JP3219241U - 竹活性炭製造装置 - Google Patents

竹活性炭製造装置 Download PDF

Info

Publication number
JP3219241U
JP3219241U JP2018003757U JP2018003757U JP3219241U JP 3219241 U JP3219241 U JP 3219241U JP 2018003757 U JP2018003757 U JP 2018003757U JP 2018003757 U JP2018003757 U JP 2018003757U JP 3219241 U JP3219241 U JP 3219241U
Authority
JP
Japan
Prior art keywords
bamboo
activated carbon
unit
cylinder
discharge pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2018003757U
Other languages
English (en)
Inventor
法義 金藏
法義 金藏
堀井 清之
清之 堀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forest Power Japan
Original Assignee
Forest Power Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forest Power Japan filed Critical Forest Power Japan
Priority to JP2018003757U priority Critical patent/JP3219241U/ja
Application granted granted Critical
Publication of JP3219241U publication Critical patent/JP3219241U/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

【課題】竹を原材料として有効利用して、活性炭の生成効率を向上させ、活性炭の粒径制御を容易として活性炭を製造することができる竹活性炭製造装置を提供する。【解決手段】本考案の竹活性炭製造装置は、原料の竹チップとリグニン成分から竹炭化物を生成する竹炭化部40と、竹炭化部40で生成した竹炭化物を取り込み、ガス賦活処理を施し、顆粒状の竹活性炭を生成する回転型賦活炉50を備える。竹炭化部40は、投入部11及び取出部12を有するシリンダ10と、スクリュー20とを有する2軸のエクストルーダーを備え、調温部13と、水分排出用圧力調整部14と、ガス排出用圧力調整部15と、液体分離器16と、スクリュー20によって、投入物である竹を微粒化するせん断部21と、せん断部21で微粒化された竹を圧縮する圧縮部22を含む。【選択図】図1

