WO2007046773A1 - Fabrication of transistors - Google Patents

Fabrication of transistors Download PDF

Info

Publication number
WO2007046773A1
WO2007046773A1 PCT/SG2006/000255 SG2006000255W WO2007046773A1 WO 2007046773 A1 WO2007046773 A1 WO 2007046773A1 SG 2006000255 W SG2006000255 W SG 2006000255W WO 2007046773 A1 WO2007046773 A1 WO 2007046773A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
epitaxial layers
seed
conductive
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/SG2006/000255
Other languages
English (en)
French (fr)
Inventor
Shu Yuan
Xuejun Kang
Shi Ming Lin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tinggi Technologies Pte Ltd
Original Assignee
Tinggi Technologies Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tinggi Technologies Pte Ltd filed Critical Tinggi Technologies Pte Ltd
Priority to JP2008536553A priority Critical patent/JP2009513014A/ja
Priority to EP06784267A priority patent/EP1949442A4/en
Priority to CN2006800390468A priority patent/CN101351887B/zh
Priority to US12/091,036 priority patent/US8067269B2/en
Publication of WO2007046773A1 publication Critical patent/WO2007046773A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/40FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
    • H10D30/47FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/015Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/85Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
    • H10D62/8503Nitride Group III-V materials, e.g. AlN or GaN

