WO2007055316A1 - 光配向膜用組成物、光学異方体及びその製造方法 - Google Patents

光配向膜用組成物、光学異方体及びその製造方法 Download PDF

Info

Publication number
WO2007055316A1
WO2007055316A1 PCT/JP2006/322455 JP2006322455W WO2007055316A1 WO 2007055316 A1 WO2007055316 A1 WO 2007055316A1 JP 2006322455 W JP2006322455 W JP 2006322455W WO 2007055316 A1 WO2007055316 A1 WO 2007055316A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
composition
film
compound
liquid crystal
Prior art date
Application number
PCT/JP2006/322455
Other languages
English (en)
French (fr)
Inventor
Isa Nishiyama
Yasuhiro Kuwana
Joji Kawamura
Kazuaki Hatsusaka
Original Assignee
Dic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic Corporation filed Critical Dic Corporation
Priority to CN2006800413440A priority Critical patent/CN101326453B/zh
Priority to EP06823287.5A priority patent/EP1947489A4/en
Priority to US12/093,014 priority patent/US7955665B2/en
Publication of WO2007055316A1 publication Critical patent/WO2007055316A1/ja
Priority to KR1020087012369A priority patent/KR101260812B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • C09K19/2007Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2219/00Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used
    • C09K2219/03Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used in the form of films, e.g. films after polymerisation of LC precursor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/02Alignment layer characterised by chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition
    • C09K2323/035Ester polymer, e.g. polycarbonate, polyacrylate or polyester
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133726Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films made of a mesogenic material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation

Definitions

  • composition for photo-alignment film for photo-alignment film, optical anisotropic body and method for producing the same
  • the present invention relates to a composition for a photoalignment film that is useful as a liquid crystal display element or a liquid crystal alignment film for an optically anisotropic body, and further an optically anisotropic film using a photoalignment film comprising the composition for a photoalignment film. Body and its manufacturing method.
  • liquid crystal display device In a liquid crystal display device, a state of molecular arrangement of liquid crystal is changed by an action of an electric field or the like, and a change in optical characteristics accompanying this is used for display.
  • liquid crystal In many cases, liquid crystal is used by being injected into the gap between two substrates. In order to align the liquid crystal molecules in a specific direction, a liquid crystal alignment film is arranged inside the substrate.
  • an optical anisotropic sheet obtained by curing a polymerizable liquid crystal material in an aligned state as an optical compensation sheet (retardation plate), which is a kind of optical anisotropic body, between a liquid crystal cell and a polarizing plate.
  • the liquid crystal alignment film is also used as a material for aligning the polymerizable liquid crystal material.
  • a rubbing film obtained by rubbing a polymer film such as polyimide in one direction with a cloth or the like is used.
  • fine scratches on the surface of the polymer film due to mechanical rubbing can cause alignment defects in the liquid crystal, and uneven alignment due to uneven pressing pressure during rubbing.
  • the definition of the liquid crystal element is lowered.
  • optical compensation sheets are often used for the purpose of widening the wavelength band and increasing the accuracy of viewing angle stability.
  • a 1Z4 wavelength plate and a 1Z2 wavelength plate are laminated.
  • the apparatus is very large if the polymerizable liquid crystal layer is formed by rubbing. Cannot be created continuously. Therefore, there is a need for a method for obtaining a liquid crystal alignment film that can continuously perform all the steps of laminating the liquid crystal alignment film and the liquid crystal layer. ing.
  • the photo-alignment method which obtains liquid crystal alignment by irradiating light with some anisotropy onto a film provided on a substrate, is excellent in mass production and can be applied to large substrates. Expected.
  • photo-alignment films examples include anisotropic compounds such as azobenzene derivatives, compounds having photoisomerism reaction such as cinnamate, coumarin, and chalcone, and compounds having a site causing photodimerization reaction such as cinnamate, chalcone, and polyimide. There are compounds that produce facile photolysis.
  • sensitivity As a photo-alignment film material that is re-aligned with the light having the lowest irradiation dose anisotropy (hereinafter referred to as sensitivity) and has an excellent liquid crystal alignment capability, for example, as represented by the following structural formula:
  • An azo compound is known (for example, see Patent Document 1).
  • the compound having the azo structure exhibits liquid crystal alignment ability at a low irradiation dose of, for example, 50 OmjZcm 2 .
  • the photo-alignment film using the azo compound since the photo-alignment film using the azo compound is a low molecular compound, it may be attacked by an adhesive member such as a sealant used in the liquid crystal cell manufacturing stage.
  • a step of applying a polymerizable liquid crystal composition solution on the photo-alignment film, a polymerizable liquid crystal layer It has a step of coating the composition solution for light alignment film on the top, but the liquid crystal alignment film layer and the polymerizable liquid crystal layer that have already been prepared may be affected by the solvent used in these coating solutions. In some cases, peeling or uniform optical properties could not be obtained.
  • the optical anisotropic layer deteriorates due to the high temperature brought about in the process after the liquid crystal cell manufacturing stage or the polymerizable liquid crystal material is cured in an aligned state to obtain the optical anisotropic layer, and the optical characteristics deteriorate. There was a problem.
  • Patent Document 2 For the purpose of fixing the azo compound, a compound obtained by attalylating the compound is known.
  • a photo-alignment film obtained by polymerizing after aligning the compound has excellent light resistance. It is. However, the sensitivity decreased due to the talate toy, making it difficult to reorient at a low dose.
  • a laminated film of a photo-alignable polymerizable composition layer using the azo compound and a polymerizable liquid crystal composition layer was formed on a substrate, and the liquid crystal composition having the polymerizable group was aligned.
  • An optical anisotropic body characterized by polymerizing both layers in a state is also known (see Patent Documents 3 and 4).
  • This method is a preferred method for obtaining an optical anisotropic body that can introduce a bonding relationship between the photo-alignment film layer and the liquid crystal polymer layer and has excellent adhesion and durability.
  • the acrylated compound since the acrylated compound is used, the problem of low sensitivity cannot be solved.
  • an optical anisotropic body using the azo compound is also used in the production of a laminated optical anisotropic body in which the optical alignment film and the polymerizable liquid crystal layer are repeatedly laminated. I could not get the characteristics!
  • Patent Document 1 Japanese Patent Application Laid-Open No. 5-232473
  • Patent Document 2 JP 2002-250924 A
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2005-173547
  • Patent Document 4 Japanese Patent Laid-Open No. 2005-173548
  • the problem to be solved by the invention is an adhesive member having high sensitivity and used in a cell manufacturing process, or an organic material used for an adhesive member or a polymerizable liquid crystal composition solution or an alignment film solution.
  • the present inventors have provided a photo-alignment film in which a polymerizable compound that is compatible with the azo compound is added to a highly sensitive azo compound represented by the above structural formula. It was found that the composition for use can solve the above problems.
  • the power of increasing the crosslinking density of the coating film as a method for increasing the resistance to organic solvents of the coating film, etc.
  • the (azo) allylate or the like which is usually known, is mixed in the azo compound. Then, the sensitivity and liquid crystal alignment ability of the azo compound may be extremely inferior.
  • solvent resistance As a method for increasing the resistance to organic solvents (hereinafter referred to as solvent resistance) without lowering the sensitivity, the present inventors have developed a hydrophilic group compatible with the above-mentioned azo compound and a (meth) atallyloylo. It has been found that the addition of a compound having a xy group is most effective.
  • a compound having a hydrophilic group and a (meth) ataryloxy group is compatible with the azo compound and has a small molecular volume before the reaction, so that the free volume of the compound is not hindered. Since the azo compound can maintain the free volume required for the structural change of photoisomerization, sensitivity and liquid crystal alignment ability can be maintained as they are. On the other hand, after polymerizing a compound having a hydrophilic group and a (meth) acryloyloxy group, the periphery of the azo compound is surrounded by the polymer (meth) acrylic resin. Since the azo compound is deprived of the free volume necessary for the photoisomerization reaction, the orientation is not disturbed or peeled off by an organic solvent or the like. Since it has excellent adhesion to the substrate by having a hydrophilic group, it is also effective for interfacial peeling from the substrate.
  • an optical anisotropic body in the case of producing an optical anisotropic body, a compound having a hydrophilic group and a (meth) atalylooxy group is polymerized with the polymerizable liquid crystal to form an integral body, and further has a hydrophilic group. Since the adhesiveness to the plate is excellent, an optical anisotropic body can be produced without causing disorder of orientation or peeling by an organic solvent or the like.
  • the present inventors can improve heat resistance by adding a specific compound to a mixture of the compound, a hydrophilic group, and a compound having a (meth) ataryloxy group. I found out.
  • the composition as a composition for a photo-alignment film, it is possible to produce a photo-alignment film or an optical anisotropic body excellent in heat resistance without being attacked by an organic solvent.
  • the present invention provides a composition for a photoalignment film comprising a compound represented by the general formula (1) and a compound having a hydrophilic group and a (meth) ataryloxy group.
  • R 1 and R 2 are each independently a hydrogen atom, a halogen atom, or a carboxyl group. Or an alkali metal salt thereof, a halogenated methyl group, a halogenated methoxy group, a cyano group, a -toe group, —OR 5 (where R 5 is an alkyl group having 1 to 6 carbon atoms, 3 to 6 carbon atoms) Or an alkyl group having 1 to 6 carbon atoms substituted with an alkoxy group having 1 to 6 carbon atoms), a hydroxylalkyl group having 1 to 4 carbon atoms, CONR 6 R 7 (however, R 6 and R 7 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms), or a methoxycarbol group, and R 3 and R 4 each independently represent a carboxyl group Alternatively, it represents an alkali metal salt, a sulfo group or an alkali metal salt thereof, a nitro
  • the present invention provides an optical anisotropic body obtained by polymerizing a polymerizable liquid crystal composition film prepared on a liquid crystal alignment film in an aligned state, wherein the liquid crystal alignment film is the optical alignment described above.
  • an optical anisotropic body obtained by orienting a film composition.
  • the present invention also includes a step 1 of forming a film of the composition for photoalignment films described above on a substrate, and a step of forming a polymerizable liquid crystal composition film on the film of the composition for photoalignment films. 2 and polymerizing with a compound having a hydrophilic group and a (meth) allylooxy group while orienting the compound represented by the general formula (1) and liquid crystal molecules by irradiation with anisotropic light.
  • a method for producing an optical anisotropic body in which the step 3 of polymerizing the liquid crystalline composition is performed in this order.
  • the present invention also includes a step 1 of forming a film of the composition for a photoalignment film described above on a substrate, and irradiating the film of the composition for a photoalignment film with anisotropic light in general.
  • Step 2 for aligning the compound represented by formula (1)
  • Step 3 for forming a polymerizable liquid crystal composition film on the film of the composition for photo-alignment films, and a hydrophilic group (meta) by heat or light
  • step 4 of polymerizing a polymerizable liquid crystal composition with a compound having an allyloyloxy group is performed in this order.
  • the present invention also includes a step 1 of forming a film of the composition for a photoalignment film described above on a substrate, and generally irradiating the film of the composition for a photoalignment film with anisotropic light.
  • Step 2 for orienting the compound represented by formula (1)
  • Step 3 for polymerizing a compound having a hydrophilic group and a (meth) ataryloxy group by heat or light
  • the composition for photoalignment film Step 4 for forming a polymerizable liquid crystal composition film on the film and a step for polymerizing the polymerizable liquid crystal composition by heat or light
  • a method for producing an optical anisotropic body in which 5 is performed in this order is provided.
  • the present invention also includes a step 1 of forming a film of the composition for photo-alignment films described above on a substrate, and irradiating light having anisotropy to the film of the composition for photo-alignment films in general.
  • a step 2 of superimposing a compound having a hydrophilic group and a (meth) ataryloxy group while aligning the compound represented by the formula (1); and a polymerizable liquid crystal on the film of the composition for photo-alignment films Provided is a method for producing an optical anisotropic body in which the step 3 of applying and orienting the composition and the step 4 of polymerizing the polymerizable liquid crystal composition by heat or light are performed in this order.
  • composition for photo-alignment film of the present invention an adhesive member having high sensitivity and used in a cell manufacturing process, or an adhesive member, a polymerizable liquid crystal composition solution, an alignment film solution A photo-alignment film that is not attacked by the organic solvent used in the process, and an optical anisotropic body that is not attacked by the organic solvent or the like using the photo-alignment film.
  • R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a carboxyl group or an alkali metal salt thereof, a halogenated methyl group, a halogenated methoxy group, a cyano group, a nitro group, — OR 5 (where R 5 is an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or a carbon atom number 1 to 6 substituted with an alkoxy group having 1 to 6 carbon atoms) A hydroxyl alkyl group having 1 to 4 carbon atoms, CONR 6 R 7 (where R 6 and R 7 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms) Or a methoxycarbonyl group.
  • Examples of the halogen atom include a fluorine atom and a chlorine atom.
  • Examples of the alkali metal of the alkali metal salt of the carboxyl group include lithium, sodium and potassium.
  • Examples of the halogenated methyl group include a trichloromethyl group and a trifluoromethyl group.
  • Examples of the nonogenated and rogenated methoxy groups include chloromethoxy groups and trifluoromethoxy groups.
  • Examples of the alkyl group having 1 to 6 carbon atoms of R 5 include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and a 1-methylethyl group.
  • Examples of the alkyl group having 1 to 6 carbon atoms substituted by an alkoxy group having 1 to 6 carbon atoms represented by R 5 include a methoxymethyl group, a 1 ethoxyethyl group, and a tetrahydrobiranyl group.
  • Hydroxylalkyl groups having 1 to 4 carbon atoms include hydroxylmethyl group, 1-hydroxyxylethyl group, 2-hydroxylethyl group, 1-hydroxylpropyl group, 2-hydroxypropyl group, and 3 hydroxylpropyl group. 1-hydroxylbutyl group and the like.
  • Examples of the alkyl group having 1 to 6 carbon atoms represented by R 6 and R 7 include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and a 1-methylethyl group.
  • a halogen atom, a carboxyl group, a halogenated methyl group, a halogenated methoxy group, a methoxy group, an ethoxy group, a propoxy group, a hydroxylmethyl group, a strong rubermoyl group, a dimethylcarbamoyl group, and a cyano group are preferred.
  • a methyl group or a trifluoromethyl group is particularly preferred in that good orientation can be obtained.
  • R 1 and R 2 are substituted at the meta position of the phenylene group at both ends of the 4,4, -bis (phenol) biphenyl skeleton as viewed from the azo group. It is particularly preferred because it provides excellent photoalignment.
  • R 3 and R 4 are each independently a carboxyl group or an alkali metal salt thereof, a sulfo group or an alkali metal salt thereof, a nitro group, an amino group, a strong rubamoyl group, an alkoxycarbo group, a sulfamoyl group, Or represents a hydroxyl group.
  • alkali metal of the alkali metal salt of a carboxyl group or a sulfo group include lithium, sodium, potassium, and the like. It is particularly preferable that R 3 and R 4 are replaced with the 2, 2, and 2 positions of the 4,4,1-bis (phenolazo) bicycle skeleton because excellent photoalignment properties can be obtained.
  • R 3 and R 4 in the general formula (1) have the most influence on the photo-alignment performance and other characteristics. Depending on the type and combination of substituents that can be introduced into R 3 and R 4 , various characteristics can be obtained.
  • R 3 and R 4 are carboxyl groups or alkali metal salts thereof, sulfo groups or alkali metal salts thereof, they are uniformly photo-aligned on the substrate surface having high affinity for transparent electrodes such as glass and ITO. It is preferable because a film can be formed.
  • R 3 and R 4 are rubamoyl group and sulfamoyl group
  • an optical anisotropic body obtained by polymerizing a polymerizable liquid crystal on the obtained light alignment film exhibits high heat resistance. It is useful for applications that require high performance.
  • the compound (11) in which R 3 and R 4 in the general formula (1) are a sulfo group or an alkali metal salt thereof, and a compound represented by the general formula (2-1) Preferred.
  • the compound (1-1) is preferably a carboxyl group or an alkali thereof, wherein R 1 and R 2 are preferably a carboxyl group or an alkali metal salt thereof, a hydroxylmethyl group, or a trifluoromethyl group. More preferred are metal salts or hydroxylmethyl groups. Carboxyl groups or alkali metal salts thereof are particularly preferred.
  • R u each independently, a hydroxyl group, or a (meth) atalylooxy group, a (meth) atallylooxy group, a (meth) acrylamide group, a bur group And represents a polymerizable functional group selected from the group consisting of a buroxy group and a maleimide group.
  • X 11 represents a single bond when R 11 is a hydroxyl group, and represents a linking group represented by-(A'-B 1 ) 1 when R 11 is a polymerizable functional group,
  • X 12 represents a single bond when R 12 is a hydroxyl group, and represents a linking group represented by — (A 2 -B 2 ) — when R 12 is a polymerizable functional group.
  • a 1 is bound to R 11 and A 2 is bound to R 12 .
  • a 1 and A 2 each independently represent a single bond or a divalent hydrocarbon group
  • B 1 and B 2 each independently represent a single bond, 1 O, 1 CO—O, 1 O—CO 2, 1 CO—NH, 1 NH—CO—, —NH—CO—O, or —O—CO—NH
  • m and n each independently represents an integer of 0 to 4. However, when m or n is 2 or more, a plurality of AB 1 , A 2 and B 2 may be the same or different. However, A 1 or A 2 sandwiched between two B 1 or B 2 is not a single bond.
  • R 13 and R 14 are each independently a hydrogen atom, a halogen atom, a carboxyl group or an alkali metal salt thereof, a halogenated methyl group, a halogenated methoxy group, a cyano group, a nitro group, one OR 17 (where R 17 is An alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an alkyl group having 1 to 6 carbon atoms substituted with an alkoxy group having 1 to 6 carbon atoms), the number of carbon atoms 1-4 hydroxyl alkyl group, or CONR 18 R 1 9 (R 18 and R 19 are each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms), or methoxycarbonyl - represents Le group .
  • R 15 and R 16 each independently represents a force rubamoyl group or a sulfamoyl group.
  • the compound in which R 11 and R 12 are hydroxyl groups is a compound within the range of the general formula (1).
  • the compound represented by the general formula (2-1) may be used alone or as a mixture of a plurality of different compounds within the range of the compound represented by the general formula (2-1).
  • R 11 and R 12 are hydroxyl groups and R 13 and R ′′ are hydroxyl alkyl groups having 1 to 4 carbon atoms is preferable.
  • Particularly preferred are compounds wherein R 11 and R 12 are hydroxyl groups and R 13 and R ′′ are hydroxylmethyl groups.
  • R 21 and R 22 are each independently a hydrogen atom, a methyl group, or a methoxy group are preferable.
  • R 21 and R 22 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms
  • a 11 And A 12 are each independently a naphthalene ring having an amino group and a sulfo group or an alkali metal salt thereof as a substituent, or a benzene ring having an amino group and a sulfo group or an alkali metal salt thereof as a substituent.
  • the compound represented by the general formula (2-2) may be used alone or as a mixture of a plurality of different compounds within the range of the compound represented by the general formula (2-2).
  • the number of the hydroxyl group as a substituent is not particularly limited, but 3 to 6 is preferable, and 6 is most preferable.
  • Examples of the compound represented by the general formula (1) used in the present invention include compounds having the following structure. [0040] [Chemical 6] a
  • Examples of the compound represented by the general formula (21) used in the present invention include compounds having the following structure.
  • Examples of the compound represented by the general formula (2-2) used in the present invention include compounds having the following structures.
  • Examples of the tri-phenylene (2-3) having a hydroxyl group as the substituent used in the present invention include compounds having the following structure.
  • the compound represented by the general formula (1) exhibits high solubility in water or a polar organic solvent, and also exhibits good affinity for glass or the like.
  • a composition for a photo-alignment film obtained by dissolving the compound in water or a polar organic solvent is coated on a substrate such as glass, and then the water or polar organic solvent is removed, so that it is uniform and stable on the substrate. It is possible to form a film for a photoalignment film.
  • hydrophilic group of the compound having a hydrophilic group and a (meth) ataryloxy group used in the present invention include a hydroxyl group, a carboxyl group, a sulfo group, and an amino group.
  • (meth) acrylate having a hydroxyl group or a carboxyl group is preferred because of its good miscibility with the compound represented by the general formula (1).
  • the boiling point of the compound having a hydrophilic group and a (meth) ataryloxy group at 1 atm is 100 ° C. The above is preferable.
  • the molecular weight and viscosity are not particularly limited because the composition for photo-alignment films of the present invention is usually used after being diluted with a solvent, but the molecular weight preferably has a number average molecular weight of 100 to 5,000. ⁇ 2000 range power is practical and preferred! / ⁇ .
  • a compound having a hydroxyl group and a (meth) attayloxy group a compound having two or more hydroxyl groups is particularly preferred because of its high hydrophilicity.
  • monoglycidyl ethers such as glycidyl (meth) atalylate, propylene glycol, butanediol, pentanediol, hexanediol, diethylene glycol, dipropylene glycol, triethylene glycol, and tripropylene glycol.
  • Diglycidyl ethers of dihydric alcohols such as bisphenol A, ethoxylated bisphenol A, trimethylolpropane, ethoxylation, tetraethylenedaricol, polyethylene glycol, polypropylene glycolol, neopentyl glycol, neopentyl glycol hydroxylpivalate, bisphenol A, ethoxylated bisphenol A, etc.
  • At least one triglycidyl ether of a trihydric alcohol such as trimethylolpropane, propoxylated trimethylolpropane, glycerin, etc.
  • a polyhydric phenol having an aromatic ring or an alicyclic ring (here, the polyhydric phenol is a bisphenol compound such as bisphenol 8, bisphenol F, bisphenol S, etc.) or a bisphenol compound with an alkylene oxide.
  • (Meth) ataretoyl compound pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol di (meth) acrylate, dipentaerythritol tri (meth) acrylate, Dipentaerythrito I Penta (meth) acrylate, glycerin di (meth) acrylate, trimethylol propane Di (meth) acrylate, ditrimethylol propane di (meth) acrylate, ditrimethylol propane Pantri (meth) acrylate, ditrimethylol propane tetra (Meth) acrylate, ditrimethylol propane hex (meth) acrylate, ethoxylated trimethylol propane di (meth) acrylate, propoxylated trimethylol propane di (meth) acrylate, tris 2-hydroxylethyl isocyanate
  • Examples thereof include an alcoholic
  • a compound having a carboxyl group and a (meth) attayloxy group has a sufficiently high hydrophilicity of the carboxyl group, so that the number of carboxyl groups per molecule is not particularly limited, and can be one or two or more. good. However, as the number of carboxyl groups increases, the solubility in the solvent deteriorates and the crystallinity of the compound increases, so the resistance to the adhesive member or the solvent does not deteriorate, and the number of carboxyl groups in the range is small. , Things are preferred. In particular, in the case of a compound having a carboxyl group directly bonded to an aromatic ring, the number of carboxyl groups per molecule is preferably 2 or less.
  • ⁇ with a (meth) attayloxy group examples thereof include compounds obtained by adding an acid anhydride such as phthalic anhydride to a compound, and benzoic acid derivatives having an alkyl (oxy) group having a (meth) acryloyloxy group introduced at the terminal as a substituent.
  • the number of alkyl (oxy) groups in which a (meth) atallyloyloxy group is introduced at the terminal, which is a substituent may be one or more.
  • the surface power of ease is also preferable.
  • Examples of commercially available compounds having a carboxyl group and a (meth) atalylooxy group include, for example, trade names “Light Atarilate ⁇ ” and “Light Atarylate ⁇ ” manufactured by Kyoeisha Co., Ltd. , “Light Atarirate HOMPL”, “Light Atarirate HOMPP”, “Light Atarirate HOA-MS”, and the like.
  • the compound having a hydrophilic group and a (meth) attayloxy group may be used singly or in combination of two or more.
  • the compound having the hydrophilic group and the (meth) atalylooxy group has high hydrophilicity, the compatibility with the compound represented by the general formula (1) is good. There are combinations that cause. In that case, since a smooth film cannot be obtained, there is a possibility of affecting the orientation regulating force. Therefore, the hydrophilic group and the (meth) attayloxy group which do not significantly increase the crystallinity in the blended state.
  • a combination of a compound having the formula and a compound represented by the general formula (1) is preferable. The presence or absence of crystallization is determined by, for example, optical observation, spectroscopic analysis, scattering Judgment is possible based on experiments.
  • the compounding ratio of the compound represented by the general formula (1), the hydrophilic group and the compound having a (meth) attayloxy group is not particularly limited, but the amount of the compound added is too small. It is possible that sufficient alignment regulation power cannot be obtained, and if the amount of the compound having a hydrophilic group and a (meth) ataryloxy group is too small, sufficient resistance to the adhesive agent or solvent can be obtained. However, since there is a possibility, a compound having a hydrophilic group and a (meth) taroloyloxy group is preferably in the range of 10 to 90% by mass with respect to the total nonvolatile content in the composition.
  • the compounding ratio of the compound represented by the general formula (1), the hydrophilic group, and the compound having a (meth) atyloxy group is such that the crystallinity does not remarkably increase in the compounded state.
  • a photo-alignment film using the composition for photo-alignment film of the present invention is used as a general-purpose liquid crystal alignment film used for display elements such as nematic liquid crystal or when producing an optical anisotropic body. It can be suitably used as an alignment film of a polymerizable liquid crystal composition.
  • the composition for a photo-alignment film used in the present invention usually uses a solvent for the purpose of improving the coatability.
  • the solvent used for the solvent is not particularly limited, but it is preferable to use a solvent in which the compound exhibits good solubility.
  • alcohol solvents such as methanol and ethanol
  • diol solvents such as ethylene glycol, propylene glycol, 1,3-butanediol, tetrahydrofuran, 2-methoxyethanol, 2-butoxyethanol, 2- (2-ethoxyethoxy) ) Ether solvents such as ethanol, 2- (2-butoxyethoxy) ethanol
  • amide solvents such as 2-pyrrolidone, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, y-butarate rataton, black mouth benzene , Dimethyl sulfoxide, and the like.
  • amide solvents such as 2-pyrrolidone, N-methylpyrrolidone, dimethylformamide
  • the solid content ratio is 0.2% by mass or more. Among them, it is preferable to prepare so as to be 0.5 to 10% by mass.
  • additives such as a leveling agent, a thixotropic agent, a surfactant, an ultraviolet absorber, an infrared absorber, an antioxidant, and a surface treatment agent can be added to the extent that the liquid crystal alignment ability is not significantly reduced.
  • the composition for photo-alignment film has anisotropy such as ultraviolet rays or visible light after coating and drying on the substrate. Light is irradiated to orient the compound represented by the general formula (1).
  • a photo-alignment film can be obtained by polymerizing a compound having a hydrophilic group and a (meth) ataryloxy group by light or heat.
  • the composition for photo-alignment film used in the present invention is applied on a substrate by a known and commonly used method such as a spin coating method, a gravure printing method, a flexographic printing method, an ink jet method, a die coating method, a cap coating method, or a dating method. Print and dry to obtain a film.
  • the substrate used is a substrate usually used for a liquid crystal display element or an optical anisotropic body, and has a solvent resistance that can withstand heating during drying after application of the composition solution for a photo-alignment film or during heating of the liquid crystal element. If it is a material which has heat resistance, there will be no restriction
  • Examples of such a substrate include a glass substrate, a ceramic substrate, a metal substrate, and a polymer material substrate.
  • a polymer material substrate cellulose derivatives, polycyclohexylene derivatives, polyesters, polyolefins, polycarbonates, polyacrylates, polyarylate, nylon, polystyrene, and the like can be used.
  • surface treatment of these substrates may be performed. Examples of the surface treatment include ozone treatment and plasma treatment.
  • an organic thin film, an inorganic oxide thin film, a metal thin film, or the like may be provided on the substrate surface by a method such as vapor deposition.
  • the film for photoalignment film obtained by the above method is irradiated with anisotropic light to give a liquid crystal alignment function (hereinafter abbreviated as photoisomerization step), and photoisomerized film for photoalignment film Create
  • anisotropic light used in the photoisomerization process include polarized light such as linearly polarized light and elliptically polarized light, or non-polarized light from a direction oblique to the substrate surface.
  • the polarized light may be either linearly polarized light or elliptically polarized light, but it is preferable to use linearly polarized light with a high extinction ratio in order to perform photoalignment efficiently.
