WO2007110908A9 - 冷凍空調装置 - Google Patents

冷凍空調装置

Info

Publication number
WO2007110908A9
WO2007110908A9 PCT/JP2006/306119 JP2006306119W WO2007110908A9 WO 2007110908 A9 WO2007110908 A9 WO 2007110908A9 JP 2006306119 W JP2006306119 W JP 2006306119W WO 2007110908 A9 WO2007110908 A9 WO 2007110908A9
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
compressor
outlet
indoor heat
Prior art date
Application number
PCT/JP2006/306119
Other languages
English (en)
French (fr)
Other versions
WO2007110908A1 (ja
Inventor
Fumitake Unezaki
Makoto Saitou
Tetsuji Saikusa
Masanori Aoki
Masato Yosomiya
Original Assignee
Mitsubishi Electric Corp
Fumitake Unezaki
Makoto Saitou
Tetsuji Saikusa
Masanori Aoki
Masato Yosomiya
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Fumitake Unezaki, Makoto Saitou, Tetsuji Saikusa, Masanori Aoki, Masato Yosomiya filed Critical Mitsubishi Electric Corp
Priority to US11/661,094 priority Critical patent/US8899058B2/en
Priority to EP06730067.3A priority patent/EP2000751B1/en
Priority to CNB2006800009160A priority patent/CN100554820C/zh
Priority to PCT/JP2006/306119 priority patent/WO2007110908A1/ja
Priority to NO20073241A priority patent/NO342668B1/no
Publication of WO2007110908A1 publication Critical patent/WO2007110908A1/ja
Publication of WO2007110908A9 publication Critical patent/WO2007110908A9/ja
Priority to US12/760,190 priority patent/US20100192607A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/31Low ambient temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Definitions

