • Switch a fifth switch for turning on and off the bias voltage for the second low noise amplifier circuit, and fourth and fifth signal input terminals for on / off control of the fourth and fifth switches.
  • the control circuit is driven by a voltage from one voltage input terminal, and the first and second power amplifiers are controlled by switch control.
  • a bias voltage for the circuit and a bias voltage for the first and second low noise amplifier circuits can be output.
  • a signal for switch control can be obtained from a logic control terminal integrated in RFIC, baseband IC and the like.
  • the third switch By connecting a resistor in parallel with the third switch and setting its resistance value higher than the on-resistance value of the third switch, the third switch is turned on at the low time when the third switch is turned on.
  • the bias voltage of the power amplifier circuit is increased due to the resistance
  • the third switch is off, the bias voltage is lowered by passing through the parallel resistor, whereby the operating point of the power amplifier circuit becomes variable. Therefore, when the communication distance is extended or the communication environment is poor, the bias voltage is increased to increase the output of the power amplifier circuit. Conversely, when the communication distance is short or the communication environment is good, etc. It is possible to reduce the current consumption by lowering the voltage.
  • the output voltage can be adjusted by providing a resistor between the first, second, fourth and fifth switches and each bias voltage output terminal.
  • a high frequency component of the present invention having the above high frequency circuit is
  • the high-frequency component comprises a single-layered laminate composed of a plurality of ceramic dielectric layers having an electrode pattern formed thereon, and an element mounted on the surface of the laminate, and the first and second demultiplexing circuits are provided.
  • the circuit is configured by the electrode pattern in the stacked body, and the switching circuit, the first and second power amplifier circuits, and the semiconductor element for the low noise amplifier circuit are mounted on the stacked body. It features. This configuration miniaturizes high frequency components and reduces insertion loss due to wiring resistance.
  • the semiconductor device for the control circuit can also be mounted on the laminate.
  • a communication device of the present invention includes the above-described high frequency component.
  • the high frequency circuit and the high frequency component of the present invention have good reception sensitivity of wireless communication between electronic and electric devices.
  • a circuit compliant with the 11n standard can be configured as a high-frequency component with a small size and low current consumption.
  • the first and second frequency bands are respectively 5 GHz band and 2.4 GHz band, and IEEE802.11a, IEEE802.11b and IEEE802.11g.
  • a communication device such as a mobile phone provided with a dual band RF front end circuit that can be used for the communication system of the present invention is obtained.
  • FIG. 1 is a block diagram showing a high frequency circuit according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing an example of a control circuit used in the present invention.
  • FIG. 3 is a block diagram showing an example of a control circuit and a detection circuit used in the present invention.
  • FIG. 4 is a view showing an equivalent circuit of an example of a high pass filter circuit used in the present invention.
  • FIG. 5 is a view showing an equivalent circuit of another example of the high pass filter circuit used in the present invention.
  • FIG. 6 is a view showing an equivalent circuit of still another example of the high pass filter circuit used in the present invention.
  • FIG. 7 is a view showing an equivalent circuit of still another example of the high pass filter circuit used in the present invention.
  • FIG. 8 is a diagram showing an example of a low noise amplifier circuit.
  • FIG. 9 is a view showing another example of the low noise amplifier circuit.
  • FIG. 10 is a diagram showing still another example of the low noise amplifier circuit.
  • FIG. 11 is a diagram showing still another example of the low noise amplifier circuit.
  • FIG. 12 is a graph showing the gain characteristics of the low noise amplifier circuit.
  • FIG. 13 is a block diagram showing an example of an auxiliary high frequency circuit.
  • FIG. 14 (a) is a block diagram showing an example of a low noise amplifier device in a sub high frequency circuit
  • FIG. 14 (b) is a block diagram showing another example of the low noise amplifier device in the sub high frequency circuit.
  • FIG. 14 (c) is a block diagram showing still another example of the low noise amplifier device in the sub high frequency circuit.
  • FIG. 14 (d) is a block diagram showing still another example of the low noise amplifier device in the sub high frequency circuit.
  • FIG. 15 One equivalent circuit of the bypass switch portion in the low noise amplifier device shown in FIG. It is a figure which shows an example.
  • FIG. 17 is a view showing a further example of the equivalent circuit of the bypass switch portion in the low noise amplifier device shown in FIG. 14 (a).
  • FIG. 18 A diagram showing a further example of the equivalent circuit of the bypass switch portion in the low noise amplifier device shown in FIG. 14 (a).
  • FIG. 19 is a block diagram showing another example of the sub high frequency circuit.
  • FIG. 21 is a perspective view showing a high frequency component according to the first embodiment of the present invention.
  • FIG. 23 is a block diagram showing an example of a high frequency circuit according to a second embodiment of the present invention.
  • Garden 24 is a diagram showing an equivalent circuit of a branching circuit and a band pass filter circuit according to a second embodiment of the present invention.
  • FIG. 27 is a block diagram showing a control circuit and a detection circuit according to a second embodiment of the present invention.
  • Garden 27 is a block diagram showing another example of the high-frequency circuit according to the second embodiment of the present invention.
  • Garden 28] is a block diagram showing a control circuit according to the second embodiment of the present invention.
  • Garden 29] It is a perspective view showing a high frequency part according to a second embodiment of the present invention.
  • FIG. 34 is a perspective view showing a high frequency component according to a third embodiment of the present invention.
  • FIG. 35 is a view showing an equivalent circuit of an example of a conventional high frequency circuit.
  • FIG. 36 is a block diagram showing another example of a conventional high frequency circuit.
  • the high frequency circuit of the present invention is a high frequency circuit for wireless communication that selectively uses a first frequency band and a second frequency band lower than the first frequency band, and includes an antenna terminal; A first transmission terminal to which a transmission signal of the first frequency band is input, a second transmission terminal to which a transmission signal of the second frequency band is input, and a reception signal of the first frequency band Is output, and a second reception terminal from which the reception signal of the second frequency band is output. Furthermore, it has at least one demultiplexing circuit that distributes the paths of the signal of the first frequency band and the signal of the second frequency band, and at least one switch circuit that switches the paths of the transmission signal and the reception signal. A path of the antenna terminal and the first transmission terminal, the antenna terminal and the second transmission terminal, the antenna terminal and the first reception terminal, and the antenna terminal and the second reception terminal are configured. Ru.
  • one switch circuit may be used to transmit the first and second transmission terminals, or Switch the connection with the first and second reception terminals.
  • the transmission path in the latter stage of the switch circuit is provided with two demultiplexing circuits, ie, a first demultiplexing circuit and a second demultiplexing circuit, in the receiving path. It divides into the route of the signal of two frequency bands.
  • the switch circuit for switching the path between the transmission signal and the reception signal is separately used in the first and second frequency bands
  • the signal path is one branching circuit and the first and second frequency bands are used.
  • switch circuits respectively connected to the signal paths of the first and second frequency bands to connect the first transmission terminal and the first reception terminal, and the second transmission terminal. Switch the connection between and and the second receiving terminal.
  • At least the second frequency is provided between the switch circuit and the second reception terminal.
  • a low noise amplifier circuit is provided which amplifies the band received signal.
  • another low noise amplifier circuit may be provided separately from the low noise amplifier circuit, or the received signal in the second frequency band is amplified.
  • the low noise amplifier circuit may be shared.
  • the antenna that passes the reception signal of the second frequency band between the antenna terminal and the low noise amplifier circuit and blocks unnecessary waves on the lower frequency side than the second frequency band.
  • the first filter circuit close to the terminal and the low noise amplifier circuit are provided with a second filter circuit near them.
  • the first filter circuit and the second filter circuit may be disposed via the switch circuit and the Z or branching circuit.
  • the stop band of the first filter circuit is on the lower frequency side than the stop band of the second filter circuit.
  • many signals with different frequency bands and transmission / reception modes pass in the region near the antenna terminal.
  • the signal loss of transmission and reception can be reduced. It can be suppressed.
  • FIG. 1 shows a first embodiment of the present invention that can be shared by two communication systems of 2.4 GHz band wireless LAN (IEEE802.11b and / or IEEE802.11g) and 5 GHz band wireless LAN (IEEE802.11a).
  • 2 shows a high frequency circuit.
  • This high frequency circuit includes a switch circuit (SPDT) 101 connected to the antenna terminal Ant connected to the multiband antenna, and a first diplexer circuit (DIP) connected to the transmission path side of the switch circuit (SPDT) 101. And a high pass filter circuit (HPF) 118 as a first filter provided between the antenna terminal Ant and the switch circuit 101.
  • SPDT switch circuit
  • DIP first diplexer circuit
  • HPF high pass filter circuit
  • the first demultiplexing circuit 103 passes the transmission signal of the 2.4 GHz band wireless LAN but attenuates the transmission signal of the 5 GHz band wireless LAN, and passes the transmission signal of the 5 GHz band wireless LAN. And the high-frequency filter circuit that attenuates the transmission signal of the 2.4 GHz band wireless LAN.
  • a first power amplifier circuit (PA5) 105 is connected to the high-frequency side filter circuit of the first diplexer circuit 103 via a low pass filter circuit (LPF) 111, and is thus reduced.
  • the first power amplifier circuit 105 includes, in order, the first band pass filter circuit (BPF) 107, the balanced-unbalanced circuit (BAL) l 16, and the first transmission terminal (the transmission terminal of the 5 GHz band wireless LAN).
  • BPF band pass filter circuit
  • BAL balanced-unbalanced circuit
  • TX5P, TX5N are connected. Due to the balanced-unbalanced circuit 116, the first transmission terminals TX5P and TX5N become balanced terminals.
  • the band pass filter circuit 107 removes unnecessary out-of-band noise included in the transmission signal.
  • the first power amplifier circuit 105 amplifies the transmission signal input from the transmission side circuit of the 5 GHz band wireless LAN.
  • the low pass filter circuit 111 attenuates harmonics generated from the first power amplifier circuit 105.
  • the high frequency side filter circuit of the first diplexer circuit 103 also attenuates the harmonics.
  • a low pass filter (LPF) 112 In the low frequency side filter circuit of the first diplexer circuit 103, a low pass filter (LPF) 112, a second power amplifier circuit (PA2) 106, and a second band pass filter circuit (BPF) 108 are sequentially arranged. , And second transmission terminal (transmission terminal of 2.4 GHz band wireless LAN) TX2 is connected.
  • the band pass filter circuit 108 removes unnecessary out-of-band noise included in the transmission signal.
  • the second power amplifier circuit 106 amplifies the transmission signal input from the transmission side circuit of the 2.4 GHz band wireless LAN.
  • the low pass filter 112 passes the amplified transmission signal but attenuates harmonics generated by the second power amplifier circuit 106.
  • a high pass filter circuit (HPF) 102 as a second filter, a low noise amplifier circuit (LNA) 109 and a second demultiplexing circuit (DIP) 110 are sequentially connected to the reception path side of the switch circuit 101. ing. It is desirable that the low noise amplifier circuit 109 cover a wide band so as to amplify received signals of wireless LANs in the 2.4 GHz band and 5 GHz band. By sharing the low noise amplifier circuit 109 in the 2.4 GHz band and 5 G Hz band, it becomes possible to miniaturize and reduce the cost without requiring two low noise amplifiers as in the conventional circuit configuration. Receive without using branching circuit and bandpass circuit on the input side The sensitivity can be improved.
  • the second demultiplexing circuit 110 passes the received signal of the 2.4 GHz band wireless LAN but attenuates the received signal of the 5 GHz band wireless LAN, and passes the received signal of the 5 GHz band wireless LAN. It consists of a high-frequency filter circuit that attenuates the received signal of power S2.4 GHz band wireless LAN.
  • the combination of the low frequency side filter circuit and the high frequency side filter circuit is not limited to the above, and a low pass filter circuit, a high pass filter, a band pass filter and It can be configured by appropriately combining notch filters.
  • the signal amplified by the low noise amplifier 109 is demultiplexed by the second demultiplexing circuit 110, and the received signal of the 2.4 GHz band wireless LAN is transmitted to the second band pass filter circuit (BPF) 113.
  • Reception terminal (reception terminal of 2.4 GHz band wireless LAN)
  • the received signal of 5 GHz band wireless LAN which is output to RX2
  • the signal is output to the first receiving terminal (receiving terminal of 5 GHz band wireless LAN) RX5P and RX5N via this. Due to the balanced-unbalanced circuit 117, the first receiving terminals RX5P and RX5N become balanced terminals.
  • the voltage supply terminal VCC supplies a constant voltage to the first and second power amplifier circuits (PA 5, PA 2) 105 and 106 and the control circuit (Cont. IC) 120.
  • the control circuit 120 includes a voltage input terminal Vc connected to the voltage supply terminal VCC, a bias voltage output terminal Vb5 for the first power amplifier circuit (PA5), and a second power amplifier.
  • a third switch (SW3) provided between them, a fourth switch (SW4) for turning on and off the bias voltage for the low noise amplifier circuit, and a resistor R1 connected in parallel to the third switch (SW3).
  • SW1 Input terminal PA 500N, terminal PA20N for inputting on / off control signal of second switch (SW2), and terminal HI / LO for inputting signal for on / off control of third switch (SW3)
  • SW3 The fourth A terminal LNAON for inputting a signal for on / off control of the switch (SW4) is provided.
  • the control circuit 120 can be constituted by a CMOS chip in which a plurality of analog switches are integrally integrated, for example, if the first to fourth switches (SW1 to SW4) can be turned on and off in a direct current manner. .
  • the on-resistance of the analog switch is preferably 100 ⁇ or less.
  • the control circuit 120 shares the voltage of the voltage supply terminal VCC with the first and second power amplifier circuits 105 and 106, and bias voltages to the first and second power amplifier circuits 105 and 106 and the low noise amplifier circuit 109. Supply. Low current control becomes possible by using a switch switchable by a signal of weak current (1 mA or less) in the control circuit 120.
  • the resistor R1 in parallel with the third switch (SW3) has a resistance value of 500 ⁇ or more
  • the resistance value of the parallel circuit of the third switch (SW3) and the resistor R1 is the third switch When SW3) is on, it can be set as high as 500 ⁇ or more when it is low.
  • the control signal from the signal input HI / LO turns on the third switch (SW3)
  • the bias voltage to the power amplifier circuit increases, and when the third switch (SW3) turns off, the power amplifier circuit is turned on.
  • the bias voltage of the Therefore, the bias voltage is increased to increase the output of the power amplifier circuit when the communication distance is extended or when the communication environment is poor, and the bias voltage is increased when the communication distance is short or when the communication environment is good. It is possible to lower current consumption by lowering
  • the first and second resistors are set appropriately.
  • the bias voltage to the power amplifier circuits 105 and 106 and the low noise amplifier circuit 109 can be adjusted.
  • the detection outputs of the detection diodes D1 and D2 for the first and second power amplifier circuits PA5 and PA2 are output to the detection terminal VPD.
  • the preferable relationship between the detection diodes Dl and D2 and the control circuit 120 is shown in FIG.
  • the anode of the detection diode D1 is connected to the bias voltage output terminal Vb5 of the first amplifier circuit PA5 via the resistor R6.
  • the anode is connected to the bias voltage output terminal Vb2 of the second power amplifier circuit PA2 via a resistor R7.
  • the force saw of both detection diodes Dl and D2 is connected to the common detection terminal VPD via a voltage smoothing circuit consisting of a capacitor C1 and a resistor R5.
  • Common use of the detection terminal contributes to miniaturization. This configuration is effective, for example, in forming a high frequency component having the high frequency circuit of the present invention using a ceramic laminated substrate.
  • the threshold voltage of a general diode for high frequency is limited to about 0.1 to 1 V, when it is used to monitor the output of a power amplifier circuit, it can not be detected in a low power region. ,.
  • the bias voltages can be detected on the detection diodes Dl and D2, the effective threshold voltage can be reduced and detection can be performed even in the low output region.
  • the bias voltage can be applied from the bias power supply of the power amplifier circuit to the detection diode, the circuit requiring no separate control terminal can be simplified.
  • the resistance value of the resistors R6 and R7 is desirably 1 or more to prevent the output of the power amplifier circuit from returning to the input of the power amplifier circuit via the detection circuit. This can prevent oscillation of the power amplifier circuit and characteristic deterioration.
  • the bias voltage Vb5 to detection diode D1 is higher than the threshold voltage Vth of the detection diode, then (Vb5-Vth) X [R5 / (R5 + R6) ]] Is output to detection voltage terminal VPD. That is, the offset voltage is superimposed on the detection output proportional to the output of the power amplifier circuit.
  • the resistors R6 and R7 may be provided as a CMOS chip integrated with the control circuit 120.
  • the switch circuit 101 mainly includes switching elements such as a field effect transistor (FET) and a diode, and appropriately includes an inductance element and a capacitor, and is preferably, for example, an SPDT (Single Pole Dual Throw) type. Les. TX / RX0 and TX / RX1 input to the switch circuit 101 are switching signals of the switch circuit 101.
  • FET field effect transistor
  • SPDT Single Pole Dual Throw
  • FIG. 4 shows an example of an equivalent circuit of a high pass filter circuit (HPF) 118 provided between the switch circuit 101 and the antenna terminal Ant.
  • the high pass filter circuit 118 is provided between an inductance element L11 provided between the terminal PI connected to the antenna terminal Ant and the ground electrode, and a terminal P2 connected to the terminal P1 and the switch circuit 101.
  • Capacitance element CI 1 And a series resonant circuit of an inductance element L12 and a capacitance element C12 provided between the terminal P2 and the ground electrode.
  • FIG. 5 shows another example of the equivalent circuit of the high pass filter circuit 118.
  • the inductance element L11 which is grounded, has the function of preventing damage to the switch circuit and the like due to electrostatic discharge (ESD) power in the antenna.
  • the inductance element L11 is preferably 10 nH or less.
  • Wireless LAN transmit / receive circuits have often been incorporated in mobile phones. Since the signal of the mobile phone is relatively close to the 2.4 GHz band of wireless LAN, which has a range of about 0.8 to 2 GHz, interference is likely to occur. If interference signals enter, the low noise amplifier circuit may saturate, and wireless LAN reception may not be possible. Therefore, the no-pass filter circuit 118 attenuates the signal of 2 GHz or less so that the mobile phone signal does not interfere. For this reason, it is preferred that the high pass filter circuit 118 have one or more attenuation poles between about 0.8 and 2 GHz. This function is realized by a series resonant circuit of the inductance element L12 and the capacitance element C12.
  • a second filter is provided between the switch circuit 101 and the low noise amplifier circuit 109. It is preferable to provide the high pass filter circuit 102 as.
  • the high pass filter circuit 102 the circuit of FIG. 6 can be used in addition to the circuit of FIG.
  • This high-pass filter circuit is provided between the capacitance elements C31 and C32 provided between the terminal P3 connected to the switch circuit 101 and the terminal P4 connected to the low noise amplifier circuit 109, and between the capacitance elements C31 and C32 and the ground. It has a series resonance circuit of an inductance element L31 and a capacitance element C33 provided between the electrodes.
  • the high pass filter circuit also preferably has one or more attenuation poles between about 0.8 and 2 GHz.
  • This high-pass filter circuit includes capacitance elements C41 to C43 provided between terminal P3 connected to switch circuit 101 and terminal P4 connected to low noise amplifier circuit 109, and between capacitance elements C41 and C42 and a ground electrode. And a series resonance circuit consisting of an inductance element L41 and a capacitance element C44, and a series resonance circuit consisting of an inductance element L42 and a capacitance element C45 provided between the capacitance elements C42 and C43 and the ground electrode. And a circuit. In this high pass filter circuit, two series The attenuation pole of the resonant circuit can be set independently.
  • the second filter has more stages than the first filter because the second filter has steeper filter characteristics.
  • the power S the circuit configuration of which the high-pass filter circuit is illustrated in FIGS.
  • a band pass filter circuit can be used instead of a high pass filter circuit.
  • the insertion loss of a force band pass filter circuit is up to about 2 dB and is larger than the insertion loss of a high pass filter circuit (up to about 0.2 dB).
  • High pass filter circuit is preferred. Since the high pass filter circuit can be shared by the first and second frequency bands, the combination with the low noise amplifier circuit shared by the first and second frequency bands is suitable for downsizing and improvement of reception sensitivity.
  • Branching circuits 103 and 110, low pass filter circuits 111 and 112, band pass filter circuits 107, 108, 113 and 114, and balanced-unbalanced circuits 116 and 117 are LCs in which an inductance element and a capacitance element are combined. It can be configured by a circuit.
  • a high frequency signal having a high pass filter circuit and low noise amplifier circuit shared by communication systems of a plurality of frequency bands, and a demultiplexing circuit connected to the output side of the low noise amplifier circuit to demultiplex received signals of a plurality of frequency bands.
  • the circuit is of the type j, which consumes less current. It is possible to suppress the intermodulation distortion of the low noise amplifier circuit derived from the low frequency signal of the mobile phone etc. With this circuit configuration, it is not necessary to provide a filter circuit for each frequency band or to make the filter circuit variable, and it is possible to suppress the complication of the filter circuit and the increase in current consumption.
  • the arrangement of the low noise amplifier circuit 109 and the second branching circuit 110 may be interchanged.
  • a low noise amplifier circuit for amplifying the reception signal of the first frequency band is provided in the path connected to the first reception terminal on the reception terminal side of the second demultiplexing circuit 110, and the second reception terminal
  • Another low noise amplifier circuit for amplifying the received signal in the second frequency band is provided in the connection path, and a no pass filter is provided on the input side of the second demultiplexing circuit 110.
  • the high pass filter is shared by the first and second frequency bands, but the low noise amplifier circuit is provided for each frequency band to be used. Therefore, a low noise amplifier circuit having a high gain can be used without the need for a wide band low noise amplifier circuit.
  • the low noise amplifier circuit 109a shown in FIG. 8 can also be used, but a wideband low noise amplifier circuit 109b shown in FIG. 9 with flat gain characteristics shown in FIG. 9 is preferred for amplifying signals in the first and second frequency bands.
  • the low noise amplifier circuit 109b includes a transistor Tr forming an amplification circuit of the low noise amplifier circuit LNA, an input path connected to the base of the transistor Tr, an output path connected to the collector of the transistor Tr, and a node of the input path.
  • a feedback circuit having a resistance element RL1, an inductance element 113 and a capacitance element CL2 connected in series between the node 121 and the node 122 of the output path.
  • Capacitance elements CL1 to CL3 cut DC current, and resistance elements RL2 and RL3 adjust the operating point of the low noise amplifier circuit LNA.
  • the inductance element LL1 acts as a choke inductor and passes DC current from the power supply VcL, but prevents high frequency signals in the pass band from leaking to the power supply VcL. Although a choke inductor may be placed on the power supply VbL line, this is not necessary because the value of the resistance element RL2 is as large as several tens.
  • Resistive element RL1 performs wide-band input / output matching by feeding back part of the output signal to the input side.
  • Capacitance elements CL4 to CL6 are noise cut capacitors that absorb noise from the power supply.
  • the capacitance elements CL4 to CL6 be set to have a substantially short impedance at the pass band frequency.
  • the inductance elements 111 and 112 function as choke inductors, and the inductance element 113 regulates signal feedback.
  • FIG. 10 shows still another example of the low noise amplifier circuit.
  • This low noise amplifier circuit 109c is connected between the transistor, the input path connected to the base of the transistor Tr, the output path connected to the collector of each transistor, and the node 121 of the input path and the node 122 of the output path. It has a feedback circuit with a resistor RL1 and a capacitor CL7 provided between the node 121 of the input path and the base of the transistor Tr. By connecting the capacitor CL7 between the node 121 and the base of the transistor Tr, the gain characteristic is flattened.
  • the CL7 has low impedance at low frequencies and high frequencies, thus reducing the frequency dependence of the gain of the low noise amplifier circuit
  • the gain difference at frequencies 2.4 GHz and 5.85 GHz can be less than 2 dB.
  • the width of the gain is 2 dB or less even at 2 to 6 GHz.
  • gains of more than 12 dB can be obtained in the operating frequency range of 2 ⁇ 4 ⁇ 55 ⁇ 85 GHz.
  • the configuration is suitable for amplification of the reception signal of a multiband communication system, and if the gain difference between two or more frequency bands is 5 dB or less, in particular 4 dB or less, an excellent reception side can be obtained.
  • High frequency circuit for multi-band communication with circuits [for example, two communication systems of 2.4 GHz band wireless LANs GEEE802.11 b and Z or IEEE 802.11g) and 5 GHz band wireless LANs (IEEE 802.11a and / or IEEE 802.11h)] Is obtained.
  • the capacitor CL7 In the operating frequency range, it is preferable to set the capacitance of the capacitor CL7 smaller than the capacitance of the DC cut capacitor CL1, so that the DC cut capacitor CL1 can be regarded as short-circuit but the capacitor CL7 functions effectively.
  • the capacitor CL7 In the low noise amplifier circuit 109c shown in FIG. 10, since the feedback amount is determined only by the resistor RL1, the capacitor CL7 is not required to have a large capacitance, for example, a low capacitance of about 2 pF in the 2.4 GHz band. It can be used as part of a circuit.
  • the small-capacity capacitor CL7 can reduce the time required for the rise of the signal due to the on-off control of the transistor base voltage.
  • the rise time of the low noise amplifier circuit 109a in which the capacitor CL2 is 15 pF is ⁇ sec of the signal due to the on / off control of the transistor base voltage, while the rise is 0.1 / 0.1 in the low noise amplifier circuit 109c in which CL7 is 2 pF. It is i sec.
  • FIG. 1 Yet another example of the low noise amplifier circuit is shown in FIG.
  • an inductance element LL2 is further connected in series to the resistor RL1 of the feedback circuit. Since the impedance of the inductance element LL2 is large at high frequencies, the amount of feedback becomes smaller at high frequencies than low frequencies, the gain characteristics at high frequencies become high, and the frequency dependence of the gain becomes even flatter.
  • the gain difference at frequencies 2.4 GHz and 5.85 GHz can be less than 1 dB, and the gain width can be less than 1 dB even at 2 to 6 GHz. Gain of 13 dB or more can be obtained in the operating frequency range of 2.4-5.85 GHz.
  • the inductance element LL2 has a self-resonant frequency higher than the passband and a Q value of 10 or more in the passband.
  • This low noise amplifier circuit different The gain difference of the low noise amplifier circuit in several bands can be suppressed to, for example, 4 dB or less.
  • FIG. 12 shows gain characteristics of low noise amplifier circuits 109a to 109d (FIGS. 8 to 11) having various feedback circuits.
  • the low noise amplifier circuit 109b in which the feedback circuit is provided with the inductance element 113 has a gain with a peak suppressed and a wide band.
  • the difference in gain between frequencies 2.4 GHz and 5.85 GHz, which differ by 2 GHz or more, is 5.1 dB for the low noise amplifier circuit 109a, and 4 dB or less for the low noise amplifier circuit 109b.
  • the width of the gain between 2 and 6 GHz is 6 dB for the low noise amplifier circuit 109a, while it is 5 dB or less for the low noise amplifier circuit 109b.
  • the low noise amplifier circuit 109b secures a gain of 13 dB or more in the operating frequency band of 2.4 to 5.85 GHz.
  • the gain characteristics of the low noise amplifier circuits 109c and 109d are further flattened.
  • the sub high frequency circuit 123 shown in FIG. 14A In order to prevent distortion of the received signal by the low noise amplifier circuit LNA when the received signal from the antenna is strong, it is preferable to provide the sub high frequency circuit 123 shown in FIG.
  • a SPST (Single Pole Single Throw) type bypass switch is connected in parallel with the low noise amplifier circuit LNA.
  • the SPST switch it is possible to use a circuit in which field effect transistors FET1 and FET2 are connected in series as shown in FIG.
  • a PIN diode may be used instead of the field effect transistor.
  • the bypass switch SPST When the received signal is strong, the bypass switch SPST is turned ON by applying, for example, 3 V from the power supply terminal Vbyp, and the low noise amplifier circuit LNA is not operated by applying, for example, 0 V from the power supply terminal VbL. Do. Since the low noise amplifier circuit LNA in non-operation is high in isolation, the received signal passes through the bypass switch SPST to reach the branching circuit DIP. Even when a low noise amplifier circuit LNA receives a signal that is strong enough to saturate, the received signal does not pass through the low noise amplifier circuit LNA but passes through the bypass switch SPST, so that the received signal can be prevented from being distorted.
  • the bypass switch SPST When the received signal is weak, the bypass switch SPST is turned off by applying 0 V, for example, from the power supply terminal Vbyp, and the low noise amplifier circuit LNA is operated by applying 3 V, for example, from the power supply terminal VbL. Since the bypass switch SPST in the OFF state has high isolation, The signal passes through the low noise amplifier circuit LNA to reach the demultiplexer circuit DIP. At this time, since the low noise amplifier circuit LNA is operating, the received signal is amplified, and the receiving sensitivity can be improved.
  • the high pass filter circuit HPF is disposed between the bypass switch SPDT1 on the antenna side and the low noise amplifier circuit LNA.
  • SPDT1 corresponds to the branch point
  • SPDT2 corresponds to the junction of the bypass path and the low noise amplifier circuit LNA.
  • the received signal strength can be reduced when operating the low noise amplifier circuit LNA, and distortion of the received signal can be reduced by z j.
  • the minimum received signal strength of the bypass path side terminal of bypass switch SPDT1 for using a bypass path is -10 dBm
  • the insertion loss of high-pass filter 124 is 1 dB
  • the insertion loss of bypass switch SPDT1 is 0.5
  • the minimum received signal strength at the terminal la for enabling the bypass path is ⁇ 8.5 d
  • the minimum received signal strength at the input of the low noise amplifier circuit LNA is 10 dBm.
  • the minimum received signal strength at the terminal P1 which enables the bypass path is 9.5 dBm
  • the minimum received signal strength at the input of the low noise amplifier circuit LNA is It is dBm. Comparing the circuits of FIG. 14 (b) and FIG. 14 (c), since the lowest reception signal in the bypass path can be reduced by the insertion loss of the high pass filter 124, an improvement in the reception sensitivity can be expected.
  • SPST type switches shown in FIG. 14 (d) may be provided in the bypass path.
  • the sub high frequency circuit 123 shown in FIG. 19 includes a high pass finisher circuit HPF having a pass band of 2.4 to 5 GHz, a low noise amplifier circuit 125 for amplifying a received signal passing through the high pass filter circuit HPF, and 2.4 GHz. It has a TRIZ circuit that demultiplexes the received signals in the 3.5 GHz and 5 GHz bands.
  • Terminal P1 is connected to the antenna side circuit, terminal P2 to the 5 GHz band receiver side circuit, terminal P3 to the 2.4 GHz band receiver circuit, and terminal P4 to the 3.5 GHz band receiver circuit.
  • IEEE 802.16 WiMAX
  • its derivatives are used.
