WO2014163040A1 - 近赤外線吸収ガラス、及びその製造方法 - Google Patents
近赤外線吸収ガラス、及びその製造方法 Download PDFInfo
- Publication number
- WO2014163040A1 WO2014163040A1 PCT/JP2014/059460 JP2014059460W WO2014163040A1 WO 2014163040 A1 WO2014163040 A1 WO 2014163040A1 JP 2014059460 W JP2014059460 W JP 2014059460W WO 2014163040 A1 WO2014163040 A1 WO 2014163040A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- infrared absorbing
- absorbing glass
- infrared
- glass
- Prior art date
Links
- 239000011521 glass Substances 0.000 title claims abstract description 168
- 238000000034 method Methods 0.000 title claims description 35
- 238000004519 manufacturing process Methods 0.000 title claims description 26
- 238000000149 argon plasma sintering Methods 0.000 claims abstract description 28
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 88
- 239000000758 substrate Substances 0.000 claims description 56
- 239000010408 film Substances 0.000 claims description 52
- 238000005530 etching Methods 0.000 claims description 47
- 229910000040 hydrogen fluoride Inorganic materials 0.000 claims description 27
- 238000003384 imaging method Methods 0.000 claims description 17
- 230000003287 optical effect Effects 0.000 claims description 17
- 239000000243 solution Substances 0.000 claims description 17
- 238000005498 polishing Methods 0.000 claims description 14
- 229910052731 fluorine Inorganic materials 0.000 claims description 13
- 239000011737 fluorine Substances 0.000 claims description 13
- 230000005540 biological transmission Effects 0.000 claims description 11
- 238000005520 cutting process Methods 0.000 claims description 10
- -1 fluorine ions Chemical class 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 9
- DWYMPOCYEZONEA-UHFFFAOYSA-L fluoridophosphate Chemical class [O-]P([O-])(F)=O DWYMPOCYEZONEA-UHFFFAOYSA-L 0.000 claims description 8
- 150000002500 ions Chemical class 0.000 claims description 7
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 6
- 229910019142 PO4 Inorganic materials 0.000 claims description 5
- 239000007864 aqueous solution Substances 0.000 claims description 5
- 230000000873 masking effect Effects 0.000 claims description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 5
- 239000010452 phosphate Substances 0.000 claims description 5
- 238000010521 absorption reaction Methods 0.000 claims description 4
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 claims description 3
- LDDQLRUQCUTJBB-UHFFFAOYSA-O azanium;hydrofluoride Chemical compound [NH4+].F LDDQLRUQCUTJBB-UHFFFAOYSA-O 0.000 claims description 3
- 239000010409 thin film Substances 0.000 claims description 3
- 230000002745 absorbent Effects 0.000 claims 1
- 239000002250 absorbent Substances 0.000 claims 1
- 239000010410 layer Substances 0.000 description 67
- 238000002834 transmittance Methods 0.000 description 12
- 238000012545 processing Methods 0.000 description 10
- 238000002474 experimental method Methods 0.000 description 8
- 238000002791 soaking Methods 0.000 description 8
- 238000012790 confirmation Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 5
- 238000007654 immersion Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000007650 screen-printing Methods 0.000 description 4
- 230000003746 surface roughness Effects 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000006059 cover glass Substances 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 230000002572 peristaltic effect Effects 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 238000011012 sanitization Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- 241000511976 Hoya Species 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 239000005303 fluorophosphate glass Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 238000007517 polishing process Methods 0.000 description 2
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 2
- 238000006748 scratching Methods 0.000 description 2
- 230000002393 scratching effect Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- ASZZHBXPMOVHCU-UHFFFAOYSA-N 3,9-diazaspiro[5.5]undecane-2,4-dione Chemical compound C1C(=O)NC(=O)CC11CCNCC1 ASZZHBXPMOVHCU-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- IDCBOTIENDVCBQ-UHFFFAOYSA-N TEPP Chemical compound CCOP(=O)(OCC)OP(=O)(OCC)OCC IDCBOTIENDVCBQ-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000001444 catalytic combustion detection Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 238000001182 laser chemical vapour deposition Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- YOYLLRBMGQRFTN-SMCOLXIQSA-N norbuprenorphine Chemical compound C([C@@H](NCC1)[C@]23CC[C@]4([C@H](C3)C(C)(O)C(C)(C)C)OC)C3=CC=C(O)C5=C3[C@@]21[C@H]4O5 YOYLLRBMGQRFTN-SMCOLXIQSA-N 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- LXPCOISGJFXEJE-UHFFFAOYSA-N oxifentorex Chemical compound C=1C=CC=CC=1C[N+](C)([O-])C(C)CC1=CC=CC=C1 LXPCOISGJFXEJE-UHFFFAOYSA-N 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000005365 phosphate glass Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000011698 potassium fluoride Substances 0.000 description 1
- 235000003270 potassium fluoride Nutrition 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 239000011775 sodium fluoride Substances 0.000 description 1
- 235000013024 sodium fluoride Nutrition 0.000 description 1
- PNGLEYLFMHGIQO-UHFFFAOYSA-M sodium;3-(n-ethyl-3-methoxyanilino)-2-hydroxypropane-1-sulfonate;dihydrate Chemical compound O.O.[Na+].[O-]S(=O)(=O)CC(O)CN(CC)C1=CC=CC(OC)=C1 PNGLEYLFMHGIQO-UHFFFAOYSA-M 0.000 description 1
- BFXAWOHHDUIALU-UHFFFAOYSA-M sodium;hydron;difluoride Chemical compound F.[F-].[Na+] BFXAWOHHDUIALU-UHFFFAOYSA-M 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C15/00—Surface treatment of glass, not in the form of fibres or filaments, by etching
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/208—Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/22—Absorbing filters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14618—Containers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/1462—Coatings
- H01L27/14623—Optical shielding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14625—Optical elements or arrangements associated with the device
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2204/00—Glasses, glazes or enamels with special properties
- C03C2204/08—Glass having a rough surface
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2218/00—Methods for coating glass
- C03C2218/30—Aspects of methods for coating glass not covered above
- C03C2218/34—Masking
Definitions
- the present invention relates to a near-infrared absorbing glass used for visibility correction of a solid-state imaging device and a method for manufacturing the same.
