WO2014142035A1 - 水または海水との摩擦抵抗の小さい防汚塗膜 - Google Patents

水または海水との摩擦抵抗の小さい防汚塗膜 Download PDF

Info

Publication number
WO2014142035A1
WO2014142035A1 PCT/JP2014/056016 JP2014056016W WO2014142035A1 WO 2014142035 A1 WO2014142035 A1 WO 2014142035A1 JP 2014056016 W JP2014056016 W JP 2014056016W WO 2014142035 A1 WO2014142035 A1 WO 2014142035A1
Authority
WO
WIPO (PCT)
Prior art keywords
antifouling
coating film
water
seawater
frictional resistance
Prior art date
Application number
PCT/JP2014/056016
Other languages
English (en)
French (fr)
Inventor
洋治 平沢
薫 岩井
克和 北野
Original Assignee
株式会社エステン化学研究所
国立大学法人奈良女子大学
国立大学法人東京農工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エステン化学研究所, 国立大学法人奈良女子大学, 国立大学法人東京農工大学 filed Critical 株式会社エステン化学研究所
Priority to CN201480027196.1A priority Critical patent/CN105209562A/zh
Priority to JP2015505445A priority patent/JP6464509B2/ja
Priority to KR1020157028610A priority patent/KR20150138237A/ko
Publication of WO2014142035A1 publication Critical patent/WO2014142035A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • A01N25/10Macromolecular compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • A01N59/20Copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D105/00Coating compositions based on polysaccharides or on their derivatives, not provided for in groups C09D101/00 or C09D103/00
    • C09D105/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1656Antifouling paints; Underwater paints characterised by the film-forming substance
    • C09D5/1662Synthetic film-forming substance
    • C09D5/1668Vinyl-type polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof

Definitions

  • the present invention relates to an antifouling coating film having a small frictional resistance with water or seawater, and more particularly to an antifouling coating film for ships or the like that reduces the frictional resistance with seawater and does not adhere to aquatic organisms.
  • the main role of the antifouling paint is to prevent algae and shellfish from adhering to help smooth navigation of ships, maintain high cooling efficiency for a long time in the case of waterways that introduce seawater such as power plants, etc.
  • clogging of the nets is prevented, and adhesion of marine organisms is performed to increase the service life of the underwater structure.
  • Patent Documents 1 to 4 Such coating compositions that reduce friction with seawater are disclosed in the following Patent Documents 1 to 4. These patent documents disclose a resin composition for paint using an acrylic resin and an acrylic resin having a polyoxyethylene chain as a binder in the paint.
  • Patent Document 1 As a method for reducing frictional resistance, a technique for blending inorganic particles into an antifouling paint composition (Patent Document 1), a technique for blending composite particles of an organic polymer substance (Patent Document 2), and a hydrophilic surface.
  • Patent Documents 3 to 4 There are provided methods for improving the viscosity (Patent Documents 3 to 4) and methods such as adding a polysaccharide binder, but none of these methods is sufficient as a method for reducing friction.
  • An object of the present invention is to provide an underwater friction-reducing coating film that can reduce frictional resistance with seawater in places where friction with seawater occurs, such as ships, waterways, and fishing nets. To do.
  • the present invention is an antifouling coating film comprising an antifouling agent in a coating film composed of a polymer hydrogel, wherein the antifouling coating film has a swelling degree of 10 to 80% and a Young's modulus of 500 to An antifouling coating film having a low frictional resistance with water or seawater, characterized by having 30,000 N / cm 2 .
  • the antifouling agent is preferably cuprous oxide particles having an average particle size of 3 ⁇ m or less.
  • the polymer hydrogel is preferably a chitosan polymer, a polyether ester polymer, or a vinyl polymer.
  • the polymer hydrogel is also preferably a copolymer of a hydrophilic vinyl monomer and a monomer having a glycidyl group, and the crosslinking agent is preferably a triazine compound.
  • the present invention also provides an object to which the above antifouling coating film is applied.
  • the present invention further includes 1 to 50% by weight of the hydrophilic vinyl polymer, 0 to 40% by weight of the antifouling agent, 20 to 70% by weight of the solvent and the crosslinking agent and other additives (% by weight is based on the total amount of the antifouling coating composition). ), Wherein the cured antifouling coating film has a degree of swelling of 10 to 80% and a Young's modulus of 500 to 30,000 N / cm 2 .
  • An antifouling paint composition that reduces frictional resistance is provided.
  • the polymer hydrogel membrane of the present invention can move freely in water and seawater, so it is unlikely to become a foothold for attachment of aquatic organisms (also referred to as “poor scaffold” for aquatic organisms).
  • the repellent triazine in the molecular skeleton of the gel inhibits the attachment of aquatic organisms.
  • adhesion of marine organisms can be extremely effectively prevented by including an antifouling agent in the polymer hydrogel membrane.
  • the polymer hydrogel resin coating film of the present invention since the polymer hydrogel resin coating film of the present invention has poor hydrolyzability, the film is difficult to collapse. If an antifouling agent is optionally included, they are retained within the three-dimensional cross-linked structure within the membrane and are optionally ionically fixed and cannot be released into water unless the membrane is disrupted. . Therefore, the polymer hydrogel membrane of the present invention not only extends the useful life of the membrane itself but also prevents seawater contamination. In the present invention, the Young's modulus of the antifouling coating film is also defined. If the Young's modulus is not within a predetermined range, it is difficult to prevent long-term water resistance and adhesion of aquatic organisms.
  • the contact resistance-reducing film of the present invention is suitable for shellfish, coelenterate, tubulochaete, etc. on the surface of the object to be coated for at least 1 year, particularly at least 2-4 years.
  • the adhesion of marine organisms can be effectively prevented.
  • the antifouling coating film of the present invention has a water swelling degree (water content) of 10 to 80% and a Young's modulus of 500 to 30,000 N / cm 2 .
  • the antifouling coating binder of the present invention comprises a polymer hydrogel.
  • the polymer hydrogel resin has three-dimensionally crosslinked polymer molecules with high hydrophilicity.
  • hydrophilic hydrogels include chitosan gels made from natural polymers, methyl cellulose gels, hydrophilic polyether polyols, polyether ester polymers based on polyether polyols, and the like. Used as a binder alone or in combination with a vinyl polymer. However, a hydrophilic vinyl polymer synthesized using a vinyl monomer that is easy to synthesize and easy to handle as a raw material is preferred.
  • Chitosan polymer Chitosan polymer is used alone or in combination with a vinyl polymer as a binder for the antifouling coating of the present invention.
  • the chitosan polymer can be easily obtained by dissolving a commercially available chitosan powder in an aqueous solution of an organic acid such as citric acid and then neutralizing with an alkali.
  • the polyether ester polymer is used alone or in combination with a vinyl polymer as a binder for the antifouling coating of the present invention.
  • the polyether ester polymer can be easily obtained by transesterification with a bifunctional carboxylic acid ester with a polyether polymer or the like.
  • Hydrophilic vinyl polymers synthesized from hydrophilic vinyl monomers as raw materials examples include cationic vinyl monomers such as dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, allylamine, N- Methylallylamine, dimethylaminoethyl (meth) acrylamide, diethylaminoethyl (meth) acrylamide, dimethylaminopropyl (meth) acrylamide, N-hydroxy (meth) acrylamide and vinylpyridine, vinylimidazole, vinylpyrrolidone, etc .; anionic vinyl monomers such as (Meth) acrylic acid and its salts, fumaric acid, maleic acid, citraconic acid, itaconic acid, crotonic acid, aconitic acid, 4-pentenoic acid, ⁇ -undecenoic acid and these Salts, vinyl sulfonic acid, vinyl benzyl
  • Examples of other monomers copolymerized with the hydrophilic vinyl monomer include N-alkyl substituted (meth) acrylamides; for example, (meth) acrylamide, (meth) N-acrylol-Lalanine, (meth) aminopropyl acrylamide, (meta ) N-aminopropylacrylamide, (meth) N-isopropylacrylamide, t-butyl (meth) acrylamide, dimethyl (meth) acrylamide, N-methylol (meth) acrylamide, N, N-dimethylaminopropyl (meth) acrylamide, (Meth) isobutylacrylamide, (meth) diacetone acrylamide, etc .; (meth) acrylic acid ester; for example, (meth) methyl acrylate, ethyl (meth) acrylate, i-butyl (meth) acrylate, (meth) acrylic acid n -Butyl, (meth)
  • a hydrophilic vinyl polymer is prepared from the monomer species, and a three-dimensional structure is formed inside by the action of a crosslinking agent during coating.
  • a repellent compound particularly a triazine compound, is suitable as a cross-linking agent. For this reason, a triazine skeleton is coordinated to the cross-linking point of the formed three-dimensional structure, and the structure is difficult for marine organisms to adhere.
  • triazine compounds examples include: 6- (4- (aminomethyl) piperidin-1-yl) -N 2 , N 4 -diisopropyl-1,3,5-triazine-2,4-diamine, 6- (4- (aminomethyl) piperidin-1-yl) -N 2 , N 4 -bis (2-methoxyethyl) -1,3,5-triazine-2,4-diamine, 6- (4- (aminomethyl) ) piperidin-1-yl) -N 2, N 4 - bis (3- (methylthio) propyl) -1,3,5-triazine-2,4-diamine, N 2 - (2-aminoethyl) -N 4 N 6 -diisopropyl-1,3,5-triazine-2,4,6-triamine, N 2 , N 4 -bis (2- (1H-indol-3-yl) ethyl) -N 6- (2-(
  • the polymer hydrogel may be used by mixing with another acrylic resin having a different curing system.
  • a resin is a polymer having a polymerizable unsaturated group introduced therein, and is dried at room temperature in the presence of a curable catalyst called a dryer.
  • a silicone resin SiR
  • moisture curable methylsiloxane rubber generally name “RTV silicone rubber”
  • RTV silicone rubber moisture curable methylsiloxane rubber
  • the polymer hydrogel of the present invention When the polymer hydrogel of the present invention is immersed in water or seawater, the water or seawater penetrates into the three-dimensional crosslinked structure. As a result, the hydrogel membrane of the present invention in which water or seawater is included in the three-dimensional crosslinked structure (that is, swollen with water or seawater) is obtained.
  • the antifouling coating film of the present invention may contain an antifouling agent in the three-dimensional crosslinked structure of the polymer hydrogel.
  • antifouling agents organic and inorganic.
  • inorganic for example, cuprous oxide
  • organic antifouling agents may be used in combination.
  • the organic antifouling agent suitably used in the present invention may be a known one, and is selected from, for example, nitrile, pyridine, haloalkylthio, organic iodo, thiazole and benzimidazole antibacterial agents. Two or more species may be included. Specific examples of preferable antibacterial agents are listed below.
  • Nitrile antibacterial agents Nitrile antibacterial agents; haloisophthalonitrile compounds (for example, 2,4,5,6-tetrachloroisophthalonitrile, 5-chloro-2,4,6-trifluorophthalonitrile) and haloaryl nitrile compounds
  • halogenated pyridine derivatives for example, haloalkylthio-2-
  • haloalkylthio antibacterial agents haloalkylthiophthalimide compounds (for example, N-fluorodichloromethylthiophthalimide, N-trichloromethylthiophthalimide), haloalkylthiotetrahydrophthalimide compounds (for example, N-1,1,2,2-tetrachloroethylthio) Tetrahydrophthalimide, N-trichloromethylthiotetrahydrophthalimide), haloalkylthiosulfamide compounds (eg, N-trichlorothio-N- (phenyl) methylsulfamide, N-trichloromethylthio-N- (4-chlorophenyl) methylsulfami N- (1-fluoro-1,1,2,2-tetrachloroethylthio) -N- (phenyl) methylsulfamide, N- (1,1-difluoro-1,2,2-trichloroethy
  • (E) thiazole antibacterial agent; inch azoline-3-one compound for example, 1,2-benzisothiazolin-3-one, 2- (n-octyl) -4-isothiazolin-3-one, 5-chloro-2-methyl-4 -Isothiazoline-3-one, 2-methyl-4-isothiazoline-3-one, 4,5-dichloro-2-cyclohexyl luo 4-isothiazolin-3-one, benzthiazole compounds (eg 2- (4-thiocyanomethylthio) Benzthiazole, 2-mercaptobenzthiazole sodium, 2-mercaptobenzthiazole zinc), and isothiazoline-3-one compounds.
  • inch azoline-3-one compound for example, 1,2-benzisothiazolin-3-one, 2- (n-octyl) -4-isothiazolin-3-one, 5-chloro-2-methyl-4 -Isothiazoline-3-one, 2-methyl-4-isothi
  • benzimidazole antibacterial agent benzimidazole carbamic acid compound (for example, methyl 1-H-2-benzimidazole carbamate, methyl butylcarbamoyl-2-benzimidazole carbamate, 6-benzoyl-1H-2-benzimidazole) Methyl carbamate), sulfur-containing benzimidazole compounds (eg, 1H-2-thiocyanomethylthiobenzimidazole, 1-dimethylaminosulfonyl-2-cyano-3-bromo-6-trifluoromethylbenzimidazole), cyclic benzimidazole Compound derivatives (eg 2- (4-thiazolyl) -1H-benzimidazole, 2- (2-chlorophenyl) 1H-benzimidazole, 2- (1- (3,5-dimethylpyrazolyl) -1H-benzimidazole, 2 -(Frill) -1H- Lens imidazole), benzimidazole carb
  • the metal-containing antifouling agent examples include, for example, cuprous oxide, rhodan copper, copper naphthenate, copper stearate, zinc oxide, titanium oxide, iron oxide, Bis (dimethyldithiocarbamic acid) zinc, ethylene-bis- (dithiocarbamic acid) zinc, ethylene-bis- (dithiocarbamic acid) manganese, ethylene-bis- (dithiocarbamic acid) copper.
  • cuprous oxide cuprous oxide, rhodan copper, copper naphthenate, copper stearate, zinc oxide, titanium oxide, iron oxide, Bis (dimethyldithiocarbamic acid) zinc, ethylene-bis- (dithiocarbamic acid) zinc, ethylene-bis- (dithiocarbamic acid) manganese, ethylene-bis- (dithiocarbamic acid) copper.
  • cuprous oxide rhodan copper, copper naphthenate, copper stearate
  • zinc oxide titanium oxide
  • the inventors of the present invention studied in more detail about antifouling agents, particularly cuprous oxide, and reduced the blending amount by reducing the particle size of cuprous oxide and increasing the surface area. If the blending amount of cuprous oxide is reduced, the strength of the coating film is inferior and long-term water resistance in seawater cannot be ensured. For this reason, it is necessary to increase the strength of the binder resin, and by using the above-mentioned triazine compound instead of the aliphatic alkyl amine compound conventionally used as a crosslinking agent for the binder resin, the strength is insufficient due to reduction of cuprous oxide. In addition to covering, long-term antifouling properties were secured.
  • cuprous oxide dissolves in seawater to produce copper ions.
  • cuprous oxide dissolves very little in seawater. For this reason, in order to ensure antifouling property, a large amount of cuprous oxide is blended.
  • cuprous oxide particle size is reduced and the surface area is increased, antifouling properties can be obtained even with a small amount of cuprous oxide.
  • Cuprous oxide generally has a particle size (3 ⁇ m) reduced to about 0.5 ⁇ m (surface area increased 36 times), and the antifouling property can be ensured even if the blending amount is reduced to 1/10.
  • the use of fine particles for ship bottom paint is expensive due to the difficulty of manufacturing, and the antifouling effect is questionable when combined with hydrolyzable resins, and handling is difficult, so it is considered in the industry's common sense It was not.
  • Cuprous oxide therefore has an average particle size of 3 ⁇ m or less, preferably 0.5 to 3 ⁇ m.
