WO2023189276A1 - 高周波回路および通信装置 - Google Patents

高周波回路および通信装置 Download PDF

Info

Publication number
WO2023189276A1
WO2023189276A1 PCT/JP2023/008527 JP2023008527W WO2023189276A1 WO 2023189276 A1 WO2023189276 A1 WO 2023189276A1 JP 2023008527 W JP2023008527 W JP 2023008527W WO 2023189276 A1 WO2023189276 A1 WO 2023189276A1
Authority
WO
WIPO (PCT)
Prior art keywords
band
filter
high frequency
lte
terminal
Prior art date
Application number
PCT/JP2023/008527
Other languages
English (en)
French (fr)
Inventor
農史 小野
伸也 人見
弘嗣 森
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023189276A1 publication Critical patent/WO2023189276A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits

Definitions

  • the present invention relates to a high frequency circuit and a communication device.
  • Patent Document 1 discloses a high frequency module (high frequency circuit) having a configuration in which a plurality of filters with different passbands are connected to an antenna via a multiplexer (switch).
  • reception-only SDL (supplimentary DownLink) band is specified.
  • FDD frequency division duplex
  • TDD time division duplex
  • SDL supply-only SDL
  • an object of the present invention is to provide a small-sized high-frequency circuit and a communication device that can transmit high-frequency signals in the SDL band.
  • a high frequency circuit includes a first filter having a passband including a first band of SDL and a second band of SDL, and a low-noise filter connected to the first filter.
  • An amplifier An amplifier.
  • FIG. 1 is a circuit configuration diagram of a high frequency circuit and a communication device according to an embodiment.
  • FIG. 2 is a diagram illustrating the frequency relationship of bands applied to the high frequency circuit according to the embodiment.
  • FIG. 3A is a diagram showing a first mode circuit state of the high frequency circuit according to the embodiment.
  • FIG. 3B is a diagram showing a second mode circuit state of the high frequency circuit according to the embodiment.
  • FIG. 4A is a circuit configuration diagram of a high frequency circuit according to Comparative Example 1.
  • FIG. 4B is a diagram showing a first mode circuit state of the high frequency circuit according to Comparative Example 2.
  • FIG. 5 is a circuit configuration diagram of a high frequency circuit according to modification example 1.
  • FIG. 6 is a circuit configuration diagram of a high frequency circuit and a primary circuit according to modification example 2.
  • each figure is a schematic diagram with emphasis, omission, or ratio adjustment as appropriate to illustrate the present invention, and is not necessarily strictly illustrated, and the actual shape, positional relationship, and ratio may differ. It may be different.
  • substantially the same configurations are denoted by the same reference numerals, and overlapping explanations may be omitted or simplified.
  • connection means not only the case of direct connection with a connection terminal and/or wiring conductor, but also the case of electrical connection through other circuit elements.
  • connected between A and B means connected to A and B on a route connecting A and B.
  • a "transmission path” refers to a transmission line that includes wiring through which a high-frequency transmission signal propagates, electrodes directly connected to the wiring, and terminals directly connected to the wiring or the electrodes. It means something.
  • “receiving path” means a transmission line consisting of wiring through which high-frequency received signals propagate, electrodes directly connected to the wiring, and terminals directly connected to the wiring or the electrodes. do.
  • FIG. 1 is a circuit configuration diagram of a high frequency circuit 1 and a communication device 5 according to the first embodiment.
  • a communication device 5 includes a high frequency circuit 1, an antenna 2, an RF signal processing circuit (RFIC) 3, and a baseband signal processing circuit (BBIC) 4. .
  • RFIC RF signal processing circuit
  • BBIC baseband signal processing circuit
  • the high frequency circuit 1 transmits high frequency signals between the antenna 2 and the RFIC 3.
  • the detailed circuit configuration of the high frequency circuit 1 will be described later.
  • the antenna 2 is connected to the antenna connection terminal 100 of the high frequency circuit 1, transmits the high frequency signal output from the high frequency circuit 1, and also receives a high frequency signal from the outside and outputs it to the high frequency circuit 1.
  • the RFIC 3 is an example of a signal processing circuit that processes high frequency signals. Specifically, the RFIC 3 performs signal processing on the high frequency received signal input via the reception path of the high frequency circuit 1 by down-converting or the like, and outputs the received signal generated by the signal processing to the BBIC 4 . Further, the RFIC 3 processes the transmission signal input from the BBIC 4 by up-converting or the like, and outputs the high-frequency transmission signal generated by the signal processing to the transmission path of the high-frequency circuit 1. Furthermore, the RFIC 3 has a control section that controls the switches, amplifiers, etc. that the high frequency circuit 1 has. Note that part or all of the function of the control unit of the RFIC 3 may be implemented outside the RFIC 3, for example, in the BBIC 4 or the high frequency circuit 1.
  • the antenna 2 and the BBIC 4 are not essential components.
  • the high frequency circuit 1 includes filters 11, 21, 31, 41, 51, 52, 53, 54, 55 and 56, a power amplifier 71, low noise amplifiers 72 and 73, a switch 60, 61, 62, and 63, an antenna connection terminal 100, a high frequency input terminal 110, and high frequency output terminals 120 and 130.
  • the antenna connection terminal 100 is connected to the antenna 2.
  • the high frequency input terminal 110 is a terminal connected to the RFIC 3 and for receiving a high frequency transmission signal from the RFIC 3.
  • the high frequency output terminals 120 and 130 are terminals that are connected to the RFIC 3 and output high frequency reception signals to the RFIC 3.
  • the filter 11 is an example of a first filter, and has a pass band including a first band of SDL (Supplementary DownLink) and a second band of SDL.
  • the input end of the filter 11 is connected to the antenna connection terminal 100 via the terminal 60e (first terminal) of the switch 60, and the output end of the filter 11 is connected to the low noise amplifier 73 via the switch 63.
  • the first band is, for example, band B29 for LTE or band n29 (717-728MHz) for 5G-NR.
  • the second band is, for example, band B67 for LTE or band n67 (738-758 MHz) for 5G-NR.
  • the low noise amplifier 73 is connected to the filter 11 via the switch 63 and amplifies the first and second band high frequency received signals (hereinafter referred to as received signals) input from the antenna connection terminal 100.
  • the filter 11 includes two SDL bands (first band and second band) as passbands, the high frequency circuit 1 can be miniaturized.
  • the two SDL bands (first band and second band) do not have corresponding transmission bands, it is not necessary to satisfy the attenuation specifications of the transmission bands that should be in the vicinity as a characteristic of the filter 11, so the filter design can be simplified.
  • the transmission band is not included in the passband of the filter 11, there is no need to ensure high power durability. Therefore, the filter 11 can be downsized.
  • the filter 21 is an example of a second filter, and has a pass band including a third band for uplink.
  • the output end of the filter 21 is connected to the antenna connection terminal 100 via the terminal 60d (second terminal) of the switch 60, and the input end of the filter 21 is connected to the power amplifier 71 via the switch 61.
  • the third band overlaps in frequency with at least a portion of the first band and the second band.
  • the third band is, for example, the uplink operating band of band B28 for LTE or the uplink operating band of band n28 (703-748 MHz) for 5G-NR.
  • the uplink operating band of band B28 (band n28) overlaps in frequency with a portion of band B29 (band n29) and band B67 (band n67).
  • the power amplifier 71 is connected to the filter 21 via the switch 61 and amplifies a third band high frequency transmission signal (hereinafter referred to as a transmission signal) input from the high frequency input terminal 110.
  • a transmission signal a third band high frequency transmission signal
  • the switch 60 has a common terminal 60a, terminals 60b, 60c, 60d (second terminal), and 60e (first terminal), and connects and disconnects the common terminal 60a and each of the terminals 60b, 60c, 60d, and 60e. Switch.
  • the common terminal 60a is connected to the antenna connection terminal 100
  • the terminal 60b is connected to the filters 51 and 52
  • the terminal 60c is connected to the filters 53 and 54
  • the terminal 60d is connected to the filters 21, 55 and 56
  • the terminal 60e is connected to the filters 21, 55 and 56. Connected to filters 11, 31 and 41.
  • the filter 11 does not function as a filter that passes the transmission signal of the third band, and the filter 11 does not function as a filter that passes the transmission signal of the third band. It functions as a filter that passes received signals of the SDL bands (first band and second band). Therefore, it is possible to suppress the reception sensitivity of the first and second band reception signals passing through the filter 11 from being degraded by the third band transmission signal. Moreover, since the filter 11 and the filter 21 are connected to different terminals 60e and 60d of the switch 60, respectively, the power resistance of the terminal 60e to which the filter 11 is connected can be reduced. Therefore, the configuration of the switch 60 can be simplified and downsized.
  • the filter 31 is an example of a third filter, and has a pass band including a fourth band for downlink.
  • the input end of the filter 31 is connected to the antenna connection terminal 100 via the terminal 60e (first terminal) of the switch 60, and the output end of the filter 31 is connected to the low noise amplifier 73 via the switch 63.
  • the fourth band is, for example, the downlink operating band of band B5 for LTE or the downlink operating band of band n5 (869-894 MHz) for 5G-NR.
  • the fourth band is a downlink operating band of band B8 for LTE, a downlink operating band of band n8 (925-960MHz) for 5G-NR, a downlink operating band of band B20 for LTE, Downlink operating band of band n20 for 5G-NR (791-821MHz), downlink operating band of band B71 for LTE, or downlink operating band of band n71 for 5G-NR (617-652MHz) It may be.
  • the filter 31 is a reception filter, there is no need to increase the power resistance of the terminal 60e by connecting the filter 31 to the terminal 60e. Therefore, it is possible to suppress the switch 60 from increasing in size.
  • the filter 31 may include in its pass band a fifth band for downlink whose frequency overlaps with at least a portion of the fourth band.
  • the fourth band is, for example, a downlink operating band of band B5 for LTE or a downlink operating band of band n5 for 5G-NR
  • the fifth band is, for example, a downlink operating band of band B26 for LTE.
  • the downlink operating band is the downlink operating band of band n26 (859-894MHz) for 5G-NR.
  • the filter 31 includes the two reception bands (the fourth band and the fifth band) as passbands, so the high frequency circuit 1 can be miniaturized.
  • the filter 41 is an example of a fourth filter, and has a pass band including a sixth band for uplink corresponding to the fourth band.
  • the output end of the filter 41 is connected to the antenna connection terminal 100 via the terminal 60e (first terminal) of the switch 60, and the input end of the filter 41 is connected to the power amplifier 71 via the switch 61.
  • the sixth band is, for example, the uplink operating band of band B5 for LTE and the uplink operating band of band n5 (824-849MHz) for 5G-NR.
  • the 6th band is an uplink operating band of band B8 for LTE, an uplink operating band of band n8 (880-915MHz) for 5G-NR, an uplink operating band of band B20 for LTE, Uplink operating band of band n20 for 5G-NR (832-862MHz), uplink operating band of band B71 for LTE, or uplink operating band of band n71 for 5G-NR (663-698MHz) It may be.
  • the receiving filters 11 and 31 are connected to the terminal 60e (first terminal) in addition to the filter 41, it is necessary for the filter 41 to consider the attenuation characteristics of the nearby transmission band. do not have. Therefore, the design of the filter 41 can be simplified.
  • the filters 11, 31, and 41 are commonly connected to the terminal 60e, simultaneous transmission of the first or second band received signal, the fourth band received signal, and the sixth band transmitted signal is possible. This can be achieved with low loss and high accuracy.
  • the filter 41 may include, in its passband, a seventh band for uplink whose frequency overlaps with at least a portion of the sixth band.
  • the sixth band is, for example, the uplink operating band of band B5 for LTE or the uplink operating band of band n5 for 5G-NR
  • the seventh band is, for example, the uplink operating band of band B26 for LTE.
  • the uplink operating band is the uplink operating band (814-849MHz) of band n26 for 5G-NR.
  • the filter 41 since the filter 41 includes the two transmission bands (sixth band and seventh band) as passbands, the high frequency circuit 1 can be miniaturized.
  • filters 31 and 31 corresponding to band B5 (band n5) and band B26 (band n26), which are farthest in frequency from band B29 (band n29) and band B67 (band n67), are used.
  • band n5 band n5
  • band n26 band n26
  • band n67 band n67
  • the filter 51 has a pass band including the ninth band for uplink.
  • the output end of the filter 51 is connected to the antenna connection terminal 100 via the terminal 60b of the switch 60, and the input end of the filter 51 is connected to the power amplifier 71 via the switch 61.
  • the ninth band is, for example, an uplink operating band of band B8 for LTE and an uplink operating band of band n8 for 5G-NR.
  • the filter 52 has a passband including the 10th band for downlink.
  • the input end of the filter 52 is connected to the antenna connection terminal 100 via the terminal 60b of the switch 60, and the output end of the filter 52 is connected to the low noise amplifier 72 via the switch 62.
  • the 10th band is, for example, a downlink operating band of band B8 for LTE or a downlink operating band of band n8 for 5G-NR.
  • Filters 51 and 52 constitute a duplexer.
  • the filter 53 has a passband including the 11th band for uplink.
  • the output end of the filter 53 is connected to the antenna connection terminal 100 via the terminal 60c of the switch 60, and the input end of the filter 53 is connected to the power amplifier 71 via the switch 61.
  • the 11th band is, for example, the uplink operating band of band B71 for LTE and the uplink operating band of band n71 for 5G-NR.
  • the filter 54 has a pass band including the 12th band for downlink.
  • the input end of the filter 54 is connected to the antenna connection terminal 100 via the terminal 60c of the switch 60, and the output end of the filter 54 is connected to the low noise amplifier 72 via the switch 62.
  • the 12th band is, for example, a downlink operating band of band B71 for LTE or a downlink operating band of band n71 for 5G-NR.
  • Filters 53 and 54 constitute a duplexer.
  • the filter 55 has a pass band including the 13th band for uplink.
  • the output end of the filter 55 is connected to the antenna connection terminal 100 via the terminal 60d of the switch 60, and the input end of the filter 55 is connected to the power amplifier 71 via the switch 61.
  • the 13th band is, for example, the uplink operating band of band B20 for LTE and the uplink operating band of band n20 for 5G-NR.
  • the filter 56 has a passband including the 14th band for downlink.
  • the input end of the filter 56 is connected to the antenna connection terminal 100 via the terminal 60d of the switch 60, and the output end of the filter 56 is connected to the low noise amplifier 73 via the switch 63.
  • the 14th band is, for example, a downlink operating band of band B20 for LTE or a downlink operating band of band n20 for 5G-NR.
  • the filter 56 may include in its passband a 15th band for uplink whose frequency overlaps with at least a portion of the 14th band.
  • the 14th band is, for example, a downlink operating band of band B20 for LTE or a downlink operating band of band n20 for 5G-NR
  • the 15th band is, for example, a downlink operating band of band B28 for LTE.
  • the downlink operating band is the downlink operating band of band n28 (758-803MHz) for 5G-NR.
  • Filters 55 and 56 constitute a duplexer.
  • the low noise amplifier 72 is connected to the filters 52 and 54 via the switch 62, and amplifies the received signals of the 10th band and 12th band input from the antenna connection terminal 100.
  • the switch 61 is connected between the power amplifier 71 and the filters 21, 41, 51, 53, and 55, and connects and disconnects the power amplifier 71 and the filters 21, 41, 51, 53, and 55, respectively. Switch.
  • the switch 62 is connected between the low noise amplifier 72 and the filters 52 and 54, and switches between connecting and disconnecting the low noise amplifier 72 and the filters 52 and 54, respectively.
