WO2010113679A1 - バイオコークス製造方法及び製造装置 - Google Patents

バイオコークス製造方法及び製造装置 Download PDF

Info

Publication number
WO2010113679A1
WO2010113679A1 PCT/JP2010/054821 JP2010054821W WO2010113679A1 WO 2010113679 A1 WO2010113679 A1 WO 2010113679A1 JP 2010054821 W JP2010054821 W JP 2010054821W WO 2010113679 A1 WO2010113679 A1 WO 2010113679A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
fine particles
filling
biomass fine
biocoke
Prior art date
Application number
PCT/JP2010/054821
Other languages
English (en)
French (fr)
Inventor
民男 井田
川見 佳正
佐藤 淳
Original Assignee
学校法人近畿大学
株式会社ナニワ炉機研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009083887A external-priority patent/JP5078938B2/ja
Application filed by 学校法人近畿大学, 株式会社ナニワ炉機研究所 filed Critical 学校法人近畿大学
Priority to SG2011071339A priority Critical patent/SG174994A1/en
Priority to AU2010231882A priority patent/AU2010231882A1/en
Priority to EP10758453A priority patent/EP2415852A4/en
Publication of WO2010113679A1 publication Critical patent/WO2010113679A1/ja
Priority to US13/250,444 priority patent/US20120168296A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B47/00Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
    • C10B47/02Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion with stationary charge
    • C10B47/12Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion with stationary charge in which the charge is subjected to mechanical pressures during coking
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/34Other details of the shaped fuels, e.g. briquettes
    • C10L5/36Shape
    • C10L5/363Pellets or granulates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/08Treating solid fuels to improve their combustion by heat treatments, e.g. calcining
    • C10L9/083Torrefaction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin

Definitions

  • the present invention relates to biomass-based biocoke production technology, and more particularly to a biocoke production method and apparatus for producing biocoke that can be effectively used as a substitute fuel for coal coke.
  • coal coke which is a fossil fuel
  • a casting furnace a blast furnace
  • fossil fuels such as coal and heavy oil are often used as fuel.
  • This fossil fuel is a cause of global warming due to the problem of CO 2 emissions, and its use is being regulated from the viewpoint of global environmental protection.
  • development and commercialization of energy resources to be substituted for them are required.
  • Biomass is an organic matter derived from photosynthesis, and includes biomass such as woods, plants and plants, agricultural products, and potatoes based on agricultural products. By processing the biomass into fuel, the biomass can be effectively used as an energy source or an industrial raw material to contribute to global environmental protection.
  • a method of fueling biomass a method of drying and fueling biomass, a method of pressurizing and fuel pelletizing, and a method of carbonizing and carbonizing and distilling solid and liquid fuel are known.
  • a method of drying and fueling biomass a method of pressurizing and fuel pelletizing, and a method of carbonizing and carbonizing and distilling solid and liquid fuel are known.
  • only drying the biomass results in a large porosity and low apparent specific gravity, which makes transport and storage difficult, and is not effective as a fuel for long-distance transport or storage and use.
  • Patent Document 1 Japanese Patent Publication No. 61-27435
  • the moisture content of the shredded organic fiber material is adjusted to 16 to 28%, which is compressed in a die and dried to produce fuel pellets.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-206490
  • This method is a method of producing biomass semi-carbonized consolidated fuel precursor by heating biomass at 200 to 500 ° C., preferably 250 to 400 ° C. in an oxygen deficient atmosphere.
  • Biocoke based on Patent Document 3 Japanese Patent No. 4088933
  • Biocoke is produced by holding a biomass material in a pressurized and heated state for a certain period of time and then cooling in a pressurized state.
  • hemicellulose is pyrolyzed and reacted at low temperature while maintaining the skeleton of cellulose and lignin to be partially carbonized or partially carbonized Set in pressure range and temperature range to obtain solids.
  • the following reaction mechanism is established, and high-hardness, high-pressure-dense biocoke can be produced.
  • the reaction mechanism performs the reaction under the above-described conditions to thermally decompose hemicellulose which is a fiber component of the biomass fine granules to exert an adhesive effect, and the free water contained in the biomass granules is pressurized and heated.
  • lignin reacts at low temperature while maintaining its skeleton, and by acting synergistically with the consolidation effect, high-hardness, high-pressure consolidated biocoke can be produced.
  • the thermosetting reaction proceeds by inducing a reactive site between phenolic polymers contained in lignin and the like.
  • bio-coke is densely packed to an apparent specific gravity of 1.2 to 1.52, and has hardness and flammability showing physical properties with maximum compressive strength of 20 to 200 MPa and calorific value of 18 to 23 MJ / kg.
  • biocoke has performance comparable to both combustibility and hardness, even when compared with the apparent specific gravity of about 1.85, maximum compression strength of about 15 MPa and calorific value of about 29 MJ / kg, which are physical property values of coal coke. Therefore, biocoke is an effective fuel as a substitute for coal coke, and also has a high value as a material material.
  • Patent Document 3 does not disclose the specific device configuration such as pressurizing means, heating and cooling means or its control, and bio-coke can be produced in a short time and efficiently.
  • the present invention proposes a biocoke production method and apparatus that make it possible to produce biocoke efficiently in a short time.
  • the present invention fills a biomass fine particle in a bottomed cylindrical reaction vessel, and obtains the semi-carbonized or semi-carbonized solid in a substantially dense state of the biomass fine particle.
  • a biocoke producing method of producing biocoke by cooling after pressure forming while heating in a temperature range and a pressure range Filling the biomass fine particles into the reaction vessel, then lowering the pressure body from the upper part of the reaction vessel, and pressing the biomass fine particles at a lower pressure than the pressure range by the pressure body at the time of filling; The pressure of the pressing body is increased to pressurize the biomass fine particles in the pressure range, and the biomass fine particles are heated to the temperature range by the heating unit and held for a predetermined time, and then cooled from the heating unit
  • the pressurizing body in the filling step, first, the pressurizing body is operated at low pressure to perform pressurization during filling of the biomass fine particles, and then, in the reaction step, the pressure of the pressurizing body is increased and interlocked with this, the heating means is Activated and pressurized while heating in a temperature range and pressure range to obtain a semi-carbonized or semi-carbonized solid substance in a substantially sealed state to react the biomass fine particles, hold for a predetermined time, and hold the pressurizing means It switches from a heating means to a cooling means, cools, and is trying to manufacture a bio coke molded object.
  • biomass is in the form of fine particles and is charged into the reaction vessel, so its bulk density is low. If it is in the state as it is, the volume of the reaction vessel must be increased. By performing pressurization, it is possible to charge more biomass fine particles, and it is possible to miniaturize the reaction vessel.
  • the pressure value of the pressurizer and the filling amount of the biomass fine particles in the reaction vessel are detected at the time of pressurization at the time of filling, and these detected values are both preset at the time of filling. It is characterized in that the feeding of the biomass fine particles and the pressurization at the time of filling are repeated until the pressure setting range and the filling amount setting range are reached. As a result, it is not necessary to measure in advance when the biomass fine particles are charged into the reaction vessel, and it becomes possible to obtain biocoke of a certain size, and in turn, the value as a product can be improved.
  • a position sensor detects the upper end position of the biomass fine particles introduced into the reaction vessel, or detects a descent time in which the pressing body descends from the initial position to the upper end of the biomass fine particles. It is characterized in that the filling amount of biomass fine particles is detected by estimating the filling amount. This makes it possible to easily detect the amount of packed biomass fines. In particular, when a position sensor is used, highly accurate detection is possible, and when the fall time is used, the apparatus can be inexpensive.
  • the number of descents of the pressure body is counted by a counter, and when the filling step is completed, the number of descents counted in the normal operation state is smaller than the number of descents counted in the normal operation state. It is characterized in that it is judged that an abnormality has occurred by pressure application. This is because if, for example, the number of descents of the pressure body is smaller than the number of descents predicted in the normal operation state, a problem such as the pressure body being caught on the side of the reaction container occurs, and the descent does not occur properly. Conceivable. Therefore, by counting the number of descents of the pressing body, it is possible to easily grasp the abnormality of pressurization at the time of filling.
  • the heating means and the cooling means are cooling medium circulating means for heating or cooling the biomass fine particles by letting the heat medium or the refrigerant flow around the outer periphery of the reaction vessel, In the reaction step, the heat medium is circulated first and held for a predetermined time, and then switched to the refrigerant.
  • the heating and cooling medium circulating means as the heating means and the cooling means, heating or cooling of the biomass fine particles can be performed rapidly, and switching from heating to cooling can be performed smoothly.
  • the pressurized body is lowered by a low pressure, and the molded body is extruded and discharged from the open bottom surface of the reaction container.
  • the pressurized body is lowered by a low pressure, and the molded body is extruded and discharged from the open bottom surface of the reaction container.
  • a bottomed cylindrical reaction container in which biomass fine particles are filled, a pressurized body for pressurizing the biomass fine particles in the reaction container, a heating means for heating the biomass fine particles, and the biomass
  • a compact obtained by pressure forming while heating in a temperature range and a pressure range to obtain a semi-carbonized or semi-carbonized solid substance in a substantially dense state with the fine particles in the substantially dense state is cooled.
  • a bio-coke producing apparatus provided with a cooling means, A control device that performs pressure control of the pressing body, and switching control of the heating unit and the cooling unit;
  • the control device comprises: a first pressure step of pressurizing the biomass fine particles at the time of filling at a lower pressure than the pressure range and applying the pressurizing force applied to the biomass fine particles; Controlling the pressure in a second pressure step of pressurizing in the pressure range; It is characterized in that the heating means is operated at a second pressure stage of the pressing body, and control is made to switch from the heating means to the cooling means after a predetermined time has elapsed.
  • pressure detection means for detecting the pressure value of the pressurizer
  • a filling amount detecting means for detecting the filling amount of biomass fine particles in the reaction vessel
  • the control device is configured to set the pressure setting range at the time of filling in which the detection value of the pressure detection means and the detection value of the filling amount detection means are preset at the first pressure stage of the pressing body. It is characterized in that control is performed so that the charging of the biomass fine particles and the pressurization at the time of filling are repeated until the range is reached.
  • the filling amount detecting means may be means for detecting the upper end position of the biomass fine particles introduced into the reaction container by a position sensor, or the pressing body may be lowered from the initial position to the upper end of the biomass fine particles. It is characterized in that it is any means for detecting time and estimating the filling amount.
  • the control device includes a counter that counts the number of descents of the pressure body, and the control means counts the number of descents predicted in the normal operation state when switching the pressure step of the pressure body. In the case where the number of descents is small, it is characterized in that it is determined that an abnormality has occurred in pressurization at the time of filling and the pressure body is stopped.
  • the heating means and the cooling means are cooling medium circulation means for heating or cooling the biomass fine particles by flowing a heat medium or a refrigerant around the periphery of the reaction vessel. Further, the heating means and the cooling means are cooling medium circulating means for heating or cooling the biomass fine particles by letting a heat medium or a refrigerant flow around the outer periphery of the reaction vessel.
  • the pressurizing body in the filling step, is first operated at a low pressure to perform pressurization at the time of filling the biomass fine particles, and then in the reaction step, the pressure of the pressurizing body is increased and interlocked with this, the heating means is Activated and pressurized while heating in a temperature range and pressure range to obtain a semi-carbonized or semi-carbonized solid substance in a substantially sealed state to react the biomass fine particles, hold for a predetermined time, and hold the pressurizing means It switches from a heating means to a cooling means, cools, and is trying to manufacture a bio coke molded object.
  • biomass is in the form of fine particles and is charged into the reaction vessel, so its bulk density is low. If it is in the state as it is, the volume of the reaction vessel must be increased. By performing pressurization, it is possible to charge more biomass fine particles, and it is possible to miniaturize the reaction vessel.
  • the pressure value of the pressurizing means and the amount of packed biomass fines are detected at the time of pressure application, and both of the detected values fall within the predetermined pressure setting range and value setting range.
  • the heating and cooling medium circulation means as the heating means and the cooling means, heating or cooling of the biomass fine particles can be performed quickly, and switching from heating to cooling can be performed smoothly. Furthermore, in the discharging step, the compact can be discharged easily from the open bottom surface of the reaction container by lowering the pressure at a low pressure, so that the compact formed in the reaction container can be easily discharged. It becomes.
  • FIG. 2 is a hydraulic circuit diagram of a pressurizing hydraulic mechanism according to an embodiment of the present invention.
  • the biomass as a raw material of biocoke is an organic substance caused by photosynthesis and is a biomass such as woods, plants and plants, agricultural crops, and mosses.
  • a biomass such as woods, plants and plants, agricultural crops, and mosses.
  • biomass fine particle whose water content has been adjusted to have a predetermined water content as necessary is used as a raw material.
  • Biomass fine-grained material may use biomass of small particle size as it is as in a tea bowl, coffee bowl, etc., or biomass of large particle size such as waste wood is previously crushed to a predetermined particle size or less It is also good.
  • the biocoke apparatus of the present embodiment is pressurized after being compacted and held for a certain time while heating the biomass fine particles in a temperature and pressure range to obtain a semi-carbonized or semi-carbonized solid substance in a substantially dense state. Biocoke is produced by cooling while maintaining the pressure.
  • the above temperature range and pressure range are half carbonization or half carbonization by thermal decomposition of hemicellulose among lignin, cellulose and hemicellulose, which are main components in biomass fine particles, while maintaining hemicellulose and maintaining the framework of cellulose and lignin.
