WO2008136477A1 - バイオコークス製造装置及び製造方法 - Google Patents

バイオコークス製造装置及び製造方法 Download PDF

Info

Publication number
WO2008136477A1
WO2008136477A1 PCT/JP2008/058233 JP2008058233W WO2008136477A1 WO 2008136477 A1 WO2008136477 A1 WO 2008136477A1 JP 2008058233 W JP2008058233 W JP 2008058233W WO 2008136477 A1 WO2008136477 A1 WO 2008136477A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction vessel
heating
biomass
jacket
circle
Prior art date
Application number
PCT/JP2008/058233
Other languages
English (en)
French (fr)
Inventor
Yoshimasa Kawami
Jun Satou
Tamio Ida
Original Assignee
Mitsubishi Heavy Industries Environment Engineering Co., Ltd.
Kinki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Environment Engineering Co., Ltd., Kinki University filed Critical Mitsubishi Heavy Industries Environment Engineering Co., Ltd.
Publication of WO2008136477A1 publication Critical patent/WO2008136477A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/34Heating or cooling presses or parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to a bio-coke production apparatus and method that can be used as a substitute fuel for coal coke, using biomass resulting from photosynthesis as a raw material.
  • biomass has attracted attention in consideration of the global warming phenomenon caused by an increase in the concentration of carbon dioxide in the atmosphere and the predicted fossil fuel depletion in the future. Has been.
  • Biomass generally refers to organic resources derived from renewable organisms, excluding fossil resources. By treating this biomass with carbonization gas, it is possible to recover valuable materials such as heat, electricity, and carbide. In addition, biomass as waste can be processed, which helps to clean the environment. In addition, because biomass is an organic matter, it generates carbon dioxide when burned, but this carbon dioxide is derived from carbon dioxide absorbed from the atmosphere by photosynthesis during the growth process, increasing the carbon dioxide in the atmosphere. It is thought not to let it. This is called Rikiichi Bon Neutral. Therefore, in recent years, the progress of the global temperature due to the increase in the concentration of carbon dioxide in the atmosphere has become a problem, and there is a demand for the utilization of biomass.
  • Patent Document 1 discloses a method for producing a biomass water slurry
  • Patent Document 2 includes converting garbage, sewage sludge, and the like into fuel. A method is disclosed.
  • Patent Documents 1 and 2 are not technologies for converting biomass into a solid fuel and cannot be used as a substitute for coal coke.
  • Patent Document 3 discloses a pellet manufacturing technology.
  • the pellets produced have a sufficient calorific value due to the high water content of the material in order to use the produced pellets as a substitute for coal coke.
  • air oxygen
  • the pellets produced have a sufficient calorific value due to the high water content of the material in order to use the produced pellets as a substitute for coal coke.
  • air oxygen
  • burning time is short, and there is no bonding between powder biomass, so that sufficient hardness is achieved. It is a thing which does not have.
  • Patent Document 4 a manufacturing technology
  • Patent Document 5 Semi-carbonized compact fuel production technology for further improving wood biomass energy transport characteristics
  • Patent Document 6 the solid fuel obtained by any of the techniques of Patent Documents 4 to 6 does not have a sufficient calorific value as compared with coal coke. It is difficult to use as a substitute for coal coke because the hardness performance is not sufficient. Disclosure of the invention
  • the present invention has been made in view of the problems of the prior art, and an object of the present invention is to provide a biocokes production apparatus and production method that can be used as an alternative fuel for coal coke using biomass resulting from photosynthesis as a raw material.
  • Biomass caused by photosynthesis here means that in sunlight, carbon dioxide in the atmosphere and water sucked up from the roots are used for photosynthesis to produce organic substances such as sugars, cellulose, and lignin.
  • a dusting means for pulverizing a biomass raw material caused by photosynthesis a filling means for filling a reaction vessel with a biomass crushed by the pulverizing means, and heating in the reaction container.
  • a bio-coke production apparatus for producing bio-coke by pressure molding wherein the reaction container is heated to a temperature range in which hemicellulose in the pulverized biomass is thermally decomposed and exhibits an adhesive effect.
  • the temperature condition in the heating means is set to 1 15 to 2 30 ° (: the pressure condition in the pressurizing means is set to 8 to 25
  • the pressure is set to MP a
  • the heating temperature condition is more preferably from 180 to 230 ° C.
  • the pressurizing pressure condition is more preferably from 1 to 19 MPa.
  • Can be obtained for a certain period of time and for example, when a cylindrical cylindrical container is used as a reaction container, the retention time can be obtained from the diameter of the circular part of the cylinder (mm) by 0.2 '
  • the number of reaction vessels arranged in a circle is not particularly limited, and can be determined according to the scale of production.
  • the rotation It is preferable to be able to adjust the rotational speed of stage.
  • the heating means is means for heating by circulating a heating medium through a jacket provided on the outer periphery of the reaction vessel, and has a slit along a circle in which the reaction vessel is arranged, and the heating medium has A filled heat medium supply tank is provided, and the open end of the pipe connected to the jacket is moved along the slit in accordance with the rotation of the reaction vessel so that the heat medium flows into the jacket.
  • a heating medium discharge tank having a slit along the circle in which the reaction vessel is arranged is provided, and the open end of the pipe connected to the jacket is moved along the slit in accordance with the rotation of the reaction vessel.
  • the heat medium is circulated through the jacket by allowing the heat medium to be discharged from the jacket. It is characterized by making it.
  • the heating medium supply tank may be composed of one member, but is preferably composed of a combination of a plurality of blocks.
  • the cooling means is means for cooling by circulating a refrigerant through a jacket provided on the outer periphery of the reaction vessel, and has a slit along a circle in which the reaction vessel is arranged and is filled with the refrigerant.
  • the refrigerant supply tank is provided, and the open end of the pipe connected to the jacket is moved along the slit in accordance with the rotation of the reaction vessel so that the refrigerant flows into the jacket, and the reaction
  • a refrigerant discharge tank having a slit along a circle in which the container is arranged is provided, and the open end of the pipe connected to the jacket is moved along the slit in accordance with the rotation of the reaction container. It is characterized in that the refrigerant is passed through the jacket by discharging the refrigerant from the jacket.
  • the refrigerant supply tank may be composed of a single member, but is preferably composed of a combination of a plurality of blocks.
  • the means using the heating medium supply tank as the heating means and the means using the refrigerant supply tank as the cooling means can be used separately, but it is more preferable to use both together.
  • the present invention is characterized in that there is provided a compression means for compressing and molding the biomass powder into cylindrical pellets before the biomass powder is put into the reaction vessel by the filling means.
  • the filling means can fill the reaction vessel with the biomass pulverized product compressed into a cylindrical pellet using the compression means, and directly bypass the compression means to directly pulverize the biomass.
  • the reaction vessel can be filled In this way, it is possible to determine whether or not to use the compression means depending on the bulk density of the biomass material, and it is only necessary to use the compression means when using a biomass material with a low bulk density. Therefore, the operating cost of the compression means can be minimized.
  • the bio-cokes production method is for producing bio-coke by pulverizing biomass raw materials resulting from photosynthesis, filling in a reaction vessel, and press-molding while heating in the reaction vessel.
  • the container is heated to a temperature range where hemicellulose in the biomass raw material is thermally decomposed to develop an adhesive effect, and in this heated state, to a pressure range where the lignin in the biomass powder exhibits a thermosetting reaction.
  • the pressurized contents are maintained and the cooled contents are discharged, and a plurality of the reaction vessels are arranged in a circle, and the plurality of reaction vessels are rotated along the outer circumference of the circle.
  • the filling, heating, pressurizing, cooling and discharging are performed before the reaction vessel makes one round.
  • the maximum compressive strength is 60 to 200 MPa
  • the calorific value is 18 to 23 MJ / kg
  • the bulk specific gravity is about 1.4.
  • Biococks that can be used as alternative fuels can be produced.
  • filling, pressurizing, heating, cooling, and discharging can be performed continuously by rotating a plurality of reaction vessels arranged in a circle.
  • the reaction time can be easily adjusted by changing the rotation speed.
  • the heat medium supply tank it is possible to reduce the size of the heat medium supply equipment to the heating means (jacket), and the space inside the circle formed by arranging the reaction vessel in the heat medium supply tank Can be used effectively, leading to downsizing of the entire device.
  • heating medium supply tank and the refrigerant supply tank Furthermore, switching between heating and cooling is facilitated by using the heating medium supply tank and the refrigerant supply tank. Heat loss can be reduced by providing a heating part that supplies neither a heat medium nor a refrigerant between the heat medium supply tank and the refrigerant supply tank.
  • the size of the heating medium supply tank and the refrigerant supply tank can be easily changed, and the ratio of heating and cooling can be easily changed.
  • the compression means may be fixed at one place near the circle, for example, The installation cost is greatly reduced compared to the case of having one compression device for one reaction vessel.
  • FIG. 1 is a top plan view of a bio-coke production apparatus according to the present invention.
  • FIG. 2 is a side view of the bio-cox manufacturing apparatus according to the present invention.
  • FIG. 3 is a schematic view of a compression molding machine.
  • Fig. 4 is a side view around the reaction vessel.
  • FIG. 5 is a side view around the medium supply tank and the medium discharge tank.
  • FIG. 6 is a perspective view of a part of the medium supply tank and the nozzle plate.
  • FIG. 7 is an example of an AA cross-sectional view in FIG.
  • FIG. 8 is another example of a cross-sectional view taken along the line AA in FIG. 5.
  • the raw material biomass used in the bio-coke production apparatus and method according to the present invention may be any biomass material resulting from photosynthesis, and examples thereof include biomass such as woody materials, herbs, agricultural crops, and moss.
  • FIG. 1 is a top plan view of a bio-coke production apparatus according to the present invention, and FIG. It is a side view of the bio-coke manufacturing apparatus.
  • the biomass when wood waste with a bulk specific gravity of about 0.2 to 0.3 is used as the raw material biomass, the biomass is adjusted to a moisture content of 5 to 10%, and then the biomass has a particle size of 3 mm or less, preferably 0. Powdered with a mixer, etc. so that the thickness is 1 mm or less, and put into receiving hot bar 3.
  • Piomas are not suitable for heat processing because the pores are very large as they are and the heat receiving surface area is small, and it is important to grind them before putting them into the receiving hopper 3 for homogeneous processing. .
  • the biomass charged into the receiving hopper 3 is molded into cylindrical pellets having a bulk density of 0.9 to 1.0 by the compression molding machine 2 schematically shown in FIG.
  • the biomass charged into the receiving hopper 3 is sent into the cylinder 37 having the piston 33 by the screw extruders 31 and 32.
  • the raw material biomass is pushed out by the piston 33, and the pressure in the cylinder 37 is adjusted by adjusting the area of the outlet opening of the cylinder 37 by the hydraulic cylinder 35, thereby increasing the bulk density of the biomass. It is compressed to 0.9 to 1.0, cut into the required size with a cut plate provided at the outlet of the cylinder 37, and formed into a cylindrical pellet.
  • the cylinder 3 7 is provided with a hinge 3 4 so that the area of the outlet opening of the cylinder 3 7 can be adjusted by the hydraulic cylinder 3 5.
  • the biomass molded into the cylindrical pellet by the compression molding machine 2 in this manner is charged into one of the 50 reaction vessels 10 arranged in a circular shape in the compression reactor 1 by the magic hand 4. Is done.
  • the reaction vessel arranged in a circular shape rotates, passes through a heating reaction process 6 and a cooling process 7, becomes a bio-coke, and is discharged from the product discharge conveyor 5.
  • a heating reaction process 6 and a cooling process 7 will be described in detail.
  • FIG. 4 is a side view around the reaction vessel 10.
  • the biomass molded into the cylindrical pellets is charged into the reaction vessel 10 and pressurized and compressed to 8 to 25 MPa, more preferably 12 to 19 MPa by the upper hydraulic cylinder 11. .
  • the reaction vessel 10 and the upper hydraulic cylinder 11 have the above-mentioned 8 to 25 MPa, more preferably 12 to 8
  • wood waste having a small bulk specific gravity is used as the raw material biomass.
  • a biomass raw material having a large bulk specific gravity such as tea husk
  • the biomass crushed material after pulverization using the raw material charging container 13 is used.
  • the reaction vessel 10 may be filled.
  • the upper gate 16b is opened, and the biomass powder is charged into the raw material charging container 13 up to the position of the position detection sensor 14 for detecting the position of the pulverized biomass.
  • by closing the upper gate 16b and opening the lower gate 16 a certain amount of biomass pulverized material can be charged into the reaction vessel.
  • Heating in the heating reaction step 6 is performed by continuously supplying a heat medium from the medium supply pipe 21 a to the jacket 19 provided outside the reaction vessel 10 and continuously discharging the heat medium from the medium discharge pipe 22 a.
  • a heat medium from the medium supply pipe 21 a to the jacket 19 provided outside the reaction vessel 10 and continuously discharging the heat medium from the medium discharge pipe 22 a.
  • metal plates 17 and 18 having a high thermal conductivity such as silver and copper are provided at the lower part of the upper cylinder 11 and the lower part of the reaction vessel 10. Is preferred.
  • biomass is heated and pressurized under the conditions of 115 to 230 ° C and 8 to 25 MPa (more preferably 180 to 230 ° (:, 12 to 19 MPa). Adjust the rotation speed of the reaction vessel so that the heating and pressurization state is maintained at 0.2 mm to 0.4 min Zmm with respect to the inner diameter of the reaction vessel.
  • hemicellulose which is one of the main components of the biomass raw material, is thermally decomposed by heating at a temperature of 115 to 230 ° C. (more preferably 180 to 230). This is due to the fact that the lignin reacts at a low temperature while retaining its skeleton due to the generated superheated water steam and synergizes with the compaction effect to increase the hardness.
  • the reaction vessel After heating and pressure molding in the heating reaction step 6, the reaction vessel further rotates while maintaining the pressurized state of 8-25 MPa (more preferably 12-19 MPa) and moves to the cooling step 7 To do.
  • a heat insulating part that does not perform heating or cooling may be provided between the heating reaction step 6 and the cooling step 7.
  • the cooling in the cooling step 7 is performed in the same manner as in the heating reaction step 6 in the jacket 19 provided outside the reaction vessel 10 in the medium supply pipe 2 T JP2008 / 058233
  • the refrigerant is continuously supplied from 1 a, and continuously discharged from the medium discharge pipe 2 2 a to be cooled to 40 to ⁇ 50. If the cooling temperature is higher than this temperature, the adhesion effect of hemicellulose will be reduced, causing a decrease in hardness.
  • the cooling time is preferably about 30 to 60 minutes. This is because rapid cooling causes cracks and the like on the manufactured biocoque surface, which causes a decrease in hardness.
  • reaction vessel 10 After cooling in the cooling step 7, the reaction vessel 10 further rotates, moves to the position of the product discharge competitor 5, opens the lower portion of the reaction vessel 10 and is opened by the upper hydraulic cylinder 11
  • the cylindrical pellet-shaped bio-coke produced on the product discharge conveyor 5 located at the bottom of 10 is pushed out and discharged, and discharged by the product discharge conveyor 5 to the subsequent processes such as packing and shipping.
  • FIG. 5 is a side view of the periphery of the medium supply tank 21 for supplying the medium to the medium supply pipe 21a and the medium discharge tank 22 where the medium is discharged from the medium discharge pipe 22a.
  • the medium adjusted to the required temperature is sent to the medium supply tank 21 through the medium supply pipe 25.
  • the medium supply tank 21 is provided with a supply slit 23 at the top, and is located at the tip of the medium supply pipe 21a from the supply slit 23 and through a nozzle 21c provided on the nozzle plate 21b.
  • the medium is fed to the medium supply pipe 2 1 a.
  • the medium used for heating or cooling in the heating reaction process 6 or the cooling process 7 and discharged from the jacket 19 is located at the tip of the medium discharge pipe 2 2 a and the medium discharge pipe 2 2 a, and the nozzle plate 2 2 b
  • the liquid is fed to the medium discharge tank 22 provided with the supply slit 24 at the bottom through the nozzle 22 c provided above.
  • the medium sent to the medium discharge tank 22 is discharged through the medium discharge pipe 26.
  • FIG. 6 is a perspective view of a part of the medium supply tank 21 and the nozzle plate 21 b.
  • the medium supply tank 2 1 includes a heat medium supply tank 2 1 1 and a refrigerant supply tank 2 1 2, and the medium does not move between the heat medium supply tank 2 1 1 and the refrigerant supply tank 2 1 2. It is divided into The heat medium supply tank 2 1 1 and the refrigerant supply tank 2 1 2 are provided with a heat medium supply pipe 25 a and a refrigerant supply pipe 25 b, respectively, and further, a heat medium supply slit 2 3 a and 08 058233
  • the nozzle plate 2 1 b is arranged on the medium supply tank 21 configured in this way, and the tip of the medium supply pipe 2 1 a for supplying the medium to the jacket 19 of the reaction vessel 10 on the nozzle plate 2 1 b
  • the nozzle 21 1 c located in the section is provided.
  • the heating medium is supplied to the jacket 19 of the reaction vessel 10.
  • the nozzle 21 c is positioned on the refrigerant supply slit 23 b, the refrigerant is supplied to the jacket 19 of the reaction vessel 10.
  • the medium can be switched from the heating reaction step 6 to the cooling step 7 in a short time, and the medium is not directly supplied to each reaction vessel, and the medium is supplied to the medium supply tank. Therefore, it is not necessary to increase the size of the medium supply equipment.
  • the medium discharge tank 22 and the nozzle plate 2 2 b have the same configuration as the medium supply tank 21 and the nozzle plate 2 lb shown in FIG.
  • FIG. 7 is an example of an AA cross-sectional view in FIG.
  • the heat medium used for heating in the heating reaction process 6 is the medium discharge pipe 2 2 a and the heat medium discharge tank 2 2 1 provided below the heat medium discharge tank 2 2 1 and the heat medium discharge tank 2 2 1
  • the heat medium sent to the heat medium discharge tank 2 2 1 is discharged to the outside through the heat medium discharge pipe 2 6 a.
  • the refrigerant used for cooling in the cooling step 7 is transferred to the refrigerant discharge tank 2 2 2 through the medium discharge pipe 2 2 a and the refrigerant discharge slit 2 4 b provided in the lower part of the refrigerant discharge tank 2 2 2.
  • the refrigerant sent to the refrigerant discharge tank 2 2 2 is discharged to the outside through the refrigerant discharge pipe 26 a.
  • FIG. 8 is another example of the AA sectional view in FIG.
  • the heating medium discharge tank 2 2.1 and the cooling medium discharge tank 2 2 2 are the same as the example shown in FIG. 7, but immediately after switching from the heating medium supply 6a to the refrigerant supply 7b and from the refrigerant supply 7b.
  • the medium and discharge sections 8 and 9 for discharging the mixed medium are provided because the heat medium and the refrigerant are mixed.
  • the mixture of the heating medium and the refrigerant is provided in the lower part of the medium discharge pipe 2 2a and the medium mixing discharge tank 2 2 3
  • the mixed medium discharge slit 2 4 c is fed to the medium mixed discharge tank 2 2 3 and the heat medium sent to the medium mixed discharge tank 2 2 3 is discharged to the outside through the heat medium discharge pipe 2 6 b. Is issued.
  • the mixture of the heating medium and the refrigerant is in the lower part of the medium discharge pipe 2 2 a and the medium mixing discharge tank 2 2 4.
  • the heat medium sent to the medium mixing / discharging tank 2 2 4 through the medium mixing / discharging slit 24 4 d and discharged to the medium mixing / discharging tank 2 2 4 is discharged to the outside through the heat medium discharging pipe 2 6 d. Is done.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

バイオマスを原料とし、石炭コークスの代替燃料として利用可能であるバイオコークスの製造装置及び製造方法を提供する。バイオマス原料を粉砕して、反応容器に充填し、反応容器で、前記バイオマス原料中のヘミセルロースが熱分解して接着効果を発現する温度範囲まで加熱し、該加熱した状態で前記バイオマス粉砕物中のリグニンが熱硬化反応を発現する圧力範囲まで加圧して、該加圧状態を保持して冷却した内容物の排出が行い、前記反応容器複数個を円状に配置し、複数個の反応容器を、円の外周に沿って回転させながら、反応容器が1周する前に、前記充填、加熱、加圧、冷却及び排出を行う。

Description

明 細 書 バイォコ一クス製造装置及び製造方法 技術分野
本発明は、 光合成を起因とするバイオマスを原料とし、 石炭コークスの代替燃 料としても利用可能であるバイオコ一クスの製造装置及び製造方法に関する。 背景技術
近年、 大気中の二酸化炭素濃度の上昇を一因とする地球温暖化現象や、 将来的 に予測されている化石燃料の枯渴などを考慮して、 バイオマスという再生可能で クリーンなエネルギー源が注目されている。
一般にバイォマスとは、 再生可能な生物由来の有機性資源のうち化石資源を除 いたものをいい、 このバイオマスを炭化ガス化処理することで熱、 電力、 炭化物 等の有価物の回収が可能となり、 また廃棄物としてのバイオマスを処理できるの で、 環境の浄化にも役立つ。 さらに、 バイオマスは有機物であるため、 燃焼する と二酸化炭素を発生するが、 この二酸化炭素は、 バイオマスが成長過程において 光合成によって大気中から吸収した二酸化炭素に由来するの 、 大気中の二酸化 炭素を増加させていないと考えられる。 このことは力一ボンニュートラルと呼ば れている。 従って、 近年大気中の二酸化炭素濃度上昇による地球温度化の進行が 問題となっているため、 バイオマスの活用が要望されている。
一方、 昨今の中国における急速な鉄鋼需要により、 石炭コークス'のコスト力 S急 上昇し、 日本の铸物又は鉄鋼メ一力一の経営を圧迫している。 従って、 铸物製造 又は製鉄において、 石炭コ一クスの一部を代替することができる高硬度固形燃料 を開発し、 燃料コストを削減するとともに、 バイオマスのカーボンニュートラル な性質によって地球温暖化現象の一因となっている大気中の二酸化炭素濃度の増 加を抑えることが切望されている。
そこで、 バイオマスを燃料化する方法として、 例えば特許文献 1にバイオマス 水スラリーの製造方法が、 また特許文献 2には生ゴミ、 下水道汚泥等を燃料化す る方法が開示されている。
しかしながら、 特許文献 1及び 2に記載の発明は何れもバイオマスを固形燃料 化する技術ではなく、 石炭コークス代替として利用することはできない。
また、 バイオマスを固形燃料化する技術として、 特許文献 3にペレット製造技 術が開示されている。
しかしながら、 特許文献 3に開示された方法では、 製造されたペレットを石炭 コ一クス代替として使用するためには、 材料の含水量が多いため製造されたペレ ッ卜が充分な発熱量を有しておらず、 また製造されたペレツトには空隙が存在す るため、 ペレット内への空気 (酸素) の拡散が生じ、 燃焼時間が短く、 粉体バイ ォマス間の結合が無いため、 十分な硬度を有していない物である。
従って、 石炭コ一クス代替として使用することは困難である。
また、 その他のバイオマスを固形燃料化する技術としては、 原料を細片化して 炭ィ匕させる製造技術(特許文献 4)、高いエネルギー収率で木炭よりも容積エネル ギー密度及び重量エネルギー密度の高い固形燃料を製造する技術 (特許文献 5 )、 木質バイオマスエネルギー輸送特性をより高めるための半炭化圧密燃料製造技術
(特許文献 6 ) が開示されているが、 これら特許文献 4〜 6の何れの技術によつ て得られる固形燃料も、 石炭コークスに比して充分な発熱量を有しているとはい い難く、 更に硬度性能についても充分ではないため、 石炭コークス代替として使 用することは困難である。 発明の開示
本発明はかかる従来技術の問題に鑑み、 光合成を起因とするバイオマスを原料 とし、 石炭コークスの代替燃料として利用可能であるバイオコ一クスの製造装置 及び製造方法を提供することを目的とする。 ここで光合成を起因とするバイオマ スとは、 太陽光の中で、 大気中の二酸化炭素と、 根から吸い上げた水を使って光 合成を行い、 糖類、 セルロース、 リグニンなどの有機物を生成するものをいう。 上記課題を解決するため本発明においては、
光合成を起因とするバイオマス原料を粉砕する粉碎手段と、 該粉砕手段で粉砕 したバイォマス粉砕物を反応容器に充填する充填手段と、 反応容器内で加熱しな がら加圧成型してバイオコークスを製造するバイオコークス製造装置であって、 前記反応容器には、 前記バイオマス粉砕物中のへミセルロースが熱分解して接着 効果を発現する温度範囲まで加熱する加熱手段と、 該加熱した状態で前記バイオ マス粉碎物中のリグニンが熱硬ィヒ反応を発現する圧力範囲まで加圧して保持する 加圧手段と、 該加圧状態を保持後に冷却する冷却する冷却手段と、 該冷却した後 に内容物を排出する排出手段を備え、 前記反応容器を複数個設けて円状に配置す るとともに、 該円状に配置した複数の反応容器を円の外周に沿って回転させる回 転手段を有し、 前記回転手段によって前記複数個の円形に配置した反応容器を円 の外周に沿って回転させながら、 反応容器が 1周する前に、 前記充填、 加熱、 加 圧、 冷却及び排出を行うようにしたことを特徴とする。
このとき、 過剰なプロセスエネルギーを必要とせず、 バイオコ一クスを得るた めには、 加熱手段における温度条件を 1 1 5〜2 3 0 ° (:、 加圧手段における圧力 条件を 8〜2 5 M P aとすることが好ましく、加熱温度条件を 1 8 0〜2 3 0 °C、 加圧圧力条件を 1 2〜1 9 M P aとすることがさらに好ましい。 この加熱温度及 び加圧圧力条件を一定時間保持することでバイォコークスを得ることができ、 該 保持時間は例えば円柱状の筒型容器を反応容器として用いる場合、 円柱の円部分 の直径 (mm) に対して、 0 . ' 2〜0 . 4分 Zmmとすることが好ましい。 また、 前記円状に配置する反応容器の個数は特に限定されるものではなく、 生 産規模に応じて決めることができる。 さらに、 前記充填、 加熱、 加圧、 冷却時間 の調整を可能とするため、 前記回転手段による回転速度を調整できるようにして おくことが好ましい。
さらに、 前記加熱手段は、 前記反応容器外周に設けたジャケットに熱媒を流通 させることで加熱を行う手段であって、 前記反応容器を配置した円に沿ったスリ ットを有し熱媒が充填された熱媒供給槽を設け、 前記ジャケットと接続した管の 解放端を前記反応容器の回転に合わせて、 前記スリットに沿つて移動させること で、 ジャケットに熱媒が流入するようにするとともに、 前記反応容器を配置した 円に沿ったスリットを有した熱媒排出槽を設け、 前記ジャケットと接続した管の 解放端を前記反応容器の回転に合わせて、 前記スリットに沿つて移動させること で、 ジャケットから熱媒が排出するようにすることで、 ジャケットに熱媒を流通 させることを特徴とする。
前記熱媒供給槽は 1つの部材で構成されていてもよいが、 複数のプロックの組 み合わせによって構成されていることが好ましい。
さらに、 前記冷却手段は、 前記反応容器外周に設けたジャケットに冷媒を流通 させることで冷却を行う手段であって、 前記反応容器を配置した円に沿ったスリ ットを有し冷媒が充填された冷媒供給槽を設け、 前記ジャケットと接続した配管 の解放端を前記反応容器の回転に合わせて、 前記スリツトに沿って移動させるこ とで、 ジャケットに冷媒が流入するようにするとともに、 前記反応容器を配置し た円に沿ったスリットを有した冷媒排出槽を設け、 前記ジャケットと接続した管 の解放端を前記反応容器の回転に合わせて、 前記スリットに沿って移動させるこ とで、 ジャケットから冷媒が排出するようにすることで、 ジャケットに冷媒を流 通させることを特徴とする。
前記冷媒供給槽は 1つの部材で構成されていてもよいが、 複数のプロックの組 み合わせによって構成されていることが好ましい。
加熱手段として前記熱媒供給槽を用いる手段、 冷却手段として前記冷媒供給槽 を用いる手段はそれぞれ別個に利用することができるが、 両者を併せて利用する ことがさらに好ましい。
さらにまた、 前記バイオマス粉碎物を前記充填手段によって前記反応容器に投 入する前に、 予め円柱状ペレットに圧縮成型しておく圧縮手段を設けることを特 徵とする。
前記圧縮手段によってかさ密度 0 . 9〜1 . 0程度の円柱状ペレットに圧縮成 型しておくことが好ましい。
例えば木くず等のかさ密度の小さなバイオマス原料を用いる場合、 前記圧縮手 段によってあらかじめ圧縮成型してかさ密度を大きくしておくと、 前記反応容器 に充填するバイオコークス原料の容積が小さくなり、 反応容器を大型化する必要 がなくなる。
また、 前記充填手段は、 前記圧縮手段を用いて円柱状ペレットに圧縮したバイ ォマス粉砕物を前記反応容器に充填することができることに加えて、 前記圧縮手 段をバイパスしてバイオマス粉砕物を直接前記反応容器に充填することができる ようにしておくと、 ノ ィォマス原料のかさ密度に応じて前記圧縮手段を用いるか 用いないかを決定することができ、 かさ密度の小さなバイオマス原料を用いる場 合のみ前記圧縮手段を用いればいいため、 圧縮手段の稼動コストを最低限に抑え ることができる。
また、 光合成を起因とするバイオマス原料を粉砕して、 反応容器に充填し、 反 応容器内で加熱しながら加圧成型してバイオコ一クスを製造するバイオコ—クス 製造方法であって、 前記反応容器で、 前記バイオマス原料中のへミセルロースが 熱分解して接着効果を発現する温度範囲まで加熱し、 該加熱した状態で前記バイ ォマス粉碎物中のリグニンが熱硬化反応を発現する圧力範囲まで加圧して、 該加 圧状態を保持して冷却した内容物の排出が行い、 前記反応容器複数個を円状に配 置し、 複数個の反応容器を、 円の外周に沿って回転させながら、 反応容器が 1周 する前に、 前記充填、 加熱、 加圧、 冷却及び排出を行うことを特徴とする。 本発明のバイオコークス製造装置を用いることによって、 最高圧縮強度 6 0〜 2 0 0 MP a、 発熱量 1 8〜2 3 M J / k g及びかさ比重 1 . 4程度であり、 石 炭コ一クスの代替燃料として利用可能であるバイオコ一クスを製造することがで きる。
さらに、 複数個の円形に配置した反応容器を回転させることで、 充填、 加圧、 加熱、 冷却、 排出を連続して行うことができる。 また回転速度を変えることで反 応時間を容易に調整することができる。
また、 前記熱媒供給槽を用いることで加熱手段 (ジャケット) への熱媒の供給 設備を小型化することができるとともに、 熱媒供給槽を前記反応容器を配置して できる円の内側のスペースを有効活用することができ、 装置全体の小型化にも繋 がる。
さらに、 前記冷媒供給槽を用いる場合も、 前記熱媒供給槽を用いる場合と同様 の効果が得られる。
さらにまた、 前記熱媒供給槽及び前記冷媒供給槽を用いることにより、 加熱と 冷却の切り替えが容易となる。 前記熱媒供給槽及び前記冷媒供給槽の間に熱媒も 冷媒も供給しない靳熱部を設けると熱ロスを小さくすることもできる。
そして、 前記熱媒供給槽及び前記冷媒供給槽を複数のプロックで構成すると、 3
6 プロック部分の交換によつて前記熱媒供給槽及び前記冷媒供給槽の大きさを容易 に変更することができ、 加熱と冷却の割合を容易に変更することができる。
さらに圧縮手段を用いることで、 かさ密度の小さなバイォマス原料を用いる場 合にも反応容器を大型化する必要がなくなる。
また前述のように、 前記円形に配置された複数の反応容器は、 円の外周に沿つ て回転しているため、 圧縮手段は前記円近傍の 1ケ所に固定して設ければよく、 例えば反応容器 1つに対して圧縮装置 1つを有する場合と比して設置コストが大 幅に低減される。 図面の簡単な説明
第 1図は、 本発明に係るバイオコークス製造装置の上平面図である。
第 2図は、 本発明に係るバイオコ一クス製造装置の側面図である。
第 3図は、 圧縮成型機の該略図である。
第 4図は、 反応容器周辺の側面図である。
第 5図は、 媒体供給槽及び媒体排出槽周辺の側面図である。
第 6図は、 媒体供給槽及びノズル板の一部の斜視図である。
第 7図は、 図 5における A— A断面図の一例である。
第 8図は、 図 5における A— A断面図の別の一例である 発明を実施するための最良の形態
本発明に係るバイオコークス製造装置及び方法において用いる原料のバイオマ スは、 光合成に起因するバイオマス原料であればよく、 例えば木質類、 草本類、 農作物類、 厨芥類等のバイォマスを挙げることができる。
以下、 図面を参照して本発明の好適な実施例を例示的に詳しく説明する。 伹 しこの実施例に記載されている圧力、 温度、 材料の種類及び、 製造部品の種類、 形状、 その相対的配置等は特に特定的な記載がない限りは、 この発明の範囲をそ れに限定する趣旨ではなく、 単なる説明例に過ぎない。 -
【実施例 1】
図 1は、 本発明に係るバイオコークス製造装置の上平面図、 図 2は本発明に係 るバイオコークス製造装置の側面図である。
例えばかさ比重が 0 . 2〜0 . 3程度の木くずを原料のバイオマスとして用い る場合、 バイオマスを含水率 5〜1 0 %に調湿した後、 バイオマスを粒子径が 3 mm以下、 好ましくは 0 . 1 mm以下になるようにミキサー等の粉碎手段によつ て粉碎し、 受入ホツバ 3へ投入する。
パイォマスはそのままの状態では空隙が非常に大きいこと、 受熱表面積が小さ いため、 加熱加工には適さず、 均質な加工を行うために受入ホッパ 3へ投入する 前に粉碎しておくことは重要である。
受入ホッパ 3に投入されたバイオマスは、 図 3に概略図を示した圧縮成型機 2 によってかさ密度 0 . 9〜1 . 0の円柱状のペレットに成型される。
該圧縮成型機 2においては、 受入ホッパ 3に投入されたバイオマスは、 スクリ ュ一押出機 3 1及び 3 2によって、 ピストン 3 3を備えたシリンダ 3 7内に送ら れる。 シリンダ 3 7内ではピストン 3 3によって原料バイオマスを押し出すとと もに、 油圧シリンダ 3 5によってシリンダ 3 7出口開口部の面積を調節すること でシリンダ 3 7内の圧力を調整してバイオマスをかさ密度 0. 9〜1 . 0に圧縮 し、 シリンダ 3 7出口部に設けたカツ夕 3 6で必要な大きさに切断して円柱状べ レツトに成型している。
なお、 油圧シリンダ 3 5でシリンダ 3 7出口開口部の面積を調節できるように するため、 シリンダ 3 7にはヒンジ 3 4を設けている。
このようにして圧縮成型機 2で円柱状ペレツトに成型されたバイオマスは、 マ ジックハンド 4によって圧縮反応機 1に円形状に配置された 5 0個の反応容器 1 0のうちの 1つに投入される。
円形状に配置された反応容器は回転し、 加熱反応工程 6、 冷却工程 7を経て、 バイオコ一クスとなり、 製品排出コンベア 5より排出されるようになっている。 次に前記加熱反応工程 6、 冷却工程 7について詳細に説明する。
図 4は前記反応容器 1 0周辺の側面図である。 前記円柱状ペレットに成型され たバイオマスは、 反応容器 1 0内に投入され、 上部油圧シリンダ 1 1によって 8 〜2 5 MP a、 より好ましくは 1 2〜1 9 M P aに加圧'圧縮される。 反応容器 1 0及び上部油圧シリンダ 1 1は、 前記 8〜2 5 M P a、 より好ましくは 1 2〜 8
19MP aの加圧状態を保ったまま回転し、 加熱反応工程 6に移動する。
なお、 本実施例においては原料のバイォマスとしてかさ比重の小さな木くずを 用いているが、例えば茶殻などのかさ比重の大きなバイオマス原料を用いる場合、 原料投入容器 13を用いて粉砕後のバイオマス粉砕物を反応容器 10に充填すれ ばよい。 この場合、 まず上部ゲート 16 bを開けてバイオマス粉碎物を原料投入 容器 13に、 バイオマス粉砕物の位置を検出する位置検出センサ 14の位置まで 投入する。 その後上部ゲート 16 bを閉じ、 下部ゲ一ト 16を開放することで一 定量のバイオマス粉砕物を反応容器に充填することができる。
加熱反応工程 6における加熱は、 反応容器 10の外部に設けたジャケット 19 に媒体供給管 21 aより熱媒を連続的に供給し、 媒体排出管 22 aより熱媒を連 続的に排出することによって 115°C〜230°C、 より好ましくは 180〜23 0°Cに加熱する。 ここで、 ジャケット 19からの熱を反応容器内部へ伝達しやす くするため、 上部シリンダ 11の下部及び反応容器 10下部に例えば銀、 銅等の 熱伝導率の高い金属板 17、 18を設けることが好ましい。
つまり、 加熱反応工程 6では、 115〜230°C、 8〜25MPa (より好ま しくは 180〜230° (:、 12〜19MPa) の条件でバイオマスの加熱及び加 圧成型が行われており、 この加熱'加圧状態を、 反応容器の内径に対して 0. 2 〜 0. 4分 Zmm保持するように反応容器の回転速度を調整する。
前記条件で加熱 ·加圧成型を行うことにより、 高硬度かつ高発熱量を有するバ ィォコ一クスを得ることができる。 これは、 115〜230°C (より好ましくは 180〜 230 ) の温度条件で加熱を行うことにより、 バイオマス原料の主成 分の 1つであるへミセルロースが熱分解し、 反応容器 10内に発生する過熱水蒸 気によりリグニンがその骨格を保持したまま低温で反応し、 圧密効果と相乗的に 作用することによって、 より硬度が増すことに起因している。
加熱反応工程 6で加熱 ·加圧成型を行った後、 反応容器は前記 8〜25MP a (より好ましくは 12〜19MP a) の加圧状態を保ったままさらに回転し、 冷 却工程 7に移動する。 なお、 加熱反応工程 6と冷却工程 7の間に加熱又は冷却の 何れも行わない断熱部を設けてもよい。 冷却工程 7における冷却は、 前記加熱反 応工程 6と同様に、 反応容器 10の外部に設けたジャケット 19に媒体供給管 2 T JP2008/058233
9
1 aより冷媒を連続的に供給し、 媒体排出管 2 2 aより冷媒を連続的に排出する ことによって 4 0で〜 5 0 以下に冷却する。 この温度よりも冷却温度が高いと へミセルロースによる接着効果が低下し、 硬度の低下の原因となる。
また、 冷却時間は 3 0〜6 0分程度かけることが好ましい。 急速に冷却すると 製造されたバイォコ一クス表面にひび割れ等が生じ、 硬度の低下の原因となるか らである。
冷却工程 7で冷却を行った後、 反応容器 1 0はさらに回転し、 製品排出コンペ ァ 5の位置へ移動し、 反応容器 1 0の下部を開け、 上部油圧シリンダ 1 1によつ て反応容器 1 0の下部に位置する製品排出コンベア 5へ製造された円柱ペレツト 状のバイオコークスを押し出して排出し、 製品排出コンベア 5によって荷造り · 出荷等の後工程へ排出される。
次に前記加熱反応工程 6、 冷却工程 7への熱媒及び冷媒の供給及び排出につい て詳細に説明する。
図 5は前記媒体供給管 2 1 aに媒体を供給する媒体供給槽 2 1及び前記媒体排 出管 2 2 aから媒体が排出される媒体排出槽 2 2周辺の側面図である。
必要な温度に調節された媒体は媒体供給配管 2 5を通じて媒体供給槽 2 1へ送 液される。 媒体供給槽 2 1は上部に供給スリット 2 3が設けられており、 該供給 スリット 2 3から前記媒体供給管 2 1 aの先端に位置しノズル板 2 1 b上に設け たノズル 2 1 cを通じて媒体供給管 2 1 aに媒体が送液される。
一方、 加熱反応工程 6又は冷却工程 7で加熱又は冷却に使用され、 ジャケット 1 9から排出された媒体は媒体排出管 2 2 a及び媒体排出管 2 2 aの先端に位置 しノズル板 2 2 b上に設けたノズル 2 2 cを通じて下部に供給スリット 2 4が設 けられた媒体排出槽 2 2へ送液される。 該媒体排出槽 2 2へ送液された媒体は媒 体排出配管 2 6を通じて排出される。
図 6は媒体供給槽 2 1及びノズル板 2 1 bの一部の斜視図である。 媒体供給槽 2 1は熱媒供給槽 2 1 1及び冷媒供給槽 2 1 2から構成されており、 該熱媒供給 槽 2 1 1と冷媒供給槽 2 1 2の間は媒体が互いに移動しないように仕切られてい る。 また熱媒供給槽 2 1 1及び冷媒供給槽 2 1 2にはそれぞれ熱媒供給配管 2 5 a及び冷媒供給配管 2 5 bが設けられており、 さらに熱媒供給スリット 2 3 a及 08 058233
10 び冷媒供給スリット 2 3 bがそれぞれ設けられている。
このように構成された媒体供給槽 2 1上にノズル板 2 1 bを配置し、 ノズル板 2 1 bには反応容器 1 0のジャケット 1 9に媒体を供給する媒体供給管 2 1 aの 先端部に位置するノズル 2 1 cが設けられている。
ノズル板 2 1 bが反応容器 1 0の回転に合わせて回転し、 前記ノズル 2 1じが 熱媒供給スリット 2 3 a上に位置するときには反応容器 1 0のジャケット 1 9へ 熱媒が供給され、 前記ノズル 2 1 cが冷媒供給スリット 2 3 b上に位置するとき は、 反応容器 1 0のジャケット 1 9へ冷媒が供給される。
このように熱媒及び冷媒の供給することで、 加熱反応工程 6から冷却工程 7へ の媒体の切り替えを短時間で行うことができるとともに、 反応容器毎に直接媒体 を供給せず媒体供給槽にのみ媒体を供給すればいいため、 媒体供給設備を大型化 する必要がない。
なお、 媒体排出槽 2 2及びノズル板 2 2 bに関しても、 前記図 6に示した媒体 供給槽 2 1及びノズル板 2 l bと同じ構成である。
図 7は図 5における A— A断面図の一例である。 加熱反応工程 6で加熱のため に使用された熱媒は媒体排出管 2 2 a及び熱媒排出槽 2 2 1の下部の設けられた 熱媒排出スリット 2 4 aを通じて熱媒排出槽 2 2 1へ送液され、 該熱媒排出槽 2 2 1へ送液された熱媒は熱媒排出配管 2 6 aにより外部へ排出される。
同様に、 冷却工程 7で冷却のために使用された冷媒は媒体排出管 2 2 a及び冷 媒排出槽 2 2 2の下部に設けられた冷媒排出スリット 2 4 bを通じて冷媒排出槽 2 2 2へ送液され、 該冷媒排出槽 2 2 2へ送液された冷媒は冷媒排出配管 2 6 a により外部へ排出される。
図 8は図 5における A— A断面図の別の一例である。 熱媒排出槽 2 2.1及び冷 媒排出槽 2 2 2は前記図 7に示した例と同様であるが、 熱媒供給 6 aから冷媒供 給 7 bへの切り替え直後及び冷媒供給 7 bから熱媒供給 6 aへの直後には熱媒と 冷媒が混合するため、 混合した媒体を排出する媒体混合排出区間 8、 9を設けて いる。
熱媒供給 6 aから冷媒供給 7 bへの切り替え直後の媒体混合排出区間 9では、 熱媒と冷媒の混合物は媒体排出管 2 2 a及び媒体混合排出槽 2 2 3の下部の設け 3
11 られた媒体混合排出スリット 2 4 cを通じて媒体混合排出槽 2 2 3へ送液され、 該媒体混合排出槽 2 2 3へ送液された熱媒は熱媒排出配管 2 6 bにより外部へ排 出される。
同様に、 冷媒供給 7 bから熱媒供給 6 aへの切り替え直後の媒体混合排出区間 8では、 熱媒と冷媒の混合物は媒体排出管 2 2 a及び媒体混合排出槽 2 2 4の下 部の設けられた媒体混合排出スリット 2 4 dを通じて媒体混合排出槽 2 2 4へ送 液され、 該媒体混合排出槽 2 2 4へ送液された熱媒は熱媒排出配管 2 6 dにより 外部へ排出される。
熱媒と冷媒に同じ物質 (例えばシリコンオイル) を用いる場合、 図 7に示した ような構成が好ましく、熱媒と冷媒に異なる物質 (例えば熱媒にシリコンオイル、 冷媒に水) を用いる場合、 図 8に示したような構成が好ましい。 産業上の利用可能性
本発明により、 石炭コ一クス代替燃料となるバイオコークスを製造する装置及 びその方法として好適に利用することができる。

Claims

請 求 の 範 囲
1 . 光合成を起因とするバイオマス原料を粉砕する粉碎手段と、 該粉砕手段で 粉砕したバイオマス粉碎物を反応容器に充填する充填手段と、 反応容器内で加熱 しながら加圧成型してバイオコークスを製造するバイオコ一クス製造装置であつ て、
前記反応容器には、 前記バイオマス粉碎物中のへミセルロースが熱分解して接 着効果を発現する温度範囲まで加熱する加熱手段と、 該加熱した状態で前記バイ ォマス粉碎物中のリグニンが熱硬化反応を発現する圧力範囲まで加圧して保持す る加圧手段と、 該加圧状態を保持後に冷却する冷却する冷却手段と、 該冷却した 後に内容物を排出する排出手段を備え、
前記反応容器を複数個設けて円状に配置するとともに、 該円状に配置した複数 の反応容器を円の外周に沿って回転させる回転手段を有し、
前記回転手段によって前記複数個の円形に配置した反応容器を円の外周に沿つ て回転させながら、 反応容器が 1周する前に、 前記充填、 加熱、 加圧、 冷却及び 排出を行うようにしたことを特徴とするバイオコークス製造装置。
2 . 前記加熱手段は、 前記反応容器外周に設けたジャケットに熱媒を流通させ ることで加熱を行う手段であって、
前記反応容器を配置した円に沿ったスリットを有し熱媒が充填された熱媒供給 槽を設け、 前記ジャケッ卜と接続した管の解放端を前記反応容器の回転に合わせ て、 前記スリットに沿って移動させることで、 ジャケットに熱媒が流入するよう にするとともに、
前記反応容器を配置した円に沿ったスリツトを有した熱媒排出槽を設け、 前記 ジャケットと接続した管の解放端を前記反応容器の回転に合わせて、 前記スリッ トに沿って移動させることで、ジャケットから熱媒が排出するようにすることで、 ジャケットに熱媒を流通させることを特徴とする請求項 1記載のバイオコークス 製造装置。
3 . 前記冷却手段は、 前記反応容器外周に設けたジャケットに冷媒を流通させ ることで冷却を行う手段であって、 前記反応容器を配置した円に沿ったスリットを有し冷媒が充填された冷媒供給 槽を設け、 前記ジャケットと接続した配管の解放端を前記反応容器の回転に合わ せて、 前記スリットに沿って移動させることで、 ジャケットに冷媒が流入するよ うにするとともに、
前記反応容器を配置した円に沿ったスリットを有した冷媒排出槽を設け、 前記 ジャケットと接続した管の解放端を前記反応容器の回転に合わせて、 前記スリッ トに沿って移動させることで、ジャケットから冷媒が排出するようにすることで、 ジャケットに冷媒を流通させることを特徴とする請求項 1又は 2記載のバイォコ ークス製造装置。
4. 前記バイオマス粉砕物を前記充填手段によって前記反応容器に投入する前 に、 予め円柱状ペレットに圧縮成型しておく圧縮手段を設げることを特徴とする 請求項 1〜 3何れかに記載のバイオコ一クス製造装置。 ,
5 . 光合成を起因とするバイオマス原料を粉碎して、 反応容器に充填し、 反応 容器内で加熱しながら加圧成型してバイオコ一クスを製造するバイオコークス製 造方法であって、
前記反応容器で、 前記バイオマス原料中のへミセルロースが熱分解して接着効 果を発現する温度範囲まで加熱し、 該加熱した状態で前記バイオマス粉碎物中の リグニンが熱硬化反応を発現する圧力範囲まで加圧して、 該加圧状態を保持して 冷却した内容物の排出が行い、
前記反応容器複数個を円状に配置し、 複数個の反応容器を、 円の外周に沿って 回転させながら、 反応容器が 1周する前に、 前記充填、 加熱、 加圧、 冷却及び排 出を行うことを特徴とするバイオコークス製造方法。
PCT/JP2008/058233 2007-04-27 2008-04-22 バイオコークス製造装置及び製造方法 WO2008136477A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-119274 2007-04-27
JP2007119274A JP2008274114A (ja) 2007-04-27 2007-04-27 バイオコークス製造装置及び製造方法

Publications (1)

Publication Number Publication Date
WO2008136477A1 true WO2008136477A1 (ja) 2008-11-13

Family

ID=39943584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/058233 WO2008136477A1 (ja) 2007-04-27 2008-04-22 バイオコークス製造装置及び製造方法

Country Status (2)

Country Link
JP (1) JP2008274114A (ja)
WO (1) WO2008136477A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017175733A1 (ja) * 2016-04-06 2017-10-12 宇部興産株式会社 バイオマス固体燃料
US11390822B2 (en) 2014-10-07 2022-07-19 Ube Industries, Ltd. Biomass solid fuel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113679A1 (ja) * 2009-03-31 2010-10-07 学校法人近畿大学 バイオコークス製造方法及び製造装置
JP2010100810A (ja) * 2008-10-27 2010-05-06 Kinki Univ バイオコークス製造方法及び製造装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000102896A (ja) * 1998-09-30 2000-04-11 Kurimoto Ltd 廃棄物の圧縮及び固形燃料化

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000102896A (ja) * 1998-09-30 2000-04-11 Kurimoto Ltd 廃棄物の圧縮及び固形燃料化

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MIZUNO S. ET AL.: "Kogosei ni Kiin suru Sekitan Coke Daitai Kano na Bio Coke no Keisei", DAI 44 KAI PROCEEDINGS OF THE JAPANESE SYMPOSIUM ON COMBUSTION, 2006, pages 294 - 295 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11390822B2 (en) 2014-10-07 2022-07-19 Ube Industries, Ltd. Biomass solid fuel
WO2017175733A1 (ja) * 2016-04-06 2017-10-12 宇部興産株式会社 バイオマス固体燃料
KR20180133444A (ko) * 2016-04-06 2018-12-14 우베 고산 가부시키가이샤 바이오매스 고체 연료
JPWO2017175733A1 (ja) * 2016-04-06 2019-01-10 宇部興産株式会社 バイオマス固体燃料
JP2019123879A (ja) * 2016-04-06 2019-07-25 宇部興産株式会社 バイオマス固体燃料
AU2017247418B2 (en) * 2016-04-06 2019-12-19 Mitsubishi Ube Cement Corporation Biomass solid fuel
RU2746855C2 (ru) * 2016-04-06 2021-04-21 УБЭ Индастриз, Лтд. Твердое топливо из биомассы
JP7003950B2 (ja) 2016-04-06 2022-01-21 宇部興産株式会社 バイオマス固体燃料
JP2022017460A (ja) * 2016-04-06 2022-01-25 宇部興産株式会社 バイオマス固体燃料
US11390823B2 (en) 2016-04-06 2022-07-19 Ube Industries, Ltd. Biomass solid fuel
KR102431476B1 (ko) 2016-04-06 2022-08-12 우베 가부시키가이샤 바이오매스 고체 연료
JP7267382B2 (ja) 2016-04-06 2023-05-01 Ube三菱セメント株式会社 バイオマス固体燃料

Also Published As

Publication number Publication date
JP2008274114A (ja) 2008-11-13

Similar Documents

Publication Publication Date Title
Chou et al. Preparation and characterization of solid biomass fuel made from rice straw and rice bran
WO2008136476A1 (ja) バイオコークス製造装置及び製造方法
Chou et al. The optimum conditions for preparing solid fuel briquette of rice straw by a piston-mold process using the Taguchi method
Panwar et al. Biomass residue briquetting and characterization
JP5216963B2 (ja) バイオコークス製造装置及びその制御方法、並びに製造方法
CN102015977B (zh) 生物炭生产设备及用于生产生物炭的工艺
Song et al. Ultrasonic pelleting of torrefied lignocellulosic biomass for bioenergy production
JP2015229751A (ja) 植物系バイオマス固形燃料及びその製造方法
WO2008136477A1 (ja) バイオコークス製造装置及び製造方法
JP2010100814A (ja) バイオコークスの破断装置
CN101747919B (zh) 生物质延迟焦化处理的蒸汽除焦方法与装置
JP2009185183A (ja) バイオコークス製造装置
JP2008274110A (ja) バイオコークス製造方法及びその装置
Sui Lam et al. Pretreatment and pelletization of woody biomass
KR101745409B1 (ko) 저열량 선탄경석과 이종소재를 결합한 연료 제조방법
JP3219241U (ja) 竹活性炭製造装置
JP2018053101A (ja) バイオマス燃料製造方法及びバイオマス燃料製造装置
JP2008274111A (ja) バイオコークスの製造方法及びその製造物
Camacho et al. Valorisation of by-products/waste of agro-food industry by the pyrolysis process
Sithole et al. A review of the combined torrefaction and densification technology as a source of renewable energy
KR20170072786A (ko) 저열량 선탄경석과 이종소재를 결합한 연료 제조방법
CN109536229A (zh) 一种高热值复合生物质燃料及其制备方法
KR20150029970A (ko) 탈수공정 도입을 통한 에너지 절약용 개량형 석탄화 기술로써 공정개발 및 그 장치의 조합
JP2008274109A (ja) バイオコークス製造装置
Bhosale et al. Densification of Biomass-Briquetting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08740918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08740918

Country of ref document: EP

Kind code of ref document: A1