Description

本考案は、顆粒状の竹活性炭を製造する竹活性炭製造装置に関する。
バイオマス(再生可能な、生物由来の有機性資源で化石資源を除いたもの)などの有機物は、高い燃焼熱を持つことから古くからエネルギーに利用されるとともに、軽量で高強度のセルロースなどを含むことから成形材料としても活用されてきた。
バイオマスは、元々大気からの二酸化炭素を取り込んで生成したものであるため、燃焼させた場合でも、化石燃料を燃やした場合と異なり、大気中の二酸化炭素濃度を増減させないカーボンニュートラルな資源である。このため、現在、このようなカーボンニュートラルなバイオマスをエネルギーとして利用する研究が進められている。
このような試みの中で、本出願人によって、有機物をエネルギー利用の観点から、ガス成分、タール成分、炭化物成分を十分に分離できる熱分解型の装置が提案されている(例えば、特許文献1)。
特開2016−94590号公報
特許文献1には、高温の燃焼ガスを発生させる燃焼炉と、間接加熱により有機物を発生ガスと炭化物に分離する熱分解炉と、炭化物に高温の燃焼ガスを導く活性炭賦活炉により、ガス成分から活性炭までを得る技術が開示されている。
しかし、粒径の大きい粒状の活性炭を得ることはできるが、活性炭の生成効率や粒径の制御の点でさらに改善すべき余地があり、特に炭化度が均一でないことから壊れやすく、その結果、均質な活性炭が得られにくいという問題点があった。また、エネルギー効率をさらに向上させるための工夫が必要である等の課題があった。
一方、生物由来の有機性資源として、竹を利用することが考えられる。竹は、地上植物の中でも成長力の早く、年ごとに筍サイズから約20m程度の高さに成長する循環性資源である。里山を覆いつくす荒廃竹林の竹を原料として活性炭製造をすることができると地域活性化にもつながる。
本出願人の創案による特許文献1の技術では、有機物として木材チップ、農業残渣物、食品残渣物を主原料として考慮していたが、前記のとおりの竹を原料とすることについては詳細な検討が行われていない。
本考案は、このような事情からなされたものであって、特許文献1の技術を抜本的に改善、改良して、活性炭の生成効率やエネルギー効率の向上を図り、粒径の制御を容易として、竹を原材料として有効利用して生成効率を高めて均質な活性炭を製造することができる竹活性炭製造装置を提供することを課題とする。
上記課題を解決するため、本考案の竹活性炭製造装置は、投入物として竹とリグニン成分を投入する投入部、及び前記竹の炭化物を取り出す取出部を有するシリンダと、前記シリンダの内部で軸回転し、前記竹を前記投入部から前記取出部に向かって押し出すスクリューとを有する2軸のエクストルーダーを備えた竹炭化部と、前記竹炭化部の前記取出部の下流に直結され、前記竹炭化部の前記取出部から取り出された前記竹の炭化物を取り込み、ガス賦活処理を行い顆粒状の活性炭を生成する回転型賦活炉を有することを特徴とする。
また、上記において、前記竹炭化部では、前記シリンダ内の前記竹とリグニン成分を、設定温度に調温する調温部と、前記シリンダ内の前記竹が含有する過剰水分を、設定圧力によって取り出す水分排出用圧力調整部と、前記シリンダ内の前記竹が熱分解し発熱する熱分解ガスを、設定圧力によって取り出すガス排出用圧力調整部と、前記ガス排出用圧力調整部で取り出された前記熱分解ガスを冷却して得られる液体を分離する液体分離器を備え、前記シリンダ内には、前記スクリューによって、前記竹を微粒子化するせん断部と、前記せん断部で微粒子化された前記竹を圧縮する圧縮部が形成され、前記取出部では、前記竹から前記過剰水分及び前記熱分解ガスが取り出された竹炭化物が排出されることが好ましい。
本考案によれば、上記構成を採用したので、熱分解におけるエネルギー効率を上げるとともに、竹を有効利用して、良好な生成効率で均質な顆粒状(ペレット状などの)竹活性炭を製造することのできる技術が提供される。
より詳しくは、本考案の製造装置においては、
(1)炭化プロセスにおいて、均質な炭化が可能になる。その結果、品質の高い、壊れにくい原料炭が製造可能になり、その結果、粒径の揃った均質な顆粒状(ペレット状などの)活性炭が製造される。
その理由は、次のとおりである。
[a]原材料が竹という均質的な素材であること、そしてリグニンク成分を併用していること。
[b]しかし、均質な素材とは言え、竹の筒と節部分という密度の違う原料が混在している。密度の違いによる不均一は、2軸エクストルーダーにより混錬が充分なされ、均質度が担保される。
[c]さらに、2軸エクストルーダーによって回転している混錬物質に、2軸エクストルーダーの外部より熱が均一に供給されることにより、充分な炭化度が保障される。
[d]その結果、均質の、破砕されにくい、しかも、高品質の活性炭になる原料である炭の製造が可能になる。。
(2)粒状にするためのバインダーが必要なくなる。
(3)炭化プロセスの前処理としての破砕が必要なくなる。
これらのことから、品質の高度化、製造の利便性を高めることができる。