  • the method of irradiating non-polarized light has the advantage that a large irradiation intensity can be obtained without requiring a polarizing filter or the like in the irradiation device, and the irradiation time for photo-alignment can be shortened.
  • the incident angle of non-polarized light is preferably in the range of 10 ° to 80 ° with respect to the normal of the substrate.
  • the light to be irradiated may be light in a wavelength region in which the photo-alignment group of the compound to be used has absorption.
  • the photo-alignment group has an azobenzene structure
  • an ultraviolet light source such as a xenon lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, or a metal halide lamp, an ultraviolet light laser such as KrF or ArF, a visible light laser such as an Ar ion laser, or the like.
  • an ultra-high pressure mercury lamp with particularly high emission intensity of 365-nm ultraviolet light can be used effectively.
  • Ultraviolet linearly polarized light can be obtained by passing light having the light source power through a polarizing prism such as a polarizing filter, Glan-Thompson, and Darrantellar.
  • a polarizing prism such as a polarizing filter, Glan-Thompson, and Darrantellar.
  • the irradiated light is substantially parallel light regardless of whether polarized light or non-polarized light is used.
  • the photo-alignment film may be patterned.
  • the liquid crystal alignment ability can be produced in the above different directions. Specifically, after applying and drying the composition for photo-alignment film of the present invention, a substrate is covered with a photomask, and the entire surface is irradiated with polarized light or non-polarized light to give liquid crystal alignment ability to the exposed portion in a pattern. . By repeating this a plurality of times as necessary, liquid crystal alignment ability can be generated in a plurality of directions.
  • the photo-alignment film can be cooled after the photoisomerization step.
  • a cooling method it is sufficient that the photo-isomerized film for photo-alignment film is cooled.
  • the substrate is cooled by a known and common cooling device such as a cold plate, a chamber, a low-temperature thermostat, etc.
  • the cooling temperature is 1 minute or more at 20 ° C, but this is not the case when the cooling temperature is lower than 20 ° C.
  • the cooling temperature may be not lower than the melting point of the solvent used, but is usually preferably in the range of 40 ° C to 20 ° C.
  • a cooling time of 10 ° C or less is preferred, and a cooling time of 5 minutes or more is preferred.
  • the cooling temperature is preferably 5 ° C or lower.
  • the cooling can be performed in a dry air, nitrogen, or argon atmosphere, and the substrate can be cooled while blowing dry air, nitrogen, or the like onto the substrate.
  • a compound having a hydrophilic group and a (meth) atalylooxy group is polymerized.
  • a photopolymerization initiator described later it is preferable to add a photopolymerization initiator described later.
  • the polymerization method may be light irradiation or heat, but when it is performed by light irradiation, it is performed at a wavelength other than the absorption band of the azobenzene skeleton in order not to disturb the alignment state obtained in the photoisomerization step. Is preferred.
  • the photo-alignment film and the polymerizable liquid crystal composition cause decomposition or the like due to the ultraviolet light with a force of 320 nm or less, which is an ultraviolet light with a wavelength of 320 nm or less
  • the polymerization treatment is performed with the ultraviolet light of 320 nm or more. It may be preferable to do so.
  • photopolymerization In order to prevent the orientation of the azobenzene skeleton already obtained from being disturbed by ultraviolet light of 320 nm or more, photopolymerization usually has a light absorption wavelength band different from the light absorption band of the azobenzene skeleton. It is preferable to use an agent. In addition, it absorbs light having a wavelength longer than the absorption band of a normal photopolymerization initiator and causes energy transfer to the polymerization initiator. A compound that induces a polymerization reaction may be mixed. By these, polymerization can be performed without disturbing the alignment state of the composition for photo-alignment film fixed by the photo-alignment operation.
  • the obtained alignment state may be disturbed. Since there is no, any wavelength can be used.
  • photoalignment and photopolymerization can be performed simultaneously.
  • photo-alignment in an atmosphere that inhibits polymerization, for example, in air, only photo-alignment is performed, and then the atmosphere is changed so as not to inhibit polymerization, for example, in nitrogen.
  • Photopolymerization can also be initiated. In this case, it is preferable to adjust the irradiation amount at the time of photo-alignment so that the photo-polymerization initiator is not consumed while photo-alignment is performed in an atmosphere of polymerization inhibition.
  • the strength is preferably 80 to 250 ° C, and preferably 80 to 160 ° C. In this case, it is preferable to add a thermal polymerization initiator.
  • photopolymerization initiator used in the present invention known and commonly used photopolymerization initiators can be used.
  • Photoinitiators that can be used with ultraviolet light of 320 nm or less include 1-hydroxylcyclohexylphenol ketone ("Irgacure 184" manufactured by Chinoku Specialty Chemicals), 1- [4- (2-hydroxylethoxy) mono- 2] -hydroxyl 2-methyl 1-one 1-one of bread, 2-hydroxyl 2-methyl 1-phenol propane 1-on (“Darocur 1173” manufactured by Merck & Co., Inc.) and the like.
  • Examples of the photopolymerization initiator having a light absorption wavelength band different from the light absorption band of the azobenzene skeleton include a combination of a near-infrared absorbing dye described in Japanese Patent No. 3016606 and organic boron. It is done.
  • photopolymerization initiators include, for example, 1 (4 isopropyl phenol) 2 hydroxyl 2 -methylpropane 1 1 on (“Darocur 1116” manufactured by Merck & Co.), 2 methyl 1 [(methylthio) phenol- 2] Morpholinopropane 1 ("Irgacure 907” manufactured by Chinoku Specialty Chemicals). Benzylmethyl ketal (“Irgacure 651" manufactured by Chinoku's Specialty Chemicals).
  • Jetylthioxanthone manufactured by Nippon Gyakusha " Cacure DETX ”)
  • p-dimethylaminobenzoic acid ethyl Nippon Kayaku Co., Ltd.“ Cachacure EPA ”
  • isopropylthioxanthone Dobrekinsop“ Kantaki Your-ITX ”
  • p-dimethylaminobenzoic acid ethyl acetate And sylphosphine oxide (BASF's “Lucirin®”.
  • the amount of the photopolymerization initiator used is preferably 10% by mass or less, particularly preferably 0.5 to 5% by mass, based on the polymerizable liquid crystal compound.
  • thermal polymerization initiator used in the thermal polymerization known and conventional ones can be used.
  • Organic peroxides such as peroxide, t-butyl hydride peroxide, dicumyl peroxide, isopropyl peroxide, di (3-methyl-3-methoxybutyl) peroxydicarbonate, 1,1 bis (t-butylperoxy) cyclohexane Oxides, 2, 2'-azobisiso-peptyl-tolyl, 2, 2, -azobis (2,
  • the photo-alignment film of the present invention is prepared by adding and curing a compound having a hydrophilic group and a (meth) attaroyloxy group, it is used for the purpose of adjusting the viscosity of an existing sealing agent.
  • hydrocarbon solvents such as sonovent naphtha, decalin, tonorene, xylene, p-cymene, ⁇ -pinene, ⁇ -menthane, turpentine oil, halogenated hydrocarbon solvents such as dichloropentane, ⁇ — Alcohol solvents such as butanol, isobutanol, ⁇ -hexanol, 2-methylcyclohexanol, diol solvents such as ethylene glycol and propylene glycol, 2-ethoxyethanol, 2-butoxyethanol, 2- (ethoxy Ethoxy) Ether solvents such as ethanol, 2- (butoxyethoxy) ethanol, diethylene glycol jetyl ether and 1,4 dioxane, ether ester solvents such as ethylene glycol monomethyl ether acetate and ethylene glycol monoethyl ether acetate, ethoxypropion Ester solvents such as ethyl acid, dimethyl malonate, ketone
  • a polymerizable liquid crystal is applied on the above-described light-alignment film and polymerized in an aligned state.
  • the polymerization operation of the polymerizable liquid crystal composition may be carried out in the same manner as the polymerization operation for producing the photoalignment film.
  • Polymerization by heating is preferably performed at a temperature at which the polymerizable liquid crystal composition exhibits a liquid crystal phase or at a temperature lower than that.
  • the cleavage temperature is high. It is preferable to use one within the above temperature range.
  • the thermal polymerization initiator and the photopolymerization initiator are used in combination, the polymerization is performed so that the polymerization speed of both the photo-alignment film and the polymerizable liquid crystal film does not greatly differ with the limitation of the temperature range. It is preferred to select the temperature and each initiator.
  • the heating temperature depends on the transition temperature from the liquid crystal phase to the isotropic phase of the polymerizable liquid crystal composition, it is preferable to perform the heating at a temperature lower than the temperature at which inhomogeneous polymerization is induced by heat. 20 ° C to 300 ° C is preferred. 30 ° C to 200 ° C is more preferred. 30 ° C to 120 ° C is particularly preferred.
  • the polymerizable group is a (meth) ataryloxy group, it is preferable to carry out at a temperature lower than 90 ° C.
  • Specific methods include, for example, the following methods (Method 1) to (Method 4).
  • Step 1 for forming a film of the composition for photo-alignment film on a substrate Step 2 for forming a polymerizable liquid crystal composition film on the film of the composition for photo-alignment film, and light having anisotropy
  • both the photo-alignment film layer and the liquid crystal polymer layer are polymerized. Bonding relationships can be introduced between the layers, and an optically anisotropic body having excellent interfacial adhesion and durability can be obtained. In addition, it is efficient because the photoisomerization reaction and the polymerization can be carried out simultaneously by irradiating light having anisotropy once.
  • Step 2 for forming a polymerizable liquid crystal composition film on the film of the composition for photo-alignment film, and having a hydrophilic group and a (meth) atallylooxy group by heat or light A production method in which step 4 of polymerizing a compound and a polymerizable liquid crystal composition is performed in this order.
  • the film of the composition for photo-alignment film is directly irradiated with light, a photo-alignment film having higher liquid crystal alignment ability can be obtained, and further, a hydrophilic group coexisting in the alignment film and Since a polymerizable liquid crystal is polymerized with a compound having a (meth) atallylooxy group, a bonding relationship can be introduced between both the photo-alignment film layer and the liquid crystal polymer layer, particularly for the adhesion and durability of the interface. An excellent optical anisotropic body is obtained.
  • Step 2 for polymerizing the polymer Step 3 for polymerizing a compound having a hydrophilic group and a (meth) ataryloxy group by heat or light, and a polymerizable liquid crystal composition on the film of the composition for photo-alignment film
  • the hydrophilic (meth) acrylate is polymerized before forming the polymerizable liquid crystal composition layer, a photo-alignment film having excellent mechanical or chemical strength is obtained, and photo-alignment is achieved. This is suitable when a process of stacking and winding up a substrate on which a film is formed is included.
  • the photo-alignment process is performed separately from the photopolymerization process, the alignment control is performed. The control of the force is easy.
  • Step 2 for polymerizing a compound having a hydrophilic group and a (meth) ataryloxy group while aligning the liquid crystal and a step for applying and aligning a polymerizable liquid crystal composition on the film for the photoalignment film composition 3.
  • a production method in which step 3 and step 4 of polymerizing a polymerizable liquid crystal composition by heat or light are performed in this order.
  • the hydrophilic (meth) acrylate is polymerized before forming the polymerizable liquid crystal composition layer, a photo-alignment film having excellent mechanical or chemical strength is obtained, and photo-alignment is achieved. This is suitable when a process of stacking and winding up a substrate on which a film is formed is included. In addition, it is efficient because the photoisomerization reaction and the polymerization can be performed simultaneously by irradiating light having anisotropy once.
  • optical anisotropic bodies can be laminated over several layers.
  • a laminated body of optically anisotropic bodies can be formed by repeating the above-described steps a plurality of times.
  • a compound having a hydrophilic group and a (meth) allylooxy group can be sufficiently cured by adding a polymerization initiator to the polymerizable liquid crystal composition layer without adding a polymerization initiator to the composition. I can do it.
  • the method of using light irradiation as a polymerization operation and using a photopolymerization initiator as a polymerization initiator is preferable because it is simple and easy.
  • the polymerization initiator the above-mentioned photopolymerization initiator or thermal polymerization initiator can be used.
  • the polymerizable liquid crystal layer contains a compound having a hydrophilic group and a (meth) attayloxy group as a liquid.
  • the compound represented by the general formula (1), the hydrophilic group, and the compound having a (meth) atyloxy group are difficult to mix with the polymerizable liquid crystal.
  • One of the characteristics is that it is hard to occur.
  • the composition for a photo-alignment film since crosslinking occurs at the interface between the compound having a hydrophilic group and a (meth) atalylooxy group and the polymerizable liquid crystal composition, the composition for a photo-alignment film It is possible to obtain an optically anisotropic body that is mechanically strong and excellent in chemical stability such as chemical resistance and solvent resistance without causing interfacial peeling between the physical layer and the polymerizable liquid crystal composition layer. .
  • the polymerizable liquid crystal composition used in the present invention is a liquid crystal composition containing a compound having a polymerizable group that exhibits liquid crystallinity alone or in a composition with another liquid crystal compound.
  • a compound having a polymerizable group that exhibits liquid crystallinity alone or in a composition with another liquid crystal compound.
  • a rod-like polymerizable liquid crystal compound, or described in JP-A-2004-149522 Such as a rod-like polypolar liquid crystal compound having an aryl ether group, for example, Handbo ⁇ of Liquid Crystals (D. Demus, J. W. Goodoy,. W. ray,
  • the rod-shaped liquid crystal compound has a liquid crystal temperature range including a low temperature around room temperature.
  • the solvent used in the polymerizable liquid crystal composition is not particularly limited, and a solvent in which the compound exhibits good solubility can be used.
  • aromatic hydrocarbons such as toluene, xylene and mesitylene
  • ester solvents such as methyl acetate, ethyl acetate and propyl acetate
  • ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone
  • tetrahydro Ether solvents such as furan , 1,2-dimethoxyethane , and azole
  • amide solvents such as N, N dimethylformamide, N-methyl 2-pyrrolidone, ⁇ -butyral lactone , black benzene, etc. Is mentioned.
  • aromatic hydrocarbons such as toluene, xylene and mesitylene
  • ester solvents such as methyl acetate, ethyl acetate and prop
  • the polymerizable liquid crystal composition of the present invention has a polymerizable group, and a liquid crystal compound may be added as necessary. However, if the amount added is too large, the liquid crystal compound may be eluted from the obtained optical anisotropic body to contaminate the laminated member, and in addition, the heat resistance of the optical anisotropic body may be reduced. Therefore, when added, it is preferably 30% by mass or less based on the total amount of the polymerizable liquid crystal compound, more preferably 15% by mass or less, and further preferably 5% by mass or less.
  • the polymerizable liquid crystal composition used in the present invention may be added with a compound having a polymerizable group but not a polymerizable liquid crystal compound.
  • a compound having a polymerizable group can be used without particular limitation as long as it is generally recognized as a polymerizable monomer or polymerizable oligomer in this technical field.
  • it is preferably 5% by mass or less, more preferably 3% by mass or less, based on the polymerizable liquid crystal composition of the present invention.
  • the polymerizable liquid crystal composition used in the present invention may contain a compound having optical activity, that is, a chiral compound.
  • the chiral compound itself does not need to exhibit a liquid crystal phase, and may or may not have a polymerizable group.
  • the direction of the spiral of the chiral compound can be appropriately selected depending on the intended use of the polymer.
  • cholesterol pelargonate having a cholesteryl group as a chiral group cholesterol stearate, and a bee having a 2-methylbutyl group as a chiral group.
  • Examples include “S-811” manufactured by Merck which has a methylheptyl group, “CM-21” and “CM-22” manufactured by Chisso.
  • the thickness (d) of the polymer obtained is divided by the helical pitch (P) in the polymer. It is preferable to add an amount in which the value (d / P) is in the range of 0.1 to LOO. A quantity S in the range of 0.1 to 20 is more preferable.
  • a stabilizer may be added to the polymerizable liquid crystal composition used in the present invention in order to improve storage stability.
  • the stabilizer include hydroquinone, hydroquinone monoalkyl ethers, tert-butylcatechols, pyrogallols, thiophenols, nitro compounds, ⁇ naphthylamines, ⁇ naphthols and the like. When added, it is preferably 1% by mass or less, particularly preferably 0.5% by mass or less, based on the polymerizable liquid crystal composition of the present invention.
  • the optical anisotropic body of the present invention is used, for example, as a raw material for a polarizing film or an alignment film, or for printing inks, paints, protective films, etc.
  • the polymerizable liquid crystal composition used in the present invention is used.
  • metals, metal complexes, dyes, pigments, fluorescent materials, phosphorescent materials, surfactants, leveling agents, thixotropic agents, gelling agents, polysaccharides, ultraviolet absorbers, infrared absorbers Agents, antioxidants, ion exchange resins, metal oxides such as titanium oxide, etc. may be added.
  • the optical anisotropic body may be subjected to a calothermal aging treatment. In this case, it is preferable to heat above the glass transition point of the prepolymerizable liquid crystal film. Usually, 50 to 300 ° C is preferable, and 80 to 240 ° C is more preferable, and 100 to 220 ° C is particularly preferable.
  • optical anisotropic body of the present invention can be peeled off from the substrate and used alone as an optical anisotropic body, or can be used as an optical anisotropic body as it is without peeling off the substrate force.
  • optical anisotropic bodies are laminated over several layers. You can also. In that case, it is possible to form a laminated body of optically anisotropic bodies by repeating the above steps a plurality of times.
  • composition (1) for photo-alignment films The same as composition (1) for photo-alignment films, except that the compound represented by formula (1), the hydrophilic group, and the type and composition (parts) of the compound having a (meth) ataryloxy group are changed.
  • compositions (2) to (12) and (16) for photo-alignment films were prepared.
  • the compositions for photo-alignment films (13) and (14) do not contain a compound having a hydrophilic group and a (meth) ataryloxy group, and the composition for photo-alignment films (15) has the general formula (1) And a compound having no hydrophilic group.
  • the composition is as shown in Table 1. [0110] [Table 1]
  • All solvents are a 1: 1 mixture of N-methyl-2-pyrrolidone (NMP) and 2-butoxyethanol (BC).
  • the acrylates used in the photo-alignment film compositions (1) to (12) and (16) are all acrylates having a hydrophilic group (Light Atylate HOA-MPL (b) manufactured by Kyoeisha Chemical Co., Ltd.) , Kyoeisha Igaku Co., Ltd. Light Atarilate HOA— HH (c), Nagase ChemteX Co., Ltd. Decorative Nartalate DA— 212 (d), Nagase ChemteX Co., Ltd. DECONAR RUATARIRATE DA— 111 (e), DECONAL ATTALLATE DA—911M (f), manufactured by Nagase ChemteX Corp. ), 3,4-di (3-allyloyloxypropoxy) benzoic acid (h), Dicklight UE-8200 (i) manufactured by Dainippon Ink & Chemicals, Inc.).
  • compositions for photo-alignment films (5) and (7) contain atelate having two types of hydrophilic groups.
  • the compositions for photo-alignment films (13) to (15) are compositions for comparative examples, and the composition for photo-alignment films (16) is a composition for reference examples.
  • the structures of compounds (C) to (k) are as follows: c
  • the orientation of the optical anisotropic body was evaluated in five stages by visual observation and observation with a polarizing microscope.
  • test solvent used here is a combination of solvents generally used for the purpose of diluting the alignment film composition.
  • composition for photo-alignment film (1) was applied onto a glass substrate with a spin coater and dried at 100 ° C. for 1 minute.
  • the dry film thickness at this time was 20 nm.
  • linear ultraviolet light with a wavelength of around 365 nm (irradiation intensity: lOmWZcm 2 ) is applied to the glass substrate through a wavelength cut filter, bandpass filter, and polarizing filter through an ultra-high pressure mercury lamp. Then, the vertical force was also irradiated and oriented. The irradiation dose was 500 mjZcm 2 .
  • the polymerizable liquid crystal composition (LC-1) was applied onto the obtained photo-alignment film with a spin coater, dried at 80 ° C for 1 minute, and then irradiated with UZcm 2 in a nitrogen atmosphere to (LC 1) And (LC-1) and the compound (b) were polymerized to obtain an optically anisotropic substance.
  • the orientation was A, and 50 OmjZcm 2, and a good orientation could be obtained with a small irradiation dose.
  • the evaluation result of solvent resistance / chemical resistance of the optical anisotropic body was A.
  • optical anisotropic body was prepared in the same manner as in Example 1 except that (2) was used instead of (1) as the composition for the photoalignment film. As a result, the orientation was A, and good orientation could be obtained with a dose as small as 500 miZcm 2 . Solvent resistance of optically anisotropic bodies' A is the result of chemical resistance evaluation.
  • optical anisotropic body was prepared in the same manner as in Example 1 except that (3) was used instead of (1) as the composition for the photoalignment film. As a result, the orientation was A, and good orientation could be obtained with a dose as small as 500 miZcm 2 . Solvent resistance of optically anisotropic bodies' A is the result of chemical resistance evaluation.
  • Example 1 As in Example 1, except that (4) was used instead of (1) as the composition for the photoalignment film, An anisotropy was made. As a result, the orientation was A, and good orientation could be obtained with a dose as small as 500 miZcm 2 . Solvent resistance of optically anisotropic bodies' A is the result of chemical resistance evaluation.
  • optical anisotropic body was prepared in the same manner as in Example 1 except that (5) was used instead of (1) as the composition for the photoalignment film. As a result, the orientation was A, and good orientation could be obtained with a dose as small as 500 miZcm 2 . Solvent resistance of optically anisotropic bodies' A is the result of chemical resistance evaluation.
  • An optical anisotropic body was prepared in the same manner as in Example 1 except that (6) was used instead of (1) as the composition for the photoalignment film. As a result, the orientation was A, and good orientation could be obtained with a dose as small as 500 miZcm 2 . Solvent resistance of optical anisotropy 'The chemical resistance evaluation result is B.
  • optically anisotropic body was prepared in the same manner as in Example 1 except that (7) was used instead of (1) as the composition for the photoalignment film. As a result, the orientation was A, and good orientation could be obtained with a dose as small as 500 miZcm 2 . Solvent resistance of optically anisotropic bodies' A is the result of chemical resistance evaluation.
  • An optical anisotropic body was prepared in the same manner as in Example 1 except that (8) was used instead of (1) as the composition for the photoalignment film. As a result, the orientation was A, and good orientation could be obtained with a dose as small as 500 miZcm 2 . Solvent resistance of optically anisotropic bodies' A is the result of chemical resistance evaluation.
  • optically anisotropic body was prepared in the same manner as in Example 1 except that (9) was used instead of (1) as the composition for the photoalignment film. As a result, the orientation was A, and good orientation could be obtained with a dose as small as 500 miZcm 2 . Solvent resistance of optically anisotropic bodies' A is the result of chemical resistance evaluation. [Example 10]
  • An optical anisotropic body was produced in the same manner as in Example 1 except that (10) was used instead of (1) as the composition for the photoalignment film. As a result, the orientation was A, and good orientation could be obtained with a small irradiation amount of 500 miZcm 2 . Solvent resistance of optical anisotropic body 'Chemical resistance evaluation result was A.
  • An optical anisotropic body was produced in the same manner as in Example 1 except that (11) was used instead of (1) as the composition for the photoalignment film. As a result, the orientation was B, and good orientation could be obtained with a small irradiation amount of 500 mjZcm 2 . Solvent resistance of optical anisotropic body 'Chemical resistance evaluation result was A.
  • An optical anisotropic body was prepared in the same manner as in Example 1 except that (12) was used instead of (1) as the composition for the photoalignment film. As a result, the orientation was A, and good orientation could be obtained with a small irradiation amount of 500 miZcm 2 . Solvent resistance of optical anisotropic body 'Chemical resistance evaluation result was A.
  • An optical anisotropic body was produced in the same manner as in Example 1 except that the composition for photoalignment film (13) was used instead of (1) as the composition for photoalignment film.
  • the orientation is A, and the force of obtaining good orientation with a dose as low as 500mJ Zcm 2 is the strength of this optical anisotropic solution.
  • the chemical resistance and solvent resistance were inferior.
  • An optical anisotropic body was prepared in the same manner as in Example 1 except that the composition for photoalignment film (14) was used instead of (1) as the composition for photoalignment film.
  • the orientation was E.
  • cormorants small such uniform yo orientations optically anisotropic medium can be obtained at the amount of irradiation, it is I ChikaraTsuta.
  • composition for photo-alignment film (15) instead of (1) as composition for photo-alignment film Produced an optical anisotropic body in the same manner as in Example 1.
  • the composition for photo-alignment film (15) contained lauryl atallylate, which is a non-hydrophilic acrylate, and phase separation occurred during the preparation of the photo-alignment film, resulting in an uneven cloudy pattern. As a result, the orientation was D, and good orientation was not obtained.
  • An optical anisotropic body was prepared in the same manner as in Example 1 except that the composition for photoalignment film (16) was used instead of (1) as the composition for photoalignment film.
  • the orientation was E.
  • cormorants small such uniform yo orientations optically anisotropic medium can be obtained at the amount of irradiation, it is I ChikaraTsuta.
  • the evaluation result of solvent resistance and chemical resistance of the optical anisotropic body was A.
  • Photo-alignment film compositions (18) to (29) were obtained in the same manner as the photo-alignment film composition (17) except that the compound and the blending amount were changed.
  • the composition is as shown in Table 2.
  • the solvents are all 1: 1 mixtures of N-methyl-2-pyrrolidone (NMP) and 2-butoxyethanol (BC).
  • All of the acrylates used in the compositions for photo-alignment films (17) to (29) are those having a hydrophilic group (Decenal atelate DA-212 (d), manufactured by Nagase ChemteX Corporation), Denars Atallate DA-111 (e) manufactured by Nagase ChemteX Corp., and Deconal Atallate DA-911M (f) manufactured by Nagase ChemteX Corp.
  • the composition for a photo-alignment film (28) may contain an acrylate having two kinds of hydrophilic groups.
  • the compositions (17) to (23) for photo-alignment films contain compounds (( q ), (r), (s), (t)) represented by the general formula (2-1).
  • the compositions (24) to (28) for the photo-alignment film contain the compound (u) represented by the general formula (2-2).
  • the composition for a photo-alignment film (29) includes a tri-phenylene compound (w) having a hydroxyl group.
  • the structures of the compounds (r) to (w) are as follows.
  • the heat resistance was evaluated by measuring and comparing the optical anisotropy retardation before and after heating at 230 ° C for 4 hours (Chuo Seiki DI4RD).
  • An optical anisotropic body was produced in the same manner as in Example 1 except that (25) was used instead of (1) as the composition for the photoalignment film.
  • the orientation is A, less irradiation of 500miZcm 2 Good orientation could be obtained with a shot amount.
  • An optical anisotropic body was produced in the same manner as in Example 1 except that (27) was used instead of (1) as the composition for the photoalignment film.
  • the orientation was A, and good orientation could be obtained with a small irradiation amount of 500 miZcm 2 .
  • Solvent resistance of optical anisotropic body 'Chemical resistance evaluation result was A.
  • the composition for photo-alignment film of the present invention By using the composition for photo-alignment film of the present invention, it is possible to provide a photo-alignment film with high sensitivity.
  • the photo-alignment film is not affected by an adhesive member used in the cell manufacturing process, or an organic solvent used for the adhesive member, the polymerizable liquid crystal composition solution, the alignment film solution, or the like.
  • the present invention can provide an optical anisotropic body using the photo-alignment film.
  • the optical anisotropic body is not affected by an organic solvent or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