  • the amount of cuprous oxide used is usually about half that of the constituents of the coating film, so the amount of resin binder must be 50% or less. However, by using fine cuprous oxide (about 0.5 ⁇ m), the amount of the resin can be increased to 90% by mass or more, and the degree of swelling (water content) can be greatly increased. The inventors have also found that with the same weight of cuprous oxide, the swelling degree is increased by 10% or more by making the cuprous oxide fine particles.
  • a part of the antifouling agent may be ionically bonded in the three-dimensional crosslinked structure of the polymer hydrogel membrane of the present invention.
  • the polymer hydrogel resin coating film of the present invention may further contain various additives such as a solvent, a plasticizer, a color pigment, an extender pigment, and an elution aid.
  • the solvent suitably used in the present invention may be water or an organic water-soluble solvent.
  • solvents include alcohols such as methanol, ethanol, propanol, isopropanol, butanol, ethylene glycol and propylene glycol; ketones such as acetone and methyl ethyl ketone; tetrahydrofuran, 1,4-dioxane, diethyl ether and ethylene glycol diethyl ether
  • the following ethers are preferably used: dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, and the like.
  • Plasticizers include phthalic acids such as dioctyl phthalate, dimethyl phthalate and dicyclohexyl phthalate, aliphatic dibasic acid esters such as diisobutyl adipate and dibutyl sebacate, glycol esters such as diethylene glycol dibenzoate and pentaerythritol alkyl ester, Examples include phosphoric acid ester systems such as tricresyl phosphoric acid and trichloroethyl phosphoric acid, and epoxy systems such as epoxidized soybean oil and octyl epoxy stearate.
  • phthalic acids such as dioctyl phthalate, dimethyl phthalate and dicyclohexyl phthalate
  • aliphatic dibasic acid esters such as diisobutyl adipate and dibutyl sebacate
  • glycol esters such as diethylene glycol dibenzoate and pentaerythritol alkyl
  • coloring pigment titanium oxide, zircon oxide, carbon black, bengara, phthalocyanine green, quinacridone, emerald green, and phthalocyanine blue are used.
  • the extender pigments include talc, clay, silica white, alumina white, titanium white, batonite, barite, precipitated barium sulfate, and the like.
  • paraffin As an elution aid, paraffin or the like can be used.
  • the polymer hydrogel film needs to have a swelling degree (water content) of 10 to 80% and a Young's modulus of 500 to 30,000 N / cm 2 .
  • the degree of swelling (moisture content) is determined by immersing a coated plate having a polymer hydrogel film in seawater for 12 hours, pulling it up, wiping excess water on the surface with a kim towel, and immediately measuring the weight. After drying at 90 ° C. for 3 hours, the weight is measured and calculated by (weight before drying ⁇ weight after drying) / weight before drying ⁇ 100.
  • the degree of swelling is preferably 10 to 80%, more preferably 15 to 60%. Below 10%, there is no effect of reducing the frictional resistance with water. If it exceeds 80%, the Young's modulus of the polymer hydrogel film is greatly reduced.
  • the Young's modulus is obtained from the gradient between the tensile length and the stress applied at that time in the tensile test of the swollen coating film using Tensilon (a tensile tester).
  • the Young's modulus is preferably 500 to 30,000 N / cm 2 , more preferably 1,000 to 25,000 N / cm 2 . If it is less than 500 N / cm 2 , aquatic organisms adhere. On the other hand, when it exceeds 30,000 N / cm 2 , the coating film is brittle and causes a drawback such as causing a crack of the coating film with a simple impact.
  • the elongation rate is the tensile test of the swollen coating film with Tensilon, and the length before pulling (L1) and the length when the coating film is broken by pulling (L2): (L2-L1 / L1) ⁇ 100 ( %).
  • the present invention also provides an object to which the polymer hydrogel film of the present invention is applied as a second aspect.
  • an object to which the polymer hydrogel membrane of the present invention is applied is an object that comes into contact with water or seawater.
  • Such objects specifically include ship (bottom) seawater inlet pipes, such as harbor facilities, offshore drilling facilities, bridges, pipelines, offshore structures such as submarine bases, and fishing nets.
  • Antifouling paint Another aspect of the present invention is an antifouling paint containing a hydrophilic vinyl polymer as a main component and containing a solvent and an additive. If necessary, an antifouling agent or a crosslinking agent may be added to the antifouling paint.
  • the antifouling paint of the present invention is used to form the polymer hydrogel resin coating film of the present invention.
  • the hydrophilic vinyl polymer as the main component of the antifouling paint of the present invention may be blended in an amount of 1 to 50% by weight, preferably 5 to 45% by weight, based on the total weight of the antifouling paint.
  • the antifouling agent is further added in an amount of 0 to 40% by weight, preferably 5 to 30% based on the total weight of the antifouling coating composition.
  • the total amount of solvent and various additives is 20 to 70% by weight, preferably 25 to 60% by weight, based on the total weight of the antifouling coating composition. It may be blended in an amount.
  • the antifouling paint of the present invention is added to the polymer resin and mixed using a mixer such as a ball mill, a roll mill, or a sand grind mill. A composition is obtained.
  • the antifouling coating composition of the present invention may be appropriately diluted with a water-soluble solvent up to the use viscosity necessary for coating.
  • the antifouling paint of the present invention is applied to the surface of a ship, which is an object to be coated, and then dried at room temperature and crosslinked to form a crosslinked polymer resin coating film.
  • the cross-linked polymer resin coating film is immersed in water or sea water (for example, for 0.1 to 7 days) together with the object to be coated covered with the film. During this time, water or seawater is included in the three-dimensional cross-linked structure.
  • the polymer hydrogel resin coating film of the present invention in which water or seawater is included in the three-dimensional crosslinked structure (that is, swollen with water or seawater) is obtained.
  • the polymer hydrogel membrane of the present invention is unlikely to become a foothold for attachment of aquatic organisms (also referred to as “poor scaffold” for aquatic organisms), and as a result, aquatic organisms are unlikely to attach.
  • adhesion of marine organisms is extremely effectively inhibited by using a highly repellent triazine skeleton in the molecular skeleton of the polymer hydrogel film and adding an antifouling agent.
  • the polymer hydrogel resin coating film of the present invention since the polymer hydrogel resin coating film of the present invention has poor hydrolyzability, the film is difficult to collapse. If an antifouling agent is optionally included, they are retained within the three-dimensional cross-linked structure within the membrane and are optionally ionically fixed and cannot be released into water unless the membrane is disrupted. . Therefore, the polymer hydrogel membrane of the present invention not only extends the useful life of the membrane situation but also prevents seawater contamination.
  • the contact resistance-reducing film of the present invention can be used for a long period of time, for example, for at least 1 year, particularly for at least 2 to 5 years. It is possible to effectively prevent the attachment of marine organisms.
  • Example 1 Preparation of polymer resin varnishes (AD) (Table 1)
  • a stirrer, cooler, temperature controller, nitrogen inlet tube and dropping funnel 60 g of 2-propanol, 60 g of ethanol, ion exchange 30 g of water was added and stirred while introducing nitrogen.
  • the monomers in the composition table shown in Table 1 were added dropwise in succession, 0.2 g of 2,2′-azobis (2,4-dimethylvaleronitrile) was added as an initiator, and the mixture was heated by nitrogenization at 60 ° C. for 8 hours. did.
  • transparent polymer resin varnishes A to E were obtained.
  • Example 2 Preparation of chitosan polymer 2.63 g of chitosan powder was added to 30 g of 1% citric acid solution and dissolved with stirring at room temperature for 3 hours to obtain a viscous transparent liquid. A 2N potassium hydroxide solution was added little by little to the resulting liquid to make the pH pH 8 alkaline to obtain a white precipitate of chitosan gel. The precipitate was collected and applied uniformly on a vinyl chloride plate, and excess water on the surface of the precipitate was completely removed using a Kim towel. After measuring the weight after wiping, it was dried with a dryer (80 ° C.) for 3 hours. From the weight change before and after drying, the water content was 64%.
  • Example 3 Preparation of polyether polyester polymer A 4-necked flask was charged with 37.62 g of 2,6-dimethylnaphthalate, 98.94 g of polyethylene glycol (molecular weight 2000), 17.75 g of 1,4 butanediol and 2 ml of tetrabutoxytitanium at 10 ppm (xylene solution), and purged with nitrogen. Warm while warming. A uniform liquid was obtained at a temperature of about 160 to 200 ° C. The reaction was carried out at 220-230 ° C. for about 7 hours, and the distilled methanol was removed.
  • the obtained compound (which crystallizes at room temperature) was dissolved in tetrahydrofuran (concentration: about 15%), applied to a vinyl chloride plate and dried to obtain a polyester film.
  • the membrane was immersed in distilled water for a whole day and night, and the moisture content of the membrane was determined from the change in weight before and after immersion.
  • mixed solvent 20g of 2-propanol, 20g of ethanol, 10g of water
  • acrylic pigment dispersant concentration 50%
  • the emulsion part was separated separately and the solvent was distilled off under reduced pressure.
  • the organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure.
  • Example 5 Preparation of paints A-1 to E (Table 2)
  • Add 100 to 172 g of resin solutions A to E, 22 to 80 g of cuprous oxide paste C, and 0.16 to 0.32 g of triazine catalyst to a 300 ml container, and stir well with a mixer. Thereafter, 6 to 20 g of a mixed solvent (ethanol / 2-propanol / water 2/2/1) was added and stirred and diluted.
  • Example 6 Performance of coatings A-1 to E (Table 2) A part of the paint (A-1 to E) prepared in Example 4 was applied to a rotating drum for measuring frictional resistance, dried at room temperature for 2 hours, and then measured. On the other hand, in order to investigate the antifouling property in seawater, it was applied to a 10 ⁇ 30 cm PVC plate and immersed in seawater. Also, for physical property measurement (Young's modulus, elongation), coated on glass plate, dried for 2 hours, soaked overnight in artificial seawater to swell, and the swollen coating film was immediately cut into strips from the glass plate and Tensilon (tensile) The physical properties were measured by a tensile test using a testing machine. The Young's modulus and the elongation were measured with Tensilon (tensile tester) as described above.
  • Young's modulus and the elongation were measured with Tensilon (tensile tester) as described above.
  • Friction resistance was obtained by designing and manufacturing a device that required a slight resistance (torque) caused by friction with water by rotating a cylindrical rotating drum (painted around) in a bathtub. Painted on the outer circumference of a rotating drum (cylindrical; diameter: 26 cm, length: 20 cm), rotated at 300 rpm in artificial seawater at 20 ° C., and its resistance value (torque value: minimum unit: 0.001 cN ⁇ m) Obtained with a torque meter. The reduction rate (%) was compared with the resistance value of the commercially available coating film, and the reduced ratio was obtained.
  • the antifouling property was immersed in seawater for 1 year, and the state of attachment of marine organisms was visually observed.
  • shows no adhesion of marine organisms and seaweed, and no deterioration of the membrane.
  • indicates that marine organisms and algae are slightly attached, and the film is somewhat deteriorated.
  • indicates that marine organisms and algae are attached and the film is significantly deteriorated.
  • Comparative Example 1 A commercially available coating material was prepared in the same manner as in Example 5 and subjected to friction resistance, antifouling property, and physical property tests. The results are shown in Table 3.
  • Comparative Example 2 In the preparation of the coating material of Example 4 (B-2), a coating film was prepared in exactly the same manner except that diethylenetriamine was used instead of the triazine-based catalyst, and subjected to various tests (friction resistance, antifouling properties, physical properties). . The results are shown in Table 3.
  • Comparative Example 3 In the preparation of the coating material of Example 4 (D-3), a coating film was prepared in exactly the same manner except that diethylenetriamine was used instead of the triazine-based catalyst, and subjected to various tests (friction resistance, antifouling properties, physical properties). .
  • the measurement results for each example and comparative example are shown in Tables 2 and 3.
  • FIG. 1 the values of the degree of swelling (%) and the frictional resistance reduction rate (%) of the antifouling coating film of the examples described in Table 2 are shown, and the degree of swelling (%) is plotted with the frictional resistance reduction rate (%) on the vertical axis. ) On the horizontal axis.
  • the frictional resistance reduction rate increases in proportion to the degree of swelling of the coating film.
  • the antifouling coating film of the present invention is extremely effective for coating an object to be used on or in water regardless of seawater or fresh water.
  • the antifouling coating film of the present invention when applied to a ship, not only the resistance to water is reduced and fuel is saved, but also it is possible to run faster and both time and cost are reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Zoology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dentistry (AREA)
  • Environmental Sciences (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Paints Or Removers (AREA)