  • the switch 63 is connected between the low-noise amplifier 73 and the filters 11, 31, and 56, and switches between connecting and disconnecting the low-noise amplifier 73 and each of the filters 11, 31, and 56.
  • the switch 60 may be formed in a semiconductor IC (Integrated Circuit). Furthermore, switches 61 to 63 may be included in the semiconductor IC.
  • the semiconductor IC is composed of, for example, CMOS (Complementary Metal Oxide Semiconductor). Specifically, it is formed by an SOI (Silicon On Insulator) process. This makes it possible to manufacture semiconductor ICs at low cost.
  • the semiconductor IC may be made of at least one of GaAs, SiGe, and GaN. This makes it possible to output a high frequency signal with high quality amplification performance and noise performance.
  • each of the 1st to 15th bands is defined by a standardization organization (for example, 3GPP (registered trademark), IEEE (Institute of means a frequency band predefined by the Electrical and Electronics Engineers, etc.).
  • a standardization organization for example, 3GPP (registered trademark), IEEE (Institute of means a frequency band predefined by the Electrical and Electronics Engineers, etc.).
  • the communication system for example, an LTE (Long Term Evolution) system, a 5G (5th Generation)-NR (New Radio) system, a WLAN (Wireless Local Area Network) system, etc. can be used. Not limited to these.
  • uplink operating band means a frequency range designated for uplink.
  • downlink operating band means a frequency range designated for downlink.
  • the filters 51, 52, 53, 54, 55 and 56, the switch 62, and the low noise amplifier 72 may not be provided. Furthermore, filters 21, 31 and 41, switches 61 and 63, and power amplifier 71 may also be omitted.
  • the high frequency circuit 1 only needs to include at least the filter 11 and the low noise amplifier 73.
  • the high frequency circuit 1 may include an impedance matching element or the like.
  • FIG. 2 is a diagram illustrating the frequency relationship of bands applied to the high frequency circuit 1 according to the embodiment.
  • the first band is, for example, SDL band B29 for LTE or SDL band n29 for 5G-NR.
  • the second band is, for example, SDL band B67 for LTE or SDL band n67 for 5G-NR.
  • the third band is, for example, an uplink operating band of FDD band B28 for LTE or an uplink operating band of FDD band n28 for 5G-NR.
  • the fourth band is, for example, a downlink operating band of FDD band B5 for LTE, a downlink operating band of FDD band n5 for 5G-NR, a downlink operating band of FDD band B8 for LTE, 5G-NR downlink operating band of FDD band n8 for LTE, downlink operating band of FDD band B20 for LTE, downlink operating band of FDD band n20 for 5G-NR, downlink of FDD band B71 for LTE operating band, or downlink operating band of FDD band n71 for 5G-NR.
  • the fifth band is, for example, a downlink operating band of FDD band B26 for LTE or a downlink operating band of FDD band n26 for 5G-NR.
  • the 6th band is, for example, an uplink operating band of FDD band B5 for LTE, an uplink operating band of FDD band n5 for 5G-NR, an uplink operating band of FDD band B8 for LTE, 5G-NR uplink operating band of FDD band n8 for LTE, uplink operating band of FDD band B20 for LTE, uplink operating band of FDD band n20 for 5G-NR, uplink of FDD band B71 for LTE operating band, or uplink operating band of FDD band n71 for 5G-NR.
  • band B29 (band n29) is close to band B67 (band n67). According to this, it becomes possible to realize a filter for band B29 (band n29) and a filter for band B67 (band n67) with one filter 11.
  • the uplink operation band of band B28 overlaps in frequency with at least a portion of band B29 (band n29) and band B67 (band n67).
  • the filter 11 is also used as a filter that passes the transmission signal of band B28 (band n28), but the filter 11 can be used for two SDL bands (band B29 (band n29) and band B67 ( It functions as a filter that passes only the received signal of band n67)). Therefore, it is possible to suppress the reception sensitivity of the two SDL band reception signals passing through the filter 11 from being degraded by the third band transmission signal.
  • FIG. 3A is a diagram showing a first mode circuit state of the high frequency circuit 1 according to the embodiment. Further, FIG. 3B is a diagram showing a circuit state in the second mode of the high frequency circuit 1 according to the embodiment.
  • the first mode is a mode in which a first band received signal, a fourth band received signal, and a sixth band transmitted signal are simultaneously transmitted.
  • the second mode is a mode in which the first band received signal, the eleventh band transmitted signal, and the twelfth band received signal are simultaneously transmitted.
  • the common terminal 60a and the terminal 60e are in a connected state.
  • the transmission signal of the sixth band (uplink operation band of band n5) is transmitted through the transmission path of the high frequency input terminal 110, the power amplifier 71, the switch 61, the filter 41, the switch 60, and the antenna connection terminal 100.
  • the received signal of the first band (band n29) is transmitted through a receiving path including the antenna connection terminal 100, the switch 60, the filter 11, the switch 63, the low noise amplifier 73, and the high frequency output terminal 130.
  • the received signal of the fourth band (downlink operation band of band n5) is transmitted through a receiving path including the antenna connection terminal 100, the switch 60, the filter 31, the switch 63, the low noise amplifier 73, and the high frequency output terminal 130.
  • the filters 11, 31, and 41 are commonly connected to the terminal 60e, so that simultaneous transmission of the first band received signal, the fourth band received signal, and the sixth band transmitted signal is possible. This can be achieved with low loss and high accuracy.
  • the transmission signal of the 11th band (uplink operation band of band n71) is transmitted through the transmission path of the high frequency input terminal 110, the power amplifier 71, the switch 61, the filter 53, the switch 60, and the antenna connection terminal 100.
  • the received signal of the first band (band n29) is transmitted through a receiving path including the antenna connection terminal 100, the switch 60, the filter 11, the switch 63, the low noise amplifier 73, and the high frequency output terminal 130.
  • the received signal of the 12th band (downlink operation band of band n71) is transmitted through a receiving path including the antenna connection terminal 100, the switch 60, the filter 54, the switch 62, the low noise amplifier 72, and the high frequency output terminal 120. .
  • the filter 11 and the filters 53 and 54 are connected to different terminals 60e and 60c of the switch 60, so that the received signal of the first band is affected by the interference of the transmitted signal of the 11th band. Decrease in reception sensitivity can be suppressed.
  • the high frequency circuit 501 according to Comparative Example 1 is a conventional high frequency circuit to which a signal path compatible with the SDL band is added.
  • FIG. 4A is a circuit configuration diagram of a high frequency circuit 501 according to Comparative Example 1.
  • the high frequency circuit 501 includes filters 511, 512, 21, 31, 41, 51, 52, 53, 54, 55 and 56, a power amplifier 71, low noise amplifiers 72 and 73, and switches. 560, 561, 562, and 563, an antenna connection terminal 100, a high frequency input terminal 110, and high frequency output terminals 120 and 130.
  • the high frequency circuit 501 according to this comparative example differs from the high frequency circuit 1 according to the embodiment mainly in that filters 511 and 512 are arranged instead of the filter 11.
  • the explanation of the same points as the high frequency circuit 1 according to the embodiment will be omitted, and the explanation will focus on the different points.
  • the filter 511 has a passband that includes the first band of SDL.
  • the input end of the filter 511 is connected to the antenna connection terminal 100 via one terminal of the switch 560, and the output end of the filter 511 is connected to the low noise amplifier 73 via the switch 563.
  • the filter 512 has a passband that includes the second band of SDL.
  • the input end of the filter 512 is connected to the antenna connection terminal 100 through one terminal of the switch 560 and another terminal different from the other terminal, and the output end of the filter 512 is connected to the low noise amplifier 73 through the switch 563. .
  • filters 511 and 512 are individually arranged for the two SDL bands (first band and second band), so the high frequency circuit 1 according to the embodiment and It becomes large in comparison.
  • the high frequency circuit 502 according to Comparative Example 2 is a conventional high frequency circuit to which a signal path compatible with the SDL band is added.
  • FIG. 4B is a diagram showing a first mode circuit state of the high frequency circuit 502 according to Comparative Example 2.
  • the high frequency circuit 502 includes filters 512, 521, 31, 41, 51, 52, 53, 54, 55 and 56, a power amplifier 71, low noise amplifiers 72 and 73, a switch 560, 561, 562, 563, and 565, an antenna connection terminal 100, a high frequency input terminal 110, and high frequency output terminals 120 and 130.
  • the high frequency circuit 502 according to the present comparative example differs from the high frequency circuit 1 according to the embodiment mainly in that filters 512 and 521 and a switch 565 are arranged instead of the filters 11 and 21.
  • the explanation of the same points as the high frequency circuit 1 according to the embodiment will be omitted, and the explanation will focus on the different points.
  • the filter 521 has a pass band that includes the first band of SDL (band n29) and the third band for uplink of FDD (uplink operation band of band n28).
  • One end of the filter 521 is connected to the antenna connection terminal 100 through one terminal of the switch 560, the other end of the filter 521 is connected to the power amplifier 71 through the switches 565 and 561, and the other end of the filter 521 is connected to the power amplifier 71 through the switches 565 and 563. It is connected to a low noise amplifier 73 via.
  • the filter 512 has a passband that includes the second band of SDL.
  • the input end of the filter 512 is connected to the antenna connection terminal 100 through one terminal of the switch 560 and another terminal different from the other terminal, and the output end of the filter 512 is connected to the low noise amplifier 73 through the switch 563. .
  • the high frequency circuit 502 utilizes the fact that the first band of SDL (band n29) and the third band for uplink of FDD (uplink operation band of band n28) partially overlap. , the filter corresponding to the first band and the filter corresponding to the third band are combined into one filter 521, thereby reducing the size of the high frequency circuit 502. However, compared to the high frequency circuit 1 according to the embodiment, the circuit becomes larger due to the addition of the switch 565.
  • the received signal of the first band (band n29), the received signal of the fourth band (downlink operating band of band n5), and the transmitted signal of the sixth band (uplink operating band of band n5) are simultaneously transmitted.
  • the sixth band transmission signal is transmitted through a transmission path including the high frequency input terminal 110, the power amplifier 71, the switch 561, the filter 41, the switch 560, and the antenna connection terminal 100.
  • the received signal of the fourth band (downlink operation band of band n5) is transmitted through a receiving path including the antenna connection terminal 100, the switch 560, the filter 31, the switch 562, the low noise amplifier 72, and the high frequency output terminal 120.
  • the received signal of the first band (band n29) is transmitted through a receiving path including the antenna connection terminal 100, the switch 560, the filter 521, the switch 565, the switch 563, the low noise amplifier 73, and the high frequency output terminal 130.
  • the transmission signal of the sixth band (uplink operation band of band n5) from the power amplifier 71 leaks to the low noise amplifier 73 via the switch 565, and the transmission signal of the first band ( A problem arises in that the receiving sensitivity of the received signal of band n29) deteriorates.
  • the filter 11 includes two SDL bands (the first band and the second band) as passbands, so the high frequency circuit 1 can be miniaturized.
  • the two SDL bands (first band and second band) do not have corresponding transmission bands, it is not necessary to satisfy the attenuation specifications of the transmission bands that should be in the vicinity as a characteristic of the filter 11, so the filter design can be simplified.
  • the transmission band is not included in the passband of the filter 11, there is no need to ensure high power durability. Therefore, the filter 11 can be downsized.
  • FIG. 5 is a circuit configuration diagram of a high frequency circuit 1A according to Modification 1.
  • the high frequency circuit 1A includes filters 11, 21, 31, 41, 51, 52, 53, 54, 55 and 56, a power amplifier 71, low noise amplifiers 72 and 73, a switch 60A, 61, 62, and 63, an antenna connection terminal 100, a high frequency input terminal 110, and high frequency output terminals 120 and 130.
  • the high frequency circuit 1A according to this modification differs from the high frequency circuit 1 according to the embodiment in the configuration of the switch 60A and the connection configuration of the filter 11.
  • the explanation of the same points as the high frequency circuit 1 according to the embodiment will be omitted, and the explanation will focus on the different points.
  • the switch 60A has a common terminal 60a, terminals 60b, 60c, 60d (second terminal), 60e (first terminal), and 60f. Toggle between connected and disconnected.
  • the common terminal 60a is connected to the antenna connection terminal 100
  • the terminal 60b is connected to the filters 51 and 52
  • the terminal 60c is connected to the filters 53 and 54
  • the terminal 60d is connected to the filters 21, 55 and 56
  • the terminal 60e is connected to the filters 21, 55 and 56.
  • the terminal 60f is connected to the filter 11, and the terminal 60f is connected to the filters 31 and 41.
  • the filter 11 is an example of a first filter, and has a pass band including the SDL first band and the SDL second band.
  • the input end of the filter 11 is connected to the antenna connection terminal 100 via the terminal 60e (first terminal) of the switch 60A, and the output end of the filter 11 is connected to the low noise amplifier 73 via the switch 63.
  • the filter 31 is an example of a third filter, and has a pass band including a fourth band for downlink.
  • the input end of the filter 31 is connected to the antenna connection terminal 100 via the terminal 60f of the switch 60A, and the output end of the filter 31 is connected to the low noise amplifier 73 via the switch 63.
  • the filter 41 is an example of a fourth filter, and has a pass band including a sixth band for uplink corresponding to the fourth band.
  • the output end of the filter 41 is connected to the antenna connection terminal 100 via the terminal 60f of the switch 60, and the input end of the filter 41 is connected to the power amplifier 71 via the switch 61.
  • the filter 11 includes two SDL bands (first band and second band) as passbands, the high frequency circuit 1A can be miniaturized.
  • the two SDL bands (first band and second band) do not have corresponding transmission bands, it is not necessary to satisfy the attenuation specifications of the transmission bands that should be in the vicinity as a characteristic of the filter 11, so the filter design can be simplified.
  • the transmission band is not included in the passband of the filter 11, there is no need to ensure high power durability.
  • the configuration of the switch 60A can be simplified and downsized.
  • FIG. 6 is a circuit configuration diagram of the diversity circuit 1B and the primary circuit 200 according to Modification 2.
  • the primary circuit 200 includes a power amplifier 71, a low noise amplifier 72, switches 265, 266, and 267, and a filter group, and receives a third band transmission signal, a fourth band reception signal, and a fifth band reception signal. This circuit transmits a signal, a sixth band transmission signal, and a seventh band transmission signal.
  • the third band is, for example, an uplink operating band of FDD band B28 for LTE or an uplink operating band of FDD band n28 for 5G-NR.
  • the fourth band is, for example, a downlink operating band of FDD band B5 for LTE, a downlink operating band of FDD band n5 for 5G-NR, a downlink operating band of FDD band B8 for LTE, 5G-NR downlink operating band of FDD band n8 for LTE, downlink operating band of FDD band B20 for LTE, downlink operating band of FDD band n20 for 5G-NR, downlink of FDD band B71 for LTE operating band, or downlink operating band of FDD band n71 for 5G-NR.
  • the fifth band is, for example, a downlink operating band of FDD band B26 for LTE or a downlink operating band of FDD band n26 for 5G-NR.