Definitions

  • This invention relates to the fabrication of transistors and refers particularly, though not exclusively, to the fabrication of gallium nitride high electron mobility transistors ("HEMT”) and to transistors so fabricated.
  • HEMT gallium nitride high electron mobility transistors
  • HEMT devices have been proposed for a few years. They are capable of high power with over 100W/chip being possible; high frequency — 1 to 40GHz being possible; and can operate at temperatures of over 6QO 0 C. This generates a lot of heat so heat dissipation becomes important as not all devices can withstand such temperatures, and the HEMT device may be used with many other devices.
  • a method for fabricating transistors comprising: forming a plurality of source contacts on a first surface of the plurality of epitaxial layers; forming at least one drain contact on the first surface; forming at least one gate contact on the first surface; forming at least one insulating layer over and between the gate contact, source contacts and drain contact to insulate the gate contact, source contacts and the drain contact; forming a conductive layer over and through at least a part of the at least one insulating layer for connecting the source contacts; and forming at least one heat sink layer over the conductive layer.
  • an apparatus comprising transistors, each transistor comprising: a plurality of epitaxial layers having a first surface; a plurality source contacts, at least one drain contact, and at least one gate contact, all on the first surface; at (east one insulating layer over arid ' between the gate contact, source contacts and drain contact for insulating the gate contact, source contacts and the drain contact; a conductive layer over and through at least a part of the at least one insulating layer for connecting the source contacts; and at least one heat sink layer over the conductive layer.
  • the transistors may be high electron mobility transistors.
  • the plurality of epitaxial layers may comprise a layer of gallium nitride, a layer of aluminium gallium nitride, a layer of n+ aluminium gallium nitride and a final layer of gallium nitride.
  • the first surface may be on the final layer of gallium nitride.
  • the conductive layer may connect the plurality of source contacts through vias in the at least one insulating layer.
  • the at least one insulating layer may be heat conductive and electrically insulating.
  • a relatively thick layer of a heat conductive metal may be formed over the conductive layer. At least one seed layer-may be formed on the conductive layer before the relatively thick layer is formed.
  • the drain, gate and source connections may be' formed by creating then filling vias through the substrate and the epitaxial layers to the drain contact, gate contact and the conductive layer respectively.
  • the substrate may be removed and the drain, gate and source connections formed by creating then filling vias through the expitaxial layers to the drain contact, gate contact and conductive layer respectively.
  • a further layer of heat conductive but electrically insulating material may be applied in place of the substrate.
  • Figure 1 is a schematic illustration of a device at a first stage of the fabrication process
  • Figure 2 is a schematic illustration of the device at a second stage of the fabrication process
  • Figure 3 is a schematic illustration of the device at a third stage of the fabrication process
  • Figure 4 is a schematic illustration of the device -at a fourth stage of the fabrication process
  • Figure 5 is a schematic illustration of the device at a fifth stage of the fabrication process
  • Figure 6 is a schematic illustration of the device at a sixth stage of the fabrication process
  • Figure 7 is a schematic illustration of the device at a seventh stage of the fabrication process
  • Figure 8 is a schematic illustration of the device at an eighth stage of the fabrication process
  • Figure 9 is a schematic illustration of the device at a ninth stage of the fabrication process.
  • Figure 10 is a schematic illustration of the device at a tenth stage of the fabrication process
  • Figure 11 is a schematic illustration of the device at an eleventh stage of the fabrication process
  • Figure 12 is a schematic illustration of the device at a twelfth stage of the fabrication process
  • Figure 13 is a schematic illustration of the device at a thirteenth stage of the fabrication process
  • Figure 14 in a full cross-sectional view along the lines and in the direction of arrows 14 - 14 on Figure 13;
  • Figure 15 is a schematic illustration of the device at a fourteenth stage of the fabrication process;
  • Figure 16 a full cross-sectional view along the lines and in the direction of arrows 16 - 16 on Figure 15;
  • Figure 17 is a schematic illustration of the device at a fifteenth stage of the .fabrication process.
  • Figure 18 is a schematic illustration of the device at a sixteenth stage of the fabrication process
  • Figure 19 is a full cross sectional view along the lines and in the direction of arrows 19 - 19 on Figure 18;
  • Figure 20 is a schematic illustration of the device at a seventeenth stage of the fabrication process
  • Figure 21 is a schematic illustration of the device at a final stage of the fabrication process.
  • Figure 22 is a schematic illustration of the device at an alternative final stage of the fabrication process.
  • Figure 1 shows the structure at the commencement of fabrication.
  • a sapphire substrate 1 has a buffer layer 2 above it, and the epitaxial layers 3 are on the buffer layer 2.
  • the epitaxial layers 3 comprise a layer 4 of GaN, a layer 5 of AIGaN, and n+ layer 6 of AIGaN 1 and a final GaN layer 7.
  • Source 8 and drain 9 contacts are then formed on the surface of the final GaN layer ( Figure 2) there being a source 8 and a drain contact 9 for each transistor.
  • Gate contacts 10 are then formed between each source contact 8 and each drain contact 9 ( Figure 3). In this way when each gate 10 is activated current will flow from one source 8 to the two drains 9, one on each side of source contact 8.
  • an electrically insulating layer such as a passivation layer 11 of, for example AIN 1 is then applied to electrically insulate the contacts 8, 9, 10 while being able to conduct heat.
  • the layer 11 is preferably heat conductive.
