JP2018042264A - 整合ネットワークの排除により効率が向上した電力増幅器 - Google Patents

整合ネットワークの排除により効率が向上した電力増幅器 Download PDF

Info

Publication number
JP2018042264A
JP2018042264A JP2017202482A JP2017202482A JP2018042264A JP 2018042264 A JP2018042264 A JP 2018042264A JP 2017202482 A JP2017202482 A JP 2017202482A JP 2017202482 A JP2017202482 A JP 2017202482A JP 2018042264 A JP2018042264 A JP 2018042264A
Authority
JP
Japan
Prior art keywords
power amplification
amplification system
power
impedance
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017202482A
Other languages
English (en)
Inventor
フィリップ ジョン レートラ、
John Lehtola Philip
フィリップ ジョン レートラ、
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Skyworks Solutions Inc
Original Assignee
Skyworks Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Skyworks Solutions Inc filed Critical Skyworks Solutions Inc
Publication of JP2018042264A publication Critical patent/JP2018042264A/ja
Priority to JP2019201225A priority Critical patent/JP6937813B2/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal
    • H03F1/0227Continuous control by using a signal derived from the input signal using supply converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0288Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • H03F1/565Modifications of input or output impedances, not otherwise provided for using inductive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/191Tuned amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/211Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/72Gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/102A non-specified detector of a signal envelope being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/105A non-specified detector of the power of a signal being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/111Indexing scheme relating to amplifiers the amplifier being a dual or triple band amplifier, e.g. 900 and 1800 MHz, e.g. switched or not switched, simultaneously or not
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/171A filter circuit coupled to the output of an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/20Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F2203/21Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F2203/211Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • H03F2203/21109An input signal being distributed by switching to a plurality of paralleled power amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/20Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F2203/21Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F2203/211Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • H03F2203/21157A filter circuit being added at the output of a power amplifier stage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/72Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • H03F2203/7209Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal the gated amplifier being switched from a first band to a second band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers

Abstract

【課題】有意な電流ドレイン低減を達成する電力増幅器を提供する。【解決手段】高電圧APT(平均電力追跡)電力増幅システム100を有するデバイス270は、信号を増幅するべく高電圧で動作するようにそれぞれが構成された複数の電力増幅器PAと、インピーダンス変換回路OWNが存在しない経路を介して各電力増幅器にそれぞれが結合された複数の出力フィルタとを含む。複数の電力増幅器は、単一のダイに実装される。【選択図】図16