- solid-state imaging devices such as CCDs and CMOSs are used in digital still cameras and the like. Since such a solid-state imaging device has spectral sensitivity ranging from the near ultraviolet region to the near infrared region, the near infrared part of incident light is cut using near infrared absorbing glass so that it becomes close to human visibility. The color reproducibility is improved by correction (for example, Patent Document 1).
- the light shielding member when unnecessary light is shielded by using the light shielding member, it is necessary to attach (or arrange) the light shielding member with extremely high positional accuracy so as not to shield light incident through the regular optical path. In addition, a very careful work is required, and the near-infrared absorbing glass is thickened by the thickness of the light shielding member. In addition, in the operation of attaching the light shielding member to the near infrared absorbing glass, there is a possibility of attaching dust or scratching to the surface of the near infrared absorbing glass, and in the reapplying operation when the application fails. In addition to the possibility of scratching, there is also a concern that the adhesive of the light shielding tape may remain on the surface of the near-infrared absorbing glass.
- the present invention has been made in view of such circumstances, and the object of the present invention is to ghost or flare caused by unnecessary reflected light or stray light, or to separately provide a light shielding member. It is providing the near-infrared absorptive glass for solid-state image sensors which can prevent, and its manufacturing method.
- the near-infrared absorbing glass of the present invention has an incident surface on which light directed to a solid-state image sensor is incident and an exit surface through which light is transmitted and emitted toward the solid-state image sensor.
- the outer periphery of the light-transmitting portion is framed on at least one of the light-transmitting portion and the incident surface and the emitting surface. And a light scattering portion that scatters a part of the light.
- the light scattering portion is formed from at least one of the entrance surface and the exit surface to the side surface of the near-infrared absorbing glass. According to such a configuration, unnecessary light incident from the side surface of the near-infrared absorbing glass can be blocked.
- a first chamfered portion that connects the incident surface and the side surface may be formed between the incident surface and the side surface.
- a second chamfered portion that connects the incident surface and the side surface may be formed between the emission surface and the side surface.
- near infrared absorbing glass fluorophosphate salt glass containing Cu 2+, or consisting of phosphate-based glass containing Cu 2+ is preferable.
- the light scattering portion is an uneven surface formed by etching the near-infrared absorbing glass with a solution containing at least one of fluorine ions and fluorine-containing ions.
- the solution containing fluorine ions is preferably a solution containing at least one of hydrogen fluoride, ammonium fluoride, and ammonium hydrogen fluoride.
- the light scattering portion has a Haze value of 90 or more.
- the area of the light transmission part is larger than the area of the light receiving surface of the solid-state imaging device.
- the near-infrared absorbing glass can further include a functional film that covers the light transmission part and the light scattering part.
- the functional film is desirably an optical thin film having at least one function of antireflection, infrared cut, and ultraviolet cut.
- the functional film preferably includes an antireflection film having a thickness of 90 nm to 300 nm.
- the functional film preferably includes an infrared cut film having a thickness of 2000 nm to 6000 nm.
- the infrared cut film can be configured to further have an ultraviolet cut function.
- the near-infrared absorbing glass may further include a light shielding layer that is formed on at least a part of the light scattering portion and shields a part of the light. According to such a configuration, it is possible to reliably block light that causes ghosts and the like incident on the near-infrared absorbing glass.
- the near infrared absorbing glass manufacturing method of the present invention includes an incident surface on which light directed to the solid-state image sensor is incident, and an output surface on which light is transmitted and emitted toward the solid-state image sensor.
- the step of cutting the substrate of the near infrared absorbing glass into a predetermined size, and chamfering the cut substrate A step of lapping the chamfered substrate to a predetermined plate thickness, a step of polishing the front and back surfaces of the lapped substrate in a mirror shape, and light on the front and back surfaces of the polished substrate Forming a light transmissive portion that can transmit light, and forming a light scattering portion that surrounds the outer periphery of the light transmissive portion in a frame shape and scatters a part of light on at least one of the front surface and the back surface; Substrate on which a transmission part and a light scatter
- the step of forming the light transmission part and the light scattering part can include a step of masking the light transmission part and a step of etching the masked base material.
- the substrate is, fluorophosphate salt glass containing Cu 2+, or consist phosphate type glass containing Cu 2+, the step of etching, fluorine ion fu the masked substrate, the fluorine-containing ion It can etch with the solution containing at least any one.
- the etching process is performed at 1 ⁇ m to 50 ⁇ m in the thickness direction of the base material.
- the masked substrate is preferably immersed in a hydrofluoric acid aqueous solution containing 1 to 40% by weight of hydrogen fluoride for a predetermined time.
- near-infrared absorption for a solid-state imaging device capable of preventing ghosts and flares caused by unnecessary reflected light and stray light without performing sanitization or separately providing a light shielding member. Glass and a method for manufacturing the same are provided.
- FIG. 1 is a plan view of a near-infrared absorbing glass according to the first embodiment of the present invention.
- FIG. 2 is a side view of the near infrared ray absorbing glass according to the first embodiment of the present invention.
- FIG. 3 is a longitudinal cross-sectional view of a solid-state imaging device in which an opening of a package of a solid-state imaging element is sealed with a near-infrared absorbing glass according to the first embodiment of the present invention.
- FIG. 4 is a flowchart showing a method for manufacturing the near-infrared absorbing glass according to the first embodiment of the present invention.
- FIG. 5 is a side view of near-infrared absorbing glass according to a modification of the first embodiment of the present invention.
- FIG. 6 is a side view of near-infrared absorbing glass according to a modification of the first embodiment of the present invention.
- FIG. 7 is a side view of near-infrared absorbing glass according to a modification of the first embodiment of the present invention.
- FIG. 8 is a side view of the near-infrared absorbing glass according to the second embodiment of the present invention.
- FIG. 9 is a flowchart showing a manufacturing method of near-infrared absorbing glass according to the second embodiment of the present invention.
- FIG. 1 is a plan view of a near-infrared absorbing glass 10 according to the first embodiment of the present invention.
- FIG. 2 is a side view of the near-infrared absorbing glass 10 according to the first embodiment of the present invention.
- FIG. 3 is a longitudinal sectional view of the solid-state imaging device 100 in which the opening of the package 60 of the solid-state imaging device 50 is sealed with the near-infrared absorbing glass 10 according to the first embodiment of the present invention.