  • the present invention relates to a refrigeration air conditioner, and more particularly to a refrigeration air conditioner that performs gas injection to improve the heating capacity at a low outside air temperature.
  • a gas-liquid separator is provided at an intermediate pressure portion between a condenser and an evaporator, and gas refrigerant separated by the gas-liquid separator is injected into an intermediate pressure portion of a compressor.
  • the heating capacity is improved (for example, see Patent Document 1).
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-304714
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-274859
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2001-174091
  • the injection flow rate is likely to fluctuate depending on the high and low pressures of the refrigeration cycle, the pressure of the gas-liquid separator, the operating capacity of the compressor, etc., so the injection flow rate is not balanced with the gas refrigerant flow rate flowing into the gas-liquid separator.
  • the amount of liquid refrigerant in the gas-liquid separator is almost zero or full, and the amount of refrigerant in the gas-liquid separator is likely to vary depending on the operating conditions.
  • the refrigerant amount distribution in the refrigeration cycle fluctuates and operation instability is likely to occur.
  • the heating capacity can be increased as the injection flow rate is increased and the refrigerant flow rate that is discharged from the compressor and flows into the indoor heat exchanger increases.
  • the present invention improves the heating capacity in the refrigeration air conditioner over the conventional gas injection cycle, and can exhibit sufficient heating capacity even in cold regions where the outside air is 10 ° C or less.
  • the purpose is to obtain a refrigeration air conditioner.
  • a refrigeration air conditioner is a refrigeration air conditioner that connects a compressor, an indoor heat exchanger, a first pressure reducing device, and an outdoor heat exchanger in an annular shape, and supplies hot heat from the indoor heat exchanger.
  • a first internal heat exchanger that exchanges heat between the refrigerant between the indoor heat exchanger and the first decompressor and the refrigerant between the outdoor heat exchanger and the compressor;
  • An injection circuit that partially bypasses the refrigerant between the indoor heat exchanger and the first decompression device and injects the refrigerant into the compression chamber in the compressor, and an injection decompression device provided in the injection circuit
  • a second internal heat exchanger that exchanges heat between the refrigerant decompressed by the injection decompression device and the refrigerant between the indoor heat exchanger ⁇ and the first decompression device. is there.
  • a compressor, an indoor heat exchanger, a first pressure reducing device, and an outdoor heat exchanger are connected in a ring shape, and heating is performed to supply warm heat from the indoor heat exchanger.
  • the first internal heat exchanger that exchanges heat between the refrigerant between the indoor heat exchanger and the first pressure reducing device and the refrigerant between the outdoor heat exchanger and the compressor, By heating the refrigerant sucked in the compressor, even if the refrigerant flow between the indoor heat exchanger and the first decompressor is partially bypassed and the refrigerant flow rate injected into the compressor chamber in the compressor is large, By suppressing the decrease in the discharge temperature of the compressor and exhibiting sufficient heat exchange performance with indoor heat exchange ⁇ , sufficient heating capacity is ensured even under conditions where heating capacity tends to decrease due to low outside air conditions, etc.
  • the refrigerant decompressed by the injection decompression device, the indoor heat exchanger, and the second When supplying the refrigerant that performs gas indication by the second internal heat exchange that exchanges heat with the refrigerant between the decompression device of 1 and the refrigerant bypassed regardless of the gas-liquid separator Gasified
  • the liquid By supplying the liquid, there is an effect that it is possible to avoid the fluctuation of the liquid amount due to the use of the gas-liquid separator and to realize more stable operation of the apparatus.
  • FIG. 1 is a refrigerant circuit diagram of a refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a PH diagram showing the operation status during heating operation of the refrigeration air conditioner.
  • FIG. 3 is a PH diagram showing the operating status of the refrigeration air conditioner during cooling operation.
  • FIG. 4 is a flowchart showing a control operation during heating operation of the refrigeration air conditioner.
  • FIG. 5 is a flowchart showing a control operation during cooling operation of the refrigeration air conditioner.
  • FIG. 6 A PH diagram showing the operation status of the refrigerating and air-conditioning apparatus during gas injection.
  • FIG. 7 A graph showing the temperature change of the condenser during the gas injection of the refrigeration air conditioner.
  • FIG. 8 A diagram showing the operating characteristics of the refrigeration air conditioner when the gas injection flow rate changes.
  • FIG. 9 is a diagram showing the difference in operating characteristics depending on the presence or absence of the first internal heat exchanger of the refrigeration air conditioner.
  • FIG. 10 is another diagram showing the operating characteristics of the refrigeration air conditioner when the gas injection flow rate changes.
  • FIG. 11 is a refrigerant circuit diagram of the refrigerating and air-conditioning apparatus according to Embodiment 2 according to the present invention.
  • FIG. 1 is a refrigerant circuit diagram of the refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the outdoor unit 1 has a compressor 3, a four-way valve 4 for switching between heating and cooling, Outdoor heat exchanger 12, first expansion valve 11 as decompression device, second internal heat exchanger 10, first internal heat exchanger 9, second expansion valve 8 as decompression device, injection circuit 13, and decompression device for injection
  • a third expansion valve 14 is mounted.
  • the compressor 3 is a type in which the number of revolutions is controlled by an inverter and the capacity is controlled, and the compressor 3 has a structure capable of injecting the refrigerant supplied from the instruction circuit 13 into the compression chamber in the compressor 3.
  • the first expansion valve 11, the second expansion valve 8, and the third expansion valve 14 are electronic expansion valves whose opening degrees are variably controlled.
  • the outdoor heat exchanger 12 exchanges heat with the outside air blown by a fan or the like.
  • An indoor heat exchanger 6 is mounted in the indoor unit 2.
  • the gas pipe 5 and the liquid pipe 7 are connecting pipes connecting the outdoor unit 1 and the indoor unit 2.
  • R41 OA which is an HFC mixed refrigerant, is used as the refrigerant for this refrigeration air conditioner.
  • Temperature sensor 16a is on the discharge side of compressor 3
  • temperature sensor 16b is between outdoor heat exchanger 12 and four-way valve 4
  • temperature sensor 16c is on the refrigerant flow path in the middle of outdoor heat exchanger 12
  • temperature sensor 16d is outdoor.
  • the temperature sensor 16e is provided between the first internal heat exchanger 9 and the second expansion valve 8
  • the temperature sensor 16f is provided on the suction side of the compressor 3, and each is installed. Measure the local coolant temperature.
  • the temperature sensor 16g measures the outside air temperature around the outdoor unit 1.
  • Temperature sensors 16h, 16i, and 16j are installed in the indoor unit 2.
  • the temperature sensor 16h is on the refrigerant flow path in the middle of the indoor heat exchanger 6, and the temperature sensor 16i is connected to the indoor heat exchanger 6. It is installed between the liquid pipes 7 and measures the refrigerant temperature at each installation location.
  • the temperature sensor 16j measures the temperature of the air taken into the indoor heat exchanger 6. When the heat medium to be loaded is another medium such as water, the temperature sensor 16j measures the inflow temperature of the medium.
  • the temperature sensors 16c and 16h can detect the refrigerant saturation temperature at high and low pressure by detecting the temperature of the refrigerant in a gas-liquid two-phase state in the middle of heat exchange.
  • the measurement control device 15 in the outdoor unit 1 is based on the measurement information of the temperature sensor 16 and the operation contents instructed by the user of the refrigeration air conditioner.
  • the operation method of the compressor 3, the flow path switching of the four-way valve 4, the outdoor The fan air flow rate of the heat exchanger 12 and the opening degree of each expansion valve are controlled.
  • the flow path of the four-way valve 4 is set in the direction of the solid line in FIG.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 3 flows out of the outdoor unit 1 through the four-way valve 4 and flows into the indoor unit 2 through the gas pipe 5.
  • Heating is performed by applying heat radiated from the refrigerant to the load-side medium such as air or water on the load side.
  • the second internal heat exchanger 10 exchanges heat with the refrigerant that has been bypassed by the injection circuit 13 and depressurized by the third expansion valve 14 to become low temperature, and further cooled.
  • the refrigerant is depressurized to a low pressure by the first expansion valve 11 to become a two-phase refrigerant (Fig. 2, point 6), and then flows into the outdoor heat exchanger that becomes the evaporator, where it absorbs heat and is evaporated and gasified (Fig. 2). Point 7).
  • the heat is exchanged with the high-pressure refrigerant through the first internal heat exchanger 9 through the four-way valve 4, further heated (point 8 in FIG. 2), and sucked into the compressor 3.
  • the refrigerant bypassed to the instruction circuit 13 is reduced to an intermediate pressure by the third expansion valve 14 to become a low-temperature two-phase refrigerant (point 9 in FIG. 2), and thereafter, the second internal heat exchanger 10 Then, it is heated by exchanging heat with the high-pressure refrigerant (Fig. 2, point 10) and injected into the compressor 3.
  • the flow path of the four-way valve 4 is set in the direction of the dotted line in FIG.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 3 flows into the outdoor heat exchanger that becomes the condenser via the four-way valve 4, where it condensates with heat and releases high-pressure and low-temperature.
  • Fig. 3 Point 2 The refrigerant that has exited the outdoor heat exchanger 12 is slightly decompressed by the first expansion valve 11 (3 in FIG. 3), and then is cooled by exchanging heat with the low-temperature refrigerant flowing through the injection circuit 13 by the second internal heat exchange.
  • the first internal heat exchanger 9 continues to exchange heat with the refrigerant sucked into the compressor 3 and is cooled (Fig. 3). Five).
  • the outdoor unit 1 flows out, and flows into the indoor unit 2 through the liquid pipe 7. Then, it flows into the indoor heat exchanger 6 that becomes the evaporator, absorbs heat there, and supplies cold heat to the load side medium such as air and water on the indoor unit 2 side while evaporating and gasifying (7 in FIG. 3).
  • the low-pressure gas refrigerant that has exited the indoor heat exchanger 6 exits the indoor unit 2 and flows into the outdoor unit 1 through the gas pipe 5, passes through the four-way valve 4, and then passes through the high-pressure refrigerant in the first internal heat exchanger 9. After being heated and exchanged (Fig. 3, point 8), it is sucked into the compressor 3.
  • the refrigerant bypassed to the instruction circuit 13 is decompressed to the intermediate pressure by the third expansion valve 14 to become a low-temperature two-phase refrigerant (point 9 in FIG. 3), and then the second internal heat exchange 10 Then, it is heated by exchanging heat with the high-pressure refrigerant (Fig. 3, point 10), and is injected into the compressor 3. Inside the compressor 3, the sucked refrigerant (Fig. 3, point 8) is compressed and heated to an intermediate pressure (Fig. 3, point 11), and then merged with the injected refrigerant and the temperature drops (Fig. 3). Point 12), compressed to high pressure and discharged again (point 1 in Fig. 3).
  • the PH diagram during cooling operation is almost the same as during heating operation, and the same operation can be realized in either operation mode.
  • step Sl the control operation during the heating operation will be described based on the flowchart of FIG.
  • the capacity of the compressor 3, the opening of the first expansion valve 11, the opening of the second expansion valve 8, and the opening of the third expansion valve 14 are set to initial values (step Sl).
  • each of the actuators corresponding to the operating state is controlled as follows.
  • the capacity of the compressor 3 is basically controlled so that the air temperature measured by the temperature sensor 16j of the indoor unit 2 becomes a temperature set by the user of the refrigeration air conditioner. That is, the air temperature of the indoor unit 2 is compared with the set value (step S3). When the air temperature is equal to or close to the set temperature, the capacity of the compressor 3 is maintained as it is and the process proceeds to the next step.
  • the capacity of the compressor 3 is increased.
  • the capacity of the compressor 3 is maintained as it is.
  • the capacity of the compressor 3 is changed so that the capacity of the compressor 3 is reduced (step S4).
  • the second expansion valve 8 is connected to the outlet of the indoor heat exchanger 6 that is obtained by the difference between the saturation temperature of the high-pressure refrigerant detected by the temperature sensor 16h and the outlet temperature of the indoor heat exchanger 6 detected by the temperature sensor 16i.
  • the refrigerant supercooling degree SC is controlled to a preset target value, for example, 10 ° C.
  • the refrigerant supercooling degree SC at the indoor heat exchanger 6 outlet is compared with the target value (step S5).
  • the opening degree of the second expansion valve 8 is maintained as it is, and the process proceeds to the next step.
  • the opening degree of the second expansion valve 8 is large.
  • the opening degree of the second expansion valve 8 is changed so that the opening degree of the expansion valve 8 is controlled to be small (step S6).
  • the first expansion valve 11 is a compressor 3 that is detected by a temperature difference between the suction temperature detected by the temperature sensor 16f and the saturation temperature of the low-pressure refrigerant detected by the temperature sensor 16c.
  • Intake refrigerant Superheat degree SH is controlled to a preset target value, for example, 10 ° C.
  • the refrigerant superheat degree SH sucked in the compressor 3 is compared with the target value (step S7).
  • the opening degree of the first expansion valve 11 is maintained as it is, and the process proceeds to the next step.
  • the opening degree of the first expansion valve 11 is large.
  • the first expansion valve 11 The opening degree of the first expansion valve 11 is changed so that the opening degree is reduced (step S8).
  • the third expansion valve 14 is controlled so that the discharge temperature of the compressor 3 detected by the temperature sensor 16a becomes a preset target value, for example, 90 ° C.
  • step S9 the discharge temperature of the compressor 3 is compared with the target value.
  • the opening of the third expansion valve 14 is maintained as it is, and the process returns to step S2.
  • the refrigerant state change when the opening degree of the third expansion valve 14 is changed is as follows. As the opening of the third expansion valve 14 increases, the flow rate of the refrigerant flowing through the injection circuit 13 increases. Since the amount of heat exchange in the second internal heat exchanger 10 does not change greatly with the flow rate of the injection circuit 13, if the flow rate of refrigerant flowing through the injection circuit 13 increases, the injection circuit 13 in the second internal heat exchanger 10 The refrigerant enthalpy difference (point 9 ⁇ 10 in Fig. 2) becomes smaller and the injected refrigerant enthalpy (point 10 in Fig. 2) decreases.
  • the opening degree control of the third expansion valve 14 controls the opening degree of the third expansion valve 14 to be larger when the discharge temperature of the compressor 3 is higher than the target value, and conversely the discharge temperature is lower than the target value. If it is lower, the opening degree of the third expansion valve 14 is changed such that the opening degree of the third expansion valve 14 is controlled to be small (step S10), and thereafter, the process returns to step S2.
  • step Sl 1 the capacity of the compressor 3, the opening of the first expansion valve 11, the opening of the second expansion valve 8, and the opening of the third expansion valve 14 are set to initial values (step Sl 1).
  • each of the actuators corresponding to the operation state is controlled as follows.
  • the capacity of the compressor 3 is basically controlled so that the air temperature measured by the temperature sensor 16j of the indoor unit 2 becomes a temperature set by the user of the refrigeration air conditioner.
  • step S13 the air temperature of the indoor unit 2 is compared with the set temperature (step S13). And air When the temperature is equal to or close to the set temperature, the capacity of the compressor 3 is maintained as it is, and the process proceeds to the next step.
  • Each expansion valve is controlled as follows.
  • the first expansion valve 11 is a refrigerant at the outdoor heat exchange outlet obtained by the temperature difference between the saturation temperature of the high-pressure refrigerant detected by the temperature sensor 16c and the outlet temperature of the outdoor heat exchanger 12 detected by the temperature sensor 16d.