Abstract

 本発明は、船舶、水路等のように海水との摩擦が生じる箇所において、海水との摩擦抵抗を低減することができる水中摩擦低減防汚塗膜を提供する。 本発明は高分子ハイドロゲルから構成される塗膜中に防汚剤を含有する防汚塗膜であって、該防汚塗膜が、膨潤度10~80%およびヤング率500~30,000N/cm2を有することを特徴する水または海水との摩擦抵抗の小さい防汚塗膜およびそれを形成する防汚塗料組成物を提供する。

Description

水または海水との摩擦抵抗の小さい防汚塗膜
 本発明は、水または海水との摩擦抵抗の小さい防汚塗膜、特に海水との摩擦抵抗を少なくし、かつ水棲生物が付着しない船舶などの防汚塗膜に関する。
 防汚塗料の主要な役割は藻類や貝類付着を防止して、船舶等のスムーズな航行を助けたり、発電所などの海水を導入する水路の場合は高い冷却効率を長期間維持したり、また漁業用の網の場合は網の目詰まりを防止したり、水中構造物の耐用年数を高めるために海棲生物の付着を防止したりすることが行われる。
船舶等の海棲生物付着防止は船舶のスムーズな航行には欠かせないが、昨今の燃費の向上などで付着防止だけでなく低燃費航行を実現する塗膜が強く求められている。また導水路では電力エネルギー効率を高めるため海水との低摩擦抵抗を実現する塗膜の開発が求められている。
このような海水との摩擦を低減する塗料組成物は下記の特許文献1~4に開示されている。これらの特許文献は、アクリル樹脂およびポリオキシエチレン鎖を有するアクリル樹脂を塗料中のバインダーとして用いた塗料用樹脂組成物が開示されている。
 これらの特許文献において、摩擦抵抗低減の方法として無機粒子を防汚塗料組成物に配合(特許文献1)する技術、有機高分子物質の複合粒子を配合(特許文献2)する技術、表面を親水性にする方法(特許文献3~4)、また多糖類のバインダーを添加するなどの方法が提供されているが、どの方法も摩擦低減の方法として不十分であった。
特開平5-86309号公報 特開2007-169628号公報 特開平11-29747号公報 特開2003-277691号公報
 本発明は上記の現状に鑑み、船舶、水路、漁網等のように海水との摩擦が生じる箇所において、海水との摩擦抵抗を低減することができる水中摩擦低減塗膜を提供することを目的とする。
 即ち、本発明は、高分子ハイドロゲルから構成される塗膜中に防汚剤を含有する防汚塗膜であって、該防汚塗膜が、膨潤度10~80%およびヤング率500~30,000N/cmを有することを特徴する水または海水との摩擦抵抗の小さい防汚塗膜を提供する。
 上記防汚剤は、平均粒径3μm以下を有する亜酸化銅粒子であるのが好ましい。
 前記の高分子ハイドロゲルはキトサンポリマー、ポリエーテルエステルポリマー、またはビニルポリマーであるのが好ましい。
 前記高分子ハイドロゲルはまた、親水性ビニルモノマーおよびグリシジル基を有するモノマーの共重合体であるのが好ましく、かつ前記架橋剤はトリアジン系化合物であるのが好ましい。
 本発明はまた、上記の防汚塗膜を適用した物体も提供する。
本発明は更に、親水性ビニルポリマー1~50重量%、防汚剤0~40重量%、溶剤および架橋剤その他の添加剤20~70重量%(重量%は防汚塗料組成物の全量に基づく)を含有する防汚塗料組成物であって、硬化した防汚塗膜が膨潤度10~80%およびヤング率500~30,000N/cmを有することを特徴とする、水または海水との摩擦抵抗を低減する防汚塗料組成物と提供する。
本発明の方法で形成される高分子ハイドロゲル膜内では、水または海水が自由に移動できる。そのため、水や海水との摩擦抵抗が小さくなる。また、本発明の高分子ハイドロゲル膜は、水や海水が自由に移動できることから、水棲生物の付着の足掛かりになり難いが(水棲生物にとって「足場が悪い」ともいう。)、さらに高分子ハイドロゲルの分子骨格に忌避性のあるトリアジンがあることで水棲生物の付着を阻害している。本発明によれば、高分子ハイドロゲル膜に防汚剤を含有させることで、海棲生物の付着がきわめて有効に防止され得る。
加えて、本発明の高分子ハイドロゲル樹脂塗膜は加水分解性が乏しいため、膜が崩壊しがたい。任意に防汚剤などが含まれている場合、それらは膜内の三次元架橋構造内に保持され、場合によりイオン的に固定されており、膜が崩壊されない限り水中への放出が生じえない。従って本発明の高分子ハイドロゲル膜は膜自体の耐用期間が延長されるのみならず、海水汚染をも防止する。また、本発明では、防汚塗膜のヤング率も規定した。ヤング率が所定の範囲に無いと、長期にわたる耐水物性や、水棲生物の付着を阻止することは難しい。
すなわち本発明の接触抵抗低減膜は、少なくとも1年間以上、特に少なくとも2~4年間以上に亙って、これで被覆された被塗物表面への貝類、腔腸動物、管棲多毛類等の海棲生物の付着を有効に防止することができる。
本発明の実施例で得られた膨潤度(含水率:%)と摩擦抵抗低減率(%)とをプロットしたグラフを示す。
本発明の防汚塗膜は、膜の水中での膨潤度(含水率)が10~80%で、ヤング率が500~30,000N/cmである。
高分子ハイドロゲル樹脂
本発明の防汚被膜のバインダーは高分子ハイドロゲルから構成される。高分子ハイドロゲル樹脂は親水性の高いポリマー分子が3次元的に架橋している。親水性のハイドロゲルは天然の高分子を原料とするキトサンゲル、メチルセルロースゲルや親水性のポリエーテルポリオール、ポリエーテルポリオールを主成分とするポリエーテルエステルポリマーなども挙げられ、これらは防汚被膜のバインダーとして単独またはビニルポリマーとの併用で用いられる。しかしながら合成が容易で取り扱いが容易なビニルモノマーを原料として合成される親水性ビニルポリマーが好適である。
キトサンポリマー
キトサンポリマーは本発明の防汚被膜のバインダーとして単独またはビニルポリマーとの併用で用いられる。キトサンポリマーは市販のキトサン粉末をクエン酸などの有機酸の水溶液に溶解後、アルカリで中和して容易に得ることができる。
ポリエーテルエステルポリマー
ポリエーテルエステルポリマーは本発明の防汚被膜のバインダーとして単独またはビニルポリマーとの併用で用いられる。ポリエーテルエステルポリマーは2官能のカルボン酸エステルをポリエーテルポリマーなどとのエステル交換反応で容易に得ることができる。
 親水性ビニルモノマーを原料として合成される親水性ビニルポリマー
好適な親水性ビニルモノマーの例としては、カチオン性ビニルモノマー、例えばジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、アリルアミン、N-メチルアリルアミン、ジメチルアミノエチル(メタ)アクリルアミド、ジエチルアミノエチル(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミド、N-ヒドロキシ(メタ)アクリルアミドおよびビニルピリジン、ビニルイミダゾール、ビニルピロリドン等;アニオン性ビニルモノマー、例えば(メタ)アクリル酸およびその塩、フマル酸、マレイン酸、シトラコン酸、イタコン酸、クロトン酸、アコニット酸、4-ペンテン酸、ω―ウンデセン酸およびこれらの塩、ビニルスルホン酸、ビニルベンジルスルホン酸、2-アクリルアミドー2-メチルプロパンスルホン酸、2-アクリロイルエタンスルホン酸、2-アクリロイルプロパンスルホン酸、2-メタクロイルエタンスルホン酸、およびこれらの塩、更には、リン酸基およびその塩;等が挙げられる。
上記親水性ビニルモノマーと共重合する他のモノマーの例としては、N-アルキル置換(メタ)アクリルアミド;例えば(メタ)アクリルアミド、(メタ)N-アクリロールーLアラニン、(メタ)アミノプロピルアクリルアミド、(メタ)N-アミノプロピルアクリルアミド、(メタ)N-イソプロピルアクリルアミド、t-ブチル(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N、N-ジメチルアミノプロピル(メタ)アクリルアミド、(メタ)イソブチルアクリルアミド、(メタ)ダイアセトンアクリルアミド等;(メタ)アクリル酸エステル;例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸i―ブチル、(メタ)アクリル酸nーブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸i―オクチル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸イソボルニル;あるいは水酸基を含む(メタ)アクリル酸、例えば、(メタ)アクリ酸2-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)1,4-シクロヘキサンジメタノールモノアクリレート等が挙げられる。
前記モノマー種から親水性ビニルポリマーが調製されるが、塗布時に架橋剤の作用によって内部に三次元構造が形成される。架橋剤として忌避性のある化合物、特にトリアジン系化合物などが適しており、このため形成した三次元構造の架橋点にトリアジン骨格が配位されており、海棲生物が付着しにくい構造となる。
好適なトリアジン系化合物の例としては;6-(4-(アミノメチル)ピペリジン-1-イル)-N,N-ジイソプロピル-1,3,5-トリアジン-2,4-ジアミン、6-(4-(アミノメチル)ピペリジン-1-イル)-N,N-ビス(2-メトキシエチル)-1,3,5-トリアジン-2,4-ジアミン、6-(4-(アミノメチル)ピペリジン―1―イル)-N,N-ビス(3-(メチルチオ)プロピル)-1,3,5-トリアジン-2,4-ジアミン、N-(2-アミノエチル)-N、N-ジイソプロピル-1,3,5-トリアジン-2,4,6-トリアミン、N,N―ビス(2-(1H-インドール-3-イル)エチル)-N-(2-アミノエチル)-1,3,5-トリアジン-2,4,6-トリアミン、N-(2-アミノエチル)-N、N-ビス(2-メトキシエチル)-1,3,5-トリアジン-2,4,6-トリアミン、N-(2-(1H-インドール-3-イル)エチル)-N、N-ビス(2-アミノエチル)-1,3,5-トリアジン-2,4,6-トリアミン、N-(2-(1H-インドール3-イル)エチル)-N-(2-アミノエチル)-N-メチル-N-(2-(ピリジン-2-イル)エチル)-1,3,5-トリアジン-2,4,6-トリアミン、などが挙げられる。
本発明において、高分子ハイドロゲルは、硬化系の異なる別のアクリル系樹脂と混ぜて使用してもよい。そのような樹脂は重合性不飽和基を導入したポリマーで、ドライヤーと呼ばれる硬化性触媒の存在下で常温乾燥される。またシリコーン樹脂(SiR)系を混ぜて使用してもよい。例えば湿気硬化性のメチルシロキサンゴム(一般名「RTVシリコーンゴム」)等が挙げられる。
本発明の高分子ハイドロゲルは、水中または海水中に浸漬すると、三次元架橋構造内に水または海水が浸透する。その結果、前記三次元架橋構造内に水または海水が包含された(すなわち、水または海水で膨潤された)本発明のハイドロゲル膜が得られる。
防汚剤(抗菌剤)
本発明の防汚塗膜は、前記高分子ハイドロゲルの3次元架橋構造内に防汚剤を含有していてよい。防汚剤には、有機系と無機系の2種類があるが、本発明では無機系(例えば、亜酸化銅)または有機系の防汚剤と併用してもよい。
本発明において好適に用いられる有機系防汚剤は、公知のものであってよく、例えば、ニトリル系、ピリジン系、ハロアルキルチオ系、有機ヨード系、チアゾール系およびベンズイミダゾール系抗菌剤から選択される2種以上を包含していてよい。好ましい抗菌剤の具体例を以下に列挙する。
(a)ニトリル系抗菌剤;ハロイソフタロニトリル化合物(例えば、2,4,5,6-テトラクロロイソフタロニトリル、5-クロロ-2,4,6-トリフルオロフタロニトリル)およびハロアリールニトリル化合物
(b)ピリジン系抗菌剤;ハロゲン化されたピリジン誘導体(例えば、ハロアルキルチオ2-クロロ-6-トリクロロメチルピリジン、2-クロロ-4-トリクロロメチル-6-メトキシピリジン、2-クロロ-4-トリクロロメチル-6-(2-フリルメトキシ)ピリジン、ジ(4-クロロフェニル)ピリジンメタノール、スルホニルハロピリジン化合物(2,3,5,6-テトラクロロ-4-メチルスルホニルピリジン、2,3,5-トリクロロ-4-(n-プロピルスルホニル)ピリジン)およびピリジンチオール-1-オキシド化合物(例えば、2-ピリジンチオール-1-オキシドナトリウム、2-ピリジンチオール-1-オキシド亜鉛、ジ(2-ピリジンチオール-1-オキシド))、
(c)ハロアルキルチオ系抗菌剤;ハロアルキルチオフタルイミド化合物(例えば,N-フルオロジクロロメチルチオフタルイミド、N-トリクロロメチルチオフタルイミド)、ハロアルキルチオテトラヒドロフタルイミド化合物(例えば、N-1,1,2,2-テトラクロロエチルチオテトラヒドロフタルイミド、N-トリクロロメチルチオテトラヒドロフタルイミド)、ハロアルキルチオスルファミド化合物(例えば、N-トリクロロチオ-N-(フェニル)メチルスルファミド、N-トリクロロメチルチオ-N-(4-クロロフェニル)メチルスルファミド、N-(1-フルオロ-1,1,2,2-テトラクロロエチルチオ)-N-(フェニル)メチルスルファミド、N-(1,1-ジフルオロ-1,2,2-トリクロロエチルチオ)-N-(フェニル)メチルスルファミド)、およびハロアルキルチオスルフィミド化合物(例えば、N,N-ジメチル-N’-フェニル-N’-(フルオロジクロロチオ)スルフィミド、N,N-ジクロロフルオロメチルチオ-N’-フェニルスルフィミド、N,N-ジメチル-N’-(p-トリル)-N’-(フルオロジクロロメチルチオ)スルフィミド、
(d)有機ヨード系抗菌剤;ヨードスルホン化合物、ヨウ化不飽脂肪族化合物(例えば、3-ヨード-2-プロパルギルブチルカルバミン酸、4-クロロフェニル-3-ヨードプロパルギルホルマール、3-エトキシカルボニルオキシ-ブロモ-1,2-ジヨード
-1-プロペン、2,3,3-トリヨードアリルアルコール)、ヨードスルフェニルベンゼン化合物(例えば、ジヨードメチルスルホニル-4-メチルベンゼン、1-ジヨードメチルス
ルホニル-4-クロロベンゼン、
(e)チアゾール系抗菌剤;インチアゾリンー3-オン化合物(例えば、1,2-ベンズイソチアゾリンー3-オン、2-(n―オクチル)-4-イソチアゾリン-3-オン、5-クロロー2-メチルー4-イソチアゾリンー3-オン、2-メチルー4-イソチアゾリンー3-オン、4,5-ジクロロー2-シクロヘキシルー4-イソチアゾリンー3-オン、ベンズチアゾール化合物(例えば、2-(4-チオシアノメチルチオ)-ベンズチアゾール、2-メルカプトベンズチアゾールナトリウム、2-メルカプトベンズチアゾール亜鉛)、およびイソチアゾリンー3-オン化合物。