- the near-infrared absorbing glass 10 of this embodiment is disposed between a cover glass 30 that seals a package 60 and a low-pass filter 20 that removes optical pseudo signal moire, This is glass that absorbs the near-infrared portion of incident light incident on the imaging device 100.
- the near-infrared absorbing glass 10 is fixed by bonding with a slight gap between the cover glass 30 and the low-pass filter 20.
- the near-infrared absorbing glass 10, together with the cover glass 30 and the low-pass filter 20, is a package 60 that houses a solid-state imaging device 50 such as a CCD (Charge-Coupled Device) or CMOS (Complementary Metal Oxide Semiconductor). Attached and disposed in the optical path of incident light incident on the solid-state imaging device 50.
- a solid-state imaging device 50 such as a CCD (Charge-Coupled Device) or CMOS (Complementary Metal Oxide Semiconductor). Attached and disposed in the optical path of incident light incident on the solid-state imaging device 50.
- the near-infrared absorbing glass 10 has a rectangular plate-like appearance, an incident surface 12 on which light passing through the low-pass filter 20 is incident, and an incident surface 12 facing the incident surface 12.
- the exit surface 14 from which the emitted light exits and the side surface 16 constituting the outer peripheral edge of the near-infrared absorbing glass 10 are provided.
- the near-infrared absorbing glass 10 of the present embodiment is composed of a glass substrate 20, a cloudy layer 21, and an antireflection film 24.
- Glass substrate 20 is an infrared absorbing glass containing Cu 2+ (phosphate type glass containing fluorophosphate salt-based glass or Cu 2+ containing Cu 2+).
- a fluorophosphate-based glass has excellent weather resistance, and by adding Cu 2+ to the glass, it can absorb near infrared rays while maintaining high transmittance in the visible light region. For this reason, when the glass substrate 20 is arranged in the optical path of the incident light incident on the solid-state image sensor 50, it functions as a kind of low-pass filter so that the spectral sensitivity of the solid-state image sensor 50 is close to human visibility. It is corrected.
- fluorophosphate salt-based glass used in the glass substrate 20 of this embodiment may be a known glass compositions, particularly, Li +, alkaline earth metal ions (e.g., Ca 2+, Ba 2+, etc. ), A composition containing rare earth element ions (Y 3+ , La 3+ and the like).
- a chamfered portion 20a (first chamfered portion) formed in the outer shape processing step described later is formed between the surface of the glass substrate 20 and the side surface 16. Further, a chamfered portion 20b (second chamfered portion) formed in the outer shape processing step described later is formed between the back surface of the glass substrate 20 and the side surface 16.
- the cloudy layer 21 is a layer in which the incident surface 12 side of the glass substrate 20 is clouded by etching to form an uneven surface (details will be described later).
- white turbidity refers to a state in which the surface of the glass substrate 20 is roughened by etching.
- the glass substrate 20 contains Cu 2+, and thus the white turbid layer 21 is bright. Blue (light blue).
- the cloudy layer 21 is formed in a frame shape along the outer shape of the near-infrared absorbing glass 10 when the near-infrared absorbing glass 10 is viewed in plan, and scatters a part of incident light incident from the incident surface 12. It has a light shielding function.
- the cloudy layer 21 of the present embodiment preferably has a Haze value of 90 or more, and more preferably has a Haze value of 95 or more (described later). That is, the near-infrared absorbing glass 10 of the present embodiment is formed in a rectangular shape at the center, and a light transmitting portion T through which light incident from the incident surface 12 is transmitted to the emitting surface 14 and the light transmitting portion T are frame-shaped.
- the light scattering portion S (that is, the white turbid layer 21) blocks the optical path of light that causes ghosts and the like.
- the sizes of the light transmission part T and the light scattering part S are matched to the optical elements such as lenses arranged outside the solid-state imaging device 100, the size of the solid-state imaging element 50, and the size of the near-infrared absorbing glass 10.
- the area of the light transmitting portion S is configured to be larger than the area of the light receiving surface of the solid-state imaging device 50.
- the antireflection film 24 is a functional film for preventing reflection on the front surface (the surface on the incident surface 12 side) and the rear surface (the surface on the output surface 14 side) of the glass substrate 20, and is formed by a coating process. (Physical film thickness) It is composed of an optical thin film of 90 nm to 300 nm.
- the film structure for example, a single layer of MgF 2, 2 layers of ZrO 2 + MgF 2, it is possible to apply a three-layer structure of the Al 2 O 3 + ZrO 2 + MgF 2.
- another functional film can be formed in place of the antireflection film 24 or together with the antireflection film 24.
- Other functional films include, for example, an ultraviolet cut film with a film thickness of 2000 to 6000 nm that cuts ultraviolet rays and an infrared cut film with a film thickness of 2000 to 6000 nm that cuts infrared rays.
- the infrared cut film having a film thickness of 2000 nm to 6000 nm can be configured to further have an ultraviolet cut function.
- FIG. 4 is a flowchart showing a method for manufacturing the near-infrared absorbing glass 10 according to this embodiment.
- the manufacturing method of the near-infrared absorbing glass 10 includes steps such as an etching process for forming the cloudy layer 21 before the antireflection film 24 is formed after the primary polishing. It is characterized by providing.
- a known cutting method is prepared such that a glass plate made of a glass composition having desired optical characteristics is prepared and the outer dimensions are substantially the same as the final shape. Cut with.
- a cutting method there are a method of cutting after cutting a cutting line with a diamond cutter and a method of cutting with a dicing apparatus.
- the glass plate used at this process may use what was processed to the plate
- step of chamfering the outer peripheral surface of the glass substrate 20 In the step of chamfering the outer peripheral surface of the glass substrate 20 (outline processing step), eight ridge lines on the outer periphery of the glass substrate 20 are ground. Grinding is performed, for example, by processing a rotating grinding wheel while pressing it against each ridge line of the glass substrate 20.
- a chamfered portion 20 a that connects the surface and the side surface 16 is formed between the surface of the glass substrate 20 and the side surface 16, and the back surface is formed between the back surface and the side surface 16 of the glass substrate 20.
- a chamfered portion 20b connecting the side surface 16 is formed.