  • the supercooling degree SC is controlled to a preset target value, for example, 10 ° C.
  • the refrigerant supercooling degree SC at the outdoor heat exchange outlet is compared with the target value (step S15).
  • the opening degree of the first expansion valve 11 is maintained as it is, and the process proceeds to the next step.
  • the opening degree of the first expansion valve 11 is large.
  • the opening degree of the first expansion valve 11 is changed so that the opening degree of the expansion valve 11 is controlled to be small (step S16).
  • the second expansion valve 8 is the compressor 3 detected by the temperature difference between the suction temperature detected by the temperature sensor 16f and the saturation temperature of the low-pressure refrigerant detected by the temperature sensor 16h.
  • Intake refrigerant Superheat degree SH is controlled to a preset target value, for example, 10 ° C.
  • the refrigerant superheat degree SH sucked in the compressor 3 is compared with the target value (step S17). If the compressor 3 intake refrigerant superheat SH is equal to or close to the target value, the opening of the second expansion valve 8 is maintained as it is, and the process proceeds to the next step. .
  • the opening degree of the second expansion valve 8 is large.
  • the third expansion valve 8 When the opening is controlled to be small, the opening of the second expansion valve 8 is changed (step S18).
  • the third expansion valve 14 has a discharge temperature of the compressor 3 detected by the temperature sensor 16a in advance. It is controlled so that it reaches the set target value, for example, 90 ° C.
  • the discharge temperature of the compressor 3 is compared with the target value (step S19).
  • the opening degree of the third expansion valve 8 is maintained as it is, and the process returns to step S12.
  • the third expansion valve 14 since the refrigerant state change when the opening of the third expansion valve 14 is changed is the same as in the heating operation, when the discharge temperature of the compressor 3 is higher than the target value, the third expansion valve 14 The opening degree of the third expansion valve 14 is changed so that the opening degree is controlled to be large, and conversely if the discharge temperature is lower than the target value, the opening degree of the third expansion valve 14 is controlled to be small (step S20). Return to step S12.
  • the circuit configuration of this apparatus is a so-called gas injection circuit. That is, the gas refrigerant is injected into the compressor 3 out of the refrigerant that has been discharged from the indoor heat exchanger 6 serving as a condenser and then reduced to an intermediate pressure.
  • the gas-liquid separator often separates the intermediate-pressure refrigerant into liquid gas and is in- symbolized, but in this apparatus, as shown in Fig. 6, the second internal heat exchanger 10 In this configuration, the liquid and gas are thermally separated and injected by heat exchange.
  • the flow rate of the refrigerant flowing through the heat exchanger serving as a condenser increases, so that the heating capacity increases in the heating operation.
  • the refrigerant flowing into the evaporator is generally a gas-liquid two-phase refrigerant, but gas refrigerant does not contribute to the cooling capacity. From the viewpoint of the compressor 3, this low-pressure gas refrigerant also works to increase the pressure together with the gas refrigerant evaporated in the evaporator!
  • the refrigerant flow rate discharged from the compressor 3 increases as described above, while the discharge temperature of the compressor 3 decreases and the refrigerant temperature flowing into the condenser also decreases.
  • the heat distribution generally increases as the temperature distribution in the heat exchanger increases.
  • the refrigerant temperature change when the refrigerant temperature at the condenser inlet is different at the same condensation temperature is as shown in Fig. 7, and the temperature distribution in the superheated gas state in the condenser is different.
  • the amount of heat exchange when the refrigerant is in the two-phase state at the condensation temperature occupies a large amount, but the amount of heat exchange in the superheated gas state is also about 20% to 30% of the whole, The impact on the exchange amount is significant.
  • the high-pressure liquid refrigerant that has exited the condenser and the suction refrigerant in the compressor 3 are heat-exchanged.
  • the enthalpy of the refrigerant flowing into the evaporator is reduced, so that the refrigerant enthalpy difference in the evaporator is expanded. Therefore, the cooling capacity increases during the cooling operation.
  • the refrigerant sucked into the compressor 3 is heated, and the suction temperature rises. Along with this, the discharge temperature of the compressor 3 also rises. Further, in the compression stroke of the compressor 3, even when the same pressure increase is performed, more work is generally required as the high-temperature refrigerant is compressed.
  • the impact on efficiency due to the installation of the first internal heat exchanger 9 appears to be both an increase in capacity due to the expansion of the evaporator enthalpy difference and an increase in compression work.
  • the operating efficiency of the apparatus increases.
  • the compressor 3 discharge temperature becomes higher when the same injection amount is performed, so the refrigerant temperature at the condenser inlet also rises and the condenser heat exchange amount increases. And heating capacity increases. Therefore, the amount of heating at the peak of the heating capacity increases, the peak value of the heating capacity itself increases, and more heating capacity can be obtained.
  • the refrigerant state at the outlet of the outdoor heat exchanger 12 serving as an evaporator becomes an appropriate state, and the compressor 3 discharge temperature remains in a state with good heat exchange efficiency.
  • the increase in the heating capacity can be easily realized by avoiding the lowering of the low pressure as described above.
  • the circuit configuration of the present embodiment has a configuration in which a part of the high-pressure refrigerant is bypassed, the pressure is reduced, and then the gas is superheated by the second internal heat exchanger 10 and then injected.
  • the refrigerant amount distribution does not fluctuate when the injection amount changes according to the control or operating state. Therefore, more stable operation can be realized.
  • the third expansion valve 14 has been described as being controlled so that the discharge temperature of the compressor 3 becomes a target value, this control target value is set so that the heating capacity is maximized.
  • this discharge temperature is obtained in advance and set to the target value.
  • the target value of the discharge temperature is not necessarily a constant value, and may be changed at any time according to operating conditions and characteristics of a device such as a condenser.
  • the gas injection amount can be controlled to maximize the heating capacity.
  • the gas injection amount can be controlled so as to maximize the operating efficiency just by maximizing the heating capacity.
  • the maximum capacity is controlled.However, when the temperature of the system rises after heating for a certain period of time, the amount of heating is increased. In this case, control is performed to maximize efficiency.
  • the discharge temperature target value controlled by the third expansion valve 14 of the injection circuit 13 has not only the target value that maximizes the heating capacity but also the target value that maximizes the operating efficiency. If heating capacity is required according to the operating capacity of 3 and the indoor unit side air temperature, set the target value to maximize the heating capacity, otherwise set the target value to maximum operating efficiency. Set.
  • the first expansion valve 11 is controlled so that the suction superheat degree of the compressor 3 becomes the target value, this control can optimize the superheat degree at the outlet of the heat exchanger serving as an evaporator. In addition to ensuring high heat exchanging performance at the same time, it is possible to operate so as to ensure a moderate difference in refrigerant enthalpy, and it is possible to perform highly efficient operation.
  • the degree of superheat at the evaporator outlet which depends on the characteristics of the heat exchanger, is approximately 2 ° C, and the refrigerant is heated in the first internal heat exchanger 9 and compressed.
  • the target value of the suction superheat degree of machine 3 is higher than this value, and for example, the above-mentioned 10 ° C is set as the target value.
  • the control of the first expansion valve 11 includes the degree of superheat at the outlet of the evaporator, and in the case of heating operation, the degree of superheat at the outlet of the outdoor heat exchanger 12 obtained by the difference between the temperature sensor 16b and the temperature sensor 16c.
  • the target value may be controlled to be, for example, 2 ° C as described above.
  • the target value is a low value of about 2 ° C
  • the evaporator outlet becomes a gas-liquid two-phase state transiently, and the superheat degree is appropriately detected. It becomes difficult to control and it becomes difficult to control.
  • the target value can be set high, and the heating in the first internal heat exchanger 9 makes the suction into a gas-liquid two-phase and the superheat degree cannot be detected properly! Since the situation of / does not occur, the control can be performed more easily and stable. It can be performed.
  • the second expansion valve 8 is controlled so that the degree of supercooling at the outlet of the indoor heat exchanger 6 serving as a condenser becomes a target value, but this control ensures a high heat exchange performance in the condenser. At the same time, it can be operated so as to ensure a moderate refrigerant enthalpy difference, and a highly efficient operation can be performed.
  • the degree of supercooling at the outlet of the condenser for such operation varies depending on the characteristics of the heat exchanger, but is generally around 5 to 10 ° C.
  • the target value of the degree of supercooling is changed according to the operating conditions, and the heating capacity is secured with a higher target value of the supercooling degree when the device is started, and high efficiency operation is performed with a lower target value of the subcooling degree when the room temperature is stable You can also make a mistake.
  • the refrigerant of the refrigerating and air-conditioning apparatus is not limited to R410A, other refrigerants such as R134a and R404A and R407C that are HFC refrigerants, C02 that is natural refrigerants, HC refrigerants, ammonia, air, It can be used for water.
  • C02 when C02 is used as the refrigerant, the first internal heat exchanger 9 and the second internal heat exchanger 10 are used as the configuration of this device, against the disadvantage that the refrigerant enthalpy difference in the evaporator is small and the operating efficiency is low. This makes it possible to increase the evaporator enthalpy difference, which can be used to apply this device.
  • the rate of increase in heating capacity is greater than that of HFC-based refrigerants. It is suitable for application.
  • the arrangement positions of the first internal heat exchanger 9 and the second internal heat exchanger 10 are not limited to the configuration of Fig. 1, and the same effect is obtained even if the upstream and downstream positional relationships are opposite. be able to. Further, the position at which the injection circuit 13 is taken out is not limited to the position shown in FIG. 1, and the same effect can be obtained as long as it can be taken out from other intermediate pressure portions and high pressure liquid portions.
  • the position at which the injection circuit 13 is taken out is preferably a position that is completely liquid rather than in the gas-liquid two-phase state.
  • the first internal heat exchanger 9, the second internal heat exchanger 10, and the injection circuit 13 are taken out between the first expansion valve 11 and the third expansion valve 8. Therefore, it is possible to carry out the same injection operation even in the cooling / heating / deviating operation mode.
  • the refrigerant saturation temperature is detected by the refrigerant temperature sensor between the condenser and evaporator, a pressure sensor that detects high and low pressures is provided, and the saturation temperature can be calculated by converting the measured pressure value. Good.
  • FIG. 11 is a refrigerant circuit diagram of the refrigerating and air conditioning apparatus according to Embodiment 2, in which an intermediate pressure receiver 17 is provided in the outdoor unit, and the suction pipe of the compressor 3 passes through the inside.
  • the refrigerant in the penetrating portion and the refrigerant in the intermediate pressure receiver 17 are configured to exchange heat, and realize the same function as the first internal heat exchange 9 in the first embodiment.
  • the operational effects in the present embodiment are the same as those in the first embodiment except for the intermediate pressure receiver 17, the description thereof is omitted.
  • the gas-liquid two-phase refrigerant at the outlet 6 in the room flows in during the heating operation, and is cooled in the intermediate pressure receiver 17 and flows out as a liquid.
  • the gas-liquid two-phase refrigerant that has exited the first expansion valve 11 flows in, and is cooled in the intermediate pressure receiver 17 and flows out as liquid.
  • the heat exchange in the intermediate pressure receiver 17 is mainly performed by gas refrigerant in the gas-liquid two-phase refrigerant in contact with the suction pipe to be condensed and liquefied. Therefore, the smaller the amount of liquid refrigerant that stays in the intermediate pressure receiver 17, the more the area where the gas refrigerant and the suction pipe come into contact with each other, and the amount of heat exchange increases. On the contrary, if the amount of liquid refrigerant staying in the intermediate pressure receiver 17 is large, the area where the gas refrigerant and the suction pipe are in contact with each other decreases, and the amount of heat exchange decreases.
  • the outlet of the intermediate pressure receiver 17 is liquid, the refrigerant flowing into the third expansion valve 14 during heating operation is always liquid refrigerant, so the flow rate characteristic of the third expansion valve 14 is stable and control stability is improved. Is ensured, and stable device operation can be performed.
  • heat exchange in the intermediate pressure receiver 17 stabilizes the pressure of the intermediate pressure receiver 17, stabilizes the inlet pressure of the third expansion valve 14, and stabilizes the flow rate of refrigerant flowing into the injection circuit 13.
  • the pressure fluctuation in the intermediate pressure receiver 17 is caused accordingly. The pressure fluctuation is suppressed by heat exchange in the intermediate pressure receiver 17.
  • the pressure in the intermediate pressure receiver 17 also decreases. At that time, the pressure difference from the low pressure becomes narrower, and the temperature in the heat exchanger in the intermediate pressure receiver 17 decreases. Since the difference is narrowed, the amount of heat exchange is reduced. When the amount of heat exchange decreases, the amount of gas refrigerant in the gas-liquid two-phase refrigerant flowing into the medium pressure receiver 17 is reduced, so the pressure does not drop easily and the pressure of the medium pressure receiver 17 is suppressed from decreasing. Is done.
  • the heat exchange amount variation accompanying the operation state variation is autonomously generated, and as a result, the pressure variation in the intermediate pressure receiver 17 is suppressed.
  • the heat exchange in the intermediate pressure receiver 17 has an effect that the operation of the apparatus itself is stabilized. For example, if the state of the low-pressure side fluctuates and the refrigerant superheat degree at the outlet of the outdoor heat exchanger 12, which is an evaporator, increases, the temperature difference during heat exchange in the intermediate-pressure receiver 17 decreases. As the amount of heat exchange decreases and the gas refrigerant is condensed, the amount of gas refrigerant in the intermediate pressure receiver 17 increases and the amount of liquid refrigerant decreases.
  • the reduced amount of liquid refrigerant moves to the outdoor heat exchanger 12, where the liquid cooling in the outdoor heat exchanger 12 Since the amount of the medium increases, an increase in the degree of refrigerant superheating at the outlet of the outdoor heat exchanger 12 is suppressed, and fluctuations in the operation of the apparatus are suppressed.
  • the effect of suppressing the fluctuation in superheat is also caused by autonomously generating a heat exchange amount fluctuation accompanying a fluctuation in operating state by performing heat exchange in the intermediate pressure receiver 17.
  • the intermediate pressure receiver 17 is configured to perform heat exchange, the same effect can be obtained with any configuration as long as the configuration allows heat exchange with the refrigerant in the intermediate pressure receiver 17. .
  • a configuration in which the suction pipe of the compressor 3 is brought into contact with the outer periphery of the intermediate pressure receiver 17 container to exchange heat may be used.
  • the refrigerant supplied to the injection circuit 13 may be supplied from the bottom of the intermediate pressure receiver 17.
  • the liquid refrigerant flows into the third expansion valve 14 in each operation of cooling and heating, so that the flow rate characteristic of the third expansion valve 14 is stable and the control stability is ensured in both the cooling and heating operations. Is done.