  • the 6th band is, for example, an uplink operating band of FDD band B5 for LTE, an uplink operating band of FDD band n5 for 5G-NR, an uplink operating band of FDD band B8 for LTE, 5G-NR uplink operating band of FDD band n8 for LTE, uplink operating band of FDD band B20 for LTE, uplink operating band of FDD band n20 for 5G-NR, uplink of FDD band B71 for LTE operating band, or uplink operating band of FDD band n71 for 5G-NR.
  • the seventh band is, for example, the uplink operating band of band B26 for LTE and the uplink operating band of band n26 for 5G-NR.
  • the filter group includes a filter whose pass band is the third band, a filter whose pass band is the fourth band, a filter whose pass band is the fifth band, a filter whose pass band is the sixth band, and a filter whose pass band is the seventh band. It has a band filter.
  • the switch 265 has a common terminal 265a, terminals 265b, 265c, 265d, 265e, and 265f, and switches connection and disconnection between the common terminal 265a and each of the terminals 265c, 265d, 265e, and 265f, and also connects and disconnects the common terminal 265a and the terminals 265c, 265d, 265e, and 265f. Connection and disconnection with each of the terminals 265c, 265d, 265e, and 265f are switched.
  • the common terminal 265a is connected to the antenna 2A.
  • Terminal 265b is connected to terminal 65c of switch 65 included in diversity circuit 1B.
  • Each of terminals 265c, 265d, and 265e is connected to a filter belonging to the filter group.
  • the terminal 265f is connected to the terminal 65b (third terminal) of the switch 65 included in the diversity circuit 1B.
  • Diversity circuit 1B is a high frequency circuit according to modification 2, and includes filters 11, 31, 52, 54 and 56, low noise amplifiers 74 and 75, switches 65, 66 and 67, and high frequency output terminals 140 and 150. , is provided. Diversity circuit 1B according to this modification differs from high frequency circuit 1 according to the embodiment in that it does not have a transmission filter and power amplifier, and switch 65 is connected to primary circuit 200.
  • switch 65 is connected to primary circuit 200.
  • the high frequency output terminals 140 and 150 are terminals that are connected to the RFIC 3 and output high frequency reception signals to the RFIC 3.
  • the filter 11 is an example of a first filter, and has a pass band including the SDL first band and the SDL second band.
  • the input end of the filter 11 is connected to the antenna 2B via the terminal 65g (first terminal) of the switch 65 and the common terminal 65a, and is connected to the antenna 2B via the terminal 65g (first terminal) of the switch 65, the terminal 65b and the primary circuit 200. It is connected to the antenna 2A via the antenna 2A.
  • the output end of filter 11 is connected to low noise amplifier 75 via switch 67.
  • the first band is, for example, band B29 for LTE or band n29 for 5G-NR.
  • the second band is, for example, band B67 for LTE or band n67 for 5G-NR.
  • the low noise amplifier 75 is connected to the filter 11 via the switch 67, and amplifies the first and second band received signals input from the antenna 2A or 2B.
  • the filter 11 includes two SDL bands (the first band and the second band) as passbands, the diversity circuit 1B can be miniaturized.
  • the two SDL bands do not have corresponding transmission bands, it is not necessary to satisfy the attenuation specifications of the transmission bands that should be in the vicinity as a characteristic of the filter 11, so the filter design can be simplified.
  • the transmission band is not included in the passband of the filter 11, there is no need to ensure high power durability. Therefore, the filter 11 can be downsized.
  • the filter 11 may have a pass band including the first SDL band, the second SDL band, and the eighth band.
  • the eighth band is a downlink operating band for FDD.
  • the 8th band is, for example, a downlink operating band of band B12 for LTE, a downlink operating band of band n12 (729-746MHz) for 5G-NR, a downlink operating band of band B13 for LTE, Downlink operating band of band n13 for 5G-NR (746-756MHz), downlink operating band of band B14 for LTE, or downlink operating band of band n14 for 5G-NR (758-768MHz) , is.
  • the filter 11 includes the eighth band as a passband in addition to the first band and the second band, so the diversity circuit 1B can be miniaturized.
  • the switch 65 has a common terminal 65a, a terminal 65b (third terminal), 65c, 65d, 65e, 65f, and 65g (first terminal). Also, the terminal 65b is switched between connection and disconnection with each of the terminals 65c, 65d, 65e, 65f and 65g.
  • the common terminal 65a is connected to the antenna 2B
  • the terminal 65b is connected to the terminal 265f of the switch 265 included in the primary circuit 200
  • the terminal 65c is connected to the terminal 265b of the switch 265 included in the primary circuit 200
  • the terminal 65d is connected to the filter 52.
  • the terminal 65e is connected to the filter 54
  • the terminal 65f is connected to the filter 56
  • the terminal 65g is connected to the filters 11 and 31.
  • the filter 31 is an example of a third filter, and has a pass band including a fourth band for downlink.
  • the input end of the filter 31 is connected to a terminal 65g (first terminal), and the output end of the filter 31 is connected to a low noise amplifier 75 via a switch 67.
  • the filter 31 is a reception filter, there is no need to increase the power resistance of the terminal 65g by connecting the filter 31 to the terminal 65g. Therefore, it is possible to suppress the switch 65 from increasing in size.
  • the filter 31 may include in its pass band a fifth band for downlink whose frequency overlaps with at least a portion of the fourth band.
  • the filter 31 includes two reception bands (the fourth band and the fifth band) as passbands, so the diversity circuit 1B can be miniaturized.
  • the filter 52 has a passband including the 10th band for downlink.
  • the input end of the filter 52 is connected to a terminal 65d, and the output end of the filter 52 is connected to a low noise amplifier 74 via a switch 66.
  • the 10th band is, for example, a downlink operating band of band B8 for LTE or a downlink operating band of band n8 for 5G-NR.
  • the filter 54 has a pass band including the 12th band for downlink.
  • the input end of the filter 54 is connected to a terminal 65e, and the output end of the filter 54 is connected to a low noise amplifier 74 via a switch 66.
  • the 12th band is, for example, a downlink operating band of band B71 for LTE or a downlink operating band of band n71 for 5G-NR.
  • the filter 56 has a passband including the 14th band for downlink.
  • the input end of the filter 56 is connected to a terminal 65f, and the output end of the filter 56 is connected to a low noise amplifier 75 via a switch 67.
  • the 14th band is, for example, a downlink operating band of band B20 for LTE or a downlink operating band of band n20 for 5G-NR.
  • the filter 56 may include in its passband a 15th band for uplink whose frequency overlaps with at least a portion of the 14th band.
  • the low noise amplifier 74 is connected to the filters 52 and 54 via the switch 66, and amplifies the received signals of the 10th band and 12th band input from the antenna 2A or 2B.
  • the switch 66 is connected between the low noise amplifier 74 and the filters 52 and 54, and switches between connecting and disconnecting the low noise amplifier 74 and the filters 52 and 54, respectively.
  • the switch 67 is connected between the low-noise amplifier 75 and the filters 11, 31, and 56, and switches between connecting and disconnecting the low-noise amplifier 75 and each of the filters 11, 31, and 56.
  • filters 52, 54 and 56, switch 66, and low noise amplifier 74 may be omitted. Further, the filter 31 and the switch 67 may also be omitted.
  • the diversity circuit 1B only needs to include at least the filter 11, the low-noise amplifier 75, and the switch 65.
  • the diversity circuit 1B may include an impedance matching element or the like.
  • the common terminal 265a is connected to at least one of the terminals 265c, 265d, and 265e, and the common terminal 65a is connected to at least one of the terminals 65d, 65e, 65f, and 65g, so that the primary circuit 200 can be connected to antenna 2A, and diversity circuit 1B can be connected to antenna 2B.
  • the diversity circuit 1B can be connected to the antenna 2A by connecting the common terminal 265a and the terminal 265f and connecting the terminal 65b to at least one of the terminals 65d, 65e, 65f, and 65g.
  • the primary circuit 200 can be connected to the antenna 2B by connecting the common terminal 65a and the terminal 65c and connecting the terminal 265b to at least one of the terminals 265c, 265d, and 265e. In other words, it is possible to select the antenna connected to the primary circuit 200 and the diversity circuit 1B depending on the sensitivity state of the antennas 2A and 2B.
  • the high frequency circuit 1 includes the filter 11 having a pass band including the SDL first band and the SDL second band, and the low noise amplifier 73 connected to the filter 11. Be prepared.
  • the filter 11 includes two SDL bands (the first band and the second band) as passbands, so the high frequency circuit 1 can be miniaturized.
  • the two SDL bands (first band and second band) do not have corresponding transmission bands, it is not necessary to satisfy the attenuation specifications of the transmission bands that should be in the vicinity as a characteristic of the filter 11, so the filter design can be simplified.
  • the transmission band is not included in the passband of the filter 11, there is no need to ensure high power durability. Therefore, the filter 11 can be downsized.
  • the first band is band B29 for LTE or band n29 for 5G-NR
  • the second band is band B67 for LTE or band n29 for 5G-NR. It may be n67.
  • the high frequency circuit 1 further includes a filter 21 having a passband including a third band for uplink, a power amplifier 71 connected to the filter 21, a common terminal 60a, and a terminal 60e connected to the filter 11. and a switch 60, which has a terminal 60d connected to the filter 21, switches between connecting and disconnecting the common terminal 60a and the terminal 60e, and switches between connecting and disconnecting the common terminal 60a and the terminal 60d.
  • the three bands may overlap at least a portion of the first band and the second band.
  • the filter 11 does not function as a filter that passes the transmission signal of the third band. , functions as a filter that passes received signals of two reception SDL bands (first band and second band). Therefore, it is possible to suppress the reception sensitivity of the first and second band reception signals passing through the filter 11 from being degraded by the third band transmission signal. Moreover, since the filter 11 and the filter 21 are connected to different terminals 60e and 60d of the switch 60, respectively, the power resistance of the terminal 60e to which the filter 11 is connected can be reduced. Therefore, the configuration of the switch 60 can be simplified and downsized.
  • the third band may be the uplink operating band of band B28 for LTE or the uplink operating band of band n28 for 5G-NR.
  • the high frequency circuit 1 may further include a filter 31 that has a pass band including a fourth band for downlink and is connected to the terminal 60e.
  • the filter 31 is a receiving filter, there is no need to increase the power resistance of the terminal 60e by connecting the filter 31 to the terminal 60e. Therefore, it is possible to suppress the switch 60 from increasing in size.
  • the fourth band is a downlink operating band of band B5 for LTE, a downlink operating band of band n5 for 5G-NR, and a downlink operating band of band B8 for LTE.
  • downlink operating band in band n8 for 5G-NR downlink operating band in band B20 for LTE
  • downlink operating band in band n20 for 5G-NR downlink in band B71 for LTE
  • the filter 31 has a pass band including a fourth band and a fifth band for downlink, and the fifth band may overlap at least a portion of the fourth band.
  • the filter 31 includes the two reception bands (the fourth band and the fifth band) as passbands, so the high frequency circuit 1 can be miniaturized.
  • the fourth band is the downlink operating band of band B5 for LTE or the downlink operating band of band n5 for 5G-NR
  • the fifth band is the downlink operating band of band B5 for LTE. It may be a downlink operating band of band B26 or a downlink operating band of band n26 for 5G-NR.
  • the high frequency circuit 1 may further include a filter 41 that has a pass band including a sixth band for uplink corresponding to the fourth band, and is connected to the terminal 60e.
  • the receiving filters 11 and 31 are connected to the terminal 60e in addition to the filter 41, there is no need for the filter 41 to consider the attenuation characteristics of the nearby transmission band. Therefore, the design of the filter 41 can be simplified. Furthermore, since the filters 11, 31, and 41 are commonly connected to the terminal 60e, simultaneous transmission of the first or second band received signal, the fourth band received signal, and the sixth band transmitted signal is possible. This can be achieved with low loss and high accuracy.
  • the sixth band is the uplink operating band of band B5 for LTE, the uplink operating band of band n5 for 5G-NR, and the uplink operating band of band B8 for LTE.
  • uplink operating band of band n8 for 5G-NR uplink operating band of band B20 for LTE
  • uplink operating band of band n20 for 5G-NR uplink of band B71 for LTE It may be the operating band or the uplink operating band of band n71 for 5G-NR.
  • the filter 41 has a pass band including a sixth band and a seventh band for uplink, and the seventh band may overlap at least a portion of the sixth band.
  • the filter 41 since the filter 41 includes the two transmission bands (sixth band and seventh band) as passbands, the high frequency circuit 1 can be miniaturized.
  • the sixth band is the uplink operating band of band B5 for LTE or the uplink operating band of band n5 for 5G-NR
  • the seventh band is the uplink operating band of band B5 for LTE. It may be the uplink operating band of Band B26 or the uplink operating band of Band N26 for 5G-NR.
  • the diversity circuit 1B further includes a common terminal 65a connected to the antenna 2B, a terminal 65g connected to the filter 11, and a terminal 65b connected to the primary circuit 200, and the common terminal 65a and the terminal 65g are connected to each other.
  • a switch 65 may be provided to switch the connection and the connection between the terminal 65b and the terminal 65g.
  • the primary circuit 200 can be connected to the antenna 2A, and the diversity circuit 1B can be connected to the antenna 2B. Further, by connecting the terminal 65b and the terminal 65g, the diversity circuit 1B can be connected to the antenna 2A. In other words, it is possible to select the antenna connected to the primary circuit 200 and the diversity circuit 1B depending on the sensitivity state of the antennas 2A and 2B.
  • the filter 11 has a pass band including the first band, the second band, and the eighth band, and the eighth band may be a downlink operation band of FDD.
  • the filter 11 includes the eighth band as a passband in addition to the first band and the second band, so the diversity circuit 1B can be miniaturized.
  • the first band is band B29 for LTE or band n29 for 5G-NR
  • the second band is band B67 for LTE or band n29 for 5G-NR
  • the eighth band is the downlink operating band of band B12 for LTE
  • the downlink operating band of band n12 for 5G-NR the downlink operating band of band B13 for LTE
  • 5G-NR The downlink operating band may be a downlink operating band of band n13 for LTE, a downlink operating band of band B14 for LTE, or a downlink operating band of band n14 for 5G-NR.
  • the communication device 5 includes an RFIC 3 that processes a high frequency signal, and a high frequency circuit 1 that transmits the high frequency signal between the RFIC 3 and the antenna 2.
  • the communication device 5 can achieve the same effects as the above-mentioned effects of the high frequency circuit 1.
  • the high frequency circuit and communication device according to the present invention have been described above based on the embodiments and modified examples, but the high frequency circuit and communication device according to the present invention are not limited to the above embodiments and modified examples. do not have.
  • the present invention also includes modifications obtained by applying the above and various devices incorporating the above-mentioned high frequency circuit and communication device.
  • circuit elements, wiring, etc. may be inserted between the paths connecting the respective circuit elements and signal paths shown in the drawings. It's okay.
  • a band for 5G-NR or LTE is used, but in addition to or instead of 5G-NR or LTE, a communication band for another radio access technology may be used.
  • a communication band for another radio access technology may be used.
  • communication bands for wireless local area networks may be used.
  • a millimeter wave band of 7 gigahertz or more may be used.
  • the high frequency circuit 1, the antenna 2, and the RFIC 3 constitute a millimeter wave antenna module, and a distributed constant filter, for example, may be used as the filter.
  • the present invention can be widely used in communication devices such as mobile phones as a high frequency circuit placed in a front end section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