- the chamfered glass substrate 20 is roughly cut to a predetermined plate thickness using a double-side polishing machine.
- the surface of the lapped glass substrate 20 is polished into a mirror surface using a double-side polishing machine.
- the glass substrate 20 is processed into a predetermined dimension slightly thicker than the design value, and flat optical working surfaces are formed on the front surface and the back surface.
- a predetermined glass etching photoresist is applied to both surfaces of the glass substrate 20, and portions other than the light scattering portion S (that is, the cloudy layer 21) are masked by photolithography (that is, the etching resist film is formed). Form).
- the masked glass substrate 20 is immersed in an etching solution for a predetermined time (for example, 10 hours or more).
- an aqueous solution of hydrofluoric acid containing 5 to 20% by weight of hydrogen fluoride (HF) (hereinafter referred to as “hydrofluoric acid”) is used.
- the glass substrate 20 of this embodiment since it is formed from a phosphate glass containing fluorophosphate salt-based glass or Cu 2+ containing Cu 2+, the glass substrate 20 etchant When immersed in (hydrofluoric acid), the fluorine ions F ⁇ contained in the etching solution react with the metal ions contained in the glass substrate 20 and deposit on the surface as fluoride crystals. A portion corresponding to the light scattering portion S becomes cloudy, and a cloudy layer 21 is formed.
- the processing amount when etching the glass plate is preferably 1 ⁇ m to 50 ⁇ m, more preferably 2 ⁇ m to 30 ⁇ m in the glass thickness direction.
- an aqueous solution of ammonium fluoride, ammonium hydrogen fluoride, sodium fluoride, potassium fluoride, sodium hydrogen fluoride, potassium hydrogen fluoride, or the like containing fluorine ions (F ⁇ ) can be applied. It is.
- a solution containing hexafluorosilicic acid, ammonium hexafluorosilicate, hexafluorotitanic acid, hexafluorophosphoric acid, tetrafluoroboric acid or the like containing fluorine-containing ions (for example, SiF 6 2 ⁇ ) is applied. It is also possible to do.
- etching solution a solution in which another compound is added to and mixed with an aqueous solution containing fluorine ions or fluorine-containing ions can also be used.
- the compounds that can be added include inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid and phosphoric acid, organic acids such as acetic acid, citric acid, malic acid and succinic acid, inorganic acid salts such as ammonium sulfate and ammonium hydrogen phosphate, Organic acid salts such as ammonium acetate and sodium citrate are listed.
- the mask (etching resist film) formed on the glass substrate 20 is removed.
- the surface of the glass substrate 20 is again polished using a double-side polishing machine, and the glass substrate 20 is processed so as to have a plate thickness as designed.
- the secondary polishing step is completed, at least one of the light transmitting portion T and the light scattering portion S of the glass substrate 20 has a thickness as designed.
- an antireflection film 24 is formed on the front and back surfaces of the glass substrate 20.
- other functional films such as an infrared cut film and an ultraviolet cut film may be formed as necessary.
- the antireflection film 24 is not necessarily provided on both surfaces, and may be formed on at least one of the two light-transmitting surfaces of the glass substrate 20.
- the method of forming the functional film is not particularly limited as long as a predetermined function can be realized.
- a sputtering method for example, a sputtering method, a vacuum evaporation method, a thermal CVD method, a laser CVD method, a plasma CVD method, a molecular beam epitaxy method (MBE) Method), ion plating method, laser ablation method, chemical vapor deposition method (or CVD method) such as metal organic chemical vapor deposition (MOCVD), sol-gel method, spin coating or screen printing coating method
- a liquid phase growth method such as a plating method can also be applied.
- the frame-like white turbid layer 21 (light scattering portion S) can be formed inside the near-infrared absorbing glass 10. Therefore, when such a near-infrared absorbing glass 10 is used as a window glass of the solid-state imaging device 100, ghosts and flares caused by unnecessary reflected light and stray light can be shielded by the light scattering portion S. There is no need to separately provide a light shielding member such as a light shielding tape.
- a near-infrared absorbing glass (product name: CM5000, manufactured by HOYA CANDEO OPTRONICS, glass composition: fluorophosphate glass, size: L19.2 mm ⁇ W26.6 mm ⁇ T0.58 rectangular shape) was prepared.
- the near-infrared absorbing glass was immersed in hydrofluoric acid (temperature 18 to 21 ° C.) containing 9.8% by weight of HF for 15 hours, then washed with peristaltic water and naturally dried, and 19.8% by weight of HF.
- the evaluation of the cloudy layer 21 formed on each sample is classified into three modes (three states) from the viewpoint of color, gloss, and peelability, and the transmittance T (%) and reflectance R for each mode. (%), Haze value, and surface roughness Ra ( ⁇ m) were measured.
- the white turbid layer 21 functions as a light shielding film was specified, and further, the conditions under which the white turbid layer 21 functioning as a light shielding film was formed were determined.
- Table 1 shows the measurement results of the three modes of the cloudy layer 21, the transmittance T (%), the reflectance R (%), the haze value, and the surface roughness Ra ( ⁇ m), Max (maximum value), Min (minimum). Value) and Ave (average value).
- “treatment time” represents etching time (that is, immersion time).
- the cloudy layer 21 formed in the above-described sample has a clear white color, is glossy, has mode A that peels into large pieces, and has a cloudy color. It was found that there are three types of modes: mode B, which has a glossy appearance, and mode B which peels into small pieces, and mode C which has a cloudy color, has no gloss and does not peel.
- “before processing” represents near-infrared absorbing glass before performing the etching step.
- the transmittance T of the cloudy layer 21 of mode B and mode C was extremely high. It was found to be low (6.3% or less) and reflectivity R was low (4% or less). Further, it was found that the haze value of the white turbid layer 21 of mode B and mode C is as high as 90 to 98, and thus has a function of scattering light, but the relationship with the surface roughness Ra is It was not recognized from the experimental results. Thus, it was found from the effect confirmation experiment 1 that the mode B and the mode C cloudy layer 21 satisfy the predetermined characteristics and can be used as a light shielding film.
- the standard of transmittance T “6.3% or less” is converted from the OD standard (OD ⁇ 1.2) of the light shielding film.
- the data on transmittance T and reflectance R are the results of evaluation in the wavelength range of 400 to 700 nm.