Abstract

 冷凍空調装置内の暖房能力を従来のガスインジェクションサイクルよりも向上させ、外気が-10°C以下となるような寒冷地でも十分な暖房能力を発揮できること。  圧縮機3、室内熱交換器6、第1の減圧装置11、室外熱交換器12を環状に接続し、室内熱交換器から温熱を供給する冷凍空調装置において、室内熱交換器と第1の減圧装置との間の冷媒と、室外熱交換器と圧縮機との間の冷媒とを熱交換する第1の内部熱交換器9と、室内熱交換器と第1の減圧装置との間の冷媒を、一部バイパスして圧縮機内の圧縮室にインジェクションするインジェクション回路13と、インジェクション回路に設けられたインジェクション用減圧装置14と、インジェクション用減圧装置で減圧された冷媒と室内熱交換器と第1の減圧装置との間の冷媒とを熱交換する第2の内部熱交換器10とを備えてなるものである。

Description

明 細 書
冷凍空調装置
技術分野
[0001] この発明は、冷凍空調装置に関するものであり、特にガスインジェクションを行い低 外気温度時の暖房能力を向上させる冷凍空調装置に関するものである。
背景技術
[0002] 従来の冷凍空調装置として、凝縮器と蒸発器との間の中間圧部分に気液分離器を 設け、気液分離器で分離されたガス冷媒を圧縮機の中間圧部分にインジェクションし 、暖房能力の向上をもたらすようにしたものがある(例えば、特許文献 1参照)。
また、気液分離器の代わりに、高圧液冷媒の一部をバイパスし、減圧した後で高圧 液冷媒と熱交換し蒸発ガス化させた後で、圧縮機にインジェクションし暖房能力の向 上をもたらすようにしたものがある(例えば、特許文献 2参照)。
また、凝縮器と蒸発器との間の中間圧部分に液レシーバを設け、液レシーバ内の 冷媒と圧縮機吸入の冷媒を熱交換させる構成としたものがある(例えば、特許文献 3 参照)。
[0003] 特許文献 1 :特開 2001— 304714号公報
特許文献 2:特開 2000— 274859号公報
特許文献 3:特開 2001— 174091号公報
発明の開示
発明が解決しょうとする課題
[0004] しかし、従来の冷凍空調装置には以下のような問題があった。
まず、特許文献 1記載の従来例のように、気液分離器を設けたインジェクションを行 う場合、気液分離器内の液量力 Sインジヱクシヨン量によって変化し、それに伴い冷凍 サイクル内の液冷媒量分布が変動し、運転が不安定になるという問題があった。 インジェクションされるガス冷媒流量と気液分離器に流入する二相冷媒のうちのガ ス冷媒流量とが釣り合つている場合は、蒸発器側に流出するのは液冷媒のみとなり、 気液分離器内の液冷媒量は安定するが、インジェクションされる冷媒流量が減少し、 その冷媒流量が気液分離器に流入するガス冷媒流量より少なくなると、蒸発器側に ガス冷媒も流出する運転となり、気液分離器底部からガスが流出するために、気液分 離器内の液はほとんど流出した運転となる。
逆に、インジェクションされる冷媒流量が増加すると、ガス冷媒が足りないため、ガス 冷媒に混じって液冷媒もインジェクションされる状態となり、気液分離器頂部から液が 流出するために、気液分離器内の液はほとんど満液となる。
[0005] インジェクション流量は冷凍サイクルの高低圧や気液分離器の圧力、および圧縮機 の運転容量などによって変動しやすいため、インジェクション流量が気液分離器に流 入するガス冷媒流量と釣り合うことはほとんどなぐ実際は気液分離器内の液冷媒量 はほとんど 0か満液の状態となり、運転状況に応じて、気液分離器内の冷媒量変動 が生じやすい。その結果、冷凍サイクル内の冷媒量分布が変動し、運転の不安定が 生じやすくなる。
このような気液分離器内の冷媒量変動に伴う運転不安定は、特許文献 2記載の従 来例のように、高圧液冷媒の一部をバイパスしてインジェクションする形式をとると、液 貯留部が存在しないために解決される。しかし、この形式をとつても以下のような問題 が残る。
[0006] 一般にガスインジェクションを行う冷凍サイクルでは、インジェクション流量を増加さ せ、圧縮機力 吐出され室内熱交^^に流入する冷媒流量が増加するほど暖房能 力を増カロさせることができる。
しかし、インジェクション流量を増加させると、ガス冷媒に混じって液冷媒もインジェ クシヨンされるようになり、圧縮機吐出温度が低下し、室内熱交 入口の冷媒温度 も低下することにより室内熱交^^の熱交換能力が低下する。従って、冷媒流量と熱 交換能力との釣り合いで暖房能力最大となるインジェクション流量が存在する。 通常の空気熱源式ヒートポンプ冷凍空調装置では、外気が 10°C以下となるよう な寒冷地では暖房能力が低下し、十分な暖房運転が行えない状況にあり、より多くの 暖房能力を発揮できる装置が求められている力 前述したようなガスインジェクション サイクルでは、暖房能力の限界があり、十分な暖房運転が行えないという問題があつ [0007] また、特許文献 3記載の従来例においても、その回路構成には暖房能力を増加さ せる作用は無ぐ同様に寒冷地での暖房能力が低下し十分な暖房運転が行えないと いう問題があった。
この発明は以上の課題に鑑み、冷凍空調装置内の暖房能力を従来のガスインジェ クシヨンサイクルよりも向上させ、外気が 10°C以下となるような寒冷地においても十 分な暖房能力を発揮できる冷凍空調装置を得ることを目的とする。
課題を解決するための手段
[0008] 本発明に係る冷凍空調装置は、圧縮機、室内熱交換器、第 1の減圧装置、室外熱 交換器を環状に接続し、前記室内熱交換器から温熱を供給する冷凍空調装置にお いて、前記室内熱交換器と前記第 1の減圧装置との間の冷媒と、前記室外熱交換器 と前記圧縮機との間の冷媒とを熱交換する第 1の内部熱交^^と、前記室内熱交換 器と前記第 1の減圧装置との間の冷媒を、一部バイパスして前記圧縮機内の圧縮室 にインジェクションするインジェクション回路と、該インジェクション回路に設けられたィ ンジェクシヨン用減圧装置と、該インジェクション用減圧装置で減圧された冷媒と前記 室内熱交^^と前記第 1の減圧装置との間の冷媒とを熱交換する第 2の内部熱交換 器とを備えてなるものである。
発明の効果
[0009] 以上説明したように本発明によれば、圧縮機、室内熱交換器、第 1の減圧装置、室 外熱交換器を環状に接続し、前記室内熱交換器から温熱を供給する暖房運転を行 う場合に、室内熱交換器と第 1の減圧装置との間の冷媒と、室外熱交換器と圧縮機と の間の冷媒とを熱交換する第 1の内部熱交換器により、圧縮機吸入の冷媒を加熱す ることで、室内熱交^^と第 1の減圧装置との間の冷媒を一部バイパスして圧縮機内 の圧縮室にインジェクションされる冷媒流量を多量としても、圧縮機の吐出温度の低 下を抑制し、室内熱交^^で十分な熱交換性能を発揮させることにより、低外気条 件などで暖房能力が低下しやすい条件でも十分な暖房能力を確保することができる と共に、インジェクション用減圧装置で減圧された冷媒と室内熱交換器と第 1の減圧 装置との間の冷媒とを熱交換する第 2の内部熱交^^により、ガスインジヱクシヨンを 行う冷媒を供給するときに、気液分離器によらず、バイパスされた冷媒をガス化し供 給することで、気液分離器を用いることによる液量変動を回避し、より安定した装置の 運転を実現することができるという効果がある。
図面の簡単な説明
[0010] [図 1]本発明に係る実施の形態 1の冷凍空調装置の冷媒回路図である。
[図 2]同冷凍空調装置の暖房運転時の運転状況を表した PH線図である。
[図 3]同冷凍空調装置の冷房運転時の運転状況を表した PH線図である。
[図 4]同冷凍空調装置の暖房運転時の制御動作を示すフロー図である。
[図 5]同冷凍空調装置の冷房運転時の制御動作を示すフロー図である。
[図 6]同冷凍空調装置のガスインジヱクシヨン実施時の運転状況を表した PH線図で ある。
[図 7]同冷凍空調装置のガスインジェクション実施時の凝縮器の温度変化を表した図 である。
[図 8]同冷凍空調装置のガスインジェクション流量変化時の運転特性を表した図であ る。
[図 9]同冷凍空調装置の第 1内部熱交換器の有無による運転特性の違いを表した図 である。
[図 10]同冷凍空調装置のガスインジェクション流量変化時の運転特性を表した別の 図である。
[図 11]本発明に係る実施の形態 2の冷凍空調装置の冷媒回路図である。
符号の説明
[0011] 1 室外機、 2 室内機、 3 圧縮機、 4 四方弁、 5 ガス管、 6 室内熱交換器、 7 液 管、 8 第 2の膨張弁、 9 第 1内部熱交換器、 10 第 2内部熱交換器、 11 第 1の膨 張弁、 12 室外熱交換器、 13 インジェクション回路、 14 インジェクション用の膨張 弁、 15 計測制御装置。
発明を実施するための最良の形態
[0012] 実施の形態 1.
図 1は本発明に係る実施の形態 1の冷凍空調装置の冷媒回路図である。 図 1において、室外機 1内には圧縮機 3、暖房と冷房の運転切換を行う四方弁 4、 室外熱交換器 12、減圧装置である第 1膨張弁 11、第 2内部熱交換器 10、第 1内部 熱交 9、減圧装置である第 2膨張弁 8、インジェクション回路 13、インジェクション 用減圧装置である第 3膨張弁 14が搭載されている。
圧縮機 3はインバータにより回転数が制御され容量制御されるタイプであり、圧縮機 3内の圧縮室内にインジヱクシヨン回路 13から供給される冷媒をインジヱクシヨンする ことが可能な構造となって 、る。
[0013] また第 1膨張弁 11、第 2膨張弁 8、第 3膨張弁 14は開度が可変に制御される電子 膨張弁である。また室外熱交換器 12はファンなどで送風される外気と熱交換する。 室内機 2内には室内熱交換器 6が搭載されている。ガス管 5、液管 7は室外機 1と室 内機 2を接続する接続配管である。この冷凍空調装置の冷媒としては HFC系の混合 冷媒である R41 OAが用いられる。
[0014] 室外機 1内には計測制御装置 15及び各温度センサ 16が設置されている。温度セ ンサ 16aが圧縮機 3の吐出側、温度センサ 16bが室外熱交換器 12と四方弁 4の間、 温度センサ 16cが室外熱交換器 12の中間部の冷媒流路上、温度センサ 16dが室外 熱交換器 12と第 1膨張弁 11の間、温度センサ 16eが第 1内部熱交換器 9と第 2膨張 弁 8との間、温度センサ 16fが圧縮機 3の吸入側に設けられ、それぞれ設置場所の冷 媒温度を計測する。また温度センサ 16gは室外機 1の周囲の外気温度を計測する。
[0015] 室内機 2内には温度センサ 16h、 16i、 16jが設置されており、温度センサ 16hは室 内熱交換器 6の中間部の冷媒流路上、温度センサ 16iは室内熱交換器 6と液管 7の 間に設けられており、それぞれ設置場所での冷媒温度を計測する。温度センサ 16j は室内熱交換器 6に吸気される空気温度を計測する。なお、負荷となる熱媒体が水 など他の媒体である場合には温度センサ 16jはその媒体の流入温度を計測する。
[0016] 温度センサ 16c、 16hはそれぞれ熱交 中間で気液二相状態となっている冷媒 温度を検知することにより、高低圧の冷媒飽和温度を検知することができる。
また室外機 1内の計測制御装置 15は温度センサ 16の計測情報や、冷凍空調装置 使用者から指示される運転内容に基づいて、圧縮機 3の運転方法、四方弁 4の流路 切換、室外熱交換器 12のファン送風量、各膨張弁の開度などを制御する。
[0017] 次に、この冷凍空調装置での運転動作について説明する。 まず暖房運転時の動作について図 1および図 2に示す暖房運転時の PH線図をも とに説明する。
暖房運転時には、四方弁 4の流路は図 1の実線方向に設定される。そして圧縮機 3 カゝら吐出された高温高圧のガス冷媒(図 2点 1)は四方弁 4を経て室外機 1を流出しガ ス管 5を経て室内機 2に流入する。そして、室内熱交換器 6に流入し、凝縮器となる室 内熱交 6で放熱しながら凝縮液ィ匕し高圧低温の液冷媒となる(図 2点 2)。冷媒か ら放熱された熱を負荷側の空気や水などの負荷側媒体に与えることで暖房を行う。
[0018] 室内熱交換器 6を出た高圧低温の冷媒は液管 7を経由して、室外機 1に流入した 後で、第 2膨張弁 8で若干減圧された後(図 2点 3)で、第 1内部熱交換器 9で圧縮機 3に吸入される低温の冷媒に熱を与え冷却される(図 2点 4)。
そして、インジヱクシヨン回路 13に一部冷媒をバイパスした後で、第 2内部熱交換器 10で、インジェクション回路 13にバイパスされ第 3膨張弁 14で減圧され低温となった 冷媒と熱交換し、さらに冷却される(図 2点 5)。その後、冷媒は第 1膨張弁 11で低圧 まで減圧され二相冷媒となり(図 2点 6)、その後蒸発器となる室外熱交 に流 入し、そこで吸熱し、蒸発ガス化される(図 2点 7)。その後、四方弁 4を経て第 1内部 熱交 9で高圧の冷媒と熱交換し、さらに加熱され (図 2点 8)、圧縮機 3に吸入さ れる。
[0019] 一方、インジヱクシヨン回路 13にバイパスされた冷媒は、第 3膨張弁 14で、中間圧 まで減圧され、低温の二相冷媒となり(図 2点 9)、その後は第 2内部熱交換器 10で高 圧冷媒と熱交換し加熱され (図 2点 10)、圧縮機 3にインジヱクシヨンされる。
圧縮機 3内部では、吸入された冷媒 (図 2点 8)が中間圧まで圧縮、加熱された (図 2 点 11)後で、インジェクションされる冷媒と合流し、温度低下した後で(図 2点 12)、高 圧まで圧縮され吐出される(図 2点 1)。
[0020] 次に冷房運転時の動作について図 1および図 3に示す冷房運転時の PH線図をも とに説明する。
冷房運転時には、四方弁 4の流路は図 1の点線方向に設定される。そして、圧縮機 3から吐出された高温高圧のガス冷媒(図 3点 1)は四方弁 4を経て凝縮器となる室外 熱交 に流入し、ここで放熱しながら凝縮液ィ匕し、高圧低温の冷媒となる(図 3 点 2)。 室外熱交換器 12を出た冷媒は第 1膨張弁 11で若干減圧された後で (図 3点 3)、第 2内部熱交 で、インジェクション回路 13を流れる低温の冷媒と熱交換 し冷却され(図 3点 4)、ここで一部冷媒をインジェクション回路 13にバイパスした後、 引き続き第 1内部熱交換器 9で、圧縮機 3に吸入される冷媒と熱交換し冷却される ( 図 3点 5)。