(f)ベンズイミダゾール系抗菌剤;ベンズイミダゾールカルバミン酸化合物(例えば、1-H-2-ベンズイミダゾールカルバミン酸メチル、ブチルカルバモイル-2-ベンズイミダゾールカルバミン酸メチル、6-ベンゾイル-1H-2-ベンズイミダゾールカルバミン酸メチル)、硫黄含有ベンズイミダゾール化合物(例えば、1H-2-チオシアノメチルチオベンズイミダゾール、1-ジメチルアミノスルホニル-2-シアノ-3-ブロモ-6-トリフルオロメチルベンズイミダゾール)、ベンズイミダゾールの環状化合物誘導体(例えば、2-(4-チアゾリル)-1H-ベンズイミダゾール、2-(2-クロロフェニル)1H-ベンズイミダゾール、2-(1-(3,5-ジメチルピラゾリル)-1H-ベンズイミダゾール、2-(フリル)-1H-ベンズイミダゾール)、ベンズイミダゾールカルバミン酸化合物、チアゾリルベンズイミダゾール化合物。
本発明において好適に使用される無機系の防汚剤、すなわち金属含有防汚剤としては、例えば、亜酸化銅、ロダン銅、ナフテン酸銅、ステアリン酸銅、酸化亜鉛、酸化チタン、酸化鉄、ビスー(ジメチルジチオカルバミン酸)亜鉛、エチレン―ビスー(ジチオカルバミン酸)亜鉛、エチレンービスー(ジチオカルバミン酸)マンガン、エチレンービスー(ジチオカルバミン酸)銅が挙げられる。最も好適なものは亜酸化銅である。
本発明者らは防汚剤、特に亜酸化銅について、更に詳細に検討し、亜酸化銅の粒径を小さくして表面積を増やすことによって配合量を減らした。亜酸化銅の配合量を減らすと、塗膜の強度が劣り、海水中での長期の耐水物性が確保できなくなる。このためバインダー樹脂の強度を高める必要があり、バインダー樹脂の架橋剤として従来より用いられている脂肪族アルキル系アミン化合物の代わりに前述のトリアジン系化合物を用いることで亜酸化銅低減による強度不足をカバーしただけでなく長期にわたる防汚性も確保できた。
亜酸化銅の防汚性は亜酸化銅が海水中で溶解して銅イオンが生成することによる。しかしながら、亜酸化銅は海水中でごく僅かしか溶解しない。このため防汚性を確保するため、多量の亜酸化銅が配合されている。一方、亜酸化銅の粒径を小さくして表面積を大きくすれば少ない亜酸化銅の配合量でも防汚性が得られることを確認した。
亜酸化銅は、一般に粒径(3μm)を約0.5μmまで微粒子化(表面積は36倍に増える)して、配合量を10分の1にまで少なくしても防汚性が確保できる。微粒子を船底塗料に使用することは製造の難しさからコスト的に高価であり、加水分解型樹脂の併用では防汚性の効果が疑問であり、かつハンドリングが難しいことから業界の常識では考えられないことであった。亜酸化銅は従って、平均粒径3μm以下、好ましくは0.5~3μmである。
使用されている亜酸化銅量は通常、塗膜構成成分の約半分の量であり、したがって樹脂バインダ量は50%以下にせざるをえない。しかしながら微粒子亜酸化銅(約0.5μ)の使用により、樹脂の配合量は90質量%以上に増やすことも可能であり、膨潤度(含水量)を大きく高めることが可能となった。発明者らは同重量の亜酸化銅で、亜酸化銅を微粒子化することによって膨潤度が10%以上大きくなることも見出した。
前記防汚剤の一部は、本発明の高分子ハイドロゲル膜の3次元架橋構造内にイオン的に結合されていてよい。
溶剤および各種添加物
本発明の高分子ハイドロゲル樹脂塗膜は、溶剤や、可塑剤、着色顔料、体質顔料、溶出助剤などの各種添加剤をさらに含んでいてよい。
本発明で好適に使用される溶剤は、水および有機系の水溶性溶剤であってよい。溶剤の例としては、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコールなどのアルコール類;アセトンおよびメチルエチルケトンなどのケトン類;テトラヒドロフラン、1,4-ジオキサン、ジエチルエーテルおよびエチレングリコールジエチルエーテルなどのエーテル類;ジメチルホルムアミド、ジメチルスルホキシドやN-メチルピロリドン;などが好ましく使用される。
可塑剤には、ジオクチルフタレート、ジメチルフタレート、ジシクロヘキシルフタレートなどのフタル酸系、アジピン酸ジイソブチル、セバシン酸ジブチル等の脂肪族二塩基酸エステル系、ジエチレングリコールジベンゾエート、ペンタエリスリトールアルキルエステル等のグリコールエステル類、トリクレジルリン酸、トリクロロエチルリン酸等のリン酸エステル系、エポキシ化大豆油、エポキシステアリン酸オクチルなどのエポキシ系、等が含まれる。
着色顔料としては、酸化チタン、酸化ジルコン、カーボンブラック、ベンガラ、フタロシアニングリーン、キナクリドン、エメラルドグリーン、フタロシアニンブルーが使用される。
体質顔料には、タルク、クレー、シリカホワイト、アルミナホワイト、チタンホワイト、バントナイト、バライト、沈降性硫酸バリウム、等が含まれる。
溶出助剤としては、パラフイン等が使用されうる。
本発明では、高分子ハイドロゲル膜が膨潤度(含水量)10~80%およびヤング率500~30,000N/cmを有することが必要である。膨潤度(含水量)は、高分子ハイドロゲル膜を有する塗板を海水に12時間浸漬した後に引き上げて表面の余分な水をキムタオルを使用して拭いた後、直ちに重さを測定し、その後塗板を90℃で3時間乾燥させた後重さを測定し、(乾燥前の重さ-乾燥後の重さ)/乾燥前の重さ×100により計算して求める。膨潤度は、好ましくは10~80%、より好ましくは15~60%である。10%を下回ると、水との摩擦抵抗の低減効果がない。80%を超えると高分子ハイドロゲル膜のヤング率が大きく低減する。
 ヤング率は、テンシロン(引っ張り試験機)による膨潤塗膜の引っ張り試験において、引張り長さとその時にかかる応力との勾配から求められる。ヤング率は、好ましくは500~30,000N/cmであり、より好ましくは1,000~25,000N/cmである。500N/cmより小さいと、水棲生物の付着がおこる。逆に、30,000N/cmを超えると、塗膜が脆く簡単な衝撃で塗膜ワレを引き起こしたりする、などの欠点が生じる。また伸び率はテンシロンによる膨潤塗膜の引っ張り試験で、引っ張り前の長さ(L1)と引っ張りにより塗膜が破断した時の長さ(L2)とすると:(L2-L1/L1)×100(%)で表す。
塗膜の摩擦抵抗の測定は種々の方法があるが、発明者らは浴槽中で円筒形回転ドラム(周囲に塗装)を回転、水との摩擦で生じる僅かな抵抗(トルク)が求められる装置を設計・製作して求めた。回転ドラム(円筒形;直径:26cm、長さ:20cm)の外囲に塗装、20℃の人工海水中、300rpmで回転してその抵抗値(トルク値:最少単位:0.001cN・m)をトルク計で求めた。低減率(%)は市販塗膜の抵抗値に比較し、低減した割合を求めた。
防汚対象
本発明は、第二態様として、本発明の高分子ハイドロゲル膜が適用された物体も提供する。本発明の目的から、本発明の高分子ハイドロゲル膜が適用された物体は水または海水と接触する物体であって、特にその表面に水棲動物が付着することにより、その機能または性能あるいは操作性などに多大な影響を受けうるものである。このような物体は具体的には船舶(船底)海水導入管、例えば港湾施設、海上掘削施設、橋梁、パイプライン、海底基地などの洋上構築物、および漁網を包含する。
防汚塗料
本発明の別の態様は、主成分として親水性ビニルポリマーを含有し、および溶剤および添加剤を含有する防汚塗料である。必要に応じて、防汚剤や架橋剤を防汚塗料に配合してもよい。本発明の防汚塗料は、本発明の高分子ハイドロゲル樹脂塗膜を形成するのに使用される。
本発明の防汚塗料の主成分である親水性ビニルポリマーは、防汚塗料全重量に対して1~50重量%、好ましくは5~45重量%配合されていてよい。
本発明の防汚塗料組成物には、更に、前記防汚剤が、防汚塗料組成物全重量に対して0~40重量%、好ましくは防汚塗料組成物全重量に対して5~30重量%の量で、および溶剤および各種添加剤が合計で、防汚塗料組成物全重量に対して20~70重量%、好ましくは防汚塗料組成物全重量に対して25~60重量%の量で配合されていてよい。
前記防汚剤および各種添加剤を配合する場合は、これらを前記高分子樹脂に添加して、ボールミル、ロールミル、サンドグラインドミル等の混合機を用いて混合することにより、本発明の防汚塗料組成物が得られる。
本発明の防汚塗料組成物は、調製後、塗布に必要な使用粘度まで水溶性の溶剤を用いて適宜希釈されてよい。
本発明の防汚塗料は被塗物である船舶表面などに塗布した後、常温乾燥および架橋して架橋高分子樹脂塗膜を形成する。
次いで、前記架橋高分子樹脂塗膜を(この膜で被覆された被塗物ごと)水中または海水中に、例えば0.1~7日間浸漬する。この間に三次元架橋構造内に水または海水が前記構造内に包含される。その結果三次元架橋構造内に水または海水が包含された(すなわち水または海水で膨潤された)本発明の高分子ハイドロゲル樹脂塗膜が得られる。
本発明の方法で形成される高分子ハイドロゲル膜内では、水または海水が自由に移動できる。そのため、本発明の高分子ハイドロゲル膜は、水棲生物の付着の足掛かりになり難く(水棲生物にとって「足場が悪い」ともいう)、結果として水棲生物が付着し難い。
本発明によれば、高分子ハイドロゲル膜の分子骨格に忌避性の高いトリアジン骨格を用い、かつ防汚剤を含有させることで、海棲生物の付着が極めて有効に阻害される。
加えて、本発明の高分子ハイドロゲル樹脂塗膜は加水分解性が乏しいため、膜が崩壊しがたい。任意に防汚剤などが含まれている場合、それらは膜内の三次元架橋構造内に保持され、場合によりイオン的に固定されており、膜が崩壊されない限り水中への放出が生じえない。従って本発明の高分子ハイドロゲル膜は膜事態の耐用期間が延長されるのみならず、海水汚染をも防止する。
すなわち、本発明の接触抵抗低減膜は、長期間例えば、少なくとも1年間、特に少なくとも2~5年間に亙って、これで被覆された被塗物表面への貝類、腔腸動物、管棲多毛類等の海棲生物の付着を有効に防止することができる。
 本発明を実施例により更に詳細に説明する。本発明はこれら実施例に限定されるものと解してはならない。
実施例1
高分子樹脂ワニス(A~D)(表1)の調製
攪拌機、冷却器、温度制御装置、窒素導入管、滴下ロートを備えた500mlの4つ口フラスコに2-プロパノール60g、エタノール60g、イオン交換水30gを入れ、窒素を導入しながら撹拌した。続いて表1に示した組成表のモノマーを順次滴下、開始剤として2,2‘-アゾビス(2,4-ジメチルバレロニトリル)0.2gを添加し、60℃で8時間窒素化で加温した。これにより、透明な高分子樹脂ワニスA~Eが得られた。
Figure JPOXMLDOC01-appb-T000001
高分子樹脂ワニス(E)(表1)の調製
高分子樹脂ワニス(A~D)の調製で、硬化基を有するグリシジルモノマーの代わりに不飽和基を有するアリルメタクリレートを使用する以外は同様にして調製した。硬化触媒として有機系コバルト化合物を使用した。
 実施例2
キトサンポリマーの調製
2.63gのキトサン粉末を、1%のクエン酸溶液30gに加えて、室温で3時間撹拌しながら溶解し粘性のある透明な液体を得た。得られて液体に2Nの水酸化カリウム溶液を少しずつ加えてpH8のアルカリにして、キトサンゲルの白色沈殿物を得た。この沈殿物を回収し、塩ビ板上に均一に塗布、沈殿物表面の余分な水分をキムタオルを使用して完全に除去した。拭き取った後の重量を測定後、乾燥機(80℃)で3時間乾燥した。乾燥前後の重量変化から含水率は64%であった。
  実施例3
ポリエーテルポリエステルポリマーの調製
4つ口フラスコに2,6-ジメチルナフタレート37.62g、ポリエチレングリコール(分子量2000)98.94g、1,4ブタンジオール17.75gおよび10ppm(キシレン溶液)のテトラブトキシチタン2mlを入れ、窒素置換をしながら加温した。温度約160~200℃で均一な液体となった。反応は220~230℃で約7時間行い、留出するメタノールを除去した。得られた化合物(室温では結晶化する)をテトラヒドロフランに溶解し、(濃度約15%)、塩ビ板に塗布、乾燥してポリエステル膜を得た。この膜を蒸留水に一昼夜浸漬、浸漬前後の重量変化から膜の含水率を求めたところ、45%であった。
亜酸化銅(3μ、1μ、0.5μ)ペーストの調製
200mlの分散容器に混合溶剤50g(2-プロパノール20g、エタノール20g、水10g)を入れ、続いてアクリル酸系顔料分散剤(濃度50%)2.4gを加えて溶解した。分散溶液に平均粒径3μまたは1μまたは0.5μの亜酸化銅50g、分散ビーズ(ジルコニウム製)50gを入れて、分散羽根を装着した分散機にかけて回転数2500rpmで20分間分散した。分散後、茶こしでビーズを除き分散ペーストを得た。
  実施例4
トリアジン化合物の調製(硬化剤1)
溶剤のテロラヒドロフランに塩化シアヌル18.8gを溶解した溶液(350ml)にN,N-ジイソプロピルエチルアミン39.7g、イソプロピルアミン15.1gを加え、室温で72時間撹拌した。反応液に水を加え、目的物を析出させた後、吸引濾過して化合物6-クロロ-N,N-ジイソプロピル-1,3,5-トリアジン-2,4-ジアミン22.2gを得た。この化合物をテトラヒドロフラン150mlに溶解してえられた溶液にジイソプロピルアミン31.2g、4-(アミノメチル)ピペリジン27.6gを加え、室温で24時間撹拌した。反応液を濃縮した後、水を加え酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧化溶媒を除去した。残留物をアミノシリカゲルカラムクロマトグラフイ(酢酸エチル:メタノール=3:1)で精製し、化合物6-(4-(アミノメチル)ピペリジン-1-イル)-N,N-ジイソプロピル-1,3,5-トリアジン-2,4-ジアミン27gを得た。次いでこの化合物をエタノール27gに溶解して50%溶液を得た。硬化剤1の化学式は以下の通りである。
トリアジン化合物の調製(硬化剤2)
溶剤のテトラヒドロフランに塩化シアヌル15.0gを溶解した溶液(150ml)にN,N-ジイソプロピルエチルアミン21.1g、メトキシエチルアミン12.2gを加え、室温で72時間撹拌した。反応液に水を加えた後、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去し、化合物6-クロロ-N,N-ビス(2-メトキシエチル)-1,3,5-トリアジン-2,4-ジアミンを10.8g(収率51%)得た。この化合物 10.0gを150mlのテトラヒドロフランに溶解し、ジイソプロピルエチルアミン9.9g、4-(アミノメチル)ピペリジン8.75gを加え、室温で72時間撹拌した。反応液を濃縮した後、水を加え酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。残留物をシリカゲルカラムクロマトグラフィー(酢酸エチル:メタノール=3:1トリエチルアミン2%含)で精製し、化合物6-(4-(アミノメチル)ピペリジン-1-イル)-N,N-ビス(2-メトキシエチル)-1,3,5-トリアジン-2,4-ジアミン7.94g(収率61%)を得た。