明 細 書
光配向膜用組成物、光学異方体及びその製造方法
技術分野
[0001] 本発明は、液晶表示素子や光学異方体の液晶配向膜として有用な光配向膜用組 成物に関し、更に該光配向膜用組成物からなる光配向膜を使用した光学異方体、及 び、その製造方法に関する。
背景技術
[0002] 液晶表示装置にお!、ては、液晶の分子配列の状態を電場等の作用によって変ィ匕 させて、これに伴う光学特性の変化を表示に利用している。多くの場合、液晶は二枚 の基板の間隙に注入して用いられるが、この液晶分子を特定の方向に配列させるた めに、基板の内側に液晶配向膜を配置する。
また最近では、液晶セルと偏光板との間に光学異方体の一種である光学補償シー ト (位相差板)として、重合性液晶材料を配向させた状態で硬化させて得た光学異方 体が使用されるようになり、該重合性液晶材料を配向させる材料としても液晶配向膜 が使用される。
[0003] 従来液晶配向膜としては、ポリイミド等の高分子の膜を一方向に布等で摩擦したラ ビング膜が使用される。しかしながら、ラビング法では機械的に擦ることによる高分子 膜表面の微細な傷が、液晶配向欠陥の原因となったり、ラビング時の押し付け圧の 不均一性などにより、配向ムラが生じたりすることで、液晶素子の精細度が低下すると いう問題がある。
また、光学補償シート (位相差板)は、広波長帯域化や視野角安定性を高精度化さ せる目的で使用する場合も多ぐその場合は、例えば 1Z4波長板と 1Z2波長板との 積層体、あるいは、 A—プレートと C—プレートとの積層体が使用される。しかし、該積 層体を製造する方法、即ち液晶配向膜層を作成後、重合性液晶層を硬化させるェ 程を繰り返す場合、重合性液晶層をラビングで作成したのでは、装置が非常に大が 力りとなり、連続的に作成することができない。従って、液晶配向膜、及び液晶層の全 ての積層工程を連続的に行うことができるような、液晶配向膜を得る方法が求められ ている。
[0004] このような問題を解決するために、近年ラビングを行わない液晶配向膜作製技術が 注目されている。とりわけ、基板上に設けた膜に何らかの異方性を有する光を照射す ることで液晶の配向を得る光配向法は、量産性に優れ、大型の基板にも対応できるこ とから実用化が期待されて 、る。
このような光配向膜となり得るものとしてはァゾベンゼン誘導体のように光異性ィ匕反 応をする化合物、シンナメート、クマリン、カルコン等の光二量ィ匕反応を生じる部位を 有する化合物やポリイミドなど異方的な光分解を生じる化合物がある。
[0005] 現在最も低照射量の異方性を有する光で再配向し (以下、感度と称す)、液晶配向 能に優れる光配向膜材料としては、例えば、下記構造式で表されるようなァゾィ匕合物 が知られている(例えば特許文献 1参照)。該ァゾ構造を有する化合物は、例えば 50 OmjZcm2の低照射量で液晶配向能力を示す。
しかし該ァゾィ匕合物を使用した光配向膜は低分子化合物であるため、液晶セル製 造段階で使用するシール剤等の接着部材で侵されることがあった。また、該光配向 膜と重合性液晶層の積層を繰り返すような積層された光学異方体の製造においては 、光配向膜上に重合性液晶組成物溶液を塗布する工程や、重合性液晶層上に光配 向膜用組成物溶液を塗布する工程を有するが、これらの塗布溶液に使用する溶剤 等によって、既に作成後の液晶配向膜層や重合性液晶層が侵されることもあり、膜の はがれ、あるいは均一な光学特性が得られないことがあった。また、液晶セル製造段 階、あるいは、重合性液晶材料を配向させた状態で硬化させて光学異方層を得た後 工程にもたらされる高温によって光学異方層が劣化し、光学特性が劣化するという問 題があった。
[0006] [化 1]
Figure imgf000004_0001
該ァゾィ匕合物を固定ィ匕する目的で、該化合物をアタリレート化した化合物が知られ ている。(特許文献 2参照)該化合物を配向後、重合させた光配向膜は耐光性に優 れる。しかし、アタリレートイ匕したために感度が下がってしまい、低照射量で再配向さ せることが困難であった。また、該ァゾ化合物を使用した光配向性重合性組成物層と 、重合性液晶組成物層との積層膜を基板上に形成し、該重合性基を有する液晶組 成物を配向させた状態で、両層を重合させたことを特徴とする光学異方体も知られて いる(特許文献 3, 4参照)。該方法は、光配向膜層と液晶重合体層との両層間に結 合関係を導入でき、密着性及び耐久性に優れた光学異方体を得る好ま ヽ方法で ある。しかし、該ァクリレートイ匕したァゾィ匕合物を使用しているので、感度が低いという 問題は解決できていない。また、該ァゾィ匕合物を使用した光学異方体も、該光配向 膜と重合性液晶層の積層を繰り返すような積層された光学異方体の製造において、 膜のはがれ、あるいは均一な光学特性が得られな!/、ことがあった。
[0008] 特許文献 1 :特開平 5— 232473号公報
特許文献 2:特開 2002— 250924号公報
特許文献 3 :特開 2005— 173547号公報
特許文献 4:特開 2005 - 173548号公報
発明の開示
発明が解決しょうとする課題
[0009] 発明が解決しょうとする課題は、感度が高ぐ且つ、セル製造過程で使用するような 接着部材、あるいは、接着部材ゃ重合性液晶組成物溶液や配向膜溶液等に使用す る有機溶剤に侵されることのない光配向膜のための光配向膜用組成物、該光配向膜 用組成物からなる光配向膜を使用した、有機溶剤等に侵されることのない光学異方 体、及び、その製造方法を提供することにある。
課題を解決するための手段
[0010] 本発明者らは、前記構造式で表されるような感度の高いァゾィ匕合物に、該ァゾ化合 物と相溶するような重合性ィ匕合物を添加した光配向膜用組成物が上記課題を解決 できることを見いだした。
一般に、塗膜等の耐有機溶剤性を上げる方法として塗膜の架橋密度を高める方法 が知られている力 前記ァゾィ匕合物に通常知られている (メタ)アタリレート等を混和し たのでは、前記ァゾィ匕合物の感度や液晶配向能が著しく劣ってしまうことがあった。 本発明者らは、感度を下げずに耐有機溶剤性 (以下、耐溶剤性とする)を上げる方 法として、前記ァゾ化合物と相溶するような親水性基と (メタ)アタリロイルォキシ基を 有する化合物を添加することが、最も効果的であることを見いだした。
親水性基と (メタ)アタリロイルォキシ基を有する化合物は、前記ァゾィ匕合物と相溶し 、反応前は分子容が小さいので化合物の自由体積を妨げない。前記ァゾ化合物は、 光異性化の構造変化に要する自由体積を維持できるので、感度や液晶配向能をそ のまま保つことができる。一方、親水性基と (メタ)アタリロイルォキシ基を有する化合 物を重合後は、重合物である (メタ)アクリル榭脂で前記ァゾィ匕合物の周囲が囲まれ ることになり、前記ァゾィ匕合物は光異性ィ匕反応に必要な自由体積を奪われてしまうの で、有機溶剤等により配向性が乱れたり、はがれが生じたりすることがない。親水性 基を有することで基板との密着性にも優れるため、基板との界面剥離に対しても効果 を示す。
あるいは、光学異方体を作製する場合には、親水性基と (メタ)アタリロイルォキシ基 を有する化合物が重合性液晶と重合して一体ィ匕し、さらに親水性基を有することで基 板との密着性にも優れるため、有機溶剤等により配向性が乱れたり、はがれが生じた りすることがな 、光学異方体を作製することができる。
[0011] 更に本発明者らは、前記化合物と親水性基と (メタ)アタリロイルォキシ基を有する 化合物との混合物に、更に特定の化合物を添加することで、耐熱性をも向上させるこ とを見いだした。該組成物を光配向膜用の組成物として使用することで、有機溶剤に 侵されることなぐ且つ、耐熱性に優れた光配向膜、または光学異方体を作成するこ とがでさる。
[0012] 即ち本発明は、一般式(1)で表される化合物、及び、親水性基と (メタ)アタリロイル ォキシ基を有する化合物を含有する光配向膜用組成物を提供する。
[0013] [化 2]
Figure imgf000006_0001
(1)
(式中、 R1および R2は各々独立して、水素原子、ハロゲン原子、カルボキシル基若し くはそのアルカリ金属塩、ハロゲン化メチル基、ハロゲン化メトキシ基、シァノ基、 -ト 口基、—OR5 (ただし R5は、炭素原子数 1〜6のアルキル基、炭素原子数 3〜6のシク 口アルキル基又は炭素原子数 1〜6のアルコキシ基で置換された炭素原子数 1〜6の アルキル基を表す)、炭素原子数 1〜4のヒドロキシルアルキル基、 CONR6R7 (た だし R6及び R7は、各々独立して水素原子又は炭素原子数 1〜6のアルキル基を表 す)、又はメトキシカルボ-ル基を表し、 R3および R4は各々独立して、カルボキシル 基若しくはそのアルカリ金属塩、スルホ基若しくはそのアルカリ金属塩、ニトロ基、アミ ノ基、力ルバモイル基、アルコキシカルボ-ル基、スルファモイル基、又はヒドロキシ ル基を表す。 )
[0014] また本発明は、液晶配向膜上に作成した重合性液晶組成物膜を配向させた状態 で重合させて得られる光学異方体であって、該液晶配向膜が前記記載の光配向膜 用組成物を配向させて得られたものである光学異方体を提供する。
[0015] また本発明は、基板上に前記記載の光配向膜用組成物の膜を作成する工程 1と、 前記光配向膜用組成物の膜上に重合性液晶組成物膜を作成する工程 2と、異方性 を有する光を照射して、一般式(1)で表される化合物及び液晶分子を配向させなが ら親水性基と (メタ)アタリロイルォキシ基を有する化合物と重合性液晶組成物を重合 させる工程 3を、この順に行う光学異方体の製造方法を提供する。
[0016] また本発明は、基板上に前記記載の光配向膜用組成物の膜を作成する工程 1と、 前記光配向膜用組成物の膜に異方性を有する光を照射して一般式(1)で表される 化合物を配向させる工程 2と、前記光配向膜用組成物の膜上に重合性液晶組成物 膜を作成する工程 3と、熱又は光により親水性基と (メタ)アタリロイルォキシ基を有す る化合物と重合性液晶組成物を重合させる工程 4を、この順に行う光学異方体の製 造方法を提供する。
[0017] また本発明は、基板上に前記記載の光配向膜用組成物の膜を作成する工程 1と、 前記光配向膜用組成物の膜に異方性を有する光を照射して一般式(1)で表される 化合物を配向させる工程 2と、親水性基と (メタ)アタリロイルォキシ基を有する化合物 を熱又は光により重合させる工程 3と、前記光配向膜用組成物の膜上に重合性液晶 組成物膜を作成する工程 4と、熱又は光により重合性液晶組成物を重合させる工程 5を、この順に行う光学異方体の製造方法を提供する。
[0018] また本発明は、基板上に前記記載の光配向膜用組成物の膜を作成する工程 1と、 前記光配向膜用組成物の膜に異方性を有する光を照射して一般式(1)で表される 化合物を配向させながら親水性基と (メタ)アタリロイルォキシ基を有する化合物を重 合させる工程 2と、前記光配向膜用組成物の膜上に重合性液晶組成物を塗布し配 向させる工程 3と、熱又は光により重合性液晶組成物を重合させる工程 4を、この順 に行う光学異方体の製造方法を提供する。
発明の効果
[0019] 本発明の光配向膜用組成物を使用することで、感度が高ぐ且つ、セル製造過程 で使用するような接着部材、あるいは、接着部材、重合性液晶組成物溶液、配向膜 溶液等に使用する有機溶剤に侵されることのない光配向膜、及び、該光配向膜を使 用した、有機溶剤等に侵されることのない光学異方体が得られる。
発明を実施するための最良の形態
[0020] [化 3]
Figure imgf000008_0001
(1)
[0021] (一般式 (1)で表される化合物)
一般式(1)において、 R1および R2は各々独立して、水素原子、ハロゲン原子、カル ボキシル基若しくはそのアルカリ金属塩、ハロゲン化メチル基、ハロゲン化メトキシ基 、シァノ基、ニトロ基、—OR5 (ただし R5は、炭素原子数 1〜6のアルキル基、炭素原 子数 3〜6のシクロアルキル基又は炭素原子数 1〜6のアルコキシ基で置換された炭 素原子数 1〜6のアルキル基を表す)、炭素原子数 1〜4のヒドロキシルアルキル基、 CONR6R7 (ただし R6及び R7は、各々独立して水素原子又は炭素原子数 1〜6の アルキル基を表す)、又はメトキシカルボ-ル基を表す。
[0022] ハロゲン原子としては、フッ素原子や塩素原子が挙げられる。カルボキシル基のァ ルカリ金属塩のアルカリ金属としては、リチウム、ナトリウム、カリウム等が挙げられる。 ハロゲン化メチル基としては、トリクロロメチル基やトリフルォロメチル基が挙げられる。 ノ、ロゲン化メトキシ基としては、クロロメトキシ基ゃトリフルォロメトキシ基等が挙げられ る。
R5の炭素原子数 1〜6のアルキル基としては、メチル基、ェチル基、プロピル基、ブ チル基、ペンチル基、へキシル基、 1 メチルェチル基等が挙げられる。 R5で表され る炭素原子数 1〜6のアルコキシ基で置換された炭素原子数 1〜6のアルキル気とし ては、メトキシメチル基、 1 エトキシェチル基、テトラヒドロビラニル基等が挙げられる
[0023] 炭素原子数 1〜4のヒドロキシルアルキル基としては、ヒドロキシルメチル基、 1ーヒド 口キシルェチル基、 2—ヒドロキシルェチル基、 1ーヒドロキシルプロピル基、 2—ヒドロ キシルプロピル基、 3 ヒドロキシルプロピル基、 1ーヒドロキシルブチル基等が挙げら れる。
R6及び R7で表される炭素原子数 1〜6のアルキル基としてはメチル基、ェチル基、プ 口ピル基、ブチル基、ペンチル基、へキシル基、 1 メチルェチル基等が挙げられる これらの中でも、ハロゲン原子、カルボキシル基、ハロゲン化メチル基、ハロゲン化 メトキシ基、メトキシ基、エトキシ基、プロポキシ基、ヒドロキシルメチル基、力ルバモイ ル基、ジメチルカルバモイル基、シァノ基が好ましぐカルボキシル基、ヒドロキシルメ チル基、またはトリフルォロメチル基は良好な配向性が得られる点で特に好ま 、。
[0024] また、 R1及び R2は、 4, 4,—ビス(フエ-ルァゾ)ビフエ-ル骨格の両端のフエ-レン 基の、ァゾ基からみてメタ位に置換していると、優れた光配向性が得られ特に好まし い。
[0025] R3および R4は各々独立して、カルボキシル基若しくはそのアルカリ金属塩、スルホ 基若しくはそのアルカリ金属塩、ニトロ基、アミノ基、力ルバモイル基、アルコキシカル ボ-ル基、スルファモイル基、又はヒドロキシル基を表す。カルボキシル基やスルホ基 のアルカリ金属塩のアルカリ金属としては、リチウム、ナトリウム、カリウム等が挙げられ る。これら R3および R4は、 4, 4,一ビス(フエ-ルァゾ)ビフエ-ル骨格の 2、 2,位に置 換していると、優れた光配向性が得られ、特に好ましい。
[0026] 一般式(1)における R3および R4は、光配向性能やその他の特性に最も影響を与え る部位であると推定され、 R3および R4に導入しうる置換基の種類や組合せにより、様 々な特性が得られる。
前記 R3および R4がカルボキシル基若しくはそのアルカリ金属塩、スルホ基若しくはそ のアルカリ金属塩であると、ガラスや ITOなどの透明電極に対して親和性が高ぐ基 板表面に均一に光配向膜を形成することができるため好ましい。
また、前記 R3および R4が力ルバモイル基、スルファモイル基であると、得られる光配 向膜上に重合性液晶を重合させて得た光学異方体が高 ヽ耐熱性を示すので、耐熱 性を必要とする用途に有用である。
[0027] 前記一般式(1)で表される化合物は、単体でも、一般式(1)で表される化合物の範 囲内の I^〜R4が各々異なる化合物を複数混合して使用してもよい。
複数混合使用する場合にぉ 、ては、 R3および R4がスルホ基若しくはそのアルカリ金 属塩である化合物と、 R3および R4が力ルバモイル基、スルファモイル基である化合物 とを混合して使用すると、得られる光配向膜、及び光学異方体の、基板に対する密着 性、及び耐熱性とを付与することができ好まし 、。
[0028] 特に、前記一般式(1)における R3および R4がスルホ基若しくはそのアルカリ金属塩 である化合物(1 1)と、一般式 (2— 1)で表される化合物とを含むことが好ま 、。 その場合、化合物(1— 1)は、 R1および R2がカルボキシル基若しくはそのアルカリ金 属塩、ヒドロキシルメチル基、または、トリフルォロメチル基であることが好ましぐカル ボキシル基またはそのアルカリ金属塩、またはヒドロキシルメチル基が更に好ましぐ カルボキシル基またはそのアルカリ金属塩が特に好ましい。
[0029] (一般式 (2— 1)で表わされる化合物)
[0030] [化 4]
Figure imgf000010_0001
(2- 1)
[0031] 一般式(2—1)中、 Ru、 ま、各々独立して、ヒドロキシル基、又は (メタ)アタリロイ ルォキシ基、(メタ)アタリロイルォキシ基、(メタ)アクリルアミド基、ビュル基、ビュルォ キシ基、及びマレイミド基からなる群から選ばれる重合性官能基を表す。 X11は、 R11がヒドロキシル基の場合、単結合を表し、 R11が重合性官能基の場合、 - (A'-B1) 一で表される連結基を表し、
X12は、 R12がヒドロキシル基の場合、単結合を表し、 R12が重合性官能基の場合、 - ( A2-B2) —で表される連結基を表す。ここで、 A1は R11に結合するものとし、 A2は R12 に結合するものとする。
A1及び A2は各々独立して単結合、又は二価の炭化水素基を表し、 B1及び B2は各 々独立して単結合、一 O 、 一 CO— O 、 一 O— CO 、 一 CO— NH 、 一 NH— CO—、— NH— CO— O 、又は— O— CO— NH を表す。 m及び nは各々独立し て 0〜4の整数を表す。但し、 m又は nが 2以上のとき、複数ある A B1, A2及び B2は 同じであっても異なっていても良い。但し、二つの B1又は B2の間に挟まれた A1又は A2は、単結合ではないものとする。
R13および R14は各々独立して、水素原子、ハロゲン原子、カルボキシル基若しくは そのアルカリ金属塩、ハロゲン化メチル基、ハロゲン化メトキシ基、シァノ基、ニトロ基 、 一 OR17 (ただし R17は、炭素原子数 1〜6のアルキル基、炭素原子数 3〜6のシクロ アルキル基又は炭素原子数 1〜6のアルコキシ基で置換された炭素原子数 1〜6の アルキル基を表す)、炭素原子数 1〜4のヒドロキシルアルキル基、又は CONR18R 19 (R18及び R19は、各々独立して水素原子又は炭素原子数 1〜6のアルキル基を表す )、またはメトキシカルボ-ル基を表す。
R15および R16は各々独立して、力ルバモイル基、又はスルファモイル基を表す。
[0032] 前記一般式(2—1)で表される化合物のうち、 R11および R12がヒドロキシル基である 化合物は、前記一般式(1)の範囲内の化合物である。
前記一般式 (2— 1)で表される化合物は、単体でも、一般式 (2— 1)で表される化合 物の範囲内の異なる化合物を複数混合して使用してもょ 、。
前記一般式 (2—1)で表される化合物のうち、 R11および R12がヒドロキシル基であり 且つ R13および R"が炭素原子数 1〜4のヒドロキシルアルキル基である化合物が好ま しく、 R11および R12がヒドロキシル基であり且つ R13および R"がヒドロキシルメチル基で ある化合物が特に好ましい。
[0033] また、前記一般式(2— 1)で表される化合物の代わりに、一般式(2— 2)で表される 化合物や、置換基としてヒドロキシル基を有するトリフエ-レン(2— 3)を添加しても、 同様の効果を得ることができる。なお、前記一般式 (2— 1)で表される化合物、一般 式(2— 2)で表される化合物、及び一般式(2— 3)で表される化合物を総称して、化 合物(2)とする。
一般式(2— 2)で表される化合物としては R21および R22が、各々独立して、水素原 子、メチル基、あるいはメトキシ基であるものが好ましい。
[0034] (一般式(2— 2)で表される化合物)
[0035] [化 5]
Figure imgf000012_0001
(2- 2)
[0036] 一般式 (2— 2)中、 R21および R22は各々独立して、水素原子、炭素原子数 1〜6の アルキル基あるいは炭素原子数 1〜6のアルコキシ基を表し、 A11及び A12は各々独 立して、置換基としてアミノ基及びスルホ基若しくはそのアルカリ金属塩を有するナフ タレン環、又は、置換基としてアミノ基及びスルホ基若しくはそのアルカリ金属塩を有 するベンゼン環を表す。
前記一般式(2— 2)で表される化合物は、単体でも、一般式(2— 2)で表される化 合物の範囲内の異なる化合物を複数混合して使用してもょ 、。
[0037] (置換基としてヒドロキシル基を有するトリフエ-レン(2— 3) )
置換基としてヒドロキシル基を有するトリフエ-レン(2— 3)において、置換基であるヒ ドロキシル基の数は特に限定はないが、 3〜6が好ましぐ 6が最も好ましい。
[0038] これらの、前記一般式(2— 1)で表される化合物、前記一般式(2— 2)で表される化 合物、及び、前記置換基としてヒドロキシル基を有するトリフエ-レン(2— 3)力 なる 群力も選ばれる少なくとも 1つの化合物(2)は、前記化合物(1— 1)と、前記化合物( 2)との比率力 1 : 0. 2〜1: 5の範囲となるように添加するのが好ましぐ更に好ましく は 1 : 0. 5〜 1 : 2の範囲が好ましい。
[0039] 本発明で使用する一般式(1)で表される化合物の例としては、例えば、下記構造 の化合物が挙げられる。 [0040] [化 6] a
Figure imgf000013_0001
[0043] [化 9]
Figure imgf000013_0002
[0044] 本発明で使用する一般式 (2 1)で表される化合物の例としては、例えば、下記構 造の化合物が挙げられる。
[0045] [化 10]
Figure imgf000013_0003
[0046] [化 11]
Figure imgf000013_0004
[0047]
Figure imgf000013_0005
[0048]
Figure imgf000014_0001
[0049] [化 14]
Figure imgf000014_0002
[0050] [化 15]
Figure imgf000014_0003
[0051] [化 16]
Figure imgf000014_0004
[0052] [化 17]
Figure imgf000014_0005
[0053] 本発明で使用する一般式 (2— 2)で表される化合物の例としては、例えば、下記構 造の化合物が挙げられる。
[0054] [化 18]
Figure imgf000014_0006
[0055] [化 19]
Figure imgf000014_0007
[0056] [化 20]
Figure imgf000014_0008
[0057] [化 21]
Figure imgf000015_0001
[0058] [化 22]
Figure imgf000015_0002
[0059] [化 23]
Figure imgf000015_0003
[0062] 本発明で使用する前記置換基としてヒドロキシル基を有するトリフエ-レン (2— 3) の例としては、例えば、下記構造の化合物が挙げられる。
[0063] [化 26]
Figure imgf000015_0004
[0064] 一般式(1)で表される化合物は、水あるいは極性有機溶媒に高い溶解性を示し、 かつガラス等に対して良好な親和性を示す。該化合物を水あるいは極性有機溶媒に 溶解してなる光配向膜用組成物を、ガラス等の基板に塗布した後、水あるいは極性 有機溶媒を除去するだけで、基板上に一様で、かつ安定な光配向膜用膜を形成す ることがでさる。
[0065] (親水性基と (メタ)アタリロイルォキシ基を有する化合物)
本発明で使用する親水性基と (メタ)アタリロイルォキシ基を有する化合物の親水性 基としては、ヒドロキシル基、カルボキシル基、スルホ基、アミノ基等が挙げられる。中 でも、ヒドロキシル基あるいはカルボキシル基を有する (メタ)アタリレートが、一般式(1 )で表される化合物と混和性がよく好ま 、。 1分子あたりの (メタ)アタリロイルォキシ 基の数には特に制限はなく、 1つでも 2つ以上でも良い。(メタ)アタリロイルォキシ基 数の実用的な範囲としては、 1〜6であり、 1〜4が好ましい。
また、光配向膜や光学異方体の製造時にかかる乾燥時等の熱を考慮すると、使用 する親水性基と (メタ)アタリロイルォキシ基を有する化合物の 1気圧下における沸点 は 100°C以上であることが好ましい。
また、分子量及び粘度については、通常本発明の光配向膜用組成物は溶媒で希 釈して使用するため特に限定はないが、分子量の好ましい範囲としては数平均分子 量 100〜5000であり 150〜2000の範囲力実用的であり好まし!/ヽ。
[0066] ヒドロキシル基と (メタ)アタリロイルォキシ基を有する化合物としては、ヒドロキシル基 を 2つ以上有するもの力 親水性が高く特に好ましい。
具体例としては、例えば、グリシジル (メタ)アタリレート等のモノグリシジルエーテルや 、プロピレングリコール、ブタンジオール、ペンタンジオール、へキサンジオール、ジ エチレングリコーノレ、ジプロピレングリコール、トリエチレングリコール、トリプロピレング リコーノレ、テトラエチレンダリコール、ポリエチレングリコール、ポリプロピレングリコーノレ 、ネオペンチルグリコール、ヒドロキシルピバリン酸ネオペンチルグリコール、ビスフエ ノール A、エトキシ化ビスフエノール A等の 2価アルコールのジグリシジルエーテルや 、トリメチロールプロパン、エトキシ化トリメチロールプロパン、プロポキシ化トリメチロー ルプロパン、グリセリン等の 3価アルコールのトリグリシジルエーテル、少なくとも 1個の 芳香環または脂環を有する多価フ ノール (なお、ここでいう多価フ ノールとは、ビ スフエノール八、ビスフエノール F、ビスフエノール S等のビスフエノール化合物又はビ スフエノール化合物のアルキレンオキサイド付カ卩体、フエノールノボラック、タレゾール ノボラック等またはそのアルキレンオキサイド付加体等を例として挙げることが出来る) のポリグリシジルエーテル等のグリシジルエーテル化合物のグリシジル基に、(メタ)ァ クリル酸を反応させて得たエポキシ (メタ)アタリレートイ匕合物や、ペンタエリスリトール ジ (メタ)アタリレート、ペンタエリスリトールトリ(メタ)アタリレート、ジペンタエリスリトー ルジ (メタ)アタリレート、ジペンタエリスリトールトリ(メタ)アタリレート、ジペンタエリスリト 一ルペンタ(メタ)アタリレート、グリセリンジ (メタ)アタリレート、トリメチロールプロパン ジ(メタ)アタリレート、ジトリメチロールプロパンジ (メタ)アタリレート、ジトリメチロールプ 口パントリ(メタ)アタリレート、ジトリメチロールプロパンテトラ (メタ)アタリレート、ジトリメ チロールプロパンへキサ(メタ)アタリレート、エトキシ化トリメチロールプロパンジ (メタ) アタリレート、プロポキシ化トリメチロールプロパンジ (メタ)アタリレート、トリス 2—ヒドロ キシルェチルイソシァヌレートジ (メタ)アタリレート等の、ポリオールのヒドロキシル基 の一部に (メタ)アクリル酸を反応させて得られるアルコール性 (メタ)アタリレートイ匕合 物が挙げられる。
