WO2007100131A1 - 固体高分子型燃料電池用セパレータおよびその製造方法 - Google Patents

固体高分子型燃料電池用セパレータおよびその製造方法 Download PDF

Info

Publication number
WO2007100131A1
WO2007100131A1 PCT/JP2007/054143 JP2007054143W WO2007100131A1 WO 2007100131 A1 WO2007100131 A1 WO 2007100131A1 JP 2007054143 W JP2007054143 W JP 2007054143W WO 2007100131 A1 WO2007100131 A1 WO 2007100131A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
conductive compound
particles
fuel cell
metal
Prior art date
Application number
PCT/JP2007/054143
Other languages
English (en)
French (fr)
Inventor
Koki Tanaka
Youichi Ikematsu
Hiroshi Kihira
Michio Kaneko
Wataru Hisada
Tamotsu Itoh
Original Assignee
Nippon Steel Corporation
Sintobrator, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation, Sintobrator, Ltd. filed Critical Nippon Steel Corporation
Priority to EP07737753A priority Critical patent/EP1990855B1/en
Priority to CA2644533A priority patent/CA2644533C/en
Priority to US12/224,429 priority patent/US8182961B2/en
Publication of WO2007100131A1 publication Critical patent/WO2007100131A1/ja
Priority to US13/227,423 priority patent/US8361676B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid polymer fuel cell separator used for automobiles, small-scale power generation systems, and the like, and a method for manufacturing the same.
  • Separator for polymer electrolyte fuel cell made of stainless steel or titanium or titanium alloy having a surface layer portion to which conductive compound particles are fixed
  • the present invention relates to overnight and its manufacturing method.
  • Solid polymer fuel cells use pure hydrogen, hydrogen gas obtained by reforming alcohols, etc. as the fuel, and control the reaction between hydrogen and oxygen in the air electrochemically. It is a system to take out.
  • Solid polymer fuel cells use solid hydrogen ion permselective organic membranes as electrolytes, so conventional alkaline fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, solid electrolyte fuel cells As described above, the fuel cell can be made more compact than a fuel cell that uses a fluid medium such as an aqueous electrolyte or a molten salt electrolyte as an electrolyte, and is being developed for application to electric vehicles.
  • FIG. 1 shows the configuration of a typical polymer electrolyte fuel cell.
  • the polymer fuel cell 1 includes a solid polymer membrane 2 serving as an electrolyte, a catalyst electrode portion 3 made of carbon fine particles and noble metal ultrafine particles provided on both sides of the solid polymer membrane 2, and the catalyst electrode.
  • the electric power generated in part 3 is taken out as current, and the oxygen main gas or water that is the reaction gas is supplied to the catalyst electrode part 3
  • a current-collector commonly known as carbon paper 4 made of a felt-like carbon fiber aggregate that has the function of supplying element-based gas, and current from force-bonbon paper 4, while isolating oxygen-based gas and hydrogen-based gas.
  • the separate evening 5 is stacked.
  • the basic principle of the polymer electrolyte fuel cell 1 is roughly as follows.
  • hydrogen gas (H 2 ) 8 as fuel is supplied from the anode side 6, passes through the carbon paper 4 as the gas diffusion layer, and the catalyst electrode unit 3 to generate hydrogen ions (H +) And permeates through the solid polymer membrane 2 that is an electrolyte.
  • hydrogen ions (H + ) and oxygen in the air 9 supplied from the force sword side 7 ( ⁇ Oxidation reaction with 2 ) (2 H + + 2 e— + 1/2 O 2 ⁇ H 2 O) occurs, and water (H 2 O) is generated.
  • the solid polymer membrane 2 has a strongly acidic electrolyte fixed in the membrane, and functions as an electrolyte that allows hydrogen ions (H +) to pass through by controlling the dew point in the battery.
  • Separate Ichibu 5 which is a component of the polymer electrolyte fuel cell 1 separates the two reaction gases, air 9 on the cathode side 7 and hydrogen gas 8 on the anode side 6, and separates each reaction gas. It plays the role of a supply channel and the role of discharging water generated by the reaction from the side 7 of the cathode.
  • the polymer electrolyte fuel cell 1 uses a solid polymer membrane made of an electrolyte exhibiting strong acidity, and operates at a temperature of about 1550 at the following temperature to produce water.
  • Separator 5 for polymer electrolyte fuel cells is characterized by its corrosion resistance and durability as its material properties. In addition to being required, it is required to have good conductivity for efficiently passing an electric current through the carbon paper 4 and low contact resistance with the carbon paper.
  • separator materials Conventionally, many carbon-based materials have been used as separator materials for polymer electrolyte fuel cells. However, the separator overnight made of carbon-based materials has been hindered in compacting because it cannot be reduced in thickness due to brittleness. In recent years, separators made of hard-to-break carbon materials have been developed, but they are economically disadvantageous because they are costly.
  • M 2 a C 6 type, M 4 C type, or MC type, where the metal element (M) contains one or more of chromium, iron, nickel, molybdenum, tungsten, and boron. Particles embedded in the substrate surface, dispersed and exposed titanium or titanium alloy separator (see, for example, Japanese Patent Laid-Open No.
  • M is chromium, molybdenum, tungsten Stainless steel and stainless steel with one or more types of conductive hard particles embedded in the surface of the substrate, dispersed and exposed, and with a surface roughness of 0.06 to 5 m in the center line average roughness Ra Separators made by the company (see, for example, the publication of Japanese Patent Laid-Open No. 2 0 3 — 1 9 3 2 0 6) and The
  • a solid plating material in which a metal having high corrosion resistance and low contact resistance against carbon is coated on the core particles having a hardness higher than that of the separator evening to form the fuel cell is formed.
  • a method of forcibly depositing a metal coated on a lining material overnight see, for example, Japanese Patent Laid-Open No. 2 0 0 1-2 5 0 5 6 5) or the same method can be used.
  • By embedding a very small amount of precious metal in stainless steel, titanium, or titanium alloy the entire surface of the precious metal can be covered like gold plating.
  • a method for obtaining a sufficiently low contact resistance even if not required has been proposed.
  • the method for fixing these conductive hard fine powders to the substrate surface with a shot or the like is simple in that the production cost is low and the production cost is low as compared with the method using heat treatment or vacuum deposition. This is an advantageous method.
  • a metal separator that has been molded into a desired shape overnight A method in which hard conductive particles are mechanically driven onto the surface of the substrate by a blast method or the like may introduce distortion into the surface layer of the substrate and cause deformation. Yes, the flatness of the separate night may be reduced.
  • polymer electrolyte fuel cells have a low output voltage of about 1 V per unit. Therefore, in order to achieve the desired output, a large number of fuel cells must be stacked and used as a stack type fuel cell. Many. For this reason, in the method of fixing the conductive hard fine powder to the substrate surface with a shot or the like, it is possible to suppress the occurrence of warpage and distortion in a separator, and to achieve a good flatness that enables stacking of fuel cells. It is necessary to carry out the treatment under the conditions for obtaining a separable evening.
  • the contact resistance between the separator evening carbon paper is lower as desirable, for example, to carbon low contact resistance, and 2 0 m ⁇ ⁇ cm 2. Or less at a contact surface pressure 1 kg ⁇ f / cm 2 odor
  • a method for attaching a metal to a separator for a fuel cell (see, for example, Japanese Patent Laid-Open No. 2 0 0 1 1 2 5 0 5 6 5) has been proposed.
  • a metal material such as stainless steel, titanium, or a titanium alloy having excellent corrosion resistance has been used as a separator base material to improve the contact resistance between the surface of the separator base material and carbon paper.
  • metal separators for solid polymer fuel cells in which a conductive compound layer is formed on the surface of a substrate by various methods or conductive compound particles are fixed have been proposed. Solid polymer type fuel This was not always sufficient from the viewpoint of contact resistance and flatness required as a separator for a battery, or from the viewpoint of productivity and manufacturing cost. Disclosure of the invention
  • the present invention relates to a separator for a polymer electrolyte fuel cell made of stainless steel, titanium or a titanium alloy having a surface layer portion on which conductive compound particles are adhered.
  • the surface of the separator paper is excellent in the low contact resistance with the carbon paper, and further in the flatness for stacking, to provide a separator for a polymer electrolyte fuel cell and a method for producing the same. With the goal.
  • the present invention solves the above-described problems, that is, the gist thereof is as follows.
  • a separator for a polymer electrolyte fuel cell comprising a base material of stainless steel, titanium, or titanium alloy having a surface layer portion to which conductive compound particles are fixed
  • the conductive compound particles have an average particle size of 0.0. It consists of one or more of metal borides, metal carbides and metal nitrides of 0 to 20 m, and the conductive compound particles exist in a region from the substrate surface to a depth of 10 m.
  • the concentration distribution of the metal element composing the conductive compound in the region is the concentration C of the metal element composing the conductive compound represented by the following formulas ⁇ 1> and ⁇ 2> and the depth from the substrate surface.
  • a separator for polymer electrolyte fuel cells characterized by satisfying the relationship with X.
  • C is the concentration (% by mass) of the metal element constituting the conductive compound
  • X is the depth from the substrate surface (m)
  • A, B and t are constants determined by the plastic treatment conditions on the substrate surface.
  • the metal element constituting the conductive compound is composed of one or more of Cr, V, W, Ta, La, Mo, and Nb.
  • FIG. 1 is a diagram illustrating the configuration of a polymer electrolyte fuel cell.
  • FIG. 2 is a diagram showing the depth distribution of the metal element concentration of the conductive compound particles in the separator base material.
  • Fig. 3 is an explanatory diagram of indicators for evaluating the flatness of stainless steel separators, titanium separators, and titanium alloy separators for polymer electrolyte fuel cells that have been subjected to a conductive surface treatment by the Brass Sakai method. It is.
  • the separator I5 which is a component of the polymer electrolyte fuel cell 1 shown in Fig. 1, has a basic characteristic of being electrically conductive, especially when receiving current from the power pump paper 4. Separate contact 5 It is required that the contact resistance between the surface and the force one-pomper 4 is small.
  • the solid polymer fuel cell 1 has a solid polymer membrane 2 that is an electrolyte having a strong acidity, and generates water by a reaction that proceeds at a temperature of about 1550 ° C. or less. As a material for overnight, corrosion resistance and durability that can withstand these temperatures and corrosive environments in acidic aqueous solutions are required.
  • the polymer electrolyte fuel cell 1 is often used as a stack type fuel cell in which a large number of layers are stacked in order to obtain a desired electric power, Separation 5 is flat enough to be applied to stacking fuel cells. Is required.
  • the present invention provides a stainless steel, titanium, or titanium alloy having good corrosion resistance in a corrosive environment with the above temperature and acidic aqueous solution as a base material for a separator for a polymer electrolyte fuel cell.
  • a stainless steel, titanium, or titanium alloy having good corrosion resistance in a corrosive environment with the above temperature and acidic aqueous solution as a base material for a separator for a polymer electrolyte fuel cell.
  • the present invention is a separator in which stainless steel, titanium, or a titanium alloy is used as a base material, and conductive compound particles composed of a boride, carbide, or nitride of a metal element are fixed to the surface layer of the base material by blasting.
  • the conductive compound is selected from borides, carbides, or nitrides of metal elements because it is less corrosive even in the environment where the fuel cell is used, and it is fixed to the substrate surface by blasting. This is because a compound having a hardness that can be obtained is obtained.
  • the reason why the average particle diameter of the conductive compound particles is not less than 0.01 l m and not more than 20 m is that the average particle diameter of the conductive compound particles is less than 0.01 / xm. This is because the effect of reducing the contact resistance of the surface of the separator overnight due to the conductive compound particles cannot be sufficiently obtained, and the target low contact resistance as a separator for a polymer electrolyte fuel cell cannot be obtained.
  • the average particle diameter of the conductive compound particles exceeds 20 m
  • the projection treatment of the base material surface layer portion is performed using the projection particles in which the conductive compound particles described later are coated on the surface of the carbide core particles
  • the conductive compound particles are difficult to adhere to the surface layer portion of the substrate or are easily peeled off even when fixed, the amount of adhesion of the substrate surface layer portion is reduced, resulting in the conductivity of the substrate surface layer portion.
  • the fixing density of the compound particles decreases, and the desired low contact resistance between the separator and the carbon paper cannot be obtained.
  • the conductive compound particles have an average particle size of 0, 0 1 to 20 ⁇ m.
  • the conductive compound has a depth of 10 ⁇ Must exist in the area up to m. Conductive compounds existing at a position deeper than 1 O ⁇ m from the substrate surface have a small effect on reducing the contact resistance between the separator and the carbon paper, and cause distortion in the separator overnight. This is not preferable because it causes the mechanical strength of the evening to deteriorate.
  • the present inventors performed a blast treatment on the surface of a base material made of stainless steel, titanium, or a titanium alloy under various conditions, measured contact resistance between the sensor and carbon paper, and obtained the conductive compound. The relationship between the surface of the base material and the fixed state was examined.
  • C is the concentration (% by mass) of the metal element constituting the conductive compound
  • X is the depth from the substrate surface (m)
  • ⁇ , ' ⁇ and t are the conditions for blasting the substrate surface It is a constant determined by.
  • a in the above ⁇ 1> and ⁇ 2> ⁇ is a constant determined by the blasting condition of the substrate surface, and in particular, a constant determined by the projection amount per unit area in the blasting process.
  • A is set in the range of 10 to 90, as shown in ⁇ 2> above. If A is less than 10, the amount of the conductive compound adhering to the substrate surface is not sufficient, and it becomes difficult to reduce the contact resistance between the separator overnight and the carbon vapor below the target value.
  • the conductive compound containing the metal element at the highest concentration in the conductive compound of the present invention is WB. Even if the entire surface of the substrate is covered with WB, the W concentration on the substrate surface is 94. % By mass. If the W concentration is 94% by mass or more, WB decomposes in the projection process, and W precipitates in a metallic state to cover the substrate surface.
  • the surface of the separator overnight is easily corroded in the usage environment, and the contact resistance between the separator evening and the bonbon paper increases due to the corrosion products. Therefore, in the present invention, it is stable in a compound state on the substrate surface.
  • the upper limit of the metal element concentration to be fixed was 90% by mass.
  • B and t in the above formulas ⁇ 1> and ⁇ 2> are also constants determined by the blasting conditions on the substrate surface.
  • the projection pressure, the projection amount per unit area, and the conductivity in the blasting process This is a constant determined by the ratio of the active compound to the cemented carbide core particle mass.
  • B is set to 4.0 to 1.0. If B is less than -4.0, the amount of the conductive compound adhering to the substrate surface is not sufficient, and the contact resistance between the separator and the carbon paper does not fall below the target value.
  • the t value needs to be not less than 0.5 and not more than 4.0.
  • Figure 2 shows the relationship between the t value when the t value in the above formula ⁇ 1> is changed and the concentration distribution of the metal element in the conductive compound particles in the depth direction from the surface of the separator substrate.
  • the t value was changed to 0.2, 0.5, 1.0, 2.0, 4.0, 5.0.
  • the concentration of the metal element in the conductive compound particles decreases with increasing depth from the surface of the base material, and the decrease in the concentration of this metal element in the depth direction occurs more rapidly as the t value decreases.
  • the concentration of the conductive compound decreases rapidly from the surface in the depth direction.
  • the metal elements composing the compound are present in a high concentration only in a shallow region from the substrate surface, that is, in the extreme surface layer portion. This is not preferable because the conductive compound easily falls off from the surface layer due to friction or impact, and the contact resistance reduction effect deteriorates.
  • the metal elements composing the conductive compound are present in a deep region from the surface of the substrate, reducing the contact resistance. This is not preferable because the proportion of the surface layer portion of the conductive compound that contributes to the decrease is reduced, and the conductive compound in the deep region from the substrate surface that causes the distortion and defects of the separator increases.
  • the t value in ⁇ 1> above is set to 0.5 to 4.0. There is a need to. In order to enhance the above effect, it is desirable that the t value is small, and the t value is preferably 2.0 or less.
  • the density of the conductive compound on the surface of the separator substrate is sufficient to contribute to reducing the contact resistance between the separator substrate and the carbon paper. At the same time, it is possible to prevent the contact resistance from being increased due to the detachment of the conductive compound from the surface of the separator substrate during the processing and assembly process.
  • the concentration distribution of the conductive compound constituent metal element in the depth direction on the substrate surface is 4.0 mass% or more and 89 mass% at a depth of 0.1 lm from the substrate surface.
  • the depth is 8 1 mass% or less at a depth of 0.5 m, 7 2 mass% or less at a depth of 1 m, 56 mass% or less at a depth of 2 m, depth 3; 4 4 mass% or less, 3 5 mass% or less at a depth of 4 mm, 27 mass% or less at a depth of 5 m, and 22 mass% or less at a depth of 6 m.
  • the concentration distribution of the conductive compound constituent metal element in the depth direction on the substrate surface is 22 mass% or more and 35 mass% or less at a depth of 0.1 m from the substrate surface. It is 21 mass% or more and 35 mass% or less at a depth of 0.2 m, 18 mass% or more and 3 1 mass% or less at a depth of 0.4 m, and 17 quality at a depth of 0.5 m. More than 29% by mass and less than 29% by mass, at 1H m depth, 1 to 2% by mass 2 to 2% by mass, and at 2m depth, 6 • 2% by mass to 1%
  • the conductive compound is preferably present in a region within 10 Hm from the surface of the separate substrate, and may be present in a depth region exceeding 10 m, but deeper than 10 m. Conductive compounds present in the region do not contribute to reducing the contact resistance between the separator and carbon paper, but may cause distortion in the separator and may cause mechanical strength deterioration.
  • the conductive compound is preferably a compound that is electrically conductive, has little ion elution even in the environment where the fuel cell is used, and has a hardness that can be fixed to the substrate surface by blasting. In general, many metal borides, metal carbides, and metal nitrides have both electrical conductivity and hardness.