  • a resist is applied over passivation layer 11 ( Figure 5) and vias 12 formed through passivation layer 11 down to the source contacts 8 and the resist removed.
  • a further layer 13 of an electrically and heat conductive metal is applied over the passivation layer 13, the layer 16 also filling the vias 12. This connects the source contacts 8 ( Figure 6). In this way, all contacts 8, 9 and 10 are in the one plane.
  • At least one further layer 14 is applied over the conductive metal layer 13 and the passivation layer 11 not covered by the conductive metal layer 13.
  • the further layer 14 is a seed layer.
  • the seed layer 14 may be a number of layers - for example, three different metal layers.
  • the first seed layer should adhere well to the conductive layer 13 and may be of chromium or titanium. It may be followed by second layer and third layer that may be of tantalum and copper respectively. Other materials may be used for all seed layers.
  • the second seed layer may act as a diffusion barrier, preventing copper or other materials placed on top of it (such as, for example, the third seed layer) from diffusing into the expitaxial layers 3.
  • the third seed layer acts as a seeding layer for subsequent electroplating.
  • the seed layers can be used to buffer the stress. This may be by one or more of: by having sufficient flexibility to absorb the stress, by having sufficient internal slip characteristics to absorb the stress, by having sufficient rigidity to withstand the stress, and by having graded thermal expansion coefficients.
  • the first layer 15 may be tantalum with a coefficient of thermal expansion of 6.3
  • the second layer 6 may be copper with a coefficient of thermal expansion of 16.5.
  • coefficients of thermal expansion are graded from the passivation layer 13 and to the outer, copper layer 18.
  • An alternative is to have coefficients of expansion that differ such that at the temperatures concerned, one metal layer expands while another contracts.
  • the outer, copper layer 18 was applied directly to the contact layer 13 and passivation layer 11, the differences in their thermal expansion rates may cause cracking, separation, and/or failure.
  • the intermediate. layer(s) should have coefficient(s) of expansion " between those of layers 15 and 16, and should be graded from that of the first layer 15 to that of the final layer 16. There may be no intermediate layer, or there may be any required or desired number of intermediate layers (one, two, three and so forth).
  • a pattern of thick resists 17 is applied to the seed layer 15 by standard photolithography ( Figure 8), and the remaining metal 18 is plated between and over the thick resists 17 ( Figure 9) to form a single metal support layer 18.
  • the removal or lift-off of the sapphire substrate 1 then takes place ( Figures 10 and 11 ) in accordance with known techniques such as, for example, that described in Kelly [M. K. Kelly, O. Ambacher, R. Dimitrov, R. Handschuh, and M. Stutzmann, phys. stat. sol. (a) 159, R3 (1997)].
  • the substrate 1 may also be removed by polishing or wet etching. This exposes the lowermost surface 19 of the GaN layer 4. It is preferred for lift-off of the substrate to take place while the epitaxial layers 3 are intact to improve the quality of removal, and for structural strength. By having the epitaxial layers 3 intact at the time of removal the electrical and mechanical properties of the epitaxial layers 3 are preserved.
  • the thickly plated metal 18 is able to act as one or more of: the new mechanical support; and during operation of the semiconductor device is able to act as one or more of: a heat sink, a heat dissipater, and a connecting layer.
  • the final GaN layer 7 is relatively thin, the heat generated in active layers 3 is more easily able to be conducted to the thick layer 18.
  • each of the layers 11, 13 and 14 are heat conductive.
  • the seed layer(s) 14 may be an electrical insulating layer but must be a good thermal conductor e.g. AIN.
  • the thick layer 18 creates a parasitic capacitance that slows the speed of operation. By increasing the distance between layer 18 and the epitaxial layers 3, the parasitic capacitance is decreased.
  • a resist layer is applied to the now-exposed surface 19 of the GaN layer 4 and etching takes place to form at least one via 20 through epitaxial layers 13 to the drain contact 9 ( Figure 12). Via 20 is then filled ( Figure 13) to form a drain connection 21.
  • Figure 14 show a view of the drain connection 20, source contacts 8 and gate contacts 10.
  • a separate via 22 is formed ( Figure 15) through the expitaxial layers 3 to the gate contact 10 and via 22 is filled to form a gate connection 23.
  • Figure 16 shows a view of the gate connection 23 as well as the drain connection 20, and source contact 8.
  • Figures 17 and 18 show a similar process for the source connection 8.
  • a via 24 is formed through the expitaxia! layers 3 to the source connector layer 13 and the via 24 filled to form the source connection 25.
  • Figure 19 shows a view of the source connection 25.
  • the substrate 1 may be left in place and holes drilled by, for examples, lasers to enable the connections 20, 23 and 25 to be formed.
  • a further layer 27 of a material that is a heat conductive but electronically insulating (e.g. AIN) may be added in place of substrate 1.
  • the device HEMT device can be used with the relatively thick metal layer 18 acting as one or more of: a contact, heat sink, heat diffuser, and a physical support for the device.
  • the combined effect of the passivation layer 11 , the conductive layer 13, the seed layer 14 and the relatively thick layer 18 is that they are all conductive so they all combine to conduct heat away from the epitaxial layers 3, and for them to combine to be a heat sink.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Thin Film Transistor (AREA)
PCT/SG2006/000255 2005-10-19 2006-09-01 Fabrication of transistors Ceased WO2007046773A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008536553A JP2009513014A (ja) 2005-10-19 2006-09-01 トランジスタの製造
EP06784267A EP1949442A4 (en) 2005-10-19 2006-09-01 MANUFACTURING TRANSISTORS
CN2006800390468A CN101351887B (zh) 2005-10-19 2006-09-01 晶体管的制造
US12/091,036 US8067269B2 (en) 2005-10-19 2006-09-01 Method for fabricating at least one transistor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SG200506897-8 2005-10-19
SG200506897-8A SG131803A1 (en) 2005-10-19 2005-10-19 Fabrication of transistors