[0021] その後、第 2膨張弁 8で低圧まで減圧され二相冷媒となった後で (図 3点 6)、室外 機 1を流出し、液管 7を経て室内機 2に流入する。そして、蒸発器となる室内熱交換 器 6に流入し、そこで吸熱し、蒸発ガス化(図 3点 7)しながら室内機 2側の空気や水な どの負荷側媒体に冷熱を供給する。
室内熱交換器 6を出た低圧ガス冷媒は室内機 2を出て、ガス管 5を経て室外機 1〖こ 流入し、四方弁 4を経た後で、第 1内部熱交換器 9で高圧冷媒と熱交換し加熱された 後で(図 3点 8)、圧縮機 3に吸入される。
[0022] 一方、インジヱクシヨン回路 13にバイパスされた冷媒は、第 3膨張弁 14で、中間圧 まで減圧され、低温の二相冷媒となり(図 3点 9)、その後に第 2内部熱交翻10で高 圧冷媒と熱交換し加熱され (図 3点 10)、圧縮機 3にインジヱクシヨンされる。圧縮機 3 内部では、吸入された冷媒 (図 3点 8)が中間圧まで圧縮、加熱された(図 3点 11)後 で、インジェクションされる冷媒と合流し、温度低下した後で(図 3点 12)、再度高圧ま で圧縮され吐出される(図 3点 1)。
冷房運転時の PH線図は暖房運転時とほぼ同一になり、どちらの運転モードでも同 様の運転を実現できる。
[0023] 次に、この冷凍空調装置での運転制御動作について説明する。
まず、暖房運転時の制御動作について図 4のフローチャートに基づいて説明する。 暖房運転時には、まず圧縮機 3の容量、第 1膨張弁 11の開度、第 2膨張弁 8の開 度、第 3膨張弁 14の開度が初期値に設定される (ステップ Sl)。
そして、それから所定時間経過すると (ステップ S2)、それ以降運転状態に応じた各 ァクチユエータは以下のように制御される。
また、圧縮機 3の容量は、基本的に室内機 2の温度センサ 16jで計測される空気温 度が、冷凍空調装置使用者が設定する温度になるように制御される。 [0024] 即ち、室内機 2の空気温度と設定値とを比較する (ステップ S3)。そして、空気温度 が設定温度と等し 、か或いは近接して 、る場合には、圧縮機 3の容量はそのまま維 持されて次のステップに進む。
また、空気温度が設定温度より大きく低下している場合は、圧縮機 3の容量は増加 され、空気温度が設定温度に近接している場合には、圧縮機 3の容量はそのまま維 持され、空気温度が設定温度より高くなる場合には圧縮機 3の容量は低下されるとい うように圧縮機 3の容量を変更する (ステップ S4)。
[0025] 各膨張弁の制御は以下のように行われる。
まず、第 2膨張弁 8は、温度センサ 16hで検知される高圧冷媒の飽和温度と温度セ ンサ 16iで検知される室内熱交 6の出口温度との差温で得られる室内熱交 6出口の冷媒過冷却度 SCが予め設定された目標値、例えば 10°Cになるように制御 される。
即ち、室内熱交 6出口の冷媒過冷却度 SCと目標値とを比較する (ステップ S5 )。そして、室内熱交換器 6出口の冷媒過冷却度 SCが目標値と等しいか或いは近接 している場合には、第 2膨張弁 8の開度はそのまま維持されて次のステップに進む。 また、室内熱交換器 6出口の冷媒過冷却度 SCが目標値より大きい場合には、第 2 膨張弁 8の開度は大きぐ冷媒過冷却度 SCが目標値より小さい場合には、第 2膨張 弁 8の開度は小さく制御されるというように第 2膨張弁 8の開度を変更する (ステップ S 6)。
[0026] 次に、第 1膨張弁 11は、温度センサ 16fで検知される圧縮機 3吸入温度と温度セン サ 16cで検知される低圧冷媒の飽和温度との差温で検知される圧縮機 3吸入の冷媒 過熱度 SHが予め設定された目標値、例えば 10°Cになるように制御される。
即ち、圧縮機 3吸入の冷媒過熱度 SHと目標値とを比較する (ステップ S7)。そして 、圧縮機 3吸入の冷媒過熱度 SHが目標値と等しいか或いは近接している場合には 、第 1膨張弁 11の開度はそのまま維持されて次のステップに進む。
また、圧縮機 3吸入の冷媒過熱度 SHが目標値より大きい場合には、第 1膨張弁 11 の開度は大きぐ冷媒過熱度 SHが目標値より小さい場合には、第 1膨張弁 11の開 度は小さくされるというように第 1膨張弁 11の開度を変更する (ステップ S8)。 [0027] 更に、第 3膨張弁 14は、温度センサ 16aで検知される圧縮機 3の吐出温度が予め 設定された目標値、例えば 90°Cになるように制御される。
即ち、圧縮機 3の吐出温度と目標値とを比較する (ステップ S9)。そして、圧縮機 3 の吐出温度が目標値と等しいか或いは近接している場合には、第 3膨張弁 14の開 度はそのまま維持されてステップ S2に戻る。
第 3膨張弁 14の開度を変化させた時の冷媒状態変化は以下のようになる。 第 3膨張弁 14の開度が大きくなると、インジェクション回路 13に流れる冷媒流量が 増加する。第 2内部熱交換器 10での熱交換量はインジェクション回路 13の流量によ つて、大きく変化しないので、インジェクション回路 13に流れる冷媒流量が増加すると 、第 2内部熱交換器 10でのインジェクション回路 13側の冷媒ェンタルピ差(図 2の点 9→10の差)は小さくなり、インジェクションされる冷媒ェンタルピ(図 2点 10)は低下 する。
[0028] 従って、インジェクションされた冷媒が合流後の冷媒ェンタルピ(図 2点 12)のェンタ ルビも低下し、その結果、圧縮機 3の吐出ェンタルピ(図 2点 1)も低下し、圧縮機 3の 吐出温度は低下する。
逆に、第 3膨張弁 14の開度が小さくなると、圧縮機 3の吐出ェンタルピは上昇し、圧 縮機 3の吐出温度は上昇する。従って、第 3膨張弁 14の開度制御は、圧縮機 3の吐 出温度が目標値より高い場合には、第 3膨張弁 14の開度を大きく制御し、逆に吐出 温度が目標値より低い場合には第 3膨張弁 14の開度を小さく制御するというように第 3膨張弁 14の開度を変更し (ステップ S10)、その後はステップ S2に戻る。
[0029] 次に冷房運転時の制御動作について図 5のフローチャートに基づいて説明する。
冷房運転時には、まず圧縮機 3の容量、第 1膨張弁 11の開度、第 2膨張弁 8の開 度、第 3膨張弁 14の開度が初期値に設定される (ステップ Sl l)。
それから所定時間経過すると (ステップ S12)、それ以降運転状態に応じた各ァクチ ユエータは以下のように制御される。
[0030] まず、圧縮機 3の容量は、基本的に室内機 2の温度センサ 16jで計測される空気温 度が、冷凍空調装置使用者が設定する温度になるように制御される。
即ち、室内機 2の空気温度と設定温度とを比較する (ステップ S13)。そして、空気 温度が設定温度と等 、か或いは近接して 、る場合には、圧縮機 3の容量はそのま ま維持されて次のステップに進む。
また、空気温度が設定温度より大きく上昇している場合は、圧縮機 3の容量は増加 され、空気温度が設定温度より低くなる場合には圧縮機 3の容量は低下されるという ように圧縮機 3の容量を変更する (ステップ S14)。
[0031] 各膨張弁の制御は以下のように行われる。
まず、第 1膨張弁 11は、温度センサ 16cで検知される高圧冷媒の飽和温度と温度 センサ 16dで検知される室外熱交換器 12の出口温度との差温で得られる室外熱交 出口の冷媒過冷却度 SCが予め設定された目標値、例えば 10°Cになるよう に制御される。
即ち、室外熱交 出口の冷媒過冷却度 SCと目標値とを比較する (ステップ S 15)。そして、室外熱交換器 12出口の冷媒過冷却度 SCが目標値と等しいか或いは 近接している場合には、第 1膨張弁 11の開度はそのまま維持されて次のステップに 進む。
また、室外熱交換器 12出口の冷媒過冷却度 SCが目標値より大きい場合には、第 1膨張弁 11の開度は大きぐ冷媒過冷却度 SCが目標値より小さい場合には、第 1膨 張弁 11の開度は小さく制御されるというように第 1膨張弁 11の開度を変更する (ステ ップ S16)。
[0032] 次に、第 2膨張弁 8は、温度センサ 16fで検知される圧縮機 3吸入温度と温度セン サ 16hで検知される低圧冷媒の飽和温度との差温で検知される圧縮機 3吸入の冷媒 過熱度 SHが予め設定された目標値、例えば 10°Cになるように制御される。
即ち、圧縮機 3吸入の冷媒過熱度 SHと目標値とを比較する (ステップ S17)。そし て、圧縮機 3吸入の冷媒過熱度 SHと目標値と等 ヽか或!、は近接して ヽる場合に は、第 2膨張弁 8の開度はそのまま維持されて次のステップに進む。
また、圧縮機 3吸入の冷媒過熱度 SHが目標値より大きい場合には、第 2膨張弁 8 の開度は大きぐ冷媒過熱度 SHが目標値より小さい場合には、第 3膨張弁 8の開度 は小さく制御されると 、うように第 2膨張弁 8の開度を変更する (ステップ S18)。
[0033] 次に、第 3膨張弁 14は、温度センサ 16aで検知される圧縮機 3の吐出温度が予め 設定された目標値、例えば 90°Cになるように制御される。
即ち、圧縮機 3の吐出温度と目標値とを比較する (ステップ S19)。そして、圧縮機 3 の吐出温度が目標値と等しいか或いは近接している場合には、第 3膨張弁 8の開度 はそのまま維持されてステップ S 12に戻る。
また、第 3膨張弁 14の開度を変化させた時の冷媒状態変化は暖房運転時と同様で あるので、圧縮機 3の吐出温度が目標値より高い場合には、第 3膨張弁 14の開度を 大きく制御し、逆に吐出温度が目標値より低い場合には第 3膨張弁 14の開度を小さ く制御するというように第 3膨張弁 14の開度を変更し (ステップ S20)、ステップ S12に 戻る。
[0034] 次に、本実施の形態の回路構成、および制御によって実現される作用効果につい て説明する。本装置の構成では、冷暖いずれの運転でも同様の運転を行えるので、 以下特に暖房運転にっ 、て説明する。
本装置の回路構成はいわゆるガスインジェクション回路となっている。即ち、凝縮器 となる室内熱交換器 6を出た後で中間圧まで減圧された冷媒のうちガス冷媒を圧縮 機 3にインジェクションする構成となっている。
[0035] 一般には、気液分離器で中間圧の冷媒を液'ガスに分離しインジヱクシヨンされる構 成が多いが、本装置では、図 6に示されるように、第 2内部熱交換器 10での熱交換に より、熱的に液'ガスを分離し、インジェクションする構成としている。
ガスインジェクション回路とすることにより以下のような効果が得られる。
まず、ガスインジェクションを行うことにより、圧縮機 3から吐出される冷媒流量が増 加し、圧縮機 3から吐出される冷媒流量 Gdis=圧縮機 3で吸入される冷媒流量 Gsuc +インジヱクシヨンされる冷媒流量 Ginjとなる。
従って、凝縮器となる熱交換器に流れる冷媒流量が増加するので、暖房運転の場 合には、暖房能力が増加する。
[0036] 一方、第 2内部熱交 での熱交換により図 6に示されるように、蒸発器となる 熱交換器に流入する冷媒ェンタルピが低下し、蒸発器での冷媒ェンタルピ差が増大 する。従って冷房運転時においても、冷房能力が増加する。
また、ガスインジェクションを行う場合は効率改善効果も得られる。 蒸発器に流入する冷媒は、一般に気液二相冷媒であるが、このうちガス冷媒は冷 房能力に寄与しない。圧縮機 3から見ると、この低圧のガス冷媒も、蒸発器で蒸発し たガス冷媒と一緒に高圧に昇圧する仕事を行って!/、る。
[0037] ガスインジェクションを行うと、蒸発器に流入するガス冷媒のうちのいくらかを中間圧 で抜き出して、インジェクションし、中間圧から高圧に昇圧し圧縮することになる。 従って、インジェクションされるガス冷媒の流量については、低圧から中間圧まで昇 圧する圧縮仕事が不要になり、この分効率改善される。この効果は冷暖房のいずれ の運転でも得られる。
[0038] 次に、ガスインジェクション流量と暖房能力の相関について説明する。
ガスインジェクション流量を増加すると、前述したように圧縮機 3から吐出される冷媒 流量は増加する一方で、圧縮機 3の吐出温度は低下し凝縮器に流入する冷媒温度 も低下する。
凝縮器の熱交換性能を見ると、一般に熱交 内での温度分布が高 ヽ程熱交換 量が増加する。同一凝縮温度で凝縮器入口の冷媒温度が異なる場合の冷媒温度変 化は図 7に示すようになり、凝縮器内で冷媒が過熱ガス状態である部分の温度分布 が異なってくる。
[0039] 凝縮器では冷媒が凝縮温度で二相状態にあるときの熱交換量が多くを占めるが、 過熱ガス状態である部分の熱交換量も全体の 20%〜30%程度存在し、熱交換量へ の影響は大きい。
インジェクション流量が多くなりすぎ、過熱ガス部分での冷媒温度の低下が著 、と 、凝縮器での熱交換性能が低下し、暖房能力も低下する。上記のガスインジヱクショ ン流量と暖房能力の相関を表すと図 8のようになり、暖房能力が最大となるガスインジ ェクシヨン流量が存在する。
[0040] 次に、本実施の形態における第 1内部熱交翻 9の作用効果について説明する。
第 1内部熱交換器 9では、凝縮器を出た高圧液冷媒と圧縮機 3の吸入冷媒が熱交 換される。高圧液冷媒が第 1内部熱交換器 9にて冷却されることにより、蒸発器に流 入する冷媒のェンタルピは低くなるので、蒸発器での冷媒ェンタルピ差が拡大される 従って、冷房運転時には冷房能力が増加する。
[0041] 一方、圧縮機 3に吸入される冷媒は加熱され、吸入温度が上昇する。これに伴い圧 縮機 3の吐出温度も上昇する。また圧縮機 3の圧縮行程では、同じ昇圧を行う場合で も一般的に高温の冷媒を圧縮するほどより多くの仕事を必要とする。
従って、第 1内部熱交翻 9を設けることによる効率面での影響は、蒸発器ェンタ ルビ差拡大による能力増加と、圧縮仕事の増加の両面が表れ、蒸発器ェンタルピ差 拡大による能力増加の影響が大きい場合には、装置の運転効率が上昇する。
[0042] 次に、本実施の形態のように、第 1内部熱交 9による熱交換と、インジェクション 回路 13によるガスインジェクションを組み合わせた場合の効果について説明する。 第 1内部熱交換器 9による熱交換を行うと、圧縮機 3吸入温度が上昇する。従って、 インジェクションを行った場合の圧縮機 3内部の変化においては、低圧から中間圧に 昇圧された冷媒ェンタルピ(図 2、図 3の点 11)が高くなり、インジェクションされる冷媒 と合流した後の冷媒ェンタルピ(図 2、図 3の点 12)も高くなる。
