WO2008136476A1 - バイオコークス製造装置及び製造方法 - Google Patents

バイオコークス製造装置及び製造方法 Download PDF

Info

Publication number
WO2008136476A1
WO2008136476A1 PCT/JP2008/058231 JP2008058231W WO2008136476A1 WO 2008136476 A1 WO2008136476 A1 WO 2008136476A1 JP 2008058231 W JP2008058231 W JP 2008058231W WO 2008136476 A1 WO2008136476 A1 WO 2008136476A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
biomass
cooling
raw material
reaction
Prior art date
Application number
PCT/JP2008/058231
Other languages
English (en)
French (fr)
Inventor
Yoshimasa Kawami
Jun Satou
Ayumu Yamazaki
Tamio Ida
Original Assignee
Mitsubishi Heavy Industries Environment Engineering Co., Ltd.
Kinki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Environment Engineering Co., Ltd., Kinki University filed Critical Mitsubishi Heavy Industries Environment Engineering Co., Ltd.
Priority to US12/597,603 priority Critical patent/US8454801B2/en
Priority to EP08740916A priority patent/EP2141218A4/en
Priority to CN200880013328XA priority patent/CN101903505B/zh
Priority to BRPI0810249-0A2A priority patent/BRPI0810249A2/pt
Publication of WO2008136476A1 publication Critical patent/WO2008136476A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B47/00Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
    • C10B47/02Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion with stationary charge
    • C10B47/12Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion with stationary charge in which the charge is subjected to mechanical pressures during coking
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B47/00Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
    • C10B47/28Other processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin

Definitions

  • the present invention relates to a bio-coke production apparatus and method that can be used as a substitute fuel for coal coke, using biomass resulting from photosynthesis as a raw material.
  • biomass has attracted attention in consideration of the global warming phenomenon caused by an increase in the concentration of carbon dioxide in the atmosphere and the predicted fossil fuel depletion in the future. Has been.
  • Biomass generally refers to organic resources derived from renewable organisms, excluding fossil resources. By treating this biomass with carbonization gas, it is possible to recover valuable materials such as heat, electricity, and carbide. In addition, it can treat the biomass as waste, which helps to clean the environment. In addition, because biomass is an organic matter, it generates carbon dioxide when it is burned, but this carbon dioxide is derived from carbon dioxide absorbed from the atmosphere by photosynthesis during the growth process, increasing carbon dioxide in the atmosphere. It is thought not to let it. This is called carbon neutral. Therefore, in recent years, the progress of the global temperature due to the increase in the concentration of carbon dioxide in the atmosphere has become a problem, and there is a demand for the utilization of biomass.
  • Patent Document 1 discloses a method for producing a biomass water slurry
  • Patent Document 2 includes converting garbage, sewage sludge, and the like into fuel. A method is disclosed.
  • Patent Documents 1 and 2 are not technologies for converting biomass into a solid fuel, and cannot be used as a substitute for coal coke.
  • Patent Document 3 discloses a pellet manufacturing technology.
  • the pellets produced have a sufficient calorific value because the water content of the material is large in order to use the produced pellets as a substitute for coal coke.
  • air oxygen
  • the pellets produced have a sufficient calorific value because the water content of the material is large in order to use the produced pellets as a substitute for coal coke.
  • air oxygen
  • the pellets produced have a sufficient calorific value because the water content of the material is large in order to use the produced pellets as a substitute for coal coke.
  • air oxygen
  • burning time is short, and there is no bonding between powder biomass, so that sufficient hardness is achieved. It is a thing which does not have.
  • Patent Document 4 a manufacturing technology in which raw material is fragmented and carbonized, and has a high energy yield and a higher volumetric energy density and weight energy density than charcoal.
  • Patent Document 5 Semi-carbonized consolidated fuel production technology for further improving wood biomass energy transport characteristics
  • Patent Document 6 the solid fuel obtained by any of the techniques of Patent Documents 4 to 6 does not have a sufficient calorific value as compared with coal coke. It is difficult to use as a substitute for coal coke because the hardness performance is not sufficient. Disclosure of the invention
  • the present invention has an object to provide a bio-coke production apparatus and production method that can be used as an alternative fuel for coal coke, using a biomass derived from photosynthesis as a raw material.
  • a powder mashing means for pulverizing a biomass raw material resulting from photosynthesis a heating means for heating to a temperature range in which the hemicellulose in the pulverized biomass raw material is thermally decomposed and exhibits an adhesive effect, and in the heated state
  • Pressurizing means for pressurizing and holding up to a pressure range in which the lignin in the biomass powder exhibits a thermosetting reaction
  • the temperature detection means is not particularly limited to either a contact type or a non-contact type.