Publications (1)

Publication Number Publication Date
WO2007046773A1 true WO2007046773A1 (en) 2007-04-26

Family

ID=37962779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SG2006/000255 Ceased WO2007046773A1 (en) 2005-10-19 2006-09-01 Fabrication of transistors

Country Status (7)

Country Link
US (1) US8067269B2 (enExample)
EP (1) EP1949442A4 (enExample)
JP (1) JP2009513014A (enExample)
KR (1) KR20080074892A (enExample)
CN (1) CN101351887B (enExample)
SG (1) SG131803A1 (enExample)
WO (1) WO2007046773A1 (enExample)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7763477B2 (en) 2004-03-15 2010-07-27 Tinggi Technologies Pte Limited Fabrication of semiconductor devices
US8004001B2 (en) 2005-09-29 2011-08-23 Tinggi Technologies Private Limited Fabrication of semiconductor devices for light emission
US8026596B2 (en) * 2007-08-15 2011-09-27 International Rectifier Corporation Thermal designs of packaged gallium nitride material devices and methods of packaging
US8034643B2 (en) 2003-09-19 2011-10-11 Tinggi Technologies Private Limited Method for fabrication of a semiconductor device
US8124994B2 (en) 2006-09-04 2012-02-28 Tinggi Technologies Private Limited Electrical current distribution in light emitting devices
US8309377B2 (en) 2004-04-07 2012-11-13 Tinggi Technologies Private Limited Fabrication of reflective layer on semiconductor light emitting devices
US8329556B2 (en) 2005-12-20 2012-12-11 Tinggi Technologies Private Limited Localized annealing during semiconductor device fabrication
US8395167B2 (en) 2006-08-16 2013-03-12 Tinggi Technologies Private Limited External light efficiency of light emitting diodes

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101920715B1 (ko) 2012-03-06 2018-11-21 삼성전자주식회사 고 전자 이동도 트랜지스터 및 그 제조방법
US8636197B1 (en) * 2012-10-04 2014-01-28 Ford Global Technologies, Llc Bonding of roof panels
US9082748B2 (en) 2012-10-05 2015-07-14 Micron Technology, Inc. Devices, systems, and methods related to removing parasitic conduction in semiconductor devices
CN105552047B (zh) * 2015-12-14 2018-02-27 中国电子科技集团公司第五十五研究所 一种AlGaN/GaN HEMT晶体管制造方法
US9697859B1 (en) * 2016-04-01 2017-07-04 WD Media, LLC Heat-assisted magnetic recording (HAMR) medium including a bi-layer that enables use of lower laser current in write operations