  • the sub high frequency circuit 123 provided in the high frequency circuit of the present invention is a high pass filter circuit having a reception frequency band as a pass band, and a reception connected to the high pass filter circuit and passing through the high pass filter circuit.
  • the high pass filter circuit includes: a low noise amplifier device having a low noise amplifier circuit for amplifying a signal; and a demultiplexing circuit connected to the output side of the low noise amplifier device for demultiplexing reception signals of a plurality of frequency bands.
  • the noise amplifier device is shared by communication systems of a plurality of frequency bands.
  • FIG. 20 shows an example of a high frequency switch circuit that can be shared by two communication systems, a 2.4 GHz band wireless LAN and a 5 GHz band wireless LAN, including the sub high frequency circuit 123.
  • This high frequency switch circuit includes a transmission path between the antenna terminal Ant and the transmission terminals (Tx2G, Tx5G), a reception path between the antenna terminal Ant and the reception terminals (Rx2G, Rx5G), an antenna terminal Ant A sub-high frequency circuit provided in a path between the Bluetooth transmit / receive terminal (BLT) and the Bluetooth path, a switch circuit SP3T for switching these paths, and a path between the switch circuit SP3T and the receive terminals (Rx2G, Rx5G) And 123.
  • a high pass filter HPF1 is connected to the antenna terminal Ant connected to the multiband antenna, and a switch circuit SP3T Connected High-pass filter HPF1 attenuates frequencies below approximately 1 GHz and prevents damage to semiconductor components such as switch circuits if there is electrostatic discharge in the antenna.
  • Switch circuit SP3T switches the connection between the antenna and the transmission terminal, the reception terminal, and the Bluetooth transmission / reception terminal. If the transmission / reception terminal for Bluetooth is not necessary, an SPDT type switch circuit can be used instead of the switch circuit SP3T.
  • the detection circuit DET is connected to the transmission terminal of the switch circuit SP3T, and the first branching circuit DIPT1 is connected to the detection circuit DET.
  • the detection circuit DET includes a directional coupler CPL, a termination resistor connected to one end of the sub-line of the directional coupler CPL, a Schottky diode connected to the other end of the sub-line, and a Schottky diode. It is comprised by the smoothing circuit which consists of a resistance element and a capacitor element which were connected.
  • the main line of the directional coupler CPL is connected to the switch circuit SP3T and the first diplexer circuit DIPT1.
  • the detection circuit DET outputs a DC voltage corresponding to the transmission signal current from the detection output terminal Det.
  • the detection circuit DET may be provided between the first diplexer circuit DIPT1 and each power amplifier circuit PA2 or PA5. However, the detection circuit is powerful and suitable for miniaturization.
  • a detection circuit DET can be provided in each power amplifier circuit PA2, PA5. The DC voltage output from the detection output terminal Det of the detection circuit DET is fed back via the RFIC circuit etc. and used for control of the power amplifier circuits PA2 and PA5.
  • a first pass filter DPF1 is connected to the low frequency side filter circuit of DIPT1 in order with a band pass filter BPF3, a high frequency amplification circuit PA2, a band pass filter BPF4, and a transmit terminal Tx2G of a 2.4 GHz band wireless LAN. . If a balanced output is required at the transmit terminal Tx2G, connect a balanced-unbalanced conversion circuit. Bandpass filter circuit BPF4 removes unnecessary out-of-band noise included in the transmission signal.
  • the high frequency amplification circuit PA2 amplifies the transmission signal input from the transmission side circuit of the 2.4 GHz band wireless LAN.
  • the bandpass filter BPF3 passes the transmission signal amplified by the high frequency amplification circuit PA2, but removes noise and harmonics generated by the high frequency amplification circuit PA2.
  • the low frequency side filter circuit of the first diplexer circuit DIPT1 also attenuates the harmonics generated from the high frequency amplifier circuit PA2.
  • the band pass filter circuits BPF3 and BPF4 may be omitted depending on the desired characteristics, or may be changed to a low pass filter circuit, a high pass filter circuit, or a notch filter circuit.
  • a low-pass filter circuit L PF, a high-frequency amplifier circuit PA 5, a high-pass filter circuit HPF 4, and a transmission terminal Tx 5 G of 5 GHz band wireless LAN are connected to the high frequency side filter circuit of the first diplexer circuit DIPT 1 in order. There is. If a balanced output is required for the Tx terminal Tx5G, connect a balanced-unbalanced converter circuit.
  • High pass filter circuit HPF4 removes unnecessary noise outside the low band included in the transmission signal.
  • the high frequency amplification circuit PA5 amplifies the transmission signal input from the transmission side circuit of the 5 GHz band wireless LAN.
  • the low pass filter circuit LPF passes the transmission signal amplified by the high frequency amplifier circuit PA5 but attenuates harmonics generated by the high frequency amplifier circuit PA5.
  • the high pass filter circuit HPF 4 and the low pass filter circuit LPF may be omitted according to the desired characteristics, or may be changed to a band pass filter circuit or a notch filter circuit.
  • the sub high frequency circuit 123 is connected to the reception terminal of the switch circuit SP3T.
  • the sub-high frequency circuit 123 is a high-pass filter circuit HPF that uses the 2.4 GHz and 5 GHz band wireless LAN frequency bands as a passband, and a low noise amplifier that amplifies the received signal in the 2.4 GHz and 5 GHz band wireless LAN.
  • the details of the sub high frequency circuit 123 have already been described, and thus will not be described.
  • a band pass filter circuit BPF1, an equilibrium-unbalance conversion circuit BAL1, and a reception terminal Rx2G of a 2.4 GHz band wireless LAN are connected to the terminal P3 of the sub high frequency circuit 123 in order.
  • Bandpass filter circuit BPF1 removes unnecessary out-of-band noise included in the received signal of 2.4 GHz band wireless LAN received from the antenna.
  • Balance-to-balance conversion circuit BALI balances the circuit to improve the noise resistance of the 2.4 GHz wireless LAN receiver circuit. Ideally, the two equal-sized signals 180 ° out of phase are output from the two balanced reception terminals of the 2.4 GHz wireless LAN.
  • Balanced-unbalanced conversion circuit BALI has good impedance conversion function.
  • the band pass filter circuit BPF1 may be omitted or may be changed to a high pass filter circuit or a notch filter circuit according to a desired characteristic.
  • a high pass filter circuit HPF2, a balanced-unbalanced conversion circuit BAL2, and a reception terminal Rx5G of the 5 GHz band wireless LAN are connected to the terminal P2 of the sub high frequency circuit 123 in order.
  • High pass Filter circuit HPF2 removes unnecessary low-band noise from the received signal of the 5 GHz band wireless LAN received from the antenna.
  • Balance-unbalance conversion circuit BAL2 balances the noise to improve the noise resistance of the 5 GHz band wireless LAN receiver circuit. Ideally, two balanced signals of the same amplitude but 180 ° out of phase are output from the two balanced reception terminals of the 5 GHz band wireless LAN.
  • Balance-unbalance conversion circuit BAL2 may have an impedance conversion function.
  • the pass filter circuit HPF 2 may be omitted or changed to a band pass filter circuit or a notch filter circuit according to the desired characteristics.
  • the throttle circuit HPF, HPF1, HPF2, HPF4, balanced-unbalanced circuit BA L1, BAL2, and directional coupler CPL can be configured by an LC circuit in which an inductance element and a capacitance element are combined.
  • the configuration of the bypass path can be applied not only to a high frequency circuit for multiband wireless devices, but also to a high frequency circuit for single band wireless devices.
  • the high frequency component having the high frequency circuit of the present invention is configured by using a ceramic laminated substrate as a component.
  • FIG. 21 shows a high frequency component according to an embodiment of the present invention.
  • the ceramic laminated substrate 119 is, for example, a green sheet having a thickness of 10 to 200 ⁇ m made of ceramic dielectric material LTCC (Low-Temperature Co-Fired Ceramics) which can be sintered at a low temperature of 1000 ° C. or less.
  • a conductive paste of low resistivity Ag, Cu, etc. is printed to form a predetermined electrode pattern, and a plurality of green sheets on which the electrode pattern is formed are integrally laminated and manufactured by sintering. S can.
  • the ceramic dielectric material for example, (a) a ceramic containing Al, Si and Sr as main components and Ti, Bi, Cu, Mn, Na, K etc. as auxiliary components, (b) Al, Si And Sr as the main component and Ca, Pb, Na, K, etc. as the accessory component, (c) Al, Mg Si and Gd containing ceramic, (d) Al, Si, Zr and Mg containing ceramic etc. Can be mentioned.
  • the dielectric constant of the ceramic dielectric material is preferably about 5 to 15.
  • a resin or a composite of a resin and a ceramic powder may be used.
  • HTCC high temperature co-fired ceramic
  • mainly composed of A10 and a transmission line etc. is made of metal that can be sintered at high temperature such as tungsten or molybdenum. You may make it.
  • each layer of the ceramic laminated substrate 119 pattern electrodes for an inductance element, a capacitance element, a wiring line, and a ground electrode are formed, and the pattern electrodes are connected by via hole electrodes.
  • the circuit configuration that can be configured by the LC circuit is mainly formed by pattern electrodes. Specifically, the high pass filter circuits 118 and 102, the first and second branching circuits 103 and 110, the low pass filter circuits 111 and 112, the band pass filter circuits 107 and 108 and 113 and 114, and the balanced-unbalanced circuit.
  • the main circuit parts 116 and 117 are formed in the ceramic multilayer substrate 119, and some elements thereof are mounted on the top surface of the ceramic multilayer substrate 119 as chip elements.
  • the switch circuit 101, the first and second power amplifier circuits 105 and 106, the low noise amplifier circuit 109, and part of elements of the control circuit 120 are incorporated in the ceramic multilayer substrate 119.
  • a switch circuit (SPDT) 101, first and second amplifier circuits (PA5) 105, (PA2) 106, a low noise amplifier circuit (LNA) 109, and a control circuit (control circuit) are provided on the upper surface of the ceramic laminated substrate 119.
  • a semiconductor element for Cont. IC) 120 is mounted.
  • chip capacitors, chip resistors, chip inductors, etc. are also mounted. These parts are connected by wire bonder, LGA, BGA, etc.
  • the semiconductor element for the control circuit on the upper surface of the ceramic laminated substrate 119, the high frequency circuit can be configured as a small high frequency component.
  • the elements contained in the ceramic laminated substrate 119 and the mounted components are connected to the circuit shown in FIG.
  • FIG. 22 shows each layer constituting a high frequency component having the high frequency circuit shown in FIG.
  • the first filter circuit comprises the high pass filter circuit (first high pass filter) shown in FIG. 4, and the second filter comprises the high pass filter circuit (second high pass filter) shown in FIG.
  • the grounded inductance elements Lll and L12 of the first high pass filter provided between the antenna terminal Ant and the switch circuit SPDT are mounted on the surface layer 1 as a chip inductor. By forming the inductance element that requires high inductance and inductance with a chip element, it is possible to miniaturize the entire high frequency component.
  • the grounded inductance elements L 41 and L 42 of the second high pass filter provided between the switch circuit SPDT and the low noise amplifier circuit LNA are formed of a conductor pattern in the ceramic laminated substrate 119. Terminal The conductor pattern constituting the capacitance element C11 disposed in series with the input / output line of the high-pass filter circuit between PI and P2 is formed in the second to fifth layers below the inductance elements Lll and L12, and the ground electrode Gnd It is shielded from the surrounding circuit by the via electrode row connected to.
  • the parasitic capacitance can be reduced by forming the conductor pattern of the capacitance element C11 over a plurality of layers.
  • the conductor pattern forming capacitance element C12 provided between inductance element L12 and the ground is formed in the eleventh layer, and is connected to inductance element L12 of surface layer 1 by the via electrode.
  • the conductor pattern of the capacitance element C12 is disposed so as to be sandwiched between the ground electrode Gnd of the tenth layer and the ground electrode Gnd of the twelfth layer so as to face them.
  • the second high pass filter circuit between the terminals P3 to P4 is provided in a corner area of the laminate in a plan view, and is surrounded by the side of the laminate and the via electrode array connected to the ground electrode.
  • a series resonant circuit including capacitance elements C41 to C43, an inductance element L41 and a capacitance element C44 arranged in series in the input / output line of the second high pass filter circuit, an inductance element L42 and a capacitance element C45 to
  • the series resonant circuit is shielded from the first high pass filter and other circuits.
  • this shield configuration can be changed according to the desired characteristics, and may be omitted.
  • the conductor patterns constituting the inductance elements L41 and L42 are formed across the sixth to eighth layers so as to be wound in the stacking direction.
  • the conductor patterns constituting the inductance elements L41 and L42 are arranged so as not to overlap in adjacent layers in the stacking direction except for the via electrode portion. With this configuration, parasitic capacitance is reduced, Q of the inductance element is reduced, and self-resonance is suppressed.
  • FIG. 23 shows a second embodiment of the present invention that can be shared by two communication systems, a 5 GHz band wireless LAN (IEEE 802.11a) and a 2.4 GHz band wireless LAN (IEEE 802.11b and / or IEEE 802.11g).
  • Shows a high frequency circuit according to This high frequency circuit includes a switch circuit (SPDT) 201 connected to an antenna terminal Ant connected to a multiband antenna, and a first diplexer circuit (DIP 1) 202 connected to the transmission path side of the switch circuit (SPDT) 201.
  • SPDT switch circuit
  • DIP 1 first diplexer circuit
  • HPF high pass filter circuit
  • the first demultiplexing circuit 202 is a low frequency side filter circuit that passes the transmission signal of the 2.4 GHz band wireless LAN but attenuates the transmission signal of the 5 GHz band wireless LAN, and transmits the 5 GHz band wireless LAN. It consists of a high-frequency filter circuit that passes the signal but attenuates the transmit signal of the 2.4 GHz band wireless LAN.
  • the high frequency side filter circuit of the first diplexer circuit 202 includes, in order, the first amplifier circuit (PA1) 205, the band pass filter circuit (BPF) 207, and the first transmission terminal (5 GHz band wireless LAN transmission) Terminal) TX1 is connected.
  • the band pass filter circuit 207 removes unnecessary out-of-band noise and harmonics contained in the transmission signal.
  • the first power amplifier circuit 205 amplifies the transmission signal input from the transmission side circuit of the 5 GHz band wireless LAN.
  • the high frequency side filter circuit of the first demultiplexing circuit 202 also attenuates the harmonics.
  • a low pass filter circuit for attenuating harmonics generated in the first power amplifier circuit 205 may be provided between the first diplexer circuit 202 and the first power amplifier circuit 205.
  • a balanced-unbalanced circuit may be provided between the first transmission terminal TX1 and the band pass filter circuit 207, with the first transmission terminal as a balanced terminal.
  • a second power amplifier circuit (PA2) 206, a band pass filter circuit (BPF) 208, and a second transmission terminal (2.4 GHz band) are sequentially arranged in the low frequency side filter circuit of the first demultiplexing circuit 202. Transmitting terminal of wireless LAN) TX2 is connected.
  • the band pass filter circuit 208 removes unnecessary out-of-band noise contained in the transmission signal.
  • the second power amplifier circuit 206 amplifies the transmission signal input from the transmission side circuit of the 2.4 GHz band wireless LAN.
  • the low frequency side filter circuit of the first demultiplexing circuit 202 also has the function of attenuating harmonics generated in the second power amplifier circuit 206.
  • a second demultiplexing circuit (DIP2) 203 is connected to the reception path side of the switch circuit 201.
  • the second demultiplexing circuit 203 passes the received signal of the 2.4 GHz band wireless LAN but passes the received signal of the 5 GHz band wireless LAN and a low frequency side filter circuit which attenuates the received signal of the 5 GHz band wireless LAN. It consists of a high frequency side filter circuit that attenuates the received signal of 2.4 GHz band wireless LAN.
  • a first low noise amplifier circuit is sequentially arranged in the high frequency side filter circuit of the second demultiplexing circuit 203.
  • (LNA1) 210, band pass filter circuit (BPF) 213, and first reception terminal (reception terminal of 5 GHz band wireless LAN) RX1 are connected.
  • the received signal of the 5 GHz band wireless LAN received by the antenna is amplified by the first low noise amplifier circuit 210 via the switch circuit 201 and output to the first reception terminal RX1. Since the high frequency side filter circuit of the demultiplexing circuit 203 for attenuating the signal of 2.5 GHz or less is connected to the input side of the low noise amplifier circuit 210, the low noise amplifier circuit 210 is generated by radio waves of 2 GHz or less generated from portable devices. Can be avoided.
  • a band pass filter circuit (BPF) 212 as a second filter, a second low noise amplifier circuit (LNA 2) 211, and a second filter are sequentially arranged in the low frequency side filter circuit of the second demultiplexing circuit 203.
  • Reception terminal (reception terminal of 2.4 GHz band wireless LAN) RX2 is connected.
  • the reception signal of the 2.4 GHz band wireless LAN received by the antenna is amplified by the second low noise amplifier LNA2 via the switch circuit 201 and output to the second reception terminal RX2. Since the band pass filter circuit 212 for attenuating the signal of 2 GHz or less is connected to the input side of the low noise amplifier circuit 211, unnecessary signals are removed from the signal from the antenna terminal.
  • the band pass filter circuit 212 sufficiently attenuates the signal of about 2 GHz or less of the mobile phone and prevents the saturation of the second low noise amplifier circuit 211.
  • FIG. 24 shows an equivalent circuit of the branching circuit 203, the band pass filter circuit 212, and the band pass filter circuit 213.
  • the branching circuit 203 includes transmission lines lrdl and lrd3 and capacitance elements cr d2 to crd4.
  • the capacitance element crd3 and the transmission line lrd3 are tuned to resonate in the 2.4 GHz band.
  • the electrical length of the transmission line lrdl is adjusted so that the impedance seen from the common terminal power band pass filter 212 of the diplexer circuit 103 is open in the 5 GHz band. Thereby, the signal of 2.4 GHz band is distributed to the band pass filter circuit 212 side, and the signal of 5 GHz band is distributed to the low noise amplifier circuit 210 side.
  • the signal in the 2.4 GHz band is amplified by the low noise amplifier 211 after an unnecessary signal outside the pass band is removed by the band pass filter circuit 212 and output to the second reception terminal RX2.
  • the signal in the 5 GHz band is amplified by the low noise amplifier 210, and then the band pass filter circuit 213 removes unnecessary signals outside the pass band and outputs the signal to the first reception terminal RX1.
  • the high frequency circuit includes the first and second power amplifier circuits 205 and 206. It has a voltage supply terminal vcc which supplies a constant voltage, and a control circuit (Cont. IC) 204 which receives voltage supply from the voltage supply terminal vcc.
  • the first and second power amplifier circuits 205 and 206 incorporate detection diodes, and their detection outputs are output to one detection terminal VPD.
  • FIG. 25 shows the configuration of the control circuit 204
  • FIG. 26 shows a preferred example of the detection diode and the control circuit 204.
  • the control circuit 104 includes a bias voltage output terminal Vddl for the first low noise amplifier circuit (LNA1), a bias voltage output terminal Vdd2 for the second low noise amplifier circuit (LNA 2), and a first low noise amplifier circuit (LNA1).
  • the fourth switch (SW4) for turning on and off the bias voltage for switching
  • the fifth switch (SW5) for turning on and off the bias voltage for the second low noise amplifier circuit (LNA2)
  • the fourth switch (SW4) A terminal LNA10N for inputting an on / off control signal and a terminal LNA20N for inputting an on-off control signal of the fifth switch (SW5) are provided.
  • the other configuration is the same as the control circuit and the detection diode shown in FIG. 2 and FIG.
  • the switch circuit 201 and the high pass filter circuit 218 are the same as those shown in FIG.
  • a force high pass filter circuit may be added in which a band pass filter 212 and a demultiplexing circuit 203 are provided on the input side of the low noise amplifier.
  • the high pass filter circuit preferably has one or more attenuation poles, for example at about 0.8 to 2 GHz. This can be realized by a series resonant circuit of an inductance element L12 and a capacitance element C12 shown in FIG. As a result, it is possible to attenuate signals of about 0.8 to 2 GHz and its vicinity, and to stably eliminate the interference of the cellular phone.
  • a high pass filter circuit may not achieve the desired attenuation. Therefore, a plurality of high pass filter circuits may be provided. In that case, a high pass filter circuit may be provided between the switch circuit 201 and the low noise amplifier circuits 210 and 211. As such a high pass filter circuit, the circuit shown in FIG. 4, FIG. 6 or FIG. 7 can be used.
  • the branching circuits 202 and 203 and the band pass filter circuits 207, 208, 212 and 213 can be configured by an LC circuit in which an inductance element and a capacitance element are combined.
  • FIG. 27 shows another example of the high frequency circuit of the present embodiment.
  • This high frequency circuit differs from that shown in FIG. 23 in the control circuit (Cont. IC) 204a.
  • Configuration of the control circuit 204a It is shown in Figure 28.
  • the control circuit 204a has a voltage input terminal Vc connected to the voltage supply terminal VCC, a bias voltage output terminal Vbl for the first power amplifier circuit (PA1), and a bias voltage output terminal Vb2 for the second power amplifier circuit (PA2).
  • a terminal PA10N for inputting a signal for ON / OFF control of (SW1), a terminal PA20N for inputting a signal for ON / OFF control of a second switch (SW2), and a signal for ON / OFF control of a third switch (SW3) Terminal HI / LO is provided.
  • Their structures are the same as above.
  • the arrangement of the bias voltage terminal LNA1V of the first low noise amplifier circuit LNA1 and the bias voltage terminal LNA2V of the second low noise amplifier circuit LNA2 is different from that shown in FIG.
  • the drive current for bias voltage terminals LNA1V and LNA2V is relatively small, about 0.1 mA, so they can be driven directly by a logic control power supply integrated in RFIC or baseband IC.
  • control circuit is not limited to the high frequency circuit of the present embodiment, and is applied to other high frequency circuits (for example, the high frequency circuit in which the first filter is not disposed) in which the arrangement and presence of the filter are different. be able to.
  • FIG. 29 shows a case where a high frequency component having a high frequency circuit according to a second embodiment of the present invention is configured as a component using a ceramic laminated substrate. Since the ceramic laminated substrate 219 can be manufactured by the same method as the first embodiment, the description of the manufacturing method is omitted.
  • the circuit configuration that can be configured by the LC circuit is mainly formed by pattern electrodes.
  • the first and second branching circuits 202 and 203 and the band pass filter circuits 207, 208, 212 and 213 are mainly composed of pattern electrodes in the ceramic multilayer substrate 219, and The unit is mounted on the upper surface of the ceramic multilayer substrate 219 as a chip element.
  • the ceramic laminated substrate 219 includes a switch circuit (SPDT) 201, first and second power amplifier circuits (PA1) 205, (PA2) 206, and first and second low noise amplifier circuits (LNA1) 210, ( Semiconductor elements for LN A2 211 and control circuit (Cont. IC) 204 are mounted. These semiconductor elements are connected to the electrode pattern of the ceramic laminated substrate 219 by wire bonder, LGA, BGA or the like. In particular, high frequency circuits can be miniaturized by mounting semiconductor elements for control circuits.
  • the switch circuit 201, the first and second power amplifier circuits 205 and 206, the first and second low noise amplifier circuits 210 and 211, and part of the control circuit 204 are incorporated in a ceramic laminated substrate.
  • the mounted components and the built-in elements are connected to the circuit shown in FIG.
  • the ceramic laminated substrate 219 mounts a chip capacitor, a chip resistor, a chip inductor, etc. in addition to the above semiconductor elements, but these mounted elements can be appropriately selected in relation to the elements incorporated in the ceramic laminated substrate 219.
  • FIG. 30 shows the high-frequency circuit based on This high frequency circuit includes a high pass filter circuit (HPF) 318 as a first filter connected to an antenna terminal Ant connected to a multiband antenna, and a diplexer circuit (DIP) 301.
  • the demultiplexing circuit 301 passes the transmit and receive signals of the 5 GHz band wireless LAN but attenuates the transmit and receive signals of the 2.4 GHz band wireless LAN, and passes the transmit and receive signals of the 2.4 GHz band wireless LAN but does not pass 5 GHz. It consists of a low frequency side filter circuit that attenuates the transmission and reception signals of the band wireless LAN.
  • a first switch circuit (SPDT1) 302 for switching the connection between the antenna side circuit and the transmission path or reception path is connected to the high frequency side filter circuit of the demultiplexing circuit 301 so as to be connected.
  • first power amplifier circuit (PA1) 305, first band pass filter circuit (BPF1) 307, and first transmission terminal (transmission terminal of 5 GHz band wireless LAN) TX 1 is connected.
  • the first low noise amplifier circuit (LNA1) 306, the second band pass filter circuit (BPF2) 308, and the first reception terminal (5 GHz band wireless LAN) are sequentially received in the reception path of the first switch circuit 302. Terminal) RX1 is connected.
  • First band pass filter The circuit 307 removes unnecessary out-of-band noise included in the transmission signal.
  • the first power amplifier circuit 305 amplifies the transmission signal of the 5 GHz band wireless LAN.
  • the high frequency side filter circuit of the diplexer circuit 301 attenuates harmonics.
  • a balanced-unbalanced circuit may be provided between the first transmission terminal TX1 and the band pass filter circuit 307 with the first transmission terminal as a balanced terminal.
  • the connection between the antenna side circuit and the transmission path or reception path is made via the third band pass filter circuit (BPF3) 313 as the second filter.
  • a second switch circuit (SPDT2) 303 for switching is connected.
  • the transmission path of the switch circuit 303 is connected to a second power amplifier circuit (PA2) 311 and a second transmission terminal (a transmission terminal of 2.4 GHz band wireless LAN) TX2 in order.
  • a second reception terminal (a reception terminal of 2.4 GHz band wireless LAN) RX2 is connected to the reception path of the second switch circuit 303 via a second low noise amplifier circuit (LNA2) 310.
  • LNA2 low noise amplifier circuit
  • the second power amplifier circuit (PA2) 311 amplifies the transmission signal input from the transmission side circuit of the 2.4 GHz band wireless LAN, and the low frequency side filter circuit of the third band pass filter circuit 313 and the diplexer circuit 301.
  • the amplifier eliminates unnecessary out-of-band noise included in the transmission signal and attenuates harmonics generated in the second power amplifier circuit 311.
  • Second transmission terminal Transmission terminal for 2.4 GHz band wireless LAN
  • a band pass filter is provided between TX2 and the second power amplifier circuit 311 to remove unwanted out-of-band noise contained in the transmission signal. You may.
  • the received signal (2.4 GHz band) from the demultiplexing circuit 301 passes through the third band pass filter circuit (BPF 3) 313 and the second switch circuit (SPDT2) 303, and the second low noise amplifier circuit (LNA2)
  • the signal is input to 310, amplified, and output to the second reception terminal RX2.
  • Unwanted signals in the received signal are removed by the branching circuit 301 and the third band pass filter circuit 313.
  • the third band pass filter circuit 313 sufficiently attenuates the mobile phone signal of about 2 GHz or less which saturates the second low noise amplifier circuit 310.
  • FIG. 31 shows an equivalent circuit of the branching circuit 301 and the third band pass filter circuit 313.
  • the branching circuit 301 includes transmission lines ldl and W3 and capacitance elements cd2 to cd4.
  • the capacitance element cd3 and the transmission line ld3 are adjusted to resonate in the 2.4 GHz band.
  • the electrical length of the transmission line ldl is adjusted so that the impedance seen from the ANT terminal to the bandpass filter 313 is open in the 5 GHz band. This makes 2.4 G
  • the signal in the Hz band is distributed to the band pass filter circuit 313, and the signal in the 5 GHz band is distributed to the switch circuit 302 (SPDT1).
  • the signal in the 2.4 GHz band passes through the switch circuit 303 (SPDT2) to the noise amplifier circuit 310 after the unnecessary signal outside the pass band is removed by the band pass filter circuit 313, is amplified there, and is amplified. Output to receive terminal RX2.
  • the signal in the 5 GHz band passes through the switch circuit 302 and enters the low noise amplifier circuit 306, where it is amplified and then the band pass filter circuit 308 removes unnecessary signals out of the pass band and the first receive terminal RX1. It is output.
  • the voltage supply terminal VCC supplies a constant voltage to the first and second power amplifier circuits 305 and 311 and the control circuit (Cont. IC) 304.
  • the first and second power amplifier circuits 305 and 311 incorporate a detection diode, and the detection output is output to one detection terminal VPD.
  • the switch circuits 302 and 303 and the high pass filter circuit 318 may be the same as those in the first embodiment, and thus the description thereof will be omitted. Also, since the control circuit 304 and the detection diode may be the same as those in the second embodiment, the description thereof will be omitted.
  • FIG. 32 shows an example of an equivalent circuit of the band pass filter circuit.
  • This band pass filter circuit is composed of magnetically coupled inductance elements lb 1 and lb 2 and capacitance elements cbl to cb 5.
  • the parallel resonance frequency of the inductance element lb1 and the capacitance element cb2 and the parallel resonance frequency of the inductance element lb2 and the capacitance element cb4 are respectively set to the 2.4 GHz band or the 5 GHz band which is a pass band.
  • the circuit configuration of the band pass filter circuit is not limited to this.
  • the branching circuit 301 and the band pass filter circuits 307, 308, and 313 can be configured by an LC circuit in which an inductance element and a capacitance element are combined.
  • the inductance element is constituted by the transmission line in the electrode pattern in the laminate component, and the capacitance element is constituted by the parallel electrodes.
  • FIG. 33 shows another example of the high frequency circuit of the present embodiment.
  • This high frequency circuit is different from the high frequency circuit shown in FIG. 30 in the control circuit (Cont. IC) 304a, but the configuration of the control circuit 304a is the same as that used in the second embodiment shown in FIG. Omit Ru.
  • the control circuit 304a can be used not only for the high frequency circuit of this embodiment, but also for example for a high frequency circuit not having the first filter.
  • a band pass filter circuit 312 is provided between the second power amplifier circuit (PA2) 311 and the second transmission terminal TX2.
  • FIG. 34 shows the case where the high frequency component having the high frequency circuit of the present embodiment is formed by using a ceramic laminated substrate as a component.
  • the method of manufacturing the ceramic laminated substrate 319 is the same as that of the first embodiment, so the description will be omitted.
  • each layer of the ceramic laminated substrate 319 pattern electrodes for an inductance element, a capacitance element, wiring lines and a ground electrode are formed, and the pattern electrodes are connected by via hole electrodes.
  • the elements constituting the main part of the circuits 308 and 313 and the control circuit 304 are formed in the ceramic laminated substrate 319, and the other elements (chip capacitors, chip resistors, chip inductors, etc.) are mounted on the upper surface of the ceramic multilayer substrate 319.
  • the mounted elements are connected by wire bonder, LGA, BGA, etc. In particular, by mounting a semiconductor element for a control circuit, the high frequency circuit can be miniaturized.
  • the mounted components and built-in elements are connected to the circuit shown in FIG.
  • the high frequency circuit of the present invention has a good reception sensitivity.
  • the noise figure of the reception path is 3.5 dB in the 2.4 GHz band and 4.0 dB in the 5 GHz band.
  • the noise figure is as small as 1.5 dB in the 2.4 GHz band and 2 dB in the 5 GHz band.
  • the noise figure is as small as 2 dB in the 5 GHz band.
  • the ceramic laminated substrate can be configured to have a very small size of 6 mm ⁇ 4 mm ⁇ 0.6 mm, the present invention can be achieved even with resin sealing of mounted parts by bare chip mounting of semiconductor elements.
  • the height of high frequency components can be 1.3 mm. It can be seen that the planar dimension of the high frequency component of the present invention is 1Z2 or less because the conventional small high frequency component has a planar dimension of about 9 mm ⁇ 6 mm.
  • the high frequency circuit of the present invention can be configured not only for dual band wireless devices, but also for multi band wireless devices such as triple bands and quad bands. In that case, the high frequency circuit of the present invention may be used as part of a multiband high frequency circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)
  • Amplifiers (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Abstract