- Table 2 shows the results of determining the relationship between the etching process conditions, the ratio (occupancy) of the three modes of the cloudy layer 21 in the sample created under each etching condition, and the peeled area.
- a near infrared ray absorbing glass (product name: CM5000, manufactured by HOYA CANDEO OPTRONICS, glass composition: fluorophosphate glass, dimensions) : L19.2 mm ⁇ W26.6 mm ⁇ T0.58 rectangular shape).
- the near-infrared absorbing glass is composed of hydrofluoric acid containing 5% by weight of HF (temperature 18 to 21 ° C.), hydrofluoric acid containing 10% by weight (temperature 18 to 21 ° C.), and hydrofluoric acid containing 15% by weight (temperature).
- Table 3 is a table showing the measurement results of the transmittance T (%) of the cloudy layer 21 of each sample as Max (maximum value), Min (minimum value), and Ave (average value).
- Table 4 is a table showing the measurement results of the reflectance R (%) of the cloudy layer 21 of each sample in terms of Max (maximum value), Min (minimum value), and Ave (average value).
- Table 5 is a table showing the measurement results of the haze value of the cloudy layer 21 of each sample as Max (maximum value), Min (minimum value), and Ave (average value).
- “treatment time” represents etching time (that is, immersion time).
- the etching conditions satisfying this are as follows.
- cells having transmittance T ⁇ 6.3% are shown in gray.
- the etching conditions satisfying this are as follows.
- cells with reflectance R ⁇ 0.8% are shown in gray.
- the immersion time is shorter as the hydrofluoric acid having a higher HF concentration is used. This is due to the fact that the higher the etching solution concentration, the faster the etching rate. However, when the etching solution concentration is too high, the etching rate becomes too high, resulting in large variations between samples. There is a problem that a stable product cannot be manufactured. On the other hand, when the concentration of the etching solution is too low, there is a problem that the immersion time becomes long and the production efficiency is lowered. Therefore, in consideration of product variation and production efficiency, it is preferable to use hydrofluoric acid containing 1 to 40% by weight of HF, and using hydrofluoric acid containing 2.5 to 30% by weight of HF. More preferred.
- the cloudy layer 21 of this embodiment was demonstrated as what is provided in the entrance plane 12 side of the glass base material 20, it is not limited to such a structure.
- the cloudy layer 21 may be formed on the emission surface 14 side.
- the cloudy layer 21 may be formed in both the incident surface 12 side and the output surface 14 side.
- the cloudy layer 21 can be formed on the side surface 16 in addition to the incident surface 12 side and the emission surface 14 side. If the configuration shown in FIGS.
- the area of the cloudy layer 21 can be expanded in a range that does not affect the light incident through the normal optical path, so that more effective light shielding is performed.
- Can do. 5 to 7 can be manufactured by the above-described manufacturing method if only the mask pattern used in the masking process is changed.
- FIG. 8 is a side view of the near-infrared absorbing glass 10M according to the second embodiment of the present invention.
- the near-infrared absorbing glass 10 ⁇ / b> M of the present embodiment has a light shielding layer 23 between the cloudy layer 21 and the antireflection film 24, and the near-infrared absorbing glass 10 according to the first embodiment. And different.
- the light shielding layer 23 is a black ink layer having a thickness of about 10 ⁇ m formed by screen printing, is formed on the cloudy layer 21, and is not required to enter the surface of the glass substrate 20 (surface on the incident surface 12 side). Block out light.
- FIG. 9 is a flowchart showing a method for manufacturing the near-infrared absorbing glass 10M according to the present embodiment.
- the manufacturing method of the near-infrared absorbing glass 10M according to the present embodiment is the first implementation in that the printing process is performed before the film forming process after the secondary polishing process. It differs from the manufacturing method of the near-infrared absorption glass 10 which concerns on a form.
- the printing process is a process of forming the light shielding layer 23 by so-called screen printing.
- a screen having a pattern portion formed at a position corresponding to the cloudy layer 21 is placed on the surface of the glass substrate 20 (the surface on the incident surface 12 side), and black ink is pushed out of the pattern portion.
- a light shielding layer 23 is formed thereon.
- woven fabrics such as nylon, tetron, and stainless steel, can be used.
- black ink solvent-based ink and UV-based ink can be used.
- inkjet printing can be applied instead of screen printing.
- the antireflection film 24 is formed on the front surface and the back surface of the glass substrate 20 by the film forming process described above, and the near-infrared absorbing glass 10M according to this embodiment is completed.
- the light shielding layer 23 when the light shielding layer 23 is further provided on the cloudy layer 21, unnecessary light incident from the incident surface 12 can be reliably blocked by the light shielding layer 23. Further, as described above, since the surface of the white turbid layer 21 is roughened by etching, the light shielding layer 23 has high adhesion to the glass substrate 20 (that is, the white turbid layer 21) and peels off. It will be difficult.
- the configuration in which the light shielding layer 23 is further provided on the cloudy layer 21 has been described.