Description

本開示は一般に、無線周波数(RF)アプリケーション用の電力増幅器に関する。
関連出願の相互参照
本願は、2015年2月15日出願の「整合ネットワークの排除によりサイズが低減された電力増幅器」との名称の米国仮出願第62/116,448号、2015年2月15日出願の「整合ネットワークの排除により効率が向上した電力増幅器」との名称の米国仮出願第62/116,449号、2015年2月15日出願の「帯域選択スイッチの排除により効率が向上した多重帯域電力増幅システム」との名称の米国仮出願第62/116,450号、及び2015年2月15日出願の「小型単一帯域電力増幅器を多重に有する多重帯域デバイス」との名称の米国仮出願第62/116,451号の優先権を主張する。これらの開示はそれぞれの全体が、ここに明示的に参照として組み入れられる。
無線周波数(RF)アプリケーションにおいて、送信対象のRF信号は送受信器によって発生されるのが典型的である。かかるRF信号はその後、電力増幅器(PA)によって増幅され、その増幅されたRF信号は、送信を目的としてアンテナへと引き回すことができる。
一定数の実装によれば、本開示は、無線周波数(RF)信号を受信して増幅するべく構成された電力増幅器(PA)と、当該PAに結合され、かつ、増幅されたRF信号をコンディショニングするべく構成されたフィルタとを含む電力増幅システムに関する。PAはさらに、フィルタのほぼ特性負荷インピーダンスで駆動するべく構成される。
いくつかの実施形態において、PAは、ほぼ40オームよりも大きいインピーダンスを有し得る。PAのインピーダンスは、ほぼ50オームの値を有し得る。
いくつかの実施形態において、電力増幅システムはさらに、高電圧(HV)供給をPAへと与えるべく構成された供給システムを含む。供給システムは、電池電圧Vbattに基づいてHV供給を発生させるべく構成されたブーストDC/DC変換器を含み得る。
いくつかの実施形態において、PAはヘテロ接合バイポーラトランジスタ(HBT)を含み得る。HBTは例えば、ガリウムヒ素(GaAs)デバイスであり得る。HV供給は、VCCとしてのHBTのコレクタに与えることができる。
いくつかの実施形態において、フィルタは、対応送信(Tx)周波数帯域で動作するべく構成されたTxフィルタであり得る。Txフィルタは、Tx周波数帯域及び対応受信(Rx)周波数帯域で動作するべく構成されたデュプレクサの一部であり得る。
いくつかの実施形態において、フィルタは、インピーダンス変換回路が実質的に存在しない出力経路を介してPAに結合することができる。
いくつかの実施形態において、電力増幅システムはさらに一以上の付加PAを含み、各PAは、HV供給により動作して対応RF信号を増幅するべく構成することができる。電力増幅システムはさらに、一以上の付加PAのそれぞれに結合されたフィルタであって、対応する増幅されたRF信号をコンディショニングするべく構成されたフィルタを含む。一以上の付加PAのそれぞれはさらに、対応フィルタのほぼ特性負荷インピーダンスで駆動するべく構成することができる。一以上の付加フィルタのそれぞれは、インピーダンス変換回路が実質的に存在しない出力経路を介して対応PAに結合することができる。
いくつかの実施形態において、PA及び一以上の付加PAは複数のM PAを形成し得る。いくつかの実施形態において、複数のM PAは、単一の半導体ダイに実装することができる。複数のM PAは、別個の周波数帯域で動作するべく構成することができる。システムには、複数のM PAとそれらの対応フィルタとの間において実質的に帯域選択スイッチが存在しないこととし得る。
いくつかの実施形態において、電力増幅システムは、平均電力追跡(APT)システムとして動作するべく構成することができる。APTシステムは、類似帯域の取り扱い能力を有するがPAは低電圧で動作する他の電力増幅器システムよりも低い損失を有し得る。他の電力増幅器システムは包絡線追跡(ET)システムであり得る。APTシステムは、ETシステムの全体効率よりも高い全体効率を有し得る。
いくつかの教示において、本開示は、複数のコンポーネントを受容するべく構成されたパッケージング基板と、当該パッケージング基板に実装された電力増幅システムとを含む無線周波数(RF)モジュールに関する。電力増幅システムは複数の電力増幅器(PA)を含み、各PAは、無線周波数(RF)信号を受信して増幅するべく構成される。電力増幅システムはさらに、各PAに結合されたフィルタを含み、各PAは、当該フィルタのほぼ特性負荷インピーダンスで駆動するべく構成される。
いくつかの実施形態において、各PAは、高電圧(HV)供給モードで動作するべく構成することができる。各フィルタは、インピーダンス変換回路が実質的に存在しない出力経路を介して対応PAに結合することができる。
いくつかの実施形態において、RFモジュールには、複数のPAとそれらの対応フィルタとの間において帯域選択スイッチが実質的に存在しないこととし得る。いくつかの実施形態において、RFモジュールは、例えばフロントエンドモジュール(FEM)であり得る。
いくつかの実装によれば、本開示は、無線周波数(RF)信号を発生させるべく構成された送受信器と、当該送受信器と通信するフロントエンドモジュール(FEM)とを含む無線デバイスに関する。FEMは、複数のコンポーネントを受容するべく構成されたパッケージング基板と、当該パッケージング基板に実装された電力増幅システムとを含む。電力増幅システムは複数の電力増幅器(PA)を含み、各PAは、無線周波数(RF)信号を受信して増幅するべく構成される。電力増幅システムはさらに、各PAに結合されたフィルタを含み、各PAは、当該フィルタのほぼ特性負荷インピーダンスで駆動するべく構成される。無線デバイスはさらに、FEMと通信するアンテナを含み、当該アンテナは増幅されたRF信号を送信するべく構成される。
いくつかの教示において、本開示は、無線周波数(RF)信号を処理する方法に関する。方法は、電力増幅器(PA)を使用してRF信号を増幅することと、増幅されたRF信号をフィルタへと引き回すこととを含む。方法はさらに、PAを、当該PAがフィルタのほぼ特性インピーダンスで駆動するように動作させることを含む。
いくつかの実施形態において、PAは、ほぼ50オームのインピーダンスを有し得る。いくつかの実施形態において、PAを動作させることは、当該PAに高電圧(HV)を供給することを含み得る。
一定数の教示によれば、本開示は、無線周波数(RF)信号を受信して増幅するべく構成された電力増幅器(PA)を含む電力増幅システムに関する。電力増幅システムはさらに、インピーダンス変換回路が実質的に存在しない出力経路を介してPAに結合された出力フィルタを含む。
いくつかの実施形態において、PAは、出力フィルタのほぼ特性負荷インピーダンスで駆動するべく構成される。出力フィルタのほぼ特性負荷インピーダンスで駆動するべく構成されたPAは、高電圧(HV)供給を使用して動作するPAによって実現することができる。インピーダンス変換回路が実質的に存在しない出力経路により、PA及び出力フィルタ間において少なくとも0.5dBだけ損失を低減することができる。
いくつかの実施形態において、PAは、ほぼ40オームよりも大きいインピーダンスを有し得る。PAのインピーダンスは、ほぼ50オームの値を有し得る。PAのインピーダンスにより、当該PAにおける電流ドレインを低減することができる。PAにおいて低減された電流ドレインにより、当該PAを、低インピーダンスの他のPAよりも小さな寸法にすることができる。
いくつかの実施形態において、電力増幅システムはさらに、PAに高電圧(HV)供給を与えるべく構成された供給システムを含む。供給システムは、電池電圧Vbattに基づいてHV供給を発生させるべく構成されたブーストDC/DC変換器を含み得る。
いくつかの実施形態において、PAはヘテロ接合バイポーラトランジスタ(HBT)を含み得る。HBTはガリウムヒ素(GaAs)デバイスであり得る。HV供給は、VCCとしてのHBTのコレクタに与えることができる。
いくつかの実施形態において、出力フィルタは、対応送信(Tx)周波数帯域で動作するべく構成されたTxフィルタであり得る。Txフィルタは、Tx周波数帯域及び対応受信(Rx)周波数帯域で動作するべく構成されたデュプレクサの一部であり得る。
いくつかの実施形態において、電力増幅システムはさらに一以上の付加PAを含み、各PAは、HV供給を使用して動作して対応RF信号を増幅するべく構成することができる。電力増幅システムはさらに、インピーダンス変換回路が実質的に存在しない出力経路を介して一以上の付加PAのそれぞれに結合された出力フィルタを含み得る。一以上の付加PAのそれぞれはさらに、対応出力フィルタのほぼ特性負荷インピーダンスで駆動するべく構成される。
いくつかの実施形態において、PA及び一以上の付加PAは複数のM PAを形成し得る。複数のM PAは、単一の半導体ダイに実装することができる。複数のM PAは、別個の周波数帯域で動作するべく構成することができる。
いくつかの実施形態において、電力増幅システムは、複数のM PAとそれらの対応出力フィルタとの間において帯域選択スイッチが実質的に存在しないこととし得る。帯域選択スイッチが実質的に存在しない電力増幅システムにより、各PA及び対応出力フィルタ間において少なくとも0.3dBだけ損失を低減することができる。
いくつかの実施形態において、電力増幅システムは、平均電力追跡(APT)システムとして動作するべく構成することができる。APTシステムは、類似帯域の取り扱い能力を有するがPAは低電圧で動作する他の電力増幅器システムよりも低い損失を有し得る。他の電力増幅器システムは包絡線追跡(ET)システムであり得る。APTシステムは、ETシステムの全体効率よりも高い全体効率を有し得る。
いくつかの実装によれば、本開示は、複数のコンポーネントを受容するべく構成されたパッケージング基板と、当該パッケージング基板に実装された電力増幅システムとを含む無線周波数(RF)モジュールに関する。電力増幅システムは複数の電力増幅器(PA)を含み、各PAは、無線周波数(RF)信号を受信して増幅するべく構成される。電力増幅システムはさらに、インピーダンス変換回路が実質的に存在しない出力経路を介して各PAに結合された出力フィルタを含む。
いくつかの実施形態において、各PAは、高電圧(HV)供給モードで動作するべく構成することができる。各PAはさらに、対応出力フィルタのほぼ特性負荷インピーダンスで駆動するべく構成することができる。
いくつかの実施形態において、RFモジュールには、複数のPAとそれらの対応出力フィルタとの間において帯域選択スイッチが実質的に存在しないこととし得る。RFモジュールは、例えばフロントエンドモジュール(FEM)であり得る。
いくつかの実装において、本開示は、無線周波数(RF)信号を発生させるべく構成された送受信器と、当該送受信器と通信するフロントエンドモジュール(FEM)とを含む無線デバイスに関する。FEMは、複数のコンポーネントを受容するべく構成されたパッケージング基板と、当該パッケージング基板に実装された電力増幅システムとを含む。電力増幅システムは複数の電力増幅器(PA)を含み、各PAは、無線周波数(RF)信号を受信して増幅するべく構成される。電力増幅システムはさらに、インピーダンス変換回路が実質的に存在しない出力経路を介して各PAに結合された出力フィルタを含む。無線デバイスはさらに、FEMと通信するアンテナを含み、当該アンテナは増幅されたRF信号を送信するべく構成される。
いくつかの教示において、本開示は、無線周波数(RF)信号を処理する方法に関する。方法は、電力増幅器(PA)を使用してRF信号を増幅することと、増幅されたRF信号を、実質的にインピーダンス変換なしで出力フィルタへと引き回すこととを含む。方法はさらに、増幅されたRF信号を、出力フィルタを使用してフィルタリングすることを含む。
いくつかの実施形態において、RF信号を増幅することは、PAを、実質的にインピーダンス変換がない引き回しを許容するべく出力フィルタのほぼ特性インピーダンスで当該PAが駆動するように動作させることを含む。PAは、ほぼ50オームのインピーダンスを有し得る。いくつかの実施形態において、PAを動作させることは、当該PAに高電圧(HV)を供給することを含み得る。
いくつかの教示によれば、本開示は、複数の電力増幅器(PA)を含む電力増幅システムであって、各PAは、一周波数帯域にある無線周波数(RF)信号を受信して増幅するべく構成された電力増幅システムに関する。電力増幅システムはさらに、当該電力増幅システムには複数のPAとそれらの対応出力フィルタとの間において帯域選択スイッチが実質的に存在しないように、別個の出力経路を介して各PAに結合された出力フィルタを含み得る。
いくつかの実施形態において、各PAはさらに、対応出力フィルタのほぼ特性負荷インピーダンスで駆動するべく構成することができる。対応出力フィルタのほぼ特性負荷インピーダンスで駆動するべく構成された各PAは、高電圧(HV)供給を使用して動作するPAによって実現することができる。帯域選択スイッチが実質的に存在しない電力増幅システムにより、各PA及び対応出力フィルタ間において少なくとも0.3dBだけ損失を低減することができる。
いくつかの実施形態において、各PAは、ほぼ40オームよりも大きいインピーダンスを有し得る。各PAのインピーダンスは、ほぼ50オームの値を有し得る。各PAのインピーダンスにより、当該PAにおける電流ドレインを低減することができる。各PAにおいて低減された電流ドレインにより、当該PAを、低インピーダンスの他のPAよりも小さな寸法にすることができる。
いくつかの実施形態において、電力増幅システムはさらに、高電圧(HV)供給を各PAへと与えるべく構成された供給システムを含む。供給システムは、電池電圧Vbattに基づいてHV供給を発生させるべく構成されたブーストDC/DC変換器を含み得る。
いくつかの実施形態において、各PAはヘテロ接合バイポーラトランジスタ(HBT)を含み得る。HBTはガリウムヒ素(GaAs)デバイスであり得る。HV供給は、VCCとしてのHBTのコレクタに与えることができる。
いくつかの実施形態において、各出力フィルタは、対応送信(Tx)周波数帯域で動作するべく構成されたTxフィルタであり得る。Txフィルタは、Tx周波数帯域及び対応受信(Rx)周波数帯域で動作するべく構成されたデュプレクサの一部であり得る。
いくつかの実施形態において、各出力フィルタは、インピーダンス変換回路が実質的に存在しない出力経路を介して対応PAに結合することができる。インピーダンス変換回路が実質的に存在しない各出力経路により、対応PA及び出力フィルタ間において少なくとも0.5dBだけ損失を低減することができる。
いくつかの実施形態において、複数のPAは、単一の半導体ダイに実装することができる。いくつかの実施形態において、電力増幅システムは、平均電力追跡(APT)システムとして動作するべく構成することができる。APTシステムは、類似帯域の取り扱い能力を有するがPAは低電圧で動作する他の電力増幅器システムよりも低い損失を有し得る。他の電力増幅器システムは包絡線追跡(ET)システムであり得る。APTシステムは、ETシステムの全体効率よりも高い全体効率を有し得る。
いくつかの教示において、本開示は、複数のコンポーネントを受容するべく構成されたパッケージング基板と、当該パッケージング基板に実装された電力増幅システムとを含む無線周波数(RF)モジュールに関する。電力増幅システムは複数の電力増幅器(PA)を含み、各PAは、一周波数帯域にある無線周波数(RF)信号を受信して増幅するべく構成される。電力増幅システムはさらに、当該電力増幅システムには複数のPAとそれらの対応出力フィルタとの間において帯域選択スイッチが実質的に存在しないように、別個の出力経路を介して各PAに結合された出力フィルタを含む。
いくつかの実施形態において、各PAは、高電圧(HV)供給モードで動作するべく構成することができる。各PAはさらに、対応出力フィルタのほぼ特性負荷インピーダンスで駆動するべく構成することができる。
いくつかの実施形態において、各出力経路は、対応PA及び出力フィルタ間においてインピーダンス変換回路が実質的に存在しないこととし得る。いくつかの実施形態において、RFモジュールは、例えばフロントエンドモジュール(FEM)であり得る。
一定数の教示によれば、本開示は、無線周波数(RF)信号を発生させるべく構成された送受信器と、当該送受信器と通信するフロントエンドモジュール(FEM)とを含む無線デバイスに関する。FEMは、複数のコンポーネントを受容するべく構成されたパッケージング基板と、当該パッケージング基板に実装された電力増幅システムとを含む。電力増幅システムは複数の電力増幅器(PA)を含み、各PAは、一周波数帯域にある無線周波数(RF)信号を受信して増幅するべく構成される。電力増幅システムはさらに、当該電力増幅システムには複数のPAとそれらの対応出力フィルタとの間において帯域選択スイッチが実質的に存在しないように、別個の出力経路を介して各PAに結合された出力フィルタを含む。無線デバイスはさらに、FEMと通信するアンテナを含み、当該アンテナは増幅されたRF信号を送信するべく構成される。
いくつかの教示において、本開示は、無線周波数(RF)信号を処理する方法に関する。方法は、複数の電力増幅器(PA)の選択された一つを使用して、一周波数帯域にあるRF信号を増幅することを含む。方法はさらに、増幅されたRF信号を、実質的に帯域選択切り替え動作なしで出力フィルタへと引き回すことを含む。方法はさらに、増幅されたRF信号を、出力フィルタを使用してフィルタリングすることを含む。
いくつかの実施形態において、RF信号を増幅することは、選択されたPAを、実質的にインピーダンス変換がない引き回しを許容するべく対応出力フィルタのほぼ特性インピーダンスで当該PAが駆動するように動作させることを含む。PAは、ほぼ50オームのインピーダンスを有し得る。
いくつかの実施形態において、PAを動作させることは、当該PAに高電圧(HV)を供給することを含み得る。
いくつかの実装において、本開示は、半導体基板と、当該半導体基板に実装された複数の電力増幅器(PA)とを含む電力増幅器ダイに関する。各PAは、個々の周波数帯域信号経路に沿った下流側コンポーネントのほぼ特性負荷インピーダンスで駆動するべく構成される。各PAは、複数のPAに関連付けられた周波数帯域の一を超える周波数帯域で駆動するべく構成された広帯域PAよりも小さなサイズとされる。