  • the pressure range and temperature range to obtain the solid before carbonization That is, it is a temperature range and pressure range in which the hemicellulose in the biomass fine particles is thermally decomposed and lignin induces a thermosetting reaction.
  • the biocoke producing apparatus 1 has a cylindrical reaction vessel 2 into which biomass fine particles 11 are charged.
  • a hopper portion 3 for receiving the biomass fine particles 11 is provided at the upper portion of the reaction vessel 2, and a discharge portion 5 for discharging the molded biocoke is provided at the lower end.
  • the reaction vessel 2 includes heating means for heating the contents to a predetermined temperature, and cooling means for cooling after heating. The heating means and the cooling means may be the same temperature control means.
  • a temperature control means a double pipe structure in which a jacket is provided in the reaction vessel 2 and a cooling medium passage 4 is provided between the inner cylinder and the outer cylinder.
  • a heat transfer medium or refrigerant (hereinafter referred to as a heat transfer medium) flows through the heat transfer medium passage 4 so that heat energy is transferred to the biomass fine particles 11 filled in the cylinder inner cylinder by heat transfer by the heat transfer medium. It has become.
  • a cooling medium inlet 4a is provided on the lower side of the cooling medium passage 4, and a cooling medium outlet 4b is provided on the upper side.
  • the cooling medium inlet 4a and the cooling medium outlet 4b are connected to a cooling medium circuit described later (see FIG. 7).
  • a mechanism that controls the temperature of the reaction vessel 2 by switching the cooling medium, including the cooling medium passage 4, the cooling medium inlet 4a, the cooling medium outlet 4b, and the cooling medium circuit, is referred to as a cooling medium circulation mechanism.
  • the discharge part 5 consists of an opening of the same diameter as the diameter of the reaction container 2, and the discharge device which opens and closes the discharge part 5 below that is provided.
  • the discharge device includes a bottom cover 9 sealing the discharge section 5 and a discharge hydraulic mechanism 10 sliding the bottom cover 9 horizontally to control sealing and opening of the discharge section 5. Ru. This discharge device drives the hydraulic mechanism 10 to slide the bottom cover 9 to open the discharge portion 5 after the reaction process in the reaction container 2 is completed, and the biocoke in the cylinder 2 is dropped and discharged. It is supposed to Furthermore, above the reaction vessel 2 is provided a pressurizing means for pressurizing the biomass fine particles 11 in the cylinder 2 to a predetermined pressure.
  • the pressurizing means includes a pressurizing piston (pressurizer) 6 driven by a pressurizing cylinder 7 to reciprocate in the reaction container 2, and a pressurizing hydraulic mechanism 8 for controlling the hydraulic pressure in the pressurizing cylinder 7. (See FIG. 6).
  • the pressurizing piston 6 and the pressurizing cylinder 7 are disposed coaxially with the reaction vessel 2.
  • the pressurizing piston 6 descends to near the bottom surface of the reaction vessel 2.
  • the pressurizing piston 6 is configured to be able to maintain this pressurized state for a predetermined time.
  • a position sensor 20 may be provided to detect the vertical position of the pressure piston 6 based on the amount of extension of the pressure piston 6.
  • the pressurizing hydraulic mechanism 8, the discharging hydraulic mechanism 10 and the cooling medium circulating mechanism are controlled by the control device 100.
  • the control device 100 is constituted by a microcomputer provided with a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM) and an input / output interface (I / O interface). Further, the control device 100 is provided with a counter 101 that counts the number of times of filling of the pressurizing piston 6 of the pressurizing hydraulic mechanism 8 and the like, and a timer 102 that measures the duration in predetermined control.
  • FIG. 6 shows an example of a hydraulic circuit diagram of the pressurizing hydraulic mechanism.
  • the hydraulic oil supplied to the pressurizing cylinder 7 is pumped up from the tank 76 by the pump 77, and the supply amount is controlled by the solenoid valve 78 and supplied to the pressurizing cylinder 7.
  • Check valves 71 and 72 are provided in the hydraulic pressure passage between the solenoid valve 78 and the pressure cylinder 7, and the hydraulic oil pressure in this portion is detected by the pressure detection sensor 75 as a back pressure, and this value is pressurized
  • the pressure value of the piston 6 is input to the control device 100.
  • the pressure of the pressurizing piston 6 is adjusted by controlling the solenoid valve 78 based on the pressure value detected by the pressure detection sensor 75 by the control device 100.
  • the pressure step of the pressurizing piston 6 is a first pressure step of pressurizing the biomass fine particles 11 at the time of filling, at a lower pressure than the pressure range in which the biomass fine particles 11 are reacted to obtain semi-carbonized or semi-carbonized presolids There are at least two stages of: a second pressure stage of pressurizing the biomass fine granules 11 pressurized at the time of filling in the pressure range.
  • cooling medium circuit 30 An example of the cooling medium circuit 30 provided in the cooling medium circulation mechanism will be described with reference to FIG. 7.
  • this cooling medium circuit 30 it is possible to provide temperature control means with high thermal efficiency and high safety, but it goes without saying that cooling medium circuits with other configurations may be used.
  • the cooling medium circuit 30 it is preferable to use silicon oil as the refrigerant and the heating medium.
  • the cooling medium inlet 4a and the outlet 4b of the reaction vessel 2 are respectively connected to the cooling medium circuit 30 shown in the figure.
  • the cooling medium circuit 30 has a configuration in which a refrigerant circuit and a heating medium circuit are combined.
  • the cooling medium outlet 4 b is connected to the cooling medium discharge line 41, and branches into the heating medium return line 42 and the refrigerant return line 43 via the three-way valve 45 on the discharge line 41.
  • the heat medium return line 42 is connected to the heat medium tank 31.
  • the heat medium tank 31 includes a heater 31a and a stirrer 31b, and is configured to raise the temperature of the cooled heat medium. It is preferable that N 2 gas be supplied from an N 2 cylinder as necessary, and the inside of the tank be maintained at an inert atmosphere to ensure safety.
  • the outlet side of the heat medium tank 31 is connected to the cooling medium supply line 40 via a three-way valve 46.
  • the heat medium when heating the reaction vessel 2, the heat medium is circulated to the heat medium tank 31 side by controlling the three-way valves 45, 46, and the heat medium tank 31, the cooling medium supply line 40, A heat transfer medium circuit including the cooling and heat transfer medium passage 4 (reaction vessel 2), the cooling and cooling medium discharge line 41, and the heating medium return line 42 is formed.
  • the refrigerant return line 43 is connected to the refrigerant heat exchanger 36.
  • the refrigerant heat exchanger 36 exchanges heat between cooling water such as fresh water and the like and cools the refrigerant.
  • a refrigerant tank 35 is provided on the refrigerant return line 43 upstream of the refrigerant heat exchanger 36.
  • the refrigerant tank 35 has an ability to cool at least the refrigerant temperature to the boiling point of water or less, preferably 80 ° C. or less.
  • the refrigerant tank 35 preferably includes a stirrer 35a, which reduces the change in refrigerant temperature at the outlet of the refrigerant tank 35 and improves the cooling capacity.
  • the three-way valves 45 and 46 are controlled to switch to the refrigerant tank 35 side so that the refrigerant circulates to the refrigerant tank 35 side.
  • a refrigerant circuit including the refrigerant heat exchanger 36, the cooling medium supply line 40, the cooling medium passage 4 (reaction vessel 2), the cooling medium discharge line 41, and the refrigerant return line 43 is formed.
  • the pressurizing piston 6 is set to the initial position H 0 at the upper portion of the reaction vessel 2.
  • the biomass fine-grain body 11 which is a raw material is thrown in in the reaction container 2 from the hopper part 3 (S4).
  • the pressurizing cylinder 7 is driven to the lower side at a low pressure by the pressurizing hydraulic mechanism 8 to lower the pressurizing piston 6 (S5).
  • the control device 100 at the time of low-pressure lowering, pressure P of the pressure cylinder 7 monitors whether the set is greater than a predetermined pressure P 1 in advance (S7).
  • Oil pressure P of the pressure cylinder 7 is at a predetermined pressure P 1 the following conditions, if the pressing time is measured by the timer 102 has elapsed preset predetermined time or more, the pressure cylinder 7 again returns to step S5 Drive down.
  • the pressure P 1 of the first stage of performing filling upon pressurization and 14 MPa the predetermined time is set to 10 seconds.
  • the hydraulic pressure P of the pressure cylinder 7 is if older than a predetermined time at a predetermined pressure P 1 is greater than the state, then it detects the filling amount of biomass granulates 11 in the reaction vessel 2. This is done to shape the biocoke to the desired size.
  • the detection of the filling amount of the biomass fine particles 11 is performed as follows.
  • the biomass fine particle upper end position H in the reaction vessel 2 is detected by the position sensor 20. Then, it is determined whether the detected upper end position H is equal to or more than a preset filling amount setting value H 1 (H ⁇ H 1 ).
  • the falling time T in which the pressurizing piston 6 descends from the initial position H 0 to the top end H of the biomass fine granules is detected by the timer 102 to estimate the filling amount. You may do it.
  • previously acquired from the pre-initial position H 0 falling time of the pressure piston 6 to the loading set point H 1, is it a specified time T 1.
  • T ⁇ T 1 the designated time T 1
  • the hydraulic pressure P of the pressure cylinder 7 is larger than the predetermined pressure P 1, and biomass granulate 11 filling amount preset filling amount set value H 1 or more When it becomes, it ends.
  • the filling step as described above, it is not necessary to measure in advance when the biomass fine particles 11 are charged into the reaction vessel 2, and it becomes possible to obtain biocoke having a certain size.
  • biomass is in the form of fine particles and is charged into the reaction vessel 2, so its bulk density is low. In this state, the volume of the reaction vessel 2 must be increased. By performing pressurization at the time of filling, it becomes possible to charge more biomass fine-grained objects 11, and downsizing of the reaction vessel 2 becomes possible.
  • the number of times of filling X 0 counted by the counter 101 is less than the predetermined number of times of filling Xa If the number of times of filling X 0 is less than the predetermined number of times of filling Xa, it is determined that the pressure piston 6 has an abnormality such as being caught near the inlet of the reaction vessel 2 or the like. It is inferred that the pressure piston 6 did not descend properly, and the device is stopped (S10). When the number of times of filling X 0 is a predetermined number of times of filling Xa or more, the process proceeds to the reaction step. As described above, by counting the number of times of filling X 0 by the counter 101, it is possible to easily grasp in real time the abnormality in pressurization at the time of filling.
  • the pressurizing cylinder 7 is driven to the lower side at high pressure to lower the pressurizing piston 6 (S13), which is required to cause the biomass fine particles 11 to react.
  • the biomass fine particles 11 are pressurized in a predetermined pressure range P 2 (second pressure step).
  • the heat medium is circulated in the cooling medium passage 4 of the reaction vessel 2 and the biomass fine particles 11 are heated in a predetermined temperature range (S14).
  • Predetermined pressure range P 2 is the pressure range and temperature range that induces hemicellulose of the biomass fine body in a pyrolysis or thermal curing reaction of lignin as described above.
  • the biomass fine particles 11 in the reaction vessel 2 hold the above-described pressurized and heated state for a certain period of time. For example, when the cylinder diameter is 50 mm, the holding time is 10 to 20 minutes, and for 150 mm, it is 30 to 60 minutes. It is determined whether the heat medium circulation time is ended by the timer 102 (S15), and when it is ended, the cooling medium circulating mechanism is switched from the heating medium to the refrigerant, and the refrigerant circulation to the cooling medium passage 4 is started (S16) . Similarly, it is judged by the timer 102 whether or not the refrigerant circulation time has ended (S17), and when the refrigerant circulation time has ended, the refrigerant circulation is stopped to shift to the discharge process.
  • the high pressure of the pressure cylinder 7 is removed (S18) and the discharging hydraulic mechanism 10 is driven to slide the bottom cover 9 to open the discharging portion 5 (S19). ).
  • the pressure cylinder 7 is driven to the lower side at a low pressure, and the biocoke 19 produced in the reaction container 2 is extruded and discharged by the pressure piston 6 (S20). Thereby, the biocoke 19 formed compacted in the reaction vessel 2 can be easily discharged.
  • the pressurizing piston 6 is operated at the low pressure first pressure stage to perform pressurization at the time of filling the biomass fine particles 11, and then in the reaction step
  • the pressure of the piston 6 is increased, and in conjunction with this, the heat medium is caused to flow through the cooling / heating medium passage 4 so that the biomass fine particles 11 in the reaction vessel 2 are semi-carbonized or semi-carbonized before being substantially sealed.
  • cooling is performed by switching the cooling medium passage 4 from the heating medium to the refrigerant while maintaining the pressurized state.
  • the coke compact 19 is manufactured.
  • the pressurizing hydraulic mechanism 8 the discharging hydraulic mechanism 10, and the cooling medium circulating mechanism in conjunction with each other by the control device 100, it becomes possible to produce biocoke in a short time and efficiently. .
  • biocoke producing apparatus By using the biocoke producing apparatus according to the present embodiment, it is possible to efficiently produce high-hardness and high-density biocoke that can be used as a substitute for coal coke.
  • the biocoke manufactured in this embodiment can be used as a heat source, reducing agent, etc. in a cupola furnace, blast furnace, etc. in casting manufacture or iron making, and boiler fuel for power generation, calcined fuel such as slaked lime etc. It can also be used for fuel demand, and can also be used as a material material by taking advantage of properties such as higher compressive strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