[0067] カルボキシル基と (メタ)アタリロイルォキシ基を有する化合物は、カルボキシル基の 親水性が十分高いことから、 1分子あたりのカルボキシル基の数に特に制限はなぐ 1 つでも 2つ以上でも良い。しかしカルボキシル基の数が増えていくと溶剤に対する溶 解性が悪くなり、化合物の結晶性も高くなるので、接着部材あるいは溶剤に対する耐 性が悪ィ匕しな 、範囲でカルボキシル基の数は少な 、ものが好まし 、。特に芳香環に 直結したカルボキシル基を持つ化合物の場合は 1分子あたりのカルボキシル基の数 は 2以下が好ましい。
[0068] 具体的には、例えば、 2- (メタ)アタリロイルォキシェチルへキサヒドロフタレート、 2 —アタリロイルォキシェチルフタレート、 2—メタクリロイルォキシェチルフタレート、ェ チレンオキサイド変性琥珀酸アタリレート等の、カルボキシル基及び一分子中に少な くとも 1つ以上の (メタ)アタリロイルォキシ基を有する化合物や、 2—ヒドロキシルェチ ル (メタ)アタリレ―トの等のヒドロキシル基及び (メタ)アタリロイルォキシ基を有するィ匕 合物に無水フタル酸等の酸無水物を付加させて得られる化合物や、末端に (メタ)ァ クリロイルォキシ基が導入されたアルキル (ォキシ)基を置換基に有する安息香酸誘 導体が挙げられる。
前記安息香酸誘導体の場合、置換基である末端に (メタ)アタリロイルォキシ基が導 入されたアルキル (ォキシ)基の数は 1つでもそれ以上でも良いが、 1〜3が合成の容 易さの面力も好ましい。また、複数の末端に (メタ)アタリロイルォキシ基が導入された アルキル (ォキシ)基を導入する場合には、置換する位置として分子の対称性を低く するような位置を選択することが、結晶性を高くしすぎないという面で好ましい。具体 的には、 2—(ω—(メタ)アタリロイルォキシアルキル (ォキシ))安息香酸、 2, 3—ジ( ω - (メタ)アタリロイルォキシアルキル (ォキシ) )安息香酸、 2, 4—ジ( ω— (メタ)ァ クリロイルォキシアルキル (ォキシ))安息香酸、 2, 5—ジ(ω— (メタ)アタリロイルォキ シアルキル (ォキシ) )安息香酸、 3— ( ω— (メタ)アタリロイルォキシアルキル (ォキシ ) )安息香酸、 3, 4—ジ( ω—(メタ)アタリロイルォキシアルキル (ォキシ))安息香酸、 4— ( ω— (メタ)アタリロイルォキシアルキル (ォキシ) )安息香酸で、アルキル鎖のメ チレン基の数が 1〜14のものが挙げられる。特にメチレン基の数が 2〜10のものがさ らに好ましい。
[0069] カルボキシル基と (メタ)アタリロイルォキシ基を有する化合物の市販品としては、例 えば共栄社ィ匕学 (株)社製の商品名「ライトアタリレート ΗΟΑΗΗ」、「ライトアタリレート ΗΟΗΗ」、「ライトアタリレート HOMPL」、「ライトアタリレート HOMPP」、「ライトアタリ レート HOA— MS」などが挙げられる。
[0070] 前記親水性基と (メタ)アタリロイルォキシ基を有する化合物は、 1種類で使用しても よく 2種類以上混合して使用してもよい。
また、前記親水性基と (メタ)アタリロイルォキシ基を有する化合物は親水性が高 、 ため、一般式(1)で表される化合物との相溶性は良好であるが、まれに結晶化が生じ る組み合わせがある。その場合、平滑な膜が得られないため配向規制力に影響が生 じるおそれがあるので、配合した状態で結晶性が著しく高くならないような前記親水 性基と (メタ)アタリロイルォキシ基を有する化合物と一般式(1)で表される化合物との 組み合わせが好ましい。結晶化の有無は、例えば、光学的観察や分光分析、散乱実 験等により判断が可能である。
[0071] 前記一般式(1)で表される化合物と親水性基と (メタ)アタリロイルォキシ基を有する 化合物との配合比は特に限定はないが、該化合物の添加量があまりに少なすぎると 十分な配向規制力が得られな 、可能性があり、親水性基と (メタ)アタリロイルォキシ 基を有する化合物の添加量があまりに少なすぎると接着部剤あるいは溶剤に対する 耐性が十分得られな 、可能性があるので、通常は親水性基と (メタ)アタリロイルォキ シ基を有する化合物は、組成物中の全不揮発分に対して 10〜90質量%の範囲が 好ましぐ 20〜85質量%の範囲がなお好ましぐ 20〜80質量%の範囲がさらに好ま しぐ 30〜80質量%の範囲が特に好ましい。また、配合した状態で結晶性が著しく 高くならな 、ような前記一般式(1)で表される化合物と親水性基と (メタ)アタリロイル ォキシ基を有する化合物の配合比にするのが好ましい。
[0072] 本発明の光配向膜用組成物を使用した光配向膜は、ネマチック液晶等の表示素 子用として使用する汎用の液晶の配向膜として、あるいは、光学異方体作成時に使 用する重合性液晶組成物の配向膜として、好適に使用することができる。
[0073] (溶剤)
本発明で使用する光配向膜用組成物は、塗布性を良好にする目的で、通常溶媒 を使用する。溶媒に使用する溶剤としては、特に限定はないが、前記化合物が良好 な溶解性を示す溶媒を使用するのが好ましい。例えば、メタノール、エタノール等の アルコール系溶剤、エチレングリコール、プロピレングリコール、 1, 3—ブタンジォー ル等のジオール系溶剤、テトラヒドロフラン、 2—メトキシェターノール、 2—ブトキシェ タノール、 2- (2—エトキシエトキシ)エタノール、 2—(2—ブトキシエトキシ)エタノー ル等のエーテル系溶剤、 2—ピロリドン、 N—メチルピロリドン、ジメチルホルムアミド、 ジメチルァセトアミド等のアミド系溶剤、 y—ブチ口ラタトン、クロ口ベンゼン、ジメチル スルホキシド、等が挙げられる。これらは、単独で使用することもできるし、 2種類以上 混合して使用することもできる。また、本発明の効果を損なわない範囲で、公知慣用 の添加剤を添カ卩してもょ 、。
通常、固形分比が 0. 2質量%以上となるように調製する。中でも 0. 5〜10質量%と なるように調製することが好ま 、。 [0074] (添加剤)
本発明で使用する光配向膜用組成物を均一に塗布し、膜厚の均一な光配向膜を 得るために、汎用の添加剤を使用することもできる。例えば、レべリング剤、チキソ剤、 界面活性剤、紫外線吸収剤、赤外線吸収剤、抗酸化剤、表面処理剤、等の添加剤 を液晶の配向能を著しく低下させない程度添加することができる。
[0075] (光配向膜、光配向膜を有する光学異方体あるいは光学素子の製造方法)
本発明の光配向膜用組成物を使用して光配向膜を得るには、該光配向膜用組成 物を基板上に塗布乾燥した後に、紫外線、あるいは、可視光線等の異方性を有する 光を照射し、一般式(1)で表される化合物を配向させる。同時に、又はその後、光ま たは熱により親水性基と (メタ)アタリロイルォキシ基を有する化合物を重合させること で、光配向膜を得ることができる。
[0076] (塗布、基板)
本発明で使用する光配向膜用組成物を、基板上にスピンコーティング法、グラビア 印刷法、フレキソ印刷法、インクジェット法、ダイコーティング法、キャップコーティング 法、デイツビング法等、公知慣用の方法によって塗布または印刷し、乾燥させて膜を 得る。使用する基板は、液晶表示素子や光学異方体に通常用いられる基板であって 、光配向膜用組成物溶液の塗布後の乾燥時、あるいは液晶素子製造時における加 熱に耐えうる耐溶剤性と耐熱性を有する材料であれば、特に制限はない。そのような 基板としては、ガラス基板、セラミックス基板、金属基板や高分子材料基板、等が挙 げられる。高分子材料基板としては、セルロース誘導体、ポリシクロォレフィン誘導体 、ポリエステル、ポリオレフイン、ポリカーボネート、ポリアタリレート、ポリアリレート、ナ ィロン、ポリスチレン等を用いることができる。光配向膜用組成物の塗布性や接着性 向上のために、これらの基板の表面処理を行っても良い。表面処理として、オゾン処 理、プラズマ処理などが挙げられる。また、光の透過率や反射率を調節するために、 基板表面に有機薄膜、無機酸ィ匕物薄膜や金属薄膜等を蒸着など方法によって設け ても良い。
通常は、有機溶剤で希釈した溶液を塗布するので、塗布後は乾燥させ、光配向膜 用膜を得る。乾燥させる場合は加熱乾燥が好ましい。 [0077] (光異性化工程)
前記方法により得た光配向膜用膜に、異方性を有する光を照射して液晶配向機能 を付与 (以下、光異性ィ匕工程と略す)して、光異性化した光配向膜用膜を作成する。 光異性ィ匕工程で使用する、異方性を有する光としては、直線偏光や楕円偏光等の 偏光、もしくは基板面に対して斜めの方向から非偏光があげられる。偏光は直線偏 光、楕円偏光のいずれでも良いが、効率よく光配向を行うためには、消光比の高い 直線偏光を用いることが好まし 、。
[0078] また、光照射装置において偏光を得るためには偏光フィルタ一等を用いる必要が あるので、膜面に照射される光強度が減少するといつた欠点があるが、膜面に対して 斜め方向力 非偏光を照射する方法では、照射装置に偏光フィルタ一等を必要とせ ず、大きな照射強度が得られ、光配向のための照射時間を短縮することができるとい う利点がある。このときの非偏光の入射角は基板法線に対して 10° 〜80° の範囲 が好ましぐ照射面における照射エネルギーの均一性、得られるプレチルト角、配向 効率等を考慮すると、 20° 〜60° の範囲が更に好ましぐ 45° が最も好ましい。 照射する光は、使用する化合物の光配向性基が吸収を有する波長領域の光であ れば良い。例えば光配向性基がァゾベンゼン構造を有する場合は、ァゾベンゼンの π→π *遷移による強い吸収がある、波長 330〜500nmの範囲の紫外線が特に好 ましい。
[0079] 照射光の光源としては、キセノンランプ、高圧水銀ランプ、超高圧水銀ランプ、メタ ルノヽライドランプ等の紫外光源、 KrF、 ArF等の紫外光レーザー、 Arイオンレーザー 等の可視光レーザー等が挙げられる。特に光配向性基がァゾベンゼン構造を有する 場合は、 365nmの紫外線の発光強度が特に大きい超高圧水銀ランプを有効に使用 することができる。
前記光源力もの光を偏光フィルターやグラントムソン、ダランテ—ラ—等の偏光プリ ズムを通すことで紫外線の直線偏光を得ることができる。
また、偏光、非偏光のいずれを使用する場合でも、照射する光は、ほぼ平行光であ ることが特に好ましい。
[0080] また、偏光を照射する際に、フォトマスクを使用すれば、光配向膜にパターン状に 2 以上の異なった方向に液晶配向能を生じさせることができる。具体的には、本発明の 光配向膜用組成物を塗布乾燥した後に、基板にフォトマスクを被せて全面に偏光も しくは非偏光を照射し、パターン状に露光部分に液晶配向能を与える。必要に応じ てこれを複数回繰り返すことで、複数方向に液晶配向能を生じさせることができる。
[0081] さらに場合によっては、前記光異性ィ匕工程の後に光配向膜を冷却することもできる 。冷却方法としては、光異性化した光配向膜用膜が冷却されればよぐ例えば、コー ルドプレート、チャンバ一、低温恒温器等、公知慣用の冷却装置で基板ごと冷却を行 冷却条件としては、冷却温度が 20°Cで 1分以上であるが、冷却温度が 20°Cよりも 低い場合は、その限りではない。冷却温度としては、用いる溶剤の融点以上であれ ばよいが、通常、 40°C〜20°Cの範囲が好ましい。液晶配向機能が向上した、より安 定な光配向膜を得るには 10°C以下が好ましぐ冷却時間としては 5分以上が好まし い。さらに冷却時間を短縮させるには冷却温度は 5°C以下が好ましい。
また、結露防止のため、冷却をする際に乾燥空気や窒素、アルゴン雰囲気下で行 つてもょ 、し、乾燥空気や窒素等を基板に吹きかけながら冷却してもよ 、。
[0082] (重合工程)
光配向膜として使用する場合は、光異性化工程後、親水性基と (メタ)アタリロイル ォキシ基を有する化合物を重合させる。この場合は、後述の光重合開始剤を添加し ておくことが好ましい。重合方法は光照射又は熱でよいが、光照射で行う場合は、光 異性ィ匕工程で得られた配向状態を乱さないようにするため、ァゾベンゼン骨格が持 つ吸収帯以外の波長で行われることが好ましいとされる。このような光は、具体的に は 320nm以下の紫外光である力 320nm以下の紫外光により光配向膜及び重合 性液晶組成物が分解などを引き起こす場合は、 320nm以上の紫外光で重合処理を 行ったほうが好ましい場合もある。
320nm以上の紫外光によって、既に得られたァゾベンゼン骨格の配向が乱されな いようにするためには、通常は、ァゾベンゼン骨格が有する光の吸収帯とは異なる光 吸収波長帯域を持つ光重合開始剤を使用するのが好ましい。また、通常の光重合 開始剤の吸収帯よりも長波長の光を吸収し、重合開始剤へのエネルギー移動を起こ すことによって重合反応を誘起する化合物を混合しても良い。これらにより、光配向 操作で固定されている光配向膜用組成物の配向状態を乱さずに、重合させることが できる。一方、重合のための光を光配向操作と同じ方向から照射する場合や、ァゾべ ンゼン骨格の吸収遷移モーメントと直交する偏波面を有する偏光照射を行えば、得 られた配向状態を乱す恐れがないので、任意の波長を使用することができる。
例えば、光配向材料に光重合開始剤を添加しておき、光配向材料を配向させるよ うな光を照射すると、光配向と光重合を同時に行うことができる。また、光配向を、重 合阻害をおこすような雰囲気、例えば空気中で行うことにより、光配向のみ行い、そ の後、雰囲気を、重合阻害を及ぼさない、例えば、窒素中に変更することにより、光 重合を開始させることもできる。この場合は、光配向の時の照射量を調整し、重合阻 害の雰囲気で光配向を行っているうちに、すべての光重合開始剤を消費しないよう にすることが好ましい。
[0083] 一方、熱による重合の場合は、 80〜250°Cで行うの力 子ましく、 80〜160°Cが好ま しい。この場合は、熱重合開始剤を添加しておくのが好ましい。
[0084] 本発明で使用する光重合開始剤は公知慣用のものが使用できる。
320nm以下の紫外光で使用できる光重合開始剤としては 1ーヒドロキシルシクロへ キシルフエ-ルケトン(チノく'スペシャルティ ·ケミカルズ社製「ィルガキュア 184」 )、 1 - [4— (2 ヒドロキシルエトキシ)一フエ-ル]— 2 ヒドロキシル 2—メチル 1—プ 口パン一 1—オン、 2 -ヒドロキシル 2 -メチル 1—フエ-ルプロパン一 1 オン(メル ク社製「ダロキュア 1173」)などが挙げられる。
また、ァゾベンゼン骨格が有する光の吸収帯とは異なる光吸収波長帯域を持つ光 重合開始剤としては、例えば、特許第 3016606号に記載の近赤外線吸収色素と有 機ホウ素を組み合わせたもの等が挙げられる。
その他の光重合開始剤としては、例えば、 1一(4 イソプロピルフエ-ル) 2 ヒド 口キシル 2 -メチルプロパン一 1 オン (メルク社製「ダロキュア 1116」)、 2 メチル 1 [ (メチルチオ)フエ-ル] 2—モリホリノプロパン 1 (チノく'スペシャルティ ·ケミ カルズ社製「ィルガキュア 907」 )。ベンジルメチルケタール(チノく'スペシャルティ ·ケ ミカルズ社製「ィルガキュア 651」)。 2, 4 ジェチルチオキサントン(日本ィ匕薬社製「 カャキュア DETX」 ) p -ジメチルァミノ安息香酸ェチル(日本化薬社製「カャキュア EPA」 )との混合物、イソプロピルチオキサントン(ヮ ドブレキンソップ社製「カンタキ ユア—ITX」)と p ジメチルァミノ安息香酸ェチルとの混合物、ァシルフォスフィンォ キシド (BASF社製「ルシリン ΤΡΟ」)、などが挙げられる。光重合開始剤の使用量は 重合性液晶化合物に対して 10質量%以下が好ましぐ 0. 5〜5質量%が特に好まし い。
[0085] また、熱重合の際に使用する熱重合開始剤としては公知慣用のものが使用でき、 例えば、メチルァセトァセティトパーオキサイド、キュメンノヽイド口パーオキサイド、ベン ゾィルパ オキサイド、ビス(4 t ブチノレシクロへキシノレ)パーォキシジカ ボネィ ト、 t ブチルパーォキシベンゾエイト、メチルェチルケトンパーオキサイド、 1, 1ービ ス(t へキシルパ一ォキシ)3, 3, 5—トリメチルシクロへキサン、 p ペンタハイド口 パーオキサイド、 t ブチルハイド口パーオキサイド、ジクミルパーオキサイド、イソプチ ルパーオキサイド、ジ(3—メチルー 3—メトキシブチル)パーォキシジカーボネイト、 1 , 1 ビス(t—ブチルパーォキシ)シクロへキサン等の有機過酸化物、 2, 2'—ァゾビ スイソプチ口-トリル、 2, 2,—ァゾビス(2, 4 ジメチルバレ口-トリル)等のァゾ-トリ ル化合物、 2, 2,ーァゾビス(2—メチルー N—フエ-ルプロピオンーアミヂン)ジハイ ドロクロライド等のァゾアミヂン化合物、 2, 2,ァゾビス {2—メチルー N—[l, 1—ビス( ヒドロキシルメチル) 2—ヒドロキシルェチル]プロピオンアミド}等のァゾアミドィ匕合物 、 2, 2'ァゾビス(2, 4, 4 トリメチルペンタン)等のアルキルィ匕合物等を使用すること ができる。熱重合開始剤の使用量は重合性液晶化合物に対して 10質量%以下が好 ましく、 0. 5〜5質量%が特に好ましい。
[0086] 本発明の光配向膜は、親水性基と (メタ)アタリロイルォキシ基を有する化合物を添 カロして硬化させているので、既存のシール剤に粘度調製等の目的で使用される、例 えば、ソノレベントナフタ、デカリン、トノレェン、キシレン、 p シメン、 α—ピネン、 ρ—メ ンタン、テレビン油等の炭化水素系溶剤、ジクロロペンタンのようなハロゲン化炭化水 素系溶剤、 η—ブタノール、イソブタノール、 η—へキサノール、 2—メチルシクロへキ サノール等のアルコール系溶剤、エチレングリコール、プロピレングリコール等のジォ ール系溶剤、 2—エトキシエタノール、 2—ブトキシエタノール、 2—(エトキシエトキシ) エタノール、 2—(ブトキシエトキシ)エタノール、ジエチレングリコールジェチルエーテ ル、 1, 4 ジォキサン等のエーテル系溶剤、エチレングリコールモノメチルエーテル アセテート、エチレングリコールモノェチルエーテルアセテート、等のエーテルエステ ル系溶剤、エトキシプロピオン酸ェチル、マロン酸ジメチルのようなエステル系溶剤、 メチルイソブチルケトン、メシチルォキシド、ホロン、シクロへキサノンのようなケトン系 溶剤;ジェチルァセタール、ジアセトンアルコール、ジメチルホルムアミド、ジメチルス ルホキシド、等の溶剤に対しても耐性を示す。
[0087] (光学異方体)
本発明の光配向膜用組成物を使用して光学異方体を得るには、前記記載の光配 向膜上に重合性液晶を塗布し、配向させた状態で重合させる。
重合性液晶組成物の重合操作は、光重合の場合は、前記光配向膜を作成する場 合の重合操作と同様におこなえば良い。加熱による重合は、重合性液晶組成物が液 晶相を示す温度又はそれより低温で行うことが好ましぐ特に加熱によりラジカルを放 出する熱重合開始剤を使用する場合にはその開裂温度が上記の温度域内にあるも のを使用することが好ましい。また、該熱重合開始剤と光重合開始剤とを併用する場 合には上記の温度域の制限と共に光配向膜と重合性液晶膜の両層の重合速度が 大きく異なることの無い様に重合温度と各々の開始剤を選択することが好ましい。加 熱温度は、重合性液晶組成物の液晶相から等方相への転移温度にもよるが、熱によ る不均質な重合が誘起されてしまう温度よりも低い温度で行うことが好ましぐ 20°C〜 300°Cが好ましぐ 30°C〜200°Cがさらに好ましぐ 30°C〜120°Cが特に好ましい。 また例えば、重合性基が (メタ)アタリロイルォキシ基である場合は、 90°Cよりも低い温 度で行うことが好ましい。
[0088] 具体的な方法としては、例えば、下記 (方法 1)〜(方法 4)の方法が挙げられる。
(方法 1)
基板上に、前記光配向膜用組成物の膜を作成する工程 1と、前記光配向膜用組成 物の膜上に重合性液晶組成物膜を作成する工程 2と、異方性を有する光を照射して 、一般式(1)で表される化合物及び液晶分子を配向させながら親水性基と (メタ)ァク リロイルォキシ基を有する化合物と重合性液晶組成物を重合させる工程 3を、この順 に行う製造方法。
該方法にぉ 、ては、配向膜中に共存する親水性基と (メタ)アタリロイルォキシ基を 有する化合物と重合性液晶を重合させるので、光配向膜層と液晶重合体層との両層 間に結合関係を導入でき、特に界面の密着性及び耐久性に優れた光学異方体が得 られる。また、異方性を有する光を 1度照射するだけで、光異性化反応と重合とを同 時に行うことができるので、効率的である。
[0089] (方法 2)
基板上に、前記光配向膜用組成物の膜を作成する工程 1と、前記光配向膜用組成 物の膜に異方性を有する光を照射して一般式(1)で表される化合物を配向させるェ 程 2と、前記光配向膜用組成物の膜上に重合性液晶組成物膜を作成する工程 3と、 熱又は光により親水性基と (メタ)アタリロイルォキシ基を有する化合物と重合性液晶 組成物を重合させる工程 4を、この順に行う製造方法。
該方法においては、前記光配向膜用組成物の膜に直接光を照射するので、より液 晶配向能の高い光配向膜を得ることができ、さらに、配向膜中に共存する親水性基と (メタ)アタリロイルォキシ基を有する化合物と重合性液晶を重合させるので、光配向 膜層と液晶重合体層との両層間に結合関係を導入でき、特に界面の密着性及び耐 久性に優れた光学異方体が得られる。
[0090] (方法 3)
基板上に、前記光配向膜用組成物の膜を作成する工程 1と、前記光配向膜用組成 物の膜に異方性を有する光を照射して一般式(1)で表される化合物を配向させるェ 程 2と、親水性基と (メタ)アタリロイルォキシ基を有する化合物を熱又は光により重合 させる工程 3と、前記光配向膜用組成物の膜上に重合性液晶組成物膜を作成する 工程 4と、熱又は光により重合性液晶組成物を重合させる工程 5を、この順に行う製 造方法。
該方法においては、重合性液晶組成物層を形成する前に親水性を有する (メタ)ァ タリレートを重合させるので、機械的、あるいは化学的強度に優れた光配向膜が得ら れ、光配向膜を形成した基板を積み重ねたり巻き取ったりするプロセスが含まれる場 合には好適である。また、光配向の工程を光重合の工程とは分けて行うので配向規 制力の制御が容易である。
[0091] (方法 4)
基板上に、前記光配向膜用組成物の膜を作成する工程 1と、前記光配向膜用組成 物の膜に異方性を有する光を照射して一般式(1)で表される化合物を配向させなが ら親水性基と (メタ)アタリロイルォキシ基を有する化合物を重合させる工程 2と、前記 光配向膜用組成物の膜上に重合性液晶組成物を塗布し配向させる工程 3と、熱又 は光により重合性液晶組成物を重合させる工程 4を、この順に行う製造方法。
該方法においては、重合性液晶組成物層を形成する前に親水性を有する (メタ)ァ タリレートを重合させるので、機械的、あるいは化学的強度に優れた光配向膜が得ら れ、光配向膜を形成した基板を積み重ねたり巻き取ったりするプロセスが含まれる場 合には好適である。また、異方性を有する光を 1度照射するだけで、光異性化反応と 重合とを同時に行うことができるので、効率的である。
[0092] 場合によっては、光学異方体を数層にわたり積層することもできる。その場合は前 記工程を複数繰り返せばよぐ光学異方体の積層体を形成することができる。
[0093] これら方法は光学異方体の製造プロセスに応じて適宜選択すればよい。重合性液 晶を塗布する工程の前に光配向膜が他の基板等や装置などの物体に接することが ないようなプロセスでは、(方法 1)又は(方法 2)が、重合操作が一度で済み簡便であ り好ましく、(方法 2)が、配向に優れた光学異方体が簡便に得られるのでさらに好ま しい。一方、重合性液晶を塗布する工程の前に、基板の堆積あるいは巻き取りにより 光配向膜が他の基板等や装置などの物体に接する可能性がある場合には光配向膜 の構造を固定ィ匕するために (方法 3)又は (方法 4)を選択することが好ま 、。
[0094] 前記 (方法 1)又は (方法 2)のように、前記親水性基と (メタ)アタリロイルォキシ基を 有する化合物と重合性液晶層とを同時に重合させる場合は、光配向膜用組成物に は重合開始剤を添加せず、重合性液晶組成物層に重合開始剤を添加しておくだけ で、親水性基と (メタ)アタリロイルォキシ基を有する化合物も十分硬化させることがで きる。特に重合操作として光照射、重合開始剤として光重合開始剤を使用する方法 力 操作が簡便で好ましい。重合開始剤としては、前述の光重合開始剤あるいは熱 重合開始剤を使用することができる。 [0095] 前記 (方法 1)又は (方法 2)の方法で光学異方体を得る場合は、親水性基と (メタ) アタリロイルォキシ基を有する化合物が液体であると、重合性液晶層との界面で混和 する懸念が生じるが、一般式(1)で表される化合物と親水性基と (メタ)アタリロイルォ キシ基を有する化合物は共に重合性液晶とは混和し難いのでそのような問題は生じ にくいことも 1つの特徴である。更に前記 (方法 1)又は (方法 2)の方法は、親水性基 と (メタ)アタリロイルォキシ基を有する化合物と重合性液晶組成物との界面で架橋が 生じるため、光配向膜用組成物層と重合性液晶組成物層との界面剥離が生じること もなぐ機械的に強固で、耐薬品性、耐溶剤性など化学的な安定性にも優れた光学 異方体を得ることができる。
[0096] (重合性液晶組成物)
本発明で使用する重合性液晶組成物は、単独又は他の液晶化合物との組成物に おいて液晶性を示す、重合性基を有する化合物を含む液晶組成物である。例えば、 Handbook of Liquid Crystals (D. Demus, J. W. Goodby, G. W.
Gray, H. W. Spiess, V. Vill編集、 Wiley— VCH 社発行、 1998年)、 季刊化学総説 No. 22、液晶の化学(日本化学会編、 1994年)、あるいは、特開平 7 — 294735号公報、特開平 8— 3111号公報、特開平 8— 29618号公報、特開平 11 80090号公報、特開平 11— 148079号公報、特開 2000— 178233号公報、特 開 2002— 308831号公報、特開 2002— 145830号公報に記載されているような、 1, 4 フエ-レン基、 1, 4ーシクロへキシレン基等の構造が複数繋がったメソゲンと 呼ばれる剛直な部位と、(メタ)アタリロイルォキシ基、ビニルォキシ基、エポキシ基と V、つた重合性官能基とを有する棒状重合性液晶化合物、 あるいは特開 2004— 23 73号公報、特開 2004— 99446号公報に記載されているようなマレイミド基を有する 棒状重合性液晶化合物、 あるいは特開 2004— 149522号公報に記載されているよ うなァリルエーテル基を有する棒状重号性液晶化合物、あるいは、例えば、 Handbo οκ of Liquid Crystals (D. Demus, J. W. Goodoy, . W. ray,
H. W. Spiess, V. Vill編集、 Wiley— VCH 社発行、 1998年)、季刊ィ匕学 総説 No. 22、液晶の化学(日本化学会編、 1994年)や、特開平 07— 146409号公 報に記載されているディスコティック重合性ィ匕合物があげられる。中でも、重合性基を 有する棒状液晶化合物が、液晶温度範囲として室温前後の低温を含むものを作りや すく好ましい。