いくつかの実施形態において、下流側コンポーネントは出力フィルタを含み得る。個々の周波数帯域信号経路は狭帯域信号経路であり得る。対応出力フィルタのほぼ特性負荷インピーダンスで駆動するべく構成された各PAは、高電圧(HV)供給を使用して動作するPAによって実現することができる。各PAは、ほぼ40オームよりも大きいインピーダンスを有し得る。各PAのインピーダンスは、ほぼ50オームの値を有し得る。PAのインピーダンスにより、当該PAにおける電流ドレインを低減することができる。各PAにおいて低減された電流ドレインにより、当該PAを、低インピーダンスの他のPAよりも小さな寸法にすることができる。
いくつかの実施形態において、各PAは、ガリウムヒ素(GaAs)デバイスのようなヘテロ接合バイポーラトランジスタ(HBT)を含み得る。HBTは、そのコレクタを介してHV供給をVCCとして受けるべく構成することができる。
いくつかの実施形態において、PAは、平均電力追跡(APT)モードで動作するべく構成することができる。APTモードにより、類似帯域の取り扱い能力を有するがPAは低電圧で動作する他のダイよりも低い損失がもたらされ得る。他のダイは、包絡線追跡(ET)モードで動作するべく構成することができる。APTモードは、ETに関連付けられた全体効率よりも高い全体効率をもたらすことができる。
いくつかの実装によれば、本開示は、複数のコンポーネントを受容するべく構成されたパッケージング基板と、当該パッケージング基板に実装された電力増幅システムとを含む無線周波数(RF)モジュールに関する。電力増幅システムは、半導体基板上に実装された複数の電力増幅器(PA)を含む。各PAは、個々の周波数帯域信号経路に沿った下流側コンポーネントのほぼ特性負荷インピーダンスで駆動するべく構成される。各PAは、複数のPAに関連付けられた周波数帯域の一を超える周波数帯域で駆動するべく構成された広帯域PAよりも小さなサイズとされる。
いくつかの実施形態において、各PAは、高電圧(HV)供給モードで動作するべく構成することができる。いくつかの実施形態において、下流側コンポーネントは出力フィルタを含み得る。出力フィルタは、電力増幅システムには複数のPAとそれらの対応出力フィルタとの間において帯域選択スイッチが実質的に存在しないように、別個の出力経路を介して対応PAに結合することができる。各出力経路は、対応PA及び出力フィルタ間においてインピーダンス変換回路が実質的に存在しないこととし得る。RFモジュールは、例えばフロントエンドモジュール(FEM)であり得る。
いくつかの教示において、本開示は、無線周波数(RF)信号を発生させるべく構成された送受信器と、当該送受信器と通信するフロントエンドモジュール(FEM)とを含む無線デバイスに関する。FEMは、複数のコンポーネントを受容するべく構成されたパッケージング基板と、当該パッケージング基板に実装された電力増幅システムとを含む。電力増幅システムは、半導体基板に実装された複数の電力増幅器(PA)を含み、各PAは、個々の周波数帯域信号経路に沿った下流側コンポーネントのほぼ特性負荷インピーダンスで駆動するべく構成される。各PAは、複数のPAに関連付けられた周波数帯域の一を超える周波数帯域で駆動するべく構成された広帯域PAよりも小さなサイズとされる。無線デバイスはさらに、FEMと通信するアンテナを含み、当該アンテナは増幅されたRF信号を送信するべく構成される。
いくつかの実装において、本開示は、無線周波数(RF)信号を処理する方法に関する。方法は、複数の電力増幅器(PA)の選択された一つを使用してRF信号を増幅することを含み、選択されたPAは、個々の周波数帯域信号経路に沿った下流側コンポーネントのほぼ特性負荷インピーダンスで駆動する。選択されたPAは、複数のPAに関連付けられた周波数帯域の一を超える周波数帯域で駆動するべく構成された広帯域PAよりも小さなサイズとされる。方法はさらに、増幅されたRF信号を下流側コンポーネントへと引き回すことを含む。
いくつかの実施形態において、下流側コンポーネントは出力フィルタを含み得る。RF信号を増幅することは、選択されたPAに高電圧(HV)を供給することを含み得る。
いくつかの教示によれば、本開示は、電力増幅器ダイを作製する方法に関する。方法は、半導体基板を形成し又は設けることと、複数の個々の周波数帯域信号経路を実装することとを含む。方法はさらに、半導体基板に複数の電力増幅器(PA)を形成することを含み、各PAは、対応個々の周波数帯域信号経路に沿った下流側コンポーネントのほぼ特性負荷インピーダンスで駆動するべく構成される。各PAは、複数のPAに関連付けられた周波数帯域の一を超える周波数帯域で駆動するべく構成された広帯域PAよりも小さなサイズとされる。
本開示を要約する目的で本発明の一定の側面、利点及び新規な特徴がここに記載されている。理解すべきことだが、かかる利点のすべてが必ずしも、本発明の任意の特定実施形態によって達成できるわけではない。すなわち、本発明は、ここに教示される一の利点又は一群の利点を、ここに教示又は示唆される他の利点を必ずしも達成する必要なく、達成又は最適化する態様で具体化又は実施をすることができる。
増幅システムを有する無線システム又はアーキテクチャを描く。 図1の増幅システムが、一以上の電力増幅器(PA)を有する無線周波数(RF)増幅器アセンブリを含み得ることを示す。 図3A〜3Eは、図2の各PAがどのように構成され得るかについての非制限的な例を示す。 いくつかの実施形態において、図2の増幅システムが高電圧(HV)電力増幅システムとして実装できることを示す。 いくつかの実施形態において、図4のHV電力増幅システムが平均電力追跡(APT)モードで動作するべく構成され得ることを示す。 代表的な包絡線追跡(ET)電力増幅システムを示す。 ここに記載される一以上の特徴を有する代表的な高電圧(HV)平均電力追跡(APT)電力増幅システムを示す。 図7の高電圧APT電力増幅システムの詳しい例となり得る高電圧APT電力増幅システムを示す。 バック(Buck)ET構成、バックAPT構成及びブースト(boost)APT構成において動作する電力増幅器に対する、出力電力の関数としての代表的な効率プロットを示す。 ここに記載される一以上の特徴を有する電力増幅システムが、公称ケースに類似するコレクタ効率及び電力付加効率(PAE)曲線を有し得ることを示す。 ここに記載される一以上の特徴を有する電力増幅システムが、公称ケースに類似する線形性性能を有し得ることを示す。 電力増幅器負荷電流の、負荷電圧の関数としての代表的なプロットを示す。 ここに記載される一以上の特徴を有する電力増幅システムが一以上の有利な利益をもたらし得る一例を示す。 ここに記載される一以上の特徴を有する電力増幅システムが一以上の有利な利益をもたらし得る他例を示す。 ここに記載される一以上の特徴を有する電力増幅システムが一以上の有利な利点をもたらし得るさらなる他例を示す。 ここに記載される一以上の特徴を有する電力増幅システムが一以上の有利な利点をもたらし得るさらなる他例を示す。 いくつかの実施形態において、ここに記載される一以上の特徴を有する高電圧APT電力増幅システムのいくつか又はすべてが一モジュールに実装できることを示す。 ここに記載される一以上の有利な特徴を有する代表的な無線デバイスを描く。
ここに与えられる見出しは、たとえあったとしても、便宜のみのためであって、必ずしも請求項に係る発明の範囲又は意味に影響するわけではない。
導入
図1を参照すると、本開示の一以上の特徴は一般に、増幅システム52を有する無線システム又はアーキテクチャ50に関する。いくつかの実施形態において、増幅システム52は、一以上のデバイスとして実装することができる。かかるデバイス(複数可)は、無線システム/アーキテクチャ50において利用可能である。いくつかの実施形態において、無線システム/アーキテクチャ50は例えば、携帯無線デバイスに実装することができる。かかる無線デバイスの例がここに記載される。
図2は、図1の増幅システム52が、一以上の電力増幅器(PA)を有する無線周波数(RF)増幅器アセンブリ54を含み得ることを示す。図2の例において、3つのPA60a〜60cが、RF増幅器アセンブリ54を形成するように描かれる。理解されることだが、他の数のPA(複数可)も実装することができる。またも理解されることだが、本開示の一以上の特徴は、他のタイプのRF増幅器を有するRF増幅器アセンブリに実装することもできる。
いくつかの実施形態において、RF増幅器アセンブリ54は一以上の半導体ダイに実装することができる。かかるダイは、電力増幅器モジュール(PAM)又はフロントエンドモジュール(FEM)のようなパッケージモジュールに含めることができる。かかるパッケージモジュールは典型的に、例えば携帯無線デバイスに関連付けられた回路基板に搭載されるように構成される。
増幅システム52におけるPA(例えば60a〜60c)は典型的に、バイアスシステム56によってバイアスがかけられる。さらに、PAのための供給電圧は典型的に、供給システム58によって与えることができる。いくつかの実施形態において、バイアスシステム56及び供給システム58のいずれか又は双方は、RF増幅器アセンブリ54を有する上記パッケージモジュールに含めることができる。
いくつかの実施形態において、増幅システム52は整合ネットワーク62を含み得る。かかる整合ネットワークは、RF増幅器アセンブリ54のための入力整合及び/又は出力整合機能を与えるべく構成することができる。
説明目的のため理解されることだが、図2の各PA(60)は、一定数の態様で実装することができる。図3A〜3Eは、かかるPAがどのように構成され得るかについての非制限的な例を示す。図3Aは、増幅トランジスタ64を有する代表的なPAを示す。ここで、入力RF信号(RF_in)がトランジスタ64のベースへと与えられ、増幅されたRF信号(RF_out)がトランジスタ64のコレクタを介して出力される。
図3Bは、複数段に配列された複数の増幅トランジスタ(例えば64a、64b)を有する代表的なPAを示す。入力RF信号(RF_in)は、第1トランジスタ64aのベースへと与えられるように示され、第1トランジスタ64aからの増幅されたRF信号は、そのコレクタを介して出力されるように示される。第1トランジスタ64aからの増幅されたRF信号は、第2トランジスタ64bのベースへと与えられるように示され、第2トランジスタ64bからの増幅されたRF信号は、そのコレクタを介して出力され、ひいてはPAの出力RF信号(RF_out)がもたらされるように示される。
いくつかの実施形態において、図3Bの上記代表的なPA構成は、図3Cに示されるように2以上の段として描くことができる。第1段64aを例えばドライバ段として構成し、第2段64bを例えば出力段として構成することができる。
図3Dは、いくつかの実施形態において、PAがドハティPAとして構成できることを示す。かかるドハティPAは、増幅された出力RF信号(RF_out)をもたらすべく、入力RF信号(RF_in)のキャリア増幅及びピーキング増幅をそれぞれ与えるべく構成された増幅トランジスタ64a、64bを含み得る。入力RF信号は、分割器によりキャリア部分及びピーキング部分に分割することができる。増幅されたキャリア信号及びピーキング信号は、結合器により出力RF信号をもたらすべく結合することができる。
図3Eは、いくつかの実施形態において、PAがカスコード構成で実装できることを示す。入力RF信号(RF_in)は、共通エミッタデバイスとして動作する第1増幅トランジスタ64aのベースに与えられ得る。第1増幅トランジスタ64aの出力は、そのコレクタを介して与えられ、共通ベースデバイスとして動作する第2増幅トランジスタ64bのエミッタへと与えられ得る。第2増幅トランジスタ64bの出力は、PAの増幅された出力RF信号(RF_out)をもたらすべく、そのコレクタを介して与えられ得る。
図3A〜3Eの様々な例において、増幅トランジスタは、ヘテロ接合バイポーラトランジスタ(HBT)のようなバイポーラ接合トランジスタ(BJT)として記載される。理解されることだが、本開示の一以上の特徴はまた、電界効果トランジスタ(FET)のような他のタイプのトランジスタにおいて又は当該トランジスタを使用して実装することもできる。
図4は、いくつかの実施形態において、図2の増幅システム52が高電圧(HV)電力増幅システム100として実装できることを示す。かかるシステムは、複数のPAのいくつか又はすべて(例えば60a〜60c)がHV増幅動作を含むように構成されたHV電力増幅器アセンブリ54を含み得る。ここに記載されるように、かかるPAはバイアスシステム56によってバイアスがかけられる。いくつかの実施形態において、上記HV増幅動作は、HV供給システム58によって容易とすることができる。いくつかの実施形態において、HV電力増幅器アセンブリ54とバイアスシステム56及びHV供給システム58のいずれか又は双方との間のインタフェイス機能を与えるべく、インタフェイスシステム72を実装することができる。
高電圧APTシステムに関連する例
携帯ハンドセットのような多くの無線デバイスは、多重周波数帯域をサポートするべく構成され、かかるデバイスは典型的に、電力増幅アーキテクチャを要求し及び/又は複雑にする。しかしながら、電力増幅アーキテクチャの当該複雑性は、サポートされる帯域が増加するにつれて、送信効率の劣化をもたらし得る。かかる効率劣化は例えば、競争力のあるサイズ及びコスト目標を維持しながら多重周波数帯域を組み合わせることにより生じた損失増加に起因し得る。
いくつかの無線周波数(RF)アプリケーションにおいて、携帯送信ソリューションは、バック(Buck)スイッチング電力供給と組み合わされた電池電圧(例えば3.8V)電力増幅器(PA)を含み得る。かかる代表的なアプローチにおいて、最大送信電力は典型的に、例えば、ほぼ1.5ワットのピーク電力レベルをサポートするべくPA内にある13:1のインピーダンス変換ネットワークを要求し又は利用するのが典型的な3.8Vの電池電圧において達成される。
上記例において、低送信電力レベルでの効率改善は、電池電圧を下回る電圧にあるバック(Buck)電力供給によってサポートすることができる。多重帯域動作は、所望の周波数帯域に対応する所望のフィルタを選択するRFスイッチを使用して達成することができる。注目されるのは、バック電力供給、インピーダンス変換ネットワーク及びRFスイッチのいくつか又はすべてが、損失ひいては送信効率の低減に寄与し得ることである。
いくつかの無線システムは、システム効率の増加を与えるべくバック供給に実装された包絡線追跡(ET)機能を含み得る。しかしながら、包絡線追跡は、バックスイッチング供給のコストを増加させ、さらには、システムの特性付け及び較正プロセスを有意に複雑にし得る。
ここに記載されるのは、損失を有意に低減する一方で競争力のあるサイズ及び/又はコストのレベルを維持又は改善することができるシステム、回路、デバイス及び方法の例である。図5は、いくつかの実施形態において、図4のHV電力増幅システム100が、平均電力追跡(APT)モードで動作するべく構成できることを示す。図5の例において、高電圧APT電力増幅システム100は、一以上RF信号(RF_In)を増幅するべく構成された一以上のPAを有する電力増幅器アセンブリ104を含み得る。かかる増幅されたRF信号(複数可)は、一以上整合回路を有する整合コンポーネント106を介し、一以上のデュプレクサを有するデュプレクサアセンブリ108へと引き回すことができる。
デュプレクサ(複数可)により、送信(Tx)動作と受信(Rx)動作との複信を許容することができる。かかる複信動作のTx部分は、一以上の増幅されたRF信号(RF_Out)が、アンテナ(図示せず)を介した送信を目的としてデュプレクサアセンブリ108から出力されるように描かれる。図5の例において、Rx部分は図示しないが、アンテナから受信された信号は、デュプレクサアセンブリ108によって受信して、例えば低雑音増幅器(LNA)へと出力することができる。
デュプレクサを利用するTx動作及びRx動作の文脈において様々な例がここに記載され、かかるデュプレクサは、例えば周波数分割複信(FDD)機能を容易にすることができる。理解されることだが、いくつかの実施形態において、ここに記載される一以上の特徴を有するHV電力増幅システムはまた、例えば時間分割複信(TDD)構成を含む他の複信構成に実装することもできる。
図5の例において、HV供給システム102は、一以上のHV供給信号を電力増幅器アセンブリ104へと与えるように示される。かかるHV信号(複数可)がどのようにして対応PA(複数可)へと与えられるのかについての具体的な例が、ここに詳細に記載される。
いくつかの実施形態において、図5の高電圧APT電力増幅システム100は、APTモードで動作するが、包絡線追跡(ET)の実装によって得られる性能を満たし又は当該性能を超える一方でコスト及び/又は複雑性を維持又は低減することができるように構成される。いくつかの実施形態において、かかる高電圧APT電力増幅システムは、例えばガリウムヒ素(GaAs)ヘテロ接合バイポーラトランジスタ(HBT)PAのようないくつかのPAの高電圧能力を利用することができる。理解されることだが、本開示の一以上の特徴は、他のタイプのPAを使用して実装することもできる。例えば、LDMOS多重カスコード段、シリコンバイポーラデバイス及びGaN/HEMTデバイスを有するCMOSデバイスを利用する増幅システムもまた、高電圧領域における動作から利益を得ることができる。
PAの当該HV動作により、増幅システムから一以上の損失性のコンポーネントを排除すること及び/又は他の有利な利益(複数可)を実現することができる。例えば、PA出力整合ネットワーク(複数可)を排除することができる。他例において、PA供給効率を増加させることができる。さらなる他例において、いくつかのパッシブコンポーネントを除去することができる。上記に関連する例が、ここに詳細に説明される。
HV動作に関連付けられる上記特徴の一以上により、一以上のダイを小さな寸法で実装し、ひいては電力増幅システム設計の大きな柔軟性が許容される結果を得ることができる。例えば、電力増幅システムには、増加された数の比較的小さなPAを実装することができるので、帯域スイッチのような損失性のコンポーネントを排除することが許容される。かかる帯域スイッチの排除について、ここに詳細に記載される。
いくつかの実施形態において、図5の高電圧APT電力増幅システム100は、包絡線追跡の特徴付け及び/又は較正プロセスに関連付けられた複雑性を実質的に排除又は低減するように構成することができる。