高周波回路(1)は、SDLの第1バンドおよびSDLの第2バンドを含む通過帯域を有するフィルタ(11)と、フィルタ(11)に接続された低雑音増幅器(73)と、を備える。

Description

高周波回路および通信装置
 本発明は、高周波回路および通信装置に関する。
 マルチバンド化に対応したフロントエンド回路に対して、複数の高周波信号を低損失かつ高アイソレーションで送受信することが求められている。
 特許文献1には、通過帯域の異なる複数のフィルタがマルチプレクサ(スイッチ)を介してアンテナに接続された構成を有する高周波モジュール(高周波回路)が開示されている。
米国特許出願公開第2016/0127015号明細書
 3GPP(登録商標)(3rd Generation Partnership Project)では、周波数分割複信(FDD:Frequency Division Duplex)用バンドおよび時分割複信(TDD:Time Division Duplex)用バンドに加えて、受信専用のSDL(Supplimentary DownLink)バンドが規定されている。しかしながら、FDD用バンドおよびTDD用バンドに対応した従来の高周波回路に、SDLバンドに対応した伝送経路を追加すると、単に追加された伝送経路の分だけ高周波回路が大型化する。
 そこで、本発明は、SDLバンドの高周波信号を伝送可能な小型の高周波回路および通信装置を提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係る高周波回路は、SDLの第1バンドおよびSDLの第2バンドを含む通過帯域を有する第1フィルタと、第1フィルタに接続された低雑音増幅器と、を備える。
 本発明によれば、SDLバンドの高周波信号を伝送可能な小型の高周波回路および通信装置を提供することが可能となる。
図1は、実施の形態に係る高周波回路および通信装置の回路構成図である。 図2は、実施の形態に係る高周波回路に適用されるバンドの周波数関係を例示した図である。 図3Aは、実施の形態に係る高周波回路の第1モードの回路状態を示す図である。 図3Bは、実施の形態に係る高周波回路の第2モードの回路状態を示す図である。 図4Aは、比較例1に係る高周波回路の回路構成図である。 図4Bは、比較例2に係る高周波回路の第1モードの回路状態を示す図である。 図5は、変形例1に係る高周波回路の回路構成図である。 図6は、変形例2に係る高周波回路およびプライマリ回路の回路構成図である。
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態などは、一例であり、本発明を限定する主旨ではない。
 なお、各図は、本発明を示すために適宜強調、省略、または比率の調整を行った模式図であり、必ずしも厳密に図示されたものではなく、実際の形状、位置関係、および比率とは異なる場合がある。各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡素化される場合がある。
 本開示において、「接続される」とは、接続端子および/または配線導体で直接接続される場合だけでなく、他の回路素子を介して電気的に接続される場合も含むことを意味する。また、「AとBとの間に接続される」とは、AおよびBを結ぶ経路上でAおよびBと接続されることを意味する。
 また、本開示において、「送信経路」とは、高周波送信信号が伝搬する配線、当該配線に直接接続された電極、および当該配線または当該電極に直接接続された端子等で構成された伝送線路であることを意味する。また、「受信経路」とは、高周波受信信号が伝搬する配線、当該配線に直接接続された電極、および当該配線または当該電極に直接接続された端子等で構成された伝送線路であることを意味する。
 (実施の形態)
 [1 高周波回路1および通信装置5の回路構成]
 本実施の形態に係る高周波回路1および通信装置5の回路構成について、図1を参照しながら説明する。図1は、実施の形態1に係る高周波回路1および通信装置5の回路構成図である。
 [1.1 通信装置5の回路構成]
 まず、通信装置5の回路構成について説明する。図1に示すように、本実施の形態に係る通信装置5は、高周波回路1と、アンテナ2と、RF信号処理回路(RFIC)3と、ベースバンド信号処理回路(BBIC)4と、を備える。
 高周波回路1は、アンテナ2とRFIC3との間で高周波信号を伝送する。高周波回路1の詳細な回路構成については後述する。
 アンテナ2は、高周波回路1のアンテナ接続端子100に接続され、高周波回路1から出力された高周波信号を送信し、また、外部から高周波信号を受信して高周波回路1へ出力する。
 RFIC3は、高周波信号を処理する信号処理回路の一例である。具体的には、RFIC3は、高周波回路1の受信経路を介して入力された高周波受信信号を、ダウンコンバート等により信号処理し、当該信号処理して生成された受信信号をBBIC4へ出力する。また、RFIC3は、BBIC4から入力された送信信号をアップコンバート等により信号処理し、当該信号処理して生成された高周波送信信号を、高周波回路1の送信経路に出力する。また、RFIC3は、高周波回路1が有するスイッチおよび増幅器等を制御する制御部を有する。なお、RFIC3の制御部としての機能の一部または全部は、RFIC3の外部に実装されてもよく、例えば、BBIC4または高周波回路1に実装されてもよい。
 なお、本実施の形態に係る通信装置5において、アンテナ2およびBBIC4は、必須の構成要素ではない。
 [1.2 高周波回路1の回路構成]
 次に、高周波回路1の回路構成について説明する。図1に示すように、高周波回路1は、フィルタ11、21、31、41、51、52、53、54、55および56と、電力増幅器71と、低雑音増幅器72および73と、スイッチ60、61、62および63と、アンテナ接続端子100と、高周波入力端子110と、高周波出力端子120および130と、を備える。
 アンテナ接続端子100は、アンテナ2に接続される。高周波入力端子110は、RFIC3に接続され、RFIC3から高周波送信信号を受けるための端子である。高周波出力端子120および130は、RFIC3に接続され、RFIC3に高周波受信信号を出力するための端子である。
 フィルタ11は、第1フィルタの一例であり、SDL(Supplimentary DownLink)の第1バンドおよびSDLの第2バンドを含む通過帯域を有する。フィルタ11の入力端は、スイッチ60の端子60e(第1端子)を介してアンテナ接続端子100に接続され、フィルタ11の出力端は、スイッチ63を介して低雑音増幅器73に接続されている。
 第1バンドは、例えばLTEのためのバンドB29または5G-NRのためのバンドn29(717-728MHz)である。また、第2バンドは、例えばLTEのためのバンドB67または5G-NRのためのバンドn67(738-758MHz)である。
 低雑音増幅器73は、スイッチ63を介してフィルタ11に接続され、アンテナ接続端子100から入力された第1バンドおよび第2バンドの高周波受信信号(以下、受信信号と記す)を増幅する。
 フィルタ11は、2つのSDLバンド(第1バンドおよび第2バンド)を通過帯域として含むので、高周波回路1を小型化できる。また、2つのSDLバンド(第1バンドおよび第2バンド)には、対応する送信バンドがないので、フィルタ11の特性として、近傍にあるべき送信バンドの減衰仕様を満たす必要がないため、フィルタ設計を簡素化できる。また、フィルタ11の通過帯域に送信バンドが含まれないことで高耐電力性を確保する必要がない。よって、フィルタ11を小型化できる。
 フィルタ21は、第2フィルタの一例であり、アップリンク用の第3バンドを含む通過帯域を有する。フィルタ21の出力端は、スイッチ60の端子60d(第2端子)を介してアンテナ接続端子100に接続され、フィルタ21の入力端は、スイッチ61を介して電力増幅器71に接続されている。第3バンドは、第1バンドおよび第2バンドの少なくとも一部と周波数が重なっている。
 第3バンドは、例えばLTEのためのバンドB28のアップリンク動作バンドまたは5G-NRのためのバンドn28のアップリンク動作バンド(703-748MHz)である。バンドB28(バンドn28)のアップリンク動作バンドは、バンドB29(バンドn29)およびバンドB67(バンドn67)の一部と周波数が重なっている。
 電力増幅器71は、スイッチ61を介してフィルタ21に接続され、高周波入力端子110から入力された第3バンドの高周波送信信号(以下、送信信号と記す)を増幅する。
 スイッチ60は、共通端子60a、端子60b、60c、60d(第2端子)および60e(第1端子)を有し、共通端子60aと端子60b、60c、60dおよび60eのそれぞれとの接続および非接続を切り替える。共通端子60aはアンテナ接続端子100に接続され、端子60bはフィルタ51および52に接続され、端子60cはフィルタ53および54に接続され、端子60dはフィルタ21、55および56に接続され、端子60eはフィルタ11、31および41に接続されている。
 第3バンドは、第1バンドおよび第2バンドの少なくとも一部と周波数が重なっているにもかかわらず、フィルタ11は、第3バンドの送信信号を通過させるフィルタとして機能せず、2つの受信用のSDLバンド(第1バンドおよび第2バンド)の受信信号を通過させるフィルタとして機能する。よって、フィルタ11を通過する第1バンドおよび第2バンドの受信信号が第3バンドの送信信号により受信感度が劣化することを抑制できる。また、フィルタ11とフィルタ21とは、それぞれスイッチ60の異なる端子60eおよび60dに接続されるので、フィルタ11が接続された端子60eの耐電力性を軽減できる。よって、スイッチ60の構成を簡素化でき小型化できる。
 フィルタ31は、第3フィルタの一例であり、ダウンリンク用の第4バンドを含む通過帯域を有する。フィルタ31の入力端は、スイッチ60の端子60e(第1端子)を介してアンテナ接続端子100に接続され、フィルタ31の出力端は、スイッチ63を介して低雑音増幅器73に接続されている。
 第4バンドは、例えばLTEのためのバンドB5のダウンリンク動作バンドまたは5G-NRのためのバンドn5のダウンリンク動作バンド(869-894MHz)である。また、第4バンドは、LTEのためのバンドB8のダウンリンク動作バンド、5G-NRのためのバンドn8のダウンリンク動作バンド(925-960MHz)、LTEのためのバンドB20のダウンリンク動作バンド、5G-NRのためのバンドn20のダウンリンク動作バンド(791-821MHz)、LTEのためのバンドB71のダウンリンク動作バンド、または5G-NRのためのバンドn71のダウンリンク動作バンド(617-652MHz)であってもよい。
 フィルタ31は受信用フィルタであるため、フィルタ31が端子60eに接続されることで端子60eの耐電力性を高くする必要がない。よって、スイッチ60が大型化することを抑制できる。
 なお、フィルタ31は、第4バンドの少なくとも一部と周波数が重なるダウンリンク用の第5バンドを、通過帯域に含んでもよい。
 この場合、第4バンドは、例えばLTEのためのバンドB5のダウンリンク動作バンドまたは5G-NRのためのバンドn5のダウンリンク動作バンドであり、第5バンドは、例えばLTEのためのバンドB26のダウンリンク動作バンド、5G-NRのためのバンドn26のダウンリンク動作バンド(859-894MHz)である。
 これによれば、フィルタ31は、2つの受信用バンド(第4バンドおよび第5バンド)を通過帯域として含むので、高周波回路1を小型化できる。
 フィルタ41は、第4フィルタの一例であり、第4バンドと対応するアップリンク用の第6バンドを含む通過帯域を有する。フィルタ41の出力端は、スイッチ60の端子60e(第1端子)を介してアンテナ接続端子100に接続され、フィルタ41の入力端は、スイッチ61を介して電力増幅器71に接続されている。
 第6バンドは、例えばLTEのためのバンドB5のアップリンク動作バンド、5G-NRのためのバンドn5のアップリンク動作バンド(824-849MHz)である。また、第6バンドは、LTEのためのバンドB8のアップリンク動作バンド、5G-NRのためのバンドn8のアップリンク動作バンド(880-915MHz)、LTEのためのバンドB20のアップリンク動作バンド、5G-NRのためのバンドn20のアップリンク動作バンド(832-862MHz)、LTEのためのバンドB71のアップリンク動作バンド、または5G-NRのためのバンドn71のアップリンク動作バンド(663-698MHz)であってもよい。
 これによれば、端子60e(第1端子)には、フィルタ41以外に、受信用のフィルタ11および31が接続されているので、フィルタ41にとって、近傍の送信帯域の減衰特性を考慮する必要がない。よって、フィルタ41の設計を簡素化できる。
 また、フィルタ11、31および41が端子60eに共通接続されているので、第1バンドまたは第2バンドの受信信号と、第4バンドの受信信号と、第6バンドの送信信号との同時伝送を低損失かつ高精度に実現できる。
 なお、フィルタ41は、第6バンドの少なくとも一部と周波数が重なるアップリンク用の第7バンドを、通過帯域に含んでもよい。
 この場合、第6バンドは、例えばLTEのためのバンドB5のアップリンク動作バンドまたは5G-NRのためのバンドn5のアップリンク動作バンドであり、第7バンドは、例えばLTEのためのバンドB26のアップリンク動作バンド、5G-NRのためのバンドn26のアップリンク動作バンド(814-849MHz)である。
 これによれば、フィルタ41は、2つの送信用バンド(第6バンドおよび第7バンド)を通過帯域として含むので、高周波回路1を小型化できる。
 また、ローバンド群(600MHz-1GHz)において、バンドB29(バンドn29)およびバンドB67(バンドn67)と周波数が最も離れているバンドB5(バンドn5)およびバンドB26(バンドn26)に対応したフィルタ31および41を、フィルタ11と共通接続することで、フィルタ11、31および41の減衰帯域に関する設計が容易となる。