バイオコークスを短時間で且つ効率的に製造することを可能としたバイオコークス製造方法及び装置を提案する。反応容器にバイオマス細粒体を充填し、略密状態にて半炭化或いは半炭化前固形物を得る温度範囲及び圧力範囲で加熱しながら加圧成形した後冷却してバイオコークスを製造する方法において、反応容器にバイオマス細粒体を投入した後、該反応容器の上部から加圧体を下降させ前記圧力範囲より低圧でバイオマス細粒体を充填時加圧する充填工程と、加圧体の圧力を上昇させ前記圧力範囲にてバイオマス細粒体を加圧するとともに、加熱手段によりバイオマス細粒体を前記温度範囲に加熱して所定時間保持した後加熱手段から冷却手段に切り替えて成形体を冷却する反応工程と、加圧体の圧力を低下させた後反応容器の底部を開放し、冷却された成形体を排出する排出工程とを備える。

Description

バイオコークス製造方法及び製造装置
 本発明は、バイオマスを原料としたバイオコークスの製造技術に関し、特に石炭コークスの代替燃料として効果的に利用可能であるバイオコークスを製造するためのバイオコークス製造方法及び製造装置に関する。
 近年、地球温暖化の観点からCO排出の削減が推進されている。特に、製鉄業界に於いて鋳造炉(キュウポラ炉)や高炉などでは、主たる燃料や還元剤に化石燃料である石炭コークスが用いられている。また、ボイラ発電等の燃焼設備においては、燃料として石炭や重油等の化石燃料が用いられることが多い。この化石燃料は、CO排出の問題から地球温暖化の原因となり、地球環境保全の見地からその使用が規制されつつある。また化石燃料の枯渇化の観点からもこれに代替するエネルギー資源の開発、実用化が求められている。
 そこで、化石燃料の代替として、大気中のCO量に影響を与えないバイオマスを用いた燃料の利用促進が図られている。バイオマスとは、光合成に起因する有機物であって、木質類、草木類、農作物類、農作物に基づく厨芥類等のバイオマスがある。このバイオマスを燃料化処理することにより、バイオマスをエネルギー源又は工業原料として有効に利用し地球環境保全に貢献することができる。
 バイオマスを燃料化する方法としては、バイオマスを乾燥させて燃料化する方法、加圧して燃料ペレット化する方法、炭化、乾留させて固体及び液体の燃料化する方法等が知られている。しかし、バイオマスを乾燥させるのみでは、空隙率が大きくみかけ比重が低くなるため、輸送や貯留が困難であり、長距離輸送や貯留して使用する燃料としては有効とはいえない。
 一方、バイオマスを燃料ペレット化する方法は、特許文献1(特公昭61-27435号公報)に開示されている。この方法は、細断された有機繊維材料の含水量を16~28%に調節し、これをダイス内で圧縮して乾燥し燃料ペレットを製造するようにしている。
 また、バイオマスを乾留して燃料化する方法は、特許文献2(特開2003-206490号公報)等に開示されている。この方法は、酸素欠乏雰囲気中において、バイオマスを200~500℃、好適には250~400℃で加熱して、バイオマス半炭化圧密燃料前駆体を製造する方法となっている。
 しかしながら、特許文献1に記載される方法では、圧縮成形を行うことによりバイオマスを燃料化しているが、生成した燃料ペレットは水分量が多いため発熱量が低く、燃料としては適していない。
 また、特許文献2等に記載されるように乾留によりバイオマスを燃料化する方法では、加工処理を施さないバイオマスに比べると燃料として価値が高いものとなっているが、やはり石炭コークスに比べてみかけ比重が低く、発熱量が低い。さらに、石炭コークスに比べて硬度が低いため、石炭コークスの代替として利用するには不十分である。
 そこで、近年石炭コークスの代替として、特許文献3(特許第4088933号公報)に基づくバイオコークスが研究されている。
 バイオコークスは、バイオマス原料を加圧、加熱した状態で一定時間保持した後に、加圧を維持した状態で冷却することにより製造される。加圧、加熱条件は、バイオマス細粒体中の主成分であるリグニン、セルロース及びヘミセルロースのうち、ヘミセルロースを熱分解させると共にセルロース及びリグニンの骨格を保持しつつ低温反応させて半炭化或いは半炭化前固形物を得る圧力範囲及び温度範囲に設定する。これにより以下の反応機構が成立し、高硬度で高圧密されたバイオコークスが製造できる。
 その反応機構は、上記した条件で反応を行うことにより、バイオマス細粒体の繊維成分であるヘミセルロースが熱分解し接着効果を発現させ、バイオマス細粒体に含まれる自由水がこの加圧、加熱条件下での作用によりリグニンがその骨格を維持したまま低温で反応し、圧密効果と相乗的に作用することによって、高硬度で高圧密されたバイオコークスが製造できるものである。熱硬化反応は、リグニン等に含まれるフェノール性の高分子間で反応活性点が誘発することにより進行する。
 図8に、バイオコークスの物性値を他の燃料と比較した表を示す。尚、この表は実験的に得られた数値を記載しているのみであり、本発明はこの数値に限定されるものではない。
 この表に示されるように、バイオコークスは、みかけ比重1.2~1.52に高圧密され、最高圧縮強度20~200MPa、発熱量18~23MJ/kgの物性値を示す硬度、燃焼性ともに優れた性能を有しており、未加工の木質バイオマスが、みかけ比重約0.4~0.6、発熱量約17MJ/kg、最高圧縮強度約30MPaであるのと比べると、発熱量及び硬度の点において格段に優れていることが判る。また、石炭コークスの物性値である、みかけ比重約1.85、最高圧縮強度約15MPa、発熱量約29MJ/kgに比しても、バイオコークスは燃焼性、硬度とも遜色ない性能を有する。従って、バイオコークスは石炭コークスの代替として有効な燃料であるとともに、マテリアル素材としての利用価値も高い。
特公昭61-27435号公報 特開2003-206490号公報 特許第4088933号公報
 しかしながら、バイオコークスは未だ研究段階であり、特許文献3には加圧手段や加熱、冷却手段等の具体的な装置構成やその制御については開示されておらず、バイオコークスを短時間で且つ効率的に製造する技術については言及されていなかった。
 そこで本発明は、バイオコークスを短時間で且つ効率的に製造することを可能としたバイオコークス製造方法及び装置を提案する。
 上記の課題を解決するために、本発明は、有底筒状の反応容器にバイオマス細粒体を充填し、該バイオマス細粒体を略密状態にて半炭化或いは半炭化前固形物を得る温度範囲及び圧力範囲で加熱しながら加圧成形した後、冷却してバイオコークスを製造するバイオコークス製造方法において、
 前記反応容器にバイオマス細粒体を投入した後、前記反応容器の上部から加圧体を下降させ該加圧体により前記圧力範囲より低圧でバイオマス細粒体を充填時加圧する充填工程と、
 前記加圧体の圧力を上昇させ前記圧力範囲にてバイオマス細粒体を加圧するとともに、加熱手段により前記バイオマス細粒体を前記温度範囲に加熱して所定時間保持した後、前記加熱手段から冷却手段に切り替えて前記反応容器内に生成された成形体を冷却する反応工程と、
 前記加圧体の圧力を低下させた後前記反応容器の底部を開放し、前記冷却された成形体を排出する排出工程と、を備えることを特徴とする。
 本発明では、充填工程にて先ず加圧体を低圧で作動させバイオマス細粒体の充填時加圧を行い、次いで反応工程で加圧体の圧力を上昇させるとともにこれに連動させて加熱手段を作動させ、略密閉状態にて半炭化或いは半炭化前固形物を得る温度範囲及び圧力範囲で加熱しながら加圧してバイオマス細粒体を反応させ、所定時間保持した後に加圧手段は保持したまま加熱手段から冷却手段に切り替えて冷却を行い、バイオコークス成形体を製造するようにしている。このように、加圧体と加熱手段及び冷却手段を連動させて制御することにより、短時間で且つ効率的にバイオコークスを製造することが可能となる。また、バイオマスは細粒体状で反応容器に投入されるため嵩密度が低く、そのままの状態だと反応容器の容積を大きくしなければならないが、充填工程にて加圧体により低圧で充填時加圧を行うことで、より多くのバイオマス細粒体を投入することが可能となり、反応容器の小型化が可能となる。
 さらに、前記充填工程では、充填時加圧時に前記加圧体の圧力値と前記反応容器内のバイオマス細粒体の充填量とを検出し、これらの検出値がともに予め設定された充填時加圧設定範囲、充填量設定範囲になるまで前記バイオマス細粒体の投入と前記充填時加圧を繰り返し行うことを特徴とする。
 これにより、反応容器にバイオマス細粒体を投入する際に予め計量する必要がなく、一定の大きさのバイオコークスを得ることが可能となり、延いては製品としての価値を向上させることができる。
 また、前記充填工程では、前記反応容器に投入されたバイオマス細粒体の上端位置を位置センサで検出するか、或いは前記加圧体が初期位置からバイオマス細粒体上端まで下降する下降時間を検出して充填量を推定することによりバイオマス細粒体の充填量を検出することを特徴とする。
 これにより、簡単にバイオマス細粒体の充填量を検出することが可能となる。特に、位置センサを用いる場合は精度の高い検出が可能となり、下降時間を用いる場合は装置を安価にできる。
 また、前記充填工程にて前記加圧体の下降回数をカウンタにてカウントし、該充填工程の終了時に、正常動作状態で予測される下降回数よりも前記カウントされた下降回数が少ない場合は充填時加圧にて異常が発生したと判断することを特徴とする。
 これは、加圧体の下降回数が正常動作状態で予測される下降回数よりも少ない場合には、例えば加圧体が反応容器の側部に引っかかるなどの不具合が生じ、適切に下降しなかっと考えられる。従って、加圧体の下降回数をカウントすることにより充填時加圧の異常を簡単に把握することが可能となる。
 さらに、前記加熱手段と前記冷却手段が、前記反応容器の外周に熱媒又は冷媒を通流させてバイオマス細粒体を加熱又は冷却する冷熱媒循環手段であり、
 前記反応工程では、先に熱媒を循環させて所定時間保持した後、冷媒に切り替えることを特徴とする。
 このように、前記加熱手段と前記冷却手段として冷熱媒循環手段を用いることにより、バイオマス細粒体の加熱又は冷却を迅速に行え、また加熱から冷却への切替が円滑に行える。
 さらにまた、前記排出工程では、前記加圧体を低圧下降して前記反応容器の開放した底面から成形体を押出し排出することを特徴とする。
 このように、加圧体を用いて成形体を押出し排出することにより、反応容器内に圧密して形成された成形体を容易に排出可能となる。