説明目的のため理解されることだが、高電圧(HV)は、携帯無線デバイスにおいて利用される電池電圧よりも高い電圧値を含み得る。例えば、HVは、3.7V又は4.2Vよりも大きい。いくつかの状況において、HVは、電池電圧よりも高くかつ携帯無線デバイスが効率的に動作可能な電圧値を含み得る。いくつかの状況において、HVは、電池電圧よりも高くかつ所与タイプのPAに関連付けられた破壊電圧よりも低い電圧値を含み得る。GaAsHBTの代表的な文脈において、かかる破壊電圧は15V〜25Vの範囲にあり得る。したがって、GaAsHBTのPAに対するHVは、例えば3.7V〜25V、4.2V〜20V、5V〜15V、6V〜14V、7V〜13V、又は8V〜12Vの範囲にあり得る。
図6及び7は、いくつかの損失性のコンポーネントが、どのようにして高電圧APT電力増幅システム100において実質的に排除できるかを実証するべく、包絡線追跡(ET)電力増幅システム110(図6)と高電圧(HV)平均電力追跡(APT)電力増幅システム100(図7)との比較を示す。比較目的のため、各電力増幅システムは、3つの周波数帯域に対する増幅を与えるべく構成されることが仮定される。しかしながら、理解されることだが、これよりも多い又は少ない周波数帯域を使用することもできる。
図6の例において、ET電力増幅システム110は、3つの周波数帯域に対する増幅を与えることができる広帯域増幅経路130を有する電力増幅器アセンブリ114を含むように示される。増幅経路130は、共通入力ノード126を介して入力RF信号を受信することができる。かかるRF信号は、例えばDCブロックキャパシタンス128を介して一以上の増幅段へと引き回すことができる。増幅段は例えば、ドライバ段132及び出力段134を含み得る。いくつかの実施形態において、増幅段132、134は例えば、HBT又はCMOS増幅トランジスタを含み得る。
図6の例において、出力段134のコレクタには、チョークインダクタンス124を介して包絡線追跡(ET)変調器122からの供給電圧VCCが与えられる。ET変調器122は、ET変調システム112の一部として描かれている。かかるET変調器が与える供給電圧VCCは典型的に、動的な態様で決定され、例えば約1V〜3Vの範囲にある値を有し得る。ET変調器122は、かかる動的VCC電圧を、電池電圧Vbattに基づいて発生させるように示される。
増幅経路130が上記態様で動作する場合、そのインピーダンスZは比較的低い(例えば約3〜5Ω)。それゆえ、インピーダンス変換を、下流側コンポーネントに関連付けられたインピーダンスに整合するように行う必要がある。図6の例において、増幅経路130の出力を受ける帯域スイッチ138(帯域スイッチシステム118の一部として描かれる)は典型的に、50Ω負荷として構成される。したがって、増幅経路130によって代表されるインピーダンス(Z)が約4Ωであると仮定すれば、約13:1(50:4)のインピーダンス変換を実装する必要がある。図6の例において、かかるインピーダンス変換は、負荷変換システム116の一部として描かれる出力整合ネットワーク(OMN)136によって実装されるように示される。
図6の例において、帯域スイッチ138は、増幅経路130の出力からの(OMN136を介した)単一入力と、3つの代表的な周波数帯域に対応する3つの出力とを有するように描かれる。3つのデュプレクサ142a〜142cが、かかる3つの周波数帯域用に設けられるように示される。
3つのデュプレクサ142a〜142cのそれぞれが、TX及びRXフィルタ(例えば帯域通過フィルタ)を含むように示される。各TXフィルタは、対応する増幅済みかつスイッチ引き回し済みの送信用RF信号を受信するべく、帯域スイッチ138に結合されるように示される。かかるRF信号は、フィルタリングされ、かつ、アンテナポート(ANT)(144a、144b又は144c)へと引き回されるように示される。各RXフィルタは、対応アンテナポート(ANT)(144a、144b又は144c)からのRX信号を受信するように示される。かかるRX信号は、フィルタリングされ、かつ、さらなる処理用のRXコンポーネント(例えばLNA)へと引き回されるように示される。
典型的に望まれるのは、所与のデュプレクサと上流側(TXの場合)又は下流側(RXの場合)にあるコンポーネントとのインピーダンス整合を与えることである。図6の例において、帯域スイッチ138は、デュプレクサのTXフィルタのための当該上流側コンポーネントである。したがって、整合回路140a〜140c(例えばπ型ネットワーク120の一部として描かれる)が、帯域スイッチ138の出力と対応デュプレクサ142a〜142cとの間に実装されるように示される。いくつかの実施形態において、かかる整合回路140a〜140cのそれぞれは、例えばπ型整合回路として実装することができる。
表1は、図6のET電力増幅システム110の様々なコンポーネントに対する挿入損失及び効率の代表的な値を列挙する。理解されることだが、列挙される様々な値は近似値である。
Figure 2018042264
表1からわかるのは、図6のET電力増幅システム110が、有意な数の損失要因を含むということである。システム110の各コンポーネントがその上限効率で動作すると仮定すれば、ET電力増幅システム110の総合効率は、ほぼ31%(0.83×0.75×0.89×0.93×0.93×0.63)となる。
図7の例において、高電圧APT電力増幅システム100は、図6の代表的なET電力増幅システム110と同じ3つの周波数帯域のための増幅を与えるべく構成されるように描かれる。電力増幅器アセンブリ104において、3つの別個の増幅経路が実装される結果、各増幅経路は、その対応周波数帯域のための増幅を与える。例えば、第1増幅経路は、DCブロックキャパシタンス164aを介して入力ノード162aからのRF信号を受信するPA168aを含むように示される。PA168aからの増幅されたRF信号は、キャパシタンス170aを介して下流側コンポーネントへと引き回されるように示される。同様に、第2増幅経路は、DCブロックキャパシタンス164bを介して入力ノード162bからのRF信号を受信するPA168bを含むように示される。PA168bからの増幅されたRF信号は、キャパシタンス170bを介して下流側コンポーネントへと引き回されるように示される。同様に、第3増幅経路は、DCブロックキャパシタンス164cを介して入力ノード162cからのRF信号を受信するPA168cを含むように示される。PA168cからの増幅されたRF信号は、キャパシタンス170cを介して下流側コンポーネントへと引き回されるように示される。
いくつかの実施形態において、PA168a〜168cのいくつか又はすべては、例えばヘテロ接合バイポーラトランジスタPAを含み得る。理解されることだが、本開示の一以上の特徴は、他のタイプのPAについて実装することもできる。例えば、(例えばHV動作により及び/又は他の動作パラメータ(複数可)を介して)下流側コンポーネントに整合し又は下流側コンポーネントに近いインピーダンスをもたらすべく動作可能なPAを、ここに記載される利益の一以上をもたらすべく利用することができる。
図7の例において、各PA(168a、168b又は168c)は、チョークインダクタンス(166a、166b又は166c)を介してブーストDC/DC変換器160からの供給電圧VCCが与えられるように示される。ブーストDC/DC変換器160は、HVシステム102の一部として描かれる。ブーストDC/DC変換器160は、ここに記載されるHV範囲又は値を含むような範囲のVCC電圧値(例えば約1V〜10V)を供給するべく構成することができる。ブーストDC/DC変換器160は、かかる高VCC電圧を電池電圧Vbattに基づいて発生させるように示される。
PA168a〜168cが高VCC電圧(例えば約10V)による上記態様で動作する場合、各PAのインピーダンスZは比較的高い(例えば約40Ω〜50Ω)。それゆえ、インピーダンス変換は、下流側コンポーネントに関連付けられたインピーダンスに整合させる必要がない。図7の例において、対応PA(168a、168b又は168c)の出力を受けるデュプレクサ174a〜174c(デュプレクサアセンブリ108の一部として描かれる)のそれぞれは典型的に、50Ω負荷として構成される。したがって、PA(168a、168b又は168c)によって代表されるインピーダンス(Z)が約50Ωであると仮定すれば、インピーダンス変換(図6の負荷変換システム116のような)は不要となる。
典型的に望まれるのは、所与のデュプレクサと上流側(TXの場合)又は下流側(RXの場合)にあるコンポーネントとのインピーダンス整合を与えることである。図7の例において、PA(168a、168b又は168c)が、デュプレクサ(174a、174b又は174c)のTXフィルタ用の当該上流側コンポーネントとなる。したがって、整合回路172a〜172c(例えばπ型ネットワーク106の一部として描かれる)は、PA168a〜168cの対応出力と対応デュプレクサ174a〜174cとの間に実装することができる。いくつかの実施形態において、かかる整合回路172a〜172cのそれぞれは、例えばπ型整合回路として実装することができる。
図7の例において、PA168a〜168cのHV動作により、PA168a〜168cのそれぞれが、対応デュプレクサのインピーダンスに類似するインピーダンスZを代表する結果となり得る。かかる構成においてはインピーダンス変換が不要なので、インピーダンス変換器(図6の116)が不要となる。
さらに注目されるのは、高インピーダンスでのPA168a〜168cの動作が、PA168a〜168c内のかなり低い電流レベルをもたらし得ることである。かかる低電流レベルにより、PA168a〜168cを、有意に低減されたダイサイズ(複数可)で実装することができる。
いくつかの実施形態において、上記特徴(インピーダンス変換器の排除及びPAダイサイズの低減)のいずれか又は双方が、電力増幅アーキテクチャ設計に付加な柔軟性を与え得る。例えば、上記により得られる空間及び/又はコストの節約により、各周波数帯域に対して比較的小さなPA(図7の168a、168b又は168c)の実装が可能となるので、帯域スイッチシステム(例えば図6の118)の必要性がなくなる。したがって、図6のET電力増幅システム110と比較した場合の図7の高電圧APT電力増幅システム100に関連付けられたサイズ、コスト及び/又は複雑性を維持し又は低減する一方、電力増幅システム100の全体損失を有意に低減することができる。
表2は、図7の高電圧APT電力増幅システム100の様々なコンポーネントに対する挿入損失及び効率の代表的な値を列挙する。理解されることだが、列挙される様々な値は近似値である。
Figure 2018042264
表2からわかるのは、図7の高電圧APT電力増幅システム100が、一定数の損失要因を含むことである。しかしながら、図6及び表1のET電力増幅システム110と比較した場合、2つの有意な損失要因(負荷変換器(116)及び帯域スイッチ(118))が、図7の高電圧APT電力増幅システム100においては不在である。かかる損失要因の排除は、図7及び表2の例での送信経路において約1dB除去するように示される。
表2をさらに参照すると、システム100の各コンポーネントが、その上限効率(表1の例でのように)で動作すると仮定すれば、高電圧APT電力増幅システム100の総合効率は、ほぼ45%(0.93×0.82×0.93×0.63)となる。各コンポーネントがその下限効率で動作すると仮定したとしても、高電圧APT電力増幅システム100の総合効率は、ほぼ44%(0.93×0.80×0.93×0.63)となる。わかることだが、いずれの場合も、図7の高電圧APT電力増幅システム100の総合効率は、図6のET電力増幅システム110の総合効率(ほぼ31%)よりも有意に高い。
図6及び7を参照すると、一定数の特徴に注目することができる。注目されるのは、DC/DCブースト変換器(図7の160)の使用により、PAシステムにおいて利用され得る一以上の他の電力変換器を排除できることである。例えば、HV供給電圧(例えば10VDC)をもたらすべく動作する場合、1ワット(10V)/(2×50Ω))のRF電力を、高調波終端なしで生成することができる。
さらに注目されるのは、50Ω負荷として駆動されるPA(例えば図7)により、3Ω負荷として駆動されるPA(例えば図6)よりもオーム当たりの損失が有意に低くなることである。例えば、PAが3Ωで駆動されると0.1Ωの等価直列抵抗(ESR)は約0.14dBの挿入損失を有する一方、50Ωで駆動されるPAに対しては、0.1ΩのESRは約0.008dBの挿入損失を有する。したがって、3ΩPAが約4.2dB(0.14dB×30)の総合挿入損失を有し得る一方、50ΩPAは約4.0dB(0.008dB×500)の総合挿入損失を有し得る。これは、3ΩPAの総合挿入損失よりもかなり小さい。
さらに注目されるのは、50ΩPAは、3ΩPAよりも有意に高い利得を有し得ることである。例えば、利得はG×RLLとして近似することができるが、双方の場合にGが類似すれば、50Ωという高い値は高利得をもたらす。
図8は、図7の高電圧APT電力増幅システム100のさらに具体的な例となり得る高電圧APT電力増幅システム100を示す。図8の例において、電力増幅器アセンブリは、低帯域(LB)電力増幅器アセンブリ190、中間帯域(MB)電力増幅器アセンブリ200及び高帯域(HB)電力増幅器アセンブリ210を含み得る。かかるアセンブリにおけるPAのいくつか又はすべてが、ここに記載される高電圧で動作可能である。電力増幅器アセンブリはまた、高電圧では動作しない他のPAも含み得る。例えば、2G電力増幅器アセンブリ220及び電力増幅器アセンブリ230、232は、低電圧で動作し得る。
図8の例において、上記高電圧(複数可)は、例えばフロントエンド電力管理集積回路(FE-PMIC)160からLB、MB及びHB電力増幅器アセンブリ190、200、210へと与えることができる。いくつかの実施形態において、かかるFE-PMICは、ここに記載されるDC/DCブースト変換器(例えば図7の160)を含み得る。
FE-PMIC160は、電池電圧Vbattを受け、LB、MB及びHB電力増幅器アセンブリ190、200、210のための供給電圧(VCC)として高電圧出力182を発生させる。いくつかの実施形態において、かかる高電圧VCCは、ほぼ250mAの最大電流で、ほぼ10Vの値を有し得る。理解されることだが、かかる高電圧VCC及び/又は最大電流は他の値も利用することができる。
FE-PMIC160はまた、他の出力(複数可)も発生させることもできる。例えば、出力184は、LB、MB及びHB電力増幅器アセンブリ190、200、210に関連付けられたPAのための並びに2G電力増幅器アセンブリ220のためのバイアス信号を与えることができる。いくつかの実施形態において、かかるバイアス信号は、ほぼ50mAの最大電流で、ほぼ4Vの値を有し得る。理解されることだが、かかるバイアス信号及び/又は最大電流の他の値も利用することができる。
図8の例において、FE-PMIC160は、図7を参照してここに記載されるHVシステム102の一部となり得る。FE-PMIC160は、一以上のインタフェイスノード180を含み得る。かかるインタフェイスノードは、例えばFE-PMIC160の制御を容易とするべく利用することができる。
図8の例において、2G電力増幅器アセンブリ220のための供給電圧VCCは(例えばライン186)、電池電圧Vbattから実質的に直接与えられる。かかるVbattはまた、LB、MB及びHB電力増幅器アセンブリ190、200、210に関連付けられた様々なスイッチのための動作電圧を与えるように示される。いくつかの実施形態において、かかるVbattは、約2.5V〜4.5Vの値を有し得る。理解されることだが、かかるVbattは他の値も利用することができる。
図8の例において、電力増幅器アセンブリ230、232のための供給電圧VCCは、DC/DCスイッチングレギュレータ234から与えることができる。
図8を参照すると、LB電力増幅器アセンブリ190は、8つの代表的な周波数帯域B27、B28A、B28B、B20、B8、B26、B17及びB13に対して別個のPAを含むように示される。各PAは、その増幅したRF信号を対応デュプレクサへと与えるように示される。ここに記載されるように、かかる8つのPAは、それらの対応デュプレクサへと、当該PA間の帯域選択スイッチなしで結合することができる。
LB電力増幅器アセンブリ190はさらに、入力スイッチ192及び出力スイッチ196を含み及び/又は入力スイッチ192及び出力スイッチ196に結合するように示される。入力スイッチ192は、2つの入力ノード194a、194bと、8つのPAに対応する8つの出力ノードとを含むように示される。入力スイッチ192において、2つの入力ノード194a、194bは、共通ノードへと切り替え可能に示される。この共通ノードは、8つの出力ノードの一つへと切り替えられる他の共通ノードに結合される。かかる共通ノード間の結合部は、増幅素子を含み得る。
出力スイッチ196は、8つのデュプレクサに対応する8つの入力ノードと、2つの出力ノード198a、198bとを含むように示される。出力スイッチ196はさらに、2G電力増幅器アセンブリ220の出力及び電力増幅器アセンブリ230の出力を受ける入力を含み得る。
理解されることだが、LB電力増幅器アセンブリ190は、周波数帯域の異なる組み合わせを含み得る。
図8を参照すると、MB電力増幅器アセンブリ200は、4つの代表的な周波数帯域B1、B25、B3及びB4のための別個のPAを含むように示される。各PAは、その増幅したRF信号を対応デュプレクサへと与えるように示される。ここに記載されるように、かかる4つのPAは、それらの対応デュプレクサへと、当該PA間の帯域選択スイッチなしで結合することができる。
MB電力増幅器アセンブリ200はさらに、入力スイッチ202及び出力スイッチ206を含み及び/又は入力スイッチ202及び出力スイッチ206に結合されるように示される。入力スイッチ202は、入力ノード204と、4つのPAに対応する4つの出力ノードとを含むように示される。入力スイッチ202において、入力ノード204は、4つの出力ノードの一つへと切り替えられる共通ノードに結合されるように示される。かかるノード間の結合部は増幅素子を含み得る。
出力スイッチ206は、4つのデュプレクサに対応する4つの入力ノードと、出力ノード208とを含むように示される。出力スイッチ206はさらに、2G電力増幅器アセンブリ220の出力を受ける入力を含み得る。
理解されることだが、MB電力増幅器アセンブリ200は、周波数帯域の異なる組み合わせを含み得る。