  • a detection speed and a detection temperature range in which the end point of the reaction is judged and the timing of transition from heating to cooling can be detected accurately is 1
  • a thermometer having a range of 0 to 25 ° C. may be used.
  • a radiation thermometer or a thermocouple can be used.
  • the temperature condition in the heating means is 1 15 to 2 30 ° C, and the pressure condition in the pressure means is 8 to 25 MPa. It is preferable that the heating temperature condition is 180 to 230 ° C, and the pressurizing pressure condition is 12 to 19 MPa. By maintaining this heating temperature and pressurized pressure conditions for a certain period of time, a biocoke can be obtained. The holding of the heating temperature and the pressurizing pressure is determined until the reaction end point is reached by judging the reaction end point based on the temperature detection result of the temperature detecting means.
  • the end point of the reaction is to thermally decompose hemicellulose in the pulverized biomass to produce an adhesion effect, and (within the reaction cylinder of the piston-type extruder) lignin retains its skeleton with superheated steam. It reacts at low temperatures and synergizes with the compaction effect (by means of a piston-type extrusion device) to say the thermosetting reaction until the desired hardness as bio-coke is reached. (The thermosetting reaction proceeds when a reactive site is induced between phenolic polymers contained in lignin and the like.)
  • a piston type extruder for charging the biomass powder the heating means and the cooling means are provided in order from the upstream of the extrusion in the piston extruder, the temperature detecting means is provided at the most downstream of the heating means, and It is characterized by comprising an adjusting means for determining the reaction end point according to the temperature detection result and adjusting the extrusion speed of the piston extruder.
  • a filling container having a plurality of filling parts penetrating the container, and a filling means for filling the filling material of the filling container with the biomass raw material powdered by the powdering means, and a plurality of filling parts of the filling container
  • the filled biomass material is extruded, and in order to the heating unit and the cooling unit provided in the direction in which the filled biomass material is extruded.
  • the temperature detecting means is provided on the most downstream side of the pressurizing and heating means in the biomass raw material extruding direction, and an adjusting means is provided for judging the reaction end point according to the detection result of the temperature detecting means and adjusting the extrusion speed. It is characterized by that.
  • a plurality of reaction vessels each having a pressurizing unit, a heating unit, a cooling unit, and a discharge unit for discharging the cooled contents are provided and arranged in a circle, and the plurality of reaction vessels arranged in the circle
  • a rotation means for rotating the reaction vessel along the outer periphery of the circle, and rotating the reaction vessel arranged in the plurality of circles along the outer periphery of the circle by the rotation means, before the reaction vessel makes one turn, Filling, heating, pressurization, cooling, and discharging are performed, and an adjustment unit is provided that determines the end point of the reaction according to the detection result of the temperature detection unit and adjusts the timing of transition from heating to cooling.
  • a reaction vessel having a jacket through which both the heat medium and the refrigerant can be circulated, a filling unit for filling the reaction vessel with the biomass raw material pulverized by the pulverization unit, and an inside of the cylindrical vessel Provided with a piston that pressurizes the biomass raw material, and is provided at the inner end of the cylindrical container farthest from the piston when the heating medium is circulated through the jacket and heated to maintain the pressurized state by the piston.
  • adjusting means for determining the end point of the reaction from the temperature detection result of the temperature detection means and adjusting the timing for switching the circulation medium of the jacket from the heat medium to the refrigerant.
  • bio-coke production apparatus of the present invention By using the bio-coke production apparatus of the present invention, it has a maximum compressive strength of 60 to 200 MPa, a calorific value of 18 to 23 MJZ kg and a bulk specific gravity of about 1.4, and can be used as an alternative fuel for coal coke. Bio-coke that can be produced.
  • the maximum compressive strength is 60 to 200 MPa
  • the calorific value is 18 to 2 3 M] / 1 ⁇ 8
  • the bulk specific gravity is about 1.4.
  • Bio-coke can be produced that can be used as an alternative fuel for coke.
  • Temperature detection means is provided at the outlet end of the area heated by the heating means, and the reaction is completely completed by determining the reaction end point according to the temperature detection result and adjusting the timing of transition from heating to cooling. Until this time, the heating / pressurization state can be maintained, so that bio-coks with stable quality can be produced, and the reaction end point is judged and the process is shifted to cooling to minimize the time for maintaining the heating / pressurization state. It can be pushed to the limit.
  • FIG. 1 is a schematic diagram of a bio-coke production apparatus according to a first embodiment.
  • FIG. 2 is a schematic diagram of the bio-coke production apparatus according to the second embodiment.
  • FIG. 3 is a schematic diagram of a bio-coke production apparatus according to a third embodiment.