トリアジン化合物の調製(硬化剤3)
溶剤のテロラヒドロフランに塩化シアヌル4.21gを溶解した溶液(50ml)にN、N-ジイソプロピルエチルアミン5.9g、3-メチルチオプロピルアミン4.8gを加え、室温で4日間撹拌した。反応液に水を加え、目的物を析出させた後、吸引ろ過し、化合物6-クロロ-N,N-ビス(3-(メチルチオ)プロピル)-1,3,5-トリアジン-2,4-ジアミン6.54g(収率89%)を得た。この化合物のテトラヒドロフラン溶液50mlにジイソプロピルエチルアミン6.57g、4-(アミノメチル)ピペリジン5.8gを加え、室温で24時間撹拌した。反応液を濃縮した後、水を加え酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。残留物をシリカゲルカラムクロマトグラフィー(酢酸エチル:メタノール=1:1トリエチルアミン2%含)で精製し、化合物6-(4-(アミノメチル)ピペリジン―1―イル)-N,N-ビス(3-(メチルチオ)プロピル)-1,3,5-トリアジン-2,4-ジアミンを6.67g(収率82%)得た。
トリアジン化合物の調製(硬化剤4)
化合物6-クロロ-N,N-ジイソプロピル-1,3,5-トリアジン-2,4-ジアミン1.0gのテトラヒドロフラン溶液(テトラヒドロラン15ml)にジイソプロピルエチルアミン4.5g、N-アセチルエチレンジアミン2.22gを加え、24時間加熱還流した。反応液を濃縮した後、水を加え酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。残留物をシリカゲルカラムクロマトグラフィー(酢酸エチル)で精製し、化合物N-(2-((4,6-ビス(イソプロピルアミノ)-1,3,5-トリアジン-2-イル)アミノ)エチル)アセトアミドを1.09g(収率85%)を得た。この化合物12.4 gのエタノール(200 mL)溶液に、60%水酸化カリウム水溶液(200 mL)を加え、48時間加熱還流した。反応液を濃縮した後、水を加えクロロホルムで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。残留物をシリカゲルカラムクロマトグラフィー(酢酸エチル:メタノール=5:1 トリエチルアミン3%含)で精製し、化合物N-(2-アミノエチル)-N、N-ジイソプロピル-1,3,5-トリアジン-2,4,6-トリアミンを8.57g(収率81%)を得た。
トリアジン化合物の調製(硬化剤5)
塩化シアヌル11.5 gのテトラヒドロフラン(200 mL)溶液に、ジイソプロピルエチルアミン16.15g、トリプタミン20.0gを加え、室温で24時間撹拌した後、吸引ろ過し、化合物N、N-ビス(2-(1H-インドール-3-イル)エチル-6-クロロ-1,3,5-トリアジン-2,4,6-トリアミンを26 g得た。この化合物13.3gのテトラフラン溶液(200 mL)に、ジイソプロピルエチルアミン47.8g、N-アセチルエチレンジアミン23.7gを加え、24時間加熱還流した。反応液を濃縮した後、水を加え酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。残留物をシリカゲルカラムクロマトグラフィー(酢酸エチル:メタノール=5:1)で精製し、化合物N-(2-((4,6-ビス((2-(1H-インドール-3-イル)エチル)アミノ)-1,3,5-トリアジン-2-イル)アミノ)エチル)アセトアミドを14.3 g(収率94%)得た。この化合物14.3 g(28.7 mmol)のエタノール(150 mL)溶液に、60%水酸化カリウム水溶液(150 mL)を加え、24時間加熱還流した。反応液を濃縮した後、水を加えクロロホルムで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシムで乾燥後、減圧下溶媒を留去した。残留物をアミノシリカゲルカラムクロマトグラフィー(酢酸エチル:メタノール=5:1)で精製し、化合物N,N―ビス(2-(1H-インドール-3-イル)エチル)-N-(2-アミノエチル)-1,3,5-トリアジン-2,4,6-トリアミンを10.7 g(収率82%)得た。
トリアジン化合物の調製(硬化剤6)
化合物6-クロロ-N,N-ビス(2-メトキシエチル)-1,3,5-トリアジン-2,4-ジアミン15.0 gのテトラヒドロフラン(150 mL)溶液に、ジイソプロピルエチルアミン59.45g、N-アセチルエチレンジアミン29.3 gを加え、24時間加熱還流した。反応液を濃縮した後、水を加え酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。残留物をシリカゲルカラムクロマトグラフィー(酢酸エチル:メタノール=5:1)で精製し、化合物N-(2-((4,6-ビス((2-メトキシエチル)アミノ)1,3,5-トリアジン-2-イル)アミノ)エチル)アセトアミドを8.9g(収率47%)得た。この化合物8.90gのエタノール(100 mL)溶液に、60%水酸化カリウム水溶液(100 mL)を加え、72時間加熱還流した。反応液を濃縮した後、水を加えクロロホルムで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシムで乾燥後、減圧下溶媒を留去した。残留物をアミノシリカゲルカラムクロマトグラフィー(酢酸エチル:メタノール=5:1 トリエチルアミン3%含)で精製すし、化合物N-(2-アミノエチル)-N、N-ビス(2-メトキシエチル)-1,3,5-トリアジン-2,4,6-トリアミンを7.08 g(収率91%)得た。
トリアジン化合物の調製(硬化剤7)
塩化シアヌル1.00 gのTHF(20 mL)溶液に、氷―食塩浴で冷却下、炭酸水素ナトリウム0.68 g(8.13 mmol)を加え、トリプタミン0.90 gのTHF(5 mL)溶液を滴下した後、70分間撹拌した。反応液を濃縮した後、水を加え酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去し、化合物N-(2-(1H-インドール-3-イル)エチル)-4,6-ジクロロ-1,3,5-トリアジン-2-アミンを1.62g得た。この化合物17.0 g(55.2 mmol)のTHF(200 mL)溶液に、ジイソプロピルエチルアミン57.0g、N-アセチルエチレンジアミン28.2 gを加え、24時間加熱還流した後、反応液に水を加え酢酸エチルで抽出した。この時、エマルジョン部分は別途分取し、減圧下溶媒を留去した。有機層は飽和食塩水で洗浄し、無水硫酸マグネシムで乾燥後、減圧下溶媒を留去した。有機層とエマルジョン部の残留物を混ぜ、シリカゲルカラムクロマトグラフィー(酢酸エチル:メタノール=5:1 トリエチルアミン2%含)で精製し、化合物N,N’-(((6-((2-(1H-インドール-3-イル)エチル)アミノ)-1,3,5-トリアジン-2,4-ジイル)ビス(アザンジイル))ビス(エタン-2,1-ジイル))ジアセトアミドを13.5g得た。この化合物13.5 gのエタノール(150 mL)溶液に、60%水酸化カリウム水溶液(150 mL)を加え、72時間加熱還流した。反応液を濃縮した後、水を加えクロロホルムで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去し、化合物N-(2-(1H-インドール-3-イル)エチル)-N、N-ビス(2-アミノエチル)-1,3,5-トリアジン-2,4,6-トリアミンを10.2 g(収率94%)得た。
トリアジン化合物の調製(硬化剤8)
化合物N-(2-(1H-インドール-3-イル)エチル)-4,6-ジクロロ-1,3,5-トリアジン-2-アミン14.0 gのTHF(150 mL)溶液に、ジイソプロピルエチルアミン23.5g、ベタスチン・メタンスルホン酸塩22.4 gを加え、室温で24時間撹拌した。反応液を濃縮した後、水を加え酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシムで乾燥後、減圧下溶媒を留去した。残留物を温メタノール中で撹拌し、固体成分をろ過し、化合物N-(2-(1H-インドール-3-イル)エチル)-6-クロロ-N-メチル-N-(2-(ピリジン-2-イル)エチル)-1,3,5-トリアジン-4,6-ジアミンを14.6g(中立79%)を得た。この化合物14.6 g(35.8mmol)のTHF(150 mL)溶液に、ジイソプロピルエチルアミン36.97g、N-アセチルエチレンジアミン18.3 gを加え、24時間加熱還流した。反応液を濃縮した後、水を加え酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシムで乾燥後、減圧下溶媒を留去した。残留物をシリカゲルカラムクロマトグラフィー(酢酸エチル:メタノール=5:1 トリエチルアミン2%含)で精製し、化合物N-(2-((4-((2-(1H-インドール-3-イル)エチル)アミノ)-6-(メチル(2-(ピリジン-2-イル)エチル)アミノ)-1,3,5-トリアジン-2-イル)アミノ)エチル)アセトアミドを13.6 g(収率80%)得た。この化合物13.6gのエタノール(150 mL)溶液に、60%水酸化カリウム水溶液(150 mL)を加え、24時間加熱還流した。反応液を濃縮した後、水を加えクロロホルムで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。残留物を酢酸エチルで再結晶し、化合物N-(2-(1H-インドール3-イル)エチル)-N-(2-アミノエチル)-N-メチル-N-(2-(ピリジン-2-イル)エチル)-1,3,5-トリアジン-2,4,6-トリアミンを8.15 g(収率66%)得た。
 硬化剤1~8の化学式は以下の通りである。
Figure JPOXMLDOC01-appb-C000002
  実施例5
塗料A-1~Eの作成(表2)
表2の組成表に従い、300mlの容器に樹脂溶液A~Eを100~172g、亜酸化銅ペーストCを22~80g、トリアジン系触媒を0.16~0.32gを加えてミキサーで十分に撹拌後、混合溶剤(エタノール/2-プロパノール/水=2/2/1)6~20gを加えて撹拌、希釈した。
  実施例6
塗膜A-1~Eの性能(表2)
実施例4で作成した塗料(A-1~E)の一部を摩擦抵抗測定用の回転ドラムに塗布して室温で2時間乾燥後、測定した。一方海水での防汚性を調べるため、10×30cmの塩ビ板に塗布して海水に浸漬した。また物性測定(ヤング率、伸び率)のため、ガラス板に塗布、2時間乾燥後、人工海水に一晩浸漬して膨潤し、膨潤塗膜をガラス板より直ちに短冊片に切り取ってテンシロン(引っ張り試験機)による引っ張り試験で物性を測定した。ヤング率と伸び率の測定は、前述した通り、テンシロン(引っ張り試験機)により測定した。
摩擦抵抗の測定
摩擦抵抗は浴槽中で円筒形回転ドラム(周囲に塗装)を回転、水との摩擦で生じる僅かな抵抗(トルク)が求められる装置を設計・製作して求めた。回転ドラム(円筒形;直径:26cm、長さ:20cm)の外囲に塗装、20℃の人工海水中、300rpmで回転してその抵抗値(トルク値:最少単位:0.001cN・m)をトルク計で求めた。低減率(%)は市販塗膜の抵抗値に比較し、低減した割合を求めた。
防汚性は、海水に1年間浸漬して、海棲生物の付着状況を目視で観察した。
○は海棲生物、海藻の付着が認められず、膜の劣化も認められない。
△は海棲生物、藻類が僅かに付着し、膜の劣化が多少認められる。
×は海棲生物、藻類が付着し、膜の劣化が著しい。
比較例1
市販の塗料を実施例5と同様に塗膜を作成し、摩擦抵抗、防汚性、物性試験に供した。結果を表3に示す。
比較例2
実施例4の塗料の作成(B-2)において、トリアジン系触媒の代わりにジエチレントリアミンを用いる以外は全く同じ方法で塗膜を作成し、各種試験(摩擦抵抗、防汚性、物性)に供した。結果を表3に示す。
  比較例3
実施例4の塗料の作成(D-3)において、トリアジン系触媒の代わりにジエチレントリアミンを用いる以外は全く同じ方法で塗膜を作成し、各種試験(摩擦抵抗、防汚性、物性)に供した。各実施例、比較例についての測定結果を表2、3に示した。
 ヤング率の測定
テンシロン(引っ張り試験機)による膨潤塗膜の引っ張り試験で、引っ張り長さとその時にかかる応力との勾配から求められる。
 伸び率の測定
テンシロンによる膨潤塗膜の引っ張り試験で、引っ張り前の長さ(L1)と引っ張りにより塗膜が破断した時の長さ(L2)とすると:(L2-L1/L1)×100(%)で表す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
表2および3の結果より、市販の塗膜に比し、摩擦抵抗は著しく向上した。物性の面でヤング率、伸び率が大きく、膜の物性としては固くて脆い市場塗膜よりも丈夫で柔軟性に富む塗膜が得られた。塗膜B-3およびD-3でヤング率がやや低いが、長期の海水浸漬に十分に耐えられる物性である。一方、比較2、3でヤング率が劣る塗膜では物性的には保持しているが、海棲生物、藻類の付着が認められた。
図1には、表2に記載した実施例の防汚塗膜の膨潤度(%)および摩擦抵抗低減率(%)の値を、摩擦抵抗低減率(%)を縦軸に膨潤度(%)を横軸にしたグラフを表す。図1に示したように摩擦抵抗低減率は塗膜の膨潤度に比例して大きくなることが解った。このことは、これまでに知られていない発見であり、この発見に基づいて本発明は完成された。本発明の塗膜は、海水中での優れた摩擦抵抗低減を有していることが明白である。本発明は水性塗料で環境汚染が少なく、海水においても従来の塗膜のように加水分解することがなく、かつ防汚性に最も効果のある亜酸化銅の配合量も大きく低減しており、海水汚染も著しく低減した技術の提供である。
 本発明の防汚塗膜は、海水および真水を問わず、水上および水中で使用する物体の塗装にきわめて有効である。特に、本発明の防汚塗膜は、船舶に応用した場合、水との抵抗が低減されて燃料の節約になるだけで無く、早い走行が可能となり、時間および経費の両方が低減される。