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4107720A (en) * 1974-10-29 1978-08-15 Raytheon Company Overlay metallization multi-channel high frequency field effect transistor
US5192987A (en) * 1991-05-17 1993-03-09 Apa Optics, Inc. High electron mobility transistor with GaN/Alx Ga1-x N heterojunctions
US20020117681A1 (en) * 2001-02-23 2002-08-29 Weeks T. Warren Gallium nitride material devices and methods including backside vias
US20040130037A1 (en) * 2003-01-02 2004-07-08 Cree Lighting Company Group III nitride based flip-chip intergrated circuit and method for fabricating
US20050127397A1 (en) * 2001-02-23 2005-06-16 Nitronex Corporation Gallium nitride materials including thermally conductive regions
US20050164482A1 (en) * 2004-01-22 2005-07-28 Cree, Inc. Silicon Carbide on Diamond Substrates and Related Devices and Methods

Family Cites Families (146)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6554A (en) * 1849-06-26 Adjustable platform for animal-traps
US154392A (en) * 1874-08-25 Improvement in heaters for wash-stands
US137243A (en) * 1873-03-25 Improvement in musical instruments
US55324A (en) * 1866-06-05 Improved apparatus for carbureting air
US154391A (en) * 1874-08-25 Iiviprpyement
US142875A (en) * 1873-09-16 Improvement in armpit-shields
US98792A (en) * 1870-01-11 Improvement in suspending- upper berth in sleeping-cars
US151801A (en) * 1874-06-09 Improvement in feeding mechanisms for sewing-machines
US154393A (en) * 1874-08-25 Improvement in composite columns
US65889A (en) * 1867-06-18 Duncan
US154390A (en) * 1874-08-25 Improvement in automatic valves for blast-furnaces
US235210A (en) * 1880-12-07 Stephen h
US210970A (en) * 1878-12-17 Improvement in bale-ties
US189215A (en) * 1877-04-03 Improvement in carriage-seat locks
US164480A (en) * 1875-06-15 Improvement in milk-coolers
US110395A (en) * 1870-12-20 Improvement in foundations for pavements
US99730A (en) * 1870-02-08 Improved draught-bar for horse-cars
US157721A (en) * 1874-12-15 Improvement in cultivators
US189212A (en) * 1877-04-03 Improvement in butter-pails
US3848490A (en) 1973-11-02 1974-11-19 Gerber Garment Technology Inc Method and apparatus for controlling a cutting tool
US3897627A (en) * 1974-06-28 1975-08-05 Rca Corp Method for manufacturing semiconductor devices
JPS5831751B2 (ja) 1975-10-31 1983-07-08 松下電器産業株式会社 半導体レ−ザの製造方法
JPS59112667A (ja) 1982-12-17 1984-06-29 Fujitsu Ltd 発光ダイオ−ド
JPS6395661A (ja) 1986-10-13 1988-04-26 Toshiba Corp 半導体素子電極
JPH06310500A (ja) * 1993-01-22 1994-11-04 Toshiba Corp 半導体装置の製造方法
US5376580A (en) 1993-03-19 1994-12-27 Hewlett-Packard Company Wafer bonding of light emitting diode layers
JPH07326628A (ja) 1994-06-01 1995-12-12 Fujitsu Ltd 半導体装置及びその実装方法
US5654228A (en) * 1995-03-17 1997-08-05 Motorola VCSEL having a self-aligned heat sink and method of making
JP3511970B2 (ja) 1995-06-15 2004-03-29 日亜化学工業株式会社 窒化物半導体発光素子
FR2737342B1 (fr) * 1995-07-25 1997-08-22 Thomson Csf Composant semiconducteur avec dissipateur thermique integre
KR0159388B1 (ko) * 1995-09-30 1999-02-01 배순훈 평탄화 방법
JP2005260255A (ja) 1996-02-19 2005-09-22 Sharp Corp 化合物半導体装置及びその製造方法
US5811927A (en) * 1996-06-21 1998-09-22 Motorola, Inc. Method for affixing spacers within a flat panel display
US6210479B1 (en) * 1999-02-26 2001-04-03 International Business Machines Corporation Product and process for forming a semiconductor structure on a host substrate
US6784463B2 (en) * 1997-06-03 2004-08-31 Lumileds Lighting U.S., Llc III-Phospide and III-Arsenide flip chip light-emitting devices
US6559038B2 (en) * 1997-11-18 2003-05-06 Technologies And Devices International, Inc. Method for growing p-n heterojunction-based structures utilizing HVPE techniques
KR19990052640A (ko) * 1997-12-23 1999-07-15 김효근 오믹접촉 형성을 이용한 다이오드용 금속박막및 그의 제조방법
US6071795A (en) * 1998-01-23 2000-06-06 The Regents Of The University Of California Separation of thin films from transparent substrates by selective optical processing
US6091085A (en) * 1998-02-19 2000-07-18 Agilent Technologies, Inc. GaN LEDs with improved output coupling efficiency
JP3144377B2 (ja) * 1998-03-13 2001-03-12 日本電気株式会社 半導体装置の製造方法
DE19921987B4 (de) 1998-05-13 2007-05-16 Toyoda Gosei Kk Licht-Abstrahlende Halbleitervorrichtung mit Gruppe-III-Element-Nitrid-Verbindungen
JP3847477B2 (ja) 1998-12-17 2006-11-22 豊田合成株式会社 Iii族窒化物系化合物半導体発光素子
US6803243B2 (en) * 2001-03-15 2004-10-12 Cree, Inc. Low temperature formation of backside ohmic contacts for vertical devices
JP3525061B2 (ja) * 1998-09-25 2004-05-10 株式会社東芝 半導体発光素子の製造方法
US6307218B1 (en) * 1998-11-20 2001-10-23 Lumileds Lighting, U.S., Llc Electrode structures for light emitting devices
JP3739951B2 (ja) 1998-11-25 2006-01-25 東芝電子エンジニアリング株式会社 半導体発光素子およびその製造方法
JP3531722B2 (ja) 1998-12-28 2004-05-31 信越半導体株式会社 発光ダイオードの製造方法
US6744800B1 (en) * 1998-12-30 2004-06-01 Xerox Corporation Method and structure for nitride based laser diode arrays on an insulating substrate
US6426512B1 (en) * 1999-03-05 2002-07-30 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor device
JP2000294837A (ja) 1999-04-05 2000-10-20 Stanley Electric Co Ltd 窒化ガリウム系化合物半導体発光素子
US6020261A (en) * 1999-06-01 2000-02-01 Motorola, Inc. Process for forming high aspect ratio circuit features
GB9913950D0 (en) * 1999-06-15 1999-08-18 Arima Optoelectronics Corp Unipolar light emitting devices based on iii-nitride semiconductor superlattices