  • FIG. 4 is a schematic diagram of a bio-cox producing apparatus according to the fourth embodiment.
  • FIG. 5 is a side view of the periphery of a reaction vessel 70 according to Examples 3 and 4. BEST MODE FOR CARRYING OUT THE INVENTION
  • the raw material biomass used in the bio-coke production apparatus and method according to the present invention may be any biomass material resulting from photosynthesis, and examples thereof include biomass such as woody materials, herbs, agricultural crops, and potatoes.
  • biomass resulting from photosynthesis is a material that produces organic substances such as sugars, cellulose, and lignin by performing photosynthesis in the sunlight using carbon dioxide in the atmosphere and water sucked up from the roots.
  • FIG. 1 is a schematic diagram of a biocoke production apparatus according to a first embodiment.
  • the biomass After conditioning the biomass of the raw material to a moisture content of 5 to 10%, the biomass is adjusted by a powdering means such as a mixer so that the particle diameter is 3 mm or less, preferably 0.1 mm or less. And pulverize and put into receiving hopper 2 3.
  • a powdering means such as a mixer so that the particle diameter is 3 mm or less, preferably 0.1 mm or less.
  • Biomass as it is, has very large voids and a small heat-receiving surface area, so it is not suitable for heat processing, and it is important to grind it before putting it into the receiving hopper 23 for homogeneous processing. is there.
  • the biomass raw material charged into the receiving hopper 23 is sent into a piston type extrusion device 10 equipped with a piston 20 by screw extruders 21 and 22.
  • the inside of the extrusion extruder 10 is composed of three parts: a heating reaction part 11, a cooling part 12, and a pressure adjustment part 13.
  • the raw material biomass is pushed out by the piston 20 and the pressure of the hydraulic cylinder 25 provided in the pressure adjustment unit 13 3 is controlled by the PIC (pressure Interface Controller) 2. It is adjusted to 8 to 25 MPa, more preferably 12 to 19 MPa.
  • the biomass material sent to the piston-type extrusion device 10 first enters the heating reaction section 11.
  • the biomass raw material is heated to 115 to 230 ° C, preferably 180 to 230 ° C.
  • heating in the heating reaction section 11 is performed by using an electric heater 14 on the cylinder inner surface of the heating reaction section 11 at 1 15 to 2-30 ° C (preferably 180 to 230 ° C).
  • TC thermal interface controller 1 6 to set the heat source 1 5 to the outer surface temperature of the cylinder (controls the heat transfer loss from 1 1 5 + Q! To 2 3 0 + ⁇ (° C))
  • Any method can be used as long as the outer surface of the heating reaction section 1 1 can be heated to 1 15 to 230 ° C (more preferably 180 to 230 ° C).
  • the cylinder of the heating reaction section 1 1 is passed through an oil bath whose temperature is adjusted to 1 15 to 2-30 ° C (more preferably 180 to 2-30 ° C).
  • a jacket is provided, and the jacket is a heat medium whose temperature is adjusted to 1 15 to 2-30 ° C (more preferably 1 80 to 2 30 ° C) (for example, silicon oil, steam, high-pressure heating water) It is also possible to distribute it.
  • the biomass is heated under the conditions of 1 15 to 23 0 ° C. and 8 to 25 MPa (more preferably 1 80 to 2 30 ° (:, 1 2 to 19 MPa)). Heating and pressure molding are performed.
  • hemicellulose which is one of the main components of biomass raw material, is heated at a temperature of 1 15 to 2 30 ° C (more preferably 1 80 to 2 30 ° C). This is due to the fact that the lignin reacts at a low temperature with its skeleton retained by the superheated steam generated in the piston-type extruder 10 and acts synergistically with the consolidation effect, resulting in increased hardness. is doing.
  • an infrared radiation thermometer 19 is provided at the outlet end of the heating reaction section 1 1 so that the temperature at the center of the cylinder at the outlet end of the heating reaction section 1 1 can be measured, The pushing speed of the piston 20 can be adjusted according to the temperature result at this position. This makes it possible to optimize the residence time of the heating reaction section 11, that is, the holding time of the heated and pressurized state, leading to an improvement in productivity and a stable quality product.
  • the biocook produced in the heating reaction unit 11 1 is pushed out by the piston 20 and moved to the cooling unit 12.
  • the cooling in the cooling section 12 is air-cooled by using the blower 17, but the outer surface of the cooling section 12 can be cooled to 40 to 50 ° C. or lower. Any method may be used, for example, a jacket may be provided on the outer periphery of the cylinder of the cooling section 12 and a coolant whose temperature is adjusted to 40 to 50 ° C. may be passed through the jacket. If the cooling temperature is higher than this temperature, the adhesion effect due to hemicellulose will be reduced, causing a decrease in hardness.