 また、バイオマス細粒体が充填される有底筒状の反応容器と、前記反応容器内のバイオマス細粒体を加圧する加圧体と、前記バイオマス細粒体を加熱する加熱手段と、前記バイオマス細粒体を略密状態にて前記加熱手段と前記加圧体により半炭化或いは半炭化前固形物を得る温度範囲及び圧力範囲で加熱しながら加圧成形して得られた成形体を冷却する冷却手段と、を備えたバイオコークス製造装置において、
 前記加圧体の圧力制御、及び前記加熱手段と前記冷却手段の切り替え制御を行う制御装置を備え、
 前記制御装置は、前記バイオマス細粒体に付与する加圧力を、前記圧力範囲より低圧で前記バイオマス細粒体を充填時加圧する第1の圧力段階と前記充填時加圧したバイオマス細粒体を前記圧力範囲で加圧する第2の圧力段階とに圧力制御するとともに、
 前記加圧体の第2の圧力段階にて前記加熱手段を作動させ、所定時間経過後に前記加熱手段から前記冷却手段に切り替える制御を行なうことを特徴とする。
 さらに、前記加圧体の圧力値を検出する圧力検出手段と、
 前記反応容器内のバイオマス細粒体の充填量を検出する充填量検出手段と、を備え、
 前記制御装置は、前記加圧体の第1の圧力段階にて、前記圧力検出手段の検出値と前記充填量検出手段の検出値がともに予め設定された充填時加圧設定範囲、充填量設定範囲になるまで前記バイオマス細粒体の投入と前記充填時加圧を繰り返し行うように制御することを特徴とする。
 また、前記充填量検出手段は、前記反応容器に投入されたバイオマス細粒体の上端位置を位置センサで検出する手段か、或いは前記加圧体が初期位置からバイオマス細粒体上端まで下降する下降時間を検出して充填量を推定する手段の何れかであることを特徴とする。
 さらに、前記制御装置が前記加圧体の下降回数をカウントするカウンタを備え、該制御手段は、前記加圧体の圧力段階を切り替える際に、正常動作状態で予測される下降回数よりも前記カウントされた下降回数が少ない場合は充填時加圧にて異常が発生したと判断して前記加圧体を停止することを特徴とする。
 さらにまた、前記加熱手段と前記冷却手段が、前記反応容器の外周に熱媒又は冷媒を通流させてバイオマス細粒体を加熱又は冷却する冷熱媒循環手段であることを特徴とする。
 また、前記加熱手段と前記冷却手段が、前記反応容器の外周に熱媒又は冷媒を通流させてバイオマス細粒体を加熱又は冷却する冷熱媒循環手段であることを特徴とする。
 本発明は、充填工程にて先ず加圧体を低圧で作動させバイオマス細粒体の充填時加圧を行い、次いで反応工程で加圧体の圧力を上昇させるとともにこれに連動させて加熱手段を作動させ、略密閉状態にて半炭化或いは半炭化前固形物を得る温度範囲及び圧力範囲で加熱しながら加圧してバイオマス細粒体を反応させ、所定時間保持した後に加圧手段は保持したまま加熱手段から冷却手段に切り替えて冷却を行い、バイオコークス成形体を製造するようにしている。このように、加圧体と加熱手段及び冷却手段を連動させて制御することにより、短時間で且つ効率的にバイオコークスを製造することが可能となる。また、バイオマスは細粒体状で反応容器に投入されるため嵩密度が低く、そのままの状態だと反応容器の容積を大きくしなければならないが、充填工程にて加圧体により低圧で充填時加圧を行うことで、より多くのバイオマス細粒体を投入することが可能となり、反応容器の小型化が可能となる。
 また、充填時加圧時に加圧手段の圧力値とバイオマス細粒体の充填量とを検出し、これらの検出値がともに予め設定された充填時加圧設定範囲、充填量設定範囲になるまで前記バイオマス細粒体の投入と前記充填時加圧を繰り返し行うことにより、反応容器にバイオマス細粒体を投入する際に予め計量する必要がなく、一定の大きさのバイオコークスを得ることが可能となり、延いては製品としての価値を向上させることができる。
 また、バイオマス細粒体の充填量を検出する際に、バイオマス細粒体の上端位置を位置センサで検出するか、或いは加圧体の下降時間を検出して充填量を推定することにより、簡単にバイオマス細粒体の充填量を検出することが可能となる。
 さらに、前記加熱手段と前記冷却手段として冷熱媒循環手段を用いることにより、バイオマス細粒体の加熱又は冷却を迅速に行え、また加熱から冷却への切替が円滑に行える。
 さらにまた、前記排出工程にて、加圧体を低圧下降して反応容器の開放した底面から成形体を押出し排出することにより、反応容器内に圧密して形成された成形体を容易に排出可能となる。
本発明の実施形態に係るバイオコークス製造装置の構成を示す断面図である。 本発明の実施形態に係るバイオコークス製造方法を示すフローチャートである。 本発明の実施形態に係るバイオコークス製造装置の充填工程における動作を説明する図である。 本発明の実施形態に係るバイオコークス製造装置の反応工程における動作を説明する図である。 本発明の実施形態に係るバイオコークス製造装置の排出工程における動作を説明する図である。 本発明の実施形態に係る加圧用油圧機構の油圧回路図である。 本発明の実施形態に係る冷熱媒回路を備えたバイオコークス製造装置のシステム構成図である。 バイオコークスの物性値を比較する表である。
 以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の種類、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。
 本実施形態において、バイオコークスの原料となるバイオマスは、光合成に起因する有機物であって、木質類、草木類、農作物類、厨芥類等のバイオマスであり、例えば、廃木材、間伐材、剪定枝、植物、農業廃棄物、コーヒー滓や茶滓等の厨芥廃棄物等が挙げられる。
 本実施形態では、必要に応じて所定の含水率になるように水分調整されたバイオマス細粒体を原料としている。バイオマス細粒体は、茶滓やコーヒー滓等のように小粒径のバイオマスをそのまま用いてもよいし、廃木材等の大粒径のバイオマスを予め所定粒径以下まで粉砕したものであってもよい。
 本実施形態のバイオコークス装置は、バイオマス細粒体を略密状態にて半炭化或いは半炭化前固形物を得る温度範囲及び圧力範囲で加熱しながら加圧成形して一定時間保持した後に、加圧を維持した状態で冷却することによりバイオコークスを製造する。上記した温度範囲、圧力範囲は、バイオマス細粒体中の主成分であるリグニン、セルロース及びヘミセルロースのうち、ヘミセルロースを熱分解させると共にセルロース及びリグニンの骨格を保持しつつ低温反応させて半炭化或いは半炭化前固形物を得る圧力範囲及び温度範囲とする。即ち、前記バイオマス細粒体中のヘミセルロースが熱分解されるとともにリグニンが熱硬化反応を誘起する温度範囲及び圧力範囲である。
 まず、図1を参照して、本実施形態のバイオコークス製造装置の基本構成を説明する。
 図1に示すように、バイオコークス製造装置1はバイオマス細粒体11が投入される円筒形の反応容器2を有している。該反応容器2の上部にはバイオマス細粒体11を受け入れるホッパ部3が設けられ、下端には成型されたバイオコークスを排出する排出部5が設けられている。また、該反応容器2は、内容物を所定温度まで加熱する加熱手段と、加熱後に冷却する冷却手段とを備える。この加熱手段及び冷却手段は、同一の温度調整手段としてもよい。本実施形態では、温度調整手段として、反応容器2にジャケットを設けた二重管構造とし、内筒と外筒の間に冷熱媒通路4を設けた構成としている。冷熱媒通路4には、熱媒若しくは冷媒(以後、冷熱媒と称する)が通流し、該冷熱媒による伝熱によりシリンダ内筒に充填されたバイオマス細粒体11に熱エネルギの授受を行うようになっている。冷熱媒通路4の下方側には冷熱媒入口4aが設けられ、上方側には冷熱媒出口4bが設けられている。これらの冷熱媒入口4a及び冷熱媒出口4bは、後述する冷熱媒回路に接続されている(図7参照)。冷熱媒通路4、冷熱媒入口4a、冷熱媒出口4b、冷熱媒回路を含み、冷熱媒の切り替えにより反応容器2の温度制御を行う機構を冷熱媒循環機構と称する。
 排出部5は反応容器2の径と同一径の開口からなり、その下方には該排出部5を開閉する排出装置が設けられている。該排出装置は、排出部5を封止する底面蓋部9と、該底面蓋部9を水平方向にスライドさせて排出部5の封止、開放を制御する排出用油圧機構10とから構成される。この排出装置は、反応容器2内にて反応工程が終了した後に、油圧機構10を駆動させ底面蓋部9をスライドさせて排出部5を開放し、シリンダ2内のバイオコークスを落下させて排出するようになっている。さらに、反応容器2の上方には、該シリンダ2内のバイオマス細粒体11を所定圧力まで加圧する加圧手段を備える。この加圧手段は、加圧シリンダ7により駆動されて反応容器2内を往復動する加圧ピストン(加圧体)6と、該加圧シリンダ7内の油圧を制御する加圧用油圧機構8とからなる(図6参照)。加圧ピストン6及び加圧シリンダ7は、反応容器2と同軸上に配置される。加圧ピストン6は、反応容器2の底面付近まで下降する。該加圧ピストン6は、所定時間だけこの加圧状態を保持できる構成となっている。さらにまた、加圧ピストン6の上下方向の位置を加圧ピストン6の伸び量で検出する位置センサ20を設けていてもよい。
 加圧用油圧機構8、排出用油圧機構10及び冷熱媒循環機構は、制御装置100により制御される。該制御装置100は、中央処理装置
(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。さらに、制御装置100は、加圧用油圧機構8の加圧ピストン6の充填回数等をカウントするカウンタ101、所定の制御における継続時間を計測するタイマ102を備えている。
 図6に、加圧用油圧機構の油圧回路図の一例を示す。加圧シリンダ7に供給される作動油は、ポンプ77によりタンク76から汲み上げられ、電磁弁78により供給量を制御されて加圧シリンダ7に供給される。電磁弁78と加圧シリンダ7の間の油圧通路には逆止弁71、72が設けられており、この部分の作動油圧力が圧力検知センサ75によって背圧として検知され、この値が加圧ピストン6の圧力値として制御装置100に入力される。そして、制御装置100により、圧力検知センサ75にて検知された圧力値に基づいて電磁弁78を制御することにより加圧ピストン6の圧力が調整される。
 加圧ピストン6の圧力段階は、バイオマス細粒体11を反応させて半炭化或いは半炭化前固形物を得る圧力範囲より低圧で、バイオマス細粒体11を充填時加圧する第1の圧力段階と、充填時加圧したバイオマス細粒体11を前記圧力範囲で加圧する第2の圧力段階と、の少なくとも2段階を有する。
 図7を参照して、冷熱媒循環機構が備える冷熱媒回路30の一例につき説明する。この冷熱媒回路30を用いることにより、熱効率が高く且つ安全性の高い温度調整手段とすることが可能であるが、もちろん他の構成の冷熱媒回路を用いてもよい。この冷熱媒回路30では、冷媒及び熱媒にシリコンオイルを用いることが好ましい。