- the light shielding layer 23 is not necessarily formed so as to cover the cloudy layer 21, and the cloudy layer 21 is not necessarily formed. What is necessary is just to form in at least one part.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical & Material Sciences (AREA)
- Optics & Photonics (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Geochemistry & Mineralogy (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Surface Treatment Of Glass (AREA)
- Optical Filters (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Optical Elements Other Than Lenses (AREA)
- Surface Treatment Of Optical Elements (AREA)
Abstract
Description
図1は、本発明の第1の実施形態に係る近赤外線吸収ガラス10の平面図である。図2は、本発明の第1の実施形態に係る近赤外線吸収ガラス10の側面図である。また、図3は、本発明の第1の実施形態に係る近赤外線吸収ガラス10によって、固体撮像素子50のパッケージ60の開口部が封止された固体撮像デバイス100の縦断面図である。
次に、白濁層21を形成するためのエッチング条件等を求めるために本発明の発明者らが行った効果確認実験について説明する。
先ず、加工前(エッチング工程前)のガラス素材(ガラス基材20)として、近赤外線吸収ガラス(製品名:CM5000、HOYA CANDEO OPTRONICS社製、ガラス組成:フツリン酸塩ガラス、寸法:L19.2mm×W26.6mm×T0.58の矩形状)を用意した。そして、この近赤外線吸収ガラスを、HFを9.8重量%含有したフッ酸(温度18~21℃)に15時間浸漬し、その後搖動水洗、自然乾燥させたサンプルと、HFを19.8重量%含有したフッ酸(温度18~21℃)に1時間、3時間、5時間、15時間それぞれ浸漬し、その後搖動水洗、自然乾燥させたサンプルを作成した。そして、各サンプルに形成された白濁層21について以下のような評価を行った。
各サンプル上に形成された白濁層21の評価は、色、光沢、剥離性の観点から、3つのモード(3つの状態)に分類し、各モードについて、透過率T(%)、反射率R(%)、Haze値、表面粗さRa(μm)を測定することによって行った。
表1は、白濁層21の3つのモードと、透過率T(%)、反射率R(%)、Haze値、表面粗さRa(μm)の測定結果をMax(最大値)、Min(最小値)、Ave(平均値)で示した表である。なお、表1及び表2において、「処理時間」はエッチング時間(つまり、浸漬時間)を表している。表1に示すように、上述したサンプルに形成された白濁層21は、清白色の色を有し、光沢が有り、大片状に剥離するモードAと、白濁色の色を有し、軽微な光沢が有り、小片状に剥離するモードBと、白濁色の色を有し、光沢がなく、剥離しないモードCの3つの状態のものに分類されることが分かった。なお、表1中、「加工前」と記載したものは、エッチング工程を行う前の近赤外線吸収ガラスを表している。
このように、上述の効果確認実験1によって、所定濃度のHFを含有したフッ酸に所定時間浸漬することで(つまり、エッチング条件をコントロールすることで)、モードB又はモードCの状態の白濁層21を安定して得ることができることが分かった。そこで、HF濃度と、浸漬時間とを変化させて、安定した白濁層21を得るための最適な条件を調べた。
効果確認実験1と同様、加工前(エッチング工程前)のガラス素材(ガラス基材20)として、近赤外線吸収ガラス(製品名:CM5000、HOYA CANDEO OPTRONICS社製、ガラス組成:フツリン酸塩ガラス、寸法:L19.2mm×W26.6mm×T0.58の矩形状)を用意した。そして、この近赤外線吸収ガラスを、HFを5重量%含有したフッ酸(温度18~21℃)、10重量%含有したフッ酸(温度18~21℃)、15重量%含有したフッ酸(温度18~21℃)及び20重量%含有したフッ酸(温度18~21℃)に、それぞれ4時間、6時間、8時間、10時間、15時間浸漬し、その後搖動水洗、自然乾燥させたサンプルを作成した。そして、各サンプルに形成された白濁層21について透過率T(%)、反射率R(%)、Haze値を測定した。
表3は、各サンプルの白濁層21の透過率T(%)の測定結果をMax(最大値)、Min(最小値)、Ave(平均値)で示した表である。表4は、各サンプルの白濁層21の反射率R(%)の測定結果をMax(最大値)、Min(最小値)、Ave(平均値)で示した表である。表5は、各サンプルの白濁層21のHaze値の測定結果をMax(最大値)、Min(最小値)、Ave(平均値)で示した表である。なお、表3~表5において、「処理時間」はエッチング時間(つまり、浸漬時間)を表している。
(1)5重量%のHFを含有したフッ酸に15時間以上浸漬すること。
(2)10重量%のHFを含有したフッ酸に10時間以上浸漬すること。
(3)15重量%のHFを含有したフッ酸に4時間以上浸漬すること。
(4)20重量%のHFを含有したフッ酸に4時間以上浸漬すること。
(1)5重量%のHFを含有したフッ酸に15時間以上浸漬すること。
(2)10重量%のHFを含有したフッ酸に10時間以上浸漬すること。
(3)15重量%のHFを含有したフッ酸に4時間以上浸漬すること。
(4)20重量%のHFを含有したフッ酸に4時間以上浸漬すること。
図8は、本発明の第2の実施形態に係る近赤外線吸収ガラス10Mの側面図である。
Claims (20)
- 固体撮像素子に向かう光が入射する入射面と、前記光が透過して前記固体撮像素子に向かって出射される出射面とを表裏に備え、前記光の近赤外成分を吸収する板状の近赤外線吸収ガラスにおいて、
前記光が透過可能な光透過部と、
前記入射面及び前記出射面の少なくとも一方の面上に、前記光透過部の外周を枠状に取り囲むように形成され、前記光の一部を散乱させる光散乱部と、
を備えることを特徴とする近赤外線吸収ガラス。 - 前記光散乱部は、前記入射面及び前記出射面の少なくとも一方の面から前記近赤外線吸収ガラスの側面にわたって形成されていることを特徴とする請求項1に記載の近赤外線吸収ガラス。
- 前記入射面と前記側面との間に、該入射面と該側面とをつなぐ第1の面取り部が形成されていることを特徴とする請求項2に記載の近赤外線吸収ガラス。
- 前記出射面と前記側面との間に、該入射面と該側面とをつなぐ第2の面取り部が形成されていることを特徴とする請求項2又は請求項3に記載の近赤外線吸収ガラス。
- 前記近赤外線吸収ガラスが、Cu2+を含有するフツリン酸塩系ガラス、又はCu2+を含有するリン酸塩系ガラスからなることを特徴とする請求項1から請求項4のいずれか一項に記載の近赤外線吸収ガラス。
- 前記光散乱部が、前記近赤外線吸収ガラスをフッ素イオン、フッ素含有イオンの少なくともいずれか一方を含む溶液でエッチングすることによって形成される凹凸面であることを特徴とする請求項5に記載の近赤外線吸収ガラス。
- 前記溶液は、フッ化水素、フッ化アンモニウム、フッ化水素アンモニウムの少なくとも1つ以上を含む溶液であることを特徴とする請求項6に記載の近赤外吸収ガラス。
- 前記光散乱部のHaze値が90以上であることを特徴とする請求項1から請求項7のいずれか一項に記載の近赤外線吸収ガラス。
- 前記光透過部の面積が、前記固体撮像素子の受光面の面積よりも大きいことを特徴とする請求項1から請求項7のいずれか一項に記載の近赤外線吸収ガラス。
- 前記光透過部及び前記光散乱部を覆う機能膜を更に備えることを特徴とする請求項1から請求項9のいずれか一項に記載の近赤外線吸収ガラス。
- 前記機能膜は、反射防止、赤外線カット、紫外線カットの少なくとも1つ以上の機能を有する光学薄膜であることを特徴とする請求項10に記載の近赤外線吸収ガラス。
- 前記機能膜は、90nm~300nmの膜厚を有する反射防止膜を含むことを特徴とする請求項11に記載の近赤外線吸収ガラス。