[0043] 従って、圧縮機 3の吐出ェンタルピ(図 2、図 3の点 1)も高くなり、圧縮機 3の吐出温 度は上昇する。そこで、第 1内部熱交 9による熱交換の有無に伴う、ガスインジ クシヨン流量と暖房能力の相関の変化を表すと図 9のようになる。
第 1内部熱交 9による熱交換が有る場合には、同一インジェクション量を行った 場合の圧縮機 3吐出温度は高くなるので、凝縮器入口の冷媒温度も高くなり、凝縮 器熱交換量が増加し、暖房能力が増加する。従って暖房能力ピークとなるインジエタ シヨン流量が増加し、暖房能力のピーク値そのものも増加し、より多くの暖房能力を得 ることがでさる。
[0044] なお、第 1内部熱交換器 9が存在しない場合でも、第 1膨張弁 11の開度制御により 、圧縮機 3の吸入過熱度を上昇させて、圧縮機 3の吐出温度を上昇させることができ る。
しかし、この場合は、同時に蒸発器となる室外熱交 12出口の冷媒過熱度も大 きくなることから、室外熱交 の熱交換効率が低下する。
室外熱交換器 12の熱交換効率が低下すると、同一熱交換量を得るためには、蒸 発温度を低下させねばならず、低圧の低下する運転となる。 [0045] 低圧が低下すると、圧縮機 3で吸入される冷媒流量も減少するため、このような運転 を行うと、力えって暖房能力を低下させることになる。
逆にいうと、第 1内部熱交換器 9を用いると、蒸発器となる室外熱交換器 12の出口 の冷媒状態が適切な状態となり、熱交換効率のよい状態のまま、圧縮機 3吐出温度 を上昇させることができ、前記のような低圧の低下を回避し、暖房能力増加を容易に 実現できる。
[0046] また、本実施の形態の回路構成では、高圧冷媒の一部をバイパスし減圧後、第 2内 部熱交^^ 10で過熱ガス化したあとインジェクションを行う構成をとつている。
従って、従来例のように気液分離器を用いて分離したガスをインジヱクシヨンする場 合に比べ、制御や運転状態などに応じてインジェクション量が変化したときの冷媒量 分布の変動が発生しな 、ので、より安定した運転を実現できる。
[0047] なお、第 3膨張弁 14は圧縮機 3の吐出温度が目標値となるように制御すると前述し たが、この制御目標値は暖房能力が最大となるように設定する。
図 9に示したように、ガスインジェクション流量 暖房能力一吐出温度の相関から、 暖房能力最大となる吐出温度が存在するので、予めこの吐出温度を求めておいて目 標値に設定する。なお、吐出温度の目標値は必ずしも一定値である必要は無ぐ運 転条件や凝縮器などの機器の特性に応じて随時変更してもよい。
このように吐出温度制御を行うことで、ガスインジェクション量を暖房能力最大となる ように制御できる。
[0048] ガスインジェクション量につ 、ては暖房能力最大となるようにするだけでなぐ運転 効率最大となるように制御することもできる。
冷凍空調装置起動時のように、多量の暖房能力を必要とする場合は能力最大に制 御するが、装置を一定時間運転後、暖房により室温が上昇した場合などには、それ ほど多くの暖房能力を必要としなくなるので、このような場合には、効率最大となるよう に制御する。
[0049] インジェクション流量と暖房能力と運転効率の間には、図 10に示すような相関があ り、暖房能力最大となる場合に比べ、運転効率最大となるとき、インジェクション流量 は少なぐ吐出温度は高くなる。 暖房能力最大となるインジェクション流量では、吐出温度を低くしていることから、凝 縮器の熱交換性能が低下して ヽること、またインジェクション流量を多くするために、 中間圧力が低くなり、インジェクション分を圧縮する圧縮仕事が多くなることにより、運 転効率最大となる場合に比べ効率が低下する。
[0050] そこで、インジェクション回路 13の第 3膨張弁 14で制御する吐出温度目標値として 、暖房能力最大となる目標値だけでなく運転効率最大となる目標値も持ち、運転状 況、例えば圧縮機 3の運転容量や、室内機側空気温度の状況に応じて、暖房能力 が必要とされるときは、暖房能力最大となる目標値に設定し、そうでない場合は運転 効率最大となる目標値に設定する。
このような運転を行うことにより、多量の暖房能力を実現するとともに、効率の高い装 置の運転を行うことができる。
[0051] また第 1膨張弁 11は圧縮機 3の吸入過熱度が目標値となるように制御するとしたが 、この制御により蒸発器となる熱交換器出口の過熱度を最適にでき、蒸発器での熱 交換性能を高く確保するとともに、冷媒ェンタルピ差も適度に確保するように運転す ることができ、高効率の運転を行うことができる。
このような運転となる蒸発器出口の過熱度は熱交換器の特'性によって異なるが、概 ね 2°C前後であり、それから第 1内部熱交換器 9で冷媒が加熱されるので、圧縮機 3 の吸入過熱度の目標値はこの値より高くなり、例えば前述した 10°Cが目標値に設定 される。
[0052] 従って、第 1膨張弁 11の制御としては、蒸発器出口の過熱度、暖房運転の場合は 温度センサ 16bと温度センサ 16cの差温で求められる室外熱交換器 12出口の過熱 度が目標値、例えば前述した 2°Cになるように制御してもよい。
ただし、蒸発器出口の過熱度を直接制御する場合、その目標値が 2°C程度と低い 値である場合には過渡的に蒸発器出口が気液二相状態となり、過熱度が適切に検 知できず制御が難しくなることが生じる。
[0053] 圧縮機 3の吸入過熱度で検知すると、目標値を高く設定できるとともに第 1内部熱 交 9での加熱により、吸入が気液二相となって過熱度が適切に検知できな!/、と いう状況は発生しないので、制御としては、より容易に行うことができ、安定した制御 を行うことができる。
[0054] また、第 2膨張弁 8は凝縮器となる室内熱交 6出口の過冷却度が目標値となる ように制御するとしたが、この制御により凝縮器での熱交換性能を高く確保するととも に、冷媒ェンタルピ差も適度に確保するように運転することができ、高効率の運転を 行うことができる。
このような運転となる凝縮器出口の過冷去卩度は熱交換器の特'性によって異なるが 概ね 5〜10°C前後である。
[0055] なお、過冷却度の目標値はこの値より高く設定する、例えば 10〜15°C前後に設定 することによって、暖房能力を増加した運転も行うことができる。
そこで、運転状況に応じて、過冷却度の目標値を変更し、装置起動時は高めの過 冷却度目標値で暖房能力確保、室温安定時は低めの過冷却度目標値で高効率運 転を行うよう〖こすることもできる。
[0056] なお、冷凍空調装置の冷媒としては、 R410Aに限るものではなぐ他の冷媒、 HF C系冷媒である R134aや R404A、 R407C、自然冷媒である C02、 HC系冷媒、ァ ンモユア、空気、水などに用いることができる。特に冷媒として C02を用いた場合、蒸 発器での冷媒ェンタルピ差が小さく運転効率が低くなるという欠点に対して、本装置 の構成として第 1内部熱交換器 9、第 2内部熱交換器 10により蒸発器ェンタルピ差を 拡大することができるので、より大きな効率改善を行うことができ、本装置の適用に好 適である。
[0057] また、 C02の場合には、凝縮温度が存在せず、放熱器となる高圧側熱交換器では 流れに伴い温度低下する。従って、放熱器での熱交換量変化は、ある一定区間凝縮 温度となり一定量の熱交換量が確保できる HFC系冷媒などとは異なり、入口温度の 影響が大きくなる。
従って、本実施の形態のように、吐出温度を高くしながらインジェクション流量を増 加できる構成とすることで、 HFC系冷媒などより暖房能力の増加率が大きくなり、この 面でも C02冷媒は本装置の適用に好適である。
[0058] また、第 1内部熱交換器 9、第 2内部熱交換器 10の配置位置は図 1の構成に限るも のではなぐ上流下流の位置関係が反対であっても同様の効果を得ることができる。 またインジェクション回路 13を取り出す位置も図 1の位置に限るものではなぐ他の中 間圧部分、および高圧液部から取り出せる位置であれば同様の効果を得ることがで きる。
なお、第 3膨張弁 14の制御安定性を考慮するとインジェクション回路 13を取り出す 位置としては、気液二相状態であるよりは完全に液となっている位置の方が望ましい
[0059] なお、本実施の形態では、第 1膨張弁 11、第 3膨張弁 8の間に第 1内部熱交換器 9 、第 2内部熱交換器 10及びインジェクション回路 13の取り出し位置を配置しているの で、冷暖 、ずれの運転モードでも同様のインジェクションを行った運転を実施できる。 また、冷媒の飽和温度を凝縮器、蒸発器中間の冷媒温度センサで検知しているが 、高低圧を検知する圧力センサを設け、計測された圧力値を換算して飽和温度を求 めてもよい。
[0060] 実施の形態 2.
以下本発明の実施の形態 2を図 11に示す。図 11は実施の形態 2における冷凍空 調装置の冷媒回路図であり、室外機内に中圧レシーバ 17が設けられ、その内部に 圧縮機 3の吸入配管が貫通している。
この貫通部分の冷媒と中圧レシーバ 17内の冷媒が熱交換可能な構成となっており 、実施の形態 1における第 1内部熱交翻9と同じ機能を実現する。
[0061] 本形態における作用効果は、中圧レシーバ 17を除き、実施の形態 1と同じであるの で、その部分については説明を省略する。中圧レシーバ 17では、暖房運転時には 室内交 6出口の気液二相冷媒が流入し、中圧レシーバ 17内で冷却され液とな つて流出する。冷房運転時には第 1膨張弁 11を出た気液二相冷媒が流入し、中圧 レシーバ 17内で冷却され液となって流出する。
[0062] 中圧レシーバ 17内での熱交換は、主に気液二相冷媒のうちガス冷媒が吸入配管と 触れて凝縮液化して熱交換される。従って、中圧レシーバ 17内に滞留する液冷媒量 が少ないほど、ガス冷媒と吸入配管が接触する面積が多くなり、熱交換量は増加す る。逆に、中圧レシーバ 17内に滞留する液冷媒量が多いと、ガス冷媒と吸入配管が 接触する面積が少なくり、熱交換量は減少する。 [0063] このように中圧レシーバ 17を備えることで以下の効果を持つ。
まず、中圧レシーバ 17の出口は液となるので、暖房運転時に第 3膨張弁 14に流入 する冷媒は、必ず液冷媒となるので、第 3膨張弁 14の流量特性が安定し、制御安定 性が確保され、安定した装置運転を行うことができる。
また中圧レシーバ 17内で熱交換を行うことで中圧レシーバ 17の圧力が安定的にな り、第 3膨張弁 14の入口圧力が安定し、インジェクション回路 13に流れる冷媒流量が 安定するという効果もある。例えば負荷変動などがあり、高圧が変動したりすると、そ れに伴い中圧レシーバ 17内の圧力変動が生じる力 中圧レシーバ 17内の熱交換に より圧力変動が抑制される。
[0064] 負荷が増加し、高圧が上昇すると中圧レシーバ 17内の圧力も上昇する力 そのとき には、低圧との圧力差が広がり、中圧レシーバ 17内の熱交換器での温度差も広がる ので熱交換量が増加する。熱交換量が増加すると、中圧レシーバ 17に流入する気 液二相冷媒のうちのガス冷媒が凝縮する量が多くなるので、圧力が上がりにくくなり、 中圧レシーバ 17の圧力上昇が抑制される。
[0065] 逆に、負荷が減少し、高圧が低下すると中圧レシーバ 17内の圧力も低下するが、 そのときには、低圧との圧力差が狭まり、中圧レシーバ 17内の熱交換器での温度差 も狭まるので熱交換量が減少する。熱交換量が減少すると、中圧レシーバ 17に流入 する気液二相冷媒のうちのガス冷媒が凝縮する量が少なくなるので、圧力が下がりに くくなり、中圧レシーバ 17の圧力は低下が抑制される。
このように、中圧レシーバ 17内で熱交換を行うことにより、運転状態変動に伴う熱交 換量変動が自律的に発生し、その結果として中圧レシーバ 17内の圧力変動が抑制 される。
[0066] また、中圧レシーバ 17内で熱交換を行うことで装置運転そのものが安定するという 効果もある。例えば低圧側の状態が変動し、蒸発器である室外熱交換器 12の出口 の冷媒過熱度が大きくなつた場合には、中圧レシーバ 17内での熱交換の際の温度 差が減少するため、熱交換量が減少し、ガス冷媒が凝縮されに《なるので、中圧レ シーバ 17内のガス冷媒量が増加し、液冷媒量が減少する。
減少した分の液冷媒量は、室外熱交換器 12に移動し、室外熱交換器 12内の液冷 媒量が増加することから、室外熱交換器 12出口の冷媒過熱度が大きくなることが抑 制され、装置の運転変動が抑制される。
[0067] 逆に、低圧側の状態が変動し、蒸発器である室外熱交換器 12出口の冷媒過熱度 が小さくなつた場合には、中圧レシーバ 17内での熱交換の際の温度差が増加する ため、熱交換量が増加し、ガス冷媒が凝縮されやすくなるので、中圧レシーバ 17内 のガス冷媒量が減少し、液冷媒量が増加する。この分の液冷媒量は、室外熱交換器 12から移動することになり、室外熱交 2内の液冷媒量が減少することから、室 外熱交 出口の冷媒過熱度が小さくなることが抑制され、装置の運転変動が抑 制される。
この過熱度変動を抑制する作用も、中圧レシーバ 17内で熱交換を行うことにより、 運転状態変動に伴う熱交換量変動が自律的に発生することによって生じている。
[0068] 以上のように、実施の形態 1における第 1内部熱交換器 9での熱交換を中圧レシ一 バ 17で行う構成とすることで、装置の運転変動が起きても、自律的な熱交換量変動 により変動を抑制し、装置運転を安定的に行うことができる。
[0069] なお、中圧レシーバ 17で熱交換を行う構造であるが、中圧レシーバ 17内の冷媒と 熱交換する構成であればどのような構成をとつても同様の効果を得ることができる。例 えば、中圧レシーバ 17容器外周に圧縮機 3の吸入配管を接触させて熱交換させる 構成を用いてもよい。
また、インジェクション回路 13に供給する冷媒を中圧レシーバ 17底部から供給して もよい。この場合には、冷暖房の各運転で、第 3膨張弁 14に液冷媒が流入することに なるので、冷暖いずれの運転においても第 3膨張弁 14の流量特性が安定し、制御安 定性が確保される。