既存の炭化技術、パームやし殻の炭化工程、ならびに、木質系活性炭の炭素化工程においては、おが屑や木片を原料として炉で炭素化する。おが屑を炭素化する場合はロストルの間に廃材を敷いて着火し、燃焼し始めたらおが屑を上からかぶせていく。炭素化が進んだところでさらにおが屑を層状に投入し、これを繰り返していく。
このような平炉方式が従来では多く採用されているため、炭化にばらつきが生じる。その結果、均質な炭の製造は困難になる。本考案はこのような従来の欠点を抜本的に解消する。そして、本考案の装置では、原料としての竹とともにリグニング成分を併用することになる。二軸のエクストルーダーを利用しての顆粒状活性炭もできる。植物バイオマスのヘミセルロース、セルロース、リグニンの熱分解には、反応温度領域、並びに、反応速度に違いがあり、その違いを利用して顆粒状の炭を製造し、その炭を賦活させ、顆粒状活性炭を製造することがでかることが明らかになった。
具体的なリグニンの添加量については、顆粒活性炭のバインダー機能を維持するためのミニマム・リグニン量を特定することが必要になる。このミニマム・リグニン量は、炭製造工程でのリグニング分解量、さらには、賦活プロセスでのリグニン分解量を考慮することにより推定できる。
また、活性炭製造の賦活工程において、顆粒状炭の内部まで熱移動が起こり、顆粒炭の表面も内部も等しくリグニンが減少する。
前記リグニン成分の使用は、二軸エクストルーダーを利用しての竹炭化部において、ペレット状等の顆粒状の炭化物の生成に有効に作用する。バインダーとしての役割を果たすことになる。これにより活性炭の生成工程での顆粒状物の生成が実現される。
リグニン成分としては、市販の化学品リグニンであってもよいし、バイオマス処理工程からの粗精製品でもよい。このバイオマス処理工程の条件、状況によっては木質の素材、半処理品とすることも考慮される。
竹原料、そして二軸エクストルーダーとリグニン成分という新規な特徴によって、均質な炭化物をもって、本考案において良質な活性炭が製造されることになる。
本考案によって、里山を覆いつくす竹林の竹を有効利用することができ、地球環境に負荷をかけず、地域の活性化を図ることができる。
本考案に係る竹活性炭製造装置の実施形態を示す概略図である。 上記実施形態による竹活性炭の製造フローを示す図である。
以下、本考案の竹活性炭製造装置の実施形態を図面に基づいて説明する。
図1に示すように本実施形態に係る竹活性炭製造装置は、2軸のエクストルーダーを構成する、シリンダ10と、このシリンダ10の内部で軸回転し竹を上流から下流に送る一対のスクリュー20と、このスクリュー20を軸回転させる駆動手段30から構成される竹炭化部40と、竹炭化部40で生成された竹の炭化物を取り込み、賦活処理を行い顆粒状の竹活性炭を生成する賦活炉50を備えている。
シリンダ10は、投入物として例えばチップ状の竹とリグニン成分とを投入する投入部11と前記竹の炭化物を取り出す取出部12とを有する。
シリンダ10の外周にはシリンダ10内の竹を設定温度に調温する調温部13を備えている。調温部13は加熱手段を備えている。
また、シリンダ10には、水分排出用圧力調整部14とガス排出用圧力調整部15と液体分離器16を設けている。
水分排出用圧力調整部14は、シリンダ10内の竹が含有する過剰水分を、設定圧力によってシリンダ10外に取り出す。本実施形態では、水分排出用圧力調整部14として第1水分排出用圧力調整部14Aと第2水分排出用圧力調整部14Bを備えており、第1水分排出用圧力調整部14Aは第2水分排出用圧力調整部14Bより上流に配置している。
ガス排出用圧力調整部15は、シリンダ10内の投入物が熱分解し発生する熱分解ガスを、設定圧力によってシリンダ10外に取り出す。本実施形態では、ガス排出用圧力調整部15として第1ガス排出用圧力調整部15Aと第2ガス排出用圧力調整部15Bと第3ガス排出用圧力調整部15Cとを備えており、第1ガス排出用圧力調整部15Aは第2ガス排出用圧力調整部15Bより上流に配置し、第2ガス排出用圧力調整部15Bは第3ガス排出用圧力調整部15Cより上流に配置している。
液体分離器16は、ガス排出用圧力調整部15で取り出された熱分解ガスを冷却し、冷却して得られる液体を分離する。本実施形態では、液体分離器16として第1液体分離器16Aと第2液体分離器16Bと第3液体分離器16Cを備えており、第1液体分離器16Aは、第1ガス排出用圧力調整部15Aで取り出された熱分解ガスを冷却し、第2液体分離器16Bは、第2ガス排出用圧力調整部15Bで取り出された熱分解ガスを冷却し、第3液体分離器16Cは、第3ガス排出用圧力調整部15Cで取り出された熱分解ガスを冷却する。
圧入手段17は、200℃以上の過熱水蒸気及び/又は120℃以上の加圧熱水をシリンダ10外からシリンダ10内に投入する。本実施形態では、圧入手段17として第1圧入手段17Aと第2圧入手段12Bと第3圧入手段17Cとを備えており、第1圧入手段17Aは第2圧入手段17Bより上流に配置し、第2圧入手段17Bは第3圧入手段13Cより上流に配置している。なお、圧入手段17には、図示を省略するが、加圧熱水や過熱水蒸気を送り込む手段が接続される。