[0097] (溶剤)
前記重合性液晶組成物に使用する溶剤としては、特に限定はないが、前記化合物 が良好な溶解性を示す溶媒が使用できる。例えば、トルエン、キシレン、メシチレン等 の芳香族系炭化水素、酢酸メチル、酢酸ェチル、酢酸プロピル等のエステル系溶剤 、メチルェチルケトン、メチルイソブチルケトン、シクロへキサノン等のケトン系溶剤、テ トラヒドロフラン、 1, 2—ジメトキシェタン、ァ-ソール等のエーテル系溶剤、 N, N ジ メチルホルムアミド、 N—メチル 2—ピロリドン、等のアミド系溶剤、 Ύ—ブチ口ラクト ン、クロ口ベンゼン等が挙げられる。これらは、単独で使用することもできるし、 2種類 以上混合して使用することもできる。また、添加剤を添加することもできる。
[0098] 本発明の重合性液晶組成物は、重合性基を有して 、な 、液晶化合物を必要に応 じて添加してもよい。しかし、添加量が多すぎると、得られた光学異方体から液晶化 合物が溶出して積層部材を汚染する恐れがあり、加えて光学異方体の耐熱性が下 がるおそれがあるので、添加する場合は、重合性液晶化合物全量に対して 30質量 %以下とすることが好ましぐ 15質量%以下がさらに好ましぐ 5質量%以下が特に好 ましい。
[0099] 本発明で使用する重合性液晶組成物は、重合性基を有するが重合性液晶化合物 ではない化合物を添加することもできる。このような化合物としては、通常、この技術 分野で重合性モノマーあるいは重合性オリゴマーとして認識されるものであれば特に 制限なく使用することができる。添加する場合は、本発明の重合性液晶組成物に対 して、 5質量%以下であることが好ましぐ 3質量%以下が更に好ましい。
[0100] 本発明で使用する重合性液晶組成物は、光学活性を有する化合物、すなわちキラ ルイ匕合物を添加してもよい。該キラル化合物は、それ自体が液晶相を示す必要は無 ぐまた、重合性基を有していても、有していなくても良い。また、キラル化合物の螺旋 の向きは、重合体の使用用途によって適宜選択することができる。
具体的には、例えば、キラル基としてコレステリル基を有するペラルゴン酸コレステ ロール、ステアリン酸コレステロール、キラル基として 2—メチルブチル基を有するビー ディーエイチ社製の「CB— 15」、「C— 15」、メルク社製の「S— 1082」、チッソ社製の 「CM—19」、「CM— 20」、「CM」、キラル基として 1 メチルへプチル基を有するメ ルク社製の「S— 811」、チッソ社製の「CM— 21」、「CM— 22」などを挙げることがで きる。
キラルイ匕合物を添加する場合は、本発明の重合性液晶組成物の重合体の用途に よるが、得られる重合体の厚み (d)を重合体中での螺旋ピッチ (P)で除した値 (d/P )が 0. 1〜: LOOの範囲となる量を添加することが好ましぐ 0. 1〜20の範囲となる量 力 Sさらに好ましい。
[0101] 本発明で使用する重合性液晶組成物には、保存安定性を向上させるために安定 剤を添加することもできる。安定剤として例えば、ヒドロキノン、ヒドロキノンモノアルキ ルエーテル類、第三ブチルカテコール類、ピロガロール類、チォフエノール類、ニトロ 化合物類、 β ナフチルァミン類、 β ナフトール類等が挙げられる。添加する場合 は、本発明の重合性液晶組成物に対して 1質量%以下であることが好ましぐ 0. 5質 量%以下が特に好ましい。
[0102] 本発明の光学異方体を、例えば、偏光フィルムや配向膜の原料、又は印刷インキ 及び塗料、保護膜等の用途に利用する場合には、本発明で使用する重合性液晶組 成物にはその目的に応じて、金属、金属錯体、染料、顔料、蛍光材料、燐光材料、 界面活性剤、レべリング剤、チキソ剤、ゲル化剤、多糖類、紫外線吸収剤、赤外線吸 収剤、抗酸化剤、イオン交換榭脂、酸化チタン等の金属酸化物、などを添加してもよ い。
[0103] 得られた光学異方体の耐溶剤特性や耐熱性の安定化のために、光学異方体をカロ 熱エージング処理することもできる。この場合、前期重合性液晶膜のガラス転移点以 上で加熱することが好ましい。通常は、 50〜300°Cが好ましぐ 80〜240°Cがさらに 好ましぐ 100〜220°Cが特に好ましい。
[0104] 本発明の光学異方体は、基板から剥離して単体で光学異方体として使用すること も、基板力も剥離せずにそのまま光学異方体として使用することもできる。特に、他の 部材を汚染し難いので、被積層基板として使用したり、他の基板に貼り合わせて使用 したりするときに有用である。場合によっては、光学異方体を数層にわたり積層するこ ともできる。その場合は前記工程を複数繰り返せばよぐ光学異方体の積層体を形成 することができる。
実施例
[0105] 以下、実施例を挙げて本発明を更に詳述するが、本発明はこれらの実施例に限定 されるものではない。なお、特に断りのない限り、「部」及び「%」は質量基準である。
[0106] (光配向膜用組成物(1)の調製)
一般式(1)で表される化合物として式 (a)で示される化合物 1部を N—メチルー 2— ピロリドン (NMP) 49部に溶解させた後、式 (b)で示される親水性基及び (メタ)アタリ ロイルォキシ基を有する化合物「HOA—MPL」 1部、 2—ブトキシエタノール(BC) 4 9部をカ卩ぇ溶液を作成した。得られた溶液を 0. 45 mのメンブランフィルターでろ過 し、光配向膜用組成物(1)を得た。
[0107] [化 27]
Figure imgf000031_0001
(a)
[0108] [化 28]
Figure imgf000031_0002
(b)
[0109] (光配向膜用組成物(2)〜(16)の調製)
一般式(1)で表される化合物、親水性基及び (メタ)アタリロイルォキシ基を有する 化合物の種類、配合 (部)を変更した以外は、光配向膜用組成物(1)と同様にして光 配向膜用組成物(2)〜(12)及び(16)を調整した。なお、光配向膜用組成物(13) 及び(14)は親水性基及び (メタ)アタリロイルォキシ基を有する化合物を含まず、光 配向膜用組成物(15)は一般式(1)で表される化合物と親水性基を有さないアタリレ ートからなる。該組成は表 1に示すとおりである。 [0110] [表 1]
Figure imgf000032_0001
[0111] 溶剤は全て N メチル - 2-ピロリドン(NMP)と 2—ブトキシエタノール(BC)の 1 対 1混合物である。
光配向膜用組成物(1)〜(12)及び(16)に使用したアタリレートは全て親水性基を 有するアタリレートである(共栄社化学 (株)製のライトアタリレート HOA—MPL (b)、 共栄社ィ匕学 (株)社製のライトアタリレート HOA— HH (c)、ナガセケムテックス (株)社 製のデコナールアタリレート DA— 212 (d)、ナガセケムテックス (株)社製のデコナ一 ルアタリレート DA— 111 (e) ,ナガセケムテックス(株)社製のデコナールアタリレート DA— 911M (f)、ナガセケムテックス(株)社製のデコナールアタリレート DA— 931 ( g)、 3,4—ジ(3—アタリロイルォキシプロボキシ)安息香酸 (h)、大日本インキ化学ェ 業 (株)社製ディックライト UE -8200 (i) )。
光配向膜用組成物(5)、 (7)では 2種類の親水性基を有するアタリレートが含まれ ている。また光配向膜用組成物(13)〜(15)は比較例用組成物、また光配向膜用組 成物(16)は参考例用組成物である。 化合物(C)〜 (k)の構造は以下のとおりである c
[0112] [化 29]
Figure imgf000033_0001
[0113] [化 30]
ο ο
OH OH
Figure imgf000033_0002
[0114] [化 31]
Figure imgf000033_0003
[0115] [化 32]
Figure imgf000033_0004
(f)
[0116] [化 33]
Figure imgf000033_0005
(g)
[0117] [化 34]
Figure imgf000033_0006
( )
[0118] [化 35]
Figure imgf000034_0001
[0119] [化 36]
Figure imgf000034_0002
(k)
[0120] (重合性液晶組成物 (LC 1)の調整)
式 (m)で示される化合物 15部、式 (n)で示される化合物 15部をキシレン 70部に溶 解させた後、ィルガキュア 907 (チバスべシャリティケミカルズ (株)社製) 1. 2部、式 (p )で示されるアクリル共重合体 0. 3部を加え、溶液を得た。得られた溶液を 0. 45 m のメンブランフィルターでろ過し、重合性液晶組成物 (LC— 1)を得た。
[0121] [化 37]
Figure imgf000034_0003
(m)
[0122] [化 38]
Figure imgf000034_0004
(n)
[0123] [化 39]
Figure imgf000035_0001
(P)
[0124] (配向性の評価方法)
光学異方体の配向性は、外観目視、及び、偏光顕微鏡観察することにより、 5段階 で評価した。
A:目視で均一な配向が得られており、偏光顕微鏡観察でも欠陥が全くない
B :目視では均一な配向が得られている力 偏光顕微鏡観察での配向面積は 90〜1
00%
C :目視では A、 B程の配向は得られていないが、偏光顕微鏡観察での配向面積は 6 0〜90%
D :目視では無配向に近いが、偏光顕微鏡観察での配向面積は 40〜60%
E :目視では無配向で、偏光顕微鏡観察での配向面積も 40%以下
[0125] 光学異方体の耐溶剤 '耐薬品性は、試験用溶剤として NMPZ2—ブトキシェタノ ール (BC)をスピンコーターで得られた光学異方体上に塗布し、 80°Cで 1分間乾燥 したときの膜状態を観察した結果を、外観目視、及び、偏光顕微鏡観察することによ り 5段階で評価した。
尚、ここで使用した試験用溶剤は、配向膜用組成物の希釈目的に汎用に使用され る溶剤の組み合わせである。
A:目視で膜の変化が全くなぐ偏光顕微鏡観察でも欠陥が全くない
B :目視では膜の変化が全くないが、偏光顕微鏡観察ではクラックが発生している
C :目視では一部膜が剥がれているが、偏光顕微鏡観察でのクラック発生は Bと同レ ベノレ
D:目視では膜の大半が剥がれている
E:目視で膜全体が剥がれている
[0126] (光学異方体としての評価)
(実施例 1)
光配向膜用組成物(1)をスピンコーターでガラス基板上に塗布し、 100°Cで 1分間 乾燥した。このときの乾燥膜厚は 20nmであった。
次に超高圧水銀ランプに波長カットフィルター、バンドパスフィルター、及び、偏光 フィルターを介して、波長 365nm付近の可視紫外光(照射強度: lOmWZcm2)の 直線偏光でかつ平行光を、ガラス基板に対して垂直方向力も照射し、配向させた。 照射量は 500mjZcm2であった。
得られた光配向膜上にスピンコーターで重合性液晶組成物 (LC— 1)を塗布し、 80 °Cで 1分乾燥後、窒素雰囲気下で紫外線を UZcm2照射して、(LC 1)及び (LC —1)と化合物 (b)を重合させ、光学異方体を得た。その結果、配向性は Aであり、 50 OmjZcm2と 、う少な 、照射量で良配向を得ることができた。光学異方体の耐溶剤 · 耐薬品'性の評価結果は Aであった。
[0127] (実施例 2)
光配向膜用組成物として(1)の代わりに (2)を使用した以外は実施例 1と同様に光 学異方体を作製した。その結果、配向性は Aであり、 500miZcm2という少ない照射 量で良配向を得ることができた。光学異方体の耐溶剤 '耐薬品性の評価結果は Aで めつに。
[0128] (実施例 3)
光配向膜用組成物として(1)の代わりに (3)を使用した以外は実施例 1と同様に光 学異方体を作製した。その結果、配向性は Aであり、 500miZcm2という少ない照射 量で良配向を得ることができた。光学異方体の耐溶剤 '耐薬品性の評価結果は Aで めつに。
[0129] (実施例 4)
光配向膜用組成物として(1)の代わりに (4)を使用した以外は実施例 1と同様に光 学異方体を作製した。その結果、配向性は Aであり、 500miZcm2という少ない照射 量で良配向を得ることができた。光学異方体の耐溶剤 '耐薬品性の評価結果は Aで めつに。
[0130] (実施例 5)
光配向膜用組成物として(1)の代わりに (5)を使用した以外は実施例 1と同様に光 学異方体を作製した。その結果、配向性は Aであり、 500miZcm2という少ない照射 量で良配向を得ることができた。光学異方体の耐溶剤 '耐薬品性の評価結果は Aで めつに。
[0131] (実施例 6)
光配向膜用組成物として(1)の代わりに (6)を使用した以外は実施例 1と同様に光 学異方体を作製した。その結果、配向性は Aであり、 500miZcm2という少ない照射 量で良配向を得ることができた。光学異方体の耐溶剤 '耐薬品性の評価結果は Bで めつに。
[0132] (実施例 7)
光配向膜用組成物として(1)の代わりに (7)を使用した以外は実施例 1と同様に光 学異方体を作製した。その結果、配向性は Aであり、 500miZcm2という少ない照射 量で良配向を得ることができた。光学異方体の耐溶剤 '耐薬品性の評価結果は Aで めつに。
[0133] (実施例 8)
光配向膜用組成物として(1)の代わりに (8)を使用した以外は実施例 1と同様に光 学異方体を作製した。その結果、配向性は Aであり、 500miZcm2という少ない照射 量で良配向を得ることができた。光学異方体の耐溶剤 '耐薬品性の評価結果は Aで めつに。
[0134] (実施例 9)
光配向膜用組成物として(1)の代わりに (9)を使用した以外は実施例 1と同様に光 学異方体を作製した。その結果、配向性は Aであり、 500miZcm2という少ない照射 量で良配向を得ることができた。光学異方体の耐溶剤 '耐薬品性の評価結果は Aで めつに。 [0135] (実施例 10)
光配向膜用組成物として(1)の代わりに(10)を使用した以外は実施例 1と同様に 光学異方体を作製した。その結果、配向性は Aであり、 500miZcm2という少ない照 射量で良配向を得ることができた。光学異方体の耐溶剤 '耐薬品性の評価結果は A であった。
[0136] (実施例 11)
光配向膜用組成物として(1)の代わりに(11)を使用した以外は実施例 1と同様に 光学異方体を作製した。その結果、配向性は Bであり、 500mjZcm2という少ない照 射量で良配向を得ることができた。光学異方体の耐溶剤 '耐薬品性の評価結果は A であった。
[0137] (実施例 12)
光配向膜用組成物として(1)の代わりに(12)を使用した以外は実施例 1と同様に 光学異方体を作製した。その結果、配向性は Aであり、 500miZcm2という少ない照 射量で良配向を得ることができた。光学異方体の耐溶剤 '耐薬品性の評価結果は A であった。
[0138] (比較例 1)
光配向膜用組成物として(1)の代わりに、光配向膜用組成物(13)を使用した以外 は、実施例 1と同様に光学異方体を作製した。その結果、配向性は Aであり、 500mJ Zcm2という少ない照射量で良配向を得ることがわ力つた力 この光学異方体の耐溶 剤 ·耐薬品性の評価結果は Eであり、親水性アタリレートを含まな 、組成の場合は耐 薬品性'耐溶剤性に劣ることがわ力つた。
[0139] (比較例 2)
光配向膜用組成物として(1)の代わりに、光配向膜用組成物(14)を使用した以外 は実施例 1と同様に光学異方体を作製した。その結果、配向性は Eであった。アタリ レート化した化合物を使用した場合は、 500mjZcm2と 、う少な 、照射量で均一で 良配向な光学異方体が得られな 、ことがわ力つた。
[0140] (比較例 3)
光配向膜用組成物として(1)の代わりに、光配向膜用組成物(15)を使用した以外 は実施例 1と同様に光学異方体を作製した。光配向膜用組成物(15)には親水性で はないアタリレートであるラウリルアタリレートが含まれている力 光配向膜作製時に相 分離を起こし、不均一な白濁模様を呈していた。その結果、配向性は Dであり、良配 向が得られなカゝつた。
[0141] (参考例 1)
光配向膜用組成物として(1)の代わりに、光配向膜用組成物(16)を使用した以外 は実施例 1と同様に光学異方体を作製した。その結果、配向性は Eであった。アタリ レート化した化合物を使用した場合は、 500mjZcm2と 、う少な 、照射量で均一で 良配向な光学異方体が得られな 、ことがわ力つた。光学異方体の耐溶剤 ·耐薬品性 の評価結果は Aであった。
[0142] (光配向膜用組成物(17)の調製)
一般式(1)で表される化合物として式 (a)で示される化合物 0. 5部、化合物(2)とし て式 (q)で表される化合物 0. 5部を N メチル 2 ピロリドン (NMP) 49部に溶解 させた後、式 (d)で示される親水性基を有するアタリレート(DA— 212) 1部、 2—ブト キシエタノール(BC) 49部をカ卩え、溶液を作成した。得られた溶液を 0. 45 mのメン ブランフィルターでろ過し、光配向膜用組成物(17)を得た。
[0143] [化 40]
Figure imgf000039_0001
(q)
[0144] (光配向膜用組成物(18)〜(29)の調製)
配合する化合物、及び配合量を変更した以外は、光配向膜用組成物(17)と同様 にして光配向膜用組成物(18)〜(29)を得た。該組成は表 2に示すとおりである。
[0145] [表 2] 一般式 親水性基及び (メ
光配向膜 (1) で 配合 タ) アタリロイル 配合 化合物 配合
用組成物 表される (部) ォキシ基を有する (部) (2) (部)
化合物 化合物
化合物 D A- 212 化合物
(17) 0. 5 1 0. 5
(a) (化合物 (d) ) (q)
化合物 DA- 212 化合物
(18) 0. 5 1 1
(a) (化合物 (d) ) (q)
化合物 DA- 212 化合物
(19) 1 1 5
(a) (化合物 (d) ) (q)
化合物 DA- 212 化合物
(20) 0. 5 1 0. 5
(a) (化合物 (d) ) (r)
化合物 D A-212 (イヒ 化合物
(21) 1 1 2
(a) 合物 (d) ) (r)
化合物 DA- 212 化合物
(22) 0. 5 1 0. 5
(a) (化合物 (d) ) (s)
化合物 DA- 212 化合物
(23) 0. 5 1 0. 5
(a) (化合物 (d) ) (t)
化合物 DA- 1 11 化合物
(24) 0. 5 1 1
(a) (化合物 (e) ) (u)
化合物 DA- 1 11 化合物
(25) 0. 5 1 2
(a) (化合物 (e) ) (u)
化合物 DA- 1 11 化合物
(26) 0. 5 1 5
(a) (化合物 (e) ) (u)
化合物 DA- 91 1M 化合物
(27) 0. 5 1 1
(a) (化合物 (f ) ) (u)
DA- 212 0. 5
化合物 (化合物 (d) ) 化合物
(28) 0. 25 0. 5
(a) DA- 1 11 0. 5 (u)
(化合物 (e) )
化合物 DA- 212 化合物
(29) 0. 5 1 0. 2
(a) (化合物 (d) ) (w)
[0146] 溶剤は全て N メチル 2 ピロリドン(NMP)と 2 ブトキシエタノール(BC)の 1 対 1混合物である。
光配向膜用組成物(17)〜(29)に使用したアタリレートは全て親水性基を有するァ タリレートである(ナガセケムテックス (株)社製のデコナールアタリレート DA— 212 (d )、ナガセケムテックス(株)社製のデコナールアタリレート DA— 111(e),ナガセケム テックス(株)社製のデコナールアタリレート DA— 911M (f) )。
[0147] 光配向膜用組成物(28)では 2種類の親水性基を有するアタリレートが含まれて ヽ る。光配向膜用組成物(17)〜(23)には一般式 (2— 1)で表される化合物((q)、 (r) 、(s)、(t))が含まれている。光配向膜用組成物(24)〜(28)には一般式 (2— 2)で 表される化合物 (u)が含まれている。光配向膜用組成物(29)にはヒドロキシル基を 有するトリフエ-レンィ匕合物 (w)が含まれて 、る。 化合物 (r)〜 (w)の構造は以下のとおりである。
[0148] [化 41]
Figure imgf000041_0001
[0149] [化 42]
Figure imgf000041_0002
[0150] [化 43]
Figure imgf000041_0003
[0151] [化 44]
Figure imgf000041_0004
[0153] (耐熱性の評価方法)
耐熱性は 230°C、 4時間加熱前後の光学異方体のリタデーシヨンを測定(中央精機 DI4RD)し比較することにより評価した。加熱前のリタデーシヨンを Rel (nm)、加熱 後のリタデーシヨンを Re2 (nm)とし、加熱前のリタデーシヨンに対する加熱後のリタデ ーシヨンの比の百分率 Re% (%) (Re% =Re2/Rel X 100)を耐熱性の指標とした 。耐熱性が良いほうがリタデーシヨンの変化が少ないので Re%の値が大きいほうが耐 熱性に優れるということになる。
[0154] (光学異方体としての評価)
(実施例 13)
光配向膜用組成物として(1)の代わりに(17)を使用した以外は実施例 1と同様に 光学異方体を作製した。その結果、配向性は Aであり、 500miZcm2という少ない照 射量で良配向を得ることができた。光学異方体の耐溶剤 '耐薬品性の評価結果は A であった。また、そのときの耐熱性の評価結果は Re% = 68%と耐熱性に優れていた
[0155] (実施例 14)
光配向膜用組成物として(1)の代わりに(18)を使用した以外は実施例 1と同様に 光学異方体を作製した。その結果、配向性は Aであり、 500miZcm2という少ない照 射量で良配向を得ることができた。光学異方体の耐溶剤 '耐薬品性の評価結果は A であった。また、そのときの耐熱性の評価結果は Re% = 71%と耐熱性に優れていた
[0156] (実施例 15)
光配向膜用組成物として(1)の代わりに(19)を使用した以外は実施例 1と同様に 光学異方体を作製した。その結果、配向性は Aであり、 500miZcm2という少ない照 射量で良配向を得ることができた。光学異方体の耐溶剤 '耐薬品性の評価結果は A であった。また、そのときの耐熱性の評価結果は Re% = 74%と耐熱性に優れていた
[0157] (実施例 16)
光配向膜用組成物として(1)の代わりに (20)を使用した以外は実施例 1と同様に 光学異方体を作製した。その結果、配向性は Aであり、 500miZcm2という少ない照 射量で良配向を得ることができた。光学異方体の耐溶剤 '耐薬品性の評価結果は A であった。また、そのときの耐熱性の評価結果は Re% = 67%と耐熱性に優れていた [0158] (実施例 17)
光配向膜用組成物として(1)の代わりに (21)を使用した以外は実施例 1と同様に 光学異方体を作製した。その結果、配向性は Aであり、 500miZcm2という少ない照 射量で良配向を得ることができた。光学異方体の耐溶剤 '耐薬品性の評価結果は A であった。また、そのときの耐熱性の評価結果は Re% = 73%と耐熱性に優れていた
[0159] (実施例 18)
光配向膜用組成物として(1)の代わりに (22)を使用した以外は実施例 1と同様に 光学異方体を作製した。その結果、配向性は Aであり、 500miZcm2という少ない照 射量で良配向を得ることができた。光学異方体の耐溶剤 '耐薬品性の評価結果は A であった。また、そのときの耐熱性の評価結果は Re% = 68%と耐熱性に優れていた
[0160] (実施例 19)
光配向膜用組成物として(1)の代わりに (23)を使用した以外は実施例 1と同様に 光学異方体を作製した。その結果、配向性は Aであり、 500miZcm2という少ない照 射量で良配向を得ることができた。光学異方体の耐溶剤 '耐薬品性の評価結果は A であった。また、そのときの耐熱性の評価結果は Re% = 69%と耐熱性に優れていた
[0161] (実施例 20)
光配向膜用組成物として(1)の代わりに (24)を使用した以外は実施例 1と同様に 光学異方体を作製した。その結果、配向性は Aであり、 500miZcm2という少ない照 射量で良配向を得ることができた。光学異方体の耐溶剤 '耐薬品性の評価結果は A であった。また、そのときの耐熱性の評価結果は Re% = 67%と耐熱性に優れていた
[0162] (実施例 21)
光配向膜用組成物として(1)の代わりに (25)を使用した以外は実施例 1と同様に 光学異方体を作製した。その結果、配向性は Aであり、 500miZcm2という少ない照 射量で良配向を得ることができた。光学異方体の耐溶剤 '耐薬品性の評価結果は A であった。また、そのときの耐熱性の評価結果は Re% = 69%と耐熱性に優れていた
[0163] (実施例 22)
光配向膜用組成物として(1)の代わりに (26)を使用した以外は実施例 1と同様に 光学異方体を作製した。その結果、配向性は Aであり、 500miZcm2という少ない照 射量で良配向を得ることができた。光学異方体の耐溶剤 '耐薬品性の評価結果は A であった。また、そのときの耐熱性の評価結果は Re% = 76%と耐熱性に優れていた
[0164] (実施例 23)
光配向膜用組成物として(1)の代わりに (27)を使用した以外は実施例 1と同様に 光学異方体を作製した。その結果、配向性は Aであり、 500miZcm2という少ない照 射量で良配向を得ることができた。光学異方体の耐溶剤 '耐薬品性の評価結果は A であった。また、そのときの耐熱性の評価結果は Re% = 70%と耐熱性に優れていた
[0165] (実施例 24)
光配向膜用組成物として(1)の代わりに (28)を使用した以外は実施例 1と同様に 光学異方体を作製した。その結果、配向性は Aであり、 500miZcm2という少ない照 射量で良配向を得ることができた。光学異方体の耐溶剤 '耐薬品性の評価結果は A であった。また、そのときの耐熱性の評価結果は Re% = 67%と耐熱性に優れていた
[0166] (実施例 25)
光配向膜用組成物として(1)の代わりに (29)を使用した以外は実施例 1と同様に 光学異方体を作製した。その結果、配向性は Aであり、 500miZcm2という少ない照 射量で良配向を得ることができた。光学異方体の耐溶剤 '耐薬品性の評価結果は A であった。また、そのときの耐熱性の評価結果は Re% = 70%と耐熱性に優れていた
[0167] (比較例 4) 比較例 1で得た光学異方体の耐熱性を評価した結果 Re% = 59%と小さかった。 産業上の利用可能性
本発明の光配向膜用組成物を使用することで、感度の高い光配向膜を提供するこ とが可能である。該光配向膜は、セル製造過程で使用するような接着部材、あるいは 、接着部材、重合性液晶組成物溶液、配向膜溶液等に使用する有機溶剤に侵され ることがない。更に、本発明は、該光配向膜を使用した光学異方体を提供することが 可能である。該光学異方体は、有機溶剤等に侵されることがない。