図8を参照すると、HB電力増幅器アセンブリ210が、2つの代表的な周波数帯域B7及びB20に対して別個のPAを含むように示される。各PAは、その増幅したRF信号を対応デュプレクサへと与えるように示される。ここに記載されるように、かかる2つのPAは、それらの対応デュプレクサへと、当該PA間の帯域選択スイッチなしで結合することができる。
HB電力増幅器アセンブリ210はさらに、入力スイッチ212及び出力スイッチ216を含み及び/又は入力スイッチ212及び出力スイッチ216に結合されるように示される。入力スイッチ212は、一の入力ノード214と、2つのPAに対応する2つの出力ノードとを含むように示される。入力スイッチ212において、入力ノード214は、2つの出力ノードの一方へと切り替えられる共通ノードに結合されるように示される。かかるノード間の結合部は増幅素子を含み得る。
出力スイッチ216は、2つのデュプレクサに対応する2つの入力ノードと、一の出力ノード218とを含むように示される。出力スイッチ216はさらに、電力増幅器アセンブリ232の出力を受ける入力を含み得る。
理解されることだが、HB電力増幅器アセンブリ210は、周波数帯域の異なる組み合わせを含み得る。
図8の例において、LB、MB及びHB電力増幅器アセンブリ190、200、210のPAは、一以上のダイとして実装することができる。例えば、かかるPAは、単一のHBT(例えばGaAs)ダイに、LB、MB及びHB電力増幅器アセンブリ190、200、210に対応する別個のHBTダイに、又はこれらの何らかの組み合わせで実装することができる。
図8の例において、各入力スイッチ192、202、212は、ここに記載される切り替え機能を与えるべく、かつ、ここに記載されるバイアス機能を容易にするべく構成することができる。いくつかの実施形態において、スイッチ192、196、202、206、212、216は、例えば単一のシリコン・オン・インシュレータ(SOI)ダイに、様々な機能群に対応する別個のダイに、又はこれらの何らかの組み合わせで実装することができる。
図9は、78%バック(Buck)ET、97%バックAPT及び87%ブースト(boost)APT構成で動作する電力増幅器に対する代表的な効率プロットを出力電力の関数として示す。注目されるのは、代表的な構成の3つすべてが、約15dBmの出力電力までは、類似する良好な効率曲線をもたらすことである。かかる出力レベルを超えると、87%ブーストAPT構成が、97%バックAPT及び78%バックET構成よりも有意に高い効率値を有することがわかる。かかるブーストAPT構成は、図7及び8の代表的な高電圧APT電力増幅システムのいずれか又は双方に実装することができる。
図10は、ここに記載される一以上の特徴を有する電力増幅システム(例えば図8の高電圧APT電力増幅システム100)が、公称ケースに類似するコレクタ効率曲線及び電力付加効率(PAE)曲線を有し得ることを示す。例えば、図8の高電圧APT電力増幅システムに関連付けられたコレクタ効率プロット(出力電力の関数として)は、対応する公称コレクタ効率のものと実質的に同じ曲線を有するように示される。同様に、図8の高電圧APT電力増幅システムのPAEプロット(出力電力の関数として)は、対応する公称PAEのものと実質的に同じ曲線を有するように示される。
図11は、ここに記載される一以上の特徴を有する電力増幅システム(例えば図8の高電圧APT電力増幅システム100)が、公称ケースに類似する線形性性能(例えば隣接チャネル漏洩比(ACLR))を有し得ることを示す。例えば、図8の高電圧APT電力増幅システムに関連付けられたACLRプロット(出力電力の関数として)は、高出力電力値(例えば29dBmより高い)における対応公称ACLRのものと実質的に同じ曲線を有するように示される。
図12は、電力増幅器負荷電流の代表的なプロットを、「R99」及び「50RB LTE」として表示される電力増幅器構成に対する負荷電圧の関数として示す。電力増幅器構成に対して40mAという比較的低い電流条件が所望されていると仮定する。例えば、かかる40mAという電流は、固定バイアス電流及び自己消費電流を供給電流(図12の負荷電流)から差し引いたものに由来する。図12における50RB LTEの例に対し、ほぼ104mAの負荷電流が、電力増幅器構成のためのかかる低電流(40mA)条件をもたらし得る。かかる104mAという負荷電流は、点250によって表示されるほぼ9.5Vの負荷電圧(VCC)に対応する。したがって、ここに記載される高電圧電力増幅器動作構成が、電力増幅器のための比較的低い電流条件をもたらし得ることがわかる。
有利な特徴の例
図13〜16は、ここに記載される一以上の特徴を有する高電圧APT電力増幅システムにおいて得ることができる有利な利益の例を示す。ここに記載されるように、図13は、いくつかの実施形態において、電力増幅システム100が、無線周波数(RF)信号(RF_in)を入力ノード260において受信するべく構成された電力増幅器(PA)を含み得ることを示す。かかるPAには、Vccという供給電圧が与えられ、かかる供給電圧は、ここに記載される高電圧(HV)値を含み得る。増幅されたRF信号はRF_outとして出力され、増幅されたRF信号をコンディショニングするべく構成されたフィルタへと引き回され、及び、フィルタリングされた信号を出力ノード262にもたらし得る。PAは、フィルタのほぼ特性負荷インピーダンスで駆動されるように(例えばHVモードで)動作し得る。フィルタの当該特性負荷インピーダンスは例えば、ほぼ50オームであり得る。
いくつかの実施形態において、上記構成は、一以上の有利な特徴をもたらすべく平均電力追跡(APT)PAシステムに実装することができる。例えば、複雑でない供給構成、低減された損失、及び改善された効率を実現することができる。他例において、上記PA、上記電力増幅システム100を有するダイ、及び/又は上記電力増幅システム100を有するモジュールは、サイズが低減されたデバイスとして実装することができる。いくつかの実施形態において、かかるサイズが低減されたデバイスは、少なくとも部分的には、電力増幅システムにおけるPAの出力整合ネットワーク(OMN)のいくつか又はすべてを排除することによって実現することができる。
図14は、PAに関連付けられた出力整合ネットワーク(OMN)(ここではインピーダンス変換回路とも称する)が当該PA及びフィルタ間で実質的に排除された電力増幅システム100の一例を示す。図14の例において、PA、その供給電圧Vcc及びフィルタは、図14の例に類似するように構成及び動作可能である。かかるPA構成は、ここに記載されるHV動作モードを含み得る。
図14の例において、電力増幅システム100のいくつか又はすべてを、PAダイ又はPAモジュールのようなデバイス270に実装することができる。上記OMNの排除により、デバイス270に関連付けられた寸法(例えばd1×d2)を低減することができる。さらに、損失低減及び効率改善のような他の有利な特徴も、OMNの排除によって実現することができる。
図15は、複数の帯域用のRF信号を処理するべく構成された電力増幅システム100の一例を示す。かかる帯域は例えば、帯域A及び帯域Bであり得る。理解されることだが、電力増幅システム100に対しては他の数の帯域を実装することもできる。
図15の例において、各帯域は、別個の増幅経路に関連付けられるように示される。各増幅経路において、そのPA、供給電圧Vcc及びフィルタは、図14の例に類似するように構成及び動作可能である。かかるPA構成は、ここに記載されるHV動作モードを含み得る。
図15の例において、自身の専用増幅経路を有する各帯域により、帯域選択スイッチを排除することができる。したがって、電力増幅システム100のいくつか又はすべてを有するデバイス270(PAダイ又はPAモジュールのような)は、低減された寸法(例えばd3×d4)を有し得る。さらに、損失低減及び効率改善のような他の有利な特徴も、帯域選択スイッチの排除によって実現することができる。
図16は、複数の帯域用のRF信号を処理するべく図15の例に類似するように構成された電力増幅システム100の一例を示す。図16の例において、複数の増幅経路のいくつか又はすべてのそれぞれには、図14の例に類似するように、出力整合ネットワーク(OMN)(ここではインピーダンス変換回路とも称する)が実質的に存在しないこととし得る。したがって、電力増幅システム100のいくつか又はすべてを有するデバイス270(PAダイ又はPAモジュールのような)は、低減された寸法(例えばd5×d6)を有し得る。さらに、損失低減及び効率改善のような他の有利な特徴も、帯域選択スイッチ及びOMNのいくつか又はすべての排除によって実現することができる。
図15及び16の例において、その対応電力増幅システム100が実装されるデバイス270は例えば、半導体基板を有する電力増幅器ダイであり得る。複数のPAは、図示のように半導体基板に並列に実装することができる。各PAは、個々の狭周波数帯域信号経路を駆動するべく構成することができる。このようにして、各PAは、複数のPAに関連付けられた一を超える周波数帯域で駆動可能な広帯域PAよりも小さなサイズにすることができる。ここに記載されるように、かかる小型化された単一帯域PAは、一定数の望ましい特徴をもたらし得る。
製品の例
図17は、いくつかの実施形態において、ここに記載される一以上の特徴を有する高電圧APT電力増幅システムのいくつか又はすべてを、一のモジュールに実装することができる。かかるモジュールは例えば、フロントエンドモジュール(FEM)であり得る。図17の例において、モジュール300はパッケージング基板302を含み得る。かかるパッケージング基板には一定数のコンポーネントが搭載され得る。例えば、FE-PMICコンポーネント102、電力増幅器アセンブリ104、整合コンポーネント106及びデュプレクサアセンブリ108を、パッケージング基板302上に搭載し及び/若しくは実装し並びに/又はパッケージング基板302の中に搭載し及び/若しくは実装することができる。一定数のSMTデバイス304及びアンテナスイッチモジュール(ASM)306のような他のコンポーネントもパッケージング基板302に搭載することができる。様々なコンポーネントのすべてがパッケージング基板302上にレイアウトされるように描かれるが、いくつかのコンポーネント(複数可)は、他のコンポーネント(複数可)の上又は下に実装できることが理解される。
いくつかの実装において、ここに記載される一以上の特徴を有する電力増幅システムは、無線デバイスのようなRFデバイスに含まれ得る。かかる電力増幅システムは、一以上の回路として、一以上のダイとして、一以上のパッケージモジュールとして、又はこれらの任意の組み合わせで無線デバイスに実装することができる。いくつかの実施形態において、かかる無線デバイスは、例えば、セルラーフォン、スマートフォン、電話機能あり又はなしのハンドヘルド無線デバイス、無線タブレット等を含み得る。
図18は、ここに記載される一以上の有利な特徴を有する代表的な無線デバイス400を描く。ここに記載される一以上の特徴を有するモジュールの文脈において、かかるモジュールは一般に、破線の囲み300によって描くこと、及び、例えばフロントエンドモジュール(FEM)として実装することができる。
図18を参照すると、電力増幅器(PA)420は、増幅及び送信対象のRF信号を発生させるべく及び受信した信号を処理するべく構成及び動作が可能な送受信器410から、対応RF信号を受信することができる。送受信器410は、ユーザに適したデータ及び/又は音声信号と送受信器410に適したRF信号との間の変換を与えるべく構成されたベース帯域サブシステム408と相互作用をするように示される。送受信器410はまた、無線デバイス400の動作のために電力を管理するべく構成された電力管理コンポーネント406と通信することもできる。かかる電力管理はまた、ベース帯域サブシステム408及びモジュール300の動作も制御することもできる。
ベース帯域サブシステム408は、ユーザに与えられ及びユーザから受けた音声及び/又はデータの様々な入力及び出力を容易にするべく、ユーザインタフェイス402に接続されるように示される。ベース帯域サブシステム408はまた、無線デバイスの動作を容易にし及び/又はユーザのための情報記憶を与えるデータ及び/又は命令を記憶するべく構成されたメモリ404に接続することもできる。
代表的な無線デバイス400において、PA420の出力は、(対応整合回路422を介して)対応デュプレクサ424に整合され及び引き回されるように示される。いくつかの実施形態において、整合回路422は、図7を参照して記載される代表的な整合回路172a〜172cに類似する。図7を参照してここに記載されるように、PA420がHV供給によるHVモードで動作する場合、PA420の出力は、その対応デュプレクサ424へと、インピーダンス変換(例えば図6の負荷変換器116)なしで引き回すことができる。かかる増幅されかつフィルタリングされた信号は、送信を目的としてアンテナスイッチ414を介してアンテナ416へと引き回すことができる。いくつかの実施形態において、デュプレクサ424により、共通アンテナ(例えば416)を使用して送受信動作を同時に行うことができる。図18において、受信された信号は、デュプレクサ424を介して、例えば一以上の低雑音増幅器(LNA)を含み得る「Rx」経路へと引き回されるように示される。
図18の例において、PA420に対する上記HV供給は、HVコンポーネント102によって与えることができる。かかるHVコンポーネントは例えば、ここに記載されるブーストDC/DC変換器を含み得る。
一定数の他の無線デバイス構成も、ここに記載される一以上の特徴を利用することができる。例えば、無線デバイスは、多重帯域デバイスである必要はない。他例において、無線デバイスは、ダイバーシティアンテナのような付加アンテナ、並びに、Wi-Fi(登録商標)、Bluetooth(登録商標)及びGPSのような付加的な接続機能を含み得る。
ここに記載されるように、本開示の一以上の特徴は、図18の無線デバイスを含むシステムのようなシステムに実装される場合に一定数の利点を与え得る。例えば、出力損失の排除又は低減によって、有意な電流ドレイン低減を達成することができる。他例において、電力増幅システム及び/又は無線デバイスに対して低い材料費を実現することができる。さらなる他例において、例えば対応周波数帯域に対する別個のPAによって、各サポート対象周波数帯域の独立した最適化又は所望の構成を達成することができる。さらなる他例において、最大の又は増加した出力電力の最適化又は所望の構成を、例えばブースト供給電圧システムによって達成することができる。さらなる他例において、一定数の異なる電池技術を利用することができる。最大の又は増加した電力は、必ずしも電池電圧に限られるわけではないからである。
本開示の一以上の特徴には、ここに記載される様々なセルラー周波数帯域を実装することができる。かかる帯域の例が表3に列挙される。理解されることだが、当該帯域の少なくともいくつかは、サブ帯域に分割することができる。またも理解されることだが、本開示の一以上の特徴は、表3の例のような指示を有しない周波数範囲も実装することができる。
Figure 2018042264
ここの記載において、様々な形態のインピーダンスが言及される。例えば、PAは、フィルタのような下流側コンポーネントの負荷インピーダンスで駆動するとして言及される場合がある。他例において、PAは、インピーダンス値を有するとして言及される場合がある。説明目的のため理解されることだが、かかるインピーダンス関連のPAの言及は、互換可能に使用することができる。さらに、PAのインピーダンスは、PAの出力側に見られるように、出力インピーダンスを含み得る。したがって、下流側コンポーネントの負荷インピーダンスで駆動するべく構成される当該PAは、下流側コンポーネントの負荷インピーダンスとほぼ同じ出力インピーダンスを有するPAを有し得る。
本明細書及び特許請求の範囲全体にわたり、文脈上そうでないことが明らかでない限り、「含む」等の用語は、排他的又は網羅的な意味とは反対の包括的意味に、すなわち「〜を含むがこれらに限られない」との意味に解釈すべきである。ここで一般に使用される用語「結合」は、直接接続されるか又は一以上の中間要素を介して接続されるかいずれかとなり得る2以上の要素を言及する。加えて、用語「ここ」、「上」、「下」及び同様の趣旨の用語は、本願において使用される場合、本願全体を言及し、本願の任意の特定部分を言及するわけではない。文脈が許容する場合、単数又は複数の上述の詳細な説明における用語はそれぞれ、複数又は単数をも含み得る。2以上の項目のリストを参照する用語「又は」及び「若しくは」について、当該用語は以下の解釈のすべてをカバーする。すなわち、当該リストの任意の項目、当該リストのすべての項目、及び当該リストの項目の任意の組み合わせである。
本発明の実施形態の上記詳細な説明は、排他的であることすなわち本発明を上記開示の正確な形態に制限することを意図しない。本発明の及びその例の特定の実施形態が例示を目的として上述されたが、当業者が認識するように、本発明の範囲において様々な均等の修正も可能である。例えば、プロセス又はブロックが所与の順序で提示されるが、代替実施形態は、異なる順序でステップを有するルーチンを行うこと又はブロックを有するシステムを用いることができ、いくつかのプロセス又はブロックは削除、移動、追加、細分化、結合、及び/又は修正することができる。これらのプロセス又はブロックはそれぞれが、様々な異なる態様で実装することができる。また、プロセス又はブロックが直列的に行われるように示されることがあるが、これらのプロセス又はブロックは、その代わりに、並列して行い又は異なる時に行うこともできる。
ここに与えられた本発明の教示は、必ずしも上述のシステムに限られることがなく、他のシステムにも適用することができる。上述の様々な実施形態要素及び行為は、さらなる実施形態を与えるべく組み合わせることができる。
本発明のいくつかの実施形態が記載されたが、これらの実施形態は、例のみとして提示されており、本開示の範囲を制限することを意図しない。実際、ここに記載の新規な方法及びシステムは、様々な他の形態で具体化することができる。さらに、ここに記載の方法及びシステムの形態における様々な省略、置換及び変更が、本開示の要旨から逸脱することなくなし得る。添付の特許請求の範囲及びその均等物が、本開示の範囲及び要旨に収まるかかる形態又は修正をカバーすることが意図される。

Claims (33)

  1. 電力増幅システムであって、
    無線周波数(RF)信号を受信して増幅するべく構成された電力増幅器(PA)と、
    インピーダンス変換回路が実質的に存在しない出力経路を介して前記PAに結合された出力フィルタと
    を含む電力増幅システム。
  2. 前記PAはさらに、前記出力フィルタのほぼ特性負荷インピーダンスで駆動するべく構成される請求項1の電力増幅システム。
  3. 前記PAが前記出力フィルタのほぼ特性負荷インピーダンスで駆動するべく構成されることは、前記PAが高電圧(HV)供給を使用して動作することによって実現される請求項2の電力増幅システム。
  4. 前記出力経路にインピーダンス変換回路が実質的に存在しないことは、前記PA及び前記出力フィルタ間において少なくとも0.5dBだけの損失低減をもたらす請求項3の電力増幅システム。
  5. 前記PAは、ほぼ40オームよりも大きいインピーダンスを有する請求項3の電力増幅システム。
  6. 前記PAのインピーダンスは、ほぼ50オームの値を有する請求項5の電力増幅システム。
  7. 前記PAのインピーダンスは、前記PAにおいて低減された電流ドレインをもたらす請求項5の電力増幅システム。
  8. 前記PAにおいて低減された電流ドレインにより、前記PAを、低インピーダンスの他のPAよりも小さな寸法にすることができる請求項7の電力増幅システム。
  9. 前記PAに高電圧(HV)供給を与えるべく構成された供給システムをさらに含む請求項3の電力増幅システム。
  10. 前記供給システムは、電池電圧Vbattに基づいてHV供給を発生させるべく構成されたブーストDC/DC変換器を含む請求項9の電力増幅システム。
  11. 前記PAはヘテロ接合バイポーラトランジスタ(HBT)を含む請求項9の電力増幅システム。
  12. 前記HBTはガリウムヒ素(GaAs)デバイスである請求項11の電力増幅システム。
  13. 前記HV供給は、VCCとして前記HBTのコレクタへと与えられる請求項11の電力増幅システム。
  14. 前記出力フィルタは、対応送信(Tx)周波数帯域で動作するべく構成されたTxフィルタである請求項3の電力増幅システム。
  15. 前記Txフィルタは、前記Tx周波数帯域及び対応受信(Rx)周波数帯域で動作するべく構成されたデュプレクサの一部である請求項14の電力増幅システム。
  16. 一以上の付加PAをさらに含み、
    前記一以上の付加PAのそれぞれは、HV供給を使用して動作して対応RF信号を増幅するべく構成される請求項3の電力増幅システム。
  17. インピーダンス変換回路が実質的に存在しない出力経路を介して前記一以上の付加PAのそれぞれに結合された出力フィルタをさらに含む請求項16の電力増幅システム。
  18. 前記一以上の付加PAのそれぞれはさらに、対応出力フィルタのほぼ特性負荷インピーダンスで駆動するべく構成される請求項17の電力増幅システム。
  19. 前記システムには前記M PAとその対応出力フィルタとの間において帯域選択スイッチが実質的に存在しない請求項18の電力増幅システム。
  20. 前記システムに帯域選択スイッチが実質的に存在しないことは、所与のPAと対応出力フィルタとの間において少なくとも0.3dBだけの損失低減をもたらす請求項19の電力増幅システム。
  21. 前記電力増幅システムは、平均電力追跡(APT)システムとして動作するべく構成される請求項19の電力増幅システム。
  22. 前記APTシステムは、類似帯域の取り扱い能力を有するが前記PAは低電圧で動作する他の電力増幅器システムよりも低い損失を有する請求項21の電力増幅システム。
  23. 前記他の電力増幅器システムは包絡線追跡(ET)システムである請求項22の電力増幅システム。
  24. 前記APTシステムは、前記ETシステムの全体効率よりも高い全体効率を有する請求項23の電力増幅システム。
  25. 無線周波数(RF)モジュールであって、
    複数のコンポーネントを受容するべく構成されたパッケージング基板と、
    前記パッケージング基板に実装された電力増幅システムと
    を含み、
    前記電力増幅システムは複数の電力増幅器(PA)を含み、
    各PAは、無線周波数(RF)信号を受信して増幅するべく構成され、
    前記電力増幅システムはさらに、インピーダンス変換回路が実質的に存在しない出力経路を介して各PAに結合された出力フィルタを含むRFモジュール。
  26. 各PAは高電圧(HV)供給モードで動作するべく構成される請求項25のRFモジュール。
  27. 各フィルタはさらに、対応出力フィルタのほぼ特性負荷インピーダンスで駆動するべく構成される請求項26のRFモジュール。
  28. 前記RFモジュールには、前記複数のPAとそれらの対応出力フィルタとの間に帯域選択スイッチが実質的に存在しない請求項27のRFモジュール。
  29. 前記RFモジュールはフロントエンドモジュール(FEM)である請求項28のRFモジュール。
  30. 無線デバイスであって、
    無線周波数(RF)信号を発生させるべく構成された送受信器と、
    前記送受信器と通信するフロントエンドモジュール(FEM)と、
    前記FEMと通信するアンテナと
    を含み、
    前記FEMは、複数のコンポーネントを受容するべく構成されたパッケージング基板を含み、
    前記FEMはさらに、前記パッケージング基板に実装された電力増幅システムを含み、
    前記電力増幅システムは複数の電力増幅器(PA)を含み、
    各PAは、無線周波数(RF)信号を受信して増幅するべく構成され、
    前記電力増幅システムはさらに、インピーダンス変換回路が実質的に存在しない出力経路を介して各PAに結合された出力フィルタを含み、
    前記アンテナは、増幅されたRF信号を送信するべく構成される無線デバイス。
  31. 無線周波数(RF)信号を処理する方法であって、
    電力増幅器(PA)を使用してRF信号を増幅することと、
    増幅されたRF信号を、実質的にインピーダンス変換なしで出力フィルタへと引き回すことと、
    増幅されたRF信号を、前記出力フィルタを使用してフィルタリングすること
    を含む方法。
  32. 前記RF信号を増幅することは、前記PAを、実質的に前記インピーダンス変換がない引き回しを許容するべく前記出力フィルタのほぼ特性インピーダンスで前記PAが駆動するように動作させることを含む請求項31の方法。
  33. 前記PAを動作させることは、前記PAに高電圧(HV)を供給することを含む請求項32の方法。
JP2017202482A 2015-02-15 2017-10-19 整合ネットワークの排除により効率が向上した電力増幅器 Pending JP2018042264A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019201225A JP6937813B2 (ja) 2015-02-15 2019-11-06 電力増幅システム、無線デバイス、及び複数の信号を処理する方法

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201562116449P 2015-02-15 2015-02-15
US201562116450P 2015-02-15 2015-02-15
US201562116448P 2015-02-15 2015-02-15
US201562116451P 2015-02-15 2015-02-15
US62/116,449 2015-02-15
US62/116,450 2015-02-15
US62/116,448 2015-02-15
US62/116,451 2015-02-15

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015190601A Division JP2016149744A (ja) 2015-02-15 2015-09-29 整合ネットワークの排除により効率が向上した電力増幅器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019201225A Division JP6937813B2 (ja) 2015-02-15 2019-11-06 電力増幅システム、無線デバイス、及び複数の信号を処理する方法

Publications (1)

Publication Number Publication Date
JP2018042264A true JP2018042264A (ja) 2018-03-15

Family

ID=56552497

Family Applications (8)

Application Number Title Priority Date Filing Date
JP2015189648A Pending JP2016149743A (ja) 2015-02-15 2015-09-28 整合ネットワークの排除によりサイズが低減された電力増幅器
JP2015190639A Pending JP2016149745A (ja) 2015-02-15 2015-09-29 帯域選択スイッチの排除により効率が向上した多重帯域電力増幅システム
JP2015190601A Pending JP2016149744A (ja) 2015-02-15 2015-09-29 整合ネットワークの排除により効率が向上した電力増幅器
JP2015190649A Pending JP2016149746A (ja) 2015-02-15 2015-09-29 小型単一帯域電力増幅器を多重に有する多重帯域デバイス
JP2017202482A Pending JP2018042264A (ja) 2015-02-15 2017-10-19 整合ネットワークの排除により効率が向上した電力増幅器
JP2019201225A Active JP6937813B2 (ja) 2015-02-15 2019-11-06 電力増幅システム、無線デバイス、及び複数の信号を処理する方法
JP2021141145A Active JP7206340B2 (ja) 2015-02-15 2021-08-31 電力増幅器ダイ、無線周波数モジュール及び無線デバイス
JP2023000178A Active JP7395778B2 (ja) 2015-02-15 2023-01-04 整合ネットワークの排除により効率が向上した電力増幅器

Family Applications Before (4)

Application Number Title Priority Date Filing Date
JP2015189648A Pending JP2016149743A (ja) 2015-02-15 2015-09-28 整合ネットワークの排除によりサイズが低減された電力増幅器
JP2015190639A Pending JP2016149745A (ja) 2015-02-15 2015-09-29 帯域選択スイッチの排除により効率が向上した多重帯域電力増幅システム
JP2015190601A Pending JP2016149744A (ja) 2015-02-15 2015-09-29 整合ネットワークの排除により効率が向上した電力増幅器
JP2015190649A Pending JP2016149746A (ja) 2015-02-15 2015-09-29 小型単一帯域電力増幅器を多重に有する多重帯域デバイス

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2019201225A Active JP6937813B2 (ja) 2015-02-15 2019-11-06 電力増幅システム、無線デバイス、及び複数の信号を処理する方法
JP2021141145A Active JP7206340B2 (ja) 2015-02-15 2021-08-31 電力増幅器ダイ、無線周波数モジュール及び無線デバイス
JP2023000178A Active JP7395778B2 (ja) 2015-02-15 2023-01-04 整合ネットワークの排除により効率が向上した電力増幅器

Country Status (7)

Country Link
US (9) US20160241206A1 (ja)
JP (8) JP2016149743A (ja)
KR (4) KR101702233B1 (ja)
CN (4) CN105897174B (ja)
DE (4) DE102015218750B4 (ja)
HK (4) HK1225524A1 (ja)
TW (4) TWI716361B (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016149743A (ja) 2015-02-15 2016-08-18 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. 整合ネットワークの排除によりサイズが低減された電力増幅器
JP2018107502A (ja) * 2016-12-22 2018-07-05 株式会社村田製作所 通信モジュール
KR102607105B1 (ko) 2017-02-09 2023-11-28 삼성전자주식회사 전력 증폭기 및 임피던스 조정 회로
US10608603B2 (en) 2017-05-16 2020-03-31 Murata Manufacturing Co., Ltd. Multi-band power amplifier module
JP2018196104A (ja) 2017-05-16 2018-12-06 株式会社村田製作所 マルチバンド対応電力増幅モジュール
US10693422B2 (en) 2017-11-27 2020-06-23 Skyworks Solutions, Inc. Wideband power combiner and splitter
WO2019103898A1 (en) 2017-11-27 2019-05-31 Skyworks Solutions, Inc. Quadrature combined doherty amplifiers
CN214069915U (zh) 2018-06-20 2021-08-27 株式会社村田制作所 高频模块和通信装置
US11563410B1 (en) * 2018-12-28 2023-01-24 Rockwell Collins, Inc. Systems and methods for multi-band power amplifiers
US11165393B2 (en) 2019-03-25 2021-11-02 Skyworks Solutions, Inc. Envelope tracking for Doherty power amplifiers
US11916517B2 (en) 2019-04-23 2024-02-27 Skyworks Solutions, Inc. Saturation detection of power amplifiers
JP2020184665A (ja) * 2019-05-07 2020-11-12 株式会社村田製作所 送受信回路
JP2021106336A (ja) 2019-12-26 2021-07-26 株式会社村田製作所 高周波モジュール及び通信装置
JP2021158425A (ja) 2020-03-25 2021-10-07 株式会社村田製作所 高周波モジュール及び通信装置
JP2021158554A (ja) * 2020-03-27 2021-10-07 株式会社村田製作所 高周波モジュールおよび通信装置
JP2021158556A (ja) * 2020-03-27 2021-10-07 株式会社村田製作所 高周波モジュールおよび通信装置
WO2022034817A1 (ja) * 2020-08-13 2022-02-17 株式会社村田製作所 高周波モジュールおよび通信装置
US11601144B2 (en) 2020-08-26 2023-03-07 Skyworks Solutions, Inc. Broadband architectures for radio frequency front-ends
US11671122B2 (en) 2020-08-26 2023-06-06 Skyworks Solutions, Inc. Filter reuse in radio frequency front-ends
US11621680B2 (en) 2020-11-09 2023-04-04 City University Of Hong Kong Power amplifier
KR20230020832A (ko) * 2021-08-04 2023-02-13 삼성전자주식회사 Rf 신호를 송신하는 전자 장치 및 그 동작 방법
WO2023068530A1 (ko) * 2021-10-18 2023-04-27 삼성전자 주식회사 전력 증폭기의 출력을 제어하는 전자 장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004289428A (ja) * 2003-03-20 2004-10-14 Ube Ind Ltd マルチバンド用電力増幅器モジュール
JP2007019585A (ja) * 2005-07-05 2007-01-25 Sharp Corp 高周波電力増幅器および無線通信装置
WO2007129716A1 (ja) * 2006-05-08 2007-11-15 Hitachi Metals, Ltd. 高周波回路、高周波部品及び通信装置
JP2010226120A (ja) * 2003-08-08 2010-10-07 Renesas Technology Corp 半導体装置
JP2014060622A (ja) * 2012-09-18 2014-04-03 Sharp Corp 送信信号増幅回路、移動体通信端末および送信信号増幅回路の制御方法
JP2014187432A (ja) * 2013-03-21 2014-10-02 Sharp Corp 通信信号増幅回路および通信信号増幅回路の制御方法
US20140306769A1 (en) * 2013-04-16 2014-10-16 Rf Micro Devices, Inc. Dual instantaneous envelope tracking

Family Cites Families (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5873201A (ja) * 1981-10-27 1983-05-02 Toshiba Corp 低域通過フイルタ
US5774017A (en) 1996-06-03 1998-06-30 Anadigics, Inc. Multiple-band amplifier
US5966048A (en) * 1997-11-25 1999-10-12 Hughes Electronics Corporation Low IMD amplification method and apparatus
US5973568A (en) 1998-06-01 1999-10-26 Motorola Inc. Power amplifier output module for dual-mode digital systems
US6529715B1 (en) 1999-02-26 2003-03-04 Lucent Technologies Inc. Amplifier architecture for multi-carrier wide-band communications
JP2005143089A (ja) * 2003-10-15 2005-06-02 Sharp Corp バランス型増幅回路および高周波通信装置
KR100667303B1 (ko) * 2005-02-01 2007-01-12 삼성전자주식회사 Uwb용 lna
JP2006237711A (ja) * 2005-02-22 2006-09-07 Renesas Technology Corp マルチバンド低雑音増幅器、マルチバンド低雑音増幅器モジュール、無線用半導体集積回路およびマルチバンドrfモジュール
JP2006287337A (ja) 2005-03-31 2006-10-19 Toshiba Corp 無線送信機
KR101283202B1 (ko) 2006-05-08 2013-07-05 엘지이노텍 주식회사 프론트앤드모듈의 잡음신호 제거장치
FR2904897B1 (fr) * 2006-08-10 2008-09-26 Alcatel Sa Dispositif d'amplification large bande
US7911044B2 (en) 2006-12-29 2011-03-22 Advanced Chip Engineering Technology Inc. RF module package for releasing stress
FI20075322A0 (fi) 2007-05-07 2007-05-07 Nokia Corp Teholähteitä RF-tehovahvistimelle
US20080279262A1 (en) * 2007-05-07 2008-11-13 Broadcom Corporation On chip transmit/receive selection
JP2009017249A (ja) * 2007-07-05 2009-01-22 Hitachi Ltd 増幅回路
US7925227B2 (en) 2007-09-19 2011-04-12 Micro Mobio Corporation Multi-band amplifier module with harmonic suppression
US8718582B2 (en) 2008-02-08 2014-05-06 Qualcomm Incorporated Multi-mode power amplifiers
US8255009B2 (en) * 2008-04-25 2012-08-28 Apple Inc. Radio frequency communications circuitry with power supply voltage and gain control
JP5131540B2 (ja) 2008-05-20 2013-01-30 株式会社村田製作所 Rf電力増幅器およびrf電力増幅装置
US7764120B2 (en) * 2008-08-19 2010-07-27 Cree, Inc. Integrated circuit with parallel sets of transistor amplifiers having different turn on power levels
US20100105340A1 (en) 2008-10-29 2010-04-29 Qualcomm Incorporated Interface for wireless communication devices
US8030995B2 (en) * 2008-12-25 2011-10-04 Hitachi Kokusai Electric Inc. Power circuit used for an amplifier
JP5152059B2 (ja) 2009-03-19 2013-02-27 富士通株式会社 電力増幅装置及び電力増幅方法
US9143172B2 (en) * 2009-06-03 2015-09-22 Qualcomm Incorporated Tunable matching circuits for power amplifiers
US20110117862A1 (en) * 2009-11-16 2011-05-19 Oluf Bagger Multiband RF Device
JP2011176965A (ja) 2010-02-25 2011-09-08 Nec Corp マルチフェーズdc/dcコンバータ及びその制御方法
US8942651B2 (en) * 2010-04-20 2015-01-27 Rf Micro Devices, Inc. Cascaded converged power amplifier
US8183917B2 (en) 2010-06-04 2012-05-22 Quantance, Inc. RF power amplifier circuit with mismatch tolerance
JP2012049909A (ja) * 2010-08-27 2012-03-08 Toshiba Corp 広帯域電力増幅器
JP5864898B2 (ja) * 2010-09-03 2016-02-17 株式会社日立国際電気 電力増幅装置
US8509718B2 (en) 2010-10-13 2013-08-13 Rf Micro Devices, Inc. Broadband receive only tuner combined with receive switch
US8461931B1 (en) 2010-11-01 2013-06-11 Anadigics, Inc. Wideband RF power amplifier for multi-mode multi-band applications
US8497940B2 (en) * 2010-11-16 2013-07-30 Audio-Technica U.S., Inc. High density wireless system
KR20120055128A (ko) 2010-11-23 2012-05-31 주식회사 엘지실트론 웨이퍼 운반용 박스 건조 장치
US8797103B2 (en) 2010-12-07 2014-08-05 Skyworks Solutions, Inc. Apparatus and methods for capacitive load reduction
US8598950B2 (en) * 2010-12-14 2013-12-03 Skyworks Solutions, Inc. Apparatus and methods for capacitive load reduction
JPWO2012098863A1 (ja) * 2011-01-20 2014-06-09 パナソニック株式会社 高周波電力増幅器
US9391650B2 (en) 2011-02-11 2016-07-12 Qualcomm Incorporated Front-end RF filters with embedded impedance transformation
US8791759B2 (en) 2011-03-22 2014-07-29 The United States Of America As Represented By The Secretary Of The Army Bipolar stacked transistor architecture
US9093967B2 (en) * 2011-05-02 2015-07-28 Rfaxis, Inc. Power amplifier with co-existence filter
WO2012158423A2 (en) 2011-05-13 2012-11-22 Skyworks Solutions, Inc. Apparatus and methods for biasing power amplifiers
JP5696911B2 (ja) * 2011-05-18 2015-04-08 株式会社村田製作所 電力増幅器およびその動作方法
US8698558B2 (en) * 2011-06-23 2014-04-15 Qualcomm Incorporated Low-voltage power-efficient envelope tracker
US8476979B1 (en) * 2011-07-07 2013-07-02 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration High-efficiency power module
US8983406B2 (en) 2011-07-08 2015-03-17 Skyworks Solutions, Inc. Signal path termination
US8761698B2 (en) 2011-07-27 2014-06-24 Intel Mobile Communications GmbH Transmit circuit, method for adjusting a bias of a power amplifier and method for adapting the provision of a bias information
US9679869B2 (en) 2011-09-02 2017-06-13 Skyworks Solutions, Inc. Transmission line for high performance radio frequency applications
US9041464B2 (en) 2011-09-16 2015-05-26 Qualcomm Incorporated Circuitry for reducing power consumption
WO2013063364A1 (en) * 2011-10-26 2013-05-02 Rf Micro Devices, Inc. Average frequency control of switcher for envelope tracking
US9064746B2 (en) 2011-11-09 2015-06-23 Skyworks Solutions, Inc. Devices and methods related to field-effect transistor structures for radio-frequency applications
US9280163B2 (en) * 2011-12-01 2016-03-08 Rf Micro Devices, Inc. Average power tracking controller
KR101767577B1 (ko) 2012-02-09 2017-08-23 스카이워크스 솔루션즈, 인코포레이티드 포락선 추적을 위한 장치 및 방법
WO2013138457A1 (en) * 2012-03-15 2013-09-19 Newlans, Inc. Software-defined radio with broadband amplifiers and antenna matching
KR101584042B1 (ko) * 2012-06-14 2016-01-08 스카이워크스 솔루션즈, 인코포레이티드 관련된 시스템, 장치, 및 방법을 포함하는 전력 증폭기 모듈
US9761700B2 (en) 2012-06-28 2017-09-12 Skyworks Solutions, Inc. Bipolar transistor on high-resistivity substrate
US8773200B2 (en) 2012-07-08 2014-07-08 R2 Semiconductor, Inc. Decoupling circuits for filtering a voltage supply of multiple power amplifiers
US9294050B2 (en) * 2012-09-23 2016-03-22 Dsp Group Ltd. CMOS based RF antenna switch
US9450552B2 (en) * 2012-10-09 2016-09-20 Avago Technologies General Ip (Singapore) Pte. Ltd. Power amplifier having an integrated microcontroller
US9219445B2 (en) 2012-12-28 2015-12-22 Peregrine Semiconductor Corporation Optimization methods for amplifier with variable supply power
US8948707B2 (en) 2013-01-07 2015-02-03 Google Technology Holdings LLC Duplex filter arrangements for use with tunable narrow band antennas having forward and backward compatibility
US9294056B2 (en) 2013-03-12 2016-03-22 Peregrine Semiconductor Corporation Scalable periphery tunable matching power amplifier
WO2014142035A1 (ja) 2013-03-13 2014-09-18 株式会社エステン化学研究所 水または海水との摩擦抵抗の小さい防汚塗膜
US9263991B2 (en) * 2013-03-13 2016-02-16 Rf Micro Devices, Inc. Power management/power amplifier operation under dynamic battery drops
US9225362B2 (en) * 2013-03-14 2015-12-29 Quantance, Inc. Power supply
US9444417B2 (en) * 2013-03-15 2016-09-13 Qorvo Us, Inc. Weakly coupled RF network based power amplifier architecture
US9246447B2 (en) 2013-03-29 2016-01-26 Avago Technologies General Ip (Singapore) Pte. Ltd. Multipath power amplifier device with low power path isolation
EP2982732B1 (en) 2013-04-01 2018-04-18 Adeka Corporation Flame-retardant agent composition, flame-retardant fiber treated with flame-retardant agent composition, and method for increasing amount of flame-retardant component adhered onto fibers using said composition
WO2014163040A1 (ja) 2013-04-01 2014-10-09 Hoya Candeo Optronics株式会社 近赤外線吸収ガラス、及びその製造方法
CN105308130B (zh) 2013-04-02 2017-09-29 巴斯夫欧洲公司 经涂覆的碳纤维增强塑料部件
US20140341318A1 (en) * 2013-05-16 2014-11-20 Broadcom Corporation Average power tracking in a transmitter
US9837962B2 (en) * 2013-06-06 2017-12-05 Qualcomm Incorporated Envelope tracker with variable boosted supply voltage
KR101467231B1 (ko) 2014-02-19 2014-12-01 성균관대학교산학협력단 포락선 추적 모드 또는 평균 전력 추적 모드로 동작하는 멀티 모드 바이어스 변조기 및 이를 이용한 포락선 추적 전력 증폭 장치
US20150270813A1 (en) 2014-03-20 2015-09-24 Qualcomm Incorporated Dynamically adjustable power amplifier load tuner
JP6278778B2 (ja) 2014-03-27 2018-02-14 トッパン・フォームズ株式会社 保冷具
JP6376507B2 (ja) 2014-03-27 2018-08-22 Toto株式会社 空調装置
JP6383554B2 (ja) 2014-03-28 2018-08-29 フタバ産業株式会社 燃料改質装置
JP6240542B2 (ja) 2014-03-28 2017-11-29 株式会社Lixil 真空断熱材の再生方法
JP5642307B1 (ja) 2014-03-31 2014-12-17 株式会社トーメック 単独運転可能高調波抑制装置
US10333474B2 (en) * 2014-05-19 2019-06-25 Skyworks Solutions, Inc. RF transceiver front end module with improved linearity
KR20150137448A (ko) 2014-05-29 2015-12-09 주식회사 엔피코어 데이터 센터를 위한 데이터 관리 방법 및 장치
US9503025B2 (en) * 2014-07-11 2016-11-22 Skyworks Solutions, Inc. Power amplifier with termination circuit and resonant circuit
EP3178168B1 (en) * 2014-08-08 2018-06-13 Skyworks Solutions, Inc. Front end architecture for intermittent emissions and/or coexistence specifications
US9425742B2 (en) 2014-12-10 2016-08-23 Intel Corporation Method and apparatus for correcting inconvenient power amplifier load characteristics in an envelope tracking based system
JP2016149743A (ja) 2015-02-15 2016-08-18 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. 整合ネットワークの排除によりサイズが低減された電力増幅器
US9893684B2 (en) 2015-02-15 2018-02-13 Skyworks Solutions, Inc. Radio-frequency power amplifiers driven by boost converter
US9973155B2 (en) * 2015-07-09 2018-05-15 Tdk Corporation Apparatus and methods for tunable power amplifiers
JP2019083476A (ja) * 2017-10-31 2019-05-30 株式会社村田製作所 電力増幅回路
US11916522B2 (en) * 2020-05-20 2024-02-27 The Regents Of The University Of Colorado, A Body Corporate Broadband diplexed or multiplexed power amplifier

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004289428A (ja) * 2003-03-20 2004-10-14 Ube Ind Ltd マルチバンド用電力増幅器モジュール
JP2010226120A (ja) * 2003-08-08 2010-10-07 Renesas Technology Corp 半導体装置
JP2007019585A (ja) * 2005-07-05 2007-01-25 Sharp Corp 高周波電力増幅器および無線通信装置
WO2007129716A1 (ja) * 2006-05-08 2007-11-15 Hitachi Metals, Ltd. 高周波回路、高周波部品及び通信装置
JP2014060622A (ja) * 2012-09-18 2014-04-03 Sharp Corp 送信信号増幅回路、移動体通信端末および送信信号増幅回路の制御方法
JP2014187432A (ja) * 2013-03-21 2014-10-02 Sharp Corp 通信信号増幅回路および通信信号増幅回路の制御方法
US20140306769A1 (en) * 2013-04-16 2014-10-16 Rf Micro Devices, Inc. Dual instantaneous envelope tracking

Also Published As

Publication number Publication date
JP2016149745A (ja) 2016-08-18
US10778149B2 (en) 2020-09-15
CN105897197A (zh) 2016-08-24
KR20160100797A (ko) 2016-08-24
TW201630331A (zh) 2016-08-16
CN105897174A (zh) 2016-08-24
JP7395778B2 (ja) 2023-12-11
US10177711B2 (en) 2019-01-08
US20210143776A1 (en) 2021-05-13
HK1226199A1 (zh) 2017-09-22
US20160241205A1 (en) 2016-08-18
JP2023052191A (ja) 2023-04-11
US20160241207A1 (en) 2016-08-18
TWI716361B (zh) 2021-01-21
DE102015218849B4 (de) 2021-12-16
CN105897174B (zh) 2019-11-19
DE102015218733A1 (de) 2016-08-18
JP2016149746A (ja) 2016-08-18
DE102015218750A1 (de) 2016-08-18
HK1225868A1 (zh) 2017-09-15
DE102015218848A1 (de) 2016-08-18
US20160241206A1 (en) 2016-08-18
DE102015218848B4 (de) 2023-02-16
HK1226201A1 (zh) 2017-09-22
KR101702233B1 (ko) 2017-02-03
CN105897198A (zh) 2016-08-24
CN105897173B (zh) 2019-11-19
US20190097582A1 (en) 2019-03-28
US10084411B2 (en) 2018-09-25
CN105897173A (zh) 2016-08-24
DE102015218849A1 (de) 2016-08-18
DE102015218750B4 (de) 2023-02-16
JP2016149743A (ja) 2016-08-18
KR20160100798A (ko) 2016-08-24
JP2016149744A (ja) 2016-08-18
TW201630337A (zh) 2016-08-16
JP2021193805A (ja) 2021-12-23
KR101702234B1 (ko) 2017-02-03
US11575349B2 (en) 2023-02-07
US20160241196A1 (en) 2016-08-18
KR20160100796A (ko) 2016-08-24
CN105897198B (zh) 2019-11-19
US20190140591A1 (en) 2019-05-09
US10790783B2 (en) 2020-09-29
KR101718236B1 (ko) 2017-03-20
HK1225524A1 (zh) 2017-09-08
TWI634738B (zh) 2018-09-01
US20190214945A1 (en) 2019-07-11
TWI693789B (zh) 2020-05-11
KR20160100793A (ko) 2016-08-24
TWI641214B (zh) 2018-11-11
CN105897197B (zh) 2019-06-21
JP7206340B2 (ja) 2023-01-17
TW201630339A (zh) 2016-08-16
TW201630333A (zh) 2016-08-16
JP2020039145A (ja) 2020-03-12
US9979349B2 (en) 2018-05-22
US20230327607A1 (en) 2023-10-12
JP6937813B2 (ja) 2021-09-22
KR101697435B1 (ko) 2017-01-23
DE102015218733B4 (de) 2022-01-05

Similar Documents

Publication Publication Date Title
JP7206340B2 (ja) 電力増幅器ダイ、無線周波数モジュール及び無線デバイス
JP6595282B2 (ja) ブースト変換器により駆動される無線周波数電力増幅器
KR102603312B1 (ko) 감소된 크기를 갖는 도허티 전력 증폭기
KR20170117496A (ko) Am-am 보상을 갖는 도허티 전력 증폭기
CN109120233B (zh) 射频放大系统、装置和方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171030

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190709