シリンダ10内には、一対のスクリュー20によって、竹を微粒化するせん断部21と、せん断部21で微粒化された竹を圧縮する圧縮部22とが形成されている。せん断部21では、例えばスクリュー20の羽根にカッター機能を備えている。圧縮部22では、例えばスクリュー20の羽根による押し出し速度を異ならせることにより圧縮機能を備えている。
本実施形態では、せん断部21として第1せん断部21Aと第2せん断部21Bを備えており、第1せん断部21Aは第2せん断部21Bより上流に配置している。
また、本実施の形態では、圧縮部22として第1圧縮部22Aと第2圧縮部22Bと第3圧縮部22Cとを備えており、第1圧縮部22Aは第2圧縮部22Bより上流に配置し、第2圧縮部22Bは第3圧縮部22Cより上流に配置している。
駆動手段30は、スクリュー20の一端に接続し、スクリュー20を軸回転させる動力源である。なお、スクリュー20は、2軸エクストルーダーとして、二本のスクリュー20が並列して構成される。
2軸エクトスルーダーは、1軸エクストルーダーに比較して、原料の粉砕、混合、混練、加熱、溶融等において優れているため、質の高い活性炭を製造することが可能になる。
すなわち、炭化プロセスにおいて、優れた粉砕、混合、混練プロセスにより、材料の均質化がはかられ、バレルから与えられる熱と混練の相乗効果により、熱が材料に均一に与えられ、その結果、どの部分をとっても炭化度にバラツキのない均質な炭化が可能になる。すなわち、原材料の100%の炭化度が保障される。
さらには、エクストルーダーの出口において、回転カッターにより高活性炭を細粒化するが、均質に炭化されているため壊れにくく、粒径の揃った均質な炭粒子ができる。この炭粒子を活性炭製造プロセスに直接投入することが可能となる。その結果、既存技術で必要な粒状にするためのバインダーが必要なくなる。さらには、炭化プロセスの前処理としての破砕が必要なくなるなどの利点が挙げられる。よって、混在物のない均質な高品質の活性炭の製造が可能になる。
並列配置される一対の2本のスクリューは、駆動手段30の歯車機構により、同方向または対抗方向に回転させることができる。スクリュー同方向回転型は、より好ましく、互いのスクリューがその表面を掻き取る自浄作用を確保できる。また、スクリュー噛み合い部で原料にかかる圧力の振れ幅が小さくなる。よって、定量性、定質性が担保される。
竹チップが原料としてリグニン成分とともに投入されると、この原料は、シリンダ10の内部で軸回転するスクリュー20により、上流の投入部11から下流の取出部12に送られることになる。
調温部13は、投入部11から取出部12までのシリンダ10の各部に配置され、それぞれの調温部13は、目的とする反応に応じた設定温度とすることができる。
例えば、第1調温部13Aは、第1水分排出用圧力調整部14Aより上流で、第1せん断部21Aに対応して配置している。第2調温部13Bは、第2水分排出用圧力調整部14Bより上流で、第2せん断部21Bに対応して配置している。第3調温部13Cは、第1ガス排出用圧力調整部15Aより上流で、第1圧縮部22Aに対応して配置している。第4調温部13Dは、第2ガス排出用圧力調整部15Bより上流で、第2圧縮部22Bに対応して配置している。第5調温部13Eは、第3ガス排出用圧力調整部15C及び第3圧縮部22Cより上流に配置している。第6調温部13Fは、第3ガス排出用圧力調整部15Cより上流で、第3圧縮部22Cに対応して配置している。
第1せん断部21Aは、第1水分排出用圧力調整部14Aの上流に設けられ、第2せん断部21Bは、第2水分排出用圧力調整部14Bの上流に設けられる。
圧縮部22は、水分排出用圧力調整部14の下流に設けられる。
ガス排出用圧力調整部15は圧縮部22の区間に設けられる。すなわち、第1ガス排出用圧力調整部15Aと第2ガス排出用圧力調整部15Bと第3ガス排出用圧力調整部15Cとは、第1圧縮部22Aから第3圧縮部22Cまでの区間に設けられる。本実施の形態では、第1ガス排出用圧力調整部15Aは第1圧縮部22Aに、第3ガス排出用圧力調整部15Cは第3圧縮部22Cに設けている。
このように、投入部11から投入された竹は、せん断部21により微粒化されるとともに、調温部13により調温され、水分排出用圧力調整部14において、設定圧力により過剰水分がシリンダ10内部から取り出される。水分排出用圧力調整部14が複数設けられる場合、例えば本実施形態のように、第1水分排出用圧力調整部14Aと第2水分排出用圧力調整部14Bとが設けられる場合、上流の第1水分排出用圧力調整部14Aの設定圧力を第2水分排出用圧力調整部14Bより高圧に設定することにより、過剰水分の取出しの熱効率を上げることができる。
過剰水分が取り出され微粒化した竹は、圧縮部22において設定温度により熱分解する。圧縮部22における設定温度は、600℃以上にすることができる。この温度設定において、熱分解ガスの発生が極大となることが知られている。熱分解したガス及び気化物は、ガス排出用圧力調整部15において、設定圧力によりシリンダ10内部から取り出される。取り出された熱分解ガス等は、液体分離器16により冷却され液体が取り出される。