 反応容器2の冷熱媒入口4aと出口4bは、同図に示される冷熱媒回路30に夫々接続されている。該冷熱媒回路30は、冷媒回路と熱媒回路とが組み合わされた構成となっている。冷熱媒出口4bは、冷熱媒排出ライン41に接続され、該排出ライン41上の三方バルブ45を介して熱媒戻りライン42と、冷媒戻りライン43に分岐している。
 熱媒戻りライン42は熱媒タンク31に接続されている。該熱媒タンク31は、加熱器31aと、撹拌機31bを具備しており、冷却された熱媒を昇温するようになっている。必要に応じてNボンベからNガスが供給されるようにし、タンク内を不活性雰囲気に保持して安全性を確保することが好ましい。熱媒タンク31の出口側は、三方バルブ46を介して冷熱媒供給ライン40に接続されている。
 このような構成を用いて、反応容器2の加熱時には、三方バルブ45、46を制御することにより熱媒タンク31側に熱媒が循環するようにし、熱媒タンク31、冷熱媒供給ライン40、冷熱媒通路4(反応容器2)、冷熱媒排出ライン41、熱媒戻りライン42からなる熱媒回路を形成する。
 冷媒戻りライン43は、冷媒熱交換器36に接続されている。該冷媒熱交換器36は、上水等の冷却水と冷媒とを熱交換し、冷媒を冷却する構成となっている。
 さらに、好適には冷媒戻りライン43の冷媒熱交換器36より上流側に、冷媒タンク35を設ける。この冷媒タンク35は、少なくとも冷媒温度を水の沸点以下、好適には80℃以下まで冷却する能力を有するものとする。さらに、冷媒タンク35は、撹拌機35aを具備することが好ましく、これにより冷媒タンク35出口の冷媒温度変化を軽減し冷却能力を向上させる。
 このような構成を用いて、反応容器2の冷却時には、三方バルブ45、46を制御することにより冷媒タンク35側に切り替えて、該冷媒タンク35側に冷媒が循環するようにし、冷媒タンク35、冷媒熱交換器36、冷熱媒供給ライン40、冷熱媒通路4(反応容器2)、冷熱媒排出ライン41、冷媒戻りライン43からなる冷媒回路を形成する。
 このように、反応容器2内のバイオマス細粒体11の加熱手段、冷却手段として、冷熱媒回路30を備えた冷熱媒循環機構を用いることにより、バイオマス細粒体11の加熱又は冷却が迅速に行え、また加熱から冷却への切替を円滑に行うことが可能となる。
 次に、図2を参照して、本実施形態に係るバイオコークス製造方法のフローを説明する。
 まず、充填工程において、制御装置100により充填操作を起動させる(S1)。これは、加圧用油圧機構8や排出用油圧機構10を含む各油圧機構、及び冷熱媒循環機構を起動させ(S2)、カウンタ101の充填回数をリセットする(S3)。即ち、充填回数をX(回)とすると、X=0に設定する。このとき、図3(i)に示すように、加圧ピストン6は反応容器2上部の初期位置Hに設定しておく。
 そして、原料であるバイオマス細粒体11をホッパ部3より反応容器2内に投入する(S4)。バイオマス細粒体11を投入後、図3(ii)に示すように、加圧用油圧機構8により加圧シリンダ7を低圧で下降側に駆動して加圧ピストン6を下降させる(S5)。低圧下降時の圧力は、後述する反応工程の圧力より低い第1の圧力段階Pとする。この時、カウンタ101の充填回数を+1増加させて、X=X+1とする(S6)。低圧下降時に制御装置100では、加圧シリンダ7の油圧Pが予め設定された所定圧力Pより大きいか否かを監視する(S7)。加圧シリンダ7の油圧Pが所定圧力P以下の状態にて、タイマ102にて計測される加圧時間が予め設定された所定時間以上経過した場合は、S5に戻り再度加圧シリンダ7を下降側に駆動する。好適には、充填時加圧を行う第1段階の圧力Pは14MPaとし、所定時間は10秒とする。
 一方、加圧シリンダ7の油圧Pが所定圧力Pより大きい状態で所定時間以上経過した場合は、次いで反応容器2内のバイオマス細粒体11の充填量を検出する。これは、バイオコークスを目的とする大きさに成型するために行われる。
 バイオマス細粒体11の充填量検出は以下のように行う。
 位置センサ20により反応容器2内のバイオマス細粒体上端位置Hを検出する。そして、検出された上端位置Hが、予め設定された充填量設定値H以上であるか否か(H≧H)を判断する。
 また、バイオマス細粒体11の充填量検出の別の方法として、加圧ピストン6が初期位置Hからバイオマス細粒体上端Hまで下降する下降時間Tをタイマ102により検出して充填量を推定するようにしてもよい。この場合、予め初期位置Hから充填量設定値Hまでの加圧ピストン6の下降時間を取得しておき、これを指定時間Tとする。そして検出された下降時間Tが指定時間T以下であるか否か(T≦T)を判断する(S8)。
 このように、位置センサ20又は加圧ピストン6の下降時間Tを用いることにより、簡単にバイオマス細粒体11の充填量を検出することが可能となる。特に、位置センサ20を用いる場合は精度の高い検出が可能となり、下降時間Tを用いる場合は装置を安価にできる。
 図3(ii)に示すように、反応容器2内の充填位置Hが充填目的位置Hに到達していない場合(H<H)、若しくは加圧シリンダ7の下降時間Tが指定時間Tより長い場合(T>T)は、充填量が不足していると判断し、加圧シリンダ7を上昇側に駆動し(S11)、加圧シリンダ7の油圧Pが所定圧力Pより大きいか否かを判断し(S12)、大きい場合にはS11に戻りさらに加圧シリンダ7を上昇側に駆動し、小さい場合には図3(iii)に示すように再度バイオマス細粒体11を投入して(S4)、S4以降の加圧シリンダ7の充填工程を繰り返し行う。この操作は、図3(iv)に示すように、加圧シリンダ7の油圧Pが所定圧力Pより大きく、且つバイオマス細粒体11の充填量が予め設定された充填量設定値H以上となったら終了する。
 上記したように充填工程を行うことにより、反応容器2にバイオマス細粒体11を投入する際に予め計量する必要がなく、一定の大きさのバイオコークスを得ることが可能となる。また、バイオマスは細粒体状で反応容器2に投入されるため嵩密度が低く、そのままの状態だと反応容器2の容積を大きくしなければならないが、充填工程にて加圧ピストン6により低圧で充填時加圧を行うことで、より多くのバイオマス細粒体11を投入することが可能となり、反応容器2の小型化が可能となる。
 S8にて反応容器2内のバイオマス細粒体11が目的とする充填量に達していると検出された場合には、カウンタ101にてカウントされる充填回数Xが所定の充填回数Xa未満であるか否かを判断し(S9)、充填回数Xが所定の充填回数Xa未満である場合には、加圧ピストン6が反応容器2の入口付近に引っかかるなどの異常が発生した事により加圧ピストン6が適切に下降しなかったものと推測し、装置を停止する(S10)。充填回数Xが所定の充填回数Xa以上である場合には、反応工程に移行する。このように、カウンタ101にて充填回数Xをカウントすることにより、充填時加圧における異常を簡単に且つリアルタイムで把握することが可能となる。
 反応工程では、図4に示すように、加圧シリンダ7を高圧にて下降側に駆動して加圧ピストン6を下降させ(S13)、バイオマス細粒体11を反応させるために必要とされる所定の圧力範囲P(第2の圧力段階)で該バイオマス細粒体11を加圧する。また、熱媒を反応容器2の冷熱媒通路4に循環させ所定の温度範囲でバイオマス細粒体11を加熱する(S14)。所定の圧力範囲Pは、上記したようにバイオマス細粒体中のヘミセルロース、リグニンの熱分解又は熱硬化反応を誘起する圧力範囲及び温度範囲とする。好適には、圧力範囲Pを8~25MPa、温度範囲を115~230℃とする。反応容器2内のバイオマス細粒体11は、上記した加圧、加熱状態を一定時間保持する。例えば、シリンダ径が50mmの場合、保持時間は10~20分間で、150mmの場合は30~60分間とする。タイマ102にて熱媒循環時間が終了したか否かを判断し(S15)、終了したら冷熱媒循環機構を熱媒から冷媒に切り替えて、冷熱媒通路4への冷媒循環を開始する(S16)。同様にタイマ102にて冷媒循環時間が終了したか否かを判断し(S17)、終了したら冷媒循環を停止し、排出工程に移行する。
 排出工程では、図5(i)に示すように、加圧シリンダ7の高圧を抜き(S18)排出用油圧機構10を駆動して底面蓋部9をスライドして排出部5を開放する(S19)。次いで、図5(ii)に示すように加圧シリンダ7を低圧で下降側に駆動させ、反応容器2内に製造されたバイオコークス19を加圧ピストン6により押出し排出する(S20)。これにより、反応容器2内に圧密して形成されたバイオコークス19を容易に排出可能となる。
 このとき、位置センサ20により検出される加圧ピストン6の位置が下降端位置まで到達したか否かを判断し(S21)、到達した場合には加圧シリンダ7を低圧で上昇側に駆動させ加圧ピストン6を上昇させる(S22)とともに底面蓋部9を閉鎖し(S23)、加圧ピストン6を上昇端まで移動させる(S24)。そして、制御装置100に通常運転停止命令が入力された場合には(S25)、運転を終了する(S26)。停止命令が入力されていない場合には(S25)、S3まで戻り、充填回数をリセットした後、原料投入(S4)移行のステップを繰り返し行う。
 上記したように本実施形態では、充填工程にて、先ず加圧ピストン6を低圧の第1の圧力段階で作動させてバイオマス細粒体11の充填時加圧を行い、次いで反応工程で加圧ピストン6の圧力を上昇させるとともにこれに連動させて冷熱媒通路4に熱媒を通流させ、反応容器2内でバイオマス細粒体11を略密閉状態にて半炭化或いは半炭化前固形物を得る温度範囲及び圧力範囲(第2の圧力段階)で加圧しながら加熱し、所定時間保持した後に、加圧状態は保持したまま冷熱媒通路4を熱媒から冷媒に切り替えて冷却を行い、バイオコークス成形体19を製造するようにしている。このように、制御装置100により加圧用油圧機構8、排出用油圧機構10及び冷熱媒循環機構を連動させて制御することにより、短時間で且つ効率的にバイオコークスを製造することが可能となる。
 本実施形態に係るバイオコークス製造装置を用いることにより、石炭コークスの代替として利用可能な高硬度で高密度のバイオコークスを効率的に製造することが可能となる。また、本実施形態にて製造されたバイオコークスは、鋳物製造或いは製鉄において、キュポラ炉、高炉等における熱源・還元剤等として利用可能であり、また発電用ボイラー燃料、消石灰等の焼成燃料等の燃料需要にも利用可能であり、更に高い圧縮強度等の特性を活かして、マテリアル素材としての使用も可能である。