 フィルタ51は、アップリンク用の第9バンドを含む通過帯域を有する。フィルタ51の出力端は、スイッチ60の端子60bを介してアンテナ接続端子100に接続され、フィルタ51の入力端は、スイッチ61を介して電力増幅器71に接続されている。
 第9バンドは、例えばLTEのためのバンドB8のアップリンク動作バンド、5G-NRのためのバンドn8のアップリンク動作バンドである。
 フィルタ52は、ダウンリンク用の第10バンドを含む通過帯域を有する。フィルタ52の入力端は、スイッチ60の端子60bを介してアンテナ接続端子100に接続され、フィルタ52の出力端は、スイッチ62を介して低雑音増幅器72に接続されている。
 第10バンドは、例えばLTEのためのバンドB8のダウンリンク動作バンドまたは5G-NRのためのバンドn8のダウンリンク動作バンドである。
 フィルタ51および52は、デュプレクサを構成している。
 フィルタ53は、アップリンク用の第11バンドを含む通過帯域を有する。フィルタ53の出力端は、スイッチ60の端子60cを介してアンテナ接続端子100に接続され、フィルタ53の入力端は、スイッチ61を介して電力増幅器71に接続されている。
 第11バンドは、例えばLTEのためのバンドB71のアップリンク動作バンド、5G-NRのためのバンドn71のアップリンク動作バンドである。
 フィルタ54は、ダウンリンク用の第12バンドを含む通過帯域を有する。フィルタ54の入力端は、スイッチ60の端子60cを介してアンテナ接続端子100に接続され、フィルタ54の出力端は、スイッチ62を介して低雑音増幅器72に接続されている。
 第12バンドは、例えばLTEのためのバンドB71のダウンリンク動作バンドまたは5G-NRのためのバンドn71のダウンリンク動作バンドである。
 フィルタ53および54は、デュプレクサを構成している。
 これによれば、第1バンドまたは第2バンドの受信信号と、第12バンドの受信信号と、第11バンドの送信信号との同時伝送を実現できる。
 フィルタ55は、アップリンク用の第13バンドを含む通過帯域を有する。フィルタ55の出力端は、スイッチ60の端子60dを介してアンテナ接続端子100に接続され、フィルタ55の入力端は、スイッチ61を介して電力増幅器71に接続されている。
 第13バンドは、例えばLTEのためのバンドB20のアップリンク動作バンド、5G-NRのためのバンドn20のアップリンク動作バンドである。
 フィルタ56は、ダウンリンク用の第14バンドを含む通過帯域を有する。フィルタ56の入力端は、スイッチ60の端子60dを介してアンテナ接続端子100に接続され、フィルタ56の出力端は、スイッチ63を介して低雑音増幅器73に接続されている。
 第14バンドは、例えばLTEのためのバンドB20のダウンリンク動作バンドまたは5G-NRのためのバンドn20のダウンリンク動作バンドである。
 なお、フィルタ56は、第14バンドの少なくとも一部と周波数が重なるアップリンク用の第15バンドを、通過帯域に含んでもよい。
 この場合、第14バンドは、例えばLTEのためのバンドB20のダウンリンク動作バンドまたは5G-NRのためのバンドn20のダウンリンク動作バンドであり、第15バンドは、例えばLTEのためのバンドB28のダウンリンク動作バンド、5G-NRのためのバンドn28のダウンリンク動作バンド(758-803MHz)である。
 フィルタ55および56は、デュプレクサを構成している。
 低雑音増幅器72は、スイッチ62を介してフィルタ52および54に接続され、アンテナ接続端子100から入力された第10バンドおよび第12バンドの受信信号を増幅する。
 スイッチ61は、電力増幅器71と、フィルタ21、41、51、53および55との間に接続され、電力増幅器71と、フィルタ21、41、51、53および55のそれぞれとの接続および非接続を切り替える。
 スイッチ62は、低雑音増幅器72と、フィルタ52および54との間に接続され、低雑音増幅器72と、フィルタ52および54のそれぞれとの接続および非接続を切り替える。
 スイッチ63は、低雑音増幅器73と、フィルタ11、31および56との間に接続され、低雑音増幅器73と、フィルタ11、31および56のそれぞれとの接続および非接続を切り替える。
 なお、スイッチ60は、半導体IC(Integrated Circuit)に形成されていてもよい。さらに、スイッチ61~63が、上記半導体ICに含まれてもよい。半導体ICは、例えば、CMOS(Complementary Metal Oxide Semiconductor)で構成されている。具体的には、SOI(Silicon On Insulator)プロセスにより形成されている。これにより、半導体ICを安価に製造することが可能となる。なお、半導体ICは、GaAs、SiGeおよびGaNの少なくともいずれかで構成されていてもよい。これにより、高品質な増幅性能および雑音性能を有する高周波信号を出力することが可能となる。
 なお、第1バンド~第15バンドのそれぞれは、無線アクセス技術(RAT:Radio Access Technology)を用いて構築される通信システムのために、標準化団体など(例えば3GPP(登録商標)、IEEE(Institute of Electrical and Electronics Engineers)等)によって予め定義された周波数バンドを意味する。本実施の形態では、通信システムとしては、例えばLTE(Long Term Evolution)システム、5G(5th Generation)-NR(New Radio)システム、およびWLAN(Wireless Local Area Network)システム等を用いることができるが、これらに限定されない。
 また、アップリンク動作バンドとは、アップリンク用に指定された周波数範囲を意味する。また、ダウンリンク動作バンドとは、ダウンリンク用に指定された周波数範囲を意味する。
 なお、図1に示された回路素子のいくつかは、高周波回路1に含まれなくてもよい。高周波回路1において、フィルタ51、52、53、54、55および56、スイッチ62、ならびに低雑音増幅器72は、なくてもよい。また、さらに、フィルタ21、31および41、スイッチ61、63、ならびに電力増幅器71も、なくてもよい。
 本実施の形態に係る高周波回路1は、フィルタ11および低雑音増幅器73を、少なくとも備えていればよい。
 また、図1に示された回路素子のほか、高周波回路1は、インピーダンス整合素子などを備えていてもよい。
 図2は、実施の形態に係る高周波回路1に適用されるバンドの周波数関係を例示した図である。
 本実施の形態に係る高周波回路1では、第1バンドは、例えばLTEのためのSDLバンドB29または5G-NRのためのSDLバンドn29である。
 第2バンドは、例えばLTEのためのSDLバンドB67または5G-NRのためのSDLバンドn67である。
 第3バンドは、例えばLTEのためのFDDバンドB28のアップリンク動作バンドまたは5G-NRのためのFDDバンドn28のアップリンク動作バンドである。
 第4バンドは、例えばLTEのためのFDDバンドB5のダウンリンク動作バンド、5G-NRのためのFDDバンドn5のダウンリンク動作バンド、LTEのためのFDDバンドB8のダウンリンク動作バンド、5G-NRのためのFDDバンドn8のダウンリンク動作バンド、LTEのためのFDDバンドB20のダウンリンク動作バンド、5G-NRのためのFDDバンドn20のダウンリンク動作バンド、LTEのためのFDDバンドB71のダウンリンク動作バンド、または5G-NRのためのFDDバンドn71のダウンリンク動作バンドである。
 第5バンドは、例えばLTEのためのFDDバンドB26のダウンリンク動作バンド、または5G-NRのためのFDDバンドn26のダウンリンク動作バンドである。
 第6バンドは、例えばLTEのためのFDDバンドB5のアップリンク動作バンド、5G-NRのためのFDDバンドn5のアップリンク動作バンド、LTEのためのFDDバンドB8のアップリンク動作バンド、5G-NRのためのFDDバンドn8のアップリンク動作バンド、LTEのためのFDDバンドB20のアップリンク動作バンド、5G-NRのためのFDDバンドn20のアップリンク動作バンド、LTEのためのFDDバンドB71のアップリンク動作バンド、または5G-NRのためのFDDバンドn71のアップリンク動作バンドである。
 ここで、バンドB29(バンドn29)は、バンドB67(バンドn67)と近接している。これによれば、バンドB29(バンドn29)用のフィルタおよびバンドB67(バンドn67)用のフィルタを、1つのフィルタ11で実現することが可能となる。
 また、バンドB28(バンドn28)のアップリンク動作バンドは、バンドB29(バンドn29)およびバンドB67(バンドn67)の少なくとも一部と周波数が重なっている。これによれば、フィルタ11を、バンドB28(バンドn28)の送信信号を通過させるフィルタとして兼用させることが考えられるが、フィルタ11は、2つのSDLバンド(バンドB29(バンドn29)およびバンドB67(バンドn67))の受信信号のみを通過させるフィルタとして機能させている。よって、フィルタ11を通過する2つのSDLバンドの受信信号が第3バンドの送信信号により受信感度が劣化することを抑制できる。
 [1.3 実施の形態における同時伝送モードの回路状態]
 図3Aは、実施の形態に係る高周波回路1の第1モードの回路状態を示す図である。また、図3Bは、実施の形態に係る高周波回路1の第2モードの回路状態を示す図である。
 なお、第1モードとは、第1バンドの受信信号、第4バンドの受信信号、および第6バンドの送信信号を同時伝送するモードである。また、第2モードとは、第1バンドの受信信号、第11バンドの送信信号、および第12バンドの受信信号を同時伝送するモードである。
 図3Aに示すように、第1モードが実行される場合、共通端子60aと端子60eとが接続状態となる。
 このとき、第6バンド(バンドn5のアップリンク動作バンド)の送信信号は、高周波入力端子110、電力増幅器71、スイッチ61、フィルタ41、スイッチ60、およびアンテナ接続端子100という送信経路を伝送する。また、第1バンド(バンドn29)の受信信号は、アンテナ接続端子100、スイッチ60、フィルタ11、スイッチ63、低雑音増幅器73、および高周波出力端子130、という受信経路を伝送する。また、第4バンド(バンドn5のダウンリンク動作バンド)の受信信号は、アンテナ接続端子100、スイッチ60、フィルタ31、スイッチ63、低雑音増幅器73、および高周波出力端子130、という受信経路を伝送する。
 上記第1モードでは、フィルタ11、31および41が端子60eに共通接続されているので、第1バンドの受信信号と、第4バンドの受信信号と、第6バンドの送信信号との同時伝送を低損失かつ高精度に実現できる。
 また、図3Bに示すように、第2モードが実行される場合、共通端子60aと端子60cとが接続状態となり、かつ、共通端子60aと端子60eとが接続状態となる。
 このとき、第11バンド(バンドn71のアップリンク動作バンド)の送信信号は、高周波入力端子110、電力増幅器71、スイッチ61、フィルタ53、スイッチ60、およびアンテナ接続端子100という送信経路を伝送する。また、第1バンド(バンドn29)の受信信号は、アンテナ接続端子100、スイッチ60、フィルタ11、スイッチ63、低雑音増幅器73、および高周波出力端子130、という受信経路を伝送する。また、第12バンド(バンドn71のダウンリンク動作バンド)の受信信号は、アンテナ接続端子100、スイッチ60、フィルタ54、スイッチ62、低雑音増幅器72、および高周波出力端子120、という受信経路を伝送する。
 上記第2モードでは、フィルタ11と、フィルタ53および54とが、それぞれスイッチ60の異なる端子60eおよび60cに接続されているので、第1バンドの受信信号が、第11バンドの送信信号の干渉により受信感度が低下することを抑制できる。
 [1.4 比較例1に係る高周波回路501の回路構成]
 次に、比較例1に係る高周波回路501の回路構成について説明する。比較例1に係る高周波回路501は、SDLバンド対応の信号経路を付加した従来の高周波回路である。
 図4Aは、比較例1に係る高周波回路501の回路構成図である。同図に示すように、高周波回路501は、フィルタ511、512、21、31、41、51、52、53、54、55および56と、電力増幅器71と、低雑音増幅器72および73と、スイッチ560、561、562および563と、アンテナ接続端子100と、高周波入力端子110と、高周波出力端子120および130と、を備える。本比較例に係る高周波回路501は、実施の形態に係る高周波回路1と比較して、フィルタ11の代わりにフィルタ511および512が配置されている点が主として異なる。以下、本比較例に係る高周波回路501について、実施の形態に係る高周波回路1と同じ点は説明を省略し、異なる点を中心に説明する。
 フィルタ511は、SDLの第1バンドを含む通過帯域を有する。フィルタ511の入力端は、スイッチ560の一の端子を介してアンテナ接続端子100に接続され、フィルタ511の出力端は、スイッチ563を介して低雑音増幅器73に接続されている。
 フィルタ512は、SDLの第2バンドを含む通過帯域を有する。フィルタ512の入力端は、スイッチ560の一の端子と異なる他の端子を介してアンテナ接続端子100に接続され、フィルタ512の出力端は、スイッチ563を介して低雑音増幅器73に接続されている。
 比較例1に係る高周波回路501では、2つのSDLバンド(第1バンドおよび第2バンド)に対して、それぞれ、個別にフィルタ511および512が配置されるので、実施の形態に係る高周波回路1と比較して大型化してしまう。
 [1.5 比較例2に係る高周波回路502の回路構成]
 次に、比較例2に係る高周波回路502の回路構成について説明する。比較例2に係る高周波回路502は、SDLバンド対応の信号経路を付加した従来の高周波回路である。