Claims

請求の範囲 一般式(1)で表される化合物、及び、親水性基と (メタ)アタリロイルォキシ基を有する 化合物を含有することを特徴とする光配向膜用組成物。
[化 1]
Figure imgf000046_0001
(式中、 R1および R2は各々独立して、水素原子、ハロゲン原子、カルボキシル基若し くはそのアルカリ金属塩、ハロゲン化メチル基、ハロゲン化メトキシ基、シァノ基、 -ト 口基、—OR5 (ただし R5は、炭素原子数 1〜6のアルキル基、炭素原子数 3〜6のシク 口アルキル基又は炭素原子数 1〜6のアルコキシ基で置換された炭素原子数 1〜6の アルキル基を表す)、炭素原子数 1〜4のヒドロキシルアルキル基、—CONR6R7 (た だし R6及び R7は、各々独立して水素原子又は炭素原子数 1〜6のアルキル基を表 す)、又はメトキシカルボ-ル基を表し、 R3および R4は各々独立して、カルボキシル 基若しくはそのアルカリ金属塩、スルホ基若しくはそのアルカリ金属塩、ニトロ基、アミ ノ基、力ルバモイル基、アルコキシカルボ-ル基、スルファモイル基、又はヒドロキシ ル基を表す。 )
[2] 前記親水性基がヒドロキシル基又はカルボキシル基である、請求項 1に記載の光配 向膜用組成物。
[3] 前記親水性基と (メタ)アタリロイルォキシ基を有する化合物を、組成物中の全不揮発 成分に対して 10〜90質量%含む、請求項 1に記載の光配向膜用組成物。
[4] 前記一般式 (1)で表される化合物が、
前記一般式(1)における R3および R4がスルホ基またはそのアルカリ金属塩であるィ匕 合物(1 1)であり、
更に、一般式 (2— 1)で表される化合物、一般式 (2— 2)で表される化合物、及び、 置換基としてヒドロキシル基を有するトリフエ-レン(2— 3)力 なる群力 選ばれる少 なくとも 1つの化合物(2)を含み、
前記化合物(1— 1)と、前記化合物(2)との比率が、 1 : 0. 1〜1 : 10の範囲である、 請求項 1に記載の光配向膜用組成物。
[化 2]
Figure imgf000047_0001
(2- 1)
(一般式(2—1)中、 Ru、 R12は、各々独立して、ヒドロキシル基、又は (メタ)アタリ口 ィルォキシ基、(メタ)アタリロイルォキシ基、(メタ)アクリルアミド基、ビュル基、ビュル ォキシ基、及びマレイミド基力 なる群力 選ばれる重合性官能基を表し、 X11は、 R11 がヒドロキシル基の場合、単結合を表し、 R11が重合性官能基の場合、 - (A1— B1) —で表される連結基を表し、 X12は、 R12がヒドロキシル基の場合、単結合を表し、 R12 が重合性官能基の場合、 - (A2— B2) —で表される連結基を表す。ここで、 A1は R11 に結合するものとし、 A2は R12に結合するものとする。 A1及び A2は各々独立して単結 合、又は二価の炭化水素基を表し、 B1及び B2は各々独立して単結合、—O—、—C O— O 、 一 O— CO 、 一 CO— NH 、 一 NH— CO 、 一 NH— CO— O—、又 は— O— CO— NH を表す。 m及び nは各々独立して 1〜4の整数を表す。但し、 m 又は nが 2以上のとき、複数ある A B\ A2及び B2は同じであっても異なっていても 良い。但し、二つの B1又は B2の間に挟まれた A1又は A2は、単結合ではないものとす る。
R13および R14は各々独立して、水素原子、ハロゲン原子、カルボキシル基若しくは そのアルカリ金属塩、ハロゲン化メチル基、ハロゲン化メトキシ基、シァノ基、ニトロ基 、 一 OR17 (ただし R17は、炭素原子数 1〜6のアルキル基、炭素原子数 3〜6のシクロ アルキル基又は炭素原子数 1〜6のアルコキシ基で置換された炭素原子数 1〜6の アルキル基を表す)、炭素原子数 1〜4のヒドロキシルアルキル基、又は CONR18R 19 (R18及び R19は、各々独立して水素原子又は炭素原子数 1〜6のアルキル基を表す )、またはメトキシカルボ-ル基を表す。
R15および R16は各々独立して、力ルバモイル基、又はスルファモイル基を表す。 ) [化 3]
Figure imgf000048_0001
(2- 2)
(一般式 (2— 2)中、 R21および R22は各々独立して、水素原子、炭素原子数 1〜6の アルキル基あるいは炭素原子数 1〜6のアルコキシ基を表し、 A11及び A12は各々独 立して、置換基としてアミノ基及びスルホ基若しくはそのアルカリ金属塩を有するナフ タレン環、又は、置換基としてアミノ基及びスルホ基若しくはそのアルカリ金属塩を有 するベンゼン環を表す。 )
[5] 液晶配向膜上に作成した重合性液晶組成物の膜を配向させた状態で重合させて得 られる光学異方体であって、該液晶配向膜が、請求項 1に記載の光配向膜用組成物 の膜を配向させて得られたものであることを特徴とする光学異方体。
[6] 基板上に、請求項 1に記載の光配向膜用組成物の膜を作成する工程 1と、前記光配 向膜用組成物の膜上に重合性液晶組成物膜を作成する工程 2と、異方性を有する 光を照射して、一般式(1)で表される化合物及び液晶分子を配向させながら親水性 基と (メタ)アタリロイルォキシ基を有する化合物と重合性液晶組成物を重合させるェ 程 3を、この順に行うことを特徴とする、光学異方体の製造方法。
[7] 基板上に、請求項 1に記載の光配向膜用組成物の膜を作成する工程 1と、前記光配 向膜用組成物の膜に異方性を有する光を照射して一般式(1)で表される化合物を 配向させる工程 2と、前記光配向膜用組成物の膜上に重合性液晶組成物膜を作成 する工程 3と、熱又は光により親水性基と (メタ)アタリロイルォキシ基を有する化合物 と重合性液晶組成物を重合させる工程 4を、この順に行うことを特徴とする、光学異 方体の製造方法。
[8] 基板上に、請求項 1に記載の光配向膜用組成物の膜を作成する工程 1と、前記光配 向膜用組成物の膜に異方性を有する光を照射して一般式(1)で表される化合物を 配向させる工程 2と、親水性基と (メタ)アタリロイルォキシ基を有する化合物を熱又は 光により重合させる工程 3と、前記光配向膜用組成物の膜上に重合性液晶組成物膜 を作成する工程 4と、熱又は光により重合性液晶組成物を重合させる工程 5を、この 順に行うことを特徴とする、光学異方体の製造方法。 基板上に、請求項 1に記載の光配向膜用組成物の膜を作成する工程 1と、前記光配 向膜用組成物の膜に異方性を有する光を照射して一般式(1)で表される化合物を 配向させながら親水性基と (メタ)アタリロイルォキシ基を有する化合物を重合させる 工程 2と、前記光配向膜用組成物の膜上に重合性液晶組成物を塗布し配向させる 工程 3と、熱又は光により重合性液晶組成物を重合させる工程 4を、この順に行うこと を特徴とする、光学異方体の製造方法。
PCT/JP2006/322455 2005-11-10 2006-11-10 光配向膜用組成物、光学異方体及びその製造方法 WO2007055316A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800413440A CN101326453B (zh) 2005-11-10 2006-11-10 光取向膜用组合物、光学各向异性体及其制造方法
EP06823287.5A EP1947489A4 (en) 2005-11-10 2006-11-10 PHOTO-ALIGNMENT FILM COMPOSITION, OPTICAL ANISOTROPIC MATERIAL, AND PROCESS FOR PRODUCING THE SAME
US12/093,014 US7955665B2 (en) 2005-11-10 2006-11-10 Photoalignment film composition, optically anisotropic medium and method for preparing thereof
KR1020087012369A KR101260812B1 (ko) 2005-11-10 2008-05-23 광배향막용 조성물, 광학 이방체 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-326007 2005-11-10
JP2005326007 2005-11-10