圧縮部22及びガス排出用圧力調整部15が複数設けられる場合、上流の区間の設定温度を低くすることにより、液体分離器16に置いて取り出される低粘度の液体の割合を大きくすることができる。
すなわち、本実施形態では、第3調温部13Cでは第4調温部13Dより設定温度を低くし、第4調温部13Dでは第5調温部13Eより設定温度を低くし、第5調温部13Eでは第6調温部13Fより設定温度を低くすることで、第1圧縮部22Aを第2圧縮部22Bより設定温度を低くし、第2圧縮部22Bを第3圧縮部22Cより設定温度を低くする。
このように、圧縮部22における投入物の温度を効率的に設定温度にすることができるとともに、その反応性を向上させることができる。
圧縮部22の設定温度を600℃以上にすると、ガス排出用圧力調整部15からは、常温で気体であるガスが効率的に取り出される。
取出部12では、原料である竹から過剰水分及び熱分解ガスが取り出された竹炭化物が排出される。
ガス排出用圧力調整部15は、シリンダ10に着脱可能な管15xを有し、管15xは、シリンダ10の内部と接する面に焼結金属を有する。管15xは、バルブ15yにより圧力設定され、液体分離器16の螺旋状パイプ(図示せず)に連通する。図示しないが、液体分離器16は、螺旋状パイプと、螺旋状パイプを冷却する冷却手段と、液体を取り出す液体取出手段と、ガスを取り出すガス取出手段とを備える。
なお、焼結金属は、シリンダ内部と接するフィルターの役割を果たすものであり、焼結金属がメンテナンス上好ましいが、他の形態をとることもできる。また、螺旋状パイプも取り出されたガスを効率的に冷やすためのものであり、他の形態をとることもできる。
このように、シリンダ10内部に投入された竹を原料として有効利用して、生成効率や粒径の制御を図り、連続的かつ効率的に反応を制御し、エネルギーとして利用可能なガス、燃料として利用可能な液体、竹炭化物を連続的に取り出すことができる。
竹炭化部40の取出部12に直結された回転型賦活炉50では、竹炭化部40から竹炭化物を取り込み、賦活処理を行い、竹活性炭を生成する。
賦活処理は、ガス賦活法を用いる。ガス賦活法は、ガス賦活剤を用いて高温で賦活処理をして活性炭を得る方法である。ガス賦活剤としては、例えば水蒸気や二酸化炭素を用いることができる。賦活温度としては750〜1000℃が好ましい。この賦活処理により、竹炭化物は内部にnmのオーダーの多数の微細孔が形成され、内部表面積が増大し、吸着能力が付与される。賦活炉50においては、例えば進行方向に向って前傾配置されたシリンダ51が駆動手段52により回転される。シリンダ51には賦活用ガス53が導入される。生成された活性炭54が取出される。
図2は、本実施形態に係る竹活性炭製造装置による活性炭製造を説明するフローチャートである。投入物として竹(例えば竹チップ)が投入部11から投入される(投入ステップ1)。
投入ステップ1で投入された竹は、せん断部21において微粒化される(せん断ステップ2)。
投入ステップ1で投入された竹は、調温部13により所定温度(200℃以上とすることが好ましい)に調温され、竹に含まれる過剰水分が水分排出用圧力調整部14によってシリンダ10から取り出される(調湿ステップ3)。
調湿ステップ3の後に、圧入手段17によって120℃以上300℃以下の加圧熱水を投入する(圧入ステップ4)
圧入ステップ4の後に、更に投入物を設定温度(230℃以上とすることが好ましい)に加熱することで熱分解ガスを発生させる(熱分解ステップ5)。
熱分解ステップ5で発生させた熱分解ガスは、ガス排出用圧力調整部15によってシリンダ10から設定圧力(1Mpa以上とすることが好ましい)により取り出される(ガス回収ステップ6)。
ガス回収ステップ6で取り出した熱分解ガスは、液体分離器16で冷却され、冷却によって得られる液体を分離する(液体回収ステップ7)。
ガス回収ステップ6で竹から熱分解ガスを取り出した後の竹炭化物は、取出部12から取り出される(竹炭化物取出ステップ8)。
取り出された竹炭化物は、賦活炉50で賦活処理され、顆粒状の竹活性炭が製造される(賦活処理ステップ9)
本考案によれば、密閉容器を利用したバッチ式の反応装置を用いて竹炭化物を生成し、さらに賦活処理することもできる。
10 シリンダ
11 投入部
12 取出部
13 調温部
13A 第1調温部
13B 第2調温部
13C 第3調温部
13D 第4調温部
13E 第5調温部
13F 第6調温部
14 水分排出用圧力調整部
14A 第1水分排出用圧力調整部
14B 第2水分排出用圧力調整部
15 ガス排出用圧力調整部
15A 第1ガス排出用圧力調整部
15B 第2ガス排出用圧力調整部
15C 第3ガス排出用圧力調整部
15x 管
15y バルブ
16 液体分離器
16A 第1液体分離器
16B 第2液体分離器
16C 第3液体分離器
17 圧入手段
17A 第1圧入手段
17B 第2圧入手段
17C 第3圧入手段
20 スクリュー
21 せん断部
21A 第1せん断部
21B 第2せん断部
22 圧縮部
22A 第1圧縮部
22B 第2圧縮部
22C 第3圧縮部
30 駆動手段
40 竹炭化部
50 賦活炉
51 シリンダ
52 駆動手段
53 賦活ガス
54 活性炭