 図4Bは、比較例2に係る高周波回路502の第1モードの回路状態を示す図である。同図に示すように、高周波回路502は、フィルタ512、521、31、41、51、52、53、54、55および56と、電力増幅器71と、低雑音増幅器72および73と、スイッチ560、561、562、563および565と、アンテナ接続端子100と、高周波入力端子110と、高周波出力端子120および130と、を備える。本比較例に係る高周波回路502は、実施の形態に係る高周波回路1と比較して、フィルタ11および21の代わりにフィルタ512、521およびスイッチ565が配置されている点が主として異なる。以下、本比較例に係る高周波回路502について、実施の形態に係る高周波回路1と同じ点は説明を省略し、異なる点を中心に説明する。
 フィルタ521は、SDLの第1バンド(バンドn29)およびFDDのアップリンク用の第3バンド(バンドn28のアップリンク動作バンド)を含む通過帯域を有する。フィルタ521の一端は、スイッチ560の一の端子を介してアンテナ接続端子100に接続され、フィルタ521の他端は、スイッチ565および561を介して電力増幅器71に接続され、また、スイッチ565および563を介して低雑音増幅器73に接続されている。
 フィルタ512は、SDLの第2バンドを含む通過帯域を有する。フィルタ512の入力端は、スイッチ560の一の端子と異なる他の端子を介してアンテナ接続端子100に接続され、フィルタ512の出力端は、スイッチ563を介して低雑音増幅器73に接続されている。
 比較例2に係る高周波回路502では、SDLの第1バンド(バンドn29)およびFDDのアップリンク用の第3バンド(バンドn28のアップリンク動作バンド)が一部重複していることを利用して、第1バンドに対応するフィルタと第3バンドに対応するフィルタとを、1つのフィルタ521とし、高周波回路502の小型化を図っている。ただし、実施の形態に係る高周波回路1と比較して、スイッチ565が付加されている分、回路は大型化する。
 上記構成において、第1バンド(バンドn29)の受信信号、第4バンド(バンドn5のダウンリンク動作バンド)の受信信号、および第6バンド(バンドn5のアップリンク動作バンド)の送信信号を同時伝送する第1モードが実行される場合、第6バンドの送信信号は、高周波入力端子110、電力増幅器71、スイッチ561、フィルタ41、スイッチ560、およびアンテナ接続端子100という送信経路を伝送する。また、第4バンド(バンドn5のダウンリンク動作バンド)の受信信号は、アンテナ接続端子100、スイッチ560、フィルタ31、スイッチ562、低雑音増幅器72、および高周波出力端子120、という受信経路を伝送する。また、第1バンド(バンドn29)の受信信号は、アンテナ接続端子100、スイッチ560、フィルタ521、スイッチ565、スイッチ563、低雑音増幅器73、および高周波出力端子130、という受信経路を伝送する。
 しかしながら、上記第1モードの場合、電力増幅器71からの第6バンド(バンドn5のアップリンク動作バンド)の送信信号がスイッチ565を経由して低雑音増幅器73に漏洩してしまい、第1バンド(バンドn29)の受信信号の受信感度が劣化するという問題が生じる。
 これに対して、本実施の形態に係る高周波回路1では、フィルタ11は、2つのSDLバンド(第1バンドおよび第2バンド)を通過帯域として含むので、高周波回路1を小型化できる。また、2つのSDLバンド(第1バンドおよび第2バンド)には、対応する送信バンドがないので、フィルタ11の特性として、近傍にあるべき送信バンドの減衰仕様を満たす必要がないため、フィルタ設計を簡素化できる。また、フィルタ11の通過帯域に送信バンドが含まれないことで高耐電力性を確保する必要がない。よって、フィルタ11を小型化できる。
 [1.6 変形例1に係る高周波回路1Aの回路構成]
 次に、変形例1に係る高周波回路1Aの回路構成について、図5を参照しながら説明する。
 図5は、変形例1に係る高周波回路1Aの回路構成図である。同図に示すように、高周波回路1Aは、フィルタ11、21、31、41、51、52、53、54、55および56と、電力増幅器71と、低雑音増幅器72および73と、スイッチ60A、61、62および63と、アンテナ接続端子100と、高周波入力端子110と、高周波出力端子120および130と、を備える。本変形例に係る高周波回路1Aは、実施の形態に係る高周波回路1と比較して、スイッチ60Aの構成およびフィルタ11の接続構成が異なる。以下、本変形例に係る高周波回路1Aについて、実施の形態に係る高周波回路1と同じ点は説明を省略し、異なる点を中心に説明する。
 スイッチ60Aは、共通端子60a、端子60b、60c、60d(第2端子)、60e(第1端子)および60fを有し、共通端子60aと端子60b、60c、60d、60eおよび60fのそれぞれとの接続および非接続を切り替える。共通端子60aはアンテナ接続端子100に接続され、端子60bはフィルタ51および52に接続され、端子60cはフィルタ53および54に接続され、端子60dはフィルタ21、55および56に接続され、端子60eはフィルタ11に接続され、端子60fはフィルタ31および41に接続されている。
 フィルタ11は、第1フィルタの一例であり、SDLの第1バンドおよびSDLの第2バンドを含む通過帯域を有する。フィルタ11の入力端は、スイッチ60Aの端子60e(第1端子)を介してアンテナ接続端子100に接続され、フィルタ11の出力端は、スイッチ63を介して低雑音増幅器73に接続されている。
 フィルタ31は、第3フィルタの一例であり、ダウンリンク用の第4バンドを含む通過帯域を有する。フィルタ31の入力端は、スイッチ60Aの端子60fを介してアンテナ接続端子100に接続され、フィルタ31の出力端は、スイッチ63を介して低雑音増幅器73に接続されている。
 フィルタ41は、第4フィルタの一例であり、第4バンドと対応するアップリンク用の第6バンドを含む通過帯域を有する。フィルタ41の出力端は、スイッチ60の端子60fを介してアンテナ接続端子100に接続され、フィルタ41の入力端は、スイッチ61を介して電力増幅器71に接続されている。
 フィルタ11は、2つのSDLバンド(第1バンドおよび第2バンド)を通過帯域として含むので、高周波回路1Aを小型化できる。また、2つのSDLバンド(第1バンドおよび第2バンド)には、対応する送信バンドがないので、フィルタ11の特性として、近傍にあるべき送信バンドの減衰仕様を満たす必要がないため、フィルタ設計を簡素化できる。また、フィルタ11の通過帯域に送信バンドが含まれないことで高耐電力性を確保する必要がない。さらに、フィルタ11が接続された端子60eには、送信用フィルタが接続されていないので、端子60eの耐電力性を軽減できる。よって、スイッチ60Aの構成を簡素化でき小型化できる。
 [1.7 変形例2に係るダイバーシティ回路1Bの回路構成]
 次に、変形例2に係るダイバーシティ回路1Bの回路構成について、図6を参照しながら説明する。
 図6は、変形例2に係るダイバーシティ回路1Bおよびプライマリ回路200の回路構成図である。
 プライマリ回路200は、電力増幅器71と、低雑音増幅器72と、スイッチ265、266および267と、フィルタ群と、を備え、第3バンドの送信信号、第4バンドの受信信号、第5バンドの受信信号、第6バンドの送信信号、第7バンドの送信信号を伝送する回路である。
 第3バンドは、例えばLTEのためのFDDバンドB28のアップリンク動作バンドまたは5G-NRのためのFDDバンドn28のアップリンク動作バンドである。
 第4バンドは、例えばLTEのためのFDDバンドB5のダウンリンク動作バンド、5G-NRのためのFDDバンドn5のダウンリンク動作バンド、LTEのためのFDDバンドB8のダウンリンク動作バンド、5G-NRのためのFDDバンドn8のダウンリンク動作バンド、LTEのためのFDDバンドB20のダウンリンク動作バンド、5G-NRのためのFDDバンドn20のダウンリンク動作バンド、LTEのためのFDDバンドB71のダウンリンク動作バンド、または5G-NRのためのFDDバンドn71のダウンリンク動作バンドである。
 第5バンドは、例えばLTEのためのFDDバンドB26のダウンリンク動作バンド、または5G-NRのためのFDDバンドn26のダウンリンク動作バンドである。
 第6バンドは、例えばLTEのためのFDDバンドB5のアップリンク動作バンド、5G-NRのためのFDDバンドn5のアップリンク動作バンド、LTEのためのFDDバンドB8のアップリンク動作バンド、5G-NRのためのFDDバンドn8のアップリンク動作バンド、LTEのためのFDDバンドB20のアップリンク動作バンド、5G-NRのためのFDDバンドn20のアップリンク動作バンド、LTEのためのFDDバンドB71のアップリンク動作バンド、または5G-NRのためのFDDバンドn71のアップリンク動作バンドである。
 第7バンドは、例えばLTEのためのバンドB26のアップリンク動作バンド、5G-NRのためのバンドn26のアップリンク動作バンドである。
 フィルタ群は、第3バンドを通過帯域とするフィルタ、第4バンドを通過帯域とするフィルタ、第5バンドを通過帯域とするフィルタ、第6バンドを通過帯域とするフィルタ、および第7バンドを通過帯域とするフィルタを有する。
 スイッチ265は、共通端子265a、端子265b、265c、265d、265eおよび265fを有し、共通端子265aと端子265c、265d、265eおよび265fのそれぞれとの接続および非接続を切り替え、また、端子265bと端子265c、265d、265eおよび265fのそれぞれとの接続および非接続を切り替える。
 共通端子265aはアンテナ2Aに接続されている。端子265bは、ダイバーシティ回路1Bが備えるスイッチ65の端子65cに接続されている。端子265c、265dおよび265eのそれぞれはフィルタ群に属するフィルタに接続されている。端子265fはダイバーシティ回路1Bが備えるスイッチ65の端子65b(第3端子)に接続されている。
 ダイバーシティ回路1Bは、変形例2に係る高周波回路であり、フィルタ11、31、52、54および56と、低雑音増幅器74および75と、スイッチ65、66および67と、高周波出力端子140および150と、を備える。本変形例に係るダイバーシティ回路1Bは、実施の形態に係る高周波回路1と比較して、送信用のフィルタおよび電力増幅器がなく、また、スイッチ65がプライマリ回路200に接続されている点が異なる。以下、本変形例に係るダイバーシティ回路1Bについて、実施の形態に係る高周波回路1と同じ点は説明を省略し、異なる点を中心に説明する。
 高周波出力端子140および150は、RFIC3に接続され、RFIC3に高周波受信信号を出力するための端子である。
 フィルタ11は、第1フィルタの一例であり、SDLの第1バンドおよびSDLの第2バンドを含む通過帯域を有する。フィルタ11の入力端は、スイッチ65の端子65g(第1端子)および共通端子65aを介してアンテナ2Bに接続され、また、スイッチ65の端子65g(第1端子)、端子65bおよびプライマリ回路200を介してアンテナ2Aに接続される。フィルタ11の出力端は、スイッチ67を介して低雑音増幅器75に接続されている。
 第1バンドは、例えばLTEのためのバンドB29または5G-NRのためのバンドn29である。また、第2バンドは、例えばLTEのためのバンドB67または5G-NRのためのバンドn67である。
 低雑音増幅器75は、スイッチ67を介してフィルタ11に接続され、アンテナ2Aまたは2Bから入力された第1バンドおよび第2バンドの受信信号を増幅する。
 フィルタ11は、2つのSDLバンド(第1バンドおよび第2バンド)を通過帯域として含むので、ダイバーシティ回路1Bを小型化できる。また、2つのSDLバンド(第1バンドおよび第2バンド)には、対応する送信バンドがないので、フィルタ11の特性として、近傍にあるべき送信バンドの減衰仕様を満たす必要がないため、フィルタ設計を簡素化できる。また、フィルタ11の通過帯域に送信バンドが含まれないことで高耐電力性を確保する必要がない。よって、フィルタ11を小型化できる。
 なお、フィルタ11は、SDLの第1バンド、SDLの第2バンドおよび第8バンドを含む通過帯域を有してもよい。第8バンドは、FDDのダウンリンク動作バンドである。
 第8バンドは、例えば、LTEのためのバンドB12のダウンリンク動作バンド、5G-NRのためのバンドn12(729-746MHz)のダウンリンク動作バンド、LTEのためのバンドB13のダウンリンク動作バンド、5G-NRのためのバンドn13のダウンリンク動作バンド(746-756MHz)、LTEのためのバンドB14のダウンリンク動作バンド、または5G-NRのためのバンドn14のダウンリンク動作バンド(758-768MHz)、である。
 これによれば、フィルタ11は、第1バンドおよび第2バンドに加えて、第8バンドを通過帯域として含むので、ダイバーシティ回路1Bを小型化できる。
 スイッチ65は、共通端子65a、端子65b(第3端子)、65c、65d、65e、65fおよび65g(第1端子)を有し、共通端子65aと端子65c、65dおよび65e、65fおよび65gのそれぞれとの接続および非接続を切り替え、また、端子65bと端子65c、65dおよび65e、65fおよび65gのそれぞれとの接続および非接続を切り替える。共通端子65aはアンテナ2Bに接続され、端子65bはプライマリ回路200が備えるスイッチ265の端子265fに接続され、端子65cはプライマリ回路200が備えるスイッチ265の端子265bに接続され、端子65dはフィルタ52に接続され、端子65eはフィルタ54に接続され、端子65fはフィルタ56に接続され、端子65gはフィルタ11および31に接続されている。
 フィルタ31は、第3フィルタの一例であり、ダウンリンク用の第4バンドを含む通過帯域を有する。フィルタ31の入力端は、端子65g(第1端子)に接続され、フィルタ31の出力端は、スイッチ67を介して低雑音増幅器75に接続されている。
 フィルタ31は受信用フィルタであるため、フィルタ31が端子65gに接続されることで端子65gの耐電力性を高くする必要がない。よって、スイッチ65が大型化することを抑制できる。