 第一の周波数帯域及び第一の周波数帯域より低い第二の周波数帯域を選択的に用いる無線通信用の高周波回路であって、アンテナ端子と、第一及び第二の周波数帯域の送信信号が入力される第一及び第二の送信端子と、第一及び第二の周波数帯域の受信信号が出力される第一及び第二の受信端子と、第一の周波数帯域の信号と第二の周波数帯域の信号の経路を振り分ける分波回路と、送信信号と受信信号の経路を切り替えるスイッチ回路と、スイッチ回路と第二の受信端子の間に設けられ、第二の周波数帯域の受信信号を増幅するローノイズアンプ回路と、アンテナ端子とローノイズアンプ回路との間でアンテナ端子から順に設けられた第一及び第二のフィルタ回路とを具備し、両フィルタ回路とも第二の周波数帯域の受信信号を通過させるが、第二の周波数帯域より低い周波数帯域を阻止し、かつ第一のフィルタ回路の阻止帯域が第二のフィルタ回路の阻止帯域より低い高周波回路。

Description

明 細 書
高周波回路、高周波部品及び通信装置
技術分野
[0001] 本発明は少なくとも 2つの通信システムに共用可能な高周波回路、かかる高周波回 路を有する高周波部品、及びこれを用いた通信装置に関する。
背景技術
[0002] 現在、 IEEE802.il規格に代表される無線 LANによるデータ通信が広く普及しており 、例えばパーソナルコンピュータ(PC)、プリンタやハードディスク、ブロードバンドノレ 一ター等の PCの周辺機器、 FAX,冷蔵庫、標準テレビ(SDTV)、高品位テレビ(HDT V)、デジタルカメラ、デジタルビデオ、携帯電話等の電子機器、 自動車や航空機内 の無線通信手段等の電子電器機器間に利用されている。
[0003] 無線 LANの規格として、 IEEE802.11aは、 5 GHzの周波数帯域で OFDM (Orthogon al Frequency Division Multiples:直交周波数多重分害 変調方式を用い、最大 54 Mb psの高速データ通信をサポートする。 IEEE802.11bは、無線免許なしに利用可能な 2. 4 GHzの ISM (Industrial, Scientific and Medical:産業、科学及び医療)帯域で DSSS ( Direct Sequence Spread Spectrum:ダイレクト 'シーケンス 'スペクトル拡散)方式を用い 、 5.5 Mbps及び 11 Mbpsの高速通信をサポートする。 IEEE802.11gは、 IEEE802.11bと 同様に 2.4 GHz帯域で OFDM変調方式を用レ、、最大 54 Mbpsの高速データ通信をサ ポートする。
[0004] このような無線 LANを用いたマルチバンド通信装置用の高周波回路として、 WO200 6/003959号は、無線 LANの 2.4 GHz帯及び 5 GHz帯の 2つの通信システム(IEEE802. 1 la及び IEEE802.1 lb)に対応したマルチバンド通信装置でダイバーシティ受信を行う ことができる高周波回路を開示している。この高周波回路は、図 35に示すように、 高周波スィッチ回路 10と送信側回路との間の分波回路 13と、
分波回路 13と送信端子 l lbg-Tとの間のパワーアンプ回路 2及びバンドパスフィルタ 回路 4と、
分波回路 13と送信端子 l la-Tとの間のローパスフィルタ回路 19、パワーアンプ回路 高周波スィッチ回路 10と分波回路 13との間の検波回路 8と、
高周波スィッチ回路 10と受信側回路との間の分波回路 14と、
分波回路 14と受信端子 l lbg-Rとの間のバンドパスフィルタ回路 6と、
分波回路 14と受信端子 l la-Rとの間のローパスフィルタ回路 26及びローノイズアン プ回路 27と、
アンテナ端子 Antlと高周波スィッチ回路 10との間のノッチ回路 28と、
アンテナ端子 Ant2と高周波スィッチ回路 10との間のノッチ回路 29と
を具備している。
[0005] また WO2006/003959号はまた、 2.4 GHz帯の受信端子 llbg-R及び 5 GHz帯の受 信端子 l la-Rに接続する経路にローノイズアンプ回路を設けた例も開示している。 W ◦2006/003959号の高周波回路では、ローノイズアンプの入力側に分波回路が設け られており、また分波回路とローノイズアンプの間にバンドパスフィルタ又はローパス フィルタが接続されている。
[0006] 特開 2002-208874号は、図 36に示すように、ワイヤレス LAN及びブルートゥースに共 用の高周波回路として、アンテナ 1とアンテナ切替スィッチ 3との間のバンドパスフィル タ 2と、アンテナ切替スィッチ 3の送信側でワイヤレス LANとブルートゥースに共用され るパワーアンプ回路 5と、ワイヤレス LANの送信とブルートゥースの送信を分けるため にパワーアンプ回路 5に接続されたダイプレクサ (低域通過型の整合回路 13と高域通 過型の整合回路 14の組合せ)と、アンテナ切替スィッチ 3の受信側でワイヤレス LANと ブルートゥースに共用されるローノイズアンプ 7と、ワイヤレス LANの受信とブルートウ ースの受信を分けためにそのローノイズアンプ 7に接続されたダイプレクサ(低域通過 型の整合回路 15と高域通過型の整合回路 16の組合せ)とを有する高周波回路を開 示している。
[0007] 受信感度は、ローノイズアンプの雑音指数、及びバンドパスフィルタ及び分波回路 の揷入損失に大きく影響される。ローノイズアンプの雑音指数の低減に関しては、そ の入力段のロスを最小にするのが最も効果的である。し力し、 WO2006/003959号の 高周波回路の構成では受信感度の向上が十分に得られない。またスィッチ回路等 は静電サージに弱いので、 WO2006/003959号の回路構成では、アンテナに静電気 放電(ESD: Electrostatic Discharge)があった場合、スィッチ回路等が破壊するおそ れがある。
[0008] また WO2006/003959号の高周波回路では、パワーアンプ回路及びローノイズアン プ回路に数 mA程度のバイアス電圧を供給する必要がある力 RFIC又はベースバン ド に集積されるロジック制御電源の駆動電流は 2 mA以下であるので、直接駆動す ることができない。
[0009] 特開 2003-273687号の高周波回路では、静電気放電によるスィッチ回路等の破壊 を防止するため、アンテナ端子にハイパスフィルタ回路が接続されている。しかし、携 帯電話等の携帯機器に無線 LAN送受信機能を付加する場合、携帯機器の送信信 号の一部が無線 LANシステムに混入し、特に受信経路のローノイズアンプが飽和し て、受信感度が劣化するおそれがある。静電気放電対策を目的とした特開 2003-273 687号の回路構成では、力かる問題を十分に解決できない。また特開 2002-208874 号の高周波回路では、送信側で発生する高調波の低減及び受信側のノイズの減衰 を、アンテナとアンテナ切替スィッチとの間に設けた 1つのバンドパスフィルタで行うが 、 2.4 GHz帯及び 5 GHz帯の 2つの周波数に共用できない。
[0010] さらに複数のアンテナを使用して通信の速度及び品質を高める MIMO (Multi-Input -Multi-Output)技術による IEEE802.1 Inの規格に対応した無線 LAN通信装置が普及 しつつある。しかし、 WO2006/003959号及び特開 2003-273687号の高周波回路では IEEE802.1 Inに十分対応できなレ、。
発明の開示
発明が解決しょうとする課題
[0011] 従って本発明の目的は、少なくとも 2つの周波数帯域を選択的に用いる無線通信に 用いることができ、受信感度が良好で、消費電流が少ない小型の高周波回路を提供 することである。
[0012] 本発明のもう一つの目的は、力かる高周波部品を有する高周波部品を提供するこ とである。
[0013] 本発明のさらにもう一つの目的は、かかる高周波部品を具備する通信装置を提供 することである。
課題を解決するための手段
[0014] 本発明の高周波回路は、少なくとも第一の周波数帯域及び前記第一の周波数帯 域より低い第二の周波数帯域を選択的に用いる無線通信に用レ、るもので、
アンテナ端子と、
前記第一の周波数帯域の送信信号が入力される第一の送信端子と、
前記第二の周波数帯域の送信信号が入力される第二の送信端子と、
前記第一の周波数帯域の受信信号が出力される第一の受信端子と、
と前記第二の周波数帯域の受信信号が出力される第二の受信端子と、
第一の周波数帯域の信号と第二の周波数帯域の信号の経路を振り分ける少なくと も一つの分波回路と、
送信信号と受信信号の経路を切り替える少なくとも一つのスィッチ回路と、 前記スィッチ回路と前記第二の受信端子の間に設けられ、少なくとも前記第二の周 波数帯域の受信信号を増幅するローノイズアンプ回路と、
前記アンテナ端子と前記ローノイズアンプ回路との間で前記アンテナ端子から順に 設けられた少なくとも第一及び第二のフィルタ回路とを具備し、
両フィルタ回路とも前記第二の周波数帯域の受信信号を通過させるが、少なくとも前 記第二の周波数帯域より低い周波数帯域を阻止し、かつ前記第一のフィルタ回路の 阻止帯域が前記第二のフィルタ回路の阻止帯域より低いことを特徴とする。
[0015] 高周波信号より低い帯域には静電気放電を始め、スィッチ回路及びローノイズアン プ回路に悪影響を及ぼすノイズ及び不要電波が多レ、。第一のフィルタ回路は、アン テナに静電気放電 (ESD)があった場合にそれによるスィッチ回路等の破壊を防止す るとともに、アンテナに混信する信号によりローノイズアンプ回路が飽和するのを防止 する。第一のフィルタはさらに例えば 1 GHz以下の信号を減衰させることができる。こ れらの作用により、例えば 0.9 GHz帯を使用し最大で 3 W程度のハイパワーを出力す る EGSMシステム等からの混信を防止することができる。アンテナ端子に近い第一の フィルタ回路により静電気放電等の比較的低周波数の不要電波を阻止し、ローノィ ズアンプ回路に近い第二のフィルタ回路によりローノイズアンプの飽和をさらに防ぐ。 [0016] 一つのフィルタで不要電波を阻止しょうとすると挿入損失が大きくなつてしまうが、第 一のフィルタと第二のフィルタを組合せて用いることにより、段階的に不要電波を阻止 すること力 Sできる。第一のフィルタ回路の阻止帯域を第二のフィルタ回路の阻止帯域 より低くすることにより、第一のフィルタ回路を通過する信号の損失を抑えることができ る。第二のフィルタにより第二の周波数帯域より低い周波数の不要電波がローノイズ アンプ回路に進入するのを極力阻止するために、第一のフィルタより第二のフィルタ の Q値を高くするのが好ましい。なお第一及び第二のフィルタに分波回路は含まれな レ、。
[0017] 前記第一及び第二のフィルタ回路はハイパスフィルタ回路であるのが好ましレ、。ノヽ ィパスフィルタ回路はバンドパスフィルタ回路より信号損失を小さくできるので、ハイパ スフィルタは信号損失を抑制するのに好適である。ハイパスフィルタは、例えば 2 GHz 以上離れている 2.4 GHz帯と 5 GHz帯を利用する無線 LANのように、第一の周波数 帯域と第二の周波数帯域が大きく離れたマルチバンド無線通信用の高周波回路に おいて、第一及び第二の周波数帯域で共用することができる。
[0018] 上記高周波回路は、
前記アンテナ端子と前記第一及び第二の送信端子との接続と前記アンテナ端子と 前記第一及び第二の受信端子との接続を切り替えるスィッチ回路と、
前記スィッチ回路と前記第一及び第二の送信端子との間に設けられた第一の分波 回路と、
前記スィッチ回路と前記第一及び第二の受信端子との間に設けられた第二の分波 回路と、
前記第一の分波回路と第一の送信端子との間に設けられた第一のパワーアンプ回 路と、
前記第一の分波回路と第二の送信端子との間に設けられた第二のパワーアンプ回 路とを具備し、
前記第一のフィルタ回路は前記アンテナ端子と前記スィッチ回路との間に設けられ、 前記第二のフィルタ回路は前記スィッチ回路と前記ローノイズアンプ回路の間に設け られているのが好ましい。 [0019] 第一のフィルタ回路であるハイパスフィルタ回路は、アンテナに静電気放電 (ESD) 力 Sあった場合にそれによるスィッチ回路等の破壊を防止するとともに、アンテナに混 信する信号によりローノイズアンプ回路が飽和するのを防止する。ローノイズアンプ回 路の飽和を防ぐために、アンテナ端子とスィッチ回路との間に第一のフィルタ回路を 設ける他に、スィッチ回路とローノイズアンプ回路との間に第二のフィルタ回路である ハイパスフィルタ回路を設けるのが好ましレ、。
[0020] 前記ローノイズアンプ回路は前記スィッチ回路と前記第二の分波回路との間に設け られているのが好ましい。この配置では前記ローノイズアンプの入力側に分波回路が ないため、入力側の挿入損失を大幅に低減でき、受信感度を飛躍的に向上すること ができる。
[0021] 前記ローノイズアンプ回路に並列に接続されたバイパス経路を具備するのが好まし レ、。受信信号が弱い時にバイパス経路のアイソレーションを高くし、ローノイズアンプ 回路を動作状態にすると、受信感度が高くなる。また受信信号が強い時にバイパス 経路を接続状態とし、ローノイズアンプ回路を非動作状態にすると、受信信号が歪む のを防止できる。
[0022] 前記第二のフィルタ回路は、前記バイパス経路と前記ローノイズアンプ回路との分 岐点と、前記ローノイズアンプ回路との間に配置されているのが好ましい。この回路 構成により、バイパス経路の挿入損失が小さくなり、その分小さな受信信号までバイ パス経路で対応できる。従って、ローノイズアンプ回路の動作時の受信信号強度を 小さくし、受信信号の歪みを小さくできる。
[0023] 上記高周波回路は、前記第一及び第二のパワーアンプ回路に一定の電圧を供給 する電圧供給端子と、前記電圧供給端子から電圧を受けて前記第一及び第二のパ ヮーアンプ回路及び前記ローノイズアンプ回路に制御用のバイアス電圧を出力する コントロール回路とを具備するのが好ましレ、。前記コントロール回路は、 1 mA以下の 微弱電流での制御を行うことができ、従来のように大きなバイアス電流 (数 mA)を必 要としないので、低消費電流化に寄与する。
[0024] 本発明の一実施形態では、コントロール回路は、電圧入力端子と、前記第一のパヮ 一アンプ回路用バイアス電圧出力端子と、前記第二のパワーアンプ回路用バイアス 電圧出力端子と、前記ローノイズアンプ回路用バイアス電圧出力端子と、前記第一 のパワーアンプ回路用のバイアス電圧をオンオフする第一のスィッチと、前記第二の パワーアンプ回路用のバイアス電圧をオンオフする第二のスィッチと、前記ローノイズ アンプ回路用のバイアス電圧をオンオフする第三のスィッチと、前記第一及び第二の スィッチの共通端子と前記電圧入力端子との間に設けられた第四のスィッチと、前記 第四のスィッチに並列に接続された抵抗と、前記第一〜第四のスィッチのオンオフ制 御用の第一〜第四の信号入力端子とを具備するのが好ましい。前記コントロール回 路は一つの電圧入力端子からの電圧により駆動され、スィッチ制御により前記第一 及び第二のパワーアンプ回路用のバイアス電圧、及び前記ローノイズアンプ回路用 のバイアス電圧を出力することができる。スィッチ制御用の信号は、 RFIC、ベースバ ンド IC等に集積されたロジック制御端子から得ることができる。
[0025] 第四のスィッチと並列に抵抗を接続し、その抵抗値を第四のスィッチのオン時の抵 抗値より高く設定することにより、第四のスィッチのオン時には第四のスィッチの低い 抵抗によりパワーアンプ回路のバイアス電圧を高くに設定でき、また第四のスィッチ のオフ時には並列に接続された抵抗を経由することによりバイアス電圧を低く設定で きる。これによりパワーアンプ回路の動作点を可変にし、もって通信距離を拡大する 場合や通信環境が悪い場合等にはバイアス電圧を高くしてパワーアンプ回路の出力 を高め、反対に通信距離が比較的近い場合や通信環境が良好な場合にはバイアス 電圧を低くして、消費電流を下げることができる。
[0026] 第一〜第三のスィッチと各バイアス電圧出力端子との間に抵抗を設け、出力電圧 を調整すること力 Sできる。
[0027] 第一の分波回路と第一のパワーアンプ回路との間に第一のローパスフィルタ回路 を有し、前記第一の分波回路と第二のパワーアンプ回路との間に第二のローパスフ ィルタ回路を有するのが好ましレ、。これらのローパスフィルタ回路により、パワーアン プ回路から発生した高調波を低減することができる。
[0028] 前記ローノイズアンプ回路を前記スィッチ回路と前記第二の分波回路との間に設け る代りに、前記スィッチ回路と前記第一の受信端子の間に設けるとともに、前記第一 の周波数帯域の受信信号を増幅する他のローノイズアンプ回路を具備し、かつ前記 第二の分波回路を、前記ローノイズアンプ回路及び前記他のローノイズアンプ回路と 前記スィッチ回路との間に配置しても良い。この構成では、ローノイズアンプ回路は ゲイン特性の高平坦性を要求されず、第一又は第二の周波数帯域の信号を増幅す ればよいので、高ゲインとすることができる。
[0029] 前記第一のフィルタ回路をハイパスフィルタ回路とし、前記第二のフィルタ回路をバ ンドパスフィルタ回路としても良レ、。バンドパスフィルタ回路も低周波数の不要電波を 減衰させ、ローノイズアンプ回路の飽和を防止することができる。
[0030] 上記高周波回路は、
前記アンテナ端子と前記第一及び第二の送信端子との接続と前記アンテナ端子と 前記第一及び第二の受信端子との接続を切り替えるスィッチ回路と、
前記スィッチ回路と前記第一及び第二の送信端子との間に設けられた第一の分波 回路と、
前記スィッチ回路と前記第一及び第二の受信端子との間に設けられた第二の分波 回路と、
前記第一の分波回路と第一の送信端子との間に設けられた第一のパワーアンプ回 路と、
前記第一の分波回路と第二の送信端子との間に設けられた第二のパワーアンプ回 路と、
前記第二の分波回路と第一の受信端子との間に設けられた第一のローノイズアン プ回路と、
前記第二の分波回路と前記第二の受信端子との間に設けられ、前記第二の周波 数帯域の受信信号を増幅する第二のローノイズアンプ回路とを具備し、
前記第一のフィルタ回路は前記アンテナ端子と前記スィッチ回路との間に設けられ、 前記第二のフィルタ回路は前記第二の分波回路と第二のローノイズアンプ回路との 間に設けられているのが好ましい。
[0031] 低い周波数帯を扱う第二のローノイズアンプ回路の入力側に第二のフィルタ回路と してバンドパスフィルタ回路を設けることにより、第二の周波数帯域より低い周波数に おいて高い減衰特性を得ることができる。これにより、例えば 2.4 GHzを第二の周波 数帯域とする無線 LANにおいて、携帯機器等から発生する 2 GHz以下の妨害電波を バンドパスフィルタにより除去することが可能となり、第二のローノイズアンプ回路の飽 和を防止することができる。一方、高い周波数帯を扱う第一のローノイズアンプ回路 の入力側には第一の分波回路を設けている。無線 LANの場合、分波回路に 2.5 GHz 以下を減衰させるが第一の周波数帯域である 5 GHz帯を通過させるフィルタ特性を 持たせるので、携帯機器等から発生する 2 GHz以下の妨害電波は第一の分波回路 により除去され、第一のローノイズアンプ回路の飽和を抑制できる。さらに第一のロー ノイズアンプ回路の入力側に揷入損失が比較的大きなバンドパスフィルタを用いる必 要がないため、第一の周波数帯域の受信感度を向上させることができる。
[0032] 前記高周波回路は、前記第一のローノイズアンプ回路と前記第一の受信端子との 間にバンドパスフィルタ回路を具備するのが好ましい。バンドパスフィルタ回路により 、ローノイズアンプ回路の出力から高調波を除去できる。
[0033] 前記高周波回路は、前記第一のパワーアンプ回路と前記第一の送信端子との間、 及び前記第二のパワーアンプ回路と前記第二の送信端子との間にそれぞれバンド パスフィルタ回路を具備するのが好ましい。バンドパスフィルタ回路を設けることにより
、送信信号に含まれる帯域外の不要なノイズを除去することができる。
[0034] 前記高周波回路は、前記第一及び第二のパワーアンプ回路に一定の電圧を供給 する電圧供給端子と、前記電圧供給端子から電圧を受けて前記第一及び第二のパ ヮーアンプ回路に制御用のバイアス電圧を出力するコントロール回路とを具備するの が好ましい。コントロール回路はさらに前記第一及び第二のローノイズアンプ回路に 制御用のバイアス電圧を出力しても良い。前記コントロール回路は、 1 mA以下の微 弱電流での制御を行うことができ、従来のように大きなバイアス電流 (数 mA)を必要と しないので、低消費電流化に寄与する。
[0035] 本発明の別の実施形態では、コントロール回路は、電圧入力端子と、前記第一の パワーアンプ回路用バイアス電圧出力端子と、前記第二のパワーアンプ回路用バイ ァス電圧出力端子と、前記第一のパワーアンプ回路用のバイアス電圧をオンオフす る第一のスィッチと、前記第二のパワーアンプ回路用のバイアス電圧をオンオフする 第二のスィッチと、前記第一及び第二のスィッチの共通端子と前記電圧入力端子と の間に設けられた第三のスィッチと、前記第三のスィッチに並列に接続された抵抗と 、前記第一〜第三のスィッチのオンオフ制御用の第一〜第三の信号入力端子とを具 備するのが好ましい。前記コントロール回路はさらに、前記第一のローノイズアンプ回 路用バイアス電圧出力端子と、前記第二のローノイズアンプ回路用バイアス電圧出 力端子と、前記第一のローノイズアンプ回路用のバイアス電圧をオンオフする第四の スィッチと、前記第二のローノイズアンプ回路用のバイアス電圧をオンオフする第五 のスィッチと、前記第四及び第五のスィッチのオンオフ制御用の第四及び第五の信 号入力端子とを具備しても良い。
[0036] 前記コントロール回路は一つの電圧入力端子からの電圧により駆動され、スィッチ 制御により前記第一及び第二のパワーアンプ回路用のバイアス電圧、及び前記第一 及び第二のローノイズアンプ回路用のバイアス電圧を出力することができる。スィッチ 制御用の信号は、 RFIC、ベースバンド IC等に集積されたロジック制御端子から得るこ とができる。
[0037] 第三のスィッチと並列に抵抗を接続し、その抵抗値を第三のスィッチのオン時の抵 抗値より高く設定することにより、第三のスィッチのオン時には第三のスィッチの低い 抵抗によりパワーアンプ回路へのバイアス電圧は高レ、が、第三のスィッチのオフ時に は前記並列抵抗を経由することによりバイアス電圧は低くなり、もってパワーアンプ回 路の動作点が可変になる。従って、通信距離を拡大する場合や通信環境が悪い場 合等にはバイアス電圧を高くしてパワーアンプ回路の出力を高め、反対に通信距離 が短い場合や通信環境が良好な場合等にはバイアス電圧を低くして消費電流を下 げること力 S可能となる。第一、第二、第四及び第五のスィッチと各バイアス電圧出力 端子との間に抵抗を設けることにより、出力電圧を調整することができる。
[0038] 前記第一のフィルタ回路がハイパスフィルタ回路で、前記第二のフィルタ回路がバ ンドパスフィルタ回路である高周波回路において、
前記アンテナ端子から入力された信号を前記第一の周波数帯域の回路と前記第 二の周波数帯域の回路とに分波し、前記第一及び第二の周波数帯域の回路からの 信号を前記アンテナ端子側に伝送する分波回路と、
前記分波回路の第一の周波数帯域の回路側に設けられ、送信経路と受信経路を 切り替える第一のスィッチ回路と、
前記第一のスィッチ回路と前記第一の送信端子との間に設けられた第一のパワー アンプ回路と、
前記第一のスィッチ回路と前記第一の受信端子との間に設けられた第一のローノィ ズアンプ回路と、
前記分波回路の第二の周波数帯域の回路側に設けられ、送信経路と受信経路を 切り替える第二のスィッチ回路と、
前記第二のスィッチ回路と前記第二の送信端子との間に設けられた第二のパワー アンプ回路と、
前記第二のスィッチ回路と前記第二の受信端子との間に設けられ、前記第二の周 波数帯域の受信信号を増幅する第二のローノイズアンプ回路とを具備し、 前記第一のフィルタは前記アンテナ端子と前記分波回路との間に設けられ、前記第 二のフィルタは前記分波回路と前記第二のスィッチ回路との間に設けられているのが 好ましい。
低い周波数帯を扱う第二のローノイズアンプ回路では、入力側に第二のフィルタ回 路としてバンドパスフィルタ回路を設けることにより、第二の周波数帯域より低い周波 数において高い減衰特性が得られる。例えば 2.4 GHzを第二の周波数帯域とする無 線 LANでは第二の周波数帯域が携帯電話の周波数帯 (約 2 GHz以下)と近いので、 バンドパスフィルタ回路を設けて携帯電話力 発生する 2 GHz以下の電波を除去す ることにより、第二のローノイズアンプ回路の飽和を防止することができる。一方、高い 周波数帯を扱う第一のローノイズアンプ回路の入力側には第一の分波回路を設ける 。無線 LANの場合、分波回路には 2.5 GHz以下を減衰させるが、第一の周波数帯域 である 5 GHz帯を通過させるフィルタ特性を持たせる。無線 LANの高い周波数帯域( 5 GHz)と携帯電話の周波数帯 (約 2 GHz以下)とは比較的離れているために、携帯 電話から発生する 2 GHz以下の電波は第一の分波回路により除去でき、第一のロー ノイズアンプ回路の飽和を防止することができる。さらに、第一のローノイズアンプ回 路の入力側に揷入損失が比較的大きなバンドパスフィルタを用いる必要がないため 、第一の周波数帯域の受信感度を向上させることができる。 [0040] 前記高周波回路は、前記第一のパワーアンプ回路と前記第一の送信端子との間、 及び前記第一のローノイズアンプ回路と前記第一の受信端子との間にそれぞれバン ドパスフィルタ回路を具備するのが好ましい。前記第一のパワーアンプ回路と前記第 一の送信端子との間にバンドパスフィルタ回路を設けることにより、送信信号に含ま れる帯域外の不要なノイズを除去することができる。前記第一のローノイズアンプ回 路と前記第一の受信端子との間にバンドパスフィルタ回路を設けることにより、ローノ ィズアンプ回路の出力に含まれる高調波を除去することができる。