  • the cooling time is preferably about 30 to 60 minutes. This is because rapid cooling causes cracks and the like on the surface of the manufactured bio-coke, causing a decrease in hardness.
  • FIG. 2 is a schematic diagram of the bio-coke production apparatus according to the second embodiment.
  • the biomass After conditioning the biomass to a moisture content of 5-10%, the biomass has a particle size of 3 mm or less. Then, it is pulverized by a pulverizing means such as a mixer so that it is preferably 0.1 mm or less, and is put into the receiving hopper 33.
  • a pulverizing means such as a mixer so that it is preferably 0.1 mm or less
  • Biomass as it is is not suitable for heat processing because it has a very large air gap and its heat receiving surface area is small, and it is important to grind it before putting it into the receiving hopper 3 3 for homogeneous processing It is.
  • the biomass raw material charged into the receiving hopper 33 is filled into the two filling parts 3 1 a and 3 lb of the raw material filling cartridge 3 1 by the screw extruder 3 3 a.
  • the raw material filling cartridge 31 has two filling portions, but the number of filling portions of one raw material filling cartridge is not particularly limited.
  • the raw material filling force triad 31 is set into a multi-hydraulic system having two multivistons 3 2 and 3 4.
  • the multi-piston 3 4 is fixed out of the two multi-pistons 3 2 and 3 4 and the multi-piston 3 2 is moved, so that the cylinders 3 2 a and 3 2 b provided in the multi-piston 3 2
  • the raw material biomass filled in the two filling portions 3 1a and 3 1b of the trough 31 having the raw material filling force 1 is respectively configured to be extruded.
  • the pressure of the multi-piston 32 on the inlet side is adjusted with PIC 43 so that the pressure of the multi-piston 32 is 8 to 25 MPa, more preferably 12 to 19 MPa.
  • the differential pressure between the multi-piston 3 at the outlet side and the multi-piston at the inlet side is 0.1 to 1. OMPa, and the pressure of the multi-piston on the outlet side is higher than the pressure of the multi-piston 3 2 on the inlet side. Set the multi-piston pressure on the outlet side so that the pressure is low.
  • the outlet side so that the differential pressure between the multi-piston 3 4 on the outlet side and the multi-piston 3 2 on the inlet side becomes zero. Adjust the multi-piston pressure of PIC 4 2 and ⁇ ⁇ IC 4 4.
  • Biomass raw materials filled in the filling portions 3 1 a and 3 1 b of the raw material cartridge 3 1 are pushed out by the cylinders 3 2 a and 3 2 b, respectively, and first enter a passage in the oil bath 3 5.
  • the biomass raw material is heated to 1 15 to 2 30 ° C, more preferably 1800 to 2 30 ° C.
  • Oil temperature adjustment in oil bath 3 5 The oil bath 35 oil is continuously drawn into the oil heating tank 36, and the temperature in the oil heating tank is 115 to 230 ° C (more preferably 180 to 230 ° C).
  • the heat source 38 of the heater 39 that heats the inside of the oil heating tank 36 is adjusted.
  • the oil bath is used to adjust the temperature to 115 to 230 ° C (preferably 180 to 230 ° C), but 115 to 230 ° C (preferably 180 to 230 ° C). Any method of heat transfer via fluid, resistance heating, high frequency heating or radiation heating may be used.
  • biomass in the passage in the oil bath 35, biomass is heated and pressure-molded under the conditions of 115 to 230 ° C and 8 to 25 MPa (preferably 180 to 230 ° C and 12 to 19 MPa). ing.
  • thermoforming By performing heating and pressure molding under the above-mentioned conditions, it is possible to obtain a biocoque having a high hardness and a high calorific value. This is because heating is performed at a temperature of 115 to 230 ° C. (preferably 180 to 230), so that hemicellulose, which is one of the main components of the biomass raw material, is thermally decomposed and superheat is generated in the passage. This is due to the fact that lignin reacts at a low temperature while maintaining its skeleton by water vapor, and synergizes with the compaction effect to increase the hardness.
  • a temperature detection end is provided at the outlet end of the oil bath 35 portion so that the temperature of the oil bath 35 portion outlet end and the biomass passage center can be measured.
  • the bio-cox produced by the bistons 32 and 34 is pushed out and moved to the portion cooled by the blower 41. Cool the biomass feedstock to 40-50 ° C or less with the blower 41. In this embodiment, the air is cooled by using the blower 41, but any method may be used as long as it can be cooled to 40 to 50 ° C. or lower. If the cooling temperature is higher than this temperature, the adhesion effect due to hemicellulose will be reduced, causing a decrease in hardness.