Claims

請求の範囲
[1] 圧縮機、室内熱交換器、第 1の減圧装置、室外熱交換器を環状に接続し、前記室 内熱交換器力 温熱を供給する冷凍空調装置において、
前記室内熱交換器と前記第 1の減圧装置との間の冷媒と、前記室外熱交換器と前 記圧縮機との間の冷媒とを熱交換する第 1の内部熱交^^と、
前記室内熱交換器と前記第 1の減圧装置との間の冷媒を、一部バイパスして前記 圧縮機内の圧縮室にインジェクションするインジェクション回路と、
該インジェクション回路に設けられたインジェクション用減圧装置と、
該インジェクション用減圧装置で減圧された冷媒と前記室内熱交^^と前記第 1の 減圧装置との間の冷媒とを熱交換する第 2の内部熱交^^と、
を備えたことを特徴とする冷凍空調装置。
[2] 前記室内熱交換器と前記第 1の内部熱交換器との間に第 2の減圧装置を備えたこ とを特徴とする請求項 1記載の冷凍空調装置。
[3] 前記第 1の内部熱交換器は、前記室内熱交換器と前記第 1の減圧装置との間に設 けられ、循環する冷媒を貯留して前記室外熱交換器と圧縮機との間の冷媒と熱交換 するレシーバに備えられることを特徴とする請求項 1又は 2記載の冷凍空調装置。
[4] 前記第 1の減圧装置により、前記圧縮機吸入の冷媒過熱度若しくは前記室外熱交 換器の出口の冷媒過熱度が所定値となるように制御する制御装置を備えたことを特 徴とする請求項 1〜3のいずれかに記載の冷凍空調装置。
[5] 前記インジェクション用減圧装置により、前記圧縮機出口の冷媒吐出温度もしくは 前記圧縮機出口の冷媒過熱度が所定値となるように制御する制御装置を備えたこと を特徴とする請求項 1〜3のいずれかに記載の冷凍空調装置。
[6] 前記第 2の減圧装置により、前記室内熱交換器出口の冷媒過冷却度が所定値とな るように制御する制御装置を備えたことを特徴とする請求項 2〜3の 、ずれかに記載 の冷凍空調装置。
[7] 前記第 1の減圧装置により、前記圧縮機吸入の冷媒過熱度若しくは前記室外熱交 の出口の冷媒過熱度が所定値となるように制御し、前記インジェクション用減圧 装置により、前記圧縮機出口の冷媒吐出温度もしくは前記圧縮機出口の冷媒過熱 度が所定値となるように制御し、前記第 2の減圧装置により、前記室内熱交換器出口 の冷媒過冷却度が所定値となるように制御する制御装置を備えたことを特徴とする請 求項 2〜3の 、ずれかに記載の冷凍空調装置。
[8] 圧縮機、室外熱交換器、第 1の減圧装置、室内熱交換器を環状に接続し、前記室 内熱交換器力 冷熱を供給する冷凍空調装置において、
前記室外熱交換器と前記第 1の減圧装置との間の冷媒と、前記室内熱交換器と前 記圧縮機との間の冷媒とを熱交換する第 1の内部熱交^^と、
前記室外熱交換器と前記第 1の減圧装置との間の冷媒を、一部バイパスして前記 圧縮機内の圧縮室にインジェクションするインジェクション回路と、
該インジェクション回路に設けられたインジェクション用減圧装置と、
該インジェクション用減圧装置で減圧された冷媒と前記室内熱交^^と前記第 1の 減圧装置との間の冷媒とを熱交換する第 2の内部熱交^^と、
を備えたことを特徴とする冷凍空調装置。
[9] 前記室外熱交換器と前記第 2の内部熱交換器との間に第 2の減圧装置を備えたこ とを特徴とする請求項 8記載の冷凍空調装置。
[10] 前記第 1の内部熱交換器は、前記室外熱交換器と前記第 1の減圧装置との間に設 けられ、循環する冷媒を貯留して前記室内熱交^^と圧縮機との間の冷媒と熱交換 するレシーバに備えられることを特徴とする請求項 8又は 9記載の冷凍空調装置。
[11] 前記第 1の減圧装置により、前記圧縮機吸入の冷媒過熱度若しくは前記室内熱交 出口の冷媒過熱度が所定値となるように制御する制御装置を備えたことを特徴 とする請求項 8〜 10のいずれかに記載の冷凍空調装置。
[12] 前記インジヱクシヨン用減圧装置により、前記圧縮機出口の冷媒吐出温度もしくは 前記圧縮機出口の冷媒過熱度が所定値となるように制御する制御装置を備えたこと を特徴とする請求項 8〜 10のいずれかに記載の冷凍空調装置。
[13] 前記第 2の減圧装置により、前記室外熱交換器出口の冷媒過冷却度が所定値とな るように制御する制御装置を備えたことを特徴とする請求項 9〜10のいずれかに記 載の冷凍空調装置。
[14] 前記第 1の減圧装置により、前記圧縮機吸入の冷媒過熱度若しくは前記室内熱交 出口の冷媒過熱度が所定値となるように制御し、前記インジェクション用減圧装 置により、前記圧縮機出口の冷媒吐出温度もしくは前記圧縮機出口の冷媒過熱度 が所定値となるように制御し、前記第 2の減圧装置により、前記室外熱交換器出口の 冷媒過冷却度が所定値となるように制御する制御装置を備えたことを特徴とする請求 項 9〜10のいずれかに記載の冷凍空調装置。
[15] 圧縮機、暖房と冷房の運転切換を行う四方弁、室内熱交換器、第 2減圧装置、第 1 減圧装置、室外交換器を備え、前記四方弁を暖房運転に切換えたときに冷媒が前 記圧縮機、前記四方弁、前記室内熱交換器、前記第 2減圧装置、前記第 1減圧装置 、前記室外熱交換器、前記圧縮機と循環し、前記室内熱交換器から温熱を供給し、 前記四方弁を冷房運転に切換えたときに冷媒が前記圧縮機、前記四方弁、前記室 外熱交換器、前記第 1減圧装置、前記第 2減圧装置、前記室内熱交換器、前記圧縮 機と循環し、前記室内熱交 力 冷熱を供給するようにした冷凍空調装置におい て、
前記暖房運転のときに前記室内熱交換器と前記第 1の減圧装置との間の冷媒と、 前記室外熱交換器と前記圧縮機との間の冷媒とを熱交換し、前記冷房運転のときに 前記室外熱交換器と前記第 2の減圧装置との間の冷媒と、前記室内熱交換器と前記 圧縮機との間の冷媒とを熱交換する第 1の内部熱交^^と、
前記暖房運転のときに前記室内熱交換器と前記第 1の減圧装置との間の冷媒をー 部バイパスして前記圧縮機内の圧縮室にインジヱクシヨンし、前記冷房運転のときに 前記室外熱交換器と前記第 2の減圧装置との間の冷媒を一部バイパスして前記圧縮 機内の圧縮室にインジェクションするインジェクション回路と、
該インジェクション回路に設けられたインジェクション用減圧装置と、
前記暖房運転のときに前記インジェクション用減圧装置で減圧された冷媒と前記室 内熱交^^と前記第 1の減圧装置との間の冷媒とを熱交換し、前記冷房運転のとき に前記インジェクション用減圧装置で減圧された冷媒と前記室外熱交^^と前記第 2の減圧装置との間の冷媒とを熱交換する第 2の内部熱交^^と、
を備えたことを特徴とする冷凍空調装置。
[16] 前記第 1の内部熱交換器は、前記第 1の減圧装置と前記第 2の減圧装置との間に 設けられ、循環する冷媒を貯留して前記暖房運転のときに前記室外熱交換器と前記 圧縮機との間の冷媒と熱交換し、前記冷房運転のときに前記室内熱交^^と前記圧 縮機との間の冷媒と熱交換するレシーバであることを特徴とする請求項 15記載の冷 凍空調装置。
[17] 前記暖房運転のときに、前記第 1の減圧装置により、前記圧縮機吸入の冷媒過熱 度若しくは前記室外熱交換器の出口の冷媒過熱度が所定値となるように制御する制 御装置を備えたことを特徴とする請求項 15又は 16記載の冷凍空調装置。
[18] 前記暖房運転のときに、前記第 2の減圧装置により、前記室内熱交換器出口の冷 媒冷却度が所定値となるように制御する制御装置を備えたことを特徴とする請求項 1
5又は 16記載の冷凍空調装置。
[19] 前記冷房運転のときに、前記第 1の減圧装置により、前記室外熱交換器の出口の 冷媒過冷却度が所定値となるように制御する制御装置を備えたことを特徴とする請求 項 15又は 16記載の冷凍空調装置。
[20] 前記冷房運転のときに、前記第 2の減圧装置により、前記圧縮機吸入の冷媒過熱 度若しくは前記室内熱交換器の出口の冷媒過熱度が所定値となるように制御する制 御装置を備えたことを特徴とする請求項 15又は 16記載の冷凍空調装置。
[21] 前記インジヱクシヨン用減圧装置により、前記圧縮機出口の冷媒吐出温度もしくは 前記圧縮機出口の冷媒過熱度が所定値となるように制御する制御装置を備えたこと を特徴とする請求項 15又は 16記載の冷凍空調装置。
[22] 前記暖房運転のときに、前記第 1の減圧装置により、前記圧縮機吸入の冷媒過熱 度若しくは前記室外熱交^^の出口の冷媒過熱度が所定値となるように制御すると 共に、前記第 2の減圧装置により、前記室内熱交換器出口の冷媒冷却度が所定値と なるように制御し、
前記冷房運転のときに、前記第 1の減圧装置により、前記室外熱交換器の出口の 冷媒過冷却度が所定値となるように制御すると共に前記第 2の減圧装置により、前記 圧縮機吸入の冷媒過熱度若しくは前記室内熱交換器の出口の冷媒過熱度が所定 値となるように制御し、前記暖房運転又は冷房運転のいずれのときにも前記インジェ クシヨン用減圧装置により、前記圧縮機出口の冷媒吐出温度もしくは前記圧縮機出 口の冷媒過熱度が所定値となるように制御する制御装置を備えたことを特徴とする請 求項 15又は 16のいずれかに記載の冷凍空調装置。
前記冷媒として二酸ィ匕炭素を用いたことを特徴とする請求項 1〜22のいずれかに 記載の冷凍空調装置。
PCT/JP2006/306119 2004-10-14 2006-03-27 冷凍空調装置 WO2007110908A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US11/661,094 US8899058B2 (en) 2006-03-27 2006-03-27 Air conditioner heat pump with injection circuit and automatic control thereof
EP06730067.3A EP2000751B1 (en) 2006-03-27 2006-03-27 Refrigeration air conditioning device
CNB2006800009160A CN100554820C (zh) 2006-03-27 2006-03-27 冷冻空调装置
PCT/JP2006/306119 WO2007110908A1 (ja) 2006-03-27 2006-03-27 冷凍空調装置
NO20073241A NO342668B1 (no) 2006-03-27 2007-06-22 Kjøleklimaanlegg
US12/760,190 US20100192607A1 (en) 2004-10-14 2010-04-14 Air conditioner/heat pump with injection circuit and automatic control thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/306119 WO2007110908A1 (ja) 2006-03-27 2006-03-27 冷凍空調装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/760,190 Division US20100192607A1 (en) 2004-10-14 2010-04-14 Air conditioner/heat pump with injection circuit and automatic control thereof

Publications (2)

Publication Number Publication Date
WO2007110908A1 WO2007110908A1 (ja) 2007-10-04
WO2007110908A9 true WO2007110908A9 (ja) 2008-02-21

Family

ID=38540848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306119 WO2007110908A1 (ja) 2004-10-14 2006-03-27 冷凍空調装置

Country Status (5)

Country Link
US (1) US8899058B2 (ja)
EP (1) EP2000751B1 (ja)
CN (1) CN100554820C (ja)
NO (1) NO342668B1 (ja)
WO (1) WO2007110908A1 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100758902B1 (ko) * 2004-11-23 2007-09-14 엘지전자 주식회사 멀티 공기조화 시스템 및 그 제어방법
JP5063347B2 (ja) 2005-07-26 2012-10-31 三菱電機株式会社 冷凍空調装置
EP2078178B1 (en) * 2006-10-26 2016-05-18 Johnson Controls Technology Company Economized refrigeration system
JP5042058B2 (ja) 2008-02-07 2012-10-03 三菱電機株式会社 ヒートポンプ式給湯用室外機及びヒートポンプ式給湯装置
JP4931848B2 (ja) * 2008-03-31 2012-05-16 三菱電機株式会社 ヒートポンプ式給湯用室外機
US8539785B2 (en) 2009-02-18 2013-09-24 Emerson Climate Technologies, Inc. Condensing unit having fluid injection
FR2971763B1 (fr) * 2011-02-22 2013-03-15 Airbus Operations Sas Echangeur thermique incorpore dans une paroi d'un aeronef
DE102011014943A1 (de) * 2011-03-24 2012-09-27 Airbus Operations Gmbh Multifunktionaler Kälteträgermediumbehälter und Verfahren zum Betreiben eines derartigen Kälteträgermediumbehälters
JP5774121B2 (ja) * 2011-11-07 2015-09-02 三菱電機株式会社 空気調和装置
US9709304B2 (en) * 2012-01-23 2017-07-18 Mitsubishi Electric Corporation Air-conditioning apparatus
JP2013217631A (ja) * 2012-03-14 2013-10-24 Denso Corp 冷凍サイクル装置
EP2905560A4 (en) * 2012-10-01 2016-05-18 Mitsubishi Electric Corp AIR CONDITIONING DEVICE
WO2014054120A1 (ja) * 2012-10-02 2014-04-10 三菱電機株式会社 空気調和装置
JP6110187B2 (ja) * 2013-04-02 2017-04-05 三菱電機株式会社 冷凍サイクル装置
KR20150002980A (ko) * 2013-06-28 2015-01-08 삼성전자주식회사 공기조화기
US10168086B2 (en) * 2013-07-12 2019-01-01 B/E Aerospace, Inc. Temperature control system with programmable ORIT valve
US20150267951A1 (en) * 2014-03-21 2015-09-24 Lennox Industries Inc. Variable refrigerant charge control
CN104197565A (zh) * 2014-08-22 2014-12-10 烟台万德嘉空调设备有限公司 一种叠加式空气源供热装置
JP6320639B2 (ja) * 2015-07-27 2018-05-09 三菱電機株式会社 空気調和装置
MX2018001656A (es) 2015-08-14 2018-05-22 Danfoss As Sistema de compresion de vapor con al menos dos grupos evaporadores.
CN105258393B (zh) * 2015-10-16 2018-02-02 珠海格力电器股份有限公司 热泵机组控制系统
CN108139132B (zh) 2015-10-20 2020-08-25 丹佛斯有限公司 用于控制有可变接收器压力设定点的蒸气压缩系统的方法
JP6788007B2 (ja) * 2015-10-20 2020-11-18 ダンフォス アクチ−セルスカブ 長時間エジェクタモードで蒸気圧縮システムを制御するための方法
CN106288488B (zh) 2016-08-29 2019-02-01 广东美的暖通设备有限公司 空调器系统和空调器系统的控制方法
JP2018077037A (ja) * 2016-10-25 2018-05-17 三星電子株式会社Samsung Electronics Co.,Ltd. 空気調和装置
WO2018080150A1 (en) * 2016-10-25 2018-05-03 Samsung Electronics Co., Ltd. Air conditioner
CN108362029B (zh) * 2018-02-06 2020-02-11 西安交通大学 一种气液分离器辅助式空调器系统及其控制方法
DK180146B1 (en) 2018-10-15 2020-06-25 Danfoss As Intellectual Property Heat exchanger plate with strenghened diagonal area
WO2021242213A1 (en) 2020-05-27 2021-12-02 Shorop Petro Serhiiovych Refrigerant system on the basis of the expanded addboiler-cooler of liquid and gaseous media
DE102020115265A1 (de) * 2020-06-09 2021-12-09 Stiebel Eltron Gmbh & Co. Kg Verfahren zum Betrieb einer Kompressionskälteanlage und Kompressionskälteanlage
DE102021132848A1 (de) 2021-12-13 2023-06-15 TEKO Gesellschaft für Kältetechnik mbH Kältekreislauf