- 前記機能膜は、2000nm~6000nmの膜厚を有する赤外線カット膜を含むことを特徴とする請求項11又は請求項12に記載の近赤外線吸収ガラス。
- 前記赤外線カット膜が、さらに紫外線カット機能を備えることを特徴とする請求項13に記載の近赤外線吸収ガラス。
- 前記光散乱部の少なくとも一部に形成され、前記光の一部を遮光する遮光層を更に備えることを特徴とする請求項1から請求項14のいずれか一項に記載の近赤外線吸収ガラス。
- 固体撮像素子に向かう光が入射する入射面と、前記光が透過して前記固体撮像素子に向かって出射される出射面とを表裏に備え、前記光の近赤外成分を吸収する板状の近赤外線吸収ガラスの製造方法において、
前記近赤外線吸収ガラスの基材を所定の寸法に切断する工程と、
前記切断された基材を面取りする工程と、
前記面取りされた基材を所定の板厚寸法までラッピングする工程と、
前記ラッピングされた基材の表面及び裏面を鏡面状に研磨する工程と、
前記研磨された基材の表面及び裏面に前記光が透過可能な光透過部を形成すると共に、前記表面及び前記裏面の少なくとも一方の面上に、前記光透過部の外周を枠状に取り囲み前記光の一部を散乱させる光散乱部を形成する工程と、
前記光透過部及び前記光散乱部が形成された基材の表面及び裏面を鏡面状に研磨する工程と、
を具備することを特徴とする近赤外線吸収ガラスの製造方法。 - 前記光透過部及び前記光散乱部を形成する工程は、
前記光透過部をマスキングする工程と、
前記マスキングされた基材をエッチングする工程と、
を具備することを特徴とする請求項16に記載の近赤外線吸収ガラスの製造方法。 - 前記基材は、Cu2+を含有するフツリン酸塩系ガラス、又はCu2+を含有するリン酸塩系ガラスからなり、
前記エッチングする工程は、前記マスキングされた基材をフッ素イオン、フッ素含有イオンの少なくともいずれか一方を含む溶液によってエッチングすることを特徴とする請求項17に記載の近赤外線吸収ガラスの製造方法。 - 前記エッチングする工程は、前記基材の板厚方向で、1μm~50μmを加工することを特徴とする請求項17又は請求項18に記載の近赤外線吸収ガラスの製造方法。
- 前記エッチングする工程は、前記マスキングされた基材を、フッ化水素を1~40重量%含有するフッ酸水溶液に所定時間浸漬することを特徴とする請求項18又は請求項19に記載の近赤外線吸収ガラスの製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020157027925A KR101908575B1 (ko) | 2013-04-01 | 2014-03-31 | 근적외선 흡수 유리 및 그 제조 방법 |
CN201480018208.4A CN105122453B (zh) | 2013-04-01 | 2014-03-31 | 近红外线吸收玻璃及其制造方法 |
JP2015510077A JP5947976B2 (ja) | 2013-04-01 | 2014-03-31 | 近赤外線吸収ガラス、及びその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-076502 | 2013-04-01 | ||
JP2013076502 | 2013-04-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014163040A1 true WO2014163040A1 (ja) | 2014-10-09 |
Family
ID=51658336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/059460 WO2014163040A1 (ja) | 2013-04-01 | 2014-03-31 | 近赤外線吸収ガラス、及びその製造方法 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5947976B2 (ja) |
KR (1) | KR101908575B1 (ja) |
CN (1) | CN105122453B (ja) |
TW (1) | TWI616420B (ja) |
WO (1) | WO2014163040A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016092388A (ja) * | 2014-11-02 | 2016-05-23 | Hoya Candeo Optronics株式会社 | 光学素子 |
CN106851075A (zh) * | 2017-03-31 | 2017-06-13 | 维沃移动通信有限公司 | 一种摄像头装饰圈的加工方法 |
JPWO2017111091A1 (ja) * | 2015-12-24 | 2018-03-29 | パナソニック株式会社 | ガラス用研磨液および研磨方法 |
WO2020179312A1 (ja) * | 2019-03-05 | 2020-09-10 | 株式会社Nsc | ガラス用エッチング液およびガラス基板製造方法 |
WO2021018726A1 (de) * | 2019-07-31 | 2021-02-04 | Leica Camera Ag | Sensoreinheit |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016149743A (ja) | 2015-02-15 | 2016-08-18 | スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. | 整合ネットワークの排除によりサイズが低減された電力増幅器 |
TWI597481B (zh) * | 2015-12-22 | 2017-09-01 | 閤康生物科技股份有限公司 | 樣本收集元件及其製作方法 |
WO2017124664A1 (en) | 2016-01-21 | 2017-07-27 | 3M Innovative Properties Company | Optical camouflage filters |
EP3405818A4 (en) * | 2016-01-21 | 2020-01-01 | 3M Innovative Properties Company | OPTICAL CAMOUFLAGE FILTER |
CN106597590A (zh) * | 2017-01-13 | 2017-04-26 | 广州市佳禾光电科技有限公司 | 一种低内反射复合基材及其制造方法 |
CN116354609B (zh) * | 2023-03-08 | 2023-09-22 | 东莞市吉田光学玻璃有限公司 | 一种用于人脸识别玻璃面板的防眩晕处理工艺 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007288025A (ja) * | 2006-04-19 | 2007-11-01 | Dainippon Printing Co Ltd | 固体撮像装置およびその製造方法 |
JP2008166632A (ja) * | 2006-12-29 | 2008-07-17 | Manabu Bonshihara | 固体撮像装置及びその製造方法並びにカメラモジュール |
JP2010168262A (ja) * | 2008-03-31 | 2010-08-05 | Asahi Glass Co Ltd | 板状光学ガラス及び板状光学ガラスの端面処理方法 |
JP2012099733A (ja) * | 2010-11-04 | 2012-05-24 | Asahi Glass Co Ltd | 板状ガラスおよびその製造方法 |
JP2013038164A (ja) * | 2011-08-05 | 2013-02-21 | Sony Corp | 固体撮像装置、電子機器 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4838501B2 (ja) * | 2004-06-15 | 2011-12-14 | 富士通セミコンダクター株式会社 | 撮像装置及びその製造方法 |
JP2007099604A (ja) | 2005-09-06 | 2007-04-19 | Hoya Corp | 近赤外線吸収ガラス、それを備えた近赤外線吸収素子および撮像装置 |