[0041] 前記高周波回路は、前記第一及び第二のパワーアンプ回路に一定の電圧を供給 する電圧供給端子と、前記電圧供給端子から電圧を受けて前記第一及び第二のパ ヮーアンプ回路に制御用のバイアス電圧を出力するコントロール回路とを具備するの が好ましい。前記コントロール回路は、前記第一及び第二のローノイズアンプ回路に 制御用のバイアス電圧を出力するように構成しても良レ、。前記コントロール回路は、 1 mA以下の微弱電流での制御を行うことができ、従来のように大きなバイアス電流 (数 mA)を必要としないので、低消費電流化に寄与する。
[0042] 本発明のさらに別の実施形態では、前記コントロール回路は、電圧入力端子と、前 記第一のパワーアンプ回路用バイアス電圧出力端子と、前記第二のパワーアンプ回 路用バイアス電圧出力端子と、前記第一のパワーアンプ回路用のバイアス電圧をォ ンオフする第一のスィッチと、前記第二のパワーアンプ回路用のバイアス電圧をオン オフする第二のスィッチと、前記第一及び第二のスィッチの共通端子と前記電圧入 力端子との間に設けられた第三のスィッチと、前記第三のスィッチに並列に接続され た抵抗と、前記第一〜第三のスィッチのオンオフ制御用の第一〜第三の信号入力端 子とを具備するのが好ましい。このコントロール回路はさらに、前記第一のローノイズ アンプ回路用バイアス電圧出力端子と、前記第二のローノイズアンプ回路用バイアス 電圧出力端子と、前記第一のローノイズアンプ回路用のバイアス電圧をオンオフする 第四のスィッチと、前記第二のローノイズアンプ回路用のバイアス電圧をオンオフす る第五のスィッチと、前記第四及び第五のスィッチのオンオフ制御用の第四及び第 五の信号入力端子とを具備しても良い。前記コントロール回路は一つの電圧入力端 子からの電圧により駆動され、スィッチ制御により前記第一及び第二のパワーアンプ 回路用のバイアス電圧、及び前記第一及び第二のローノイズアンプ回路用のバイァ ス電圧を出力することができる。スィッチ制御用の信号は、 RFIC、ベースバンド IC等 に集積されたロジック制御端子から得ることができる。
[0043] 第三のスィッチと並列に抵抗を接続し、その抵抗値を第三のスィッチのオン時の抵 抗値より高く設定することにより、第三のスィッチのオン時には第三のスィッチの低い 抵抗によりパワーアンプ回路のバイアス電圧は高ぐ第三のスィッチのオフ時には前 記並列抵抗を経由することによりバイアス電圧は低くなり、もってパワーアンプ回路の 動作点が可変になる。従って、通信距離を拡大する場合や通信環境が悪い場合等 にはバイアス電圧を高くしてパワーアンプ回路の出力を高め、反対に通信距離が短 い場合や通信環境が良好な場合等にはバイアス電圧を低くして消費電流を下げるこ とが可能となる。第一、第二、第四及び第五のスィッチと各バイアス電圧出力端子と の間に抵抗を設けることにより、出力電圧を調整することができる。
[0044] 上記高周波回路を有する本発明の高周波部品は、
前記高周波部品は、電極パターンを形成した複数のセラミック誘電体層からなる一 体的な積層体と、前記積層体の表面に搭載された素子とを具備し、前記第一及び第 二の分波回路は前記積層体内で前記電極パターンにより構成されており、前記スィ ツチ回路、前記第一及び第二のパワーアンプ回路及び前記ローノイズアンプ回路用 の半導体素子は前記積層体に搭載されていることを特徴とする。この構成により高周 波部品は小型化され、配線抵抗による挿入損失が低減される。前記コントロール回 路用の半導体素子も前記積層体に搭載することができる。
[0045] 本発明の通信装置は上記高周波部品を具備する。
発明の効果
[0046] 本発明の高周波回路及び高周波部品は、電子電気機器間における無線通信の受 信感度が良好である。また、例えば無線 LANの 5 GHz帯を使用する IEEE802.11aと 2. 4 GHz帯を使用する ΙΕΕΕ802· 1 lb及び/又は IEEE802.1 lgの 2つの通信システムに共 用可能な回路、又は IEEE802.11nの規格に対応した回路を、小型で低消費電流の高 周波部品に構成することができる。これにより、例えば第一及び第二の周波数帯域を それぞれ 5 GHz帯及び 2.4 GHz帯とし、 IEEE802.11a, IEEE802.11b及び IEEE802.11g の通信システムに使用し得るデュアルバンド RFフロントエンド回路を備えた携帯電話 等の通信装置が得られる。
図面の簡単な説明
[図 1]本発明の第一の実施形態による高周波回路を示すブロック図である。
[図 2]本発明に用いるコントロール回路の一例を示すブロック図である。
[図 3]本発明に用いるコントロール回路及び検波回路の一例を示すブロック図である
[図 4]本発明に用いるハイパスフィルタ回路の一例の等価回路を示す図である。
[図 5]本発明に用いるハイパスフィルタ回路の別の例の等価回路を示す図である。
[図 6]本発明に用いるハイパスフィルタ回路のさらに別の例の等価回路を示す図であ る。
[図 7]本発明に用いるハイパスフィルタ回路のさらに別の例の等価回路を示す図であ る。
[図 8]ローノイズアンプ回路の一例を示す図である。
[図 9]ローノイズアンプ回路の別の例を示す図である。
[図 10]ローノイズアンプ回路のさらに別の例を示す図である。
[図 11]ローノイズアンプ回路のさらに別の例を示す図である。
[図 12]ローノイズアンプ回路のゲイン特性を示すグラフである。
[図 13]副高周波回路の一例を示すブロック図である。
[図 14(a)]副高周波回路におけるローノイズアンプ装置の一例を示すブロック図である
[図 14(b)]副高周波回路におけるローノイズアンプ装置の別の例を示すブロック図で ある。
[図 14(c)]副高周波回路におけるローノイズアンプ装置のさらに別の例を示すブロック 図である。
[図 14(d)]副高周波回路におけるローノイズアンプ装置のさらに別の例を示すブロック 図である。
[図 15]図 13に示すローノイズアンプ装置におけるバイパススィッチ部の等価回路の一 例を示す図である。
園 16]図 13に示すローノイズアンプ装置におけるバイパススィッチ部の等価回路の別 の例を示す図である。
[図 17]図 14(a)に示すローノイズアンプ装置におけるバイパススィッチ部の等価回路 のさらに例を示す図である。
[図 18]図 14(a)に示すローノイズアンプ装置におけるバイパススィッチ部の等価回路 のさらに例を示す図である。
[図 19]副高周波回路の他の例を示すブロック図である。
園 20]高周波回路を具備する高周波スィッチ回路の一例を示すブロック図である。
[図 21]本発明の第一の実施形態による高周波部品を示す斜視図である。
園 22]本発明の第一の実施形態による高周波部品のセラミック積層基板を示す展開 図である。
[図 23]本発明の第二の実施形態による高周波回路の一例を示すブロック図である。 園 24]本発明の第二の実施形態による分波回路及びバンドパスフィルタ回路の等価 回路を示す図である。
園 25]本発明の第二の実施形態によるコントロール回路を示すブロック図である。 園 26]本発明の第二の実施形態によるコントロール回路及び検波回路を示すブロッ ク図である。
園 27]本発明の第二の実施形態による高周波回路の別の例を示すブロック図である 園 28]本発明の第二の実施形態によるコントロール回路を示すブロック図である。 園 29]本発明の第二の実施形態による高周波部品を示す斜視図である。
園 30]本発明の第三の実施形態による高周波回路の一例を示すブロック図である。 園 31]本発明の第三の実施形態による分波回路及び第三のバンドパスフィルタ回路 の等価回路を示す図である。
園 32]本発明の第三の実施形態によるバンドパスフィルタ回路の等価回路を示す図 である。
園 33]本発明の第三の実施形態による高周波回路の別の例を示すブロック図である [図 34]本発明の第三の実施形態による高周波部品を示す斜視図である。
[図 35]従来の高周波回路の一例の等価回路を示す図である。
[図 36]従来の高周波回路の別の例を示すブロック図である。
発明を実施するための最良の形態
[0048] 本発明の高周波回路は、第一の周波数帯域と、前記第一の周波数帯域より低い第 二の周波数帯域を選択的に用いる無線通信用の高周波回路であって、アンテナ端 子と、前記第一の周波数帯域の送信信号が入力される第一の送信端子と、前記第 二の周波数帯域の送信信号が入力される第二の送信端子と、前記第一の周波数帯 域の受信信号が出力される第一の受信端子と、前記第二の周波数帯域の受信信号 が出力される第二の受信端子を有する。さらに、第一の周波数帯域の信号と第二の 周波数帯域の信号の経路を振り分ける少なくとも一つの分波回路と、送信信号と受 信信号との経路を切り替える少なくとも一つのスィッチ回路とを有し、前記アンテナ端 子と前記第一の送信端子、前記アンテナ端子と前記第二の送信端子、前記アンテナ 端子と前記第一の受信端子、前記アンテナ端子と前記第二の受信端子の経路が構 成される。
[0049] 送信信号と受信信号との経路を切り替える前記スィッチ回路を、第一及び第二の 周波数帯域で共用して用いる場合は、一つのスィッチ回路で、第一及び第二の送信 端子、又は第一及び第二の受信端子との接続を切り替える。この場合、スィッチ回路 の後段の送信経路に第一の分波回路、受信経路に第二の分波回路の二つの分波 回路を設けて、それぞれを第一の周波数帯域の信号の経路と第二の周波数帯域の 信号の経路とに振り分ける。一方、送信信号と受信信号との経路を切り替える前記ス イッチ回路を、第一及び第二の周波数帯域で別々に用いる場合は、信号経路を一 の分波回路で第一及び第二の周波数帯域の信号の経路に振り分け、前記第一及び 第二の周波数帯域の信号の経路にそれぞれスィッチ回路を接続して、第一の送信 端子と第一の受信端子との接続、及び第二の送信端子と第二の受信端子との接続 を切り替える。
[0050] 前記スィッチ回路と前記第二の受信端子の間には、少なくとも前記第二の周波数 帯域の受信信号を増幅するローノイズアンプ回路が設けられる。前記スィッチ回路と 前記第一の受信端子の間にローノイズアンプ回路を設ける場合、かかるローノイズァ ンプ回路とは別に他のローノイズアンプ回路を設けてもよいし、第二の周波数帯域の 受信信号を増幅する前記ローノイズアンプ回路で共用してもよい。
[0051] さらに、前記アンテナ端子と前記ローノイズアンプ回路との間に前記第二の周波数 帯域の受信信号を通過させるとともに、前記第二の周波数帯域より低周波側の不要 波を阻止する、前記アンテナ端子に近い第一のフィルタ回路と前記ローノイズアンプ 回路に近レ、第二のフィルタ回路を設ける。第一のフィルタ回路と第二のフィルタ回路 とは、前記スィッチ回路及び Z又は分波回路を介して配置すればよい。前記第一の フィルタ回路の阻止帯域が前記第二のフィルタ回路の阻止帯域より低周波側になる ようにする。高周波回路のうち、アンテナ端子に近い領域には周波数帯域や送受信 モードが異なる多くの信号が通過する。力かる位置に阻止帯域が低い第一のフィノレ タを設けることにより、信号損失を抑えつつ、低周波側の不要電波を阻止することが できる。例えば、アンテナ端子と、それに接続されるスィッチ回路又は分波回路との 間の、受信信号と送信信号が通過する部分に阻止帯域が低い第一のフィルタ回路 を設ければ、送受信の信号損失を抑えることができる。
[0052] 本発明の高周波回路及び高周波部品を添付図面を参照して以下詳細に説明する 力 本発明はそれらに限定されるものではない。また特に断りがなければ各実施形態 における説明は別の実施形態にも適用可能である。
[0053] [1]第一の実施形態
(A)高周波回路
(1)全体構成
図 1は、 2.4 GHz帯無線 LAN (IEEE802.11b及び/又は IEEE802.11g)と 5 GHz帯無 線 LAN (IEEE802.11a)の 2つの通信システムに共用可能な本発明の第一の実施形態 による高周波回路を示す。この高周波回路は、マルチバンドアンテナに接続されるァ ンテナ端子 Antに接続したスィッチ回路(SPDT) 101と、スィッチ回路(SPDT) 101の送 信経路側に接続した第一の分波回路 (DIP) 103と、アンテナ端子 Antとスィッチ回路 1 01との間に設けられた第一のフィルタとしてのハイパスフィルタ回路(HPF) 118とを有 する。第一の分波回路 103は、 2.4 GHz帯無線 LANの送信信号を通過させるが 5 GHz 帯無線 LANの送信信号を減衰させる低周波側フィルタ回路と、 5 GHz帯無線 LANの 送信信号を通過させるが 2.4 GHz帯無線 LANの送信信号を減衰させる高周波側フィ ルタ回路とからなる。
[0054] 第一の分波回路 103の高周波側フィルタ回路にローパスフィルタ回路(LPF) 111を 介して第一のパワーアンプ回路(PA5) 105が接続してレ、る。第一のパワーアンプ回路 105には順に、第一のバンドパスフィルタ回路(BPF) 107、平衡—不平衡回路(BAL) l 16、及び第一の送信端子(5 GHz帯無線 LANの送信端子) TX5P, TX5Nが接続して いる。平衡—不平衡回路 116により、第一の送信端子 TX5P, TX5Nは平衡端子となつ ている。バンドパスフィルタ回路 107は送信信号に含まれる帯域外の不要なノイズを 除去する。第一のパワーアンプ回路 105は、 5 GHz帯無線 LANの送信側回路から入 力される送信信号を増幅する。ローパスフィルタ回路 111は第一のパワーアンプ回路 105から発生した高調波を減衰させる。第一の分波回路 103の高周波側フィルタ回路 も高調波を減衰させる。
[0055] 第一の分波回路 103の低周波側フィルタ回路には順に、ローパスフィルタ(LPF) 11 2、第二のパワーアンプ回路(PA2) 106、第二のバンドパスフィルタ回路(BPF) 108、 及び第二の送信端子(2.4 GHz帯無線 LANの送信端子) TX2が接続している。バンド パスフィルタ回路 108は送信信号に含まれる帯域外の不要なノイズを除去する。第二 のパワーアンプ回路 106は、 2.4 GHz帯無線 LANの送信側回路から入力される送信 信号を増幅する。ローパスフィルタ 112は増幅された送信信号を通過させるが、第二 のパワーアンプ回路 106で発生する高調波を減衰させる。
[0056] スィッチ回路 101の受信経路側に、順に第二のフィルタとしてのハイパスフィルタ回 路(HPF) 102、ローノイズアンプ回路(LNA) 109及び第二の分波回路(DIP) 110が接 続されている。ローノイズアンプ回路 109は、 2.4 GHz帯及び 5 GHz帯の無線 LANの 受信信号を増幅するように、広帯域をカバーするのが望ましい。 2.4 GHz帯及び 5 G Hz帯にローノイズアンプ回路 109を共用することにより、従来の回路構成のような 2つ のローノイズアンプを必要とせず、小型化及び低コスト化が可能となり、さらにローノィ ズアンプの入力側に分波回路及びバンドパス回路を使用する必要がないので、受信 感度を向上できる。第二の分波回路 110は、 2.4 GHz帯無線 LANの受信信号を通過 させるが 5 GHz帯無線 LANの受信信号を減衰させる低周波側フィルタ回路と、 5 GHz 帯無線 LANの受信信号を通過させる力 S2.4 GHz帯無線 LANの受信信号を減衰させ る高周波側フィルタ回路とからなる。
[0057] 第一及び第二の分波回路 103, 110において、低周波側フィルタ回路と高周波側フ ィルタ回路の組合せは上記のものに限定されず、ローパスフィルタ回路、ハイパスフィ ルタ、バンドパスフィルタ及びノッチフィルタを適宜組合せることにより構成することが できる。
[0058] ローノイズアンプ 109で増幅された信号は第二の分波回路 110により分波され、 2.4 GHz帯無線 LANの受信信号は第三のバンドパスフィルタ回路(BPF) 113を介して第 二の受信端子(2.4 GHz帯無線 LANの受信端子) RX2に出力され、 5 GHz帯無線 LA Nの受信信号は第四のバンドパスフィルタ回路(BPF) 114及び平衡ー不平衡回路(B AL) 117を介して第一の受信端子(5 GHz帯無線 LANの受信端子) RX5P, RX5Nに出 力される。平衡ー不平衡回路 117により、第一の受信端子 RX5P, RX5Nは平衡端子と なっている。
[0059] 電圧供給端子 VCCは第一及び第二のパワーアンプ回路(PA5, PA2) 105, 106及び コントロール回路(Cont. IC) 120に一定の電圧を供給する。図 2に示すように、コント口 ール回路 120は、電圧供給端子 VCCと接続する電圧入力端子 Vcと、第一のパワーァ ンプ回路 (PA5)用バイアス電圧出力端子 Vb5と、第二のパワーアンプ回路 (PA2)用 バイアス電圧出力端子 Vb2と、ローノイズアンプ回路 (LNA)用バイアス電圧出力端子 Vddと、第一のパワーアンプ回路(PA5)用のバイアス電圧をオンオフする第一のスィ ツチ(SW1)と、第二のパワーアンプ回路(PA2)用のバイアス電圧をオンオフする第二 のスィッチ(SW2)と、第一及び第二のスィッチ(SW1 , SW2)の共通端子と電圧入力端 子 Vcとの間に設けられた第三のスィッチ(SW3)と、ローノイズアンプ回路用のバイァ ス電圧をオンオフする第四のスィッチ(SW4)と、第三のスィッチ(SW3)に並列に接続 された抵抗 R1と、第一のスィッチ(SW1)のオンオフ制御用の信号を入力する端子 PA 5〇Nと、第二のスィッチ(SW2)のオンオフ制御用の信号を入力する端子 PA20Nと、 第三のスィッチ(SW3)のオンオフ制御用の信号を入力する端子 HI/LOと、第四のス イッチ(SW4)のオンオフ制御用の信号を入力する端子 LNAONとを具備している。
[0060] コントロール回路 120は、第一〜第四のスィッチ(SW1〜SW4)を直流的にオンオフ できれば良ぐ例えば複数のアナログスィッチを一体的に集積した CMOSチップによ り構成すること力 Sできる。アナログスィッチのオン時の抵抗値は 100 Ω以下が望ましい 。コントロール回路 120は、第一及び第二のパワーアンプ回路 105, 106と電圧供給端 子 VCCの電圧を共用し、第一及び第二のパワーアンプ回路 105, 106及びローノイズ アンプ回路 109へのバイアス電圧を供給する。コントロール回路 120に微弱電流(1 m A以下)の信号により切替え可能なスィッチを用いることにより、低電流制御が可能と なる。
[0061] 第三のスィッチ(SW3)と並列な抵抗 R1が 500 Ω以上の抵抗値を有すると、第三のス イッチ(SW3)及び抵抗 R1の並列回路の抵抗値は、第三のスィッチ(SW3)のオン時に は 100 Ω以下と低ぐオフ時には 500 Ω以上と高く設定できる。信号入力 HI/LOからの 制御信号が第三のスィッチ(SW3)をオンにすると、パワーアンプ回路へのバイアス電 圧が大きくなり、第三のスィッチ(SW3)をオフにすると、パワーアンプ回路へのバイァ ス電圧が小さくなる。従って、通信距離を拡大する場合や通信環境が悪い場合等に はバイアス電圧を高くしてパワーアンプ回路の出力を高め、反対に通信距離が短い 場合や通信環境が良好な場合等にはバイアス電圧を低くして消費電流を下げること が可能となる。
[0062] 第一のスィッチ(SW1)と第一のパワーアンプ回路 105用バイアス電圧出力端子 Vb5 との間の抵抗 R2、第二のスィッチ(SW2)と第二のパワーアンプ回路 106用バイアス電 圧出力端子 Vb2との間の抵抗 R3、及び第四のスィッチ(SW4)とローノイズアンプ回路 109用バイアス電圧出力端子 Vddとの間の抵抗 R4の抵抗値を適宜設定することにより 、第一及び第二のパワーアンプ回路 105, 106及びローノイズアンプ回路 109へのバイ ァス電圧を調整できる。
[0063] 第一及び第二のパワーアンプ回路 PA5, PA2用の検波ダイオード Dl , D2の検波出 力は検波端子 VPDに出力される。検波ダイオード Dl, D2とコントロール回路 120の好 ましい関係を図 3に示す。検波ダイオード D1のアノードは抵抗 R6を介して第一のパヮ 一アンプ回路 PA5のバイアス電圧出力端子 Vb5に接続しており、検波ダイオード D2の アノードは抵抗 R7を介して第二のパワーアンプ回路 PA2のバイアス電圧出力端子 Vb 2に接続している。両検波ダイオード Dl, D2の力ソードは、コンデンサ C1と抵抗 R5か らなる電圧平滑回路を介して、共通の検波端子 VPDに接続している。検波端子の共 用は小型化に寄与する。この構成は、例えばセラミック積層基板を用いて本発明の 高周波回路を有する高周波部品を構成する場合に有効である。
[0064] 高周波用の一般的なダイオードの閾電圧は 0.1〜1 V程度と制約されているので、 パワーアンプ回路出力のモニタに使用する場合、パワーの小さい領域で検波するこ とができなレ、。し力、しこの実施形態では、検波ダイオード Dl, D2にバイアス電圧を印 カロできるので、実効的な閾電圧を低減でき、低出力領域でも検波可能である。またパ ヮーアンプ回路のバイアス電源から検波ダイオードにバイアス電圧を印加することが できるため、制御端子を別に設ける必要がなぐ回路を簡素化できる。抵抗 R6、 R7の 抵抗値は、パワーアンプ回路の出力が検波回路を経由してパワーアンプ回路の入 力に戻るのを防ぐため、 1 以上であるのが望ましい。これにより、パワーアンプ回 路の発振や特性劣化を防止できる。
[0065] パワーアンプ回路 ΡΑ5の RF出力が ON状態で十分小さい場合、検波ダイオード D1 へのバイアス電圧 Vb5が検波ダイオードの閾電圧 Vthより高いと、 (Vb5-Vth) X [R5 / (R5 + R6) ]の直流電圧が検波電圧端子 VPDに出力される。即ち、パワーアンプ回 路の出力に比例した検波出力にオフセット電圧が重畳される。パワーアンプ回路 PA2 についても同様である。なお抵抗 R6、 R7は、コントロール回路 120を一体化した CMO Sチップとして設けても良い。
[0066] スィッチ回路 101は、電界効果トランジスタ (FET)やダイオード等のスイッチング素子 を主構成とし、適宜インダクタンス素子及びコンデンサを有し、例えば SPDT (Single P ole Dual Throw)型であるのが好ましレ、。スィッチ回路 101に入力される TX/RX0及び T X/RX1は、スィッチ回路 101の切替え信号である。
[0067] 図 4はスィッチ回路 101とアンテナ端子 Antの間に設けられたハイパスフィルタ回路( HPF) 118の等価回路の一例を示す。ハイパスフィルタ回路 118は、アンテナ端子 Ant に接続される端子 PIと接地電極との間に設けられたインダクタンス素子 L11と、端子 P 1とスィッチ回路 101に接続される端子 P2との間に設けられたキャパシタンス素子 CI 1 と、端子 P2と接地電極との間に設けられたインダクタンス素子 L12及びキャパシタンス 素子 C12の直列共振回路とを有する。図 5はハイパスフィルタ回路 118の等価回路の 別の例を示す。接地されたインダクタンス素子 L11は、アンテナに静電気放電 (ESD) 力あった場合にそれによるスィッチ回路等の破壊を防止する作用を有する。インダク タンス素子 L11は 10 nH以下が望ましい。
[0068] 無線 LANの送受信回路は携帯電話に内蔵されることが多くなつてきた。携帯電話 の信号は約 0.8〜2 GHzの範囲が多ぐ無線 LANの 2.4 GHz帯と比較的近いので、混 信が起き易い。混信信号が入ると、ローノイズアンプ回路は飽和し、無線 LANの受信 ができなくなるおそれがある。そこで携帯電話の信号が混信しないように、ノ、ィパスフ ィルタ回路 118で 2 GHz以下の信号を減衰させる。このため、ハイパスフィルタ回路 11 8は約 0.8〜2 GHzの間に減衰極を 1つ以上有するのが好ましレ、。この機能は、インダ クタンス素子 L12とキャパシタンス素子 C12の直列共振回路により実現される。
[0069] 無線 LANの 2.4 GHz帯と携帯電話の帯域が近いために一つのハイパスフィルタ回 路では所望の減衰が得られない場合、スィッチ回路 101とローノイズアンプ回路 109と の間に第二のフィルタとしてハイパスフィルタ回路 102を設けるのが好ましレ、。ハイパ スフィルタ回路 102として、図 4の回路以外に図 6の回路も使用できる。このハイパスフ ィルタ回路は、スィッチ回路 101に接続される端子 P3とローノイズアンプ回路 109に接 続される端子 P4との間に設けられたキャパシタンス素子 C31、 C32と、キャパシタンス 素子 C31、 C32の間と接地電極との間に設けられたインダクタンス素子 L31とキャパシ タンス素子 C33の直列共振回路とを有する。このハイパスフィルタ回路も約 0.8〜2 GH zの間に減衰極を 1つ以上有するのが好ましい。