  • the cooling time is preferably about 30 to 60 minutes. This is because rapid cooling causes cracks and the like on the surface of the manufactured bio-coke, causing a decrease in hardness.
  • FIG. 3 is a schematic diagram of the bio-coke production apparatus according to the third embodiment.
  • the biomass is dusted by a dusting means such as a mixer so that the particle diameter is 3 mm or less, preferably 0.1 mm or less. throw into.
  • a dusting means such as a mixer so that the particle diameter is 3 mm or less, preferably 0.1 mm or less. throw into.
  • Biomass as it is, has very large voids and a small heat-receiving surface area, so it is not suitable for heat processing, and it is important to grind it before putting it into the receiving hopper 53 for homogeneous processing. It is.
  • the biomass charged into the receiving hot bar 53 is molded into a cylindrical pellet having a bulk density of 0.9 to 1.0 by the compression molding machine 52.
  • the biomass raw material molded into the cylindrical pellet is fed into one of 50 reaction vessels 70 arranged in a circular shape in a compression reactor 51 by a magic hand 54.
  • FIG. 5 is a side view around the reaction vessel 70.
  • the biomass molded into the cylindrical pellets is charged into the reaction vessel 70 and pressurized and compressed to 8 to 25 MPa, more preferably 1 to 19 MPa by the upper hydraulic cylinder 71. Is done.
  • the reaction vessel 70 and the upper hydraulic cylinder 71 rotate while maintaining the pressurized state of 8 to 25 MPa (preferably 12 to 19 MPa), and move to the heating reaction step 56. .
  • Heating Heating in the reaction step 56 is performed by continuously supplying a heat medium from the medium supply pipe 8 1 a to the jacket 7 9 provided outside the reaction vessel 70 and continuously from the medium discharge pipe 8 2 a. It is heated to 1 15 ° C. to 2 30 ° C., preferably 1 80 to 2 30 ° C.
  • heat conductivity such as silver, copper, etc. is provided in the lower part of the upper cylinder 71 and the lower part of the reaction vessel 70. It is preferable to provide high metal plates 7 7 and 7 8.
  • the heating reaction step 56 the conditions of 1 1 5 to 2 30 ° (, 8 to 25 MPa (preferably 1 80 to 2 30 ° (1, 12 to 19 MP a))
  • the biomass is heated and pressure-molded.
  • a temperature detection end 83 is provided at the lower end of the reaction vessel so that the temperature at the lower end of the reaction vessel and the center of the cylinder can be measured, and according to the temperature result at this position, By optimizing the rotation speed, it is possible to optimize the time during which the reaction vessel 70 is located in the heating reaction section 56, leading to an improvement in productivity.
  • the reaction vessel After performing heating and pressure molding in the heating reaction step 56, the reaction vessel further rotates while maintaining the pressurized state of 8 to 25 MPa (more preferably 12 to 19 MPa). Move to cooling step 5 7.
  • a heat insulating part that does not perform heating or cooling may be provided between the heating reaction step 56 and the cooling step 57.
  • the refrigerant is continuously supplied from the medium supply pipe 8 1 a to the jacket 7 9 provided outside the reaction vessel 70, and the medium discharge pipe 8 2 Cooling down to 40 ° C ( ⁇ 50 ° C or less by continuously discharging refrigerant from a. Cooling temperature higher than this temperature reduces the adhesion effect of hemicellulose and causes a decrease in hardness.
  • the cooling time is about 30 to 60 minutes, because rapid cooling causes cracks and the like on the surface of the manufactured biocoke and causes a decrease in hardness.
  • reaction vessel 70 After cooling in the cooling step 5 7, the reaction vessel 70 further rotates and moves to the position of the product discharge conveyor 55, opens the lower portion of the reaction vessel 70, and the reaction vessel is opened by the upper hydraulic cylinder 7 1.
  • Product discharge conveyor located at the bottom of 0 5 5 The let-shaped bio-coke is pushed out and discharged, and discharged to the subsequent processes such as packing and shipping by the product discharge conveyor 55.
  • FIG. 4 is a schematic diagram of the bio-coke production apparatus according to the fourth embodiment.
  • the biomass After humidity control of the biomass to a moisture content of 5 to 10%, the biomass is pulverized by powdering means such as a mixer so that the particle size is 3 mm or less, preferably 0.1 mm or less. throw into.
  • Biomass as it is is not suitable for heat processing due to its very large voids and small heat receiving surface area, and it is important to grind it before putting it into the receiving hot bar 61 for homogeneous processing. It is.
  • the biomass raw material charged into the receiving hopper 61 moves on the transfer path 64 and is charged into the reaction vessel 70 through the raw material inlet 62.
  • the conveying path 64 is preferably a closed pipe conveyor so that the biomass material is not exposed to the outside.
  • the upper gate 76b When charging the biomass material into the reaction vessel 70, first the upper gate 76b is opened. First, the upper gate 7 6 b is opened, and the biomass pulverized material is fed from the conveying path 6 4 through the material inlet 6 2 to the material inlet container 7 3 to the position of the position detection sensor 7 4 for detecting the position of the biomass powder. . Thereafter, by closing the upper gate 76b and opening the lower gate 76, a certain amount of pulverized biomass can be charged into the reaction vessel.
  • the biomass raw material charged into the reaction vessel 70 is pressurized and compressed to 8 to 25 MPa (preferably 12 to 19 MPa) by the upper hydraulic cylinder 71.
  • the reaction vessel 70 and the upper hydraulic cylinder 71 are provided outside the reaction vessel 70 while maintaining the pressurized state of 8 to 25 MPa (more preferably 12 to 19 MPa).
  • Heat to C-2300 (more preferably 180-230).
  • metal plates 77 and 78 having high thermal conductivity such as copper. That is, in the heating reaction step 56, biomass is heated and pressure-molded under conditions of 115 to 230 ° C and 8 to 25MPa (more preferably 180 to 230 ° C and 12 to 19MPa).
  • a temperature detection end 83 is provided at the lower end of the reaction vessel so that the temperature at the lower end of the reaction vessel and the center of the cylinder can be measured, and the reaction vessel is rotated according to the temperature result at this position.
  • the reaction vessel After heating and pressure molding, the reaction vessel is kept in a pressurized state of 8 to 25 MPa (preferably 12 to 19 MPa), and all the heat medium in the jacket is replaced with the refrigerant. Cool to ° C to 50 ° C or lower. If the cooling temperature is higher than this temperature, the adhesion effect of hemicellulose will be reduced, causing a decrease in hardness.
  • the cooling time is preferably about 30 to 60 minutes. This is because rapid cooling causes cracks and the like on the surface of the manufactured bio-coke, causing a decrease in hardness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Processing Of Solid Wastes (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

バイオマスを原料とし、石炭コークスの代替燃料として利用可能であるバイオコークスの製造装置及び製造方法を提供する。光合成を起因とするバイオマス原料を粉砕する粉砕手段と、該粉砕したバイオマス原料中のヘミセルロースが熱分解して接着効果を発現する温度範囲まで加熱する加熱手段と、該加熱した状態で前記バイオマス粉砕物中のリグニンが熱硬化反応を発現する圧力範囲まで加圧して保持する加圧手段と、該加圧状態を保持した後に冷却する冷却手段とを有し、前記加熱手段で加熱している区域の出口端に温度検出手段を備え、該温度検出結果に応じて反応終点を判断し加熱から冷却への移行するタイミングを調節する調節手段を備える。

Description

パイォコ一クス製造装置及び製造方法 技術分野
本発明は、 光合成を起因とするバイオマスを原料とし、 石炭コ一クスの代替燃 料としても利用可能であるバイオコークスの製造装置及びその方法に関する。 背景技術
近年、 大気中の二酸化炭素濃度の上昇を一因とする地球温暖化現象や、 将来的 に予測されている化石燃料の枯渴などを考慮して、 バイオマスという再生可能で クリーンなエネルギー源が注目されている。
一般にバイォマスとは、 再生可能な生物由来の有機性資源のうち化石資源を除 いたものをいい、 このバイォマスを炭化ガス化処理することで熱、 電力、 炭化物 等の有価物の回収が可能となり、 また廃棄物としてのバイォマスを処理できるの で、 環境の浄化にも役立つ。 さらに、 バイオマスは有機物であるため、 燃焼する と二酸化炭素を発生するが、 この二酸化炭素は、 バイオマスが成長過程において 光合成によって大気中から吸収した二酸化炭素に由来するので、 大気中の二酸化 炭素を増加させていないと考えられる。 このことはカーボンニュ一卜ラルと呼ば れている。 従って、 近年大気中の二酸化炭素濃度上昇による地球温度化の進行が 問題となっているため、 バイオマスの活用が要望されている。
一方、 昨今の中国における急速な鉄鋼需要により、 石炭コークスのコストが急 上昇し、 日本の錶物又は鉄鋼メーカ一の経営を圧迫している。 従って、 铸物製造 又は製鉄において、 石炭コ一クスの一部を代替することができる高硬度固形燃料 を開発し、 燃料コストを削減するとともに、 バイオマスのカーボンニュートラル な性質によつて地球温暖化現象の一因となっている大気中の二酸化炭素濃度の増 加を抑えることが切望されている。
そこで、 バイオマスを燃料化する方法として、 例えば特許文献 1にバイオマス 水スラリーの製造方法が、 また特許文献 2には生ゴミ、 下水道汚泥等を燃料化す る方法が開示されている。
しかしながら、 特許文献 1及び 2に記載の発明は何れもバイオマスを固形燃料 化する技術ではなく、 石炭コ一クス代替として利用することはできない。
また、 バイオマスを固形燃料化する技術として、 特許文献 3にペレット製造技 術が開示されている。
しかしながら、 特許文献 3に開示された方法では、 製造されたペレットを石炭 コ一クス代替として使用するためには、 材料の含水量が多いため製造されたペレ ットが充分な発熱量を有しておらず、 また製造されたペレツトには空隙が存在す るため、 ペレット内への空気 (酸素) の拡散が生じ、 燃焼時間が短く、 粉体バイ ォマス間の結合が無いため、 十分な硬度を有していない物である。
従って、 石炭コークス代替として使用することは困難である。
また、 その他のバイオマスを固形燃料化する技術としては、 原料を細片化して 炭化させる製造技術(特許文献 4)、高いエネルギ一収率で木炭よりも容積エネル ギ一密度及び重量エネルギー密度の高い固形燃料を製造する技術 (特許文献 5 )、 木質バイオマスエネルギー輸送特性をより高めるための半炭化圧密燃料製造技術
(特許文献 6 ) が開示されているが、 これら特許文献 4〜 6の何れの技術によつ て得られる固形燃料も、 石炭コークスに比して充分な発熱量を有しているとはい い難く、 更に硬度性能についても充分ではないため、 石炭コークス代替として使 用することは困難である。 発明の開示
従って、 本発明はかかる従来技術の問題に鑑み、 光合成を起因とするバイオマ スを原料とし、 石炭コ一クスの代替燃料として利用可能であるバイオコークスの 製造装置及び製造方法を提供することを目的とする。
上記課題を解決するため本発明においては、
光合成を起因とするバイオマス原料を粉砕する粉碎手段と、 該粉砕したバイオ マス原料中のへミセルロ一スが熱分解して接着効果を発現する温度範囲まで加熱 する加熱手段と、 該加熱した状態で前記バイォマス粉碎物中のリグニンが熱硬化 反応を発現する圧力範囲まで加圧して保持する加圧手段と、 該加圧状態を保持し た後に冷却する冷却手段とを有し、 前記加熱手段で加熱している区域の出口端に 温度検出手段を設け、 該温度検出結果に応じて反応終点を判断し加熱から冷却へ の移行するタイミングを調節する調節手段を備えることを特徴とする。
温度検出手段は特に接触式若しくは非接触式のいずれかに限定されるものでは なく、 前記反応終点を判断し加熱から冷却への移行するタイミングを精度よく検 知できる検知速度と検知温度範囲が 1 0 0〜2 5 0 °Cの範囲を有する温度計であ ればよく、 例えば放射温度計、 熱電対などが利用できる。