Publications (1)

Publication Number Publication Date
WO2007055316A1 true WO2007055316A1 (ja) 2007-05-18

Family

ID=38023311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322455 WO2007055316A1 (ja) 2005-11-10 2006-11-10 光配向膜用組成物、光学異方体及びその製造方法

Country Status (6)

Country Link
US (1) US7955665B2 (ja)
EP (1) EP1947489A4 (ja)
KR (1) KR101260812B1 (ja)
CN (1) CN101326453B (ja)
TW (1) TWI406061B (ja)
WO (1) WO2007055316A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010175931A (ja) * 2009-01-30 2010-08-12 Dic Corp 光配向膜用組成物、光配向膜、及び光学異方体
US20100266814A1 (en) * 2007-12-21 2010-10-21 Rolic Ag Photoalignment composition
KR101059001B1 (ko) * 2007-09-20 2011-08-23 닛토덴코 가부시키가이샤 리오트로픽 액정성 혼합물 및 코팅액 및 광학 이방성 필름
US20120035293A1 (en) * 2010-07-07 2012-02-09 Boydston Andrew J On-demand photoinitiated polymerization
US20120211080A1 (en) * 2009-10-30 2012-08-23 Asahi Glass Company, Limited Curable resin composition for forming seal part, laminate and process for its production
CN103149622A (zh) * 2007-12-28 2013-06-12 日东电工株式会社 偏光膜
WO2020184629A1 (ja) * 2019-03-12 2020-09-17 日産化学株式会社 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
US11266495B2 (en) 2019-10-20 2022-03-08 Rxsight, Inc. Light adjustable intraocular lens with a modulable absorption front protection layer

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101467079B (zh) * 2006-11-08 2011-03-23 Dic株式会社 光取向膜用组合物、光取向膜和光学异构体
KR102012533B1 (ko) * 2011-11-29 2019-08-20 닛산 가가쿠 가부시키가이샤 액정 배향막의 제조 방법, 액정 배향막 및 액정 표시 소자
KR101989195B1 (ko) * 2012-01-23 2019-06-13 스미또모 가가꾸 가부시키가이샤 조성물 및 광학 필름
US9791743B2 (en) * 2013-07-26 2017-10-17 Nano And Advanced Materials Institute Limited Stabilized photo-alignment layer for liquid crystal
TWI638214B (zh) * 2013-08-09 2018-10-11 日商住友化學股份有限公司 配向膜形成用組成物
JP5863221B2 (ja) * 2013-08-14 2016-02-16 国立大学法人東京工業大学 光配向材料および光配向方法
WO2015050132A1 (ja) * 2013-10-02 2015-04-09 Dic株式会社 液晶配向膜の製造方法およびそれを使用した液晶表示素子
US10196568B2 (en) * 2013-10-17 2019-02-05 Dic Corporation Production method for polymerizable liquid crystal composition
TWI512374B (zh) * 2013-11-05 2015-12-11 Au Optronics Corp 光配向設備與光配向方法
JP6349685B2 (ja) * 2013-11-11 2018-07-04 Jsr株式会社 液晶配向剤、液晶配向膜、液晶配向膜の製造方法、液晶表示素子及び液晶表示素子の製造方法
KR102214075B1 (ko) * 2014-02-13 2021-02-09 다이니폰 인사츠 가부시키가이샤 광 배향성을 갖는 열 경화성 조성물, 배향층, 배향층 딸린 기판, 위상차판 및 디바이스
KR102147672B1 (ko) * 2014-05-26 2020-08-26 스미또모 가가꾸 가부시키가이샤 조성물
US20170212389A1 (en) * 2014-07-31 2017-07-27 Sharp Kabushiki Kaisha Liquid crystal display device and method for producing the same
US9659965B2 (en) * 2014-09-12 2017-05-23 Samsung Display Co., Ltd. Liquid crystal display device and method of manufacturing the same
US20160187730A1 (en) * 2014-11-26 2016-06-30 The Hong Kong University Of Science And Technology Polymer Film With Geometrically Anisotropic Nanostructures
CN107710058A (zh) * 2015-10-29 2018-02-16 香港科技大学 复合光配向层
US10816855B2 (en) 2015-10-29 2020-10-27 The Hong Kong University Of Science And Technology Composite photoalignment layer
CN109313366B (zh) * 2016-05-10 2021-11-05 香港科技大学 光配向量子棒增强膜
CN108073001B (zh) * 2016-10-17 2021-03-30 香港科技大学 在合适相对湿度范围的光配向层的加工方法
KR20180045971A (ko) * 2016-10-26 2018-05-08 한국생산기술연구원 원스텝 편광조사를 통한 이종주기의 다중패턴형성장치 및 그 방법
KR102421946B1 (ko) * 2017-11-23 2022-07-18 삼성디스플레이 주식회사 액정 표시 장치 및 그 제조 방법
JP2019120899A (ja) * 2018-01-11 2019-07-22 シャープ株式会社 液晶表示装置、及び、液晶表示装置の製造方法
CN112041713B (zh) * 2018-03-27 2023-07-07 日产化学株式会社 固化膜形成用组合物、取向材及相位差材
WO2020162120A1 (ja) 2019-02-08 2020-08-13 東洋紡株式会社 折りたたみ型ディスプレイ及び携帯端末機器
EP3978554A4 (en) 2019-05-28 2023-06-21 Toyobo Co., Ltd. POLYESTER FILM, LAMINATED FILM AND USE THEREOF
WO2020241278A1 (ja) 2019-05-28 2020-12-03 東洋紡株式会社 積層フィルムとその用途
WO2020241280A1 (ja) 2019-05-28 2020-12-03 東洋紡株式会社 ポリエステルフィルムとその用途
US11189852B2 (en) * 2019-08-28 2021-11-30 Robert Bosch Gmbh Polymer-based electrolyte materials for proton exchange membrane fuel cells
WO2021215192A1 (ja) * 2020-04-20 2021-10-28 富士フイルム株式会社 光配向膜、積層体、画像表示装置およびアゾ化合物

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646606B2 (ja) 1982-12-13 1989-02-03 Hitachi Cable
JPH05232473A (ja) 1991-07-26 1993-09-10 F Hoffmann La Roche Ag 液晶ディスプレーセル
JPH07146409A (ja) 1993-11-25 1995-06-06 Fuji Photo Film Co Ltd 光学補償シート及びその製造方法
JPH07294735A (ja) 1994-04-22 1995-11-10 Dainippon Ink & Chem Inc 光学異方性を有する基板
JPH083111A (ja) 1993-12-24 1996-01-09 Dainippon Ink & Chem Inc 重合性液晶組成物及びこれを用いた光学異方体
JPH0829618A (ja) 1994-07-14 1996-02-02 Dainippon Ink & Chem Inc 光学異方フィルム及びそれを用いた液晶表示素子
JPH1180090A (ja) 1997-09-05 1999-03-23 Dainippon Ink & Chem Inc 液晶性(メタ)アクリレート化合物、該化合物を含有する組成物及びこれを用いた光学異方体
JPH11148079A (ja) 1997-11-18 1999-06-02 Dainippon Ink & Chem Inc 液晶組成物及びこれを用いた光学異方体
JP2000178233A (ja) 1998-10-09 2000-06-27 Japan Chemical Innovation Institute 液晶性(メタ)アクリレ―ト化合物、該化合物を含有する液晶組成物及びこれを用いた光学異方体
JP2002145830A (ja) 2000-11-13 2002-05-22 Dainippon Ink & Chem Inc 重合性液晶化合物、該化合物を含有する重合性液晶組成物及びその重合体
JP2002250924A (ja) 2000-11-24 2002-09-06 Hong Kong Univ Of Science & Technology 光配向膜の製造方法
JP2002308831A (ja) 2001-04-11 2002-10-23 Dainippon Ink & Chem Inc 重合性液晶化合物、該化合物を含有する重合性液晶組成物及びその重合体
JP2004002373A (ja) 2002-04-17 2004-01-08 Chisso Corp マレイミド誘導体およびその重合体
JP2004099446A (ja) 2002-09-04 2004-04-02 Chisso Corp N−置換マレイミドおよびその重合体
JP2004149522A (ja) 2002-10-10 2004-05-27 Chisso Corp アリルエーテル化合物、この化合物を含有する液晶組成物およびこの液晶組成物を含有する液晶表示素子
JP2005049386A (ja) * 2003-07-29 2005-02-24 Dainippon Ink & Chem Inc 光配向膜の製造方法及び光配向膜
JP2005173586A (ja) * 2003-11-20 2005-06-30 Hong Kong Univ Of Science & Technology 光配向膜用液晶プレチルト角付与剤、光配向膜用組成物、及び光配向膜の製造方法
JP2005173548A (ja) 2003-07-31 2005-06-30 Dainippon Ink & Chem Inc 光学異方体、及びその製造方法
JP2005173547A (ja) 2003-07-31 2005-06-30 Dainippon Ink & Chem Inc 光学異方体の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0438123B1 (en) 1990-01-16 1995-09-13 Showa Denko Kabushiki Kaisha Near infrared polymerization initiator
US6160597A (en) * 1993-02-17 2000-12-12 Rolic Ag Optical component and method of manufacture
DE69431552T2 (de) 1993-11-25 2003-06-26 Fuji Photo Film Co Ltd Optische Kompensationsfolie
DE69419120T2 (de) 1993-12-24 1999-10-28 Dainippon Ink & Chemicals Polymerisierbare Flüssigkristallzusammensetzung und optisch anisotroper Film, der eine solche Zusammensetzung enthält
US6582776B2 (en) * 2000-11-24 2003-06-24 Hong Kong University Of Science And Technology Method of manufacturing photo-alignment layer
US7078078B2 (en) * 2001-01-23 2006-07-18 Fuji Photo Film Co., Ltd. Optical compensatory sheet comprising transparent support and optically anisotropic layer
US7553521B2 (en) * 2004-01-22 2009-06-30 Dai Nippon Printing Co., Ltd. Liquid crystal displays
US7425394B2 (en) * 2004-02-10 2008-09-16 Dai Nippon Printing Co., Ltd. Liquid crystal display
JP4676214B2 (ja) * 2004-02-10 2011-04-27 大日本印刷株式会社 液晶表示素子
EP1767523B1 (en) * 2004-06-30 2011-08-24 DIC Corporation Azo compound, composition for optical alignment film using same, and method for producing optical alignment film

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646606B2 (ja) 1982-12-13 1989-02-03 Hitachi Cable
JPH05232473A (ja) 1991-07-26 1993-09-10 F Hoffmann La Roche Ag 液晶ディスプレーセル
JPH07146409A (ja) 1993-11-25 1995-06-06 Fuji Photo Film Co Ltd 光学補償シート及びその製造方法
JPH083111A (ja) 1993-12-24 1996-01-09 Dainippon Ink & Chem Inc 重合性液晶組成物及びこれを用いた光学異方体
JPH07294735A (ja) 1994-04-22 1995-11-10 Dainippon Ink & Chem Inc 光学異方性を有する基板
JPH0829618A (ja) 1994-07-14 1996-02-02 Dainippon Ink & Chem Inc 光学異方フィルム及びそれを用いた液晶表示素子
JPH1180090A (ja) 1997-09-05 1999-03-23 Dainippon Ink & Chem Inc 液晶性(メタ)アクリレート化合物、該化合物を含有する組成物及びこれを用いた光学異方体
JPH11148079A (ja) 1997-11-18 1999-06-02 Dainippon Ink & Chem Inc 液晶組成物及びこれを用いた光学異方体
JP2000178233A (ja) 1998-10-09 2000-06-27 Japan Chemical Innovation Institute 液晶性(メタ)アクリレ―ト化合物、該化合物を含有する液晶組成物及びこれを用いた光学異方体
JP2002145830A (ja) 2000-11-13 2002-05-22 Dainippon Ink & Chem Inc 重合性液晶化合物、該化合物を含有する重合性液晶組成物及びその重合体
JP2002250924A (ja) 2000-11-24 2002-09-06 Hong Kong Univ Of Science & Technology 光配向膜の製造方法
JP2002308831A (ja) 2001-04-11 2002-10-23 Dainippon Ink & Chem Inc 重合性液晶化合物、該化合物を含有する重合性液晶組成物及びその重合体
JP2004002373A (ja) 2002-04-17 2004-01-08 Chisso Corp マレイミド誘導体およびその重合体
JP2004099446A (ja) 2002-09-04 2004-04-02 Chisso Corp N−置換マレイミドおよびその重合体
JP2004149522A (ja) 2002-10-10 2004-05-27 Chisso Corp アリルエーテル化合物、この化合物を含有する液晶組成物およびこの液晶組成物を含有する液晶表示素子
JP2005049386A (ja) * 2003-07-29 2005-02-24 Dainippon Ink & Chem Inc 光配向膜の製造方法及び光配向膜
JP2005173548A (ja) 2003-07-31 2005-06-30 Dainippon Ink & Chem Inc 光学異方体、及びその製造方法
JP2005173547A (ja) 2003-07-31 2005-06-30 Dainippon Ink & Chem Inc 光学異方体の製造方法
JP2005173586A (ja) * 2003-11-20 2005-06-30 Hong Kong Univ Of Science & Technology 光配向膜用液晶プレチルト角付与剤、光配向膜用組成物、及び光配向膜の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Handbook of Liquid Crystals", 1998, WILEY-VCH PUBLISHERS
"Kikan Kagaku Sosetsu No. 22 - Liquid Crystal Chemistry", 1994, CHEMICAL SOCIETY OF JAPAN
See also references of EP1947489A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101059001B1 (ko) * 2007-09-20 2011-08-23 닛토덴코 가부시키가이샤 리오트로픽 액정성 혼합물 및 코팅액 및 광학 이방성 필름
US9715144B2 (en) * 2007-12-21 2017-07-25 Rolic Ag Photoalignment composition
US20100266814A1 (en) * 2007-12-21 2010-10-21 Rolic Ag Photoalignment composition
US10558089B2 (en) 2007-12-21 2020-02-11 Rolic Ag Photoalignment composition
CN103149622A (zh) * 2007-12-28 2013-06-12 日东电工株式会社 偏光膜
JP2010175931A (ja) * 2009-01-30 2010-08-12 Dic Corp 光配向膜用組成物、光配向膜、及び光学異方体
US20120211080A1 (en) * 2009-10-30 2012-08-23 Asahi Glass Company, Limited Curable resin composition for forming seal part, laminate and process for its production
US8748505B2 (en) * 2009-10-30 2014-06-10 Asahi Glass Company, Limited Curable resin composition for forming seal part, laminate and process for its production
US20120035293A1 (en) * 2010-07-07 2012-02-09 Boydston Andrew J On-demand photoinitiated polymerization
US8933143B2 (en) * 2010-07-07 2015-01-13 California Institute Of Technology On-demand photoinitiated polymerization
US8604098B2 (en) * 2010-07-07 2013-12-10 California Institute Of Technology On-demand photoinitiated polymerization
WO2020184629A1 (ja) * 2019-03-12 2020-09-17 日産化学株式会社 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
CN113614627A (zh) * 2019-03-12 2021-11-05 日产化学株式会社 液晶取向剂、液晶取向膜以及使用了该液晶取向膜的液晶显示元件
US11266495B2 (en) 2019-10-20 2022-03-08 Rxsight, Inc. Light adjustable intraocular lens with a modulable absorption front protection layer

Also Published As

Publication number Publication date
KR20080069207A (ko) 2008-07-25
EP1947489A4 (en) 2015-02-18
CN101326453A (zh) 2008-12-17
TW200728871A (en) 2007-08-01
TWI406061B (zh) 2013-08-21
US7955665B2 (en) 2011-06-07
EP1947489A1 (en) 2008-07-23
CN101326453B (zh) 2010-05-26
KR101260812B1 (ko) 2013-05-06
US20090269513A1 (en) 2009-10-29

Similar Documents

Publication Publication Date Title
WO2007055316A1 (ja) 光配向膜用組成物、光学異方体及びその製造方法
JP4935982B2 (ja) 光配向膜用組成物、光学異方体及びその製造方法
JP5076810B2 (ja) 光配向膜用組成物、光配向膜、及び光学異方体
JP4816003B2 (ja) 光配向膜用組成物、光配向膜の製造方法、及びこれを用いた光学異方体、光学素子、その製造方法
JP5145660B2 (ja) 光配向膜用組成物、光配向膜の製造方法、及びこれを用いた光学異方体、光学素子、その製造方法
US8009264B2 (en) Composition for photo-alignment film, photo-alignment film, and optically anisotropic medium
JP4888690B2 (ja) 光配向膜の製造方法
JP2009181104A (ja) 光配向性基板、光学異方体及び液晶表示素子
JP4661502B2 (ja) 光配向膜用組成物および光配向膜の製造方法
KR102154219B1 (ko) 중합성 조성물, 및 그것을 이용한 필름
WO2006077723A1 (ja) 光学フィルム、楕円偏光板、円偏光板、液晶表示素子、及び該光学フィルムの製造方法
JP5504601B2 (ja) 配向膜用組成物、配向膜の製造方法、及び光学異方体
JP6299884B2 (ja) 重合性液晶組成物及び該組成物を用いて作製した光学異方体、位相差膜、反射防止膜、液晶表示素子
JP2010152069A (ja) 重合性液晶組成物、及び光学異方体
JP2013057803A (ja) 光配向性基板、光学異方体及び液晶表示素子
JP2010230815A (ja) 配向膜のチルト角を測定する方法、光配向膜、光学異方体
JP2010175931A (ja) 光配向膜用組成物、光配向膜、及び光学異方体
JP5028055B2 (ja) 光配向膜用組成物及び光学異方体
TW201731891A (zh) 光配向膜用聚合物、聚合物溶液、光配向膜、光學異向體、及液晶顯示元件
JP2010151926A (ja) 光学異方体
JP2008089894A (ja) 位相差フィルムの製造方法
JP5673773B2 (ja) 光学異方体
JP5382468B2 (ja) 光配向膜用組成物及び光学異方体
JP2016510820A (ja) 液晶組成物
JP5772864B2 (ja) 配向膜のチルト角を測定する方法、光配向膜、光学異方体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680041344.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12093014

Country of ref document: US

Ref document number: 2006823287

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087012369

Country of ref document: KR