Claims (2)

  1. 投入物として竹リグニン成分を投入する投入部、及び前記竹の炭化物を取り出す取出部を有するシリンダと、前記シリンダの内部で軸回転し、前記竹を前記投入部から前記取出部に向かって押し出すスクリューとを有する2軸のエクストルーダーを備えた竹炭化部と、前記竹炭化部の前記取出部の下流に直結され、前記竹炭化部の前記取出部から取り出された前記竹の炭化物を取り込み、ガス賦活処理を行い顆粒状の活性炭を生成する回転型賦活炉を有することを特徴とする竹活性炭製造装置。
  2. 前記竹炭部は、前記シリンダ内の前記竹とリグニン成分を、設定温度に調温する調温部と、前記シリンダ内の過剰水分を設定圧力によって取り出す水分排出用圧力調整部と、前記シリンダ内の前記竹が熱分解し発熱する熱分解ガスを、設定圧力によって取り出すガス排出用圧力調整部と、前記ガス排出用圧力調整部で取り出された前記熱分解ガスを冷却して得られる液体を分離する液体分離器を備え、前記シリンダ内には、前記スクリューによって、前記竹を微粒子化するせん断部と、前記せん断部で微粒子化された前記竹を圧縮する圧縮部が形成され、前記取出部では、前記竹から前記過剰水分及び前記熱分解ガスが取り出された竹炭化物が排出されることを特徴とする請求項1に記載の竹活性炭製造装置。
JP2018003757U 2018-09-27 2018-09-27 竹活性炭製造装置 Expired - Fee Related JP3219241U (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018003757U JP3219241U (ja) 2018-09-27 2018-09-27 竹活性炭製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018003757U JP3219241U (ja) 2018-09-27 2018-09-27 竹活性炭製造装置