Claims (11)

  1.  有底筒状の反応容器にバイオマス細粒体を充填し、該バイオマス細粒体を略密状態にて半炭化或いは半炭化前固形物を得る温度範囲及び圧力範囲で加熱しながら加圧成形した後、冷却してバイオコークスを製造するバイオコークス製造方法において、
     前記反応容器にバイオマス細粒体を投入した後、前記反応容器の上部から加圧体を下降させ該加圧体により前記圧力範囲より低圧でバイオマス細粒体を充填時加圧する充填工程と、
     前記加圧体の圧力を上昇させ前記圧力範囲にてバイオマス細粒体を加圧するとともに、加熱手段により前記バイオマス細粒体を前記温度範囲に加熱して所定時間保持した後、前記加熱手段から冷却手段に切り替えて前記反応容器内に生成された成形体を冷却する反応工程と、
     前記加圧体の圧力を低下させた後前記反応容器の底部を開放し、前記冷却された成形体を排出する排出工程と、を備えることを特徴とするバイオコークス製造方法。
  2.  前記充填工程では、充填時加圧時に前記加圧体の圧力値と前記反応容器内のバイオマス細粒体の充填量とを検出し、これらの検出値がともに予め設定された充填時加圧設定範囲、充填量設定範囲になるまで前記バイオマス細粒体の投入と前記充填時加圧を繰り返し行うことを特徴とする請求項1記載のバイオコークス製造方法。
  3.  前記充填工程では、前記反応容器に投入されたバイオマス細粒体の上端位置を位置センサで検出するか、或いは前記加圧体が初期位置からバイオマス細粒体上端まで下降する下降時間を検出して充填量を推定することによりバイオマス細粒体の充填量を検出することを特徴とする請求項2記載のバイオコークス製造方法。
  4.  前記充填工程にて前記加圧体の下降回数をカウンタにてカウントし、該充填工程の終了時に、正常動作状態で予測される下降回数よりも前記カウントされた下降回数が少ない場合は充填時加圧にて異常が発生したと判断することを特徴とする請求項1若しくは2記載のバイオコークス製造方法。
  5.  前記加熱手段と前記冷却手段が、前記反応容器の外周に熱媒又は冷媒を通流させてバイオマス細粒体を加熱又は冷却する冷熱媒循環手段であり、
     前記反応工程では、先に熱媒を循環させて所定時間保持した後、冷媒に切り替えることを特徴とする請求項1記載のバイオコークス製造方法。
  6.  前記排出工程では、前記加圧体を低圧下降して前記反応容器の開放した底面から成形体を押出し排出することを特徴とする請求項1記載のバイオコークス製造方法。
  7.  バイオマス細粒体が充填される有底筒状の反応容器と、前記反応容器内のバイオマス細粒体を加圧する加圧体と、前記バイオマス細粒体を加熱する加熱手段と、前記バイオマス細粒体を略密状態にて前記加熱手段と前記加圧体により半炭化或いは半炭化前固形物を得る温度範囲及び圧力範囲で加熱しながら加圧成形して得られた成形体を冷却する冷却手段と、を備えたバイオコークス製造装置において、
     前記加圧体の圧力制御、及び前記加熱手段と前記冷却手段の切り替え制御を行う制御装置を備え、
     前記制御装置は、前記バイオマス細粒体に付与する加圧力を、前記圧力範囲より低圧で前記バイオマス細粒体を充填時加圧する第1の圧力段階と前記充填時加圧したバイオマス細粒体を前記圧力範囲で加圧する第2の圧力段階とに圧力制御するとともに、
     前記加圧体の第2の圧力段階にて前記加熱手段を作動させ、所定時間経過後に前記加熱手段から前記冷却手段に切り替える制御を行なうことを特徴とするバイオコークス製造装置。
  8.  前記加圧体の圧力値を検出する圧力検出手段と、
     前記反応容器内のバイオマス細粒体の充填量を検出する充填量検出手段と、を備え、
     前記制御装置は、前記加圧体の第1の圧力段階にて、前記圧力検出手段の検出値と前記充填量検出手段の検出値がともに予め設定された充填時加圧設定範囲、充填量設定範囲になるまで前記バイオマス細粒体の投入と前記充填時加圧を繰り返し行うように制御することを特徴とする請求項7記載のバイオコークス製造装置。
  9.  前記充填量検出手段は、前記反応容器に投入されたバイオマス細粒体の上端位置を位置センサで検出する手段か、或いは前記加圧体が初期位置からバイオマス細粒体上端まで下降する下降時間を検出して充填量を推定する手段の何れかであることを特徴とする請求項8記載のバイオコークス製造装置。
  10.  前記制御装置が前記加圧体の下降回数をカウントするカウンタを備え、該制御手段は、前記加圧体の圧力段階を切り替える際に、正常動作状態で予測される下降回数よりも前記カウントされた下降回数が少ない場合は充填時加圧にて異常が発生したと判断して前記加圧体を停止することを特徴とする請求項7若しくは8記載のバイオコークス製造装置。
  11.  前記加熱手段と前記冷却手段が、前記反応容器の外周に熱媒又は冷媒を通流させてバイオマス細粒体を加熱又は冷却する冷熱媒循環手段であることを特徴とする請求項7記載のバイオコークス製造装置。
PCT/JP2010/054821 2008-10-27 2010-03-19 バイオコークス製造方法及び製造装置 WO2010113679A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SG2011071339A SG174994A1 (en) 2009-03-31 2010-03-19 Biocokes producing method and apparatus
AU2010231882A AU2010231882A1 (en) 2009-03-31 2010-03-19 Biocoke manufacturing method and manufacturing device
EP10758453A EP2415852A4 (en) 2009-03-31 2010-03-19 BIOCOKE MANUFACTURING METHODS AND MANUFACTURING DEVICE
US13/250,444 US20120168296A1 (en) 2008-10-27 2011-09-30 Biocokes producing method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009083887A JP5078938B2 (ja) 2008-10-27 2009-03-31 バイオコークス製造方法及び製造装置
JP2009-083887 2009-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/250,444 Continuation US20120168296A1 (en) 2008-10-27 2011-09-30 Biocokes producing method and apparatus

Publications (1)

Publication Number Publication Date
WO2010113679A1 true WO2010113679A1 (ja) 2010-10-07

Family

ID=42828505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054821 WO2010113679A1 (ja) 2008-10-27 2010-03-19 バイオコークス製造方法及び製造装置

Country Status (5)

Country Link
EP (1) EP2415852A4 (ja)
AU (1) AU2010231882A1 (ja)
MY (1) MY149440A (ja)
SG (1) SG174994A1 (ja)
WO (1) WO2010113679A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127435A (ja) 1984-07-18 1986-02-06 Seiken:Kk 空気清浄化システムに於る汚染空気の誘引混入防止装置
JPH11129097A (ja) * 1997-10-31 1999-05-18 Daiki Sato 被処理物の圧密処理装置
JP2003165508A (ja) * 2001-11-30 2003-06-10 Tokyu Car Corp カーシュレッダーダスト減容梱包装置
JP2003206490A (ja) 2002-01-15 2003-07-22 National Institute Of Advanced Industrial & Technology バイオマス半炭化圧密燃料前駆体およびバイオマス半炭化圧密燃料の製造方法
JP2008274114A (ja) * 2007-04-27 2008-11-13 Mhi Environment Engineering Co Ltd バイオコークス製造装置及び製造方法
JP2008274111A (ja) * 2007-04-27 2008-11-13 Mhi Environment Engineering Co Ltd バイオコークスの製造方法及びその製造物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006077652A1 (ja) * 2005-01-24 2006-07-27 Osaka Industrial Promotion Organization 木質バイオマス固形燃料及びその製法
JP5216963B2 (ja) * 2007-04-27 2013-06-19 株式会社ナニワ炉機研究所 バイオコークス製造装置及びその制御方法、並びに製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127435A (ja) 1984-07-18 1986-02-06 Seiken:Kk 空気清浄化システムに於る汚染空気の誘引混入防止装置
JPH11129097A (ja) * 1997-10-31 1999-05-18 Daiki Sato 被処理物の圧密処理装置
JP2003165508A (ja) * 2001-11-30 2003-06-10 Tokyu Car Corp カーシュレッダーダスト減容梱包装置
JP2003206490A (ja) 2002-01-15 2003-07-22 National Institute Of Advanced Industrial & Technology バイオマス半炭化圧密燃料前駆体およびバイオマス半炭化圧密燃料の製造方法
JP2008274114A (ja) * 2007-04-27 2008-11-13 Mhi Environment Engineering Co Ltd バイオコークス製造装置及び製造方法
JP2008274111A (ja) * 2007-04-27 2008-11-13 Mhi Environment Engineering Co Ltd バイオコークスの製造方法及びその製造物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2415852A4 *

Also Published As

Publication number Publication date
EP2415852A1 (en) 2012-02-08
EP2415852A4 (en) 2012-11-14
SG174994A1 (en) 2011-11-28
MY149440A (en) 2013-08-30
AU2010231882A1 (en) 2011-10-27

Similar Documents

Publication Publication Date Title
JP5078938B2 (ja) バイオコークス製造方法及び製造装置
US8460515B2 (en) Biocoke producing apparatus and process therefor
RU2355739C1 (ru) Отвержденная биомасса и способ ее получения
JP5216963B2 (ja) バイオコークス製造装置及びその制御方法、並びに製造方法
EP2668249B1 (en) Method and device for treating biomass
JP2008274107A (ja) バイオコークス製造装置及び製造方法
CA2850975C (en) Biomass pellet and method of producing same
JP2009185183A (ja) バイオコークス製造装置
WO2010113679A1 (ja) バイオコークス製造方法及び製造装置
Obi Effect of briquetting temperature on the properties of biomass briquettes
WO2008136477A1 (ja) バイオコークス製造装置及び製造方法
JP6680167B2 (ja) 高炉用含炭非焼成塊成鉱の製造方法
RU2185420C1 (ru) Способ получения топливных брикетов и установка для их прессования
JP2008274111A (ja) バイオコークスの製造方法及びその製造物
JP2008274112A (ja) バイオコークス製造装置及び方法
JP2008274109A (ja) バイオコークス製造装置
JP2009185180A (ja) バイオコークス製造装置
KR20200069865A (ko) 식물성 오일 부산물과 고효율 압축성형기술을 이용한 화력발전소 석탄 대체용 고열량 바이오매스 성형연료 및 이의 제조방법
JP2009183875A (ja) バイオコークス製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758453

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12011501950

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010758453

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2010231882

Country of ref document: AU

Date of ref document: 20100319

Kind code of ref document: A