  • the inventors surface borides, carbides, and nitrides of various metal elements by blasting.
  • the fuel cell was tested for contact resistance and corrosion resistance under the usage environment.
  • a particulate reagent consisting of borides, carbides, and nitrides of various metal elements with an average particle size of about 2 m was placed in an aqueous sulfuric acid solution at 80 ° C simulating a fuel cell usage environment.
  • the concentration of metal ions immersed in the aqueous solution for more than 0 hours was investigated by ICP emission spectrometry.
  • the above-mentioned immersion-treated compound particles and bonbon paper are sandwiched between two metal electrode plates, and the resistance value is measured by applying a surface pressure of 1 kgf Z cm 2.
  • a surface pressure of 1 kgf Z cm 2. was evaluated as the contact resistance between the conductive compound particles and the bonbon paper.
  • metal borides, metal carbides, and metal nitrides composed of Cr, V, W, Ta, La, Mo, and Nb have low ion elution and little increase in contact resistance. Confirmed that it is a substance.
  • the conductive compound particles include one or more of Cr, V, W, Ta, La, Mo, and Nb.
  • Metal borides, metal carbides, or metal nitrides composed of metal elements are preferred. Specifically, C r 3 C 2 , C r 2 N, C r B, C r B 2, VB, VC, VN, W 2 B 5 , W 2 C, WB, WC, Ta b 2 , T one or more of a C, T a N, L a B 6 , Mo B 2 , Mo 2 C, Mo B, Mo C 2 , N b C, and N b N These metal compounds are preferred.
  • Metal borides, metal carbides, and metal nitrides composed of other metal elements, such as T i C and T i N, are used in the above test for T i oxide and water on the surface of T i N particles and T i C particles. Oxide is generated, and the resistance value between gold and bonbon paper increases, so as conductive compound particles Not desirable.
  • the contact resistance with the force of a separate pump is low at 1 Om Q cm 2 or less at a surface pressure of 1 kgf / cm 2 , and the increase in contact resistance during use and
  • a separator for a polymer electrolyte fuel cell made of stainless steel having a flatness that can be applied to stacking of fuel cells with little decrease in electromotive force.
  • the surface of the base material is subjected to blasting as a method for fixing the conductive compound particles to the surface layer after forming the base material using stainless steel, titanium or titanium alloy as the base material.
  • the blast treatment and the conditions in the present invention performed by the method are roughly as follows. First, the surface of a hard core material made of a material having a higher hardness than the separator base material, for example, tungsten carbide, is coated with conductive compound particles intended to be fixed to the separator base material. Projection Create particles.
  • the method for coating the surface of the carbide core particles with the conductive compound particles is to prepare a suspension in which the conductive compound particles are mixed with the coating liquid in advance, and apply this suspension to the surface of the carbide core particles. This is possible. ⁇
  • the ratio to the amount of the core particles is adjusted to 0.5 to 1.5% by mass or less for the reason described later.
  • the type of the coating liquid is not particularly limited, and for example, polyvinyl alcohol or methacrylic acid copolymer is used.
  • the ratio of the conductive compound particles in the suspension at this time is preferably 10 to 20% by mass.
  • the suspension is applied to the surface of the cemented carbide core particles, for example, while stirring the cemented carbide core particles using a centrifugal fluid type stirrer, the suspension is sprayed on the surface of the particles, This is possible by forming a coherent layer containing conductive compound particles.
  • the brass wrinkle treatment in which the conductive particles obtained by the above method are coated on the surface of the substrate by a dry air flow or an inert gas flow is applied to the surface of the substrate by a dry air flow or an inert gas flow. 4 MP a following throw injection amount is carried out in 1 0 ⁇ 1 0 0 g of conditions for per substrate 1 cm 2.
  • the projection core collides with the surface of the separator overnight, and the projection particles are driven to a predetermined depth from the substrate surface and the conductive compound coated on the projection particle surface by impact The particles are peeled off and fixed at a predetermined depth from the substrate surface.
  • the conductive compound particles are metal borides composed of one or more metal elements of Cr, V, W, Ta, La, Mo, and Nb.
  • Metal carbide or metal nitride is preferred.
  • W 2 B 5 W 2 C, WB, WC, Ta B 2
  • T One or two of a C, T a N, La B 6 , Mo B 2 , Mo 2 C, Mo B, Mo C 2 , N b C and N b 'N
  • the above metal compounds are preferred.
  • the lower limit of the average particle diameter of the conductive compound particles constituting the projection particles is as follows.
  • the average particle diameter of the conductive compound particles is less than 0.01 m, the separation evening surface of the conductive compound particles is used. The effect of lowering the contact resistance is not sufficiently obtained, and the intended low contact resistance as a separator for a polymer electrolyte fuel cell cannot be obtained. Therefore, the particle size should be not less than 0.01 m.
  • the upper limit of the average particle diameter of the conductive compound particles is that when the average particle diameter exceeds 20 m, the conductive compound particles are placed on the surface of the carbide core particles.
  • the conductive compound particles are difficult to adhere to the surface of the base material, or even if they are fixed, they are easy to peel off. As a result, the fixing density of the conductive compound particles in the surface layer portion decreases, and the desired low contact resistance between the separator and the carbon paper cannot be obtained. Therefore, the upper limit of the average particle diameter of the conductive compound particles is 20 m or less.
  • the particle size of the cemented carbide core particles constituting the above-mentioned projected particles does not affect the contact resistance of the surface of the obtained separator, so there is no need to limit it for the reason of reducing the contact resistance.
  • the average particle size of the cemented carbide core particles exceeds 200 m, it will be flat even if the projection pressure in the blast treatment is adjusted? It becomes difficult to obtain a ⁇ shape, and it is possible to make a sack required as a separator for a polymer electrolyte fuel cell. It is difficult to stably ensure flatness.
  • the average particle diameter of the cemented carbide core particles is 2 200; m or less. More preferably, the average particle size of the cemented carbide core particles is set to 100 im or less.
  • the concentration distribution of the metal element constituting the conductive compound in the region of 10 m or less from the substrate surface It is necessary to satisfy the relationship of the above formulas ⁇ 1> and ⁇ 2>.
  • the ratio (mass%) of the conductive compound particles in the projection particles to the core particle mass is 0.5 to 15 mass%
  • the pressure should be 0.4 MPa or less.
  • the conductive compound particles constituting the projected particles The reason why the ratio of the child to the cemented carbide core particle mass is 0.5 to 15 mass% is as follows.
  • the conductive compound particles coated on the surface of the carbide core particles constituting the projection particles in the blast treatment collide with the surface of the base material and are driven to a predetermined depth from the surface. It peels from the surface of the cemented carbide core particle and adheres to a predetermined depth region from the surface of the substrate.
  • the ratio of the conductive compound particles constituting the projection particles to the cemented carbide core particle amount is less than 0.5% by mass, the adhesion force between the cemented carbide core particles and the conductive compound particles by the coating material is reduced. Since it is strong, it is difficult for the conductive compound particles to peel off from the surface of the core particles when the particles collide, and the conductive compound particles are embedded deeply from the substrate surface. As a result, the t value in the ⁇ 1> equation exceeds 4.0, the B value exceeds 1.0, the t value and the B value in the ⁇ 2> equation deviate from the appropriate ranges, and the separable surface layer is distorted. Defects occur, and the contact resistance between Separete and Bonbon Paper is greater than the target value. Therefore, in the blast treatment, the ratio of the conductive compound particles constituting the projection particles to the core particle mass is set to 0.5 mass% or more. .
  • the ratio of the conductive compound particles to the cemented carbide core particle mass exceeds 15% by mass, the 'adhesion force between the core particles and the conductive compound particles by the coating material is weak.
  • the conductive compound particles are easily peeled off from the surface of the cemented carbide core particles, and the conductive compound particles are embedded only in the extreme surface layer where the depth from the substrate surface is shallow.
  • the t value in the ⁇ 1> equation is less than 0.5 and the B value is less than -4.0, which is outside the appropriate range of the t value and B value in the ⁇ 2> equation.
  • the conductive compound particles are easily peeled off from the substrate surface, increasing the contact resistance of the separator evening. For this reason, in the blast treatment, the conductive compound particles constituting the projecting particles have a mass relative to the core particle mass The ratio is 15% by mass or less.
  • the conductive compound particles coated on the surface of the carbide core particles constituting the projected particles in the blast treatment collide with the surface of the base material and are driven to a predetermined depth from the surface. As a result, it peels off from the surface of the cemented carbide core particles and adheres to a predetermined depth region from the substrate surface.
  • the projection pressure of the projection particles exceeds 0.4 MPa
  • the conductive compound particles constituting the projection particles are embedded deeply from the substrate surface to the inside.
  • the t value in the ⁇ 1> equation exceeds 4.0 and the B value exceeds 1.0, which causes distortions and depressions on the surface of the separate evening surface.
  • the contact pressure becomes larger than the target value, so that the blasting pressure of the projecting particles should be 0.4 MPa or less.
  • the reason why the projection pressure is 0.4 MPa or less is intended to reduce the contact resistance of the separator, as described below. It is also necessary to maintain good evening flatness. In other words, when the projection pressure exceeds 0.4 MPa, the amount of strain on the stainless steel surface layer increases, the flatness of the separate overnight shape deteriorates, and it becomes difficult to ensure stable and good flatness. . For this reason, it is preferable to limit the upper limit of the projection pressure to 0.4 MPa or less. From the viewpoint of improving the flatness of the separate night shape, it is more preferable to limit the projection pressure to 0.3 M Pa or less.
  • the lower limit of the projecting pressure of the projecting particles in the blasting process is not particularly stipulated, but it is preferably 0. OlMP when considering the workability such as the shape adjustment of the separator in the blasting process. a or more is preferable.
  • the conductive compound particles are placed on the surface of the base material on the stainless steel surface layer.
  • the blast treatment projection pressure as described above in order to adhere to the appropriate range in the depth direction from the Even if the base material is rolled or pressed, the warpage and twisting in the C direction (perpendicular to the rolling direction) can be reduced, and the flatness of the separate overnight shape can be improved. .
  • the flatness of the separator evening shape can be evaluated as follows, for example.
  • the origin is ⁇
  • the origin is ⁇
  • the origin ⁇ is near the corner in the rolling direction of the original plate
  • the origin ⁇ is in a predetermined position near the four corners of the stainless steel separator and the titanium separator overnight.
  • Place C in the vicinity of the corner in the vertical direction of rolling from the original plate, X in the vicinity of the corner in the diagonal direction from the origin O, LL for the length of the line between OL, LC and OX for the length of the OC line LX is the length of the straight line ⁇ L and the maximum strain height to the center plane in the thickness direction of the workpiece is HL, that of the straight line CX is HL 2, and that of the straight line OC is HC 1, LX Let it be HC 2 straight line OX 'and HXC, point X When the distance from the plane composed of points 0, L, and C is HXT, the warpage rate W and the twist rate T are defined by the following equations.
  • Front side L direction warpage rate (a) Back side L direction warpage rate (b) Left side C direction warpage rate: (c) Right side C direction warpage rate: (d) Diagonal direction warpage rate: (e) ⁇
  • W L 1 , W L 2 , W c ! , W c 2, W xc , ⁇ ⁇ L, and ⁇ ⁇ c are each made of a stainless steel separator with a conductive compound having a flatness such that each value is 0.05 or less. And a titanium separate evening is obtained.
  • w L ⁇ , W L 2 , W c i, W c 2 , W xc , T x L , and T xc values are specified as 0.05 'or less because of that degree of warpage and twist This is because even if there is a fuel cell stack using a metal separator overnight.
  • W L ! , W L2 , Wc ! , W c 2, W x c , T x L, and the values are 0.1 greater than T xc, construction of Sutadzuku type fuel cell is difficult.
  • the projection method may be continuous or intermittent, and the A value increases as the cumulative projection amount of the projected particles increases.
  • the method for quantifying the concentration of the metal element in the conductive compound particles is not particularly limited, but it can be measured using a glow discharge optical emission spectrometry.
  • the A value and the B value in the above formula ⁇ 1> the appropriate range of the A value and the B value shown in the above ⁇ 2>, that is, the A value Can be controlled to be from 10 to 90, and the B value is from 4.0 to 4.0.
  • the A value in the above ⁇ 1> equation is less than 10 and the B value is less than ⁇ 4.0, and the above ⁇ 2> equation Deviating from the appropriate range, the amount of conductive compound particles adhering to the surface layer of the substrate is not sufficient, and the contact resistance between the separator and the carbon paper cannot be reduced below the target value.
  • the amount of projection particles per 1 cm 2 of the substrate is set to 10 to LOO g.
  • a separator for a polymer electrolyte fuel cell of the present invention when the polymer electrolyte fuel cell is used, when the contact resistance with carbon paper is 1 kgf / cm 2 and the contact resistance is 1 kgf It is possible to manufacture a solid polymer fuel cell separator made of stainless steel, titanium, or titanium alloy that has a flatness that is as low as cm 2 or less and that can be applied sufficiently to stack fuel cells.
  • a solid polymer fuel cell separator made of stainless steel, titanium, or titanium alloy that has a flatness that is as low as cm 2 or less and that can be applied sufficiently to stack fuel cells.
  • High corrosion-resistant stainless steel and titanium with a length of 50 mm, a width of 50 mm, and a thickness of 0.2 mm were used as base materials for the test materials.
  • 'Conductive compound particles consisting of borides, carbides, and nitrides of metal elements with an average particle size of 5 to 50 2 m, C r 3 C 2 , C r 2 N, C r B, C r B 2 , VB, VC, VN, W 2 B 5 , W 2 C, WB, WC, Ta B 2 , Ta C, Ta N, La B 6 , Mo B 2 , Mo 2 C, Mo B, using the M o C 2, N b C , N b N, and its mixtures these, the methacrylic acid copolymer these conductive compound particles solutes, ethanol was put into coating solution as a solvent, suspended A turbid liquid was formed and coated with tungsten carbide carbide core particles having an average particle size of 5 to 50 2 m, C r
  • the concentration distribution of the metal elements of the conductive compound particles fixed to the separator base material by the blast method from the surface to the inside of the separator base material was quantitatively analyzed by glow discharge optical emission spectrometry.
  • the depth distribution of metal elements was subjected to regression analysis using the ⁇ 1> equation as a regression equation, and the values of A, B, and t. Were calculated. '
  • the amount of metal ions eluted from the conductive compound particles embedded in the surface of the separator substrate was confirmed by the following test method. Supernatant obtained by standing the above test material for 30 hours in 30 mL of sulfuric acid aqueous solution adjusted to pH 2 at 80 ° C while bubbling oxygen or hydrogen. The amount of metal ion elution was quantified by ICP emission spectrometry. When the elution amount of metal ions into an aqueous sulfuric acid solution was 50 ppm or less, the ion elution characteristics were judged to be acceptable, and over 50 ppm was regarded as unacceptable.
  • the contact resistance value with respect to carbon paper was measured at a surface pressure of 1 kgf Z cm 2 .
  • the measured contact resistance value was 10 ⁇ cm 2 or less, the contact resistance was deemed acceptable, and when it exceeded 10 mOcm 2 , the contact resistance was deemed unacceptable.
  • Table 1 and Table 2 show the test results as well as the manufacturing conditions.
  • Table 1 Table 1 and Table 2 (Table 1 continued 1), Table 3 (Table 1 continued 2) and Table 4 (Table 1 continued 3) show the test results as well as the manufacturing conditions.
  • test materials 1, 2 5, 2 7, 3 4, 4 4, and 5 9 are comparative examples, and the average particle size of the conductive compound is outside the range defined in the present invention. As a result, the amount of the conductive compound adhering to the separator substrate was not sufficient, and the contact resistance between the separator and carbon paper could not satisfy the evaluation.
  • Test materials 5, 9, 1 7, 2 1, 2 8, 3 5, 4 3, 4 5, 5 3, 5 8, 6 0, 6 8, 6 9, 7 1, 7 5 are comparative examples. Yes, because the mixing ratio of the conductive compound particles in the coating material on the surface of the core particles is outside the range specified in the present invention, the B value and t value are outside the proper range of the ⁇ 2> formula. The contact resistance between Separete and carbon paper did not satisfy the evaluation.
  • Test materials 7, 1 1, 1 3, 1 9, 4 2, 5 2, 5 7, 6.7, 7 3 are comparative examples, and the brass ⁇ ⁇ projection pressure is out of the scope of the present invention. As a result, the B and t values were outside the proper range of the ⁇ 2> equation, and the contact resistance and flatness of the separator and carbon paper were not satisfactory.
  • test materials 3, 1 5, 2 3, 4 1, 5 1, 5 6, and 6 6 are comparative examples, and because the amount of projection per 1 cm 2 of the base material in blast processing is small, A The value was out of the proper range of the ⁇ 2> formula, and the contact resistance between Separete and carbon paper did not satisfy the evaluation.
  • test materials 54 and 55 did not satisfy the evaluation of the contact resistance and ion elution property between the separator and the carbon paper because the conductive compound particles were outside the range defined in the present invention.
  • test materials 7 8 and 7 9 are comparative examples, and the A value, B value, and t value were less than the range specified in the present invention because the projection amount per 1 cm 2 of the base material in the blast treatment exceeded 2> The proper range of the equation was not met, and the separation-evenness flatness did not satisfy the evaluation.
  • test materials 2, 4, 6, 8, 1 0, 1 2, 1 4, 1 6, 1 8, 2 0, 2 2, 2 4, 2 6, 2 9, 3 0, 3 1, 3 2 3 3, 3 6, 3 7, 3 8, 3 9, 4 0, 4 6, 4 7, 4 8, 4 9, 5 0, 6 1, 6 2, 6 3, 6 4, 6 5, 7 0, 7 2, 7 4, and 7 6 are the average particle diameter of the conductive compound, the A value, B value, and t value of the ⁇ 1> formula, the type of the conductive compound, and the cohesion of the conductive compound on the core particle surface.
  • the contact resistance with the force pump paper is low at 1 ⁇ ⁇ cm 2 or less at a surface pressure of 1 kgf / cm 2 , and the fuel cell It is possible to provide a separator for a solid polymer fuel cell made of stainless steel, titanium, or titanium alloy that has flatness that can be applied to stacking.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

本発明は、固体高分子型燃料電池用セパレータにおいて、燃料電池セパレータ表面のカーボンペーパーとの低接触抵抗性および平坦性に優れた固体高分子型燃料電池用セパレータおよびその製造方法を提供するものであり、導電性化合物粒子が固着された表層部を有するステンレス鋼またはチタンまたはチタン合金の基材からなる固体高分子型燃料電池用セパレータにおいて、前記導電性化合物粒子が、平均粒径0.01~20μmの金属硼化物、金属炭化物および金属窒化物の1種または2種以上からなり、該導電性化合物粒子が前記基材表面から深さ10μmまでの領域に存在し、該領域における導電性化合物を構成する金属元素の濃度分布が、(1)式(C = A・exp(−x/t)+B)および(2)式(10≦A≦90、−4.0≦B≦1.0、0.5≦t≦4.0)で示される導電性化合物を構成する金属元素の濃度Cと基材表面からの深さxとの関係を満足するものである。

Description

固体高分子型燃料電池用セパレー夕およびその製造方法
技術分野
本発明は、 自動車および小規模発電システムなどに用いられる固 体高分子型燃料電池用セパレ一夕およびその製造方法に関し、 特に 明
、 導電性化合物粒子が固着された表層部を有するステンレス鋼また はチタンまたはチタン合金からなる固体高分子型燃料電池用セパレ 書
一夕およびその製造方法に関するものである。
背景技術
固体高分子型燃料電池は、 燃料として、 純水素、 アルコール類を 改質して得られる水素ガスなどを用い、 水素と空気中の酸素との反 応を電気化学的に制御することによって、 電力を取り出すシステム である。 ' 固体高分子型燃料電池は、' 固体の水素イオン選択透過型有機物膜 を電解質として用いるため、 従来のアルカリ型燃料電池、 燐酸型燃 料電池、 溶融炭酸塩型燃料電池、 固体電解質型燃料電池などように 、 電解質として水溶液系電解質や溶融塩系電解質などの流動性媒体 を用いる燃料電池に比べてコンパク ト化が可能となり、 電気自動車 用などへの応用に向けた開発が進められている。
代表的な固体高分子型燃料電池の構成を図 1 に示す。 固 ¼:高分子 型燃料電池 1 は、 電解質となる固体高分子膜 2 と、 この固体高分子 膜 2の両面に設けられた炭素微粒子と貴金属超微粒子からなる触媒 電極部 3 と、 この触媒電極部 3で発生した電力を電流として取り出 すとともに、 触媒電極部 3へ反応ガスである酸素主体ガスまたは水 素主体ガスを供給する機能を持ったフェルト状炭素繊維集合体から なるカレン卜コレクター (通称カーボンペーパー 4 ) と、 力一ボン ペーパー 4から電流を受けるとともに、 酸素主体ガスと水素主体ガ スを隔離するセパレー夕 5 とが積層されて構成されている。
固体高分子型燃料電池 1の基本原理は、 概略以下の通りである。 つまり、 固体高分子型燃料電池 1 において、 燃料である水素ガス ( H 2 ) 8はアノード側 6から供給され、 ガス拡散層であるカーボン ペーパー 4、 触媒電極部 3 を通過して水素イオン (H + ) となって 電解質である固体高分子膜 2を透過し、 力ソード側 7の触媒電極部 3において、 水素イオン ( H + ) と、 力ソード側 7から供給された 空気 9 中の酸素 (〇 2 ) との酸化反応 ( 2 H + + 2 e— + 1 / 2 O 2 →H 2 O ) が生じ、 水 (H 2 O ) が生成される。 この酸化反応の 際にァノード側 6の触媒電極部 3で生成した電子をカーボンぺーパ — 4を介してアノード側 6のセパレー夕 5から力ソード側 7のセパ レー夕 5に電子 1 0が流れることにより、 両極間に電流、 電圧が発 生するというものである。
固体高分子膜 2は、 強酸性を有する電解質が膜中に固定されてお り、 電池内の露点を制御することによって水素イオン (H + ) を透 過させる電解質とし'て機能する。
固体高分子型燃料電池 1の構成部材であるセパレ一夕 5は、 2種 の反応ガスであるカゾード側 7の空気 9 とアノード側 6の水素ガス 8 とを隔離するとともに、 それぞれの反応ガスを供給する流路とし ての役割と、 反応により生成した水をカゾード側 7から排出する役 割を担っている。 また、 一般に、 固体高分子型燃料電池 1は、 強酸 性を示す電解質からなる固体高分子膜が用いら'れ、 反応により約 1 5 0で以下の温度で稼動し、 水が生成するため、 固体高分子型燃料 電池用のセパレー夕 5は、 その材質特性として、 耐食性と耐久性が 要求されるとともに、 カーボンペーパー 4を介して電流を効率的に 通電させるための良好な導電性と、 カーボンペーパーとの接触抵抗 が低いことが要求される。
従来、 固体高分子型燃料電池用のセパレー夕の材料として、 炭素 系材料が多く使用されていた。 しかし、 炭素系材料からなるセパレ 一夕は、 脆性の問題から厚さを薄くできないためコンパク ト化に支 障をきたしている。 近年、 割れにくい炭素系材料からなるセパレー 夕も開発されつつあるが、 コス ト的に高価であるため経済性で不利 である。
—方、 金属材料を用いたセパレ一夕は、 炭素系材料に比べて脆性 に対する問題がないため、 '特に、 固体高分子型燃料電池システムの コンパク ト化が可能となり、 かつ低コス ト材料である、 ステンレス 鋼やチタンあるいはチタン合金などの金属材料を用いたセパレ一夕 の開発が進めちれ、 多数提案されている (例えば、 特開 2 0 0 0 — 2 6 0 4 3 9号公報、 特開 2 0 0 0 一 2 5 6 8 0 8号公報、 .特開 2 0 0 4— 1 0 7 7 0 4号公報、 特開 2 0 0 4— 1 5 6 1 3 2号公報 、 特開 2 0 0 4— 2 7 3 3 7 0号公報、 特開 2 0 0 4— 3 0 6 1 2 8号公報、 特開 2 0 0 4— 1 2 4 1 9 7号公報、 特開 2 0 0 4— 2 6 9 9 6 9号公報、 '特開 2 0 0' 3— 2.2 3 9 0 4号公報、 特開 2 0 0 4 - 2 9 6 0号公報、 特開 2 0 0 4一 2 3 2 0 7 4号公報参照) しかし、 ステンレス鋼製セパレー夕あるいはチタンおよびチタン 合金製セパレー夕は、 これらの表面に形成される不動態皮膜に起因 してカーボンペーパーとの接触抵抗が大きくなり、 燃料電池のエネ ルギー効率を大幅に低下させることが問題であった。
このため、 従来からステンレス鋼製セパレー夕あるいはチタンお よびチタン合金製セパレー夕に対して、 部材表面とカーボンぺーパ 一との接触抵抗を低減させるための方法が、 数多く提案されている 例えば、 ステンレス ( S U S 3 0 4 ) の表面にプレス成形により 多数個の膨出成形部を形成し、 この先端側端面に所定厚さの金メッ キ層を形成させたり (例えば、 特開 2 0 0 4— 2 6 5 6 9 5号公報 参照) 、 ステンレスまたはチタン表面に貴金属または貴金属合金を 付着させることにより、 カーボンべ一パーとの接触抵抗を低下させ る (例えば、 特開 2 0 0 1 — 6 7 1 3号公報参照) などの固体高分 子型燃料電池用のセパレー夕が提案されている。 しかし、 これらの 方法は、 ステンレスまたはチタン表面に、 導電性を付与するための 金メッキなどの高価な貴金属膚を形成する表面処理が必要であるた め、 セパレー夕の製造コス トが増大するという問題があった。 . 一方、 高価な貴金属の使用量を低減するか、 あるいは用いずに、 セパレー夕部材表面とカーボンペーパーとの接触抵抗を低減するた めの方法も種々提案されている。 .
例えば、 ステンレス表面とカーボンペーパーとの接触抵抗を低減 するために、 ステンレスの焼鈍過程でステンレス中の C r をクロム 炭化物として析出させ、 ステンレス表面に形成される不動態被膜表 面から露出したクロム炭化物を介して力一ボンペーパーから受ける 電流の通電性を高める方法 (例えば、 特開 2 0 0 0 — 3 0 9 8 5 4 号公報参照) や、 ステンレス表面に S i C、 B 4 C、 T i 〇 2 等の 導電性化合物粒子が分散している塗膜を設けた後、 このステンレス を非酸化性雰囲気下で 3 0 0 〜 1 1 0 0 に加熱し、 塗膜主要成分 を分解 · 消失させたり、 表面に炭化物系導電性セラミクスを被覆す ることにより、 ステンレス表面に前記導電性化合物粒子を形成させ る方法 (例えば、 特開平 1 1 一 2 6 0 3 8 3号公報、 特開平 1 1 一 2 1 9 7 1 3号公報参照) が知られている。 しかし、 これらの方法 は、 ステンレス表面に導電性化合物を形成させるために長時間加熱 処理する工程が必要であるため、 セパレー夕の生産性低下、 製造コ ス ト増加の問題があった。 また、 焼鈍過程でステンレス中の C r を クロム炭化物として析出させる方法では、 特に焼鈍時間が十分でな い場合に鋼中のクロム炭化物周辺においてクロム欠乏層が生じ、 こ の領域で局部的に耐食性の低下が生じたり、 ステンレスをプレス成 形してセパレ一夕表面のガス流路を形成するなどの際に、 クロム炭 化物が起点となってステンレス表面に割れが発生するなどが懸念さ れる。
また、 ステンレス鋼表面に導電性が良好なカーボン層または力一 ボン粒子を固着する方法も'提案されており、 例えば、 金属薄板上で 触媒電極が位置する主要部にプレス成形などによりガス流路を形成 した後、 その表面に炭素系導電塗層を形成させる方法 (例えば、 特 開 2 0 0 0 - 0 2 1 4 1 9号公報参照) 、 ステンレス鋼表面に力一 ボン粉末を分散圧着させて導電性を改善させる方法 (例えば、 特開 平 1 1 — 1 2 1 0 1 8号公報参照) 、 ステンレス鋼表面に力一ボン 系粒子を分散させた N i — C r系メツキ層または T a、 T i または T i — T a系メツキ層を形成する方法 (例えば、 特開平 1 1 一 1 2 6 6 2 1号公報、 特開平 1 1 一 1 2 6.6 2 2号公報参照) が知られ ている。 しかし、 これらの方法によるセパレー夕では、 金属と力一 ボンとの界面の電子構造においてカーボン側に生ずる擬似的なショ ッ トキ一障壁に起因して、 ステンレス鋼とカーボン層またはカーボ ン粒子との界面で大きな接触抵抗が生じる結果、 カーボンペーパー との接触抵抗を十分に低減する効果は得られない。
また、 ステンレス鋼製セパレー夕の水素主体ガスを供給する燃料 極側に、 T i N、 T i C、 C r C、 T a C、 B 4 C、 S i C、 WC 、 T i N、 Z r N、 C r N、 H f Cの 1種又は 2種以上の導電性セ ラミツクス層を形成する方法 (例えば、 特開 2 0 0 3 — 1 2 3 7 8 3号公報参照) が提案されている。 この方法は、 真空装置等を用い た蒸着または乾式コーティ ング法などにより、 導電性セラミックス 層を形成するものであるが、 成膜速度の制約がありかつ被覆物質の 歩留まり低下が余儀なくされるため、 製迨コス トが増加する問題が ある。 '
また、 導電性を有する硬質微粉末をショ ッ トなどにより基材表面 に固着させる方法も提案されている。
例えば、 M 2 a C 6 型、 M 4 C型、 もしくは M C型であって、 金 属元素 (M) がクロム、 鉄、 ニッケル、 モリブデン、 タングステン 、 ボロンの 1種以上を含んで る導電性硬質粒子を基材表面に埋め 込み、 分散 · 露出させたチタンあるいはチタン合金製セパレ一タ ( 例えば、 特開 2 0 0 1 — 3 5 7 8 6 2号公報参照) や、 M 2 3 C 6 型、 M4 C型、 M 2 C型、 M C型炭化物系金属介在物および M 2 B 型硼化物系金属介在物のうち 1種以上であって、 金属元素 (M) が クロム、 モリブデン、 タングステンの 1種以上である、 導電性硬質 粒子を基材表面に埋め込み、 分散 , 露出させ、 かつ表面粗さが中心 線平均粗さ R aで 0 . 0 6〜 5 mであるステンレス鋼およびステ ンレス鋼製セパレー夕 (例えば、 特開 2 0 0 3 — 1 9 3 2 0 6号公 報参照) 、 がそれぞれ提案されている。
また、 燃料電池を形成するセパレー夕に、 このセパレー夕より高 硬度の核粒子に高耐食性かつ対カーボン低接触抵抗性の金属をコー ティ ングした固体プレーティ ング材を投射して、 この固体 'プレーテ ィ ング材にコ一ティ ングされた金属をセパレ一夕に強制的に付着す る方法 (例えば、 特開 2 0 0 1 — 2 5 0 5 6 5号公報参照) や、 同 じ手法を用いてごく微量の貴金属をステンレスやチタンおよびチタ ン合金に埋め込むことで、 金メッキのような全面の貴金属被覆をし なくても十分な低接触抵抗を得る方法 (例えば、 特開 2 0 0 1 — 6 7 1 3号公報参照) が提案されている。
これらの導電性を有する硬質微粉末をショ ッ トなどにより基材表 面に固着させる方法は、 加熱処理や真空蒸着による方法に比べて、 生産性を低下させず、 製造コストが安い、 簡便な方法である点で有 利な方法である。 一方で、 所望の形状に成形加工したメタルセパレ 一夕基材表面に硬質な導電性粒子をブラス ト法などによって機械的 に打ち込む方法では、 基材表層部に歪が導入されて変形する可能性 があり、 セパレ一夕の平坦性が低下する場合がある。
一般に固体高分子型燃料電池は、 1個あたりの出力電圧が 1 V程 度と低いため、 所望の出ガを禧るためには、 燃料電池を多数積層し てスタック型燃料電池として用いることが多い。 このため、 導電性 を有する硬質微粉末をショ ッ トなどにより基材表面に固着させる方 法においては、 セパレー夕に反りや歪の発生を抑制し、 燃料電池の スタック化が可能な良好な平坦性を有するセパレ一夕を得る.ための 条件で処理を行う必要がある。
また、 セパレー夕のカーボンペーパーとの接触抵抗は、 低いほど 望ましく、 例えば、 対カーボン低接触抵抗値が、 接触面圧 1 k g · f / c m 2 においで 2 0 m Ω · c m 2 .以下とすることを特徴とする 金属の燃料電池用セパレー夕への付着方法 (例えば、 特開 2 0 0 1 一 2 5 0 5 6 5号公報参照) などが提案されている。
以上のように、 従来から、 セパレー夕基材として、 耐食性に優れ たステンレス鋼やチタンあるいはチタン合金などの金属材料を用い 、 これらのセパレー夕基材表面とカーボンペーパーとの接触抵抗を 改善するために、 種々の方法により基材表面に導電性化合物層を形 成したり、 または、 導電性化合物粒子を固着させた固体高分子型燃 料電池用の金属製セパレ一夕が提案されているが、 固体高分子型燃 料電池用セパレー夕として要求される接触抵抗および平坦性の点か ら、 または、 生産性や製造コス トの点から必ずしも十分なものとは 言えなかった。 発明の開示
上記従来技術の現状に鑑みて、 本発明は、 導電性化合物粒子が固 着された表層部を有するステンレス鋼、 チタンまたはチタン合金か らなる固体高分子型燃料電池用セパレ一夕において、 燃料電池セパ- レ一夕表面のカーボンペーパーとの低接触抵抗性に優れ、 さらには 、 スタック化のための平坦性に優れた、 固体高分子型燃料電池用セ パレー夕およびその製造方法を提供することを目的とする。
本発明は、 上記の課題を解決するものであり、 すなわち、 その要 旨とするところは、 以下の通りである。
( 1 ) 導電性化合物粒子が固着された表層部を有するステンレス 鋼またはチタンまたはチタン合金の基材からなる固体高分子型燃料 電池用セパレー夕において、 前記導電性化合物粒子が、 平均粒 0. . 0 1〜 2 0 mの金属硼化物、 金属炭化物および金属窒化物の 1 種または 2種以上からなり、 該導電性化合物粒子が前記基材表面か ら深さ 1 0 mまでの領域に存在し、 .該領域における導電性化合物 を構成する金属元素の濃度分布が、 下記 < 1 >および < 2 >式で示 される導電性化合物を構成する金属元素の濃度 Cと基材表面からの 深さ Xとの関係を満足することを特徴とする固体高分子型燃料電池 用セパレー夕。
C = A - e x p (- x/ t. ) + B · ' · < 1 >
1 0≤Α≤ 9 0、 一 4. 0≤ Β≤ 1. 0、 0. 5≤ t≤ 4. 0 • . . < 2 >
但し、 上記 Cは導電性化合物を構成する金属元素の濃度 (質量% ) 、 上記 xは基材表面からの深さ ( m) 、 上記 A、 Bおよび t は 基材表面のプラス ト処理条件で決まる定数である。
( 2 ) 前記導電性化合物を構成する金属元素が、 C r 、 V、 W、 T a、 L a、 M o、 および、 N bのうちの 1種または 2種以上から なることを特徴とする ( 1 ) 記載の固体高分子型燃料電池用セパレ —夕。 . '
( 3 ) ステンレス鋼、 チタンまたはチタン合金からなる基材を成 形加工した後、 該基材表面に、 平均粒径 0 . 0 1 〜 2 0 i mの導電 性化合物粒子をコート材と混合し表面に被覆した超硬コア粒子を、 投射圧力が 0 . 4 M P a以下、 基材 1 c m2 あたりの投射量が 1 0 〜 1 0 0 gの条件で投射ずるブラス ト加工を施し、'前記導電性化合 物の前記コア粒子質量に対する割合が 0 . 5 〜 1 5質量%でぁるこ とを特徴とする固体高分子型燃料電池用セパレ一夕の製法。 図面の簡単な説明
図 1は、 固体高分子型燃料電池の構成を説明する図である。 ' 図 2は、 セパレー夕基材における導電性化合物粒子の金属元素の 濃度の深さ方向分布を示す図である。
図 3は、 ブラス 卜法により導電性表面処理を行った固体高分子型 燃料電池用のステンレス鋼セパレー夕およびチタンセパレ一夕およ びチタン合金セパレー夕の平坦性を評価するための指標の説明図で ある。
図 4は、 ブラス ト法により導電性高分子化合物をセパレー夕基材 に投射した場合の基材 1 c m2 あたりの投射粒子の投射量と、 セパ レー夕基材最表面における導電性化合物粒子を構成する金属元素の 濃度の関係を示す図である。 発明を実施するための最良の形態
本発明について以下詳細に説明する。
前述の通り、 図 1 に示す固体高分子型燃料電池 1の構成部材であ るセパレ一夕 5は、 その基本特性として、 導電性、 特に力一ポンぺ —パー 4からの電流を受ける際に、 セパレ一夕 5表面と力一ポンぺ 一パー 4との接触抵抗が小さいことが要求される。 また、 固体高分 子型燃料電池 1 は、 強酸性を有する電解質である固体高分子膜 2 を 有し、 約 1 5 0 °C以下の温度で進行する反応により水を生成するた め、 セパレ一夕 5の材質として、 これらの温度、 酸性水溶液での腐 食環境で十分耐えられる耐食性と耐久性が要求される。 さらに、 固 体高分子型燃料電池 1は、 '所望の電力を得るために多数積層したス タック型燃料電池として用いることが多いため、 セパレー夕 5は、 燃料電池のスタック化に十分適用できる平坦性が要求される。
以上の点を踏まえて、 本発明は、 固体高分子型燃料電池用セパレ 一夕の基材として、 上記温度、 酸性水溶液での腐食環境下で良好な 耐食性を有するステンレス鋼、 チタンまたはチタン合金を用い; こ の基材の表層部に耐食性に優れた導電性化合物粒子を有するセパレ 一夕.であることを前提とし、 前記基材中における導電性化合物粒子 の含有量の表面からの深さ方向分布を制御することを発明の基本思 想とする。
先ず、 本発明の基本思想および発明の主要部について説明する。 本発明は、 ステンレス鋼、 チタンまたはチタン合金を基材とし、 その基材表層部にブラス ト処理によって、 金属元素の硼化物、 炭化 物または窒化物からなる導電性化合物粒子を固着させたセパレー夕 を基本構成要件とする。 上記導電性化合物を金属元素の硼化物、 炭 化物または窒化物から選択するのは、 燃料電池の使用環境において も腐食が少なく、 また、 ブラス ト処理によって基材表面に固着させ ることができる硬度を有する化合物が得られるからである。
本発明において、 導電性化合物粒子の平均粒径を 0 . O l ^ m以 上、 2 0 m以下とした理由は、 導電性化合物粒子の平均粒径が 0 . 0 1 /x m未満では、 導電性化合物粒子によるセパレ一夕表面の接 触抵抗の低下効果が十分に得られず、 固体高分子型燃料電池用セパ レ一夕として目的とする低接触抵抗が得られないためである。
一方、 導電性化合物粒子の平均粒径が 2 0 mを超えると、 後述 する導電性化合物粒子を超硬コア粒子表面に被覆した投射粒子を用 いて基材表層部のプラス ト処理を行う際に、 基材表層部で導電性化 合物粒子が固着し難い、 あるいは固着しても剥離しやすくなるので 、 基材表層部の固着量が少なく'なり、 結果的に基材表層部の導電性 化合物粒子の固着密度が低下し、 セパレー夕とカーボンペーパー間 の所望の低接触抵抗が得られなくなる。 上記理由から、 本発明にお いて、 導電性化合物粒子の平均粒径は、 0 , 0 1〜 2 0 ^ mとした 上記導電性化合物は、 セパレ一夕の基材表面から深さ 1 0 ^ mま での領域に存在する必要がある。 基材表面から 1 O ^ mより深い位 置に存在する導電性化合物は、 セパレー夕とカーボンペーパーの接 触抵抗を低減するための効果が小さく.、 かつセパレ一夕に歪を生じ させ、 セパレー夕の機械強度を劣化させる原因となるため好ましく ない。
さらに、 本発明者らは、 ステンレス鋼、 チタンまたはチタン合金 からなる基材表面に種々の条件でブラス ト処理を施し、 セン°レー夕 とカーボンペーパーとの接触抵抗を測定し、 上記導電性化合物の基 材表層部の固着状態との関係について検討した。
その結果、 セパレ一夕とカーボンペーパーとの接触抵抗を目標と する面圧 1 k g f / c m 2 において 1 Ο πι Ω · c m 2 以下とするた めには、 上記基材表面から 1 0 m以下の領域における、 上記導電 性化合物を構成する金属元素の濃度 C (質量%) と、 基材表面から の深さ X ( m) との関係が、 下記ぐ 1〉式および < 2 >式を満足 するようにする必要があることを確認した。
C = A - e x p (- x/ t ) + B < 1 >
1 0≤A≤ 9 0、 — 4. 0≤ B≤ 1. 0、 0. 5≤ t≤ 4. 0 • . · < 2 >
但し、 上記 Cは導電性化合物を構成する金属元素の濃度 (質量 %) 、 上記 Xは基材表面からの深さ ( m) 、 上記 Α、' Βおよび t は基材表面のブラス ト処理条件で決まる定数である。
上記 < 1 >及び < 2 > ^における Aは、 基材表面のブラス ト処理 条件で決まる定数であり、 特にブラス ト処理における単位面積当た りの投射量により決定される定数である。 セパレ一夕とカーボンべ —パ一との接触抵抗を低下させるため、 上記 < 2 >に示されるよう に、 Aを 1 0〜 9 0の範囲とする。 Aが 1 0未満では、 基材表面に 固着した導電性化合物の量が十分でなく、 セパレ一夕とカーボンべ 一パーの接触抵抗を目標値以下に低減することは困難となる。
また、 Aが 9 0 を超えると、 導電性化合物が分解して、 金属成分 が表面に析出するだめ、 燃料電池の使用環境下においてセパレー夕 表面が腐食し、 接触抵抗が高くなる。 すなわち、 本発明の導電化合 物で金属元素を最も高濃度で含有する導電性化合物は WBであるが 、 基材表面の全面を WBで被覆しても、 基材表面での W濃度は 9 4 質量%である。 W濃度が 9 4質量%以上であると、 投射工程で WB が分解し、 Wが金属状態で析出して基材表面を被覆する。 この状態 では、 使用環境においてセパレ一夕表面が腐食を受けやすくなり、 腐食生成物によってセパレー夕と力一ボンペーパー間の接触抵抗が 増加する。 そのため、 本発明では、 基材表面に化合物状態で安定に 固着する金属元素濃度の上限を 9 0質量%とした。
また、 上記 < 1〉及びく 2 >式における B、 t も、 基材表面のブ ラス ト処理条件で決まる定数であり、 特にブラス ト処理における投 射圧力、 単位面積あたりの投射量および、 導電性化合物の超硬コア 粒子質量に対する割合により決定される定数である。
セパレ一夕とカーボンペーパーとの接触抵抗を低下させるために は、 上記 < 2 >に示されるように、 Bは一 4 . 0以上 1 . 0以下と する。 Bがー 4 . 0未満であると、 基材表面に固着した導電性化合 物の量が十分でなく、 セパレー夕とカーボンペーパーの接触抵抗が 目標値以下にならない。
また、 Bが 1 . 0を超え'ると、 基材表面からの深さが 1 0 / mを 超えた領域に存在する導電性化合物が多くなり、 セパレー夕基材内 で歪を生じたり、 セパレ一夕の機械強度が劣化するなどの問題が生 じる。 また、 セパレ一夕とカーボンペーパーとの接触抵抗を低下さ せるためには、 上記 < 2 >に示されるよう.に、 t値は 0 . 5 .以上 4 . 0以下とする必要がある。
図 2に上記 < 1 >式の t値を変化させた場合の t値とセパレー夕 基材表面から深さ方向における導電性化合物粒子の金属元素の濃度 分布の関係を示した。 t値は、 0 . 2.、 0 . 5 、 1 . 0 、 2 . 0 、 4 . 0 、 5 . 0に変化させた。
図 2に示すように、 基材表面から深くなるとともに導電性化合物 粒子の金属元素の濃度は減少し、 深さ方向に対するこの金属元素の 濃度の減少は、 t値が小さいほど急激に起きる。 上記 < l i>式の t 値が 0 . 5未満となる、 例えば、 図 2の t = 0 . 2の場合は、 導電 性化合物の濃度は、 表面から深さ方向に急激に減少し、 導電性化合 物を構成する金属元素は、 基材表面から浅い領域、 つまり極表層部 にのみに高濃度で存在し、 セパレー夕の組み立て時に他の部材との 摩擦や衝撃などによって導電性化合物が表層部から容易に脱落し、 接触抵抗の低減効果が劣化するため、 好ましくない。
一方、 t値が 4. 0 を超える、 例えば図 2の t = 5. 0の場合は 、 導電性化合物を構成する金属元素は、 基材表面から深い領域に多 く存在し、 接触抵抗の低減に寄与する導電性化合物の表層部の存在 割合が少なくなり、 セパレー夕の歪や欠陥の原因となる基材表面か ら深い領域の導電性化合物が増加するため、 好ましくない。
以上から、 セパレー夕とカーボンペーパーとの接触抵抗を目標値 以下に低減し、 セパレー夕使用時にその特性の劣化を抑制するため に、 上記 < 1 >における t値を 0. 5〜 4. 0 とする必要がある。 また、 上記効果を高めるために t値は小さいほど望ましく、 t値は 2. 0以下とするのが好ましい。
tが 0. 5以上 4. 0以下であれば、 セパレー夕基材表面の導電 性化合物の存在密度が、 セパレー夕基材とカーボンペーパーとの接 触抵抗低減に寄与するのに十分な密度であるのとともに、 加工や組 み立て工程において、 導電性化合物がセパレー夕基材表面から脱離 して接触抵抗が上昇することを防止できる。
すなわち、 具体的には、 導電性化合物構成金属元素の基材表面に おける深さ方向の濃度分布が、 基材表面からの深さ 0. l mにお いて 4. 0質量%以上 8 9質量%以下であり、 深さ 0. 2 mにお いて 2. 7質量%以上 8 7質量%以下であり、 深さ 0. 4 mにお いて 0. 4質量%以上 8 3質量%以下であり、 深さ 0. 5 mにお いて 8 1質量%以下であり、 深さ 1 mにおいて 7 2質量%以下で あり、 深さ 2 mにおいて 5 6質量%以下であり、 深さ 3 ;Li mにお いて 4 4質量%以下であり、 深さ 4 ΠΙにおいて 3 5質量%以下で あり、 深さ 5 mにおいて 2 7質量%以下であり、 深さ 6 mにお いて 2 2質量%以下であり、 深さ 7 ^mにおいて 1 7質量%以下で あり、 深さ 8 において 1 4質量%以下であり、 深さ 9 mにお いては 1 1質量%以下となるようにする。
さらに望ましくは、 導電性化合物構成金属元素の基材表面におけ る深さ方向の濃度分布が、 基材表面からの深さ 0 . 1 mにおいて 2 2質量%以上 3 5質量%以下であり、 深さ 0 . 2 mにおいて 2 1質量%以上 3 5質量%以下であり、 深さ 0 . 4 mにおいて 1 8 質量%以上 3 1質量%以下であり、 深さ 0 . 5 mにおいて 1 7質 量%以上 2 9質量%以下であり 、 深さ 1 H mにおいて 1 2質量%以 上 2 2質量%以下であり、 深さ 2 mにおいて 6 • 2質量%以上 1
3 . 5質量%以下であり、 深さ 3 mにおいて 2 • 8質量%以上 8
. 7質量%以下であり、 深さ 4 mにおいて 1 ' 1質量%以上 5 .
1質量%以下であり、 深さ 5 mにおいて 0 ' 4質量%以上 2 . 7
%以下であり、 深さ 6 mにおいて 0 • 1 8質量%以上 1 . 4 つ
%以下であり、 深さ 7 mに いて 0 ·· 0 7質量%以上 0 . 7
%以下であり、 深さ 8 mに いて 0 ' 0 2質量% 上 0 . 4 質量 %以下であり、 深さ 9 L mにおいては 0 • 0 1質量%以上 0 .
2質量%以下であるのが良い
導電性化合物は、 セパレ一夕基材表面から 1 0 H m以内の領域に 存在していることが望ましい 1 0 mを超える深さ領域に存在し ても構わないが、 1 0 mよりも深い領域に存在する導電性化合物 は、 セパレー夕とカーボンペーパーの接触抵抗低減には寄与せず、 セパレー夕に歪を生じたり、 機械強度を劣化させる原因となり うる ブラス ト処理によって基材表層に固着させる導電性化合物は、 電 気伝導性があり、 燃料電池の使用環境においてもイオン溶出が少な く、 また、 ブラス ト処理によって基材表面に固着させることができ る硬度を有する化合物が望ましい。 一般に金属硼化物、 金属炭化物、 金属窒化物は、 導電性と硬度を 兼備するものが多いので、 発明者らは、 各種金属元素の硼化物、 炭 化物、 窒化物をブラス ト処理によって基材表面に固着し、 燃料電池 使用環境下での接触抵抗ならびに耐食性を試験した。 まず、 耐食性 試験は、 各種金属元素の硼化物、 炭化物、 窒化物からなる平均粒径 が約 2 mの粒子状試薬を、 燃料電池使用環境を模擬した 8 0 °Cの 硫酸酸性水溶液中に 1 0時間以上浸漬し、 水溶液中に溶出した金属 イオンの濃度を I C P発光分析法で調査した。 また、 接触抵抗試験 は、 上記浸漬処理した化合物粒子と力一ボンペーパーを、 2枚の金 製の電極板に挟み、 1 k g f Z c m2 の面圧をかけて抵抗値を計測 し、 その値を、 導電性化合物粒子と力一ボンペーパー間の接触抵抗 として評価した。 その結果、 C r、 V、 W、 T a、 L a、 M o、 お よび、 N bからなる金属硼化物、 金属炭化物、 および、 金属窒化物 はイオン溶出が少なく、 接触抵抗の増加も少ない物質であることを 確認した。
以上の検討結果を基に、 本発明では、 前記導電性化合物粒子とし て、 C r、 V、 W、 T a、 L a、 M o、 および、 N bのうちの 1種 または 2種以上の金属元素からなる金属硼化物、 金属炭化物、 また は、 金属窒化物が好ましい。 具体的には、 C r 3 C 2 、 C r 2 N、 C r B、 C r B 2 、 V B、 V C、 VN、 W2 B 5 、 W2 C、 WB、 WC、 T a B 2 、 T a C、 T a N、 L a B 6 、 M o B 2 、 M o 2 C 、 M o B、 M o C 2 、 N b C、 および、 N b Nのうちの 1種類また は 2種類以上の金属化合物が好ましい。
そのほかの金属元素からなる金属硼化物、 金属炭化物、 金属窒化 物、 たとえば、 T i Cや T i Nは、 上記試験において、 T i N粒子 および T i C粒子表面に T i の酸化物や水酸化物を生じ、 金と力一 ボンペーパー間の抵抗値が上昇するので、 導電性化合物粒子として 望ましくない。
本発明によれば、 目標として、 セパレ一夕の力一ポンぺ一パーと の接触抵抗が面圧 1 k g f / c m 2 において 1 O m Q c m 2 以下と 低く、 使用時の接触抵抗の増加およびこれによる起電力の低下が少 なく、 かつ燃料電池のスタック化に十分適用できる平坦性を備えた ステンレス製の固体高分子型燃料電池用セパレ一夕を達成すること ができる。
次に、 本発明の上記固体高分子型燃料電池用セパレー夕の製造方 法について、 以下に説明する。
本発明では、 ステンレス鋼、 チタンまたはチタン合金を基材とし て、 基材を成形加工した後、 その表層部に導電性化合物粒子を固着 する方法として、 基材の表面にブラス ト処理を施すことにより行う 本発明におけるブラス ト処理およびその条件は、 概略以下のとお りである。 まず、 セパレ一タ基材より硬度の高い素材、 例えば、 炭 化タングステンなどからなる超硬コア粒子の表面に、 セパレ一夕基 材に固着させることを目的とする導電性化合物粒子を被覆して投射 粒子を作成する。 超硬コア粒子表面に導電性化合物粒子を被覆する 方法は、 予め導電性化合物粒子をコ一ト液と混合した懸濁液を作成 し、 この懸濁液を超硬コア粒子表面に塗布することにより可能とな る。 ·
上記懸濁液を作成する際は、 後述する理由でコア粒子の量に対す る割合が 0 . 5〜 1 . 5質量%以下となるよう調整する。 なお、 上 記コート液の種類は特に限定する必要はなく、 例えば、 ポリ ビニー ルアルコールやメタアクリル酸コポリマーなどが用いられる。
また、 この時の上記懸濁液中の導電性化合物粒子の割合は 1 0〜 2 0質量%が望ましい。 上記懸濁液を超硬コア粒子表面に塗布する方法は、 例えば、 遠心 流動型攪拌機を用いて前記超硬コア粒子を攪拌しながら、 この粒子 表面に上記懸濁液を噴霧し、 粒子表面に導電性化合物粒子を含むコ 一卜層を形成することで可能である。
上記の方法で得られた導電性化合物粒子が表層被覆された投射粒 子を乾燥空気流または不活性ガス流により上記基材表面に投射する ブラス 卜処理は、 後述する理由で、 投射圧力 0. 4 M P a以下、 投 射量は基材 1 c m2 あたりに対して 1 0〜 1 0 0 gの条件で行う。 この基材表面のブラス ト処理において、 投射コアはセパレ一夕表面 に衝突し、 前記投射粒子が基材表面から所定深さに打ち込まれると ともに、 衝撃によって投射粒子表面に被覆された導電性化合物粒子 が剥離し、 基材表面から所定深さ領域で固着される。
上記導電性化合物粒子は、 上述した理由から、 C r、 V、 W、 T a、 L a、 M o、 および N bのうちの 1種または 2種以上の金属元 素からなる金属硼化物、 金属炭化物、 または、 金属窒化物が好まし い。 具体的には、 C r 3 C 2 、 C r 2 N、 C r B、 C r B 2 、 V B 、 V C、 VN、 W2 B 5 、 W2 C、 WB、 WC、 T a B 2 、 T a C 、 T a N、 L a B 6 、 M o B 2 、 M o 2 C、 M o B、 M o C 2 、 N b C、 および、 N b' Nのうちの、 1種類または 2種類以上の金属化 合物が好ましい。
また、 上記投射粒子を構成する導電性化合物粒子の平均粒径の下 限は、 上述したとおり、 導電性化合物粒子の平均粒径が 0. 0 1 m未満では、 導電性化合物粒子によるセパレー夕表面の接触抵抗の 低下効果が十分に得られず、 固体高分子型燃料電池用セパレー夕と して目的とする低接触抵抗が得られないので、 粒径は 0. 0 1 m 以上とする。 一方、 導電性化合物粒子の平均粒径の上限は、 平均粒 径が 2 0 mを超えると、 導電性化合物粒子を超硬コア粒子表面に 被覆した投射粒子を用いて基材表層部のブラス ト処理を行う際に、 基材表層部で導電性化合物粒子が固着し難い、 あるいは固着しても 剥離しやすいので、 固着量が少なくなり、 結果的に、 表層部の導電 性化合物粒子の固着密度が低下し、 セパレー夕とカーボンペーパー 間の所望の低接触抵抗が得られなくなるため、 導電性化合物粒子の 平均粒径の上限は、 2 0 m以下とする。
また; 上記投射粒子を構成する超硬コア粒子の粒径は、 得られた セパレー夕表面の接触抵抗に影響しないため、 接触抵抗の低減の理 由からは限定する必要はない。 しかし、 超硬コア粒子の平均粒径が 2 0 0 mを超えると、 上記ブラス ト処理における投射圧力を調整 しても平坦なセパレ一夕? ί状を得ることが困難となり、 固体高分子 型燃料電池用セパレータとして要求されるス夕ック化が可能な.平坦 性を安定して確保することは困難となる。 このため、 超硬コア粒子 の平均粒径は 2 0 0 ; m以下とするのが好ましい。 さらに望ましく は超硬コア粒子の平均粒径を 1 0 0 i m以下とするのが良い。
上述したように、 本発明のセパレー夕のカーボンべ一パーとの接 触抵抗を低減するために、 基材表面から 1 0 m以下の領域におけ る導電性化合物を構成する金属元素の濃度分布を上記 < 1 >式およ び < 2 >式の関係を満足させる必要がある。
本発明において、 上記 < 1 >式における t値および B値をぐ 2〉 式に示す適正範囲を満足するように、 基材表面からの導電性化合物 粒子を構成する金属元素の濃度深さ方向分布を制御するためには、 上記ブラス ト処理条件のうちで、 特に前記投射粒子における導電性 化合物粒子のコア粒子質量に対する割合 (質量%) を 0 . 5 〜 1 5 質量%とし、 投射粒子の投射圧力を 0 . 4 M P a以下とする必要が ある。
上記ブラス 卜処理において、 投射粒子を構成する導電性化合物粒 子の超硬コア粒子質量に対する割合を 0 . 5〜 1 5質量%とする理 由は以下のとおりである。
上述したようにブラス ト処理において投射粒子を構成する超硬コ ァ粒子表面に被覆された導電性化合物粒子は、 基材表面に衝突し、 表面から所定深さに打ち込まれ、 その際の衝撃によって超硬コア粒 子表面から剥離し、 基材表面から所定深さ領域に固着する。
その際、 投射粒子を構成する導電性化合物粒子の超硬コア粒子質 量に対する割合が 0 . 5質量%未満であると、 コート材による超硬 コア粒子と導電性化合物粒子の間の固着力が強固なため、 前記粒子 の衝突時に、 導電性化合物粒子の当コア粒子表面からの剥離が起き にく く、 導電性化合物粒子は、'基材表面から深い位置まで埋め込ま れる。 この結果、 < 1 >式における t値が 4 . 0 を超え、 B値が 1 . 0を超え、 < 2 >式における t値および B値の適正範囲から高く 外れ、 セパレー夕表層部に歪や欠陥を生じ、 セパレ一夕と力一ボン ペーパー間の接触抵抗が、 目標とする値よりも大きくなる。 このた め、 ブラス ト処理において、 投射粒子を構成する導電性化合物粒子 のコア粒子質量に対する割合を 0 . 5質量%以上とする。 .
一方、 導電性化合物粒子の超硬コア粒子質量に対する割合が 1 5 質量%を超えると、 'コート材によるコア粒子と導電性化合物粒子間 の固着力が弱いため、 前記投射粒子の衝突時に、 導電性化合物粒子 は超硬コア粒子表面から容易に剥離し、 導電性化合物粒子は基材表 面からの深さが浅い領域である極表層にのみ埋め込まれる。 この結 果、 < 1 >式の t値が 0 . 5未満となり、 B値が— 4 . 0未満とな り、 < 2 >式における t値および B値の適正範囲から低く外れ、 セ パレ一夕の使用時に導電性化合物粒子が基材表面から容易に剥離し 、 セパレー夕の接触抵抗が増加する。 このため、 ブラス ト処理にお いて投射粒子を構成する導電性化合物粒子のコア粒子質量に対する 割合は 1 5質量%以下とする。
また、 上記ブラス ト処理における投射圧力 (衝突エネルギー) を 0. 4 M P a以下とする理由は以下の通りである。
上述したようにブラス ト処理において投射粒子を構成する超硬コ ァ粒子表面に被覆された導電性化合物粒子は、 基材表面に衝突し、 表面から所定深さに打ち込まれ、'その際の衝撃によつて超硬コア粒 子表面から剥離し、 基材表面から所定深さ領域に固着する。 その際 、 投射粒子の投射圧力が 0. 4 M P aを超えると、 投射粒子を構成 する導電性化合物粒子は、 基材表面から深く内部まで埋め込まれる 。 この結果、 < 1 >式の t値が 4. 0 を超え、 B値が 1. 0 を超え て、 セパレー夕表層部に歪'や 陥を生じ、 セパレ "夕とカーボンべ ーパ一間の接触抵抗が、 目標とする値より も大きぐなる。 このため 、 ブラス ト処理において、 投射粒子の投射圧力は 0. 4 M P a以下 とする。
また、 ブラス ト処理において、 投射圧力を 0. 4 M P a以.下とす る理由として、 上記のセパレー夕'の接触抵抗の低下を目的とするほ かに、 以下に説明するように、 セパレー夕の平坦性を良好に維持す るためにも必要である。 つまり、 投射圧力が 0. 4 M P aを超える と、 ステンレス鋼表層部の歪量が増加し、 セパレ一夕形状の平坦性 が劣化し、 安定して良好な平坦性を確保することが難しくなる。 こ のため、 投射圧力の上限は 0. 4 M P a以下に制限するのが好まし い。 セパレ一夕形状の平坦性向上の点からは、 より好ましくは、 投 射圧力を 0. 3 M P a以下に制限するのが良い。 なお、 ブ'ラス ト処 理における投射粒子の投射圧力の下限は特に規定するものではない が、 ブラス ト処理におけるセパレー夕の形状調整などの作業性を鑑 みると、 望ましくは 0. O l M P a以上が好ましい。
本発明では、 ステンレス鋼表層部に導電性化合物粒子を基材表面 から深さ方向に適正範囲に固着するために、 上記のようにブラス ト 処理の投射圧力を適用化することにより、 上述したようなセパレー 夕表面の接触抵抗を低減できる効果が得られる他、 セパレー夕基材 のロール加工またはプレス加工などの成形加工を行う際に生じた C 方向 (圧延方向に垂直な方向) のそり とひねりが低減され、 セパレ 一夕形状の平坦性を向上することができる。
なお、 セパレー夕形状の平坦性は、 例えば、 以下のように評価す ることができる。
すなわち、 図 3に示すように、 ステンレス鋼製セパレ一夕および チタン製セパレ一夕の四隅近傍の所定の位置に、 原点を〇、 原点〇 から原板の圧延方向にある角近傍に L、 原点〇から原板の圧延垂直 方向にある角の近傍に C、 原点 Oから対角線方向にある角近傍に X を置き、 O L間の線分の長さを L L、 O C線分の長さを L C、 O X 間の長さを L Xとし、 直線〇 Lと加工品の厚さ方向中心面までの最 大ひずみ高さを H L 、 直線 C Xとのそれを H L 2、 直線 O Cとの それを H C 1 、 L Xとのそれを H C 2 直線 O Xとのそれ'を H X Cとし、 点 X
Figure imgf000024_0001
点 0、 L、 Cにて構成される平面との距離を H X Tとしたとき、 そり率 Wおよびひねり率 Tを以下の式で定義する
L1
手前側 L方向そり率 ( a ) 奥側 L方向そり率 ( b ) 左側 C方向そり率 : ( c ) 右側 C方向そり率 : ( d ) 対角線方向そり率 :
Figure imgf000024_0002
( e ) ΗΧΤ\
T =
L方向長さ基準ひねり率 : · · · ( f )
Figure imgf000025_0001
C方向長さ基準ひねり率 : XC C . . . ( G ) これに基いて、 WL 1 、 WL 2 、 Wc ! 、 Wc 2 、 Wx c 、 Τ χ L 、 および Τχ c の各値が 0. 0 5以下となるような平坦性を有す る導電性化合物を表面に埋め込んだステンレス鋼製セパレ一夕およ びチタン製セパレー夕が得られるのである。 この程度の平坦性を有 するステンレス鋼製セパレー夕およびチタン製セパレー夕を用いる ことで、 多数の枚数を積層したスタック型の燃料電池の構成が容易 になる。 w L 丄 、 WL 2 、 Wc i 、 Wc 2 、 Wx c 、 Tx L 、 およ び Tx c の各値を 0. 0 5'以下と規定したのは、 その程度のそりや ひねりがあっても、 メタルセパレ一夕を用いた燃料電池スタックが 形成可能であるためである。 WL ! 、 WL 2 、 Wc ! 、 Wc 2 、 W x c 、 Tx L 、 および Tx c の各値が 0. 1超では、 スタヅク型燃 料電池の構成は困難である。
また、 本発明において、 上記く 1 >式における A値と B値を < 2 >式に示す適正範囲を満足するように、 基材表面からの導電性化合 物粒子を構成する金属元素の濃度 (深さ方向) 分布を制御するため には、 上記ブラス ド処理条件のうちで、 特に前記投射粒子の投射量 を基材 1 c m2 あたり 1 0〜 1 0 0 gとする必要がある。 この理由 は、 以下の通りである。
式 < 1 >における A値と B値の和は、 基材表面 ( Χ = 0 ΠΙ位置 ) の導電性化合物粒子を構成する金属元素濃度に依存し、 これはブ ラス ト処理において投射粒子を基材に投射する量、 基材 1 c m2 あ たりの投射量によって制御できる。 投射方法は連続でも断続でも良 く、 投射粒子の積算投射量が多いほど上記 A値は大きくなる。
例えば、 ブラス ト処理における投射粒子の基材 1 c m2 当たりの 積算投射量と基材最表面 (上記 < 1 >式の X = 0 位置) での導 電性化合物粒子を構成する金属元素の濃度との関係は、 図 4に示さ れる。 導電性化合物粒子中の金属元素の濃度の定量方法は特に限定 するものではないが、 グロ一放電発光分光分析法などを用いて測定 することが可能である。
図 4における直線 1 を外挿し、 投射量が 0に相当する点で縦軸 ( 基材表面 ( x = 0 ^ m) の導電性化合物粒子の金属元素濃度 (質量 %) と交差する点 2の金属元素の濃度の値から、 上記 < 1 >式にお ける B値が求められる。 したがって、 直線 1の所定投射量における 基材表面 (x - O ^ m) の導電性化合物を構成する金属元素の濃度 の値から、 上記 B値を減ずることによって A値を算出することがで きる。
以上のように、 ブラス ト処理における投射粒子の投射時間により 、 上記 < 1 >式におけると A値と B値を、 上記 < 2 >式に示される A値と B値の適正範囲、 つまり A値が 1 0〜 9 0、 B値が一 ·4. 0 〜 1. 0 となるように 御することができる。
ブラス ト処理における 1 c m2 あたりの投射量が 1 0 g秒未満の 場合は、 上記 < 1 >式の A値が 1 0未満、 B値が— 4. 0未満と上 記 < 2 >式の適正範囲から低く外れ、 .基材表層部に固着する導電性 化合物粒子の量が十分でなく、 セパレー夕とカーボンペーパーとの 接触抵抗を目標値以下にすることができない。
また、 ブラス ト処理おける投射時間が基材 1 c m2 あたり 1 0 0 g以上の場合は、 上記 < 1 >式の A値が 9 0を超え、 B値が 1. 0 を超え、 上記 < 2 >式の適正範囲から高く外れ、 投射工程で基材の ひずみが大きくなるとともに機械的強度が劣化する。 このため、 本 発明のブラス ト処理において、 投射粒子の基材 1 c m2 当たりの投 射量を 1 0〜: L O O gとする。 以上説明した本発明の固体高分子型燃料電池用セパレー夕の製造 方法により、 固体高分子型燃料電池の使用時に、 カーボンペーパー との接触抵抗が面圧 1 k g f / c m2 において、 1 Ο πιΩ · c m2 以下と低く、 かつ燃料電池のスタック化に十分適用できる平坦性を 備えたステンレス製またはチタン製またはチタン合金製の固体高分 子型燃料電池用セパレー夕を製造することが可能となる。 実施例
以下、 実施例により本発明を詳細に説明する。 長さ 5 0 mm、 幅 5 0 mm, 厚さ 0. 2 mmの高耐食ステンレス鋼およびチタンを試 験材の基材として用いた。 '金属元素の硼化物、 炭化物、 窒化物から なる導電性化合物粒子として、 平均粒径が 5〜 5 0 2 mの、 C r 3 C 2 、 C r 2 N、 C r B、 C r B 2 、 V B、 V C、 VN、 W2 B 5 、 W2 C、 WB、 WC、 T a B 2 、 T a C、 T a N、 L a B 6 、 M o B 2 、 M o 2 C、 M o B、 M o C 2 、 N b C、 N b N、 およびそ れらの混合物を用い、 これらの導電性化合物粒子をメタアクリル酸 コポリマーを溶質、 エタノールを溶媒としたコート液へ投入し、 懸 濁液とし、 これを平均粒径が 1 0 0 である炭化タングステン製 の超硬コア粒子に被覆して投射粒子を作製した。 この際、 前記導電 性化合物粒子の超硬コア粒子質量に対する割合を 0. 5〜 1 5質量 %とした。
次に、 上記投射粒子を上記の試験基材表面に 0. l MP a〜 0. 6 M P aの投射圧力で、 基材 1 c m2 あたり 5〜 1 2 0 g打ち込み 、 試験材とした。 また比較のため導電性化合物粒子として T i N、 T i Cを同様の条件のブラス 卜法によって上記試験基材に打ち込み 、 試験材とした。 上記試験材および製造条件の詳細を表 1および表 2 (表 1つづき 1 ) 、 表 3 (表 1つづき 2 ) 、 表 4 (表 1つづき 3 ) に示す。
セパレー夕基材に上記ブラス ト法によって固着させた導電性化合 物粒子の金属元素の、 セパレータ基材中の表面から内部における濃 度分布をグロ一放電発光分光分析法によって定量分析した。 金属元 素の深さ方向分布を、 < 1 >式を回帰式として回帰分析し、 A、 B 、 および t.の値を算出した。 '
セパレー夕基材表面に埋め込んだ上記導電性化合物粒子からの金 属イオン溶出量を以下の試験方法により確認した。 上記試験材を、 p Hを 2に調整した硫酸水溶液 3 0 0 mL中に 8 0 °Cで、 酸素また は水素をバブリングしながら 3 0 0時間放置した後、 静置して得た 上澄み液中の金属イオン溶出量を I C P発光分光分析法によって定 量した。 金属イオンの硫酸水溶液中への溶出量が 5 0 p p m以下を イオン溶出特性が合格であるとし、 5 0 p p m超を不合格とした。
上記金属イオン溶出試験の後、 対カーボンペーパー接触抵抗値を 、 面圧 1 k g f Z c m2 において測定した。 測定された接触抵抗の 値が 1 0 πιΩ c m2 以下である場合を接触抵抗が合格であるとし、 1 0 mO c m2 を超えた場合を接触抵抗が不合格であるとした。 ま た、 .セパレー夕の平坦性を表す WL i 、 wL 2 、 Wc i 、 wc 2 、 Wx c 、 TX L 、 および Tx c の値の.うちいずれの値も 0. 0 5を 超えない場合を平坦性が合格であるとし、 どれか 1つの値でも 0. 0 5を超えた場合を平坦性が不合格とした。
表 1および表 2 (表 1つづき 1 ) 、 表 3 (表 1つづき 2 ) 、 表 4 (表 1つづき 3 ) に製造条件とともに、 上記の試験結果を示す。 表 1
Figure imgf000029_0001
表 2 (表 1つづき 1 )
Figure imgf000030_0001
表 3 (表 1つづき 2 )
Figure imgf000031_0001
表 4 (表 1つづき 3 )
Figure imgf000032_0001
表 1〜表 4において、 試験材 1、 2 5、 2 7、 3 4、 4 4、 5 9 は比較例であり、 導電性化合物の平均粒径が、 本発明で規定する範 囲を外れているために、 導電性化合物のセパレー夕基材への固着量 が十分でなく、 セパレー夕とカーボンペーパーの接触抵抗が評価を 満足できなかった。
また、 試験材 5、 9、 1 7、 2 1、 2 8、 3 5、 4 3、 4 5、 5 3、 5 8、 6 0、 6 8、 6 9、 7 1、 7 5は比較例であり、 コア粒 子表面のコート材中の導電性化合物粒子の混合比率が、 本発明の規 定の範囲を外れているために、 B値および t値が < 2 >式の適正範 囲を外れ、 セパレー夕とカーボンペーパーの接触抵抗が評価を満足 できなかった。
また、 試験材 7、 1 1、 1 3、 1 9、 4 2、 5 2、 5 7、 6 .7、 7 3は比較例であり、 ブラス 卜投射圧力が、 本発明の規定の範囲を 外れているために、 B値および t値が < 2 >式の適正範囲を外れ、 セパレー夕とカーボンペーパーの接触抵抗および平坦性が評.価を満 足できなかった。
また、 試験材 3、 1 5、 2 3、 4 1、 5 1、 5 6、 6 6、 は比較 例であり、 ブラス ト処理における基材 1 c m2 あたりの投射量が少 ないために、 A値が < 2 >式の適正範囲を外れ、 セパレ一夕とカー ボンペーパーの接触抵抗が評価を満足できなかった。
また、 試験材 5 4と 5 5は、 導電性化合物粒子が当発明で規定す る範囲を外れたために、 セパレー夕とカーボンペーパーの接触抵抗 とイオン溶出性が評価を満足できなかった。
また、 試験材 7 8 と 7 9は比較例であり、 ブラス ト処理における 基材 1 c m2 あたりの投射量が当発明で規定する範囲を超えたため に、 A値、 B値および t値が < 2 >式の適正範囲をはずれ、 セパレ —夕の平坦性が評価を満足できなかった。 一方、 試験材 2、 4、 6、 8、 1 0、 1 2、 1 4、 1 6、 1 8、 2 0、 2 2、 2 4、 2 6、 2 9、 3 0、 3 1 、 3 2、 3 3、 3 6、 3 7、 3 8、 3 9、 4 0、 4 6、 4 7、 4 8、 4 9、 5 0、 6 1 、 6 2、 6 3、 6 4、 6 5、 7 0、 7 2、 7 4、 7 6は導電性化合物 の平均粒径、 < 1 >式の A値、 B値、 および t値、 導電性化合物の 種類、 導電性化合物のコア粒子表面におけるコ一ト材中の混合比率 、 ブラス 卜処理における投射圧力、 基材 l c m2 あたりの投射量の 何れも当発明で規定する範囲内であるために、 セパレー夕とカーボ ンペーパーの接触抵抗、 イオン溶出性、 セパレ一夕の平坦性のどの 評価も満足することができた。 産業上の利用可能性
本発明によれば、 固体高分子型燃料電池の使用時に、 力一ポンぺ 一パーとの接触抵抗が面圧 1 k g f / c m2 において、 1 Ο πιΩ · c m2 以下と低く、 かつ燃料電池のスタック化に十分適用できる平 坦性を備えたステンレス製またはチタン製またはチタン合金製の固 体高分子型燃料電池用セパレー夕を提供することが可能となる。

Claims

1. 導電性化合物粒子が固着された表層部を有するステンレス鋼 またはチタンまたはチタン合金の基材からなる固体高分子型燃料電 池用セパレー夕において、 前記導電性化合物粒子が、 平均粒径 0. 0 ;!〜 2 0 の金属硼化物、 金属炭化物および金属窒化物の 1種 請
または 2種以上からなり、 該導電性化合物粒子が前記基材表面から 深さ 1 0 までの領域に存在し、 該領域における導電性化合物を 構成する金属元素の濃度分布が、 下記 < 1 >および < 2〉式で示さ れる導電性化合物を構成する金属元素の濃度 Cと基材表面からの深 さ Xとの関係を満足するごとを特徴とする囲固体高分子型燃料電池用 セパレー夕。
C = A · e x p (- x/ t ) + B - - - < 1 >
1 0≤A≤ 9 0、 一 4. 0≤ B≤ 1. 0、 0. 5≤ t≤ 4. 0 • · · < 2 >
但し、 上記 Cは導電性化合物を構成する金属元素の濃度 (質量% ) 、 上記 Xは基材表面からの深さ ( m) 、 上記 A、 Bおよび t は 基材表面のブラス ト処理条件で決まる定数である。
2. 前記導電性化合物を構成する金属元素が、 C r、 V、 W、 T a、 L a、 M o、 および、 N bのうちの 1種または 2種以上からな ることを特徴とする請求項 1記載の固体高分子型燃料電池用セパレ 一夕。
3. ステンレス鋼、 チタンまたはチタン合金からなる基材を成形 加工した後、 該基材表面に、 平均粒径 0. 0 1〜 2 0 ; mの導電性 化合物粒子をコート材と混合し表面に被覆した超硬コア粒子を、 投 射圧力が 0. 4 M P a以下、 基材 1 c m2 あたりの投射量が 1 0〜 1 0 0 gの条件で、 投射するブラス ト加工を施し、 前記導電性化合 物の前記コア粒子質量に対する割合が 0, 5〜 1 5質量%であるこ とを特徴とする固体高分子型燃料電池用セパレー夕の製法。
PCT/JP2007/054143 2006-02-27 2007-02-27 固体高分子型燃料電池用セパレータおよびその製造方法 WO2007100131A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07737753A EP1990855B1 (en) 2006-02-27 2007-02-27 Separator for solid polymer fuel cell and method for manufacturing the same
CA2644533A CA2644533C (en) 2006-02-27 2007-02-27 Solid polymer type fuel cell separator and method of production of same
US12/224,429 US8182961B2 (en) 2006-02-27 2007-02-27 Solid polymer type fuel cell separator and method of production of same
US13/227,423 US8361676B2 (en) 2006-02-27 2011-09-07 Solid polymer type fuel cell separator and method of production of same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006050934A JP5014644B2 (ja) 2006-02-27 2006-02-27 固体高分子型燃料電池用セパレータおよびその製造方法
JP2006-050934 2006-02-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/224,429 A-371-Of-International US8182961B2 (en) 2006-02-27 2007-02-27 Solid polymer type fuel cell separator and method of production of same
US13/227,423 Division US8361676B2 (en) 2006-02-27 2011-09-07 Solid polymer type fuel cell separator and method of production of same

Publications (1)

Publication Number Publication Date
WO2007100131A1 true WO2007100131A1 (ja) 2007-09-07

Family

ID=38459219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054143 WO2007100131A1 (ja) 2006-02-27 2007-02-27 固体高分子型燃料電池用セパレータおよびその製造方法

Country Status (7)

Country Link
US (2) US8182961B2 (ja)
EP (1) EP1990855B1 (ja)
JP (1) JP5014644B2 (ja)
KR (1) KR20080087043A (ja)
CN (1) CN101390236A (ja)
CA (1) CA2644533C (ja)
WO (1) WO2007100131A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090130300A1 (en) * 2007-11-15 2009-05-21 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd.) Titanium substrate for forming separator for fuel cell and method of manufacturing the separator
JP2010212179A (ja) * 2009-03-12 2010-09-24 Sintokogio Ltd 固体高分子型燃料電池のセパレ一夕用基材の表面導電化処理方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9070907B2 (en) 2008-04-23 2015-06-30 Hyundai Hysco Stainless separator for fuel cell and method of manufacturing the same
EP2302721B1 (en) * 2008-06-26 2016-03-30 Nippon Steel & Sumitomo Metal Corporation Stainless steel material for separator of solid polymer fuel cell and solid polymer fuel cell using the same
RU2461100C1 (ru) * 2008-09-30 2012-09-10 Ниппон Стил Корпорейшн Титановый материал для сепаратора твердополимерного топливного элемента, обладающий низким контактным сопротивлением, и способ его приготовления
DE102010027645A1 (de) * 2010-07-19 2012-01-19 Forschungszentrum Jülich GmbH CO2 tolerantes, gemischt leitendes Oxid und dessen Anwendung für die Wasserstoffabtrennung
JP4886885B2 (ja) * 2010-07-20 2012-02-29 株式会社神戸製鋼所 チタン製燃料電池セパレータ
US20120064232A1 (en) * 2010-09-10 2012-03-15 Keisuke Yamazaki Method of treatment for imparting conductivity to surface of separator-use base member of solid polymer type fuel cell
CN102324528A (zh) * 2011-09-21 2012-01-18 大连海事大学 含Nb氮化物表面改性燃料电池不锈钢双极板及制造方法
WO2013165034A1 (ko) * 2012-04-30 2013-11-07 금오공과대학교 산학협력단 연료전지용 복합분리판
JP5930036B2 (ja) * 2012-07-11 2016-06-08 トヨタ車体株式会社 燃料電池用セパレータ及び燃料電池用セパレータの製造方法
WO2014021298A1 (ja) 2012-07-31 2014-02-06 新日鐵住金株式会社 対カーボン接触導電性と耐久性を高めた燃料電池セパレータ用チタンまたはチタン合金材、及びこれを用いた燃料電池セパレータ、並びにそれらの製造方法
KR20140075836A (ko) * 2012-11-27 2014-06-20 삼성전기주식회사 전극 구조체 및 그 제조 방법, 그리고 상기 전극 구조체를 구비하는 에너지 저장 장치
WO2014119734A1 (ja) 2013-02-01 2014-08-07 新日鐵住金株式会社 対カーボン接触導電性と耐久性に優れた燃料電池セパレータ用チタン材又はチタン合金材、これを用いた燃料電池セパレータ、及び、燃料電池
JP5850184B2 (ja) 2013-02-01 2016-02-03 新日鐵住金株式会社 対カーボン接触導電性と耐久性に優れた燃料電池セパレータ用チタン又はチタン合金、これを用いた燃料電池セパレータ、及び、燃料電池
RU2643736C2 (ru) 2014-01-22 2018-02-05 Ниппон Стил Энд Сумитомо Метал Корпорейшн Титановый материал или материал из титанового сплава, имеющий поверхностную электропроводность, а также использующие его сепаратор топливной ячейки и топливная ячейка
CN105917505B (zh) 2014-01-22 2018-10-02 新日铁住金株式会社 表面具有导电性的钛材料或钛合金材料及其制造方法、以及使用其的燃料电池分隔件和燃料电池
JP5888473B1 (ja) 2014-04-03 2016-03-22 新日鐵住金株式会社 燃料電池セパレータ用複合金属箔、燃料電池セパレータ、燃料電池、及び、燃料電池セパレータ用複合金属箔の製造方法
CN104051743B (zh) * 2014-06-23 2016-04-20 航天新长征电动汽车技术有限公司 金属双极板及其制备方法
JP7172056B2 (ja) * 2018-02-28 2022-11-16 トヨタ自動車株式会社 ステンレス鋼基材、燃料電池用セパレータ及び燃料電池
CN110061257A (zh) * 2018-06-28 2019-07-26 南方科技大学 用于pemfc的金属基双极板及其制备方法
CN112117421A (zh) * 2020-09-30 2020-12-22 珠海冠宇电池股份有限公司 电池隔板及其制备方法以及锂离子电池
JP7375721B2 (ja) * 2020-10-09 2023-11-08 トヨタ自動車株式会社 セパレータ及びセパレータの製造方法
CN113422065A (zh) * 2021-06-25 2021-09-21 湖北亿纬动力有限公司 一种涂层铝箔及其制备方法和应用