CN1944302A (zh) * | 2005-09-06 | 2007-04-11 | Hoya株式会社 | 近红外吸收玻璃,具有其的近红外吸收元件以及图像传感器件 |
JP2007091537A (ja) * | 2005-09-29 | 2007-04-12 | Hoya Corp | 近赤外光吸収ガラス材ロットおよびそれを用いる光学素子の製造方法 |
US20070108900A1 (en) * | 2005-11-15 | 2007-05-17 | Boek Heather D | Method and apparatus for the elimination of interference fringes in an OLED device |
JP5379473B2 (ja) * | 2006-04-14 | 2013-12-25 | Hoya Candeo Optronics株式会社 | 銅含有偏光ガラスおよび光アイソレーター |
JP5407490B2 (ja) * | 2008-03-31 | 2014-02-05 | 旭硝子株式会社 | 固体撮像素子パッケージ用窓ガラス |
FR3021432B1 (fr) * | 2014-05-20 | 2017-11-10 | Bull Sas | Processeur a instructions conditionnelles |
-
2014
- 2014-03-31 WO PCT/JP2014/059460 patent/WO2014163040A1/ja active Application Filing
- 2014-03-31 CN CN201480018208.4A patent/CN105122453B/zh active Active
- 2014-03-31 KR KR1020157027925A patent/KR101908575B1/ko active IP Right Grant
- 2014-03-31 JP JP2015510077A patent/JP5947976B2/ja active Active
- 2014-04-01 TW TW103112147A patent/TWI616420B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007288025A (ja) * | 2006-04-19 | 2007-11-01 | Dainippon Printing Co Ltd | 固体撮像装置およびその製造方法 |
JP2008166632A (ja) * | 2006-12-29 | 2008-07-17 | Manabu Bonshihara | 固体撮像装置及びその製造方法並びにカメラモジュール |
JP2010168262A (ja) * | 2008-03-31 | 2010-08-05 | Asahi Glass Co Ltd | 板状光学ガラス及び板状光学ガラスの端面処理方法 |
JP2012099733A (ja) * | 2010-11-04 | 2012-05-24 | Asahi Glass Co Ltd | 板状ガラスおよびその製造方法 |
JP2013038164A (ja) * | 2011-08-05 | 2013-02-21 | Sony Corp | 固体撮像装置、電子機器 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016092388A (ja) * | 2014-11-02 | 2016-05-23 | Hoya Candeo Optronics株式会社 | 光学素子 |
JPWO2017111091A1 (ja) * | 2015-12-24 | 2018-03-29 | パナソニック株式会社 | ガラス用研磨液および研磨方法 |
CN106851075A (zh) * | 2017-03-31 | 2017-06-13 | 维沃移动通信有限公司 | 一种摄像头装饰圈的加工方法 |
WO2020179312A1 (ja) * | 2019-03-05 | 2020-09-10 | 株式会社Nsc | ガラス用エッチング液およびガラス基板製造方法 |
JP2020142941A (ja) * | 2019-03-05 | 2020-09-10 | パナソニック株式会社 | ガラス用エッチング液およびガラス基板製造方法 |
WO2021018726A1 (de) * | 2019-07-31 | 2021-02-04 | Leica Camera Ag | Sensoreinheit |
US12094902B2 (en) | 2019-07-31 | 2024-09-17 | Leica Camera Ag | Image sensor assembly |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014163040A1 (ja) | 2017-02-16 |
TWI616420B (zh) | 2018-03-01 |
KR101908575B1 (ko) | 2018-10-17 |
CN105122453B (zh) | 2018-08-10 |
KR20150138231A (ko) | 2015-12-09 |
TW201504182A (zh) | 2015-02-01 |
JP5947976B2 (ja) | 2016-07-06 |
CN105122453A (zh) | 2015-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5947976B2 (ja) | 近赤外線吸収ガラス、及びその製造方法 | |
KR102061477B1 (ko) | 근적외선 커트 필터 | |
KR102569093B1 (ko) | 광 필터 | |
KR20180062389A (ko) | 실리콘-게르마늄계 광학 필터 | |
KR101908541B1 (ko) | 투명 기판 | |
US10241245B2 (en) | Optical filter and method for manufacturing optical filter | |
JP6790831B2 (ja) | 光学フィルタ及び撮像装置 | |
US20150358601A1 (en) | Optical Filter on Objective Lens for 3D Cameras | |
JP2010197595A (ja) | 近赤外線カットフィルタガラスおよびその製造方法 | |
KR101988934B1 (ko) | 광학 소자 | |
TWI597252B (zh) | 紅外線吸收玻璃晶圓及其製造方法 | |
JP2012014133A (ja) | 多機能付偏光フィルター及び多機能付偏光フィルターの製造方法 | |
JP2016015479A (ja) | 光学素子 | |
WO2007074977A1 (en) | Photodiode for image sensor and method of manufacturing the same | |
KR101985813B1 (ko) | 광학 소자 | |
JP6312260B2 (ja) | 光学素子 | |
CN204536583U (zh) | 光学元件 | |
JP2015011319A (ja) | 近赤外線カットフィルタ | |
JP2012099733A (ja) | 板状ガラスおよびその製造方法 | |
KR100627671B1 (ko) | 이동통신단말기의 카메라 모듈 및 그 제조방법 | |
KR200381637Y1 (ko) | 이동통신단말기의 카메라 모듈 | |
JP2007238403A (ja) | ガラス基板の切断方法及び光学ガラス | |
JP2006031029A (ja) | フィルターレンズを備える撮像レンズアセンブリ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14778078 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2015510077 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20157027925 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14778078 Country of ref document: EP Kind code of ref document: A1 |