JP4189710B2 (ja) 1999-07-16 2008-12-03 Dowaエレクトロニクス株式会社 発光ダイオードの製造方法
JP2001035974A (ja) 1999-07-19 2001-02-09 Nec Corp 半導体装置及びその製造方法
JP2001049491A (ja) 1999-08-04 2001-02-20 Fujitsu Ltd Cu電解めっき成膜方法
JP3633447B2 (ja) 1999-09-29 2005-03-30 豊田合成株式会社 Iii族窒化物系化合物半導体素子
US6492661B1 (en) * 1999-11-04 2002-12-10 Fen-Ren Chien Light emitting semiconductor device having reflection layer structure
AU4139101A (en) * 1999-12-03 2001-06-12 Cree Lighting Company Enhanced light extraction in leds through the use of internal and external optical elements
JP2001168094A (ja) 1999-12-06 2001-06-22 Murata Mfg Co Ltd 配線構造、配線形成方法及び半導体装置
US6573537B1 (en) * 1999-12-22 2003-06-03 Lumileds Lighting, U.S., Llc Highly reflective ohmic contacts to III-nitride flip-chip LEDs
US6514782B1 (en) 1999-12-22 2003-02-04 Lumileds Lighting, U.S., Llc Method of making a III-nitride light-emitting device with increased light generating capability
JP4501225B2 (ja) 2000-02-21 2010-07-14 日亜化学工業株式会社 発光素子および発光素子の製造方法
JP2001237461A (ja) 2000-02-22 2001-08-31 Toshiba Corp 半導体発光素子
JP2001313390A (ja) 2000-02-29 2001-11-09 Agere Systems Inc 半導体材料における選択的レーザ・アニール
JP4060511B2 (ja) * 2000-03-28 2008-03-12 パイオニア株式会社 窒化物半導体素子の分離方法
CN1252837C (zh) * 2000-04-26 2006-04-19 奥斯兰姆奥普托半导体股份有限两合公司 在GaN基板上的发光二极管芯片和用GaN基板上的发光二极管芯片制造发光二极管元件的方法
DE10051465A1 (de) 2000-10-17 2002-05-02 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines Halbleiterbauelements auf GaN-Basis
JP2002083999A (ja) * 2000-06-21 2002-03-22 Sharp Corp 半導体発光素子
US6420732B1 (en) * 2000-06-26 2002-07-16 Luxnet Corporation Light emitting diode of improved current blocking and light extraction structure
US6661028B2 (en) * 2000-08-01 2003-12-09 United Epitaxy Company, Ltd. Interface texturing for light-emitting device
TW456058B (en) 2000-08-10 2001-09-21 United Epitaxy Co Ltd Light emitting diode and the manufacturing method thereof
US6380564B1 (en) * 2000-08-16 2002-04-30 United Epitaxy Company, Ltd. Semiconductor light emitting device
US6562648B1 (en) * 2000-08-23 2003-05-13 Xerox Corporation Structure and method for separation and transfer of semiconductor thin films onto dissimilar substrate materials
TW466784B (en) * 2000-09-19 2001-12-01 United Epitaxy Co Ltd Method to manufacture high luminescence LED by using glass pasting
TW475276B (en) 2000-11-07 2002-02-01 Ind Tech Res Inst GaN based III-V compound semiconductor light-emitting device
US6791119B2 (en) * 2001-02-01 2004-09-14 Cree, Inc. Light emitting diodes including modifications for light extraction
JP3970530B2 (ja) * 2001-02-19 2007-09-05 三菱電機株式会社 半導体装置およびその製造方法
CN1185720C (zh) 2001-03-05 2005-01-19 全新光电科技股份有限公司 一种镀有金属反射镜膜基板的发光二极管及其制造方法
US6468824B2 (en) 2001-03-22 2002-10-22 Uni Light Technology Inc. Method for forming a semiconductor device having a metallic substrate
US6589857B2 (en) * 2001-03-23 2003-07-08 Matsushita Electric Industrial Co., Ltd. Manufacturing method of semiconductor film
US6509270B1 (en) * 2001-03-30 2003-01-21 Cypress Semiconductor Corp. Method for polishing a semiconductor topography
KR100482174B1 (ko) 2001-08-08 2005-04-13 삼성전기주식회사 기판제거 기술을 이용한 GaN계 LED 제작 방법
US20030064535A1 (en) * 2001-09-28 2003-04-03 Kub Francis J. Method of manufacturing a semiconductor device having a thin GaN material directly bonded to an optimized substrate
JP4336071B2 (ja) 2001-11-08 2009-09-30 古河電気工業株式会社 放熱性に優れた半導体装置
US6784462B2 (en) * 2001-12-13 2004-08-31 Rensselaer Polytechnic Institute Light-emitting diode with planar omni-directional reflector
US6455340B1 (en) 2001-12-21 2002-09-24 Xerox Corporation Method of fabricating GaN semiconductor structures using laser-assisted epitaxial liftoff
JP3782357B2 (ja) * 2002-01-18 2006-06-07 株式会社東芝 半導体発光素子の製造方法
JP2003243700A (ja) * 2002-02-12 2003-08-29 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体発光素子
JP4242599B2 (ja) 2002-04-08 2009-03-25 パナソニック株式会社 窒化物半導体装置の製造方法及び窒化物半導体基板の製造方法
US8294172B2 (en) 2002-04-09 2012-10-23 Lg Electronics Inc. Method of fabricating vertical devices using a metal support film
US20030189215A1 (en) 2002-04-09 2003-10-09 Jong-Lam Lee Method of fabricating vertical structure leds
JP3896027B2 (ja) * 2002-04-17 2007-03-22 シャープ株式会社 窒化物系半導体発光素子およびその製造方法
JP4233268B2 (ja) * 2002-04-23 2009-03-04 シャープ株式会社 窒化物系半導体発光素子およびその製造方法
JP3962282B2 (ja) 2002-05-23 2007-08-22 松下電器産業株式会社 半導体装置の製造方法
JP3962283B2 (ja) 2002-05-29 2007-08-22 松下電器産業株式会社 半導体装置の製造方法
JP2004014938A (ja) 2002-06-10 2004-01-15 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
JP2004088083A (ja) 2002-06-25 2004-03-18 Matsushita Electric Ind Co Ltd 半導体発光素子、その製造方法及びその実装方法
TW540171B (en) 2002-07-18 2003-07-01 United Epitaxy Co Ltd Manufacturing method of high-power light emitting diode
JP2004072052A (ja) 2002-08-09 2004-03-04 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
US6649437B1 (en) * 2002-08-20 2003-11-18 United Epitaxy Company, Ltd. Method of manufacturing high-power light emitting diodes
US20040104395A1 (en) * 2002-11-28 2004-06-03 Shin-Etsu Handotai Co., Ltd. Light-emitting device, method of fabricating the same, and OHMIC electrode structure for semiconductor device
KR100495215B1 (ko) 2002-12-27 2005-06-14 삼성전기주식회사 수직구조 갈륨나이트라이드 발광다이오드 및 그 제조방법
JP4179539B2 (ja) 2003-01-15 2008-11-12 富士通株式会社 化合物半導体装置及びその製造方法
US6961259B2 (en) * 2003-01-23 2005-11-01 Micron Technology, Inc. Apparatus and methods for optically-coupled memory systems
JP4492034B2 (ja) 2003-04-11 2010-06-30 日亜化学工業株式会社 Hemt及びその製造方法
JP5122817B2 (ja) 2003-05-09 2013-01-16 クリー インコーポレイテッド イオン・インプラント・アイソレーションによるled製作
US7244628B2 (en) 2003-05-22 2007-07-17 Matsushita Electric Industrial Co., Ltd. Method for fabricating semiconductor devices
JP4295669B2 (ja) 2003-05-22 2009-07-15 パナソニック株式会社 半導体素子の製造方法
KR100483049B1 (ko) 2003-06-03 2005-04-15 삼성전기주식회사 수직구조 질화갈륨계 발광다이오드의 제조방법
US6921924B2 (en) * 2003-06-18 2005-07-26 United Epitaxy Company, Ltd Semiconductor light-emitting device
US6967346B2 (en) * 2003-08-02 2005-11-22 Formosa Epitaxy Incorporation Light emitting diode structure and manufacture method thereof
US6958494B2 (en) * 2003-08-14 2005-10-25 Dicon Fiberoptics, Inc. Light emitting diodes with current spreading layer
CN101373807B (zh) 2003-09-19 2010-06-09 霆激技术有限公司 半导体器件上导电金属层的制作
EP1668688A4 (en) 2003-09-19 2011-03-02 Tinggi Technologies Private Ltd Fabrication of semiconductor devices
US6911376B2 (en) 2003-10-01 2005-06-28 Wafermasters Selective heating using flash anneal
US7700973B2 (en) 2003-10-10 2010-04-20 The Regents Of The University Of California GaN/AlGaN/GaN dispersion-free high electron mobility transistors
TWI313071B (en) * 2003-10-15 2009-08-01 Epistar Corporatio Light-emitting semiconductor device having enhanced brightness
US7119372B2 (en) * 2003-10-24 2006-10-10 Gelcore, Llc Flip-chip light emitting diode
US7012281B2 (en) * 2003-10-30 2006-03-14 Epistar Corporation Light emitting diode device and manufacturing method
KR101156146B1 (ko) 2003-12-09 2012-06-18 재팬 사이언스 앤드 테크놀로지 에이젼시 질소면의 표면상의 구조물 제조를 통한 고효율 3족 질화물계 발광다이오드
JP4647216B2 (ja) 2004-02-19 2011-03-09 信越半導体株式会社 GaP発光素子の製造方法
ATE533187T1 (de) 2004-03-15 2011-11-15 Tinggi Technologies Private Ltd Fabrikation von halbleiterbauelementen
JP4356494B2 (ja) 2004-03-30 2009-11-04 株式会社デンソー 半導体装置
US7741700B2 (en) 2004-03-30 2010-06-22 Nec Corporation Transistor with heat dissipating means
KR20070028364A (ko) 2004-04-07 2007-03-12 팅기 테크놀러지스 프라이빗 리미티드 반도체 발광 다이오드상의 반사층 제조
WO2005104780A2 (en) 2004-04-28 2005-11-10 Verticle, Inc Vertical structure semiconductor devices
US7791061B2 (en) * 2004-05-18 2010-09-07 Cree, Inc. External extraction light emitting diode based upon crystallographic faceted surfaces
TWI433343B (zh) 2004-06-22 2014-04-01 維帝克股份有限公司 具有改良光輸出的垂直構造半導體裝置
CN100383989C (zh) * 2004-11-23 2008-04-23 北京大学 在金属热沉上的激光剥离功率型led芯片及其制备方法
WO2006065010A1 (en) * 2004-12-13 2006-06-22 Lg Chem, Ltd. METHOD FOR MANUFACTURING G a N-BASED LIGHT EMITTING DIODE USING LASER LIFT-OFF TECHNIQUE AND LIGHT EMITTING DIODE MANUFACTURED THEREBY
US7413918B2 (en) 2005-01-11 2008-08-19 Semileds Corporation Method of making a light emitting diode
US20060151801A1 (en) 2005-01-11 2006-07-13 Doan Trung T Light emitting diode with thermo-electric cooler
US20060154393A1 (en) 2005-01-11 2006-07-13 Doan Trung T Systems and methods for removing operating heat from a light emitting diode
US7186580B2 (en) 2005-01-11 2007-03-06 Semileds Corporation Light emitting diodes (LEDs) with improved light extraction by roughening
US7378288B2 (en) 2005-01-11 2008-05-27 Semileds Corporation Systems and methods for producing light emitting diode array
US7195944B2 (en) 2005-01-11 2007-03-27 Semileds Corporation Systems and methods for producing white-light emitting diodes
US7335920B2 (en) * 2005-01-24 2008-02-26 Cree, Inc. LED with current confinement structure and surface roughening
EP1693891B1 (en) 2005-01-31 2019-07-31 IMEC vzw Method of manufacturing a semiconductor device
JP4980615B2 (ja) 2005-02-08 2012-07-18 ローム株式会社 半導体発光素子およびその製法
US7348212B2 (en) * 2005-09-13 2008-03-25 Philips Lumileds Lighting Company Llc Interconnects for semiconductor light emitting devices
US20070029541A1 (en) * 2005-08-04 2007-02-08 Huoping Xin High efficiency light emitting device
SG130975A1 (en) 2005-09-29 2007-04-26 Tinggi Tech Private Ltd Fabrication of semiconductor devices for light emission
SG133432A1 (en) 2005-12-20 2007-07-30 Tinggi Tech Private Ltd Localized annealing during semiconductor device fabrication
US7413980B2 (en) * 2006-04-25 2008-08-19 Texas Instruments Incorporated Semiconductor device with improved contact fuse
SG140473A1 (en) 2006-08-16 2008-03-28 Tinggi Tech Private Ltd Improvements in external light efficiency of light emitting diodes
SG140512A1 (en) 2006-09-04 2008-03-28 Tinggi Tech Private Ltd Electrical current distribution in light emitting devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4107720A (en) * 1974-10-29 1978-08-15 Raytheon Company Overlay metallization multi-channel high frequency field effect transistor
US5192987A (en) * 1991-05-17 1993-03-09 Apa Optics, Inc. High electron mobility transistor with GaN/Alx Ga1-x N heterojunctions
US20020117681A1 (en) * 2001-02-23 2002-08-29 Weeks T. Warren Gallium nitride material devices and methods including backside vias
US20050127397A1 (en) * 2001-02-23 2005-06-16 Nitronex Corporation Gallium nitride materials including thermally conductive regions
US20040130037A1 (en) * 2003-01-02 2004-07-08 Cree Lighting Company Group III nitride based flip-chip intergrated circuit and method for fabricating
US20050164482A1 (en) * 2004-01-22 2005-07-28 Cree, Inc. Silicon Carbide on Diamond Substrates and Related Devices and Methods

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1949442A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8034643B2 (en) 2003-09-19 2011-10-11 Tinggi Technologies Private Limited Method for fabrication of a semiconductor device
US7763477B2 (en) 2004-03-15 2010-07-27 Tinggi Technologies Pte Limited Fabrication of semiconductor devices
US8309377B2 (en) 2004-04-07 2012-11-13 Tinggi Technologies Private Limited Fabrication of reflective layer on semiconductor light emitting devices
US8004001B2 (en) 2005-09-29 2011-08-23 Tinggi Technologies Private Limited Fabrication of semiconductor devices for light emission
US8329556B2 (en) 2005-12-20 2012-12-11 Tinggi Technologies Private Limited Localized annealing during semiconductor device fabrication
US8395167B2 (en) 2006-08-16 2013-03-12 Tinggi Technologies Private Limited External light efficiency of light emitting diodes
US8124994B2 (en) 2006-09-04 2012-02-28 Tinggi Technologies Private Limited Electrical current distribution in light emitting devices
US8026596B2 (en) * 2007-08-15 2011-09-27 International Rectifier Corporation Thermal designs of packaged gallium nitride material devices and methods of packaging

Also Published As

Publication number Publication date
US20080224173A1 (en) 2008-09-18
EP1949442A1 (en) 2008-07-30
CN101351887A (zh) 2009-01-21
CN101351887B (zh) 2010-11-03
EP1949442A4 (en) 2011-03-09
US8067269B2 (en) 2011-11-29
SG131803A1 (en) 2007-05-28
KR20080074892A (ko) 2008-08-13
JP2009513014A (ja) 2009-03-26

Similar Documents

Publication Publication Date Title
KR102327745B1 (ko) 반도체 장치 및 그의 제조 방법
TWI333278B (en) Group iii nitride bases flip-chip integrated circuit and method for fabricating
US8067269B2 (en) Method for fabricating at least one transistor
US9064928B2 (en) Growth of multi-layer group III-nitride buffers on large-area silicon substrates and other substrates
CA2769940A1 (en) Island matrixed gallium nitride microwave and power switching transistors
CN104485313A (zh) 半导体装置
CN112420817A (zh) 半导体器件和方法
DE112019007477T5 (de) Halbleitereinheit und herstelungsverfahren für eine halbleitereinheit
KR101841631B1 (ko) 고전자이동도 트랜지스터 및 그의 제조방법
TWI588955B (zh) 使用多重底材形成iii-v族半導體結構之方法及應用此等方法所製作之半導體元件
WO2015163916A1 (en) Fet transistor on a iii-v material structure with substrate transfer
DE102014104103A1 (de) Verfahren und Substrat für dicke III-N-Epitaxieschichten
US10020244B2 (en) Polymer via plugs with high thermal integrity
DE102017109218B4 (de) Mehrschichtige Metallpads und Verfahren zu ihrer Herstellung
WO2011051500A1 (de) Verfahren zur herstellung von halbleiterscheiben für die integration von silizium-bauelementen mit hemts sowie eine entsprechende halbleiterschichtanordnung
WO2005024943A1 (en) Active area bonding compatible high current structures
US20150097290A1 (en) COMPOSITE METAL TRANSMISSION LINE BRIDGE STRUCTURE FOR MONOLITHIC MICROWAVE INTEGRATED CIRCUITS (MMICs)
DE102016221746B4 (de) Wafer für einen Leistungstransistor und Leistungstransistor
CN115732555B (zh) 氮化物半导体器件、互连结构及其制造方法
CN105702653B (zh) 可靠且强健的电接触件
US6958288B2 (en) Semiconductor device and manufacturing method thereof
CN118448457A (zh) 具有结构化的中间层的基于氮化镓的垂直的半导体构件
JPH07153841A (ja) 半導体装置およびその製造方法
JPH1092765A (ja) 半導体集積回路
CN112993027A (zh) 半导体结构及其形成方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680039046.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2008536553

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12091036

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006784267

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1012/MUMNP/2008

Country of ref document: IN

Ref document number: 1020087011945

Country of ref document: KR