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121018A (ja) 1997-10-14 1999-04-30 Nisshin Steel Co Ltd 低温型燃料電池用セパレータ
JPH11126621A (ja) 1997-10-21 1999-05-11 Nisshin Steel Co Ltd 低温型燃料電池用セパレータ
JPH11126622A (ja) 1997-10-21 1999-05-11 Nisshin Steel Co Ltd 低温型燃料電池用セパレータ
JPH11219713A (ja) 1998-01-30 1999-08-10 Nisshin Steel Co Ltd 低温型燃料電池用セパレータ
JPH11260383A (ja) 1998-03-09 1999-09-24 Nisshin Steel Co Ltd 低温型燃料電池用セパレータ及びその製造方法
JP2000021419A (ja) 1998-06-30 2000-01-21 Matsushita Electric Ind Co Ltd 固体高分子電解質型燃料電池
JP2000256808A (ja) 1999-03-10 2000-09-19 Nippon Steel Corp 固体高分子型燃料電池用ステンレス鋼
JP2000309854A (ja) 1999-04-22 2000-11-07 Sumitomo Metal Ind Ltd 通電電気部品用オーステナイト系ステンレス鋼および燃料電池
JP2001006713A (ja) 1999-06-16 2001-01-12 Nippon Steel Corp 固体高分子型燃料電池部材用低接触抵抗ステンレス鋼、チタンおよび炭素材料
JP2001032056A (ja) * 1999-07-22 2001-02-06 Sumitomo Metal Ind Ltd 通電部品用ステンレス鋼および固体高分子型燃料電池
JP2001250565A (ja) 1999-12-27 2001-09-14 Sinto Brator Co Ltd 高耐食性かつ対カーボン低接触抵抗性金属の燃料電池用セパレーターへの付着方法
JP2001283872A (ja) * 2000-03-30 2001-10-12 Nisshin Steel Co Ltd 低温型燃料電池用セパレータ及びその製造方法
JP2001357862A (ja) 2000-06-15 2001-12-26 Sumitomo Metal Ind Ltd バイポーラプレートおよび固体高分子型燃料電池
JP2003123783A (ja) 2001-10-17 2003-04-25 Nisshin Steel Co Ltd 低温型燃料電池用ステンレス鋼製セパレータ
JP2003178768A (ja) * 2001-12-12 2003-06-27 Honda Motor Co Ltd 燃料電池用金属製セパレータの製造方法
JP2003193206A (ja) 2002-12-02 2003-07-09 Sumitomo Metal Ind Ltd 固体高分子型燃料電池のセパレータ用ステンレス鋼および固体高分子型燃料電池
JP2003223904A (ja) 2001-02-22 2003-08-08 Jfe Steel Kk 燃料電池用セパレータとその製造方法および固体高分子型燃料電池
JP2004002960A (ja) 2002-03-13 2004-01-08 Nisshin Steel Co Ltd 燃料電池セパレータ用オーステナイト系ステンレス鋼及びその製造方法
JP2004124197A (ja) 2002-10-04 2004-04-22 Jfe Steel Kk 固体高分子型燃料電池セパレータ用ステンレス鋼とその製造方法および固体高分子型燃料電池
JP2004156132A (ja) 2002-09-11 2004-06-03 Sumitomo Metal Ind Ltd Bを含有するステンレス鋼材およびその製造方法
JP2004232074A (ja) 2002-03-28 2004-08-19 Nisshin Steel Co Ltd 燃料電池セパレータ用フェライト系ステンレス鋼及びその製造方法
JP2004265695A (ja) 2003-02-28 2004-09-24 Nikko Metal Manufacturing Co Ltd 燃料電池用セパレーター
JP2004273370A (ja) 2003-03-11 2004-09-30 Sumitomo Metal Ind Ltd 燃料電池セパレータ用チタン系材料とその製造方法
JP2004269969A (ja) 2003-03-10 2004-09-30 Jfe Steel Kk 固体高分子型燃料電池用セパレータおよびその製造方法
JP2004306128A (ja) 2003-04-10 2004-11-04 Sumitomo Metal Ind Ltd Bを含有するステンレス鋼材の製造方法
JP2006140009A (ja) * 2004-11-11 2006-06-01 Mitsubishi Heavy Ind Ltd 固体高分子電解質燃料電池用金属セパレータ及びその製造方法
JP2006140095A (ja) * 2004-11-15 2006-06-01 Nippon Steel Corp 燃料電池用金属製セパレータ及びその加工方法
WO2006137584A1 (ja) * 2005-06-22 2006-12-28 Nippon Steel Corporation ステンレス鋼、チタンまたはチタン合金製固体高分子型燃料電池用セパレータとその製造方法およびセパレータのそり・ひねり評価方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1094535B1 (en) * 1998-06-30 2006-10-11 Matsushita Electric Industrial Co., Ltd. Solid polymer electrolyte fuel cell
JP2000260439A (ja) 1999-03-09 2000-09-22 Nippon Steel Corp 固体高分子型燃料電池用ステンレス鋼製セパレータ、スペーサ、高分子膜並びに固体高分子型燃料電池
KR100361548B1 (ko) 1999-04-19 2002-11-21 스미토모 긴조쿠 고교 가부시키가이샤 고체고분자형 연료전지용 스텐레스 강재
WO2003050904A1 (fr) 2001-12-12 2003-06-19 Honda Giken Kogyo Kabushiki Kaisha Separateur de metaux destine a une pile a combustible et procede de production correspondant
JP2004014208A (ja) * 2002-06-05 2004-01-15 Toyota Motor Corp 燃料電池のセパレータとその製造方法
JP2004107704A (ja) 2002-09-17 2004-04-08 Sumitomo Metal Ind Ltd 含硼素フェライト系ステンレス鋼帯の製造方法
US7144648B2 (en) * 2002-11-22 2006-12-05 The Research Foundation Of State University Of New York Bipolar plate
JPWO2005047567A1 (ja) * 2003-11-12 2007-05-31 新東ブレーター株式会社 固体プレーティング材の製造方法及びその固体プレーティング材
US7247403B2 (en) 2004-04-21 2007-07-24 Ut-Battelle, Llc Surface modified stainless steels for PEM fuel cell bipolar plates
JP2006107989A (ja) * 2004-10-07 2006-04-20 Nichias Corp 燃料電池用セパレータ及びその製造方法

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121018A (ja) 1997-10-14 1999-04-30 Nisshin Steel Co Ltd 低温型燃料電池用セパレータ
JPH11126621A (ja) 1997-10-21 1999-05-11 Nisshin Steel Co Ltd 低温型燃料電池用セパレータ
JPH11126622A (ja) 1997-10-21 1999-05-11 Nisshin Steel Co Ltd 低温型燃料電池用セパレータ
JPH11219713A (ja) 1998-01-30 1999-08-10 Nisshin Steel Co Ltd 低温型燃料電池用セパレータ
JPH11260383A (ja) 1998-03-09 1999-09-24 Nisshin Steel Co Ltd 低温型燃料電池用セパレータ及びその製造方法
JP2000021419A (ja) 1998-06-30 2000-01-21 Matsushita Electric Ind Co Ltd 固体高分子電解質型燃料電池
JP2000256808A (ja) 1999-03-10 2000-09-19 Nippon Steel Corp 固体高分子型燃料電池用ステンレス鋼
JP2000309854A (ja) 1999-04-22 2000-11-07 Sumitomo Metal Ind Ltd 通電電気部品用オーステナイト系ステンレス鋼および燃料電池
JP2001006713A (ja) 1999-06-16 2001-01-12 Nippon Steel Corp 固体高分子型燃料電池部材用低接触抵抗ステンレス鋼、チタンおよび炭素材料
JP2001032056A (ja) * 1999-07-22 2001-02-06 Sumitomo Metal Ind Ltd 通電部品用ステンレス鋼および固体高分子型燃料電池
JP2001250565A (ja) 1999-12-27 2001-09-14 Sinto Brator Co Ltd 高耐食性かつ対カーボン低接触抵抗性金属の燃料電池用セパレーターへの付着方法
JP2001283872A (ja) * 2000-03-30 2001-10-12 Nisshin Steel Co Ltd 低温型燃料電池用セパレータ及びその製造方法
JP2001357862A (ja) 2000-06-15 2001-12-26 Sumitomo Metal Ind Ltd バイポーラプレートおよび固体高分子型燃料電池
JP2003223904A (ja) 2001-02-22 2003-08-08 Jfe Steel Kk 燃料電池用セパレータとその製造方法および固体高分子型燃料電池
JP2003123783A (ja) 2001-10-17 2003-04-25 Nisshin Steel Co Ltd 低温型燃料電池用ステンレス鋼製セパレータ
JP2003178768A (ja) * 2001-12-12 2003-06-27 Honda Motor Co Ltd 燃料電池用金属製セパレータの製造方法
JP2004002960A (ja) 2002-03-13 2004-01-08 Nisshin Steel Co Ltd 燃料電池セパレータ用オーステナイト系ステンレス鋼及びその製造方法
JP2004232074A (ja) 2002-03-28 2004-08-19 Nisshin Steel Co Ltd 燃料電池セパレータ用フェライト系ステンレス鋼及びその製造方法
JP2004156132A (ja) 2002-09-11 2004-06-03 Sumitomo Metal Ind Ltd Bを含有するステンレス鋼材およびその製造方法
JP2004124197A (ja) 2002-10-04 2004-04-22 Jfe Steel Kk 固体高分子型燃料電池セパレータ用ステンレス鋼とその製造方法および固体高分子型燃料電池
JP2003193206A (ja) 2002-12-02 2003-07-09 Sumitomo Metal Ind Ltd 固体高分子型燃料電池のセパレータ用ステンレス鋼および固体高分子型燃料電池
JP2004265695A (ja) 2003-02-28 2004-09-24 Nikko Metal Manufacturing Co Ltd 燃料電池用セパレーター
JP2004269969A (ja) 2003-03-10 2004-09-30 Jfe Steel Kk 固体高分子型燃料電池用セパレータおよびその製造方法
JP2004273370A (ja) 2003-03-11 2004-09-30 Sumitomo Metal Ind Ltd 燃料電池セパレータ用チタン系材料とその製造方法
JP2004306128A (ja) 2003-04-10 2004-11-04 Sumitomo Metal Ind Ltd Bを含有するステンレス鋼材の製造方法
JP2006140009A (ja) * 2004-11-11 2006-06-01 Mitsubishi Heavy Ind Ltd 固体高分子電解質燃料電池用金属セパレータ及びその製造方法
JP2006140095A (ja) * 2004-11-15 2006-06-01 Nippon Steel Corp 燃料電池用金属製セパレータ及びその加工方法
WO2006137584A1 (ja) * 2005-06-22 2006-12-28 Nippon Steel Corporation ステンレス鋼、チタンまたはチタン合金製固体高分子型燃料電池用セパレータとその製造方法およびセパレータのそり・ひねり評価方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090130300A1 (en) * 2007-11-15 2009-05-21 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd.) Titanium substrate for forming separator for fuel cell and method of manufacturing the separator
JP2010212179A (ja) * 2009-03-12 2010-09-24 Sintokogio Ltd 固体高分子型燃料電池のセパレ一夕用基材の表面導電化処理方法

Also Published As

Publication number Publication date
KR20080087043A (ko) 2008-09-29
US20120034372A1 (en) 2012-02-09
JP5014644B2 (ja) 2012-08-29
US8361676B2 (en) 2013-01-29
CA2644533C (en) 2012-02-07
JP2007234244A (ja) 2007-09-13
CA2644533A1 (en) 2007-09-07
EP1990855B1 (en) 2011-09-21
CN101390236A (zh) 2009-03-18
EP1990855A4 (en) 2009-08-05
US20090226787A1 (en) 2009-09-10
US8182961B2 (en) 2012-05-22
EP1990855A1 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
WO2007100131A1 (ja) 固体高分子型燃料電池用セパレータおよびその製造方法
JP4837798B2 (ja) 固体高分子型燃料電池セパレータ用チタン材およびその製造方法
JP4886885B2 (ja) チタン製燃料電池セパレータ
JP5108976B2 (ja) 燃料電池セパレータ
JP5342462B2 (ja) 燃料電池セパレータの製造方法
US7972449B2 (en) Corrosion resistant metal composite for electrochemical devices and methods of producing the same
WO2006137584A1 (ja) ステンレス鋼、チタンまたはチタン合金製固体高分子型燃料電池用セパレータとその製造方法およびセパレータのそり・ひねり評価方法
JP4901864B2 (ja) 純チタンまたはチタン合金製固体高分子型燃料電池用セパレータおよびその製造方法
JP2005142163A (ja) 燃料電池用の電気接触エレメント
JP4854992B2 (ja) 固体高分子型燃料電池用セパレータおよびその製造方法
WO2002039530A1 (fr) Separateur a presse pour pile a combustible
JP2012186176A (ja) 燃料電池セパレータ
CN108432009B (zh) 燃料电池的隔离件用不锈钢板及其制造方法
WO2005056858A1 (ja) 金属ガラス合金
JP3913053B2 (ja) 燃料電池用金属製セパレータの製造方法
WO2003050904A1 (fr) Separateur de metaux destine a une pile a combustible et procede de production correspondant
KR20170031233A (ko) 금속재 및 이 금속재를 사용한 통전 부품
JP3218988B2 (ja) ナトリウム−硫黄二次電池
JP2003297378A (ja) 燃料電池用金属製セパレータおよびその製造方法
JP2003272655A (ja) 燃料電池用金属製セパレータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087020708

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2644533

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 200780006839.4

Country of ref document: CN

Ref document number: 2007737753

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12224429

Country of ref document: US