 なお、フィルタ31は、第4バンドの少なくとも一部と周波数が重なるダウンリンク用の第5バンドを、通過帯域に含んでもよい。
 これによれば、フィルタ31は、2つの受信用バンド(第4バンドおよび第5バンド)を通過帯域として含むので、ダイバーシティ回路1Bを小型化できる。
 フィルタ52は、ダウンリンク用の第10バンドを含む通過帯域を有する。フィルタ52の入力端は、端子65dに接続され、フィルタ52の出力端は、スイッチ66を介して低雑音増幅器74に接続されている。
 第10バンドは、例えばLTEのためのバンドB8のダウンリンク動作バンドまたは5G-NRのためのバンドn8のダウンリンク動作バンドである。
 フィルタ54は、ダウンリンク用の第12バンドを含む通過帯域を有する。フィルタ54の入力端は、端子65eに接続され、フィルタ54の出力端は、スイッチ66を介して低雑音増幅器74に接続されている。
 第12バンドは、例えばLTEのためのバンドB71のダウンリンク動作バンドまたは5G-NRのためのバンドn71のダウンリンク動作バンドである。
 フィルタ56は、ダウンリンク用の第14バンドを含む通過帯域を有する。フィルタ56の入力端は、端子65fに接続され、フィルタ56の出力端は、スイッチ67を介して低雑音増幅器75に接続されている。
 第14バンドは、例えばLTEのためのバンドB20のダウンリンク動作バンドまたは5G-NRのためのバンドn20のダウンリンク動作バンドである。
 なお、フィルタ56は、第14バンドの少なくとも一部と周波数が重なるアップリンク用の第15バンドを、通過帯域に含んでもよい。
 低雑音増幅器74は、スイッチ66を介してフィルタ52および54に接続され、アンテナ2Aまたは2Bから入力された第10バンドおよび第12バンドの受信信号を増幅する。
 スイッチ66は、低雑音増幅器74と、フィルタ52および54との間に接続され、低雑音増幅器74と、フィルタ52および54のそれぞれとの接続および非接続を切り替える。
 スイッチ67は、低雑音増幅器75と、フィルタ11、31および56との間に接続され、低雑音増幅器75と、フィルタ11、31および56のそれぞれとの接続および非接続を切り替える。
 なお、図6に示された回路素子のいくつかは、ダイバーシティ回路1Bに含まれなくてもよい。ダイバーシティ回路1Bにおいて、フィルタ52、54および56、スイッチ66、ならびに低雑音増幅器74は、なくてもよい。また、さらに、フィルタ31およびスイッチ67も、なくてもよい。
 本変形例に係るダイバーシティ回路1Bは、フィルタ11、低雑音増幅器75およびスイッチ65を少なくとも備えていればよい。
 また、図6に示された回路素子のほか、ダイバーシティ回路1Bは、インピーダンス整合素子などを備えていてもよい。
 上記構成によれば、共通端子265aと端子265c、265dおよび265eの少なくとも1つとが接続され、共通端子65aと端子65d、65e、65fおよび65gの少なくとも1つとが接続されることにより、プライマリ回路200をアンテナ2Aに接続し、ダイバーシティ回路1Bをアンテナ2Bに接続できる。また、共通端子265aと端子265fとが接続され、端子65bと端子65d、65e、65fおよび65gの少なくとも1つとが接続されることにより、ダイバーシティ回路1Bをアンテナ2Aに接続できる。また、共通端子65aと端子65cとが接続され、端子265bと端子265c、265dおよび265eの少なくとも1つとが接続されることにより、プライマリ回路200をアンテナ2Bに接続できる。つまり、アンテナ2Aおよび2Bの感度状態に応じて、プライマリ回路200およびダイバーシティ回路1Bに接続されるアンテナを選択することが可能となる。
 [2 効果など]
 以上のように、本実施の形態に係る高周波回路1は、SDLの第1バンドおよびSDLの第2バンドを含む通過帯域を有するフィルタ11と、フィルタ11に接続された低雑音増幅器73と、を備える。
 これによれば、フィルタ11は、2つのSDLバンド(第1バンドおよび第2バンド)を通過帯域として含むので、高周波回路1を小型化できる。また、2つのSDLバンド(第1バンドおよび第2バンド)には、対応する送信バンドがないので、フィルタ11の特性として、近傍にあるべき送信バンドの減衰仕様を満たす必要がないため、フィルタ設計を簡素化できる。また、フィルタ11の通過帯域に送信バンドが含まれないことで高耐電力性を確保する必要がない。よって、フィルタ11を小型化できる。
 また例えば、高周波回路1において、第1バンドは、LTEのためのバンドB29または5G-NRのためのバンドn29であり、第2バンドは、LTEのためのバンドB67または5G-NRのためのバンドn67であってもよい。
 また例えば、高周波回路1は、さらに、アップリンク用の第3バンドを含む通過帯域を有するフィルタ21と、フィルタ21に接続された電力増幅器71と、共通端子60a、フィルタ11に接続された端子60eおよびフィルタ21に接続された端子60dを有し、共通端子60aと端子60eとの接続および非接続を切り替え、共通端子60aと端子60dとの接続および非接続を切り替えるスイッチ60と、を備え、第3バンドは第1バンドおよび第2バンドの少なくとも一部と重なってもよい。
 これによれば、第3バンドは、第1バンドおよび第2バンドの少なくとも一部と周波数が重なっているにもかかわらず、フィルタ11は、第3バンドの送信信号を通過させるフィルタとして機能せず、2つの受信用のSDLバンド(第1バンドおよび第2バンド)の受信信号を通過させるフィルタとして機能する。よって、フィルタ11を通過する第1バンドおよび第2バンドの受信信号が第3バンドの送信信号により受信感度が劣化することを抑制できる。また、フィルタ11とフィルタ21とは、それぞれスイッチ60の異なる端子60eおよび60dに接続されるので、フィルタ11が接続された端子60eの耐電力性を軽減できる。よって、スイッチ60の構成を簡素化でき小型化できる。
 また例えば、高周波回路1において、第3バンドは、LTEのためのバンドB28のアップリンク動作バンドまたは5G-NRのためのバンドn28のアップリンク動作バンドであってもよい。
 また例えば、高周波回路1は、さらに、ダウンリンク用の第4バンドを含む通過帯域を有し、端子60eに接続されたフィルタ31を備えてもよい。
 これによれば、フィルタ31は受信用フィルタであるため、フィルタ31が端子60eに接続されることで端子60eの耐電力性を高くする必要がない。よって、スイッチ60が大型化することを抑制できる。
 また例えば、高周波回路1において、第4バンドは、LTEのためのバンドB5のダウンリンク動作バンド、5G-NRのためのバンドn5のダウンリンク動作バンド、LTEのためのバンドB8のダウンリンク動作バンド、5G-NRのためのバンドn8のダウンリンク動作バンド、LTEのためのバンドB20のダウンリンク動作バンド、5G-NRのためのバンドn20のダウンリンク動作バンド、LTEのためのバンドB71のダウンリンク動作バンド、または5G-NRのためのバンドn71のダウンリンク動作バンド、であってもよい。
 また例えば、高周波回路1において、フィルタ31は、第4バンドおよびダウンリンク用の第5バンドを含む通過帯域を有し、第5バンドは第4バンドの少なくとも一部と重なってもよい。
 これによれば、フィルタ31は、2つの受信用バンド(第4バンドおよび第5バンド)を通過帯域として含むので、高周波回路1を小型化できる。
 また例えば、高周波回路1において、第4バンドは、LTEのためのバンドB5のダウンリンク動作バンドまたは5G-NRのためのバンドn5のダウンリンク動作バンドであり、第5バンドは、LTEのためのバンドB26のダウンリンク動作バンドまたは5G-NRのためのバンドn26のダウンリンク動作バンドであってもよい。
 また例えば、高周波回路1は、さらに、第4バンドと対応するアップリンク用の第6バンドを含む通過帯域を有し、端子60eに接続されたフィルタ41を備えてもよい。
 これによれば、端子60eには、フィルタ41以外に、受信用のフィルタ11および31が接続されているので、フィルタ41にとって、近傍の送信帯域の減衰特性を考慮する必要がない。よって、フィルタ41の設計を簡素化できる。また、フィルタ11、31および41が端子60eに共通接続されているので、第1バンドまたは第2バンドの受信信号と、第4バンドの受信信号と、第6バンドの送信信号との同時伝送を低損失かつ高精度に実現できる。
 また例えば、高周波回路1において、第6バンドは、LTEのためのバンドB5のアップリンク動作バンド、5G-NRのためのバンドn5のアップリンク動作バンド、LTEのためのバンドB8のアップリンク動作バンド、5G-NRのためのバンドn8のアップリンク動作バンド、LTEのためのバンドB20のアップリンク動作バンド、5G-NRのためのバンドn20のアップリンク動作バンド、LTEのためのバンドB71のアップリンク動作バンド、または5G-NRのためのバンドn71のアップリンク動作バンド、であってもよい。
 また例えば、高周波回路1において、フィルタ41は、第6バンドおよびアップリンク用の第7バンドを含む通過帯域を有し、第7バンドは、第6バンドの少なくとも一部と重なってもよい。
 これによれば、フィルタ41は、2つの送信用バンド(第6バンドおよび第7バンド)を通過帯域として含むので、高周波回路1を小型化できる。
 また例えば、高周波回路1において、第6バンドは、LTEのためのバンドB5のアップリンク動作バンドまたは5G-NRのためのバンドn5のアップリンク動作バンドであり、第7バンドは、LTEのためのバンドB26のアップリンク動作バンドまたは5G-NRのためのバンドn26のアップリンク動作バンドであってもよい。
 また例えば、ダイバーシティ回路1Bは、さらに、アンテナ2Bに接続された共通端子65a、フィルタ11に接続された端子65gおよびプライマリ回路200に接続された端子65bを有し、共通端子65aと端子65gとの接続および端子65bと端子65gとの接続を切り替えるスイッチ65を備えてもよい。
 これによれば、共通端子65aと端子65gとが接続されることにより、プライマリ回路200をアンテナ2Aに接続し、ダイバーシティ回路1Bをアンテナ2Bに接続できる。また、端子65bと端子65gとが接続されることにより、ダイバーシティ回路1Bをアンテナ2Aに接続できる。つまり、アンテナ2Aおよび2Bの感度状態に応じて、プライマリ回路200およびダイバーシティ回路1Bに接続されるアンテナを選択することが可能となる。
 また例えば、ダイバーシティ回路1Bにおいて、フィルタ11は、第1バンド、第2バンドおよび第8バンドを含む通過帯域を有し、第8バンドは、FDDのダウンリンク動作バンドであってもよい。
 これによれば、フィルタ11は、第1バンドおよび第2バンドに加えて、第8バンドを通過帯域として含むので、ダイバーシティ回路1Bを小型化できる。
 また例えば、ダイバーシティ回路1Bにおいて、第1バンドは、LTEのためのバンドB29または5G-NRのためのバンドn29であり、第2バンドは、LTEのためのバンドB67または5G-NRのためのバンドn67であり、第8バンドは、LTEのためのバンドB12のダウンリンク動作バンド、5G-NRのためのバンドn12のダウンリンク動作バンド、LTEのためのバンドB13のダウンリンク動作バンド、5G-NRのためのバンドn13のダウンリンク動作バンド、LTEのためのバンドB14のダウンリンク動作バンド、または5G-NRのためのバンドn14のダウンリンク動作バンド、であってもよい。
 また、本実施の形態に係る通信装置5は、高周波信号を処理するRFIC3と、RFIC3とアンテナ2との間で高周波信号を伝送する高周波回路1と、を備える。
 これによれば、通信装置5は、高周波回路1の上記効果と同様の効果を奏することができる。
 (その他の実施の形態)
 以上、本発明に係る高周波回路および通信装置について、実施の形態および変形例に基づいて説明したが、本発明に係る高周波回路および通信装置は、上記実施の形態および変形例に限定されるものではない。上記実施の形態および変形例における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態および変形例に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、上記高周波回路および通信装置を内蔵した各種機器も本発明に含まれる。
 例えば、上記実施の形態および変形例に係る高周波回路および通信装置の回路構成において、図面に表された各回路素子および信号経路を接続する経路の間に、別の回路素子および配線などが挿入されてもよい。
 また、上記実施の形態において、5G-NRまたはLTEのためのバンドが用いられていたが、5G-NRまたはLTEに加えてまたは代わりに、他の無線アクセス技術のための通信バンドが用いられてもよい。例えば、無線ローカルエリアネットワークのための通信バンドが用いられてもよい。また例えば、7ギガヘルツ以上のミリ波帯域が用いられてもよい。この場合、高周波回路1と、アンテナ2と、RFIC3とは、ミリ波アンテナモジュールを構成し、フィルタとして、例えば分布定数型フィルタが用いられてもよい。
 本発明は、フロントエンド部に配置される高周波回路として、携帯電話などの通信機器に広く利用できる。
 1、1A、501、502  高周波回路
 1B  ダイバーシティ回路
 2、2A、2B  アンテナ
 3  RF信号処理回路(RFIC)
 4  ベースバンド信号処理回路(BBIC)
 5  通信装置
 11、21、31、41、51、52、53、54、55、56、511、512、521  フィルタ
 60、60A、61、62、63、65、66、67、265、266、267、560、561、562、563、565  スイッチ
 60a、65a、265a  共通端子
 60b、60c、60d、60e、60f、65b、65c、65d、65e、65f、65g、265b、265c、265d、265e、265f  端子
 71  電力増幅器
 72、73、74、75  低雑音増幅器
 100  アンテナ接続端子
 110  高周波入力端子
 120、130、140、150  高周波出力端子
 200  プライマリ回路

Claims (16)

  1.  SDL(Supplimentary DownLink)の第1バンドおよびSDLの第2バンドを含む通過帯域を有する第1フィルタと、
     前記第1フィルタに接続された低雑音増幅器と、を備える、
     高周波回路。
  2.  前記第1バンドは、LTEのためのバンドB29または5G-NRのためのバンドn29であり、
     前記第2バンドは、LTEのためのバンドB67または5G-NRのためのバンドn67である、
     請求項1に記載の高周波回路。
  3.  さらに、
     アップリンク用の第3バンドを含む通過帯域を有する第2フィルタと、
     前記第2フィルタに接続された電力増幅器と、
     共通端子、前記第1フィルタに接続された第1端子および前記第2フィルタに接続された第2端子を有し、前記共通端子と前記第1端子との接続および非接続を切り替え、前記共通端子と前記第2端子との接続および非接続を切り替えるスイッチと、を備え、
     前記第3バンドは、前記第1バンドおよび前記第2バンドの少なくとも一部と重なる、
     請求項1に記載の高周波回路。
  4.  前記第3バンドは、LTEのためのバンドB28のアップリンク動作バンドまたは5G-NRのためのバンドn28のアップリンク動作バンドである、
     請求項3に記載の高周波回路。
  5.  さらに、
     ダウンリンク用の第4バンドを含む通過帯域を有し、前記第1端子に接続された第3フィルタを備える、
     請求項3または4に記載の高周波回路。
  6.  前記第4バンドは、LTEのためのバンドB5のダウンリンク動作バンド、5G-NRのためのバンドn5のダウンリンク動作バンド、LTEのためのバンドB8のダウンリンク動作バンド、5G-NRのためのバンドn8のダウンリンク動作バンド、LTEのためのバンドB20のダウンリンク動作バンド、5G-NRのためのバンドn20のダウンリンク動作バンド、LTEのためのバンドB71のダウンリンク動作バンド、または5G-NRのためのバンドn71のダウンリンク動作バンド、である、
     請求項5に記載の高周波回路。
  7.  前記第3フィルタは、前記第4バンドおよびダウンリンク用の第5バンドを含む通過帯域を有し、
     前記第5バンドは、前記第4バンドの少なくとも一部と重なる、
     請求項5または6に記載の高周波回路。
  8.  前記第4バンドは、LTEのためのバンドB5のダウンリンク動作バンドまたは5G-NRのためのバンドn5のダウンリンク動作バンドであり、
     前記第5バンドは、LTEのためのバンドB26のダウンリンク動作バンドまたは5G-NRのためのバンドn26のダウンリンク動作バンドである、
     請求項7に記載の高周波回路。
  9.  さらに、
     前記第4バンドと対応するアップリンク用の第6バンドを含む通過帯域を有し、前記第1端子に接続された第4フィルタを備える、
     請求項5~8のいずれか1項に記載の高周波回路。
  10.  前記第6バンドは、LTEのためのバンドB5のアップリンク動作バンド、5G-NRのためのバンドn5のアップリンク動作バンド、LTEのためのバンドB8のアップリンク動作バンド、5G-NRのためのバンドn8のアップリンク動作バンド、LTEのためのバンドB20のアップリンク動作バンド、5G-NRのためのバンドn20のアップリンク動作バンド、LTEのためのバンドB71のアップリンク動作バンド、または5G-NRのためのバンドn71のアップリンク動作バンド、である、
     請求項9に記載の高周波回路。
  11.  前記第4フィルタは、前記第6バンドおよびアップリンク用の第7バンドを含む通過帯域を有し、
     前記第7バンドは、前記第6バンドの少なくとも一部と重なる、
     請求項9または10に記載の高周波回路。
  12.  前記第6バンドは、LTEのためのバンドB5のアップリンク動作バンドまたは5G-NRのためのバンドn5のアップリンク動作バンドであり、
     前記第7バンドは、LTEのためのバンドB26のアップリンク動作バンドまたは5G-NRのためのバンドn26のアップリンク動作バンドである、
     請求項11に記載の高周波回路。
  13.  前記高周波回路は、ダイバーシティ回路であり、
     さらに、
     アンテナに接続された共通端子、前記第1フィルタに接続された第1端子およびプライマリ回路に接続された第3端子を有し、前記共通端子と前記第1端子との接続および前記第3端子と前記第1端子との接続を切り替えるスイッチを備える、
     請求項1に記載の高周波回路。
  14.  前記第1フィルタは、前記第1バンド、前記第2バンドおよび第8バンドを含む通過帯域を有し、
     前記第8バンドは、FDD(Frequency Division Duplex)のダウンリンク動作バンドである
     請求項13に記載の高周波回路。
  15.  前記第1バンドは、LTEのためのバンドB29または5G-NRのためのバンドn29であり、
     前記第2バンドは、LTEのためのバンドB67または5G-NRのためのバンドn67であり、
     前記第8バンドは、LTEのためのバンドB12のダウンリンク動作バンド、5G-NRのためのバンドn12のダウンリンク動作バンド、LTEのためのバンドB13のダウンリンク動作バンド、5G-NRのためのバンドn13のダウンリンク動作バンド、LTEのためのバンドB14のダウンリンク動作バンド、または5G-NRのためのバンドn14のダウンリンク動作バンド、である、
     請求項14に記載の高周波回路。
  16.  高周波信号を処理する信号処理回路と、
     前記信号処理回路とアンテナとの間で前記高周波信号を伝送する請求項1~15のいずれか1項に記載の高周波回路と、備える、
     通信装置。
PCT/JP2023/008527 2022-03-28 2023-03-07 高周波回路および通信装置 WO2023189276A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-052569 2022-03-28
JP2022052569 2022-03-28

Publications (1)

Publication Number Publication Date
WO2023189276A1 true WO2023189276A1 (ja) 2023-10-05

Family

ID=88201336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008527 WO2023189276A1 (ja) 2022-03-28 2023-03-07 高周波回路および通信装置

Country Status (1)

Country Link
WO (1) WO2023189276A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007129716A1 (ja) * 2006-05-08 2007-11-15 Hitachi Metals, Ltd. 高周波回路、高周波部品及び通信装置
US20110319035A1 (en) * 2010-06-28 2011-12-29 Lum Nicholas W Wireless circuits with minimized port counts
US20140342678A1 (en) * 2013-05-20 2014-11-20 Rf Micro Devices, Inc. Tunable filter front end architecture for non-contiguous carrier aggregation
US20170294947A1 (en) * 2016-04-09 2017-10-12 Skyworks Solutions, Inc. Front-end architecture having switchable duplexer
US20190273314A1 (en) * 2018-03-05 2019-09-05 Skyworks Solutions, Inc. Radio frequency systems with tunable filter
WO2020116460A1 (ja) * 2018-12-04 2020-06-11 株式会社村田製作所 フロントエンド回路および通信装置
JP2020195119A (ja) * 2019-05-30 2020-12-03 株式会社村田製作所 高周波回路および通信装置
CN112929039A (zh) * 2021-02-25 2021-06-08 浙江海通通讯电子股份有限公司 一种高频模块及通信装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007129716A1 (ja) * 2006-05-08 2007-11-15 Hitachi Metals, Ltd. 高周波回路、高周波部品及び通信装置
US20110319035A1 (en) * 2010-06-28 2011-12-29 Lum Nicholas W Wireless circuits with minimized port counts
US20140342678A1 (en) * 2013-05-20 2014-11-20 Rf Micro Devices, Inc. Tunable filter front end architecture for non-contiguous carrier aggregation
US20170294947A1 (en) * 2016-04-09 2017-10-12 Skyworks Solutions, Inc. Front-end architecture having switchable duplexer
US20190273314A1 (en) * 2018-03-05 2019-09-05 Skyworks Solutions, Inc. Radio frequency systems with tunable filter
WO2020116460A1 (ja) * 2018-12-04 2020-06-11 株式会社村田製作所 フロントエンド回路および通信装置
JP2020195119A (ja) * 2019-05-30 2020-12-03 株式会社村田製作所 高周波回路および通信装置
CN112929039A (zh) * 2021-02-25 2021-06-08 浙江海通通讯电子股份有限公司 一种高频模块及通信装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "5G NR frequency bands - Wikipedia", 25 January 2022 (2022-01-25), XP093095580, Retrieved from the Internet <URL:https://web.archive.org/web/20220125225716/https://en.wikipedia.org/wiki/5G_NR_frequency_bands> *
ANONYMOUS: "LTE frequency bands - Wikipedia", 31 January 2022 (2022-01-31), XP093095579, Retrieved from the Internet <URL:https://web.archive.org/web/20220131214741/https://en.wikipedia.org/wiki/LTE_frequency_bands> *

Similar Documents

Publication Publication Date Title
US11239873B2 (en) Front-end circuit and communication device
US11265037B2 (en) Radio frequency circuit and communication device
US11539381B2 (en) Radio frequency circuit, antenna module, and communication device
US11381261B2 (en) Radio-frequency module and communication apparatus
WO2021205845A1 (ja) 高周波回路、ダイバーシティモジュールおよび通信装置
JP2021082974A (ja) 高周波回路および通信装置
CN113169749B (zh) 前端模块以及通信装置
US20240106465A1 (en) Radio frequency module and communication device
US20210336640A1 (en) Radio frequency circuit and communication device
US20240097719A1 (en) Radio-frequency circuit and communication device
US11177780B2 (en) Front-end circuit and communication device
US12095489B2 (en) High-frequency circuit and communication device
CN112368944B (zh) 高频放大电路和通信装置
WO2022209665A1 (ja) 高周波回路および通信装置
WO2020017108A1 (ja) 高周波モジュールおよび通信装置
WO2023189276A1 (ja) 高周波回路および通信装置
KR101931682B1 (ko) 단일안테나의 동작을 위한 TLT(Transmission Line Transformer)를 포함하는 SPDT 스위치 구조
US11483019B2 (en) Radio-frequency module and communication device
WO2023243175A1 (ja) 高周波回路および通信装置
US20230079361A1 (en) High-frequency circuit and communication device
WO2023238482A1 (ja) 高周波回路及び通信装置
WO2024042910A1 (ja) 高周波モジュールおよび通信装置
WO2022264862A1 (ja) 高周波回路および通信装置
WO2020226119A1 (ja) 高周波回路および通信装置
US20240014845A1 (en) Radio-frequency circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779303

Country of ref document: EP

Kind code of ref document: A1