[0070] ハイパスフィルタ回路 102として、図 7に示す多段のハイパスフィルタ回路も使用でき る。このハイパスフィルタ回路は、スィッチ回路 101に接続される端子 P3とローノイズァ ンプ回路 109に接続される端子 P4との間に設けられたキャパシタンス素子 C41〜C43 と、キャパシタンス素子 C41、 C42の間と接地電極との間に設けられたインダクタンス 素子 L41とキャパシタンス素子 C44からなる直列共振回路と、キャパシタンス素子 C42 、 C43の間と接地電極との間に設けられたインダクタンス素子 L42とキャパシタンス素 子 C45からなる直列共振回路とを有する。このハイパスフィルタ回路では、 2つの直列 共振回路の減衰極を独立に設定可能である。第一及び第二のフィルタとしてハイパ スフィルタ回路を用いる場合、第二のフィルタの方がより急峻なフィルタ特性を有する ために、第二のフィルタは第一のフィルタより段数が多いのが好ましい。図 6及び図 7 にハイパスフィルタ回路を例示した力 S、回路構成は適宜変更できる。ハイパスフィルタ 回路の代わりにバンドパスフィルタ回路を用いることもできる力 バンドパスフィルタ回 路の揷入損失は約 2 dB近くまであり、ハイパスフィルタ回路の揷入損失 (約 0.2 dBま で)より大きいため、ハイパスフィルタ回路の方が好ましい。ハイパスフィルタ回路は第 一及び第二の周波数帯域で共用できるため、第一及び第二の周波数帯域で共用す るローノイズアンプ回路との組合せは小型化及び受信感度向上に好適である。
[0071] 分波回路 103、 110、ローパスフィルタ回路 111、 112、バンドパスフィルタ回路 107、 10 8、 113、 114、及び平衡一不平衡回路 116、 117はインダクタンス素子とキャパシタンス 素子とを組み合わせた LC回路により構成することができる。
[0072] 複数の周波数帯域の通信システムで共用されるハイパスフィルタ回路及びローノィ ズアンプ回路と、ローノイズアンプ回路の出力側に接続されて複数の周波数帯域の 受信信号を分波する分波回路を有する高周波回路は j、型で消費電流が少なぐ 携帯電話等の低周波信号に由来するローノイズアンプ回路の相互変調歪みを抑制 すること力 Sできる。この回路構成により、周波数帯域ごとにフィルタ回路を設けたり、フ ィルタ回路を可変にしたりする必要がなくなり、フィルタ回路の複雑化や消費電流の 増加を抑えることができる。
[0073] ローノイズアンプ回路 109と第二の分波回路 110の配置は入れ替えても良い。この場 合、第二の分波回路 110の受信端子側で、第一の受信端子に接続する経路に第一 の周波数帯域の受信信号を増幅するローノイズアンプ回路を設け、第二の受信端子 に接続する経路に第二の周波数帯域の受信信号を増幅する他のローノイズアンプ 回路を設け、ノ、ィパスフィルタを第二の分波回路 110の入力側に設ける。この回路構 成では、ハイパスフィルタは第一及び第二の周波数帯域で共用するが、ローノイズァ ンプ回路は使用する周波数帯域ごとに設けられる。従って、広帯域のローノイズアン プ回路を必要とせず、高いゲインを有するローノイズアンプ回路を用いることができる [0074] (2)構成回路
(a)ローノイズアンプ回路
図 8に示すローノイズアンプ回路 109aも使用できるが、第一及び第二の周波数帯域 の信号を増幅するため、図 9に示すゲイン特性が平坦な広帯域ローノイズアンプ回路 109bが好ましレ、。ローノイズアンプ回路 109bは、ローノイズアンプ回路 LNAの増幅回 路を構成するトランジスタ Trと、トランジスタ Trのベースに接続された入力経路と、トラ ンジスタ Trのコレクタに接続された出力経路と、入力経路のノード 121と出力経路のノ ード 122との間で直列に接続された抵抗素子 RL1、インダクタンス素子 113及びキャパ シタンス素子 CL2を有するフィードバック回路とを有する。
[0075] キャパシタンス素子 CL1〜CL3は直流電流をカットし、抵抗素子 RL2、 RL3はローノ ィズアンプ回路 LNAの動作点を調整する。インダクタンス素子 LL1はチョークインダク タとして働き、電源 VcLからの直流電流を通すが通過帯の高周波信号が電源 VcLへ 漏洩することを防ぐ。電源 VbLのラインにもチョークインダクタを配置して良いが、抵抗 素子 RL2の値が数十 と大きいため、必ずしも必要ではない。抵抗素子 RL1は、出 力信号の一部を入力側へフィードバックすることにより広帯域での入出力整合を取る 。キャパシタンス素子 CL4〜CL6はノイズカットコンデンサであり、電源からのノイズを 吸収する。高周波信号の一部が電源を経由して発振する問題を回避するために、キ ャパシタンス素子 CL4〜CL6は通過帯の周波数ではほぼショートのインピーダンスに なるように設定されているのが望ましい。インダクタンス素子 111、 112はチョークインダク タとして機能し、インダクタンス素子 113は信号のフィードバックを調整する。
[0076] 図 10はローノイズアンプ回路のさらに別の例を示す。このローノイズアンプ回路 109c は、トランジスタのと、トランジスタ Trのベースに接続された入力経路と、トランジスタお のコレクタに接続された出力経路と、入力経路のノード 121と出力経路のノード 122と の間で抵抗 RL1を有するフィードバック回路と、入力経路のノード 121とトランジスタ Tr のベースとの間に設けられたコンデンサ CL7とを有する。ノード 121とトランジスタ Trの ベースとの間にコンデンサ CL7を接続することにより、ゲイン特性は平坦化される。適 度な容量を有するコンデンサ CL7は低い周波数では高ぐ高い周波数では低いイン ピーダンスを有するため、ローノイズアンプ回路のゲインの周波数依存性を低くする ことができ、例えば周波数 2.4 GHzと 5.85 GHzにおけるゲイン差を 2 dB以下にするこ とができる。 2〜6 GHzでもゲインの幅は 2 dB以下である。また 2·4〜5·85 GHzの使用 周波数範囲で 12 dB以上のゲインが得られる。力かる構成はマルチバンド通信システ ムの受信信号の増幅に好適であり、 2つ以上の周波数帯域におけるゲインの差が 5 d B以下、特に 4 dB以下となるようにすれば、優れた受信側回路を有するマルチバンド 通信 [例えば 2.4 GHz帯無線 LAN GEEE802.11b及び Z又は IEEE802.11g)と 5 GHz帯 無線 LAN (IEEE802.11a及び/又は IEEE802.11h)の 2つの通信システム]用の高周波 回路が得られる。
[0077] 使用周波数帯域では DCカットコンデンサ CL1はショートとみなせるがコンデンサ CL 7は有効に機能するように、コンデンサ CL7の容量を DCカットコンデンサ CL1の容量よ り小さく設定するのが好ましレ、。図 10に示すローノイズアンプ回路 109cではフィードバ ック量が抵抗 RL1のみで決定されるため、コンデンサ CL7は大きな容量を有する必要 がなぐ例えば 2.4 GHz帯において 2 pF程度と低い容量に設定することにより整合回 路の一部として使用することができる。小容量のコンデンサ CL7により、トランジスタの ベース電圧の ON-OFF制御による信号の立ち上がりに要する時間を短縮することが できる。コンデンサ CL2を 15 pFとしたローノイズアンプ回路 109aにおけるトランジスタ のベース電圧の ON/OFF制御による信号の立ち上がり力 μ secであるのに対して 、 CL7を 2 pFとしたローノイズアンプ回路 109cでは立ち上がりは 0.1 /i secである。
[0078] ローノイズアンプ回路のさらに別の例を図 11に示す。このローノイズアンプ回路 109d では、フィードバック回路の抵抗 RL1にさらにインダクタンス素子 LL2が直列に接続さ れている。インダクタンス素子 LL2のインピーダンスは高い周波数では大きいため、低 い周波数より高い周波数でフィードバック量が小さぐもって高い周波数でのゲイン特 性が高くなり、ゲインの周波数依存性がいっそう平坦ィ匕される。周波数 2.4 GHzと 5.85 GHzにおけるゲイン差を 1 dB以下にすることができ、 2〜6 GHzでもゲインの幅を 1 dB 以下にすることができる。 2.4-5.85 GHzの使用周波数範囲で 13 dB以上のゲインが 得られる。ゲインの向上及び周波数依存性の平坦ィ匕を実現するために、インダクタン ス素子 LL2は通過帯域より高い自己共振周波数を有し、通過帯域において 10以上の Q値を有するのが望ましい。このローノイズアンプ回路を用いることにより、異なる周波 数帯域におけるローノイズアンプ回路のゲインの差を例えば 4 dB以下に抑えることが できる。
[0079] 図 12は、種々のフィードバック回路を有するローノイズアンプ回路 109a〜109d (図 8 〜11)のゲイン特性をに示す。フィードバック回路にインダクタンス素子を 113を設けた ローノイズアンプ回路 109bは、ピークが抑えられて広帯域化したゲインを有することが 分かる。 2 GHz以上異なる周波数 2.4 GHzと 5.85 GHzにおけるゲインの差は、ローノ ィズアンプ回路 109aが 5.1 dBであるのに対して、ローノイズアンプ回路 109bは 4 dB以 下である。 2〜6 GHzの間でのゲインの幅は、ローノイズアンプ回路 109aが 6 dBである のに対して、ローノイズアンプ回路 109bは 5 dB以下である。またローノイズアンプ回路 109bは 2.4〜5.85 GHzの使用周波数帯域で 13 dB以上のゲインを確保している。ロー ノイズアンプ回路 109c及び 109dのゲイン特性はさらに平坦化されている。
[0080] (b)バイパス回路
アンテナからの受信信号が強い時にローノイズアンプ回路 LNAで受信信号が歪む のを防ぐために、図 13に示す副高周波回路 123を設けるのが好ましい。高周波回路 1 23の一例では、図 14(a)に示すように、ローノイズアンプ回路 LNAに並列に SPST (Sing le Pole Single throw)型のバイパススィッチが接続している。 SPSTスィッチとしては、 図 15に示すような電界効果トランジスタ FET1、 FET2を直列接続した回路を使用する こと力 Sできる。電界効果トランジスタの代わりに PINダイオードを使用しても良い。受信 信号が強い時には、電源端子 Vbypから例えば 3 Vを印加することによりバイパススィ ツチ SPSTを ON状態にするとともに、電源端子 VbLから例えば 0 Vを印加することによ りローノイズアンプ回路 LNAを非動作とする。非動作時のローノイズアンプ回路 LNA はアイソレーションが高いので、受信信号はバイパススィッチ SPSTを通って分波回路 DIPに到達する。ローノイズアンプ回路 LNAが飽和してしまう程強い受信信号が入力 された場合でも、受信信号がローノイズアンプ回路 LNAを通らずバイパススィッチ SPS Tを通るので、受信信号が歪むのを防ぐことができる。受信信号が弱い時には、電源 端子 Vbypから例えば 0Vを印加することによりバイパススィッチ SPSTを OFF状態にす るとともに、電源端子 VbLから例えば 3Vを印加することによりローノイズアンプ回路 LN Aを動作させる。 OFF状態のバイパススィッチ SPSTはアイソレーションが高いので、受 信信号はローノイズアンプ回路 LNAを通って分波回路 DIPに到達する。この時、ロー ノイズアンプ回路 LNAは動作しているので、受信信号は増幅され、受信感度を良くす ること力 Sできる。
[0081] バイパススィッチ SPSTの OFF状態でアイソレーションが不足する場合、図 16に示す ように、電界効果トランジスタ FET1と FET2の間に、グランドに接続された電界効果トラ ンジスタ FET3を接続するのが好ましレ、。
[0082] ローノイズアンプ回路 LNAが非動作時にアイソレーションが不足する場合、図 14(b) に示すように、 SPDT (Single Pole Double Throw)型のスィッチを 2個組み合わせたバ ィパススィッチを使用しても良レ、。図 17に示すように、 SPDTスィッチを組合せたバイパ ススィッチでは、ノ ィパス経路に電界効果トランジスタ FET1、 FET2を直列接続し、端 子 laとローノイズアンプ回路 LNAとの間に電界効果トランジスタ FET4を設けるのが好 ましい。必要に応じてさらにローノイズアンプ回路 LNAと端子 lbとの間に電界効果トラ ンジスタ FET5を追加しても良レ、。また電界効果トランジスタの代わりに PINダイオード を使用しても良い。この場合も、ノくィパス経路のアイソレーションが不足する場合、図 18に示すように、電界効果トランジスタ FET1と FET2の間に、グランドに接続された電 界効果トランジスタ FET3を接続するのが好ましい。
[0083] 受信信号の歪みをさらに低減する場合、バイパス経路及びローノイズアンプ回路 L NAの分岐点とローノイズアンプ回路 LNAとの間に、ハイパスフィルタ回路を配置する のが好ましい。図 14(c)に示す例では、アンテナ側のバイパススィッチ SPDT1とローノ ィズアンプ回路 LNAとの間にハイパスフィルタ回路 HPFが配置されている。この場合、 SPDT1は前記分岐点に相当し、 SPDT2はバイパス経路とローノイズアンプ回路 LNAと の合流点に相当する。この回路構成によりバイパス経路の揷入損失を小さくでき、そ の分小さな受信信号までバイパス経路で対応できる。その結果、ローノイズアンプ回 路 LNAを動作させる場合の受信信号強度を小さくすることができ、受信信号の歪みを zj、さくできる。例えば、バイパス経路を使用するためのバイパススィッチ SPDT1のバイ パス経路側端子の最低受信信号強度を— 10 dBmとし、ハイパスフィルタ 124の揷入 損失を 1 dBとし、バイパススィッチ SPDT1の揷入損失を 0.5 dBとすると、図 14(b)に示 す回路では、バイパス経路を使用可能とする端子 laで最低受信信号強度は— 8.5 d Bmで、ローノイズアンプ回路 LNAの入力部の最低受信信号強度は 10 dBmである 。これに対し、図 14(c)に示す回路では、バイパス経路を使用可能とする端子 P1での 最低受信信号強度は 9.5 dBmであり、ローノイズアンプ回路 LNAの入力部の最低 受信信号強度は— 11 dBmである。図 14(b)と図 14(c)の回路を比較すると、ハイパス フィルタ 124の揷入損失分だけバイパス経路での最低受信信号を低減できるため、受 信感度の向上が期待できる。なお図 14(c)に示すバイパススィッチ SPDT1及び SPDT2 を設ける代わりに、図 14(d)に示す SPST型のスィッチをバイパス経路に設けても良い
[0084] 図 19に示す副高周波回路 123は、 2.4〜5 GHzの通過帯域を有するハイパスフィノレ タ回路 HPFと、ハイパスフィルタ回路 HPFを通過した受信信号を増幅するローノイズ アンプ回路 125と、 2.4 GHz帯、 3.5 GHz帯及び 5 GHz帯の受信信号に分波する三分 波回路 TRIとを有する。端子 P1はアンテナ側回路、端子 P2は 5 GHz帯の受信側回路 、端子 P3は 2.4 GHz帯の受信回路、端子 P4は 3.5 GHz帯の受信回路に接続される。 3 .5 GHz帯では IEEE802.16 (WiMAX)及びその派生が使用される。
[0085] 本発明の高周波回路に設ける副高周波回路 123は、受信周波数帯域を通過帯域と する高域通過フィルタ回路と、前記高域通過フィルタ回路に接続され前記高域通過 フィルタ回路を通過する受信信号を増幅するローノイズアンプ回路を備えたローノィ ズアンプ装置と、前記ローノイズアンプ装置の出力側に接続され複数の周波数帯域 の受信信号を分波する分波回路とを有し、前記高域通過フィルタ回路と前記ローノィ ズアンプ装置は、複数の周波数帯域の通信システムに共用される。
[0086] 図 20は、 2.4 GHz帯無線 LANと 5 GHz帯無線 LANの 2つの通信システムに共用可能 な高周波スィッチ回路であって、副高周波回路 123を具備するものの例を示す。この 高周波スィッチ回路は、アンテナ端子 Antと送信端子 (Tx2G, Tx5G)との間の送信経 路と、アンテナ端子 Antと受信端子(Rx2G, Rx5G)との間の受信経路と、アンテナ端 子 Antと Bluetooth用送受信端子(BLT)との間の Bluetooth経路と、これらの経路を切 り替えるスィッチ回路 SP3Tと、スィッチ回路 SP3Tと受信端子(Rx2G, Rx5G)との間の 経路に設けられた副高周波回路 123とを有する。マルチバンドアンテナに接続される アンテナ端子 Antにハイパスフィルタ HPF1が接続し、その後段にスィッチ回路 SP3Tが 接続している。ハイパスフィルタ HPF1は、約 1 GHz以下の周波数を減衰させ、アンテ ナに静電気放電があった場合にスィッチ回路等の半導体部品が破壊されるのを防 止する。スィッチ回路 SP3Tは、アンテナと送信端子、受信端子及び Bluetooth用送受 信端子との接続を切替える。 Bluetooth用送受信端子が必要ない場合、スィッチ回路 SP3Tの代わりに SPDT型のスィッチ回路を使用することができる。
[0087] スィッチ回路 SP3Tの送信端子に検波回路 DETが接続し、検波回路 DETに第一の 分波回路 DIPT1が接続している。検波回路 DETは、方向性結合器 CPLと、方向性結 合器 CPLの副線路の一端に接続された終端抵抗と、副線路の他端に接続されたショ ットキーダイオードと、ショットキーダイオードに接続された抵抗素子及びコンデンサ 素子とからなる平滑回路により構成されている。方向性結合器 CPLの主線路はスイツ チ回路 SP3Tと第一の分波回路 DIPT1に接続している。検波回路 DETは、検波出力 端子 Detから送信信号電流に応じた直流電圧を出力する。検波回路 DETを第一の分 波回路 DIPT1と各パワーアンプ回路 PA2、 PA5とのそれぞれの間に設けても良いが、 検波回路力 つになるので小型化には向かなレ、。各パワーアンプ回路 PA2、 PA5内に 検波回路 DETを設けることもできる。検波回路 DETの検波出力端子 Detから出力され た直流電圧は、 RFIC回路等を介してフィードバックされ、パワーアンプ回路 PA2、 PA5 の制御に利用される。
[0088] 第一の分波回路 DIPT1の低周波側フィルタ回路には順に、バンドパスフィルタ BPF3 、高周波増幅回路 PA2、バンドパスフィルタ BPF4、及び 2.4 GHz帯無線 LANの送信 端子 Tx2Gが接続している。送信端子 Tx2Gに平衡出力が必要な場合、平衡-不平 衡変換回路を接続する。バンドパスフィルタ回路 BPF4は送信信号に含まれる帯域外 の不要なノイズを除去する。高周波増幅回路 PA2は 2.4 GHz帯無線 LANの送信側回 路から入力される送信信号を増幅する。バンドパスフィルタ BPF3は高周波増幅回路 PA2で増幅された送信信号を通過させるが、高周波増幅回路 PA2で発生したノイズ や高調波を除去する。第一の分波回路 DIPT1の低周波側フィルタ回路も高周波増幅 回路 PA2から発生した高調波を減衰させる。バンドパスフィルタ回路 BPF3, BPF4は、 所望の特性に応じて省略したり、ローパスフィルタ回路、ハイパスフィルタ回路又はノ ツチフィルタ回路に変更したりしても良い。 [0089] 第一の分波回路 DIPT1の高周波側フィルタ回路には順に、ローパスフィルタ回路 L PF、高周波増幅回路 PA5、ハイパスフィルタ回路 HPF4、及び 5 GHz帯無線 LANの送 信端子 Tx5Gが接続している。送信端子 Tx5Gに平衡出力が必要な場合、平衡ー不 平衡変換回路を接続する。ハイパスフィルタ回路 HPF4は送信信号に含まれる低域 側帯域外の不要なノイズを除去する。高周波増幅回路 PA5は 5 GHz帯無線 LANの送 信側回路から入力される送信信号を増幅する。ローパスフィルタ回路 LPFは高周波 増幅回路 PA5で増幅された送信信号を通過させるが、高周波増幅回路 PA5で発生 する高調波を減衰させる。ハイパスフィルタ回路 HPF4及びローパスフィルタ回路 LPF は、所望の特性に応じて省略したり、バンドパスフィルタ回路又はノッチフィルタ回路 に変更したりしても良い。
[0090] スィッチ回路 SP3Tの受信端子には副高周波回路 123が接続している。副高周波回 路 123は、 2.4 GHz帯及び 5 GHz帯の無線 LANの周波数帯域を通過帯域とするハイ パスフィルタ回路 HPFと、 2.4 GHz帯及び 5 GHz帯の無線 LANの受信信号を増幅する ローノイズアンプ回路 LNAと、強い受信信号が入力された時のローノイズアンプ回路 LNAの歪みを防止するためのバイパススィッチと、 2.4 GHz帯及び 5 GHz帯の受信信 号を分波する分波回路 DIP2とを具備する。副高周波回路 123の詳細は既に説明して いるので、省略する。
[0091] 副高周波回路 123の端子 P3には順に、バンドパスフィルタ回路 BPF1、平衡—不平 衡変換回路 BAL1、及び 2.4 GHz帯無線 LANの受信端子 Rx2Gが接続している。バン ドパスフィルタ回路 BPF1はアンテナから受信された 2.4 GHz帯無線 LANの受信信号 に含まれる帯域外の不要なノイズを除去する。平衡ー不平衡変換回路 BALIは 2.4 G Hz帯無線 LANの受信回路の耐ノイズ性を改善するために回路を平衡ィ匕する。 2.4 G Hz帯無線 LANの平衡化された 2つの受信端子からは、理想的には振幅が等しく 180 ° 位相のずれた信号が出力される。平衡—不平衡変換回路 BALIはインピーダンス 変換機能を有しても良レ、。バンドパスフィルタ回路 BPF1は、所望の特性に応じて省 略したり、ハイパスフィルタ回路又はノッチフィルタ回路に変更したりしても良い。
[0092] 副高周波回路 123の端子 P2には順に、ハイパスフィルタ回路 HPF2、平衡—不平衡 変換回路 BAL2、及び 5 GHz帯無線 LANの受信端子 Rx5Gが接続している。ハイパス フィルタ回路 HPF2はアンテナから受信された 5 GHz帯無線 LANの受信信号に含まれ る低域側帯域外の不要のノイズを除去する。平衡-不平衡変換回路 BAL2は 5 GHz 帯無線 LANの受信回路の耐ノイズ性を改善するために回路を平衡化する。 5 GHz帯 無線 LANの平衡化された 2つの受信端子からは、理想的には振幅が等しく 180° 位 相のずれた信号が出力される。平衡—不平衡変換回路 BAL2はインピーダンス変換 機能を有しても良い。ノ、ィパスフィルタ回路 HPF2は、所望の特性に応じて省略したり 、バンドパスフィルタ回路又はノッチフィルタ回路に変更したりしても良い。
[0093] 分波回路 DIP、 DIPT,ローパスフィルタ回路 LPF、バンドパスフィルタ回路 BPF1、 BP F3、 BPF4、 ノヽイノヽ。スフイノレタ回路 HPF、 HPF1、 HPF2、 HPF4、平衡—不平 ί街回路 BA Ll、 BAL2、及び方向性結合器 CPLは、インダクタンス素子及びキャパシタンス素子を 組み合わせた LC回路により構成することができる。
[0094] バイパス経路の構成は、マルチバンド無線装置用の高周波回路に限らず、シング ルバンド無線装置用の高周波回路にも適用することができる。
[0095] (B)高周波部品
本発明の高周波回路を有する高周波部品は、セラミック積層基板を用レ、た部品とし て構成される。図 21は本発明の一実施形態による高周波部品を示す。
[0096] セラミック積層基板 119は、例えば 1000°C以下で低温焼結が可能なセラミック誘電 体材料 LTCC (Low-Temperature Co-Fired Ceramics)からなる厚さ 10〜200 μ mの各 グリーンシートに、低抵抗率の Ag, Cu等の導電ペーストを印刷して所定の電極パタ ーンを形成し、電極パターンを形成した複数のグリーンシートを一体的に積層し、焼 結することにより製造すること力 Sできる。
[0097] セラミック誘電体材料としては、例えば (a) Al、 Si及び Srを主成分とし、 Ti、 Bi、 Cu、 M n、 Na、 K等を副成分とするセラミック、 (b) Al、 Si及び Srを主成分とし、 Ca、 Pb、 Na、 K 等を副成分とするセラミック、(c) Al、 Mg Si及び Gdを含むセラミック、 (d) Al、 Si、 Zr及 び Mgを含むセラミック等が挙げられる。セラミック誘電体材料の誘電率は 5〜 15程度 が好ましい。セラミック誘電体材料以外に、樹脂、又は樹脂とセラミック粉末との複合 材を用いても良い。セラミック基板を A1 0を主体とする HTCC (高温同時焼成セラミツ ク)とし、伝送線路等をタングステンやモリブデン等の高温で焼結可能な金属により構 成しても良い。
[0098] セラミック積層基板 119の各層には、インダクタンス素子、キャパシタンス素子、配線 ライン及びグランド電極用のパターン電極が形成されており、パターン電極はビアホ ール電極により連結されている。 LC回路で構成可能な回路構成は主にパターン電 極により形成されている。具体的には、ハイパスフィルタ回路 118, 102、第一及び第 二の分波回路 103, 110、ローパスフィルタ回路 111, 112、バンドパスフィルタ回路 107 , 108, 113, 114、及び平衡—不平衡回路 116, 117の主要な回路部はセラミック多層 基板 119内に構成され、それらの一部の素子はチップ素子としてセラミック多層基板 1 19の上面に搭載される。またスィッチ回路 101、第一及び第二のパワーアンプ回路 10 5, 106、ローノイズアンプ回路 109及びコントロール回路 120の一部の素子は、セラミツ ク積層基板 119に内蔵される。
[0099] セラミック積層基板 119の上面に、スィッチ回路(SPDT) 101、第一及び第二のパヮ 一アンプ回路(PA5) 105, (PA2) 106、ローノイズアンプ回路(LNA) 109及びコントロー ル回路(Cont. IC) 120用の半導体素子が搭載される。またチップコンデンサ、チップ 抵抗、チップインダクタ等も搭載される。これらの部品はワイヤボンダ、 LGA、 BGA等 で接続される。特にコントロール回路用の半導体素子をセラミック積層基板 119の上 面に搭載することにより、高周波回路を小型の高周波部品に構成することができる。 セラミック積層基板 119に内蔵した素子及び搭載した部品は、図 1に示す回路に接続 される。
[0100] 図 22は、図 1に示す高周波回路を有する高周波部品を構成する各層を示す。第一 のフィルタ回路は図 4に示すハイパスフィルタ回路(第一のハイパスフィルタ)からなり 、第二のフィルタは図 7に示すハイパスフィルタ回路(第二のハイパスフィルタ)力、らな る。アンテナ端子 Antとスィッチ回路 SPDTとの間に設けた第一のハイパスフィルタの 接地されたインダクタンス素子 Lll, L12は、チップインダクタとして表層 1に搭載され ている。高レ、インダクタンスを必要とする前記インダクタンス素子をチップ素子により 構成することで、高周波部品全体の小型化を図る。スィッチ回路 SPDTとローノイズァ ンプ回路 LNAとの間に設けた第二のハイパスフィルタの接地されたインダクタンス素 子 L41, L42は、セラミック積層基板 119内で導体パターンにより構成されている。端子 PI— P2間のハイパスフィルタ回路の入出力ラインに直列に配置されるキャパシタンス 素子 C11を構成する導体パターンは、インダクタンス素子 Lll、 L12の下方の第 2層〜 第 5層に形成され、グランド電極 Gndに接続されたビア電極列により周囲の回路から シールドされている。キャパシタンス素子 C11の導体パターンを複数層にわたって構 成することにより、寄生容量の低減が図られる。
[0101] インダクタンス素子 L12とグランドとの間に設けられているキャパシタンス素子 C12を 構成する導体パターンは第 11層に形成され、ビア電極により表層 1のインダクタンス 素子 L12に接続されている。キャパシタンス素子 C12の導体パターンは、第 10層のグ ランド電極 Gndと第 12層のグランド電極 Gndに挟まれ、これらと対向するように配置さ れている。端子 P3— P4間の第二のハイパスフィルタ回路は、平面視で積層体の角の 領域に設けられ、積層体の辺及びグランド電極に接続されたビア電極列に囲まれて いる。かかる構成により、第二のハイパスフィルタ回路の入出力ラインに直列に配置さ れたキャパシタンス素子 C41〜C43、インダクタンス素子 L41及びキャパシタンス素子 C44からなる直列共振回路と、インダクタンス素子 L42及びキャパシタンス素子 C45か らなる直列共振回路とは、第一のハイパスフィルタ及び他の回路からシールドされて いる。勿論、このシールド構成は所望の特性に応じて変更可能であり、また省略して も良い。インダクタンス素子 L41, L42を構成する導体パターンは積層方向に卷回する ようように第 6層〜第 8層にわたって形成されている。インダクタンス素子 L41, L42を構 成する導体パターンは、ビア電極部分を除いて積層方向に隣接する層で重ならない ように配置されている。かかる構成により、寄生容量は低減され、インダクタンス素子 の Qは低下し、 自己共振は抑制される。
[0102] [2]第二の実施形態
(A)高周波回路
図 23は、 5 GHz帯無線 LAN (IEEE802.11a)と 2.4 GHz帯無線 LAN (IEEE802.11b及 び/又は IEEE802.11g)の 2つの通信システムに共用可能な本発明の第二の実施形 態による高周波回路を示す。この高周波回路は、マルチバンドアンテナに接続される アンテナ端子 Antに接続したスィッチ回路(SPDT) 201と、スィッチ回路(SPDT) 201の 送信経路側に接続した第一の分波回路(DIP1) 202とを有する。アンテナ端子 Antとス イッチ回路 201との間に、第一のフィルタとしてハイパスフィルタ回路(HPF) 218が設け られている。
[0103] 第一の分波回路 202は、 2.4 GHz帯無線 LANの送信信号を通過させるが 5 GHz帯 無線 LANの送信信号を減衰させる低周波側フィルタ回路と、 5 GHz帯無線 LANの送 信信号を通過させるが 2.4 GHz帯無線 LANの送信信号を減衰させる高周波側フィル タ回路とからなる。第一の分波回路 202の高周波側フィルタ回路に順に、第一のパヮ 一アンプ回路(PA1) 205、バンドパスフィルタ回路(BPF) 207、及び第一の送信端子( 5 GHz帯無線 LANの送信端子) TX1が接続している。バンドパスフィルタ回路 207は送 信信号に含まれる帯域外の不要なノイズや高調波を除去する。第一のパワーアンプ 回路 205は、 5 GHz帯無線 LANの送信側回路から入力される送信信号を増幅する。 第一の分波回路 202の高周波側フィルタ回路も高調波を減衰させる。
[0104] 第一の分波回路 202と第一のパワーアンプ回路 205との間に、第一のパワーアンプ 回路 205で発生する高調波を減衰させるローパスフィルタ回路を設けてもよい。第一 の送信端子 TX1とバンドパスフィルタ回路 207との間に、第一の送信端子を平衡端子 とする平衡ー不平衡回路を設けても良い。
[0105] 第一の分波回路 202の低周波側フィルタ回路に順に、第二のパワーアンプ回路 (P A2) 206、バンドパスフィルタ回路(BPF) 208、及び第二の送信端子(2.4 GHz帯無線 L ANの送信端子) TX2が接続している。バンドパスフィルタ回路 208は送信信号に含ま れる帯域外の不要なノイズを除去する。第二のパワーアンプ回路 206は、 2.4 GHz帯 無線 LANの送信側回路から入力される送信信号を増幅する。第一の分波回路 202の 低周波側フィルタ回路は、第二のパワーアンプ回路 206で発生する高調波を減衰さ せる作用も有する。
[0106] スィッチ回路 201の受信経路側に第二の分波回路(DIP2) 203が接続している。第二 の分波回路 203は、 2.4 GHz帯無線 LANの受信信号を通過させるが 5 GHz帯無線 LA Nの受信信号を減衰させる低周波側フィルタ回路と、 5 GHz帯無線 LANの受信信号 を通過させるが 2.4 GHz帯無線 LANの受信信号を減衰させる高周波側フィルタ回路 とからなる。
[0107] 第二の分波回路 203の高周波側フィルタ回路に順に、第一のローノイズアンプ回路 (LNA1) 210、バンドパスフィルタ回路(BPF) 213、及び第一の受信端子(5 GHz帯無 線 LANの受信端子) RX1が接続している。アンテナで受信された 5 GHz帯無線 LANの 受信信号は、スィッチ回路 201を経由して、第一のローノイズアンプ回路 210で増幅さ れ、第一の受信端子 RX1に出力される。ローノイズアンプ回路 210の入力側には 2.5 GHz以下の信号を減衰させる分波回路 203の高周波側フィルタ回路が接続している ため、携帯機器等から発生する 2 GHz帯以下の電波によりローノイズアンプ回路 210 が飽和するのを回避することができる。
[0108] 第二の分波回路 203の低周波側フィルタ回路に順に、第二のフィルタとしてのバン ドパスフィルタ回路(BPF) 212、第二のローノイズアンプ回路(LNA2) 211、及び第二 の受信端子(2.4 GHz帯無線 LANの受信端子) RX2が接続している。アンテナで受信 された 2.4 GHz帯無線 LANの受信信号は、スィッチ回路 201を経由して、第二のロー ノイズアンプ LNA2で増幅され、第二の受信端子 RX2に出力される。ローノイズアンプ 回路 211の入力側に 2 GHz以下の信号を減衰させるバンドパスフィルタ回路 212が接 続しているので、アンテナ端子からの信号から不要な信号が除去される。特にバンド パスフィルタ回路 212は携帯電話の約 2 GHz以下の信号を十分に減衰させ、第二の ローノイズアンプ回路 211の飽和を防止する。
[0109] 図 24は、分波回路 203、バンドパスフィルタ回路 212、及びバンドパスフィルタ回路 21 3の等価回路を示す。分波回路 203は伝送線路 lrdl、 lrd3、及びキャパシタンス素子 cr d2〜crd4により構成されている。キャパシタンス素子 crd3及び伝送線路 lrd3は 2.4 GH z帯で共振するように調整されている。伝送線路 lrdlの電気長は、分波回路 103の共 通端子力 バンドパスフィルタ 212を見たインピーダンスが 5 GHz帯においてオープン になるように調整されている。これにより、 2.4 GHz帯の信号はバンドパスフィルタ回路 212側へ、 5 GHz帯の信号はローノイズアンプ回路 210側へ分配される。 2.4 GHz帯の 信号は、バンドパスフィルタ回路 212により通過帯域外の不要な信号が除去された後 、ローノイズアンプ 211で増幅され、第二の受信端子 RX2に出力される。 5 GHz帯の信 号は、ローノイズアンプ 210により増幅された後、バンドパスフィルタ回路 213により通 過帯域外の不要な信号が除去され、第一の受信端子 RX1に出力される。
[0110] 図 23に示すように、高周波回路は、第一及び第二のパワーアンプ回路 205, 206に 一定の電圧を供給する電圧供給端子 vccと、電圧供給端子 vccから電圧の供給を 受けるコントロール回路(Cont. IC) 204とを有する。第一及び第二のパワーアンプ回 路 205, 206は検波ダイオードを内蔵し、それらの検波出力は 1つの検波端子 VPDに 出力される。図 25はコントロール回路 204の構成を示し、図 26は検波ダイオードとコン トロール回路 204の好ましい例を示す。コントロール回路 104は、第一のローノイズアン プ回路(LNA1)用バイアス電圧出力端子 Vddlと、第二のローノイズアンプ回路(LNA 2)用バイアス電圧出力端子 Vdd2と、第一のローノイズアンプ回路(LNA1)用のバイァ ス電圧をオンオフする第四のスィッチ(SW4)と、第二のローノイズアンプ回路(LNA2) 用のバイアス電圧をオンオフする第五のスィッチ(SW5)と、第四のスィッチ (SW4)の オンオフ制御用の信号を入力する端子 LNA10Nと、第五のスィッチ(SW5)のオンォ フ制御用の信号を入力する端子 LNA20Nとを具備する。その他の構成は図 2及び図 3に示すコントロール回路及び検波ダイオードと同じであるので、説明を省略する。
[0111] スィッチ回路 201及びハイパスフィルタ回路 218は図 1に示すものと同じで良レ、。混信 信号によるローノイズアンプの飽和を回避するために、ローノイズアンプの入力側に バンドパスフィルタ 212及び分波回路 203を設けた力 ハイパスフィルタ回路を追加し ても良い。そのハイパスフィルタ回路は、例えば約 0.8〜2 GHzに 1つ以上の減衰極を 有するのが好ましい。これは、図 4に示すインダクタンス素子 L12及びキャパシタンス 素子 C12の直列共振回路により実現できる。これにより約 0.8〜2 GHz及びその近辺 の信号を減衰させ、携帯電話力 の混信を安定的に除去することができる。
[0112] 無線 LANの 2.4 GHz帯と携帯電話の帯域が近いため、一つのハイパスフィルタ回路 では所望の減衰が得られないこともある。従って、複数のハイパスフィルタ回路を設け てもよレ、。その場合、スィッチ回路 201とローノイズアンプ回路 210, 211との間にハイパ スフィルタ回路を設けても良い。このようなハイパスフィルタ回路として、図 4、図 6又は 図 7に示す回路を用いることができる。
[0113] 分波回路 202、 203及びバンドパスフィルタ回路 207、 208、 212、 213は、インダクタン ス素子とキャパシタンス素子とを組み合わせた LC回路により構成することができる。
[0114] 図 27は、本実施形態の高周波回路の別の例を示す。この高周波回路はコントロー ル回路(Cont. IC) 204aが図 23に示すものと異なる。コントロール回路 204aの構成を 図 28に示す。コントロール回路 204aは、電圧供給端子 VCCと接続する電圧入力端子 Vcと、第一のパワーアンプ回路 (PA1)用バイアス電圧出力端子 Vblと、第二のパワー アンプ回路 (PA2)用バイアス電圧出力端子 Vb2と、第一のパワーアンプ回路用のバ ィァス電圧をオンオフする第一のスィッチ(SW1)と、第二のパワーアンプ回路用のバ ィァス電圧をオンオフする第二のスィッチ(SW2)と、第一及び第二のスィッチの共通 端子と電圧入力端子 Vcとの間に設けられた第三のスィッチ (SW3)と、第三のスィッチ (SW3)に並列に接続された抵抗 R1と、第一のスィッチ(SW1)のオンオフ制御用の信 号を入力する端子 PA10Nと、第二のスィッチ(SW2)のオンオフ制御用の信号を入力 する端子 PA20Nと、第三のスィッチ(SW3)のオンオフ制御用の信号を入力する端子 HI/LOとを具備している。これらの構造は上記と同じである。
[0115] 第一のローノイズアンプ回路 LNA1のバイアス電圧用端子 LNA1Vと第二のローノィ ズアンプ回路 LNA2のバイアス電圧用端子 LNA2Vの配置は図 23に示すものと異なる 。バイアス電圧用端子 LNA1V, LNA2Vの駆動電流は約 0.1 mAと比較的小さいため、 RFIC又はベースバンド ICに集積されるロジック制御電源で直接駆動できる。
[0116] このコントロール回路の構成は、本実施形態の高周波回路に限らず、フィルタの配 置や有無が異なる他の高周波回路 (例えば第一のフィルタを配置していない高周波 回路)にも適用することができる。
[0117] (B)高周波部品
図 29は、本発明の第二の実施形態による高周波回路を有する高周波部品をセラミ ック積層基板を用いた部品として構成した場合を示す。セラミック積層基板 219は第 一の実施形態と同じ方法で製造できるので、製造方法の説明は省略する。
[0118] セラミック積層基板 219の各層にはインダクタンス素子、キャパシタンス素子、配線ラ イン及びグランド電極用のパターン電極が形成されており、パターン電極はビアホー ル電極により連結されている。 LC回路で構成可能な回路構成は主にパターン電極 により形成されている。具体的には、第一及び第二の分波回路 202, 203及びバンド パスフィルタ回路 207、 208、 212、 213は主にセラミック多層基板 219内のパターン電極 により構成されており、各回路の一部はチップ素子としてセラミック多層基板 219の上 面に搭載されている。 [0119] セラミック積層基板 219は、スィッチ回路(SPDT) 201、第一及び第二のパワーアンプ 回路(PA1) 205, (PA2) 206、第一及び第二のローノイズアンプ回路(LNA1) 210, (LN A2) 211、及びコントロール回路(Cont. IC) 204用の半導体素子を搭載している。これ らの半導体素子はワイヤボンダ、 LGA、 BGA等によりセラミック積層基板 219の電極パ ターンに接続される。特にコントロール回路用の半導体素子を搭載することにより、高 周波回路を小型化できる。スィッチ回路 201、第一及び第二のパワーアンプ回路 205 , 206、第一及び第二のローノイズアンプ回路 210, 211、及びコントロール回路 204の 一部はセラミック積層基板に内蔵する。搭載部品及び内蔵素子は図 23に示す回路 に接続される。セラミック積層基板 219は上記半導体素子以外にチップコンデンサ、 チップ抵抗、チップインダクタ等を搭載するが、これらの搭載素子はセラミック積層基 板 219に内蔵する素子との関係から適宜選択することができる。
[0120] [3]第三の実施形態
(A)高周波回路
5 0^¾帯無線し八^¾££802.11&)と2.4 GHz帯無線 LAN (IEEE802.11b及び/又は I EEE802.11g)の 2つの通信システムに共用可能な本発明のさらに別の実施形態によ る高周波回路を図 30に示す。この高周波回路は、マルチバンドアンテナに接続され るアンテナ端子 Antに接続された第一のフィルタとしてのハイパスフィルタ回路(HPF) 318と、分波回路(DIP) 301とを有する。分波回路 301は、 5 GHz帯無線 LANの送受信 信号を通過させるが 2.4 GHz帯無線 LANの送受信信号を減衰させる高周波側フィル タ回路と、 2.4 GHz帯無線 LANの送受信信号を通過させるが 5 GHz帯無線 LANの送 受信信号を減衰させる低周波側フィルタ回路とから構成されている。
[0121] 分波回路 301の高周波側フィルタ回路に、アンテナ側回路と送信経路又は受信経 路との接続を切り替える第一のスィッチ回路(SPDT1) 302が接続してレ、る。スィッチ回 路 302の送信経路には順に、第一のパワーアンプ回路 (PA1) 305、第一のバンドパス フィルタ回路 (BPF1) 307、及び第一の送信端子(5 GHz帯無線 LANの送信端子) TX 1が接続している。第一のスィッチ回路 302の受信経路には順に、第一のローノイズァ ンプ回路(LNA1) 306、第二のバンドパスフィルタ回路(BPF2) 308、及び第一の受信 端子(5 GHz帯無線 LANの受信端子) RX1が接続している。第一のバンドパスフィルタ 回路 307は送信信号に含まれる帯域外の不要なノイズを除去する。第一のパワーァ ンプ回路 305は 5 GHz帯無線 LANの送信信号を増幅する。分波回路 301の高周波側 フィルタ回路は高調波を減衰させる。第一の送信端子 TX1とバンドパスフィルタ回路 3 07との間に、第一の送信端子を平衡端子とする平衡ー不平衡回路を設けても良い。
[0122] 分波回路 301の低周波側フィルタ回路には、第二のフィルタとしての第三のバンド パスフィルタ回路 (BPF3) 313を介して、アンテナ側回路と送信経路又は受信経路と の接続を切り替える第二のスィッチ回路(SPDT2) 303が接続している。スィッチ回路 3 03の送信経路には順に、第二のパワーアンプ回路 (PA2) 311、及び第二の送信端子 (2.4 GHz帯無線 LANの送信端子) TX2に接続されている。第二のスィッチ回路 303の 受信経路には、第二のローノイズアンプ回路 (LNA2) 310を介して第二の受信端子(2 .4 GHz帯無線 LANの受信端子) RX2が接続している。第二のパワーアンプ回路 (PA2 ) 311は、 2.4 GHz帯無線 LANの送信側回路から入力される送信信号を増幅し、第三 のバンドパスフィルタ回路 313及び分波回路 301の低周波側フィルタ回路は、送信信 号に含まれる帯域外の不要なノイズを除去するとともに、第二のパワーアンプ回路 31 1で発生した高調波を減衰させる。第二の送信端子 (2.4 GHz帯無線 LANの送信端 子) TX2と第二のパワーアンプ回路 311との間に、送信信号に含まれる帯域外の不要 ノイズを除去するバンドパスフィルタを付カ卩しても良い。
[0123] 分波回路 301からの受信信号(2.4 GHz帯)は、第三のバンドパスフィルタ回路(BPF 3) 313及び第二のスィッチ回路(SPDT2) 303を経由して第二のローノイズアンプ回路 (LNA2) 310に入力され、増幅されて第二の受信端子 RX2に出力される。受信信号中 の不要な信号は分波回路 301及び第三のバンドパスフィルタ回路 313で除去される。 特に第三のバンドパスフィルタ回路 313は、第二のローノイズアンプ回路 310を飽和さ せる約 2 GHz以下の携帯電話の信号を十分に減衰させる。
[0124] 図 31は分波回路 301及び第三のバンドパスフィルタ回路 313の等価回路を示す。分 波回路 301は伝送線路 ldl, W3及びキャパシタンス素子 cd2〜cd4により構成されてい る。キャパシタンス素子 cd3及び伝送線路 ld3は 2.4GHz帯で共振するように調整され ている。伝送線路 ldlの電気長は、 ANT端子からバンドパスフィルタ 313を見たインピ 一ダンスが 5 GHz帯においてオープンになるように調整されている。これにより、 2.4 G Hz帯の信号はバンドパスフィルタ回路 313側へ、 5 GHz帯の信号はスィッチ回路 302 ( SPDT1)側へ分配される。 2.4 GHz帯の信号は、バンドパスフィルタ回路 313により通 過帯域外の不要な信号が除去された後、スィッチ回路 303 (SPDT2)を介してローノィ ズアンプ回路 310に入り、そこで増幅されて第二の受信端子 RX2に出力される。 5 GH z帯の信号はスィッチ回路 302を介してローノイズアンプ回路 306に入り、そこで増幅さ れた後バンドパスフィルタ回路 308により通過帯域外の不要な信号が除去され、第一 の受信端子 RX1に出力される。
[0125] 電圧供給端子 VCCは、第一及び第二のパワーアンプ回路 305, 311及びコントロー ル回路(Cont. IC) 304に一定の電圧を供給する。第一及び第二のパワーアンプ回路 305, 311は検波ダイオードを内蔵しており、その検波出力は 1つの検波端子 VPDに出 力される。
[0126] スィッチ回路 302, 303及びハイパスフィルタ回路 318は、第一の実施形態におけるも のと同じで良いので、それらの説明を省略する。またコントロール回路 304及び検波ダ ィオードは第二の実施形態におけるものと同じで良いので、それらの説明を省略する
[0127] 図 32はバンドパスフィルタ回路の等価回路の一例を示す。このバンドパスフィルタ 回路は、磁気結合したインダクタンス素子 lb 1 , lb2と、キャパシタンス素子 cbl〜cb5と 力 構成されている。インダクタンス素子 lb 1とキャパシタンス素子 cb2の並列共振周波 数及びインダクタンス素子 lb2とキャパシタンス素子 cb4の並列共振周波数はそれぞれ 通過帯域となる 2.4 GHz帯又は 5 GHz帯に設定されている。ただし、バンドパスフィル タ回路の回路構成はこれに限定されない。
[0128] 分波回路 301及びバンドパスフィルタ回路 307, 308, 313は、インダクタンス素子とキ ャパシタンス素子とを組合せた LC回路により構成することができる。インダクタンス素 子は、積層体部品内の電極パターン中の伝送線路により構成され、キャパシタンス素 子は平行電極により構成される。
[0129] 図 33は、本実施形態の高周波回路の別の例を示す。この高周波回路はコントロー ル回路(Cont. IC) 304aが図 30に示す高周波回路と異なるが、コントロール回路 304a の構成は図 25に示す第二の実施形態で用いたものと同じであるので、説明を省略す る。コントロール回路 304aは本実施形態の高周波回路に限らず、例えば第一のフィ ルタを有さない高周波回路にも使用できる。第二のパワーアンプ回路 (PA2) 311と第 二の送信端子 TX2との間にバンドパスフィルタ回路 312を有する。
[0130] (B)高周波部品
図 34は、本実施形態の高周波回路を有する高周波部品をセラミック積層基板を用 レ、た部品として構成した場合を示す。セラミック積層基板 319の製造方法は第一の実 施形態と同じであるので、説明を省略する。
[0131] セラミック積層基板 319の各層には、インダクタンス素子、キャパシタンス素子、配線 ライン及びグランド電極用のパターン電極が形成されており、パターン電極はビアホ ール電極により連結されている。分波回路 301、第一及び第二のスィッチ回路 302, 3 03、第一及び第二のパワーアンプ回路 305, 311、第一及び第二のローノイズアンプ 回路 306, 310、バンドパスフィルタ回路 307, 308, 313、及びコントロール回路 304の主 要部を構成する素子はセラミック積層基板 319内に構成され、その他の素子(チップ コンデンサ、チップ抵抗、チップインダクタ等)はセラミック多層基板 319の上面に搭載 される。搭載素子はワイヤボンダ、 LGA、 BGA等で接続される。特にコントロール回 路用の半導体素子を搭載することにより、高周波回路を小型化できる。搭載部品及 び内蔵素子は図 30に示す回路に接続される。
[0132] 本発明の高周波回路は良好な受信感度を有する。高域側のローノイズアンプの入 力側に分波回路及びバンドパスフィルタ回路を設けた従来の高周波回路では、受信 経路の雑音指数が 2.4 GHz帯で 3.5 dB、及び 5 GHz帯で 4.0 dBであるのに対し、第 一の実施形態の高周波回路では、雑音指数は 2.4 GHz帯で 1.5 dB、及び 5 GHz帯で 2 dBと非常に小さい。また第二及び第三の実施形態の高周波回路では、雑音指数 は 5 GHz帯で 2 dBと非常に小さい。
[0133] いずれの実施形態においても、セラミック積層基板を 6 mm X 4 mm X 0.6 mmと非常 に小さい寸法に構成できるので、半導体素子のベアチップ実装により搭載部品を樹 脂封止しても本発明の高周波部品の高さを 1.3 mmにできる。従来の小型高周波部 品でも 9 mm X 6 mm程度の平面寸法を有するので、本発明の高周波部品の平面寸 法は 1Z2以下になることが分かる。このように小型の高周波部品を実装すれば、無線 装置の小型化も可能となり、設計の自由度が増す。また複数の高周波部品を使用す れば、複数のアンテナ及び送受信経路の切り替えが可能なフロントエンド部分を構 築できる。これにより、通信の速度及び品質が高い IEEE802.11n規格に対応する無線 LAN通信装置を構成できる。
本発明の高周波回路はデュアルバンド無線装置用に限らず、トリプルバンド、クヮッ ドバンド等のマルチバンド無線装置用にも構成できる。その場合、本発明の高周波 回路をマルチバンド用の高周波回路の一部に用いればよい。

Claims

請求の範囲
[1] 少なくとも第一の周波数帯域及び前記第一の周波数帯域より低い第二の周波数帯 域を選択的に用いる無線通信用の高周波回路であって、
アンテナ端子と、
前記第一の周波数帯域の送信信号が入力される第一の送信端子と、
前記第二の周波数帯域の送信信号が入力される第二の送信端子と、
前記第一の周波数帯域の受信信号が出力される第一の受信端子と、
と前記第二の周波数帯域の受信信号が出力される第二の受信端子と、
第一の周波数帯域の信号と第二の周波数帯域の信号の経路を振り分ける少なくと も一つの分波回路と、
送信信号と受信信号の経路を切り替える少なくとも一つのスィッチ回路と、 前記スィッチ回路と前記第二の受信端子の間に設けられ、少なくとも前記第二の周 波数帯域の受信信号を増幅するローノイズアンプ回路と、
前記アンテナ端子と前記ローノイズアンプ回路との間で前記アンテナ端子から順に 設けられた少なくとも第一及び第二のフィルタ回路とを具備し、
両フィルタ回路とも前記第二の周波数帯域の受信信号を通過させるが、少なくとも前 記第二の周波数帯域より低い周波数帯域を阻止し、かつ前記第一のフィルタ回路の 阻止帯域が前記第二のフィルタ回路の阻止帯域より低いことを特徴とする高周波回 路。
[2] 請求項 1に記載の高周波回路において、前記第一及び第二のフィルタ回路がハイ パスフィルタ回路であることを特徴とする高周波回路。
[3] 請求項 1又は 2に記載の高周波回路において、
前記アンテナ端子と前記第一及び第二の送信端子との接続と前記アンテナ端子と 前記第一及び第二の受信端子との接続を切り替えるスィッチ回路と、
前記スィッチ回路と前記第一及び第二の送信端子との間に設けられた第一の分波 回路と、
前記スィッチ回路と前記第一及び第二の受信端子との間に設けられた第二の分波 回路と、 前記第一の分波回路と第一の送信端子との間に設けられた第一のパワーアンプ回 路と、
前記第一の分波回路と第二の送信端子との間に設けられた第二のパワーアンプ回 路とを具備し、
前記第一のフィルタ回路は前記アンテナ端子と前記スィッチ回路との間に設けられ、 前記第二のフィルタ回路は前記スィッチ回路と前記ローノイズアンプ回路の間に設け られていることを特徴とする高周波回路。
[4] 請求項 3に記載の高周波回路において、前記ローノイズアンプ回路が前記スィッチ 回路と前記第二の分波回路との間に設けられていることを特徴とする高周波回路。
[5] 請求項 4に記載の高周波回路において、前記ローノイズアンプ回路に並列に接続 されたバイパス経路を具備することを特徴とする高周波回路。
[6] 請求項 5に記載の高周波回路において、前記第二のフィルタ回路が、前記バイパス 経路と前記ローノイズアンプ回路との分岐点と、前記ローノイズアンプ回路との間に 配置されていることを特徴とする高周波回路。
[7] 請求項 3に記載の高周波回路において、前記第一及び第二のパワーアンプ回路に 一定の電圧を供給する電圧供給端子と、前記電圧供給端子から電圧を受けて前記 第一及び第二のパワーアンプ回路及び前記ローノイズアンプ回路に制御用のバイァ ス電圧を出力するコントロール回路とを具備することを特徴とする高周波回路。
[8] 請求項 7に記載の高周波回路において、前記コントロール回路は、電圧入力端子と 、前記第一のパワーアンプ回路用バイアス電圧出力端子と、前記第二のパワーアン プ回路用バイアス電圧出力端子と、前記ローノイズアンプ回路用バイアス電圧出力 端子と、前記第一のパワーアンプ回路用のバイアス電圧をオンオフする第一のスイツ チと、前記第二のパワーアンプ回路用のバイアス電圧をオンオフする第二のスィッチ と、前記ローノイズアンプ回路用のバイアス電圧をオンオフする第三のスィッチと、前 記第一及び第二のスィッチの共通端子と前記電圧入力端子との間に設けられた第 四のスィッチと、前記第四のスィッチに並列に接続された抵抗と、前記第一〜第四の スィッチのオンオフ制御用の第一〜第四の信号入力端子とを具備することを特徴と する高周波回路。
[9] 請求項 3に記載の高周波回路において、前記スィッチ回路と前記第一の受信端子 との間に、前記第一の周波数帯域の受信信号を増幅する他のローノイズアンプ回路 を具備し、前記第二の分波回路は前記ローノイズアンプ回路及び前記他のローノィ ズアンプ回路と前記スィッチ回路との間に配置されていることを特徴とする高周波回 路。
[10] 請求項 1に記載の高周波回路において、前記第一のフィルタ回路がハイパスフィル タ回路であり、前記第二のフィルタ回路がバンドパスフィルタ回路であることを特徴と する高周波回路。
[11] 請求項 10に記載の高周波回路において、
前記アンテナ端子と前記第一及び第二の送信端子との接続と前記アンテナ端子と 前記第一及び第二の受信端子との接続を切り替えるスィッチ回路と、
前記スィッチ回路と前記第一及び第二の送信端子との間に設けられた第一の分波 回路と、
前記スィッチ回路と前記第一及び第二の受信端子との間に設けられた第二の分波 回路と、
前記第一の分波回路と第一の送信端子との間に設けられた第一のパワーアンプ回 路と、
前記第一の分波回路と第二の送信端子との間に設けられた第二のパワーアンプ回 路と、
前記第二の分波回路と第一の受信端子との間に設けられた第一のローノイズアン プ回路と、
前記第二の分波回路と前記第二の受信端子との間に設けられ、前記第二の周波 数帯域の受信信号を増幅する第二のローノイズアンプ回路とを具備し、
前記第一のフィルタ回路は前記アンテナ端子と前記スィッチ回路との間に設けられ、 前記第二のフィルタ回路は前記第二の分波回路と第二のローノイズアンプ回路との 間に設けられていることを特徴とする高周波回路。
[12] 請求項 11に記載の高周波回路において、前記第一のローノイズアンプ回路と前記 第一の受信端子との間にバンドパスフィルタ回路を具備することを特徴とする高周波 回路。
[13] 請求項 11又は 12に記載の高周波回路において、前記第一のパワーアンプ回路と 前記第一の送信端子との間、及び前記第二のパワーアンプ回路と前記第二の送信 端子との間にそれぞれバンドパスフィルタ回路を具備することを特徴とする高周波回 路。
[14] 請求項 11〜13のいずれかに記載の高周波回路において、前記第一及び第二のパ ヮーアンプ回路に一定の電圧を供給する電圧供給端子と、前記電圧供給端子から 電圧を受けて前記第一及び第二のパワーアンプ回路に制御用のバイアス電圧を出 力するコントロール回路とを具備することを特徴とする高周波回路。
[15] 請求項 14に記載の高周波回路において、前記コントロール回路は、前記第一及び 第二のローノイズアンプ回路の制御用のバイアス電圧を出力することを特徴とする高 周波回路。
[16] 請求項 10に記載の高周波回路において、
前記アンテナ端子から入力された信号を前記第一の周波数帯域の回路と前記第 二の周波数帯域の回路とに分波し、前記第一及び第二の周波数帯域の回路からの 信号を前記アンテナ端子側に伝送する分波回路と、
前記分波回路の第一の周波数帯域の回路側に設けられ、送信経路と受信経路を 切り替える第一のスィッチ回路と、
前記第一のスィッチ回路と前記第一の送信端子との間に設けられた第一のパワー アンプ回路と、
前記第一のスィッチ回路と前記第一の受信端子との間に設けられた第一のローノィ ズアンプ回路と、
前記分波回路の第二の周波数帯域の回路側に設けられ、送信経路と受信経路を 切り替える第二のスィッチ回路と、
前記第二のスィッチ回路と前記第二の送信端子との間に設けられた第二のパワー アンプ回路と、
前記第二のスィッチ回路と前記第二の受信端子との間に設けられ、前記第二の周 波数帯域の受信信号を増幅する第二のローノイズアンプ回路とを具備し、 前記第一のフィルタは前記アンテナ端子と前記分波回路との間に設けられ、前記第 二のフィルタは前記分波回路と前記第二のスィッチ回路との間に設けられていること を特徴とする高周波回路。
[17] 請求項 16に記載の高周波回路において、前記第一のパワーアンプ回路と前記第 一の送信端子との間、及び前記第一のローノイズアンプ回路と前記第一の受信端子 との間にそれぞれバンドパスフィルタ回路を具備することを特徴とする高周波回路。
[18] 請求項 17に記載の高周波回路において、前記第一及び第二のパワーアンプ回路 に一定の電圧を供給する電圧供給端子と、前記電圧供給端子から電圧を受けて前 記第一及び第二のパワーアンプ回路に制御用のバイアス電圧を出力するコントロー ル回路とを具備することを特徴とする高周波回路。
[19] 請求項 18に記載の高周波回路において、前記コントロール回路は、前記第一及び 第二のローノイズアンプ回路に制御用のバイアス電圧を出力することを特徴とする高 周波回路。
[20] 請求項 3〜9及び 11〜17のいずれかに記載の高周波回路を有する高周波部品であ つて、電極パターンを形成した複数のセラミック誘電体層からなる一体的な積層体と 、前記積層体の表面に搭載された素子とを具備し、前記第一及び第二の分波回路 は前記積層体内で前記電極パターンにより構成されており、前記スィッチ回路、前記 第一及び第二のパワーアンプ回路及び前記ローノイズアンプ回路用の半導体素子 は前記積層体に搭載されていることを特徴とする高周波部品。
[21] 請求項 20に記載の高周波部品を具備することを特徴とする通信装置。
PCT/JP2007/059533 2006-05-08 2007-05-08 高周波回路、高周波部品及び通信装置 WO2007129716A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07742968.6A EP2017966A4 (en) 2006-05-08 2007-05-08 HIGH FREQUENCY SWITCHING, HIGH FREQUENCY RANGE AND COMMUNICATION DEVICE
CN2007800167099A CN101438505B (zh) 2006-05-08 2007-05-08 高频电路、高频部件及通信装置
US12/300,308 US8036148B2 (en) 2006-05-08 2007-05-08 High-frequency circuit, high-frequency device and communications apparatus
JP2008514500A JP4618461B2 (ja) 2006-05-08 2007-05-08 高周波回路、高周波部品及び通信装置

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2006128830 2006-05-08
JP2006-128830 2006-05-08
JP2006173702 2006-06-23
JP2006-173702 2006-06-23
JP2006-173701 2006-06-23
JP2006173701 2006-06-23
JP2006-255125 2006-09-21
JP2006255125 2006-09-21

Publications (1)

Publication Number Publication Date
WO2007129716A1 true WO2007129716A1 (ja) 2007-11-15

Family

ID=38667825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059533 WO2007129716A1 (ja) 2006-05-08 2007-05-08 高周波回路、高周波部品及び通信装置

Country Status (6)

Country Link
US (1) US8036148B2 (ja)
EP (1) EP2017966A4 (ja)
JP (1) JP4618461B2 (ja)
CN (1) CN101438505B (ja)
TW (1) TWI440317B (ja)
WO (1) WO2007129716A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009159412A (ja) * 2007-12-27 2009-07-16 Hitachi Metals Ltd 高周波部品及び通信装置
JP2010041136A (ja) * 2008-07-31 2010-02-18 Fujitsu Ltd 増幅器
JP2011004186A (ja) * 2009-06-18 2011-01-06 Saito Com Co Ltd 地上波デジタルテレビ用アンテナブースタユニット
WO2011020275A1 (zh) * 2009-08-17 2011-02-24 中兴通讯股份有限公司 多输入多输出系统和方法
JP2011508535A (ja) * 2007-12-20 2011-03-10 クゥアルコム・インコーポレイテッド 電力増幅器を制御するために使用される信号の電圧を制御するためのシステムおよび方法
WO2012098863A1 (ja) * 2011-01-20 2012-07-26 パナソニック株式会社 高周波電力増幅器
JP2013501470A (ja) * 2009-08-04 2013-01-10 クゥアルコム・インコーポレイテッド 複数の動作モードを備えた増幅器モジュール
JP2014050101A (ja) * 2012-08-31 2014-03-17 Shun-Fu Technology Corp 高周波回路の調波の抑制方法
CN104065394A (zh) * 2013-03-18 2014-09-24 神讯电脑(昆山)有限公司 路径切换系统及该路径切换方法
US9083402B2 (en) 2012-05-11 2015-07-14 Sharp Kabushiki Kaisha High frequency circuit and high frequency module including the same
JP2015226313A (ja) * 2014-05-30 2015-12-14 新日本無線株式会社 スイッチ回路付き利得可変型増幅器
JP2016149750A (ja) * 2015-02-15 2016-08-18 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. 可変供給電圧を有する電力増幅システム
JP2016149744A (ja) * 2015-02-15 2016-08-18 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. 整合ネットワークの排除により効率が向上した電力増幅器
JP2016149751A (ja) * 2015-02-15 2016-08-18 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. ブースト変換器により駆動される無線周波数電力増幅器
US10804955B2 (en) 2017-12-20 2020-10-13 Murata Manufacturing Co., Ltd. High-frequency module
WO2021006021A1 (ja) * 2019-07-09 2021-01-14 株式会社村田製作所 高周波モジュール及び通信装置
JP2021022784A (ja) * 2019-07-25 2021-02-18 株式会社東芝 低雑音増幅器とレーダ装置の受信モジュール
CN112769451A (zh) * 2021-01-26 2021-05-07 维沃移动通信有限公司 信息收发控制方法、装置、电子设备及存储介质
US11082805B2 (en) 2018-06-19 2021-08-03 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Terminal and method for transmitting data
WO2023189276A1 (ja) * 2022-03-28 2023-10-05 株式会社村田製作所 高周波回路および通信装置

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100783112B1 (ko) * 2006-07-27 2007-12-07 삼성전자주식회사 단일 안테나로 이동방송 수신과 블루투스 송수신이 가능한무선통신 장치
US9755681B2 (en) * 2007-09-26 2017-09-05 Intel Mobile Communications GmbH Radio-frequency front-end and receiver
US20090128254A1 (en) * 2007-11-16 2009-05-21 Tdk Corporation High frequency electronic component
US8010055B2 (en) * 2008-02-13 2011-08-30 Viasat, Inc. Method and apparatus for RF communication system signal to noise ratio improvement
US20090219908A1 (en) * 2008-02-29 2009-09-03 Ahmadreza Rofougaran Method and system for processing signals via diplexers embedded in an integrated circuit package
US8175541B2 (en) * 2009-02-06 2012-05-08 Rfaxis, Inc. Radio frequency transceiver front end circuit
US8073400B2 (en) * 2009-02-17 2011-12-06 Rfaxis, Inc. Multi mode radio frequency transceiver front end circuit
CN101938284B (zh) 2009-06-30 2014-01-01 深圳富泰宏精密工业有限公司 通信装置及其通信方法
US8374557B2 (en) * 2009-07-06 2013-02-12 Rfaxis, Inc. Radio frequency front end circuit with antenna diversity for multipath mitigation
KR101565995B1 (ko) * 2009-07-16 2015-11-05 삼성전자주식회사 듀얼-입력 듀얼-출력의 필터를 이용한 멀티-대역의 라디오 주파수 신호 송수신 시스템
US8055209B1 (en) * 2009-07-20 2011-11-08 Muos Labs Multi-band portable SATCOM antenna with integral diplexer
DE102010000909B4 (de) * 2010-01-14 2017-06-22 Airbus Operations Gmbh Vorrichtung zum Bereitstellen von Radiofrequenzsignalverbindungen
US20110177789A1 (en) * 2010-01-20 2011-07-21 Wang Chi Cheng Low noise amplifier and the uses thereof
JP2011238016A (ja) * 2010-05-10 2011-11-24 Sony Corp 非接触通信媒体、アンテナパターン配置媒体、通信装置及びアンテナ調整方法
US8666328B2 (en) 2010-07-12 2014-03-04 Apple Inc. Wireless circuitry with reduced harmonic interference
WO2012054343A1 (en) 2010-10-19 2012-04-26 Rfaxis, Inc. Radio frequency multi-port switches
CN102457311B (zh) * 2010-10-19 2014-12-17 瑞昱半导体股份有限公司 天线分集系统
CN102480804A (zh) * 2010-11-26 2012-05-30 深圳富泰宏精密工业有限公司 双模移动终端系统
US8928428B2 (en) 2010-12-22 2015-01-06 Rfaxis, Inc. On-die radio frequency directional coupler
US9602145B2 (en) 2011-02-07 2017-03-21 Qualcomm Incorporated Insertion loss improvement in a multi-band device
JP5304811B2 (ja) * 2011-02-14 2013-10-02 株式会社村田製作所 高周波モジュール
JP2014514879A (ja) * 2011-05-02 2014-06-19 アールエフアクシス インコーポレイテッド 共存フィルタを有する電力増幅器
JP5638468B2 (ja) 2011-06-08 2014-12-10 アルプス電気株式会社 信号切替装置
US20130016633A1 (en) 2011-07-14 2013-01-17 Lum Nicholas W Wireless Circuitry for Simultaneously Receiving Radio-frequency Transmissions in Different Frequency Bands
US8897407B2 (en) * 2011-12-04 2014-11-25 Hemisphere Gnss Inc. RF (including GNSS) signal interference mitigation system and method
JP5880114B2 (ja) * 2012-02-17 2016-03-08 ソニー株式会社 集積回路および無線通信装置
CN103051394B (zh) * 2012-12-06 2015-08-12 国家无线电监测中心检测中心 图形控制射频切换矩阵系统
CN103051395B (zh) * 2012-12-06 2015-08-12 国家无线电监测中心检测中心 数字信号处理器控制的gpib综合射频测试系统
US9768941B2 (en) * 2013-04-29 2017-09-19 Skyworks Solutions, Inc. Duplexer architectures and methods for enabling additional signal path
US9838069B2 (en) * 2013-10-30 2017-12-05 Netgear, Inc. Radio frequency front end module with high band selectivity
KR101669460B1 (ko) * 2014-05-02 2016-10-27 주식회사 엘앤에스씨 층간소음저감유도장치
KR102123600B1 (ko) 2015-05-29 2020-06-15 삼성전기주식회사 프론트 엔드 회로
US9602098B2 (en) * 2015-07-28 2017-03-21 Peregrine Semiconductor Corporation RF switch with bypass topology
US10291223B2 (en) 2015-07-28 2019-05-14 Psemi Corporation RF switch with bypass topology
JP6460046B2 (ja) * 2015-08-10 2019-01-30 株式会社村田製作所 スイッチモジュール、フロントエンドモジュールおよびスイッチモジュールの駆動方法
DE102015114489A1 (de) * 2015-08-31 2017-03-02 Intel IP Corporation Ein Verfahren und ein System zum Steuern einer Mehrzahl von elektronischen Komponenten, die einer Mehrzahl von integrierten Schaltungen eines mobilen Kommunikationsgeräts arbiträr zuweisbar sind
US20170093442A1 (en) * 2015-09-28 2017-03-30 Skyworks Solutions, Inc. Integrated front-end architecture for carrier aggregation
US10819275B2 (en) 2015-10-14 2020-10-27 Solaredge Technologies Ltd. Method and apparatus for switching current
JP6471810B2 (ja) * 2015-11-04 2019-02-20 株式会社村田製作所 分波装置及びその設計方法
US9716475B1 (en) * 2016-01-21 2017-07-25 Peregrine Semiconductor Corporation Programmable low noise amplifier
JP2017130893A (ja) * 2016-01-22 2017-07-27 アルプス電気株式会社 通信モジュール
CN105657809B (zh) * 2016-02-01 2020-06-30 深圳市至高通信技术发展有限公司 Wlan传输系统
US11063576B2 (en) * 2016-03-11 2021-07-13 Akoustis, Inc. Front end module for 5.6 GHz Wi-Fi acoustic wave resonator RF filter circuit
JP6601350B2 (ja) * 2016-09-09 2019-11-06 株式会社村田製作所 高周波モジュール及び通信装置
JP2018067752A (ja) * 2016-10-17 2018-04-26 株式会社村田製作所 通信モジュール
CN108023602A (zh) * 2016-10-28 2018-05-11 中兴通讯股份有限公司 终端接收机及其提高接收灵敏度的方法
KR102359559B1 (ko) * 2016-12-14 2022-02-08 가부시키가이샤 무라타 세이사쿠쇼 스위치 ic, 프론트 엔드 모듈 및 통신 장치
WO2018159428A1 (ja) * 2017-03-01 2018-09-07 株式会社村田製作所 増幅回路
CN110392926B (zh) * 2017-03-14 2022-12-06 株式会社村田制作所 高频模块
US10772052B2 (en) * 2017-06-16 2020-09-08 Qualcomm Incorporated Controlling coexistent radio systems in a wireless device
US10454434B2 (en) * 2017-07-21 2019-10-22 Murata Manufacturing Co., Ltd. Communication unit
TWI649961B (zh) * 2017-08-22 2019-02-01 立積電子股份有限公司 功率放大器和用於射頻主動電路之保護電路
JP6791392B2 (ja) * 2017-09-08 2020-11-25 株式会社村田製作所 マルチプレクサ、高周波フロントエンド回路及び通信装置
DE102017219685B3 (de) 2017-11-06 2019-05-09 Laird Dabendorf Gmbh Verfahren und Vorrichtungen zur Verstärkung von Funksignalen zwischen einem Endgerät und einer Antenne in einem ersten Frequenzband und in einem zweiten Frequenzband
CN108173568B (zh) * 2017-12-11 2021-03-05 大连昊洋科技发展有限公司 一种大功率高速射频收发切换装置及方法、无线通信系统
CN108199726B (zh) * 2018-03-16 2020-08-28 Oppo广东移动通信有限公司 多路选择开关及相关产品
WO2019244815A1 (ja) * 2018-06-20 2019-12-26 株式会社村田製作所 高周波モジュールおよび通信装置
US10812049B2 (en) * 2018-09-06 2020-10-20 Apple Inc. Reconfigurable feed-forward for electrical balance duplexers (EBD)
KR102578003B1 (ko) * 2018-10-18 2023-09-13 삼성전자주식회사 상향링크 기준 신호를 송신하기 위한 전자 장치 및 방법
JP2020099028A (ja) * 2018-12-19 2020-06-25 株式会社村田製作所 高周波モジュールおよび通信装置
WO2020129445A1 (ja) * 2018-12-21 2020-06-25 株式会社村田製作所 高周波モジュールおよび通信装置
KR102662110B1 (ko) * 2019-01-23 2024-05-03 가부시키가이샤 무라타 세이사쿠쇼 고주파 프론트 엔드 회로 및 통신 장치
KR102607009B1 (ko) * 2019-02-11 2023-11-29 삼성전자주식회사 전자 회로 및 이를 포함하는 전력 증폭기
CN111865352B (zh) * 2019-04-24 2022-07-15 株式会社村田制作所 高频信号收发电路以及高频信号收发装置
JP2020184665A (ja) * 2019-05-07 2020-11-12 株式会社村田製作所 送受信回路
KR20210153104A (ko) * 2019-06-25 2021-12-16 가부시키가이샤 무라타 세이사쿠쇼 고주파 모듈 및 통신 장치
JP2021082914A (ja) * 2019-11-18 2021-05-27 株式会社村田製作所 高周波モジュール及び通信装置
WO2021100259A1 (ja) * 2019-11-20 2021-05-27 株式会社村田製作所 高周波回路、高周波フロントエンド回路及び通信装置
US11418225B2 (en) * 2019-12-03 2022-08-16 Murata Manufacturing Co., Ltd. Radio frequency module and communication device
JP2021158556A (ja) * 2020-03-27 2021-10-07 株式会社村田製作所 高周波モジュールおよび通信装置
JP2021175031A (ja) 2020-04-21 2021-11-01 株式会社村田製作所 高周波信号送受信回路
US11700027B2 (en) 2020-05-05 2023-07-11 Mobix Labs, Inc. Multi-mode WiFi bluetooth RF front-ends
JP2021197647A (ja) * 2020-06-16 2021-12-27 株式会社村田製作所 電力増幅モジュール
JP2022011971A (ja) 2020-06-30 2022-01-17 株式会社村田製作所 高周波モジュール及び通信装置
CN111711466A (zh) * 2020-07-21 2020-09-25 成都智芯测控科技有限公司 一种三通道uwb射频前端模块
US11437992B2 (en) 2020-07-30 2022-09-06 Mobix Labs, Inc. Low-loss mm-wave CMOS resonant switch
US11381279B2 (en) 2020-11-19 2022-07-05 Apple Inc. Transceiver with shared filter for both transmit and receive modes
GB2616523B (en) * 2020-12-07 2024-04-10 Skyworks Solutions Inc Radio frequency front end module including common filter
CN113473512B (zh) * 2021-07-30 2024-02-09 深圳市广和通无线股份有限公司 干扰定位方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316870A (ja) * 1995-04-07 1996-11-29 Lk Prod Oy 無線通信送受信装置
JP2002208874A (ja) 2001-01-11 2002-07-26 Matsushita Electric Ind Co Ltd 高周波回路
JP2002335187A (ja) * 2001-05-10 2002-11-22 Matsushita Electric Ind Co Ltd 無線通信機
JP2003152588A (ja) * 2001-08-31 2003-05-23 Hitachi Metals Ltd マルチバンドアンテナスイッチ回路およびマルチバンドアンテナスイッチ積層モジュール複合部品並びにそれを用いた通信装置
JP2003273687A (ja) 2002-03-18 2003-09-26 Hitachi Metals Ltd ハイパスフィルタおよびこれを用いたマルチバンドアンテナスイッチ回路、マルチバンドアンテナスイッチ積層モジュール並びに通信装置
JP2004072586A (ja) * 2002-08-08 2004-03-04 Matsushita Electric Ind Co Ltd 高周波デバイス
JP2004312363A (ja) * 2003-04-07 2004-11-04 Murata Mfg Co Ltd 無線通信用高周波回路およびそれを備えた通信機
JP2005260837A (ja) * 2004-03-15 2005-09-22 Ngk Spark Plug Co Ltd アンテナ切換モジュールおよびその設計方法
JP2005269305A (ja) * 2004-03-19 2005-09-29 Sharp Corp 高周波フロントエンド回路および高周波通信装置
WO2006003959A1 (ja) 2004-06-30 2006-01-12 Hitachi Metals, Ltd. 高周波回路、高周波部品及びマルチバンド通信装置
JP2006109257A (ja) * 2004-10-07 2006-04-20 Murata Mfg Co Ltd デュアルシステム受信装置および通信装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0603194A4 (en) 1991-07-05 1994-12-07 Seragen Inc TO THE RECEPTOR OF THE EPIDERMAL GROWTH FACTOR TARGETED MOLECULES FOR TREATING INFLAMMABLE ARTHRITIS.
US7057472B2 (en) 2001-08-10 2006-06-06 Hitachi Metals, Ltd. Bypass filter, multi-band antenna switch circuit, and layered module composite part and communication device using them
US7251459B2 (en) * 2002-05-03 2007-07-31 Atheros Communications, Inc. Dual frequency band wireless LAN
CN1327733C (zh) 2002-08-08 2007-07-18 松下电器产业株式会社 高频器件
US7076216B2 (en) * 2002-09-17 2006-07-11 Hitachi Metals, Ltd. High-frequency device, high-frequency module and communications device comprising them
US7417517B2 (en) * 2006-07-13 2008-08-26 Motorola, Inc. Method and apparatus for a communications filter

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316870A (ja) * 1995-04-07 1996-11-29 Lk Prod Oy 無線通信送受信装置
JP2002208874A (ja) 2001-01-11 2002-07-26 Matsushita Electric Ind Co Ltd 高周波回路
JP2002335187A (ja) * 2001-05-10 2002-11-22 Matsushita Electric Ind Co Ltd 無線通信機
JP2003152588A (ja) * 2001-08-31 2003-05-23 Hitachi Metals Ltd マルチバンドアンテナスイッチ回路およびマルチバンドアンテナスイッチ積層モジュール複合部品並びにそれを用いた通信装置
JP2003273687A (ja) 2002-03-18 2003-09-26 Hitachi Metals Ltd ハイパスフィルタおよびこれを用いたマルチバンドアンテナスイッチ回路、マルチバンドアンテナスイッチ積層モジュール並びに通信装置
JP2004072586A (ja) * 2002-08-08 2004-03-04 Matsushita Electric Ind Co Ltd 高周波デバイス
JP2004312363A (ja) * 2003-04-07 2004-11-04 Murata Mfg Co Ltd 無線通信用高周波回路およびそれを備えた通信機
JP2005260837A (ja) * 2004-03-15 2005-09-22 Ngk Spark Plug Co Ltd アンテナ切換モジュールおよびその設計方法
JP2005269305A (ja) * 2004-03-19 2005-09-29 Sharp Corp 高周波フロントエンド回路および高周波通信装置
WO2006003959A1 (ja) 2004-06-30 2006-01-12 Hitachi Metals, Ltd. 高周波回路、高周波部品及びマルチバンド通信装置
JP2006109257A (ja) * 2004-10-07 2006-04-20 Murata Mfg Co Ltd デュアルシステム受信装置および通信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2017966A4

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508535A (ja) * 2007-12-20 2011-03-10 クゥアルコム・インコーポレイテッド 電力増幅器を制御するために使用される信号の電圧を制御するためのシステムおよび方法
JP2009159412A (ja) * 2007-12-27 2009-07-16 Hitachi Metals Ltd 高周波部品及び通信装置
JP2010041136A (ja) * 2008-07-31 2010-02-18 Fujitsu Ltd 増幅器
JP2011004186A (ja) * 2009-06-18 2011-01-06 Saito Com Co Ltd 地上波デジタルテレビ用アンテナブースタユニット
JP2013501470A (ja) * 2009-08-04 2013-01-10 クゥアルコム・インコーポレイテッド 複数の動作モードを備えた増幅器モジュール
WO2011020275A1 (zh) * 2009-08-17 2011-02-24 中兴通讯股份有限公司 多输入多输出系统和方法
WO2012098863A1 (ja) * 2011-01-20 2012-07-26 パナソニック株式会社 高周波電力増幅器
US8710927B2 (en) 2011-01-20 2014-04-29 Panasonic Corporation High-frequency power amplifier
JPWO2012098863A1 (ja) * 2011-01-20 2014-06-09 パナソニック株式会社 高周波電力増幅器
US9083402B2 (en) 2012-05-11 2015-07-14 Sharp Kabushiki Kaisha High frequency circuit and high frequency module including the same
JP2014050101A (ja) * 2012-08-31 2014-03-17 Shun-Fu Technology Corp 高周波回路の調波の抑制方法
CN104065394A (zh) * 2013-03-18 2014-09-24 神讯电脑(昆山)有限公司 路径切换系统及该路径切换方法
JP2015226313A (ja) * 2014-05-30 2015-12-14 新日本無線株式会社 スイッチ回路付き利得可変型増幅器
US9838058B2 (en) 2015-02-15 2017-12-05 Skyworks Solutions, Inc. Power amplification system with variable supply voltage
US10778149B2 (en) 2015-02-15 2020-09-15 Skyworks Solutions, Inc. Power amplifiers having reduced loss
JP2016149745A (ja) * 2015-02-15 2016-08-18 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. 帯域選択スイッチの排除により効率が向上した多重帯域電力増幅システム
JP2016149743A (ja) * 2015-02-15 2016-08-18 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. 整合ネットワークの排除によりサイズが低減された電力増幅器
JP2016149751A (ja) * 2015-02-15 2016-08-18 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. ブースト変換器により駆動される無線周波数電力増幅器
JP2016149750A (ja) * 2015-02-15 2016-08-18 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. 可変供給電圧を有する電力増幅システム
US9893684B2 (en) 2015-02-15 2018-02-13 Skyworks Solutions, Inc. Radio-frequency power amplifiers driven by boost converter
JP2018042264A (ja) * 2015-02-15 2018-03-15 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. 整合ネットワークの排除により効率が向上した電力増幅器
US9979349B2 (en) 2015-02-15 2018-05-22 Skyworks Solutions, Inc. Multi-band device having multiple miniaturized single-band power amplifiers
US10084411B2 (en) 2015-02-15 2018-09-25 Skyworks Solutions, Inc. Reduced power amplifier size through elimination of matching network
US10177711B2 (en) 2015-02-15 2019-01-08 Skyworks Solutions, Inc. Multi-band power amplification system having enhanced efficiency through elimination of band selection switch
US10277174B2 (en) 2015-02-15 2019-04-30 Skyworks Solutions, Inc. Radio-frequency amplification systems, devices and methods
US10615835B2 (en) 2015-02-15 2020-04-07 Skyworks Solutions, Inc. Power amplification system with variable supply voltage
JP2016149744A (ja) * 2015-02-15 2016-08-18 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. 整合ネットワークの排除により効率が向上した電力増幅器
US10790783B2 (en) 2015-02-15 2020-09-29 Skyworks Solutions, Inc. Amplifiers for radio-frequency applications
US10804955B2 (en) 2017-12-20 2020-10-13 Murata Manufacturing Co., Ltd. High-frequency module
US11088720B2 (en) 2017-12-20 2021-08-10 Murata Manufacturing Co., Ltd. High-frequency module
US11496178B2 (en) 2017-12-20 2022-11-08 Murata Manufacturing Co., Ltd. High-frequency module
US11777553B2 (en) 2017-12-20 2023-10-03 Murata Manufacturing Co., Ltd. High-frequency module
US11082805B2 (en) 2018-06-19 2021-08-03 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Terminal and method for transmitting data
WO2021006021A1 (ja) * 2019-07-09 2021-01-14 株式会社村田製作所 高周波モジュール及び通信装置
US12052001B2 (en) 2019-07-09 2024-07-30 Murata Manufacturing Co., Ltd. Radio-frequency module and communication device
JP2021022784A (ja) * 2019-07-25 2021-02-18 株式会社東芝 低雑音増幅器とレーダ装置の受信モジュール
CN112769451A (zh) * 2021-01-26 2021-05-07 维沃移动通信有限公司 信息收发控制方法、装置、电子设备及存储介质
WO2023189276A1 (ja) * 2022-03-28 2023-10-05 株式会社村田製作所 高周波回路および通信装置

Also Published As

Publication number Publication date
JPWO2007129716A1 (ja) 2009-09-17
EP2017966A4 (en) 2015-01-14
CN101438505B (zh) 2013-04-03
US20090207764A1 (en) 2009-08-20
TW200805904A (en) 2008-01-16
US8036148B2 (en) 2011-10-11
TWI440317B (zh) 2014-06-01
JP4618461B2 (ja) 2011-01-26
EP2017966A1 (en) 2009-01-21
CN101438505A (zh) 2009-05-20

Similar Documents

Publication Publication Date Title
JP4618461B2 (ja) 高周波回路、高周波部品及び通信装置
US8682258B2 (en) High-frequency circuit, high-frequency device, and communication apparatus
US8130787B2 (en) High-frequency circuit device, and communications apparatus comprising same
US8582547B2 (en) High frequency circuit, high frequency component and communication device
JP5630441B2 (ja) 高周波回路、高周波回路部品、及び通信装置
US7696842B2 (en) Composite high-frequency component and mobile communication apparatus
US8326344B2 (en) High-frequency device and communications apparatus
JPWO2006003959A1 (ja) 高周波回路、高周波部品及びマルチバンド通信装置
JP2010147589A (ja) 高周波回路、高周波部品及び通信装置
JP2008072738A (ja) 高周波回路、高周波部品及びマルチバンド通信装置
JP4702620B2 (ja) 高周波スイッチモジュール
JP2005354407A (ja) 高周波回路、高周波部品、及びこれを用いたマルチバンド通信装置
JP2006237978A (ja) マルチバンド高周波モジュールおよびこれを用いたマルチバンド通信装置
JP2009027319A (ja) 高周波回路、高周波部品及び通信装置
JP2008219699A (ja) 低雑音増幅器回路、高周波回路、高周波部品及び通信装置
US20090128253A1 (en) High frequency electronic component
JP2009159411A (ja) 高周波回路、高周波部品および通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742968

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008514500

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200780016709.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12300308

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2007742968

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007742968

Country of ref document: EP