Claims (6)

  1.  高分子ハイドロゲルから構成される塗膜中に防汚剤を含有する防汚塗膜であって、該防汚塗膜が、膨潤度10~80%およびヤング率500~30,000N/cm2を有することを特徴する水または海水との摩擦抵抗が小さい防汚塗膜。
  2.  前記防汚剤が平均粒径3μm以下を有する亜酸化銅粒子である請求項1記載の水または海水との摩擦抵抗の小さい防汚塗膜。
  3.  前記高分子ハイドロゲルがキトサンポリマー、ポリエーテルエステルポリマー、またはビニルポリマーである請求項2記載の水または海水との摩擦抵抗の小さい防汚塗膜。
  4.  前記高分子ハイドロゲルが、親水性ビニルモノマーおよびグリシジル基を有するモノマーの共重合体であり、かつ前記架橋剤がトリアジン系化合物である請求項3記載の水または海水との摩擦抵抗の小さい防汚塗膜。
  5.  請求項1~4のいずれかに記載の防汚塗膜を適用した物体。
  6. 親水性ビニルポリマー1~50重量%、防汚剤0~40重量%、溶剤および架橋剤その他の添加剤20~70重量%(重量%は防汚塗料組成物の全量に基づく)を含有する防汚塗料組成物であって、硬化した防汚塗膜が膨潤度10~80%およびヤング率500~30,000N/cm2を有することを特徴とする、水または海水との摩擦抵抗を低減する防汚塗料組成物。
PCT/JP2014/056016 2013-03-13 2014-03-07 水または海水との摩擦抵抗の小さい防汚塗膜 WO2014142035A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480027196.1A CN105209562A (zh) 2013-03-13 2014-03-07 与水或海水的摩擦阻力小的防污涂膜
JP2015505445A JP6464509B2 (ja) 2013-03-13 2014-03-07 水または海水との摩擦抵抗の小さい防汚塗膜
KR1020157028610A KR20150138237A (ko) 2013-03-13 2014-03-07 물 또는 해수와의 마찰 저항이 작은 방오 도막