Publications (1)

Publication Number Publication Date
JP3219241U true JP3219241U (ja) 2018-12-06

Family

ID=64560619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018003757U Expired - Fee Related JP3219241U (ja) 2018-09-27 2018-09-27 竹活性炭製造装置

Country Status (1)

Country Link
JP (1) JP3219241U (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020107562A (ja) * 2018-12-28 2020-07-09 ユア・エネルギー開発株式会社 バイオマス燃料電池発電システム
JP2021030110A (ja) * 2019-08-19 2021-03-01 薫 小園 凝固剤、及び当該凝固剤の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020107562A (ja) * 2018-12-28 2020-07-09 ユア・エネルギー開発株式会社 バイオマス燃料電池発電システム
JP2021030110A (ja) * 2019-08-19 2021-03-01 薫 小園 凝固剤、及び当該凝固剤の製造方法

Similar Documents

Publication Publication Date Title
AU2011269715B2 (en) Method of and system for grinding pyrolysis of particulate carbonaceous feedstock
CN1304532C (zh) 一种利用农林废弃物制造机制木炭的方法
JP5653640B2 (ja) バイオマス炭の製造方法
EP2261560B1 (de) Verfahren und vorrichtung zur verarbeitung von organischen haus- und industrieabfällen
US20110290788A1 (en) Method and apparatus for processing fragmented material by pyrolysis
JP2015229751A (ja) 植物系バイオマス固形燃料及びその製造方法
JP3219241U (ja) 竹活性炭製造装置
CN103013609A (zh) 一种用含水碎煤制成煤粉泥柱体颗粒燃料制备燃气方法
CN1803981A (zh) 一种利用中药或植物药提取固体废弃物制造机制炭的方法
GB2553919A (en) Biomass treatment process and apparatus
US20180187113A1 (en) Process of Producing Aggregates of Cleaned Coal Fines and Beneficiated Organic-Carbon-Containing Feedstock
CN112961684A (zh) 一种生物炭生产加工设备
CN107227176A (zh) 一种密闭式煤气发生炉下段炉纯氧气化上段炉干馏组合进行小粒煤连续气化的方法
JP5464355B2 (ja) バイオマス炭化装置及びバイオマス炭化方法
JP2015129235A (ja) 炭化物の製造方法及び炭化物の製造システム
US9683738B2 (en) System for co-firing coal and beneficiated organic-carbon-containing feedstock in a coal combustion apparatus
JP5625320B2 (ja) 成型炭の製造方法
Lei et al. A biomass briquetting fuel machine and its large-scale operation system
US20160010015A1 (en) Processed Biochar Pellets from Beneficiated Organic-Carbon-Containng Feedstock
CN105925282A (zh) 一种基于碳循环的生物质热转换装置及方法
JPS58501912A (ja) 炭素質製品の製造方法および装置
CA2951542A1 (en) High energy aggregates of coal fines and beneficiated organic-carbon-containing feedstock
JP2020040861A (ja) 非晶質シリカの製造方法及び非晶質シリカの製造装置
KR20160042822A (ko) 선광된 공급원료에 의한 마이크로파에 의한 바이오 숯
WO2013140418A1 (en) Multi-condition thermochemical gas reactor

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3219241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R323113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R323113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees