WO2006078023A1 - バイオマス固形物及びその製造方法 - Google Patents

バイオマス固形物及びその製造方法 Download PDF

Info

Publication number
WO2006078023A1
WO2006078023A1 PCT/JP2006/300985 JP2006300985W WO2006078023A1 WO 2006078023 A1 WO2006078023 A1 WO 2006078023A1 JP 2006300985 W JP2006300985 W JP 2006300985W WO 2006078023 A1 WO2006078023 A1 WO 2006078023A1
Authority
WO
WIPO (PCT)
Prior art keywords
biomass
solid
semi
carbonized
heating
Prior art date
Application number
PCT/JP2006/300985
Other languages
English (en)
French (fr)
Inventor
Tamio Ida
Akio Nakanishi
Original Assignee
Osaka Industrial Promotion Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Industrial Promotion Organization filed Critical Osaka Industrial Promotion Organization
Priority to EP06712201A priority Critical patent/EP1857532A4/en
Priority to JP2006553989A priority patent/JP4088933B2/ja
Priority to CN200680002863.6A priority patent/CN101107344B/zh
Priority to BRPI0614027A priority patent/BRPI0614027B1/pt
Priority to KR1020077016952A priority patent/KR100926918B1/ko
Publication of WO2006078023A1 publication Critical patent/WO2006078023A1/ja
Priority to US11/880,649 priority patent/US8211274B2/en
Priority to US13/486,665 priority patent/US8747495B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/007Conditions of the cokes or characterised by the cokes used
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to a biomass solid and a method for producing the same, and more particularly to a biomass solid that can be used as an alternative fuel and material material for coal coats and a method for producing the same.
  • the maximum compressive strength (MPa) in the present invention indicates the degree of hardness based on the standard of the wood compression test method CFISZ2111).
  • Biomass is currently attracting attention as a breakthrough.
  • raw biomass since raw biomass has a very high porosity inside the material, it is bulky, has a very poor transport efficiency, and has a low calorific value. It is hoped that high value-added technology will be developed.
  • Pellets and ogarite are compacted fuels that improve the transportability and combustibility by dewatering the free water contained in the wood by the evaporation process (100 ° C).
  • BCDF dehydrates some of the chemically bound water contained in cellulose in addition to free water contained in the wood, further improving transportability and combustibility.
  • the woody biomass solid fuel according to these prior arts has a sufficient calorific value as compared with coal coatas, and it is difficult to achieve further hardness performance.
  • coal coatas when co-fired with coal coats in the manufacture of steel and iron making, it was difficult to withstand the environment in the furnace, and it was destroyed and burned, making it difficult to perform the function as an alternative coatus.
  • biomass is not suitable for use as a solid fuel and is treated unused, such as herbaceous biomass (for example, herbaceous biomass ( Grass, sunflower, etc.) and food waste biomass (Okara, rice husk, etc.) exist, and methods for effective use of such biomass are being sought.
  • herbaceous biomass for example, herbaceous biomass ( Grass, sunflower, etc.) and food waste biomass (Okara, rice husk, etc.) exist, and methods for effective use of such biomass are being sought.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 52-101202
  • Patent Document 2 Actual Fairness 8-8085
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-43517
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2003-213273
  • Patent Document 5 Japanese Patent Laid-Open No. 2003-206490
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a biomass solid material that can be used as an alternative fuel for coal coatas and a material material, and a method for producing the same.
  • the invention described in claim 1 is a semi-carbonized or semi-carbonized solid force obtained by pressure forming while heating a biomass raw material resulting from photosynthesis, and has a maximum compressive strength of 60 to 2 OOMPa. And a biomass solid characterized by a calorific value of 18-23 Mj / kg.
  • the invention according to claim 2 is characterized in that the apparent specific gravity of the pre-semi-carbonized or semi-carbonized solid is 1.2 to 1.38. Concerning shapes.
  • the invention described in claim 3 is a carbide force formed by pressure molding while heating the semi-carbonized solid before or semi-carbonized again. It relates to biomass solids.
  • the invention according to claim 4 is made of a semi-carbonized or semi-carbonized solid material obtained by pressure-forming while heating a biomass raw material added with metal particles resulting from photosynthesis. It relates to a featured biomass solid.
  • the invention described in claim 5 has a pre-semi-carbonized or semi-carbonized solid power obtained by pressing a biomass material resulting from photosynthesis added with a biomass equivalent to a biomass equivalent force while heating. It is related with the biomass solid substance characterized by becoming.
  • the invention described in claim 6 consists of a pre-semi-carbonized or semi-carbonized solid obtained by pressure-molding a biomass raw material added with ash that is equivalent to biomass to a biomass raw material resulting from photosynthesis. It is related with the biomass solid substance characterized by these.
  • the invention according to claim 7 includes a step of pulverizing a biomass raw material resulting from photosynthesis, a step of filling the pulverized biomass raw material into a tube, and a tube filled with the biomass material.
  • a step of loading a pressure piston a step of heating the biomass material and press-molding with the pressure piston, and maintaining the heating and pressurization for a predetermined time.
  • a method for producing a biomass solid comprising a step, wherein an inner diameter of the cylinder and an outer diameter of the pressure piston are substantially the same.
  • the invention according to claim 8 is characterized in that the pulverized biomass raw material has a particle diameter of 3 mm or less, and the production of the nano-mass solid according to claim 7 Regarding the method.
  • the invention described in claim 9 is characterized in that the temperature condition in the heating is 115 to 230 ° C, and the pressure condition in the pressure molding is 8 to 25 MPa. It relates to the manufacturing method of the biomass solid substance as described in above.
  • the invention according to claim 10 is characterized in that metal particles are added in the stage of filling the cylinder with the pulverized biomass raw material, It relates to the manufacturing method.
  • the invention as set forth in claim 11 is characterized in that in the stage of filling the cylinder with the pulverized biomass raw material, a charcoal having the same power as biomass is added.
  • the present invention relates to a method for manufacturing a product.
  • the invention according to claim 12 is characterized in that ash content equal to biomass is added in the stage of filling the pulverized biomass raw material into a cylinder, and biomass solid matter according to claim 7 It relates to the manufacturing method.
  • the invention according to claim 13 includes a step of heating and press-molding the cooled and dried semi-carbonized solid or semi-carbonized solid under the atmosphere, and the heating and pressurizing.
  • the invention according to claim 14 is characterized in that the temperature condition in the heating is 250 to 350 ° C., and the pressure condition in the pressure molding is 8 to 16 MPa. It relates to the manufacturing method of the biomass solid substance as described in above.
  • the maximum compressive strength is 60 to 200 MPa and the calorific value is 18 to 23 MjZkg. It becomes possible to have a function as a coal coatas alternative fuel. In addition, when the maximum compressive strength is 60 to 200 MPa, it is possible to have a function as a material material.
  • the specific gravity of biomass raw material is 1.2-2.
  • the carbon ratio per unit volume can be substantially maximized.
  • the transportability is maximized.
  • the carbon ratio per unit weight and unit volume is increased, and the combustion duration time is increased.
  • the heat generation amount it is possible to improve the heat generation amount. That is, the solid surface combustion characteristics can be improved.
  • the calorific value can be changed in the production of porcelain or iron making by adding ash which is equal to biomass to the biomass raw material resulting from photosynthesis. Therefore, the content ratio of silicon in the molten metal can be adjusted.
  • the heat is generated from the biomass raw material during the pressure molding.
  • Steam and gasification components can be kept inside the cylinder, and the biomass raw material can be overheated and steam reformed. This allows pre-carbonization or high carbonization with high hardness and high calorific value. Makes it possible to obtain a semi-carbonized solid.
  • This solid material can also be used as material materials such as piles and slope plates.
  • the temperature condition in heating is 115 to 230 ° C. and the pressure condition in pressure molding is 8 to 25 MPa, high process energy is not required and high A semi-carbonized or semi-carbonized solid having hardness and high calorific value can be obtained.
  • semi-carbonization that improves the combustion duration and calorific value by adding a carbide equivalent to biomass in the stage of filling the cylinder with the pulverized biomass raw material. It is possible to obtain a pre- or semi-carbonized solid.
  • the calorific value is changed in the manufacture of porcelain or iron making by adding ash that is equal to biomass in the stage of filling the cylinder with the pulverized biomass raw material.
  • the step of heating and pressure-molding the cooled and dried semi-carbonized or semi-carbonized solid material in the open air, and the heating And a step of obtaining a carbide by maintaining pressure for a certain period of time it is possible to obtain a Bincho charcoal level carbide in a short time.
  • the temperature condition in heating is 250 to 350. C.
  • the pressure condition in the pressure molding is 8 to 16 MPa, there is no uneven carbonization, high adhesion, and carbide can be obtained in a short time.
  • FIG. 1 shows an example of the appearance of the biocoatus (1) according to the present invention.
  • the biocoatus (1) according to the present invention targets all biomass resulting from photosynthesis.
  • biomass resulting from photosynthesis include biomass such as woody materials, herbs, agricultural crops, and moss.
  • woody materials include trees, dead leaves, or forest land residues, pruned leaves, driftwood, paper, and the like.
  • Examples of herbs include kenaf and stalks of sunflower.
  • agricultural crops include non-food parts such as wow stem, sesame stem, pods and rice husks.
  • potatoes examples include coffee candy, tea leaves, and okara.
  • biomasses are mainly composed of cellulose, hemicellulose, and lignin.
  • the heat resistance of the main component of this biomass under atmospheric pressure is about 100 ° C. Most free water is dehydrated by evaporation, and lignin (280 to 550 ° C)> cellulose (240 to 400 ° C). > In the order of hemicellulose (180-300 ° C), discoloration, decomposition, softening, gasification, heat generation and carbonization proceed above this temperature.
  • cellulose is a highly crystallized chain polymer having a clear and ordered bond structure and a polymerization degree of 2000 to 15000, it plays an important role in the hardness performance of the whole biomass.
  • Lignin also has a very complicated three-dimensional bond structure, which contributes to hardness performance.
  • hemicellulose has a degree of polymerization of 50 to 200 and a branched structure that is smaller than that of cellulose.
  • hemicellulose that is structurally brittle and weak in heat resistance
  • hemicellulose is thermally decomposed to exhibit an adhesive effect, and cellulose and lignin maintain a skeleton.
  • a solid material with excellent combustion characteristics that is, biocoatus
  • biocoatus can be produced by compacting, developing a thermosetting reaction, and improving solid surface combustion characteristics. It progresses when reaction active sites are induced between the phenolic polymers contained.
  • thermosetting reaction occurs between the phenols, and a relatively homogeneous and strong intermolecular network is formed.
  • thermosetting reaction can be activated by mixing the materials, and the processing temperature can be further reduced by 10-60 ° C.
  • thermosetting reaction it is possible to induce a thermosetting reaction at a low temperature without carbonizing the nanomass, and to realize combustion characteristics that can replace coal coatas in solid combustion.
  • FIG. 2 is a schematic flowchart showing a biocoatus production process according to the present invention.
  • step 1 biomass is crushed to 3 mm or less.
  • step 2 the biomass pulverized in step 1 is heated in the range of 115-230 ° C and shaped while controlling the pressure in the range of 8-25MPa.
  • step 3 the heated and pressurized state in step 2 is maintained for 10 to 20 minutes. After this, it is cooled in a pressurized state, dried after being taken out, and BioCotus is completed.
  • Biomass which is the raw material for Nanocoats, has very large voids as it is.
  • the heat receiving surface area is small, it is not suitable for heating and pressure forming. Therefore, in order to perform homogeneous formation, the biomass is first pulverized by a pulverizing means such as a mixer. At this time, it may be pulverized so that the particle size of the biomass after milling is 3 mm or less, preferably 0.1 mm or less.
  • a forming cylinder such as a cylinder is filled, and then a pressurizing piston is loaded.
  • the shape of the molding cylinder or pressurizing piston is not particularly specified, but is preferably a circular cross section. As a result, the molding process can be maintained even if a slight twist occurs in the molding cylinder or the pressure piston during molding.
  • the inner diameter of the molding cylinder and the outer diameter of the pressurizing piston are substantially the same, the steam and gasification components generated from the biomass are heated inside the molding cylinder during heating and pressure molding. This makes it possible to perform superheated steam reforming of biomass, and to obtain biocoatus having high hardness and high calorific value.
  • the biomass is heated and pressure-molded under the conditions of 115 to 230 ° C and 8 to 25 MPa as described above, and this heated state is maintained for about 10 to 20 minutes.
  • a heating method for example, a heating means such as an electric furnace may be provided so as to cover the outer periphery of the molding cylinder, and the biomass may be heated via the molding cylinder.
  • the pressure molding is performed by the pressure piston described above.
  • pressurization means such as a hydraulic jack may be used for mechanical pressurization.
  • the vapor pressure generated inside the cylinder is applied by the piston. Care must be taken as pressure may be exceeded.
  • the heating is performed in the range of 180 ° C to 230 ° C, and the pressurization is performed in the range of 12 to 19 MPa.
  • the nanocoatus is cooled for about 30 to 60 minutes until it reaches 40 to 50 ° C or less, and then the biocoat is taken out from the molding cylinder. If the biocoatus is taken out at a temperature higher than this temperature, or if force is applied without maintaining pressure, the adhesion effect of hemicellulose decreases.
  • a cooling method natural cooling with air is preferable. This is because if the cooling time is too short, cracks and the like are generated on the surface, causing a decrease in hardness.
  • the BioCotus immediately after taking out from the molding cylinder is molded in a nearly vacuum state at the time of manufacture, that is, in a nearly vacuum state, so that 5 to 10% of water vapor by weight is condensed again.
  • the hardness can be improved by dehydrating it by drying.
  • the drying method is not particularly limited, and examples thereof include a method of natural drying by leaving in the air or drying in a temperature-controlled room at about 80 to 100 ° C.
  • Biocoatus manufactured through the above process has excellent physical properties, both hardness and flammability, with specific gravity of 1.2 to 1.38, maximum compressive strength of 60 to 200MPa, and calorific value of 18 to 23MjZkg. Compared with, for example, raw woody biomass, apparent specific gravity of about 0.4 to 0.6, calorific value of about 17 MjZkg, and maximum compressive strength of about 30 MPa, It turns out that it is far superior.
  • the nanocoats according to the present invention have performance comparable to that of combustibility and hardness. .
  • the biocoats according to the present invention are formed with an apparent specific gravity of 1.2 to 1.38, which is not much different from the true specific gravity of 1.4. From this, the biocoatus according to the present invention has almost no internal voids, so that the carbon ratio per unit volume can be substantially maximized, and a substantially maximum thermal energy generation amount of approximately 30 GjZm 3 is obtained. . In addition, its transportability will be maximized. [0031] Next, a modified example of the biocoatus and its manufacturing method according to the present invention will be described below. In the example of change shown below, the manufacturing process itself is not changed, but only the raw material is changed.
  • metal particles are added to biomass as a raw material and heated and pressurized.
  • metal particles examples include Fe (iron), Ni (nickel), Cu (copper), and Mn (manganese).
  • the particle diameter of the metal particles is preferably about 3 mm or less (more preferably 0.1 mm or less), which is preferable for the fine force. This is because, as described in the previous manufacturing process, during forming, the forming cylinder is uniformly filled and the metal particles are uniformly brought into contact with the raw material biomass.
  • the nanocoats produced in this way have a maximum compressive strength of 60 to 200 MPa and a calorific value of 1 to
  • This biocoatus efficiently receives heat heated from the outside due to the presence of metal particles contained in the raw material, and promotes the contact reaction between the nanomass, so that uniform processing with less unevenness can be realized. This also leads to an improvement in compressive strength after molding.
  • the metal particles contained in the raw material can be melted simultaneously with melting in the manufacture of iron and steel.
  • heating and pressure molding are performed by adding a carbide of equal strength to biomass as a raw material.
  • biocoatus has a carbon content of about 40 to 50% by weight in the components. Therefore, the combustion characteristics due to solid surface reaction as dissolution energy are 50% higher than those of coalcoatus. About 60% inferior. This does not affect the evaluation of heat generation and heat generation temperature, but is related to the heat generation duration.
  • biocoats are formed by compounding (enveloping) carbide (33 to 42 Mj / kg) with a biomass equivalent to the raw material biomass.
  • the carbon ratio per unit weight and unit volume becomes high, and it becomes possible to obtain improvement in combustion duration and calorific value. That is, the solid surface combustion characteristics can be improved.
  • the shape of the carbide which also has a nanomass is carbon powder pulverized to 3 mm or less (preferably 0.1 mm or less).
  • This carbide can be suitably used not only for biomass but also for carbon powder made from fossil resource-derived waste.
  • the carbide compound biocoatus produced as described above has physical properties of a maximum compressive strength of 60 to 20 OMPa, a calorific value of 18 to 27 MjZkg, and an apparent specific gravity of 1.3 to 1.4.
  • the carbon ratio of biocoatus is improved by about 75%
  • the calorific value is improved by about 24.5MjZkg
  • the combustion duration is also improved.
  • heating / pressurization molding is performed by adding ash that also has a biomass equal force to the biomass as a raw material.
  • Examples of the ash raw material include discarded vegetable food, CCA (chrome, copper, arsenic) coated cocoon building waste, heat insulating material, and the like.
  • a biomass containing a raw material containing a natural sulfur-rich substance is added to the raw material biomass to perform heating and pressure forming.
  • Some biomass contains 10% or more by volume of sulfur, phosphorus, etc. resulting from photosynthesis such as lignosulfonic acid. This is the soil where biomass grows This is because the soil contains a lot of sulfur and phosphorus.
  • biomass containing 10% or more of this natural sulfur content by volume is added to biomass as raw material with the same particle size and heated and pressure-molded. It is possible to adjust the content ratio of sulfur content, etc., in the okotus without reducing the calorific value and hardness of the coatus. This does not use the sulfur and phosphorus components originally contained in fossil fuels, but has the advantage of reducing the burden on the natural environment because it is compounded with natural additives.
  • the biocoats according to the present invention can be used as a heat source and a reducing agent in cubora and blast furnaces in the manufacture of iron and steel, and as a material material by taking advantage of the characteristics such as high compressive strength. Can also be used.
  • the biocoatus according to the present invention can be molded to a diameter of 0.1 to 250 mm and a height of about 1 to 1000 mm so as to be adaptable to various uses.
  • Fig. 3 shows a schematic cross-sectional view of the cubola-type melting furnace (2)
  • Fig. 4 shows its characteristics
  • Fig. 5 shows an external view of the cubola-type melting furnace (2).
  • the cubola-type melting furnace (2) shown in FIGS. 3 and 5 is a vertically long bottomed cylindrical furnace whose outer surface is covered with a steel plate (3) and whose inner surface is formed of refractory bricks (4). There is a charging port (5) above, and a tap (6) and tap (7) near the bottom of the furnace. Below the charging entrance (5), a loading work floor (8) is provided for a loading worker to place. In addition, a tuyere (11) connected to the blower pipe (9) and the wind box (10) is provided slightly above the outlet (6). Further, a door (13) is provided at the furnace bottom (12).
  • the biocoatus (1) according to the present invention is mixed with the coal coatus (17) in the range of several to 50%.
  • FIG. 4 (a) is a diagram showing a temperature distribution in the furnace.
  • the temperature in the furnace gradually increases to about 1000 ° C in the upper region (A) where the metal (15) and the additional coatus (16) are arranged, In the lower area (B) where the bed coke (14) is placed, it rises rapidly to about 1800 ° C and then drops to about 1600 ° C.
  • FIG. 4 (b) is a diagram in which the inside of the furnace is divided according to the state of the metal (15).
  • the upper part of the furnace where the bullion (15) and the additional coater (16) are alternately mounted as shown in the figure forms a pre-tropical zone where the bullion (15) is preheated, and the bed coatas below it.
  • a melting zone is formed where the metal (15) is dissolved
  • the lower part of the furnace where the bed coat (14) is laid and reaches the temperature force S peak is dissolved metal ( 15) forms a supertropical zone where overheating occurs, and the bottom of the furnace below the tuyere (11) forms a puddle zone where molten metal (18) accumulates.
  • the biocoatus (1) according to the present invention has a compressive strength about 10 times that of the coal coatus (17). Can form voids without breaking against the upward force applied
  • FIG. 4 (b) is a diagram in which the inside of the furnace is divided by the reaction between the coatus and the gas in the furnace.
  • the above-described dissolution zone and supertropics are divided into a reduction zone and an acid zone as shown.
  • the upper zone of the dissolution zone and the supertropical zone is a reduction zone
  • the lower zone of the supertropical zone is an oxidation zone.
  • the reduction zone is gasified by biocoatus (1) as well as CO by combustion reaction in the oxidation zone.
  • Biocoatus (1) also has an effect as a reducing agent.
  • a reduction region that is, a region where gasification of the biocoatus (1) occurs, occurs in the upper portion of the bedcoatus (14) in the furnace is that when biomass is heated in a reducing atmosphere, This is because gasification occurs due to an exothermic reaction and the self-gasification reaction proceeds.
  • the acid cocoon zone is a supertropical atmosphere where the atmosphere reaches 600 ° C or higher, and the biocoatus (1) is completely gasified or oxidized and burned to become ash, which dissolves the metal (15). A heat source is generated.
  • the calorific value of the coal coat (17) releases a constant calorific value of approximately 29 MjZkg.
  • Biocoatus (1) is slightly lower than 18-23MjZkg and Coalcoatus (17), but changes in the heat generation temperature and heat generation are observed with changes in weight due to the gasification and carbonization process.
  • gas components such as CO and H are discharged by biomass gasification.
  • the coal coat (17) and the biocoatus (1) according to the present invention are used as the bullion (15) and the additional coatus (16) from the inlet (5) of the cubora-type melting furnace (2).
  • An appropriate proportion, for example, nanocoats (1) is charged in several to 50% of all coatas, and the inside is shown in Fig. 3 and Fig. 5. Formed as shown.
  • the bed coke (14) in the reduction zone is gasified and generates a volatile gas to form a reduction zone. (14) is completely gasified or oxidized and burned.
  • the gasification or soot of the bed coater (14) in the lower region of the furnace is accompanied by oxidation combustion and the bullion (15) and the additional coatus (16) placed alternately on the upper part of the furnace. ) Moves down so that the preheated force collapses.
  • the bullion moved downward is melted by the heat generated by the Korts force in the acid zone, reduced by the air supplied from the tuyere (11), and then melted from the tap (6) ( Taken out as 18).
  • the molten metal (18) can be obtained inferior to the molten metal temperature obtained by conventional coal-cotas combustion or obtained at a higher temperature due to the above-mentioned combustion characteristics of the nanocoats (1) in the high temperature range. Become.
  • biocoats according to the present invention can be adjusted in the early stages of production, and therefore do not need to be adjusted using a converter or the like. This makes it possible to reduce the costs associated with the omission of all manufacturing processes and the omission.
  • the biocoats according to the present invention can be used instead of several to 50% of the coal coats in the manufacture of porcelain or iron making. It is possible to obtain the same effect as or more than when it is used.
  • the biocoatus according to the present invention can be produced with a relatively simple configuration, it is possible to achieve low cost for coal coatus.
  • Biomass resources that are close to us are always produced in huge quantities, so food residues such as grasses in rivers and riverbeds are often treated as waste, such as landfills and incineration. Forced to do.
  • Nanomass is carbon-fixed through photosynthesis and has an organized organizational structure In view of this, it is possible to construct a sustainable circulation with a cascading structure, that is, zero emission, by utilizing the characteristics and converting to material materials.
  • the biocoatus according to the present invention has a higher compressive strength of 60 to 200 MPa than iron, and food residues such as riverbed grass can also be used as raw materials. Very expensive.
  • material materials include piles such as garden fences “horticultural piles” nails, and plate bodies such as coaster slopes and panels for barrier walls.
  • the biocoats according to the present invention when using the biocoats according to the present invention as a pile-like body, a certain impact resistance is required.
  • the reactivity between the biomasses is improved.
  • it is more preferable to take measures such as adding coarsely pulverized biomass utilizing the biomass of the biomass to improve continuity.
  • biomass that has been conventionally used without being used can be effectively used, and biomass resources that can circulate continuously, such as plastics and other chemical substances that have an adverse effect on the human body. It has become possible to show a direction that can be replaced by powerful articles.
  • Biocoats used as a material material can naturally be used as a heat source, so if it is used as a material, for example, charcoal powder Then, compound it in BioCotas and use it in cascade. In addition, since it decays naturally, it can be naturalized.
  • the above-described biocoatus production method is expanded to produce a high-hardness carbide in a short time.
  • the biocoatus is heated and pressure-molded again in the open atmosphere.
  • the heating conditions are set to 250-350 ° C
  • the pressurizing conditions are set to 8-16 MPa
  • the weight yield is maintained at around 10-30%.
  • the carbide obtained as described above has a calorific value of 30 to 35 MjZkg, is converted to a solid material that is harder than charcoal, and can have solid combustion characteristics as a heat source close to Bincho charcoal.
  • the properties of the manufactured biocoats showed a maximum compressive strength of about 100 MPa and a calorific value of about 21 MJ Zkg.
  • a biocoatus was obtained in the same manner as in Example 1 except that the heating temperature was 180 ° C.
  • the properties of the obtained biocoats showed a maximum compressive strength of about 80 MPa and a calorific value of about 20 MjZkg.
  • a biocoatus was obtained in the same manner as in Example 1 except that the heating temperature was 220 ° C.
  • the resulting properties of the bio Kotasu is about the maximum compression strength 120 MPa, heat value of about 23MjZk g indicates 7 This Q
  • Example 4 A biocoatus was obtained in the same manner as in Example 1 except that a molding tube having a diameter of 20 mm was used and the heating temperature was 220 ° C and the pressure was 20 MPa.
  • a biocoat was obtained in the same manner as in Example 1 except that the molding material was cypress crust.
  • Hinoki cypress is easier to solidify than cedar sawdust, and the properties of the obtained biocoats showed a calorific value of about 21 MjZkg and a maximum compressive strength of about lOOMPa.
  • the molding material was 10% of cedar sawdust and 90% of husk, heated at around 115 ° C and around 21MPa, and the same treatment as in Example 1 was performed except that the caloric pressure was maintained for 15 minutes. Got.
  • the properties of the obtained biocoats showed a calorific value of about 21 MjZkg and a maximum compressive strength of about 83 MPa.
  • the processing temperature could be reduced to nearly 50 ° C by high phenolic polymer, polyphenol, etc. contained in the husk.
  • the power was the same as in Example 1 except that the heating temperature was 240 ° C.
  • the carbon was completely carbonized and could not be solidified.
  • the pig iron tensile test after the operation showed a value of 120 to 160 MPa.
  • the resulting carbide which should be called artificial Bincho charcoal, showed a weight yield of about 20% and a calorific value of about 34 MjZkg.
  • the molding material was riverbed grass, the pressure surface of the pressure piston was processed into a conical hole shape, and the same condition treatment as in Example 1 was performed to obtain a pile-shaped body.
  • the properties of the obtained pile-like body showed a maximum compressive strength of about 80 MPa.
  • the present invention can be suitably used as a coal coatas alternative fuel and material material and a method for producing the same.
  • FIG. 1 is a perspective view showing an example of the appearance of a biocoatus according to the present invention.
  • FIG. 2 is a schematic flowchart showing a biocoatus production process according to the present invention.
  • FIG. 3 is a schematic cross-sectional view showing a cubola-type melting furnace when bio-coke according to the present invention is used as an alternative coater for cupola.
  • FIG. 4 When bio-coke according to the present invention is used as an alternative coater for cupola. It is a figure which shows the characteristic of a cubola type melting furnace.
  • FIG. 5 is a partially cutaway external perspective view showing a cubora-type melting furnace when bio-coke according to the present invention is used as an alternative coater for cupola.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Processing Of Solid Wastes (AREA)
  • Coke Industry (AREA)

Abstract

(課題) 石炭コークスの代替燃料並びにマテリアル素材としても利用可能であるバイオマス固形物及びその製造方法の提供。 (解決手段) 光合成に起因するバイオマス原料を加熱・加圧成形してなる半炭化前或いは半炭化固形物であって、最高圧縮強度60~200MPa及び発熱量18~23MJ/kgであるバイオマス固形物、並びに光合成に起因するバイオマス原料を粉砕する工程と、粉砕された原料を筒に充填する工程と、原料が充填された筒にピストンを装填する工程と、原料を加熱すると共にピストンで加圧成形する工程と、加熱・加圧を一定時間維持して半炭化前或いは半炭化固形物を得る工程と、半炭化前或いは半炭化固形物を加圧維持して冷却する工程と、冷却された半炭化前或いは半炭化固形物を取り出し乾燥する工程とを備え、筒内径とピストン外径とが略同一であるバイオマス固形物の製造方法。

Description

明 細 書
ノィォマス固形物及びその製造方法
技術分野
[0001] 本発明は、バイオマス固形物及びその製造方法に関し、より詳しくは、石炭コータス の代替燃料並びにマテリアル素材としても利用可能であるバイオマス固形物及びそ の製造方法に関する。
尚、本発明における最高圧縮強度 (MPa)とは、木材の圧縮試験法 CFISZ2111) の規格に基づく硬度の度合 、を示して 、る。
背景技術
[0002] 近年、地球環境問題は、より一層深刻なものになっており、先の気候変動枠組条約 第 3回締約国会議 (COP3)において採択された京都議定書による温室効果ガスの 削減や、将来的に予測されている化石燃料の枯渴を見据え、一次エネルギー資源 の確保とクリーン且つ再生可能なエネルギーの開発が急務となっている。
上記打開策として、現在バイオマスが注目されている。
し力しながら、未加工のバイオマスは素材内部の空隙率が非常に高いため、嵩張 つて輸送効率が非常に悪く、且つ発熱量も少な 、と 、う問題点を有して 、るため付 加価値の高 、物への転換技術の開発が望まれて 、る。
[0003] 一方、昨今の中国における急速な鉄鋼需要により、石炭コータスのコストが急上昇 し、我が国の铸物或いは鉄鋼メーカーの経営を著しく圧迫している。これは、石炭コ 一タスの国内生産が乏しぐほぼ中国産に頼っていることに起因している。
この実状に鑑み、铸物製造或いは製鉄において、石炭コータスの数%〜数十%程 度を代替できるバイオマスを原料とする高硬度固形燃料を開発し、燃料コストを削減 すると共に、バイオマスのカーボン-ユートラルな性質によって温室効果ガスを削減 することが切望されている。
また、石炭コータス代替に際して、地金の品質を低下させないことも重要である。
[0004] バイオマスを熱利用するための手法としては、従来、広く知られる炭化物の焼成の 他に、ペレット製造技術 (例えば、下記特許文献 1参照)、オガライト製造技術 (例え ば、下記特許文献 2参照)を挙げることができる。
ペレットやオガライトは、木質内部に含まれる自由水を蒸発過程(100°C)により脱 水し、輸送性及び燃焼性を向上させた圧密燃料である。
[0005] また、最近では、炭化物を効率良く得るべく原料を細片化し炭化させる製造技術( 例えば、下記特許文献 3参照)、高いエネルギー収率で木炭よりも容積エネルギー密 度及び重量エネルギー密度の高い固形燃料を製造する技術 (例えば、下記特許文 献 4参照)、木質バイオマスのエネルギー輸送特性をより高めるための半炭化圧密燃 料(Bio- Carbonized- Densified- Fuel) (以下、 BCDFと称する)製造技術(例えば、下 記特許文献 5参照)が、それぞれ報告されている。
BCDFは、木質内部に含まれる自由水に加え、セルロース等に含まれる化学的結 合水の一部を脱水し、輸送性と燃焼性を更に改善させたものである。
上記特許文献 1乃至 5の開示技術による固形燃料はいずれも木質バイオマスを熱 源として利用するための熱エネルギー収率の向上に焦点が置かれている。
[0006] し力しながら、これら従来技術による木質系バイオマス固形燃料は、石炭コータスに 比して充分な発熱量を有して 、るとは 、 、難ぐ更に硬度性能にっ 、ても充分では な力つたため、铸物製造や製鉄において石炭コータスと混焼する際に炉内の環境に 耐え切れず破壊 Z燃焼され、代替コータスとしての機能を発揮することは困難であつ た。
[0007] また、バイオマスの中には、木質系バイオマスに比べ水分量が多ぐ空隙が大きい 等、固形燃料としての利用にあまり適さず未利用のまま処理されるバイオマス、例え ば草本系バイオマス (草、ヒマヮリ等)や食品廃棄物系バイオマス (オカラ、籾殻等)が 存在しており、このようなバイオマスを有効利用するための手法が模索されている。
[0008] 特許文献 1 :特開昭 52— 101202号公報
特許文献 2:実公平 8 - 8085号公報
特許文献 3:特開 2004— 43517号公報
特許文献 4:特開 2003— 213273号公報
特許文献 5:特開 2003 - 206490号公報
発明の開示 発明が解決しょうとする課題
[0009] 本発明は、上記実状を鑑みてなされたものであって、石炭コータスの代替燃料並び にマテリアル素材としても利用可能であるバイオマス固形物及びその製造方法を提 供することを目的とする。
課題を解決するための手段
[0010] 請求の範囲第 1項に記載の発明は、光合成に起因するバイオマス原料を加熱しな がら加圧成形してなる半炭化前或いは半炭化固形物力もなり、最高圧縮強度 60〜2 OOMPa及び発熱量 18〜23Mj/kgであることを特徴とするバイオマス固形物に関 する。
請求の範囲第 2項に記載の発明は、前記半炭化前或いは半炭化固形物のみかけ 比重が 1. 2〜1. 38であることを特徴とする請求の範囲第 1項に記載のバイオマス固 形物に関する。
請求の範囲第 3項に記載の発明は、前記半炭化前或いは半炭化固形物を再度加 熱しながら加圧成形してなる炭化物力 なることを特徴とする請求の範囲第 1項に記 載のバイオマス固形物に関する。
[0011] 請求の範囲第 4項に記載の発明は、光合成に起因するバイオマス原料に金属粒子 を添加したものを加熱しながら加圧成形してなる半炭化前或いは半炭化固形物から なることを特徴とするバイオマス固形物に関する。
請求の範囲第 5項に記載の発明は、光合成に起因するバイオマス原料にバイオマ ス等力 なる炭化物を添加したものを加熱しながら加圧成形してなる半炭化前或い は半炭化固形物力もなることを特徴とするバイオマス固形物に関する。
請求の範囲第 6項に記載の発明は、光合成に起因するバイオマス原料にバイオマ ス等力 なる灰分を添加したものを加熱しながら加圧成形してなる半炭化前或いは 半炭化固形物からなることを特徴とするバイオマス固形物に関する。
[0012] 請求の範囲第 7項に記載の発明は、光合成に起因するバイオマス原料を粉砕する 工程と、該粉砕されたバイオマス原料を筒に充填する工程と、該ノィォマス原料が充 填された筒に加圧ピストンを装填する工程と、前記バイオマス原料を加熱すると共に 前記加圧ピストンにより加圧成形する工程と、前記加熱及び加圧を一定時間維持し て半炭化前或いは半炭化固形物を得る工程と、該半炭化前或いは半炭化固形物を 加圧維持しながら冷却する工程と、該冷却された半炭化前或いは半炭化固形物を 取り出し乾燥する工程とを備えるバイオマス固形物の製造方法であって、前記筒の 内径と前記加圧ピストンの外径とが略同一であることを特徴とするバイオマス固形物 の製造方法に関する。
[0013] 請求の範囲第 8項に記載の発明は、前記粉砕されたバイオマス原料の粒子径が 3 mm以下であることを特徴とする請求の範囲第 7項に記載のノィォマス固形物の製 造方法に関する。
請求の範囲第 9項に記載の発明は、前記加熱における温度条件が 115〜230°C であり、前記加圧成形における圧力条件が 8〜25MPaであることを特徴とする請求 の範囲第 7項に記載のバイオマス固形物の製造方法に関する。
[0014] 請求の範囲第 10項に記載の発明は、前記粉砕されたバイオマス原料を筒に充填 する段階において金属粒子を添加することを特徴とする請求の範囲第 7項に記載の バイオマス固形物の製造方法に関する。
請求の範囲第 11項に記載の発明は、前記粉砕されたバイオマス原料を筒に充填 する段階においてバイオマス等力 なる炭化物を添加することを特徴とする請求の範 囲第 7項に記載のバイオマス固形物の製造方法に関する。
請求の範囲第 12項に記載の発明は、前記粉砕されたバイオマス原料を筒に充填 する段階においてバイオマス等力 なる灰分を添加することを特徴とする請求の範囲 第 7項に記載のバイオマス固形物の製造方法に関する。
[0015] 請求の範囲第 13項に記載の発明は、前記冷却及び乾燥された半炭化前或いは半 炭化固形物を大気開放下において加熱すると共に加圧成形する工程と、該加熱及 び加圧を一定時間維持して炭化物を得る工程とを備えることを特徴とする請求の範 囲第 7項に記載のバイオマス固形物の製造方法に関する。
請求の範囲第 14項に記載の発明は、前記加熱における温度条件が 250〜350°C であり、前記加圧成形における圧力条件が 8〜16MPaであることを特徴とする請求 の範囲第 13項に記載のバイオマス固形物の製造方法に関する。
発明の効果 [0016] 請求の範囲第 1項に記載の発明によれば、最高圧縮強度 60〜200MPa及び発熱 量 18〜 23MjZkgであることにより、铸物製造或いは製鉄において炉内で石炭コー タスと混焼し得る石炭コータス代替燃料としての機能を有することが可能となる。また 、最高圧縮強度が 60〜200MPaであることにより、マテリアル素材としての機能を有 することが可能となる。
請求の範囲第 2項に記載の発明によれば、半炭化前或いは半炭化固形物のみか け比重が 1. 2〜1. 38であることにより、バイオマス原料の真比重 1. 4と大差がない、 つまり内部空隙がほとんど存在しないので、単位体積当たりの炭素比率を略最大に することが可能となる。また、輸送性も最大限に向上する。
請求の範囲第 3項に記載の発明によれば、半炭化前或いは半炭化固形物を再度 加熱しながら加圧成形することにより、短時間で備長炭レベルの固体燃焼特性を得 ることが可能となる。
[0017] 請求の範囲第 4項に記載の発明によれば、光合成に起因するバイオマス原料に金 属粒子を添加することにより、外部加熱を効率良く受熱し、半炭化前或いは半炭化 固形物の均質成形が可能となる。また、元来石炭コータスに含まれている元素或い は新規元素を溶解と同時に溶湯することが可能となる。
請求の範囲第 5項に記載の発明によれば、光合成に起因するバイオマス原料にバ ィォマス等力 なる炭化物を添加することにより、単位重量及び単位体積当たりの炭 素比率が高くなり、燃焼持続時間及び発熱量の向上を得ることが可能となる。すなわ ち、固体表面燃焼特性の向上が可能となる。
請求の範囲第 6項に記載の発明によれば、光合成に起因するバイオマス原料にバ ィォマス等力 なる灰分を添加することにより、铸物製造或 、は製鉄にお 、て発熱量 を変化させることなく溶湯中における珪素 (シリコン)分の含有比率を調整することが 可能となる。
[0018] 請求の範囲第 7項に記載の発明によれば、筒の内径と加圧ピストンの外径とが略同 一であることにより、加熱'加圧成形する際、バイオマス原料から発生する水蒸気及 びガス化成分を前記筒内部に留めることが可能となり、前記バイオマス原料の過熱 水蒸気改質が可能となる。これにより、高硬度及び高発熱量を有する半炭化前或い は半炭化固形物を得ることが可能となる。また、この固形物は、例えば、杭、法面板 等のマテリアル素材としても利用することが可能である。
請求の範囲第 8項に記載の発明によれば、粉砕されたバイオマス原料の粒子径が 3mm以下であることにより、前記ノィォマス原料を均質に筒に充填することが可能と なる。
請求の範囲第 9項に記載の発明によれば、加熱における温度条件が 115〜230°C 、加圧成形における圧力条件が 8〜25MPaであることにより、過剰なプロセスェネル ギーを必要とせず、高硬度及び高発熱量を有する半炭化前或いは半炭化固形物を 得ることができる。
[0019] 請求の範囲第 10項に記載の発明によれば、粉砕されたバイオマス原料を筒に充 填する段階において金属粒子を添加することにより、外部加熱を効率良く受熱するこ とが可能となり、均質に成形された半炭化前或いは半炭化固形物を得ることが可能と なる。また、元来石炭コータスに含まれている元素或いは新規元素を溶解時に同時 に溶湯できる半炭化前或いは半炭化固形物を得ることが可能となる。
請求の範囲第 11項に記載の発明によれば、粉砕されたバイオマス原料を筒に充 填する段階においてバイオマス等力 なる炭化物を添加することにより、燃焼持続時 間及び発熱量が向上する半炭化前或いは半炭化固形物を得ることが可能となる。 請求の範囲第 12項に記載の発明によれば、粉砕されたバイオマス原料を筒に充 填する段階においてバイオマス等力 なる灰分を添加することにより、铸物製造や製 鉄において発熱量を変化させることなく溶湯中の珪素 (シリコン)分の含有比率を調 整することができる半炭化前或いは半炭化固形物を得ることが可能となる。
[0020] 請求の範囲第 13項に記載の発明によれば、前記冷却及び乾燥された半炭化前或 いは半炭化固形物を大気開放下において加熱すると共に加圧成形する工程と、該 加熱及び加圧を一定時間維持して炭化物を得る工程とを備えることにより、短時間で 備長炭レベルの炭化物を得ることが可能となる。
請求の範囲第 14項に記載の発明によれば、加熱における温度条件が 250〜350 。C、前記加圧成形における圧力条件が 8〜16MPaであることにより、炭化ムラがなく 、密着性の高 、炭化物を短時間で得ることが可能となる。 発明を実施するための最良の形態
[0021] 以下、本発明に係るバイオマス固形物(以下、バイオコータスと称する)及びその製 造方法について、図面を参照しつつ説明する。図 1は、本発明に係るバイオコータス (1)の外観の一例を示している。
本発明に係るバイオコータス(1)は、光合成に起因する全バイオマスを原料対象と している。光合成に起因するバイオマスとしては、例えば、木質類、草本類、農作物 類、厨芥類等のバイオマスを挙げることができる。
木質類としては、木、枯葉或いはその廃棄物である林地残渣、剪定'葉刈り材、流 木、紙等を例示することができる。
草本類としては、ケナフ、ヒマヮリの茎等を例示することができる。
農作物類としては、ォォバ茎、ゴマ茎、芋づる、籾殻等の非食部位を例示すること ができる。
厨芥類としては、コーヒー粕、茶殻、オカラ等を例示することができる。
[0022] これらのバイオマスは、セルロース、へミセルロース及びリグニンを主成分として構 成されている。
このバイオマスの主成分の大気圧下での耐熱性は、まず 100°C程度で大部分の自 由水が蒸発により脱水され、リグニン(280〜550°C) >セルロース(240〜400°C) > へミセルロース(180〜300°C)の順に、それぞれこの温度以上で変色、分解あるい は軟化、ガス化、更には発熱し炭化が進行する。
ここで、セルロースは、明確な秩序正しい結合構造を持ち、重合度 2000〜15000 を有する高度に結晶化した鎖状ポリマーであるためバイオマス全体の硬度性能に重 要な役割を担っている。
リグニンも極めて複雑な三次元的な結合構造を有する為、硬度性能への貢献度が 高い。
一方、へミセルロースは重合度 50〜200とセルロースに比して小さぐ分岐した構 造を有するため、硬度貢献度は小さい。
[0023] 本発明では、構造的に脆ぐ耐熱性に弱い、へミセルロースに照準を当て、へミセ ルロースを熱分解し接着効果を発現させ、セルロース及びリグニンは骨格を保ったま ま圧密し、熱硬化反応を発現させ、固体表面燃焼特性を向上させることにより、非常 に硬ぐ燃焼特性に優れた固形物、つまりバイオコータスが製造できることを見出した 熱硬化反応は、リグニン等に含まれるフエノール性の高分子間で反応活性点が誘 発することにより進行する。
このことは、原料にタレゾールをカ卩えて作成したバイオコータス力も抽出したリグニン タレゾール反応物の H1— NMR分析によってリグニン分子中にタレゾールの存在 を確認できたこと、すなわち、リグニンとタレゾールが反応し、リグニン分子中にクレゾ ールが導入されたことによって証明される。
このことにより、フ ノール間で熱硬化反応が起こり、比較的均質で強固な分子間ネ ットワークが形成されることになる。
また、材料の調合でこの熱硬化反応を活発化することが可能であり、加工成形温度 を 10〜60°C、更に低下することが可能となる。
これにより、ノィォマスを炭化させることなぐ低温で熱硬化反応を誘起することがで き、固体燃焼時での石炭コータスを代替できる燃焼特性を実現することが可能となる
[0024] 図 2は、本発明に係るバイオコータスの製造工程を示す概略フローチャートである。
以下、図 2を参照しつつバイオコータスの製造方法について詳しく説明する。
図 2に示される如ぐバイオコータスの製造は、大きく三つの工程を経ることで達成さ れる。
工程 1では、バイオマスを 3mm以下に粉砕する。
工程 2では、工程 1にお!/、て粉砕されたバイオマスを 115〜230°Cの範囲で加熱す ると共に 8〜25MPaの範囲で圧力制御しながら成形する。
工程 3では、工程 2における加熱及び加圧状態を 10〜20分間保持する。 この後、加圧状態で冷却し、取り出した後に乾燥を行い、バイオコータスが完成する
[0025] 上記製造工程をより詳しく説明する。
ノ ィォコータスの原料となるバイオマスは、そのままの状態では空隙が非常に大き いことと、受熱表面積が小さいため、加熱'加圧成形に適さない。従って、均質な成 形を行うため、先ずバイオマスをミキサー等の粉砕手段により粉砕する。このとき、粉 碎後のバイオマスの粒子径が 3mm以下、好ましくは 0. 1mm以下となるように粉砕す れば良い。
これにより、バイオマスを成形用の筒(後述する)に充填する際、嵩密度が向上し均 質な充填が可能となり、加熱成形においてバイオマス間の接触が高まり、成形後の 硬度も向上する。
[0026] 次 、で、粉砕したバイオマスを加熱'加圧成形するために、シリンダー等の成形用 筒に充填し、その後、加圧用ピストンを装填する。
成形用筒或いは加圧用ピストンの形状において特に指定はないが、断面円形状で あることがより好ましい。これにより、成形中に成形用筒或いは加圧用ピストンに少々 のねじれが生じたとしても、成形工程を維持することが可能となる。
ここで、成形用筒の内径と加圧用ピストンの外径が略同一であることにより、加熱' 加圧成形時にお!ヽて、バイオマスから発生する水蒸気及びガス化成分を成形用筒 の内部に留めることが可能となり、バイオマスの過熱水蒸気改質が可能となり、高硬 度及び高発熱量を有するバイオコータスを得ることが可能となる。
[0027] 以上の初期充填の後、上述した如く 115〜230°C、 8〜25MPaの条件で、バイオ マスの加熱及び加圧成形を行い、この加熱'加圧状態を 10〜20分間程度保持する 。 加熱方法としては、例えば、成形用筒の外周を覆うようにして電気炉等の加熱手 段を配設し、成形用筒を介してバイオマスを加熱するようにすれば良い。また、加圧 成形は、上述した加圧用ピストンにより行う。加圧方法としては油圧ジャッキ等の加圧 手段を用いて機械的に加圧すれば良いが、バイオマス原料に含まれる水分量の若 干の違いにより、筒内部で発生する蒸気圧がピストンによる加圧圧力を超える場合が あるので注意する必要がある。
[0028] ここで、加熱'加圧成形を上述した条件で行うことにより、過剰なプロセスエネルギ 一を必要とせず、高硬度及び高発熱量を有するバイオコータスを得ることができる。 これは、 115〜230°Cの温度条件においてカロ熱を行うことにより、へミセルロースが 熱分解し、成形用筒内部に発生する過熱水蒸気によりセルロース及びリグニンがそ の骨格を保持したまま低温で反応し、圧密効果と相乗的に作用することによって、よ り硬度が増すことに起因して 、る。
より好ましくは、加熱は 180°C〜230°Cの範囲で、加圧は 12〜19MPaの範囲で成 形を行うことが望ましい。
[0029] この後、加圧状態を維持したまま、ノ ィォコータスが 40〜50°C以下になるまで 30 〜60分程度冷却し、その後、成形用筒よりバイオコータスを取り出す。この温度より 高い温度でバイオコータスを取り出す、或いは加圧維持しな力つたりすると、へミセル ロースによる接着効果が低下する。また、冷却方法としては、大気による自然冷却が 好ましい。冷却時間があまりにも短いと、表面にひび割れ等が生じ、硬度を低下させ る原因となるからである。
また、成形用筒より取り出した直後のバイオコータスには、製造時、密閉に近い、つ まり略真空状態で成形されているため、重量割合で 5〜10%の水蒸気が再度凝縮し ている。これを乾燥により脱水することで硬度の向上を図ることができる。
乾燥の方法としては、特に限定はないが、例えば、大気放置にて自然乾燥を行う、 或いは 80〜100°C程度の恒温室で乾燥させる方法が挙げられる。
[0030] 以上の工程を経て製造されたバイオコータスは、比重 1. 2〜1. 38、最高圧縮強度 60〜200MPa、発熱量 18〜23MjZkgの物性値を示す硬度'燃焼性共に優れた 性能を有しており、例えば、未加工の木質バイオマスカ、みかけ比重約 0. 4〜0. 6、 発熱量約 17MjZkg、最高圧縮強度約 30MPaであるのと比べると、発熱量及び硬 度の点にお 、て格段に優れて 、ることが判る。
また、石炭コータスの物性値、みかけ比重約 1. 85、最高圧縮強度約 15MPa、発 熱量約 29MjZkgに比しても、本発明に係るノ ィォコータスは、燃焼性'硬度とも遜 色ない性能を有する。
また、本発明に係るバイオコータスは、みかけ比重 1. 2〜1. 38で形成されており、 ノィォマスの真比重 1. 4と大差がない。このことより、本発明に係るバイオコータスは 、内部空隙がほとんど存在しないため、単位体積当たりの炭素比率を略最大にする ことが可能となり、略最大の熱エネルギー発生量約 30GjZm3を得ている。また、そ の輸送性も最大限に向上する。 [0031] 次に、本発明に係るバイオコータスとその製造方法の変更例について以下に記述 する。尚、以下に挙げる変更例は、製造工程自体の変更は行わず、原料に対しての 変更のみ行っている。
第一の変更例としては、原料となるバイオマスに金属粒子を添加して加熱'加圧成 形を行う。
金属粒子としては、 Fe (鉄)、 Ni (ニッケル)、 Cu (銅)、 Mn (マンガン)等を例示する ことができる。
金属粒子の粒子径は、細力 、ほど好ましぐ約 3mm以下(より好ましくは 0. lmm 以下)のものを混入することが好ましい。これは、先の製造工程でも述べたように、成 形に際して、成形用筒に均質な充填を行うと共に原料のバイオマスに対して満遍なく 金属粒子を接触させるためである。
[0032] これにより製造されたノ ィォコータスは、最高圧縮強度 60〜200MPa、発熱量 1〜
23MjZkg〖こカロえ、みかけ比重 1. 3〜6. 0の物性値を示す。
このバイオコータスは、原料中に含まれる金属粒子の存在により、外部から加熱さ れる熱を効率よく受熱し、ノィォマス間の接触反応を促進するため、ムラの少ない均 質加工を実現できる。また、このことは、成型後の圧縮強度の向上につながる。
[0033] また、原材料中に含まれる金属粒子は、铸物製造や製鉄において溶解と同時に溶 湯することが可能である。
従来、铸物ゃ鉄鋼は使用される用途に応じて要求される特性が異なるので、製造 の最終段階で必要な成分調整処理を行う必要があるが (例えば、転炉処理等)、バイ ォマスに添加する金属粒子を予め調整配合しておくことにより、この処理工程を省略 できると共にコストを削減することが可能となる。
[0034] 第二の変更例としては、原料となるバイオマスにノィォマス等力 なる炭化物を添 加して加熱,加圧成形を行う。
バイオコータスは生化学的な観点から、成分中、重量割合にして炭素分が 40〜50 %程度であるので、溶解エネルギーとしての固体表面反応によるチヤ一燃焼特性が 石炭コータスに比して、 50〜60%程度劣る。このことは、発熱量、発熱温度の評価に は影響を及ぼさないが、発熱持続時間に関わってくる。 この対策として、原料のノィォマスにバイオマス等力もなる炭化物 (発熱量 33〜42 Mj/kg)をコンパウンドして(包み込むようにして)バイオコータスを成形する。
これにより、単位重量及び単位体積当たりの炭素比率が高くなり、燃焼持続時間及 び発熱量の向上を得ることが可能となる。すなわち、固体表面燃焼特性の向上が可 能となる。
ノィォマス等力もなる炭化物の形状は、 3mm以下 (好ましくは 0. 1mm以下)に粉 砕した炭粉であることが好ま 、。
この炭化物は、バイオマスだけに留まらず、化石資源由来の廃棄物から作られる炭 粉等でも好適に使用することができる。
[0035] 以上より製造された炭化物コンパゥンド型バイオコータスは、最高圧縮強度 60〜20 OMPa、発熱量 18〜27MjZkg、みかけ比重 1. 3〜1. 4の物性値を示す。
このことにより、例えば、バイオマス炭粉を 50%重量割合で混入すると、バイオコー タスの炭素比率が 75%程度向上し、発熱量が 24. 5MjZkgと 15%程度向上すると 共に燃焼持続時間も向上する。
[0036] 第三の変更例としては、原料となるバイオマスにノィォマス等力もなる灰分を添加し て加熱 ·加圧成形を行う。
灰分の原料としては、例えば、廃棄された野菜食品、 CCA (クローム、銅、砒素)塗 布されて ヽな ヽ建築廃材、断熱材等を挙げることができる。
铸物製造や製鉄においては、成分調整として珪素 (シリコン)分を添加するために、 Fe— Siとして石炭コータスと共に投入する等の処理を行っている。原料のバイオマス はその成分中に珪素(シリコン)分を含んで 、るが、これにバイオマス等力 なる灰分 を添加して加熱'加圧成形することにより、铸物製造や製鉄において、バイオコータス の有する発熱量や硬度を低下させることなぐ珪素 (シリコン)分の含有比率を調整す ることが可能となる。
[0037] 第四の変更例としては、原料となるバイオマスに天然硫黄分等を多く含むノ ォマ スを添加して加熱'加圧成形を行う。
バイオマスの中には、リグ-ンスルホン酸等の光合成に起因する硫黄分やリン分等 が体積割合にして 10%以上含有されるものがある。これは、バイオマスが生育する土 壌に硫黄分やリン分等が多く含まれて 、ることによる。
上述したが、従来、铸物或いは鉄鋼は使用される用途に応じて要求される特性が 異なるので、製造の最終段階で必要な成分調整処理を行う必要があり、硫黄分、リン 分等もこの例外ではない。
従って、この天然硫黄分等が体積割合にして 10%以上含有されるバイオマスを、 原料となるバイオマスに同一粒子径で添加して加熱'加圧成形することで、铸物製造 或いは製鉄において、バイオコータスの有する発熱量や硬度を低下させることなぐ ノ^オコータス中の硫黄分等の含有比率を調整することが可能となる。これは、化石 燃料に元来含まれる硫黄分、リン分等を使用せず、天然の添加剤をコンパゥンドする ため、自然環境へ与える負荷が少な 、利点を併せ持つ。
尚、硫黄分等が多量に必要な铸物製造等がある場合は、この天然硫黄分等を多量 に含むバイオマスのみを原料として、バイオコータスを製造すれば良 、。
[0038] 以上より、本発明に係るバイオコータスは、铸物製造或いは製鉄においてキュボラ、 高炉における熱源 ·還元剤等として使用可能であり、また、高い圧縮強度等の特性を 活かして、マテリアル素材としての使用も可能である。この際、その種々の用途に適 応できるように、本発明に係るバイオコータスは直径 0. l〜250mm、高さ 1〜1000 mm程度までの成形が可能である。
ここで先ず、石炭コータス代替バイオコータスの使用例として、キュボラ用代替コー タスとしての利用につ 、て説明する。
[0039] キュボラ型溶融炉(2)の概略断面図を図 3に、その特性を図 4に、キュボラ型溶融 炉(2)の一部切欠外観図を図 5に示す。
図 3及び図 5に示したキュボラ型溶融炉(2)は、外面が鋼板(3)で覆われ、内面が 耐火煉瓦 (4)で形成された縦長の有底円筒形状の炉であって、上方に装入口(5)を 有し、炉底付近に出湯口(6)及び出滓口(7)を有している。装入口(5)の下方には、 装入作業者が載るための装入作業床 (8)が設けられている。また、出湯口(6)のや や上方には送風管(9)及び風箱(10)と連通接続された羽口(11)が設けられている 。更に炉底(12)には扉(13)が設けられている。
このようなキュボラ型溶融炉(2)を用いて铸物或いは鉄鋼を製造する場合、先ず炉 底(12)部分にベッドコータス(14)を敷設し、その上に地金(15)と追込コータス(16) を載設する。このとき、地金(15)と追込コータス(16)が交互に層を形成するように且 つ各層に隙間が形成されるようにする。
ここで、ベッドコータス(14)と追込コータス(16)の両方において、本発明に係るバ ィォコ一タス(1)を数〜 50%の範囲で石炭コータス(17)と混合して用いる。
[0040] 図 4 (a)は、炉内の温度分布を示す図である。
炉内における温度は、下方に向力うにつれて、地金(15)と追込コータス(16)が配 された上方域 (A)では約 500°C力も約 1000°Cまで緩やかに上昇し、ベッドコークス( 14)が配された下方域 (B)では約 1800°Cまで急激に上昇した後、約 1600°Cまで下 降する分布となる。
[0041] 図 4 (b)の左側は、炉内を地金(15)の状態により区分した図である。
図示される如ぐ地金(15)と追込コータス(16)が交互に載設された炉の上方部分 は地金( 15)が予熱される予熱帯を形成し、その下のベッドコ一タス(14)との境界付 近は地金(15)が溶解される溶解帯を形成し、ベッドコータス(14)が敷設されて温度 力 Sピークに達する炉の下方部分は溶解された地金(15)が過熱される過熱帯を形成 し、羽口(11)より下方の炉底部分は溶湯(18)がたまる湯だまり帯を形成している。 予熱帯では、コータスが燃焼ガス或いは空気が通過する空隙を形成している力 本 発明に係るバイオコータス(1)は石炭コータス(17)の約 10倍前後の圧縮強度を有し て 、るので、上方力 の加重に対して破壊されることなく空隙を形成することができる
[0042] 図 4 (b)の右側は、炉内をコータスと炉内ガスとの反応により区分した図である。
上記した溶解帯及び過熱帯は、図示される如ぐ還元帯と酸ィ匕帯に区分される。 具体的には、溶解帯と過熱帯の上方領域は還元帯となり、過熱帯の下方領域は酸 化帯となる。
還元帯は、酸化帯での燃焼反応による COはもちろんバイオコータス(1)がガス化
2
することにより形成される還元領域であり、より詳しくはノ ィォコータス(1)のセルロー ス及びリグニンが熱分解してガス化 (CO、 H等を発生)することにより形成される。即
2
ち、バイオコータス(1)が還元剤としても効果を有することを示している。 [0043] このような還元領域、即ち、バイオコータス(1)のガス化が起こる領域が炉内のべッ ドコータス(14)上方部分で生じる理由は、還元雰囲気下でバイオマスが加熱される 場合、発熱反応でガス化が生じ、更に自己ガス化反応が進行することによる。
酸ィ匕帯は、雰囲気が 600°C以上に達する過熱帯であって、バイオコータス(1)が完 全にガス化或いは酸化燃焼して灰分となる領域であり、地金(15)を溶解する熱源が 生成される。
このような酸ィ匕領域、即ち、バイオコータス(1)の完全ガス化或いは酸化燃焼が起こ る領域が炉内のベッドコータス(14)下方部分で生じる理由は、羽口(11)を通して炉 下方より吹き込まれる空気による燃焼反応が生じることによる。
[0044] ここで、バイオコータス(1)の燃焼特性にっ 、て説明する。
石炭コータス(17)の発熱量は、約 29MjZkgの温度一定の発熱量を放出する。こ れに対し、バイオコータス(1)は、 18〜23MjZkgと石炭コータス(17)に比してやや 低いが、ガス化 ·炭化過程による重量変化に伴い発熱温度と発熱量に変化が見られ る。
先ず、常温〜 250°Cまでは、加熱されるのみで発熱反応は生じない。
250〜600°C位までは、バイオマスのガス化により CO、 Hなどのガス成分を排出し
2
ながら、発熱を行うが、全体の発熱温度はやや低くなる傾向にある。
し力しながら、 600°C以上において、固体表面反応によりチヤ一燃焼が生じ、石炭 コータス(17)に匹敵する発熱温度を得ることができ、瞬間的には石炭コータス(17) を超え、石炭燃焼に匹敵する 33〜42MjZkg程度の発熱量を得ることが可能となる 従って、溶解エネルギーとしての代替バイオコータス(1)の真価は、 600°C以上の
Figure imgf000017_0001
、て発揮される。
[0045] 以下、上記の如く構成されたキュボラ型溶融炉(2)を用いた铸物或いは鉄鋼の製 造工程について説明する。
[0046] 先ず、キュボラ型溶融炉(2)の装入口(5)から地金(15)及び追込コータス(16)とし て、石炭コータス(17)と本発明に係るバイオコータス(1)を適切な割合、例えば、全 コータス中、ノ ィォコータス(1)を数〜 50%で投入し、その内部を図 3及び図 5に示さ れたように形成する。
次いで、羽口(11)力 空気を送りながら炉内を加熱すると、還元帯のベッドコーク ス(14)はガス化し、揮発ガスを発生して還元領域を形成し、酸ィ匕帯のベッドコータス (14)は完全にガス化或いは酸化燃焼する。
このような炉内下方領域にあるベッドコ一タス( 14)のガス化或 ヽは酸化燃焼に伴つ て、炉の上方部分に交互に載設された地金(15)と追込コータス(16)は予熱されな 力 崩れ落ちるように下方へと移動する。
そして、下方へと移動した地金は、酸ィ匕帯におけるコータス力 発生する熱によって 溶解され、羽口(11)から供給される空気によって還元された後、出湯口(6)から溶 湯(18)として取り出される。
溶湯(18)は、上述したノ ィォコータス(1)の高温域での燃焼特性により、従来の石 炭コータス燃焼により得られる溶湯温度に比して遜色なぐ或いは、より高温で得るこ とが可能となる。
[0047] 尚、本発明に係るバイオコータスは、製造初期の段階で、成分調整をすることが可 能であるため、転炉等を用いて成分調整を行う必要はない。これにより、全製造工程 の省略ィ匕並びに省略に伴うコストの削減が可能となる。
[0048] 以上のように、本発明に係るバイオコータスは、铸物製造或いは製鉄において、石 炭コータスの数〜 50%程度に代替して用いることが可能であり、この場合においても 石炭コータスを用いた場合と同様或いはそれ以上の効果を得ることが可能となる。 また、本発明に係るバイオコータスは、比較的簡単な構成で作成することができるた め、石炭コータスに対して低コストィ匕を図ることが可能となる。
更に、石炭コータス代替による、地球環境負荷の低減を達成することが可能となる。
[0049] 次に、本発明に係るバイオコータスのマテリアル素材としての利用例について説明 する。
身近に存在するバイオマスの資源量は膨大で常に生産されるため、食品残渣ゃ河 川敷の草等の利用価値の乏しいバイオマスは、ごみとして扱かわれることが多ぐ埋 め立てや焼却処分等することを余儀なくされる。
ノィォマスが光合成を通して炭素固定していることや秩序正しい組織構造を構築 することなどを鑑みると、その特性を活かしてマテリアル素材へと転換することで、カス ケード構造を有する持続的な循環、すなわちゼロ'ェミッションの構築が可能となる。 本発明に係るバイオコータスは、鉄よりも高 、最高圧縮強度 60〜200MPaを有し ており、また、食品残渣ゃ河川敷の草等も原料として利用できるため、マテリアル素 材としての利用価値が非常に高い。
マテリアル素材としては、ガーデンフェンス '園芸杭'釘等の杭状体、コースター '法 面及び遮断壁用パネル等のプレート体を例示することができる。
尚、本発明に係るバイオコータスを杭状体として利用するときは、それなりの耐衝撃 力が必要となるので、例えば、原料のバイオマスに金属粒子を添カ卩しバイオマス間の 反応性を向上させる、或 、はバイオマスの繊維性を活かして粗く粉砕したバイオマス を添加して連続性を向上させる等の手段を講じることがより好ましい。
[0050] 以上により、従来、未利用のまま処理されるバイオマスを有効利用することが可能と なり、人体に悪影響を及ぼすプラスチック等の化学物質力もなる物品を、持続的に循 環可能なバイオマス資源力 なる物品に代替できる方向性を示すことが可能となった 尚、マテリアル素材として利用するバイオコータスは、熱源としての利用が当然可能 であるので、マテリアルとしての使用が済めば、例えば、炭粉ィ匕してバイオコータスの 中にコンパウンドし、カスケード利用すれば良い。また、自然にはそのまま腐朽される ため、自然帰化することも可能である。
[0051] 次に、本発明に係るバイオコータスの更なる利用例について説明する。
上記したバイオコータス製造方法を拡大し、短時間で高硬度な炭化物の製造を行う バイオコータスを大気開放下において、再度、加熱'加圧成形する。加熱条件を 25 0〜350°C、加圧条件を 8〜16MPaに設定して、重量収率を 10〜30%前後に維持 して製造を行う。
これにより、短時間で略 100%の炭化物を得ることが可能となる。
ここで、加熱条件を 250〜350°C、加圧条件を 8〜16MPaに設定することにより、 炭化ムラがなぐ密着性の高い炭化物を短時間で得ることが可能となる。 この製造方法において、バイオコータスはガス化及び発熱反応を生じながら、炭化 進行に従い重量減少を続け、完全な炭化が得られた時点で炭としての固形物を得る ことが可能となる。生木を用いて、同設定条件で炭化を行うと、加圧効果によりガス化 が急激に進行し、炭として固形化されず灰分のみが得られる。
以上により得られる炭化物は 30〜35MjZkgの発熱量を有し、木炭に比して高硬 度な固形物に転換され、備長炭に近い熱源としての固体燃焼特性を有することが可 能となる。
実施例
[0052] 以下、実施例を挙げて、本発明に係るバイオコータスとその製造方法にっ 、て詳述 する。
(実施例 1)
スギのおがくずを粉砕機 (松下電工社製)により、 0. 1mm程度に粉砕した。 この粉砕物を自作の成形用筒(直径 40mm X高さ 250mmの円柱形本体)に入れ、 加圧用ピストンを装填し、 210°C、 16MPa付近で加熱 ·加圧を同時制御しながら 10 分間保持した。
その後、加圧状態を維持しながら 60分間放冷し、バイオコータスを取り出し、大気 乾燥を行った。
製造されたバイオコータスの性状は、最高圧縮強度約 100MPa、発熱量約 21MJ Zkgを示した。
[0053] (実施例 2)
加熱温度を 180°Cとした以外は実施例 1と同様の処理をし、バイオコータスを得た。 得られたバイオコータスの性状は、最高圧縮強度約 80MPa、発熱量約 20MjZkg を示した。
[0054] (実施例 3)
加熱温度を 220°Cとした以外は実施例 1と同様の処理をし、バイオコータスを得た。 得られたバイオコータスの性状は、最高圧縮強度約 120MPa、発熱量約 23MjZk gを示し 7こ Q
[0055] (実施例 4) 直径 20mmの成形用筒を用い加熱温度 220°C、加圧圧力 20MPaとした以外は実 施例 1と同様の処理をし、バイオコータスを得た。
得られたバイオコータスの性状は、最高圧縮強度約 200MPa、発熱量約 23MjZk gを示し 7こ Q
[0056] (実施例 5)
成形材料をヒノキの榭皮とした以外は実施例 1と同様の処理をし、バイオコータスを 得た。
ヒノキの榭皮は、スギのおがくずより固形ィ匕し易ぐまた、得られたバイオコータスの 性状は、発熱量約 21MjZkg、最高圧縮強度約 lOOMPaを示した。
[0057] (実施例 6)
成形材料をスギのおがくず 10% ·榭皮 90%とし、 115°C、 21MPa付近で加熱'カロ 圧を同時制御しながら 15分間保持した以外は実施例 1と同様の処理をし、バイオコ 一タスを得た。
得られたバイオコータスの性状は、発熱量約 21MjZkg、最高圧縮強度約 83MPa を示した。榭皮に含まれるフエノール性の高い高分子、ポリフエノール等により加工成 形温度を 50°C近く下げることができた。
[0058] (比較例 1)
加熱温度 240°Cとした以外は実施例 1と同様の処理をした力 全炭化し固形ィ匕する ことができな力 た。
[0059] 上記実施例及び比較例より、加熱温度が 115°C〜230°Cにおいては、発熱量、最 高圧縮強度共に優れたバイオコータスが得られた。し力しながら、加熱温度が 230°C を超えた場合、急激に炭化及びガス化が進行し、バイオコータスを得ることはできな かった。
従って、 230°Cから 240°Cの極めて少な 、温度差で急激に炭化及びガス化が進行 するため、適切な温度範囲の上限を 230°Cとした。
[0060] 最高圧縮強度約 100MPa、発熱量約 21 MjZkgのバイオコータスを用い、炉内径 300mmの実機キュボラ (ナ-ヮ炉機研究所所有)により石炭コータス代替実証実験 を行った。 (実施例 7)
全コータス中の 10%をバイオコータスで代替し、キュボラを操業した。
操業状態としては、石炭コータス 100%による操業と大差なく出湯できることが分か つた o
操業後の、铸鉄の引張試験では、 120〜160MPaの値を示した。
[0061] (実施例 8)
全コータス中の 50%をバイオコータスで代替したところ、実施例 4と略同等の結果が 得られた。
これにより、全コータス中の 50%をバイオコータスで代替しても、石炭コータス 100 %操業と変わりのない操業ができることを実証した。
[0062] (実施例 9)
最高圧縮強度約 100MPa、発熱量約 21MjZkgのバイオコータスを再度、大気圧 下で 300°C、 8MPa付近で加熱 ·加圧を同時制御しながら 20分間保持した。
これにより得られた人工備長炭とも言うべき炭化物は、重量収率が約 20%、発熱量 が約 34MjZkgを示した。
[0063] (実施例 10)
成形材料を河川敷の草とし、加圧用ピストンの加圧面を円錐穴状に加工し、実施例 1と同様の条件処理を行って、杭状体を得た。
得られた杭状体の性状は、最高圧縮強度約 80MPaを示した。
産業上の利用可能性
[0064] 本発明は、石炭コータス代替燃料及びマテリアル素材並びにその製造方法として 好適に利用可能である。
図面の簡単な説明
[0065] [図 1]本発明に係るバイオコータスの外観の一例を示す斜視図である。
[図 2]本発明に係るバイオコータスの製造工程を示す概略フローチャートである。
[図 3]本発明に係るバイオコークスをキュポラ用代替コータスとして利用した場合にお けるキュボラ型溶融炉を示す概略断面図である。
[図 4]本発明に係るバイオコークスをキュポラ用代替コータスとして利用した場合にお けるキュボラ型溶融炉の特性を示す図である。
[図 5]本発明に係るバイオコークスをキュポラ用代替コータスとして利用した場合にお けるキュボラ型溶融炉を示す一部切欠外観斜視図である。
符号の説明
1 バイオコータス
14 ベッド、コータス
16 追込コークス
17 石炭コークス

Claims

請求の範囲
[1] 光合成に起因するバイオマス原料を加熱しながら加圧成形してなる半炭化前或い は半炭化固形物からなり、
最高圧縮強度 60〜200MPa及び発熱量 18〜23MjZkgであることを特徴とする バイオマス固形物。
[2] 前記半炭化前或いは半炭化固形物のみかけ比重が 1. 2〜1. 38であることを特徴 とする請求の範囲第 1項に記載のバイオマス固形物。
[3] 前記半炭化前或いは半炭化固形物を再度加熱しながら加圧成形してなる炭化物 力 なることを特徴とする請求の範囲第 1項に記載のノィォマス固形物。
[4] 光合成に起因するバイオマス原料に金属粒子を添加したものを加熱しながら加圧 成形してなる半炭化前或いは半炭化固形物からなることを特徴とするバイオマス固形 物。
[5] 光合成に起因するバイオマス原料にバイオマス等力もなる炭化物を添加したものを 加熱しながら加圧成形してなる半炭化前或いは半炭化固形物力 なることを特徴と するバイオマス固形物。
[6] 光合成に起因するバイオマス原料にバイオマス等力もなる灰分を添加したものをカロ 熱しながら加圧成形してなる半炭化前或いは半炭化固形物力 なることを特徴とする バイオマス固形物。
[7] 光合成に起因するバイオマス原料を粉砕する工程と、
該粉砕されたバイオマス原料を筒に充填する工程と、
該バイオマス原料が充填された筒に加圧ピストンを装填する工程と、
前記バイオマス原料を加熱すると共に前記加圧ピストンにより加圧成形する工程と 前記加熱及び加圧を一定時間維持して半炭化前或いは半炭化固形物を得る工程 と、
該半炭化前或いは半炭化固形物を加圧維持しながら冷却する工程と、 該冷却された半炭化前或いは半炭化固形物を取り出し乾燥する工程とを備えるバ ィォマス固形物の製造方法であって、 前記筒の内径と前記加圧ピストンの外径とが略同一であることを特徴とするバイオ マス固形物の製造方法。
[8] 前記粉砕されたバイオマス原料の粒子径が 3mm以下であることを特徴とする請求 の範囲第 7項に記載のバイオマス固形物の製造方法。
[9] 前記加熱における温度条件が 115〜230°Cであり、前記加圧成形における圧力条 件が 8〜25MPaであることを特徴とする請求の範囲第 7項に記載のバイオマス固形 物の製造方法。
[10] 前記粉砕されたバイオマス原料を筒に充填する段階において金属粒子を添加する ことを特徴とする請求の範囲第 7項に記載のバイオマス固形物の製造方法。
[11] 前記粉砕されたバイオマス原料を筒に充填する段階にぉ 、てバイオマス等力もな る炭化物を添加することを特徴とする請求の範囲第 7項に記載のバイオマス固形物 の製造方法。
[12] 前記粉砕されたバイオマス原料を筒に充填する段階においてバイオマス等力 な る灰分を添加することを特徴とする請求の範囲第 7項に記載のバイオマス固形物の 製造方法。
[13] 前記冷却及び乾燥された半炭化前或いは半炭化固形物を大気開放下において加 熱すると共に加圧成形する工程と、
該加熱及び加圧を一定時間維持して炭化物を得る工程とを備えることを特徴とする 請求の範囲第 7項に記載のバイオマス固形物の製造方法。
[14] 前記加熱における温度条件が 250〜350°Cであり、前記加圧成形における圧力条 件が 8〜16MPaであることを特徴とする請求の範囲第 13項に記載のバイオマス固 形物の製造方法。
PCT/JP2006/300985 2005-01-24 2006-01-24 バイオマス固形物及びその製造方法 WO2006078023A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP06712201A EP1857532A4 (en) 2005-01-24 2006-01-24 SOLID BIOMASS AND PROCESS FOR PRODUCING THE SAME
JP2006553989A JP4088933B2 (ja) 2005-01-24 2006-01-24 バイオマス固形物及びその製造方法
CN200680002863.6A CN101107344B (zh) 2005-01-24 2006-01-24 生物量固态物及其制造方法
BRPI0614027A BRPI0614027B1 (pt) 2005-01-24 2006-01-24 bio-coque e método de produzir bio-coque
KR1020077016952A KR100926918B1 (ko) 2005-01-24 2006-01-24 바이오매스 고형물 및 그 제조 방법
US11/880,649 US8211274B2 (en) 2005-01-24 2007-07-23 Solidified biomass and production method thereof
US13/486,665 US8747495B2 (en) 2005-01-24 2012-06-01 Solidified biomass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2005/000880 2005-01-24
PCT/JP2005/000880 WO2006077652A1 (ja) 2005-01-24 2005-01-24 木質バイオマス固形燃料及びその製法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/880,649 Continuation-In-Part US8211274B2 (en) 2005-01-24 2007-07-23 Solidified biomass and production method thereof

Publications (1)

Publication Number Publication Date
WO2006078023A1 true WO2006078023A1 (ja) 2006-07-27

Family

ID=36692050

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2005/000880 WO2006077652A1 (ja) 2005-01-24 2005-01-24 木質バイオマス固形燃料及びその製法
PCT/JP2006/300985 WO2006078023A1 (ja) 2005-01-24 2006-01-24 バイオマス固形物及びその製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000880 WO2006077652A1 (ja) 2005-01-24 2005-01-24 木質バイオマス固形燃料及びその製法

Country Status (8)

Country Link
US (2) US8211274B2 (ja)
EP (1) EP1857532A4 (ja)
JP (1) JP4088933B2 (ja)
KR (1) KR100926918B1 (ja)
CN (1) CN101107344B (ja)
BR (1) BRPI0614027B1 (ja)
RU (1) RU2355739C1 (ja)
WO (2) WO2006077652A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274108A (ja) * 2007-04-27 2008-11-13 Mhi Environment Engineering Co Ltd バイオコークス製造装置及び方法
JP2008274113A (ja) * 2007-04-27 2008-11-13 Mhi Environment Engineering Co Ltd バイオコークス製造装置及びその制御方法、並びに製造方法
JP2009046726A (ja) * 2007-08-20 2009-03-05 Jp Steel Plantech Co アーク炉製鋼方法
JP2009185183A (ja) * 2008-02-06 2009-08-20 Mhi Environment Engineering Co Ltd バイオコークス製造装置
EP2141218A1 (en) * 2007-04-27 2010-01-06 Naniwa Roki Co., Ltd. Biocoke producing apparatus and process
JP2010001423A (ja) * 2008-06-23 2010-01-07 Ihi Corp 炭化物燃料の製造方法
JP2010100808A (ja) * 2008-10-27 2010-05-06 Kinki Univ バイオコークス製造装置及び製造方法
WO2012161203A1 (ja) 2011-05-23 2012-11-29 Jfeエンジニアリング株式会社 廃棄物溶融処理方法
JP2013108629A (ja) * 2011-11-17 2013-06-06 Jfe Engineering Corp 廃棄物溶融処理方法
KR20140079356A (ko) * 2011-07-05 2014-06-26 린데 악티엔게젤샤프트 수소 및 탄소-함유 생성물의 병행 생산 방법
JP2014231037A (ja) * 2013-05-29 2014-12-11 Jfeエンジニアリング株式会社 廃棄物成形物及びその製造方法
JP2016511308A (ja) * 2013-02-07 2016-04-14 アーバフレイム テクノロジー エイ・エスArbaflame Technology AS 炭素を富化したバイオマス材料の製造方法
KR101623873B1 (ko) * 2014-06-27 2016-05-25 주식회사 포스코 실리콘 또는 페로실리콘 제조용 환원제 제조 방법 및 이에 의하여 제조된 환원제
WO2017175737A1 (ja) * 2016-04-06 2017-10-12 宇部興産株式会社 バイオマス炭化物の冷却装置
KR101787208B1 (ko) * 2015-12-28 2017-10-18 현대제철 주식회사 바이오매스 연료
JP2018144341A (ja) * 2017-03-06 2018-09-20 株式会社北川鉄工所 ペレット製造装置
JP2019065203A (ja) * 2017-10-02 2019-04-25 株式会社トロムソ バイオコークスの製造方法
US10774270B2 (en) 2015-04-27 2020-09-15 Shell Oil Company Conversion of biomass or residual waste materials to biofuels
WO2023100814A1 (ja) * 2021-11-30 2023-06-08 国立研究開発法人産業技術総合研究所 二段階半炭化工程による固体バイオ燃料およびその製造方法

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009117851A1 (zh) 2008-03-26 2009-10-01 中国石油化工股份有限公司 一种从甲醇生产二甲醚的方法
EP2274405A1 (en) * 2008-04-17 2011-01-19 CSL Carbon Solutions Ltd Process for converting biomass to coal-like material using hydrothermal carbonisation
CA2729267A1 (en) 2008-06-23 2010-01-21 Csl Carbon Solutions Ltd. Process for the preparation of hydrothermal hybrid material from biomass, and hydrothermal hybrid material obtainable by the process
US7765922B2 (en) * 2008-07-09 2010-08-03 Rusty Stewart Ashby Device for compressing biomass to create fuel
JP5166213B2 (ja) * 2008-11-11 2013-03-21 株式会社ナニワ炉機研究所 溶融炉
BRPI0923508A8 (pt) * 2008-12-15 2017-07-11 Zilkha Biomass Fuels Llc Método de produção de péletes ou briquetes a partir de material contendo lignina
SG174994A1 (en) * 2009-03-31 2011-11-28 Univ Kinki Biocokes producing method and apparatus
AU2010254227B2 (en) * 2009-05-26 2013-07-11 American Pellet Supply Llc Pellets and briquettes from compacted biomass
US8557307B2 (en) 2009-09-23 2013-10-15 Michael Archer Methods and products using grass of the genus Triodia
JP4814381B2 (ja) * 2010-01-28 2011-11-16 株式会社クリエイティブ 固体燃料
US20110296748A1 (en) * 2010-06-08 2011-12-08 Kenneth Hillel Peter Harris Methods for the manufacture of fuel pellets and other products from lignocellulosic biomass
US8951311B2 (en) * 2011-02-17 2015-02-10 U.S. Department Of Energy Method and system for controlling a gasification or partial oxidation process
KR101189588B1 (ko) * 2011-04-20 2012-10-10 전남대학교산학협력단 바이오매스 고형체 제조시스템 및 제조방법
KR101278312B1 (ko) 2011-09-15 2013-06-25 경상대학교산학협력단 부레옥잠으로 제조된 고연소 효율을 갖는 바이오펠릿 및 그의 제조 방법
JP5550664B2 (ja) * 2012-01-13 2014-07-16 株式会社ナニワ炉機研究所 溶解炉
KR101308397B1 (ko) * 2012-04-17 2013-09-16 인하대학교 산학협력단 저온 반탄화법에 의한 고발열량 목질계 고형연료의 제조방법
KR101188062B1 (ko) 2012-05-09 2012-10-08 화이젠 주식회사 비료용출속도 제어가 가능한 완효성 비료복합체 및 이의 제조방법
KR101371884B1 (ko) 2012-09-13 2014-03-12 주식회사 경동 바이오매스 원료를 이용한 고체 연료의 제조 방법 및 이로부터 제조된 고체 연료
KR101315522B1 (ko) * 2012-09-19 2013-10-08 주식회사 유니바이오 커피박을 이용한 저흡수성 연료용 분탄 및 그 제조방법
JP2015078319A (ja) * 2013-10-18 2015-04-23 高浜工業株式会社 木質ペレット
US9505668B2 (en) 2014-05-01 2016-11-29 Iogen Corporation Process for producing a fuel and byproduct from biomass or biomass derived material
CN104293405B (zh) * 2014-06-24 2017-03-01 连云港恒昌环境资源开发有限公司 生物质颗粒的设备分散型制造方法
WO2016056608A1 (ja) 2014-10-07 2016-04-14 宇部興産株式会社 バイオマス固体燃料
KR101693524B1 (ko) * 2014-12-23 2017-01-06 주식회사 포스코 실리콘 또는 페로실리콘 제조용 환원제, 및 이의 제조 방법
FI126818B (en) * 2015-02-06 2017-06-15 Valmet Technologies Oy A method for treating lignin-based material
TWI549762B (zh) * 2015-04-23 2016-09-21 林翰謙 含高粱酒糟與高纖維質草食性動物糞便製備成生物質酒糟燃炭磚(BioSOFT)的方法
EP3150914A1 (en) * 2015-09-30 2017-04-05 Nawrocki, Piotr The method of gasification of waste, in particular household waste and the apparatus for performing such a method
KR101711420B1 (ko) * 2015-11-18 2017-03-02 한기섭 초본계 바이오매스의 연료화 방법
CA3019888A1 (en) 2016-04-06 2017-10-12 Ube Industries, Ltd. Biomass solid fuel
KR101863561B1 (ko) * 2016-06-14 2018-06-01 에스에스그린에너지주식회사(영업소) 고열량 탄화 펠릿과 이의 제조 방법 및 장치
JP7348065B2 (ja) 2017-10-04 2023-09-20 Ube三菱セメント株式会社 バイオマス固体燃料の製造装置およびその製造方法
CN111630140A (zh) * 2018-09-27 2020-09-04 日铁工程技术株式会社 成形燃料及其制造方法
CN109575969A (zh) * 2018-12-27 2019-04-05 上海大学 一种简单无氧热解制备生物炭的方法
RU2734215C1 (ru) * 2020-04-16 2020-10-13 Автономная некоммерческая организация «Научно-исследовательский институт проблем экологии» Способ выплавки чугуна в доменной печи
JP7138884B2 (ja) 2020-05-08 2022-09-20 石光商事株式会社 コーヒー液抽出システム、コーヒー液抽出方法、焙煎したコーヒー豆の製造方法、焙煎したコーヒー豆
KR102358649B1 (ko) * 2021-05-04 2022-02-08 베스트글로벌에너지 주식회사 펠릿의 제조방법
WO2023177643A2 (en) * 2022-03-15 2023-09-21 Carbon Technology Holdings, LLC Processes and systems for producing biocoke in a kinetic interface reactor, and biocoke produced therefrom
CN115058551B (zh) * 2022-07-06 2023-09-22 马鞍山乌力平冶金技术工作室 一种高炉煤气富化的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58225195A (ja) * 1982-06-22 1983-12-27 Matsushita Electric Ind Co Ltd 固形燃料
JPH0459891A (ja) * 1990-06-28 1992-02-26 Hideo Murakami バイオコールの工業的製法
JP2004043517A (ja) * 2002-05-22 2004-02-12 Chugoku Shinsho Fukudai Chikumoku Yugenkoshi 高密度竹炭材

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602211C (de) * 1927-05-04 1934-09-04 Braunkohlen Und Brikett Ind Ak Herstellung von Stadtgas aus Braunkohle
GB445841A (en) * 1934-07-16 1936-04-06 Stevan Ruzicka Wood coke and process of making same
US3938965A (en) * 1972-07-26 1976-02-17 The Kingsford Company Process for producing solid industrial fuel
US4015951A (en) * 1976-01-05 1977-04-05 Gunnerman Rudolf W Fuel pellets and method for making them from organic fibrous materials
US4236897A (en) * 1978-09-18 1980-12-02 Johnston Ian F Fuel pellets
US4412840A (en) * 1979-10-09 1983-11-01 Goksel Mehmet A Pelletizing lignite
FR2525231A1 (fr) * 1982-04-20 1983-10-21 Armines Procede de preparation d'un combustible de nature lignocellulosique et combustible obtenu
EP0223807B1 (fr) * 1985-05-24 1990-11-07 LECLERC DE BUSSY, Jacques Procede d'obtention de bois torrefie, produit obtenu, et application a la production d'energie
SE8801377D0 (sv) * 1988-04-14 1988-04-14 Productcontrol Ltd Foredling av organiskt material
JPH088085Y2 (ja) * 1990-04-06 1996-03-06 健 鈴木 オガライト成型機
US5435983A (en) * 1990-07-02 1995-07-25 University Of Hawaii Process for charcoal production from woody and herbaceous plant material
US5250080A (en) * 1992-10-13 1993-10-05 Corpoven, S.A. Process for manufacturing a solid fuel
JPH088085A (ja) 1994-06-15 1996-01-12 Matsushita Electric Works Ltd 誘導灯装置
US5599360A (en) * 1994-12-08 1997-02-04 Stillman; Robert O. Method for the manufacture of char-containing articles
US5643342A (en) * 1995-08-02 1997-07-01 Pelletech Fuels, Inc. Fuel pellet and method of making the fuel pellet
DE19631201C2 (de) * 1996-08-02 2001-07-05 Rainer Buchholz Verfahren und Reaktor zur Umwandlung von Biomasse in flüssige, feste oder gasförmige Brennstoffe und Chemierohstoffe
US5916826A (en) * 1997-12-05 1999-06-29 Waste Technology Transfer, Inc. Pelletizing and briquetting of coal fines using binders produced by liquefaction of biomass
US6506223B2 (en) * 1997-12-05 2003-01-14 Waste Technology Transfer, Inc. Pelletizing and briquetting of combustible organic-waste materials using binders produced by liquefaction of biomass
JP3837490B2 (ja) * 2002-01-15 2006-10-25 独立行政法人産業技術総合研究所 バイオマス半炭化圧密燃料前駆体およびバイオマス半炭化圧密燃料の製造方法
JP3760228B2 (ja) * 2002-01-23 2006-03-29 独立行政法人産業技術総合研究所 高発熱量炭化物の製造法
JP2005126573A (ja) * 2003-10-24 2005-05-19 Hitachi Eng Co Ltd 植物系バイオマス炭の生成装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58225195A (ja) * 1982-06-22 1983-12-27 Matsushita Electric Ind Co Ltd 固形燃料
JPH0459891A (ja) * 1990-06-28 1992-02-26 Hideo Murakami バイオコールの工業的製法
JP2004043517A (ja) * 2002-05-22 2004-02-12 Chugoku Shinsho Fukudai Chikumoku Yugenkoshi 高密度竹炭材

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FUCHIHATA M. ET AL.: "Mokushitsu Biomass no Hantanka Atsumitsu Shori ni yoru Energy Yusosei no Kojo", THE JAPAN SOCIETY OF MECHANICAL ENGINEERS NETSU KOGAKU KOENKAI KOEN RONBUNSHU, 2002, pages 167 - 168 *
HONJO T. ET AL.: "Hantanka Pellet no Kyodo Tokusei", DAI 23 KAI PROCEEDINGS OF THE ANNUAL MEETING OF JAPAN SOCIETY OF ENERGY AND RESOURCES, 2004, pages 139 - 142, XP008117416 *
HONJO T. ET AL.: "Shin Nenryo BCDF: Cellulose, Hinoki o Ogakuzu Oyobi Jupiperus Chinensis no Hantanka Atsumitsuka", DAI 22 KAI PROCEEDINGS OF THE ANNUAL MEETING OF JAPAN SOCIETY OF ENERGY AND RESOURCES, 2003, pages 389 - 394, XP008117413 *
See also references of EP1857532A4 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8454801B2 (en) 2007-04-27 2013-06-04 Naniwa Roki Co., Ltd. Apparatus and process for producing biocoke
JP2008274113A (ja) * 2007-04-27 2008-11-13 Mhi Environment Engineering Co Ltd バイオコークス製造装置及びその制御方法、並びに製造方法
EP2141218A1 (en) * 2007-04-27 2010-01-06 Naniwa Roki Co., Ltd. Biocoke producing apparatus and process
JP2008274108A (ja) * 2007-04-27 2008-11-13 Mhi Environment Engineering Co Ltd バイオコークス製造装置及び方法
US8460515B2 (en) 2007-04-27 2013-06-11 Naniwa Roki Co., Ltd. Biocoke producing apparatus and process therefor
EP2141218A4 (en) * 2007-04-27 2012-01-11 Naniwa Roki Co Ltd DEVICE AND METHOD FOR PRODUCING BIOKOKOS
JP2009046726A (ja) * 2007-08-20 2009-03-05 Jp Steel Plantech Co アーク炉製鋼方法
JP2009185183A (ja) * 2008-02-06 2009-08-20 Mhi Environment Engineering Co Ltd バイオコークス製造装置
JP2010001423A (ja) * 2008-06-23 2010-01-07 Ihi Corp 炭化物燃料の製造方法
JP2010100808A (ja) * 2008-10-27 2010-05-06 Kinki Univ バイオコークス製造装置及び製造方法
JP2010100812A (ja) * 2008-10-27 2010-05-06 Kinki Univ バイオコークス製造方法及び製造装置
WO2012161203A1 (ja) 2011-05-23 2012-11-29 Jfeエンジニアリング株式会社 廃棄物溶融処理方法
KR20140079356A (ko) * 2011-07-05 2014-06-26 린데 악티엔게젤샤프트 수소 및 탄소-함유 생성물의 병행 생산 방법
JP2014520740A (ja) * 2011-07-05 2014-08-25 ビーエーエスエフ ソシエタス・ヨーロピア 水素及び炭素含有生成物を並列的に製造方法
KR101955740B1 (ko) 2011-07-05 2019-03-07 린데 악티엔게젤샤프트 수소 및 탄소-함유 생성물의 병행 생산 방법
JP2013108629A (ja) * 2011-11-17 2013-06-06 Jfe Engineering Corp 廃棄物溶融処理方法
JP2016511308A (ja) * 2013-02-07 2016-04-14 アーバフレイム テクノロジー エイ・エスArbaflame Technology AS 炭素を富化したバイオマス材料の製造方法
JP2014231037A (ja) * 2013-05-29 2014-12-11 Jfeエンジニアリング株式会社 廃棄物成形物及びその製造方法
KR101623873B1 (ko) * 2014-06-27 2016-05-25 주식회사 포스코 실리콘 또는 페로실리콘 제조용 환원제 제조 방법 및 이에 의하여 제조된 환원제
US10774270B2 (en) 2015-04-27 2020-09-15 Shell Oil Company Conversion of biomass or residual waste materials to biofuels
KR101787208B1 (ko) * 2015-12-28 2017-10-18 현대제철 주식회사 바이오매스 연료
WO2017175737A1 (ja) * 2016-04-06 2017-10-12 宇部興産株式会社 バイオマス炭化物の冷却装置
JP2018144341A (ja) * 2017-03-06 2018-09-20 株式会社北川鉄工所 ペレット製造装置
JP2019065203A (ja) * 2017-10-02 2019-04-25 株式会社トロムソ バイオコークスの製造方法
WO2023100814A1 (ja) * 2021-11-30 2023-06-08 国立研究開発法人産業技術総合研究所 二段階半炭化工程による固体バイオ燃料およびその製造方法

Also Published As

Publication number Publication date
US20080051614A1 (en) 2008-02-28
RU2007132013A (ru) 2009-03-10
JPWO2006078023A1 (ja) 2008-06-19
US8747495B2 (en) 2014-06-10
CN101107344B (zh) 2014-08-27
US20120240456A1 (en) 2012-09-27
EP1857532A4 (en) 2011-01-05
KR20070095361A (ko) 2007-09-28
US8211274B2 (en) 2012-07-03
BRPI0614027A2 (pt) 2011-03-01
RU2355739C1 (ru) 2009-05-20
WO2006077652A1 (ja) 2006-07-27
EP1857532A1 (en) 2007-11-21
CN101107344A (zh) 2008-01-16
KR100926918B1 (ko) 2009-11-17
BRPI0614027B1 (pt) 2016-06-07
JP4088933B2 (ja) 2008-05-21

Similar Documents

Publication Publication Date Title
WO2006078023A1 (ja) バイオマス固形物及びその製造方法
US10121563B2 (en) Systems and methods for producing biochar-based products
CN101497835B (zh) 利用微波能将煤粉制成型焦的方法
JP5777207B2 (ja) 繊維状バイオマスからの炭化物の製造方法
CN101280236A (zh) 一种清洁型煤及其快速生产方法
CN101508927B (zh) 一种生物质热解炭颗粒燃料的制备方法
CN101629115A (zh) 焦炭性生物质燃料块的制造方法
JP5474236B1 (ja) 燃料用材料の加熱処理方法
JP2002129167A (ja) 冶金用低密度成形コークスの製造方法
KR101676629B1 (ko) 성형탄 및 그 제조 방법
JP2018030920A (ja) 廃棄物系バイオマスを高温で酸化して熱源として利用するための方法
JP2021127443A (ja) バイオマス燃料の製造方法
JP6940052B2 (ja) バイオマス燃料体の製造方法およびその方法により製造されたバイオマス燃料体
Riva Production and application of sustainable metallurgical biochar pellets
KR102461678B1 (ko) 발열량이 향상된 고형연료 펠릿 및 그 제조방법
CN118064199A (en) Oil tea shell forming fuel and preparation method thereof
JP6691508B2 (ja) 固体燃料の製造方法及び固体燃料
JP2024519001A (ja) フェノール系樹脂結合剤で作製された木炭製品およびその作製方法
SE2351225A1 (en) Charcoal products made with phenolic resin binder and methods for making thereof
Oyewusi et al. Effect of Pretreatment on the Physical Properties and Heating Values of Briquettes
CN110923035A (zh) 一种高热值生物质燃料及其制备方法
WO2010113679A1 (ja) バイオコークス製造方法及び製造装置
KR20040055812A (ko) 하수슬러지 또는 음식물 폐기물의 탄화숯을 포함하는탄화숯 연료탄 및 그 제조방법
TW200815576A (en) Method of manufacturing environment-friendly anthracite
JP2004285086A (ja) 冶金用コークスを製造するための廃ウレタン含有成型炭

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006553989

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12007501544

Country of ref document: PH

REEP Request for entry into the european phase

Ref document number: 2006712201

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006712201

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200680002863.6

Country of ref document: CN

Ref document number: 11880649

Country of ref document: US

Ref document number: 1020077016952

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 5718/DELNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1200701667

Country of ref document: VN

WWE Wipo information: entry into national phase

Ref document number: 2007132013

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006712201

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11880649

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0614027

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20070723