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013050365 2013-03-13
JP2013-050365 2013-03-13

Publications (1)

Publication Number Publication Date
WO2014142035A1 true WO2014142035A1 (ja) 2014-09-18

Family

ID=51536694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056016 WO2014142035A1 (ja) 2013-03-13 2014-03-07 水または海水との摩擦抵抗の小さい防汚塗膜

Country Status (4)

Country Link
JP (1) JP6464509B2 (ja)
KR (1) KR20150138237A (ja)
CN (1) CN105209562A (ja)
WO (1) WO2014142035A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105542632A (zh) * 2016-02-29 2016-05-04 华南理工大学 一种天然环保的抗菌防霉涂料及其制备方法与应用
WO2017099180A1 (ja) * 2015-12-11 2017-06-15 中国塗料株式会社 摩擦抵抗低減塗膜形成用の塗料組成物、塗膜、及び塗膜付き基材
JP2017137481A (ja) * 2016-01-11 2017-08-10 東京インキ株式会社 抗菌コーティング剤、抗菌性積層体、抗菌性積層体の製造方法、および抗菌性積層体を用いたフィルムまたはシート、包装容器、包装袋、蓋材
CN107323602A (zh) * 2017-07-19 2017-11-07 吉林大学 一种三明治结构的智能水凝胶材料减阻表面

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016149743A (ja) 2015-02-15 2016-08-18 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. 整合ネットワークの排除によりサイズが低減された電力増幅器
US11591287B2 (en) 2017-06-06 2023-02-28 Wayne State University Antifouling zwitterionic polymer coating and reverse coating method
CN108264645B (zh) * 2018-01-23 2021-05-04 哈尔滨工业大学 一种图案化水凝胶防污材料及其制备方法
CN111944366B (zh) * 2020-07-08 2022-02-08 中山大学 一种高粘附性的水凝胶涂层的制备方法和应用
CN113234362B (zh) * 2021-04-26 2022-04-15 青岛职业技术学院 一种基于海藻酸盐凝胶-溶胶的光敏化防污损涂层及其制备方法与应用
CN114605871A (zh) * 2022-03-07 2022-06-10 界首市欧思润体育用品有限公司 一种海洋生物质基船舶防腐防污材料

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0444833A (ja) * 1990-06-12 1992-02-14 Agency Of Ind Science & Technol Frp製品の海生物付着防止法
JPH10175803A (ja) * 1996-12-17 1998-06-30 Taisei Corp 防汚材
JP2001511465A (ja) * 1997-07-24 2001-08-14 アクアカルチャー、シーアールシー、リミテッド 甲殻類および養殖装置の防汚
WO2003067990A1 (fr) * 2002-02-18 2003-08-21 Hokkaido Technology Licensing Office Co., Ltd. Agent de prevention de salissures
JP2004250541A (ja) * 2003-02-19 2004-09-09 Nippon Paint Co Ltd 防汚塗料組成物及び防汚塗膜
JP2005034770A (ja) * 2003-07-16 2005-02-10 Yoji Hirasawa 水棲生物が付着しない防汚被膜、それを用いた防汚物体、およびそれをうるための防汚塗料
WO2009104257A1 (ja) * 2008-02-20 2009-08-27 国立大学法人北海道大学 水棲生物が付着しない防汚被膜、防汚被膜を得るための手段およびその使用
WO2010038692A1 (ja) * 2008-09-30 2010-04-08 日本ペイント株式会社 塗料組成物およびその製造方法、塗膜、ならびに水中構造物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030194491A1 (en) * 2001-07-17 2003-10-16 Harris Gold Method of preparing an anti-fouling coating
CN102675562A (zh) * 2012-05-16 2012-09-19 天津大学 一种聚乙二醇大分子单体交联的高强度水凝胶及其光引发自由基聚合法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0444833A (ja) * 1990-06-12 1992-02-14 Agency Of Ind Science & Technol Frp製品の海生物付着防止法
JPH10175803A (ja) * 1996-12-17 1998-06-30 Taisei Corp 防汚材
JP2001511465A (ja) * 1997-07-24 2001-08-14 アクアカルチャー、シーアールシー、リミテッド 甲殻類および養殖装置の防汚
WO2003067990A1 (fr) * 2002-02-18 2003-08-21 Hokkaido Technology Licensing Office Co., Ltd. Agent de prevention de salissures
JP2004250541A (ja) * 2003-02-19 2004-09-09 Nippon Paint Co Ltd 防汚塗料組成物及び防汚塗膜
JP2005034770A (ja) * 2003-07-16 2005-02-10 Yoji Hirasawa 水棲生物が付着しない防汚被膜、それを用いた防汚物体、およびそれをうるための防汚塗料
WO2009104257A1 (ja) * 2008-02-20 2009-08-27 国立大学法人北海道大学 水棲生物が付着しない防汚被膜、防汚被膜を得るための手段およびその使用
WO2010038692A1 (ja) * 2008-09-30 2010-04-08 日本ペイント株式会社 塗料組成物およびその製造方法、塗膜、ならびに水中構造物

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017099180A1 (ja) * 2015-12-11 2017-06-15 中国塗料株式会社 摩擦抵抗低減塗膜形成用の塗料組成物、塗膜、及び塗膜付き基材
JPWO2017099180A1 (ja) * 2015-12-11 2018-10-04 中国塗料株式会社 摩擦抵抗低減塗膜形成用の塗料組成物、塗膜、及び塗膜付き基材
JP2017137481A (ja) * 2016-01-11 2017-08-10 東京インキ株式会社 抗菌コーティング剤、抗菌性積層体、抗菌性積層体の製造方法、および抗菌性積層体を用いたフィルムまたはシート、包装容器、包装袋、蓋材
CN105542632A (zh) * 2016-02-29 2016-05-04 华南理工大学 一种天然环保的抗菌防霉涂料及其制备方法与应用
CN107323602A (zh) * 2017-07-19 2017-11-07 吉林大学 一种三明治结构的智能水凝胶材料减阻表面

Also Published As

Publication number Publication date
CN105209562A (zh) 2015-12-30
JPWO2014142035A1 (ja) 2017-02-16
KR20150138237A (ko) 2015-12-09
JP6464509B2 (ja) 2019-02-06

Similar Documents

Publication Publication Date Title
JP6464509B2 (ja) 水または海水との摩擦抵抗の小さい防汚塗膜
EP3845617B1 (en) Anti-fouling coating material composition
US10077366B2 (en) Antifouling coating composition, antifouling coating film formed using said composition, and coated article having antifouling coating film on surface
JP4866741B2 (ja) 塩の基を有する重合体を含む防汚組成物
KR101712761B1 (ko) 방오 도료 조성물, 방오 도막, 방오 기재 및 방오 기재의 제조방법
JP2016089167A (ja) 防汚塗料組成物、防汚塗膜および防汚基材、ならびに防汚基材の製造方法
CN101815762A (zh) 防污涂料
CN108307625B (zh) 防污性复合涂膜、防污基材以及该防污基材的制造方法
TW201617411A (zh) 包含具有甲矽烷酯官能基及四級銨/鏻基團之聚合物之污染控制組成物
JP6909894B2 (ja) 防汚塗料組成物、防汚塗膜、防汚基材及びその製造方法
BRPI0313260B1 (pt) polímero insolúvel em água do mar, processo para a preparação de um polímero insolúvel em água do mar,uso de um polímero insolúvel em água do mar, composições para revestimento antiincrustação e uso de uma composição para revestimento
CN108368376B (zh) 防污涂料组合物、防污涂膜、防污基材以及该防污基材的制造方法
BR112017024616B1 (pt) Composição de revestimento anti-inscrustante
JP5569677B2 (ja) 水棲生物が付着しない防汚被膜、防汚被膜を得るための手段およびその使用
JP4476579B2 (ja) 水棲生物が付着しない防汚被膜、それを用いた防汚物体、およびそれをうるための防汚塗料
TW201617418A (zh) 包含含有甲矽烷酯基團之聚合物及含有四級銨/鏻磺酸鹽基團之聚合物的污染控制塗料組合物
BRPI0415537B1 (pt) "composição de revestimento anti-incrustação de auto-polimento marinha, seu processo de preparação e artigo resistente a organismos de incrustação marinhos".
WO2005014737A1 (ja) 塗料組成物、防汚塗膜、水中構造物、及び水中構造物の防汚方法
CN102702914A (zh) 防污涂料
TWI744519B (zh) 抗水生生物附著方法
JP6596802B2 (ja) 摩擦抵抗低減塗膜形成用の塗料組成物、塗膜、及び塗膜付き基材
WO2020195907A1 (ja) 防汚塗料組成物
AU2015206114B2 (en) Antifouling coating composition and its use on man-made structures
JP4806769B2 (ja) 防汚性樹脂およびその製造方法、並びに防汚塗料
JP2021155728A (ja) 防汚塗料組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14764849

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015505445

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157028610

Country of ref document: KR

Kind code of ref document: A

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112 (1) EPC, EPO FORM 1205A DATED 19.11.15.

122 Ep: pct application non-entry in european phase

Ref document number: 14764849

Country of ref document: EP

Kind code of ref document: A1