Family Cites Families (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3398785A (en) * 1966-06-03 1968-08-27 Robert V. Anderson Combination heating and cooling unit
US3580005A (en) * 1969-04-01 1971-05-25 Carrier Corp Refrigeration system
DE2252434C3 (de) 1972-10-21 1979-11-15 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Anordnung zur Überwachung und zum Schutz von in Reihe geschalteten Kondensatoren
FR2459385A1 (fr) * 1979-06-19 1981-01-09 Zimmern Bernard Procede pour suralimenter et regler un compresseur a vis unique
JPS56144364A (en) 1980-04-11 1981-11-10 Mitsubishi Heavy Ind Ltd Refrigerant circuit for air conditioner
JPS5721760A (en) 1980-07-15 1982-02-04 Mitsubishi Electric Corp Air conditioner
JPS57118255A (en) 1981-01-14 1982-07-23 Canon Inc Electrostatic recorder
JPS57131966A (en) * 1981-02-09 1982-08-16 Hitachi Ltd Absorption type air conditioner
US4644756A (en) * 1983-12-21 1987-02-24 Daikin Industries, Ltd. Multi-room type air conditioner
US4745767A (en) * 1984-07-26 1988-05-24 Sanyo Electric Co., Ltd. System for controlling flow rate of refrigerant
US4760483A (en) * 1986-10-01 1988-07-26 The B.F. Goodrich Company Method for arc suppression in relay contacts
JP2508670B2 (ja) 1986-11-17 1996-06-19 株式会社豊田自動織機製作所 冷凍サイクルにおける蒸発温度と過熱度の複合制御方法
JPH01501431A (ja) * 1986-11-28 1989-05-18 ブディコ,ビクトル アレクサンドロビチ 電気回路におけるアーク放電のないスイッチング装置
JPS6490961A (en) 1987-09-30 1989-04-10 Daikin Ind Ltd Refrigeration circuit
JPH01239350A (ja) 1988-03-18 1989-09-25 Hitachi Ltd 冷凍サイクル装置
JPH03105160A (ja) 1989-09-18 1991-05-01 Hitachi Ltd スクリュー冷凍機
JPH03294750A (ja) 1990-04-11 1991-12-25 Mitsubishi Electric Corp 冷凍装置
JPH0418260U (ja) 1990-05-30 1992-02-14
JPH04295566A (ja) * 1991-03-25 1992-10-20 Aisin Seiki Co Ltd エンジン駆動式空気調和機
US5095712A (en) * 1991-05-03 1992-03-17 Carrier Corporation Economizer control with variable capacity
JPH0518630A (ja) * 1991-07-10 1993-01-26 Toshiba Corp 空気調和機
JPH05106922A (ja) * 1991-10-18 1993-04-27 Hitachi Ltd 冷凍装置の制御方式
JP3439178B2 (ja) * 1993-12-28 2003-08-25 三菱電機株式会社 冷凍サイクル装置
JPH07324844A (ja) * 1994-05-31 1995-12-12 Sanyo Electric Co Ltd 6方向切替弁及びそれを用いた冷凍装置
US5678419A (en) * 1994-07-05 1997-10-21 Nippondenso Co., Ltd Evaporator for a refrigerating system
JP3341500B2 (ja) * 1994-11-25 2002-11-05 株式会社日立製作所 冷凍装置およびその運転方法
US5729985A (en) * 1994-12-28 1998-03-24 Yamaha Hatsudoki Kabushiki Kaisha Air conditioning apparatus and method for air conditioning
JP3080558B2 (ja) 1995-02-03 2000-08-28 株式会社日立製作所 寒冷地向けヒートポンプ空調機
JP3655681B2 (ja) * 1995-06-23 2005-06-02 三菱電機株式会社 冷媒循環システム
US5619865A (en) * 1995-08-22 1997-04-15 Maxwell; Ronal J. Refrigeration subcooler
US5836167A (en) * 1995-09-18 1998-11-17 Nowsco Well Service Ltd. Method and apparatus for freezing large pipe
JP3582185B2 (ja) * 1995-10-24 2004-10-27 ダイキン工業株式会社 熱搬送装置
JPH09159287A (ja) 1995-12-01 1997-06-20 Mitsubishi Heavy Ind Ltd 冷凍装置
US6032472A (en) 1995-12-06 2000-03-07 Carrier Corporation Motor cooling in a refrigeration system
US5878419A (en) * 1996-01-19 1999-03-02 Novell, Inc. Method for creating a relational description of a formatted transaction
JPH1054616A (ja) * 1996-08-14 1998-02-24 Daikin Ind Ltd 空気調和機
JP3813702B2 (ja) * 1996-08-22 2006-08-23 株式会社日本自動車部品総合研究所 蒸気圧縮式冷凍サイクル
EP0837291B1 (en) 1996-08-22 2005-01-12 Denso Corporation Vapor compression type refrigerating system
JP3334507B2 (ja) * 1996-09-13 2002-10-15 三菱電機株式会社 冷凍システム装置および冷凍システム装置の制御方法
JPH10160269A (ja) 1996-11-29 1998-06-19 Matsushita Electric Ind Co Ltd 冷凍装置
JPH10332212A (ja) 1997-06-02 1998-12-15 Toshiba Corp 空気調和装置の冷凍サイクル
JPH1130445A (ja) * 1997-07-10 1999-02-02 Denso Corp 冷凍サイクル装置
JP3952545B2 (ja) * 1997-07-24 2007-08-01 株式会社デンソー 車両用空調装置
JP3890713B2 (ja) 1997-11-27 2007-03-07 株式会社デンソー 冷凍サイクル装置
JP3421915B2 (ja) 1997-12-19 2003-06-30 三菱電機株式会社 冷凍サイクル
JPH11248264A (ja) 1998-03-04 1999-09-14 Hitachi Ltd 冷凍装置
JP2000074504A (ja) 1998-08-28 2000-03-14 Fujitsu General Ltd 空気調和機の制御方法およびその装置
JP3985384B2 (ja) * 1998-09-24 2007-10-03 株式会社デンソー 冷凍サイクル装置
JP2000234811A (ja) 1999-02-17 2000-08-29 Matsushita Electric Ind Co Ltd 冷凍サイクル装置
JP2000304374A (ja) 1999-04-22 2000-11-02 Yanmar Diesel Engine Co Ltd エンジンヒートポンプ
JP2000249413A (ja) 1999-03-01 2000-09-14 Daikin Ind Ltd 冷凍装置
JP4269397B2 (ja) 1999-03-18 2009-05-27 ダイキン工業株式会社 冷凍装置
US6494055B1 (en) * 1999-05-20 2002-12-17 Specialty Equipment Companies, Inc. Beater/dasher for semi-frozen, frozen food dispensing machines
JP3738414B2 (ja) 1999-06-30 2006-01-25 株式会社日立製作所 ヒートポンプ式空気調和機
EP1072453B1 (en) * 1999-07-26 2006-11-15 Denso Corporation Refrigeration-cycle device
ATE380987T1 (de) 1999-10-18 2007-12-15 Daikin Ind Ltd Kältevorrichtung
JP3440910B2 (ja) 2000-02-17 2003-08-25 ダイキン工業株式会社 冷凍装置
JP3719364B2 (ja) * 1999-12-15 2005-11-24 三菱電機株式会社 冷凍サイクル
JP2001263882A (ja) 2000-03-17 2001-09-26 Daikin Ind Ltd ヒートポンプ装置
JP2001296058A (ja) 2000-04-12 2001-10-26 Zeneral Heat Pump Kogyo Kk 冷暖房・給湯熱源機
JP4407000B2 (ja) 2000-04-13 2010-02-03 ダイキン工業株式会社 Co2冷媒を用いた冷凍システム
JP4538892B2 (ja) 2000-04-19 2010-09-08 ダイキン工業株式会社 Co2冷媒を用いた空気調和機
JP2001324237A (ja) 2000-05-12 2001-11-22 Denso Corp 冷凍サイクル装置
JP4407012B2 (ja) 2000-06-06 2010-02-03 ダイキン工業株式会社 冷凍装置
JP2002005536A (ja) 2000-06-20 2002-01-09 Denso Corp ヒートポンプサイクル
JP4059616B2 (ja) * 2000-06-28 2008-03-12 株式会社デンソー ヒートポンプ式温水器
NO20005575D0 (no) * 2000-09-01 2000-11-03 Sinvent As Metode og arrangement for avriming av kulde-/varmepumpeanlegg
NO20005576D0 (no) * 2000-09-01 2000-11-03 Sinvent As Reversibel fordampningsprosess
JP2002081767A (ja) 2000-09-07 2002-03-22 Hitachi Ltd 空気調和装置
JP2002120546A (ja) 2000-10-16 2002-04-23 Denso Corp 車両用空調装置
JP2002162086A (ja) 2000-11-24 2002-06-07 Hitachi Ltd 空気調和機
US6523365B2 (en) * 2000-12-29 2003-02-25 Visteon Global Technologies, Inc. Accumulator with internal heat exchanger
JP4658347B2 (ja) 2001-01-31 2011-03-23 三菱重工業株式会社 超臨界蒸気圧縮冷凍サイクル
US6516626B2 (en) * 2001-04-11 2003-02-11 Fmc Corporation Two-stage refrigeration system
US6718781B2 (en) * 2001-07-11 2004-04-13 Thermo King Corporation Refrigeration unit apparatus and method
JP2003065615A (ja) 2001-08-23 2003-03-05 Daikin Ind Ltd 冷凍機
NO20014258D0 (no) * 2001-09-03 2001-09-03 Sinvent As System for kjöle- og oppvarmingsformål
JP2003106693A (ja) * 2001-09-26 2003-04-09 Toshiba Corp 冷蔵庫
JP3811116B2 (ja) 2001-10-19 2006-08-16 松下電器産業株式会社 冷凍サイクル装置
NO320664B1 (no) * 2001-12-19 2006-01-16 Sinvent As System for oppvarming og kjoling av kjoretoy
JP2003185286A (ja) 2001-12-19 2003-07-03 Hitachi Ltd 空気調和機
JP2004028485A (ja) 2002-06-27 2004-01-29 Sanyo Electric Co Ltd Co2冷媒サイクル装置
DE10232145A1 (de) * 2002-07-13 2004-01-29 Rexroth Indramat Gmbh Zwischenkreiskondensator-Kurzschlussüberwachung
JP4107926B2 (ja) 2002-09-19 2008-06-25 三洋電機株式会社 遷臨界冷媒サイクル装置
JP4045154B2 (ja) 2002-09-11 2008-02-13 日立アプライアンス株式会社 圧縮機
JP4069733B2 (ja) 2002-11-29 2008-04-02 三菱電機株式会社 空気調和機
JP2004189913A (ja) 2002-12-12 2004-07-08 Sumitomo Chem Co Ltd エアレーション温度の調整方法
JP2004218964A (ja) * 2003-01-16 2004-08-05 Matsushita Electric Ind Co Ltd 冷凍装置
US7099169B2 (en) * 2003-02-21 2006-08-29 Distributed Power, Inc. DC to AC inverter with single-switch bipolar boost circuit
US7424807B2 (en) * 2003-06-11 2008-09-16 Carrier Corporation Supercritical pressure regulation of economized refrigeration system by use of an interstage accumulator
US7299649B2 (en) * 2003-12-09 2007-11-27 Emerson Climate Technologies, Inc. Vapor injection system
JP4442237B2 (ja) 2004-01-30 2010-03-31 三菱電機株式会社 空気調和装置
US7137270B2 (en) * 2004-07-14 2006-11-21 Carrier Corporation Flash tank for heat pump in heating and cooling modes of operation
US7059151B2 (en) * 2004-07-15 2006-06-13 Carrier Corporation Refrigerant systems with reheat and economizer
JP2006112708A (ja) 2004-10-14 2006-04-27 Mitsubishi Electric Corp 冷凍空調装置
JP4459776B2 (ja) * 2004-10-18 2010-04-28 三菱電機株式会社 ヒートポンプ装置及びヒートポンプ装置の室外機
JP5285286B2 (ja) 2008-01-31 2013-09-11 株式会社クボタ 乗用型田植機

Also Published As

Publication number Publication date
CN101189482A (zh) 2008-05-28
EP2000751A2 (en) 2008-12-10
NO20073241L (no) 2007-06-22
EP2000751B1 (en) 2019-09-18
NO342668B1 (no) 2018-06-25
US20090071177A1 (en) 2009-03-19
EP2000751A9 (en) 2009-03-04
CN100554820C (zh) 2009-10-28
US8899058B2 (en) 2014-12-02
WO2007110908A1 (ja) 2007-10-04
EP2000751A4 (en) 2010-03-24

Similar Documents

Publication Publication Date Title
WO2007110908A9 (ja) 冷凍空調装置
JP4459776B2 (ja) ヒートポンプ装置及びヒートポンプ装置の室外機
JP4906894B2 (ja) ヒートポンプ装置及びヒートポンプ装置の室外機
JP5318099B2 (ja) 冷凍サイクル装置、並びにその制御方法
KR100856991B1 (ko) 냉동 공조장치, 냉동 공조장치의 운전 제어 방법, 냉동공조장치의 냉매량 제어 방법
JP4781390B2 (ja) 冷凍サイクル装置
JP2006112708A (ja) 冷凍空調装置
KR20090098691A (ko) 공기 조화 장치 및 그 어큐뮬레이터
US20100192607A1 (en) Air conditioner/heat pump with injection circuit and automatic control thereof
JP5409715B2 (ja) 空気調和装置
JP4550153B2 (ja) ヒートポンプ装置及びヒートポンプ装置の室外機
JP2011052884A (ja) 冷凍空調装置
JP2007278686A (ja) ヒートポンプ給湯機
JP2008175476A (ja) 冷凍空調装置
KR20100063173A (ko) 공기조화기 및 그 제어방법
JP4273493B2 (ja) 冷凍空調装置
JP4442237B2 (ja) 空気調和装置
JP2011196684A (ja) ヒートポンプ装置及びヒートポンプ装置の室外機
JP2009243881A (ja) ヒートポンプ装置及びヒートポンプ装置の室外機
JP6758506B2 (ja) 空気調和装置
JP4767340B2 (ja) ヒートポンプ装置の制御装置
JP2010159967A (ja) ヒートポンプ装置及びヒートポンプ装置の室外機
JP4999531B2 (ja) 空気調和装置
JP2013053849A (ja) ヒートポンプ装置及びヒートポンプ装置の室外機
JP7375167B2 (ja) ヒートポンプ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006730067

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11661094

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200680000916.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06730067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase in:

Ref country code: DE

NENP Non-entry into the national phase in:

Ref country code: JP