このとき、 過剰なプロセスエネルギーを必要とせず、 バイオコークスを得るた めには、 加熱手段における温度条件を 1 1 5〜2 3 0 °C、 加圧手段における圧力 条件を 8〜 2 5 M P aとすることが好ましく、加熱温度条件を 1 8 0〜 2 3 0 °C、 加圧圧力条件を 1 2〜1 9 MP aとすることがさらに好ましい。 この加熱温度及 び加圧圧力条件を一定時間保持することでバイオコ一クス 得ることができる。 この加熱温度及び加圧圧力の保持は、 前記温度検出手段の温度検出結果によって 反応終点を判断し、 反応終点に達する以降まで維持する。
ここで反応終点とは前記バイオマス粉砕物中のへミセルロースを熱分解し接着 効果を発現させるとともに、 (ピストン式押出装置の反応シリンダ内に発生する) 過熱水蒸気によりリグニンがその骨格を保持したまま低温で反応し、 (ピストン 式押出装置による) 圧密効果と相乗的に作用することによって、 バイオコークス としての目的硬度に達するまでの熱硬化反応を言う。 (熱硬化反応は、リグニン等 に含まれるフエノール性の高分子間で反応活性点が誘発することにより進行す る。)
さらに、 前記バイオマス粉碎物を投入するピストン型押出機を有し、 前記加熱 手段及び冷却手段をピストン押出機内の押出上流から順に設け、 前記温度検出手 段を加熱手段の最下流に設けるとともに、 該温度検出結果に応じて反応終点を判 断し、ピストン押出機の押出速度を調節する調節手段を備えることを特徴とする。 また、 容器を貫通する複数の充填部を有する充填容器と、 該充填容器の充填部 に前記粉碎手段で粉碎したバイォマス原料を充填する充填手段とを有し、 該充填 容器の複数の充填部に充填されたバイオマス原料を、 押し出して、 充填部に充填 されたバイオマス原料が押し出される方向に設けた前記加熱部及び冷却部へ順に 移動させるとともに、 前記温度検出手段を加圧加熱手段のバイォマス原料押出方 向最下流に設け、 前記温度検出手段の検出結果に応じて反応終点を判断し、 前記 押し出し速度を調節する調節手段を備えることを特徴とする。
また、 前記加圧手段、 加熱手段並びに冷却手段及び冷却後の内容物を排出する 排出手段を有する反応容器を複数個設けて円状に配置するとともに、 該円状に配 置した複数の反応容器を円の外周に沿って回転させる回転手段を有し、 前記回転 手段によって前記複数個の円形に配置した反応容器を円の外周に沿って回転させ ながら、 反応容器が 1周する前に、 前記充填、 加熱、 加圧、 冷却及び排出を行う ようにし、 前記温度検出手段の検出結果に応じて反応終点を判断し、 加熱から冷 却への移行するタイミングを調節する調節手段を備えることを特徴とする。 さらにまた、 熱媒及び冷媒の何れも流通させることのできるジャケットを有す る反応容器と、 前記反応容器に前記粉砕手段によつて粉砕したバイオマス原料を 充填する充填手段と、 該筒状容器内のバイオマス原料を加圧するピストンとを有 し、 前記ジャケットに熱媒を流通させて加熱し、 前記ピストンで加圧した状態を 保持する際に、 前記ピストンから最も遠くなる筒状容器内端に設けた温度検出手 段の温度検出結果より反応終点を判断し、 前記ジャケットの流通媒体を熱媒から 冷媒へ切り替えるタイミングを調節する調節手段を備えることを特徴とする。 本発明のバイオコークス製造装置を用いることによって、 最高圧縮強度 6 0〜2 0 0 MP a、 発熱量 1 8〜2 3 M J Z k g及びかさ比重 1 . 4程度であり、 石炭 コークスの代替燃料として利用可能であるバイオコークスを製造することができ る。
本発明のバイオコ一クス製造装置を用いることによって、 最高圧縮強度 6 0〜 2 0 0 MP a、 発熱量 1 8〜2 3 M】/ 1^ 8及びかさ比重1 . 4程度であり、 石 炭コークスの代替燃料として利用可能であるバイオコークスを製造することがで きる。
また、 前記加熱手段で加熱し、 加圧手段で加圧した状態の保持時間が短いと、 反応が完全に終了せずに製造されるバイオコークスの強度が不充分なものとなつ て製品品質に課題が残り、 一方前記保持時間が長いと、 反応は終了するため製品 品質には課題は残らないもののバイオコ一クスを製造するための生産時間が必要 以上に長くなるが、
前記加熱手段で加熱している区域の出口端に温度検出手段を備え、 該温度検出 結果に応じて反応終点を判断し加熱から冷却への移行するタイミングを調節する ことで、 反応が完全に終了するまで前記加熱 ·加圧状態を保持できるため品質の 安定したバイオコ一クスを製造することができ、 また反応終点を判断して冷却へ 移行することで加熱 ·加圧状態を保持する時間を最小限に押えることができる。 図面の簡単な説明
第 1図は、 実施例 1に係るバイオコークス製造装置の該略図である。
第 2図は、 実施例 2に係るバイオコークス製造装置の該略図である。
第 3図は、 実施例 3に係るバイオコークス製造装置の該略図である。
第 4図は、 実施例 4に係るバイオコ一クス製造装置の該略図である。
第 5図は、 実施例 3及び 4に係る反応容器 7 0周辺の側面図である 発明を実施するための最良の形態
本発明に係るバイオコークス製造装置及び方法において用いる原料のバイオマ スは、 光合成に起因するバイオマス原料であればよく、 例えば木質類、 草本類、 農作物類、 厨芥類等のバイオマスを挙げることができる。
ここで光合成を起因とするバイオマスとは、 太陽光の中で、 大気中の二酸化炭 素と、 根から吸い上げた水を使って光合成を行い、 糖類、 セルロース、 リグニン などの有機物を生成するものをいう。
以下、 図面を参照して本発明の好適な実施例を例示的に詳しく説明する。 但し この実施例に記載されている圧力、 温度、 材料の種類及び、 製造部品の種類、 形 状、 その相対的配置等は特に特定的な記載がない限りは、 この発明の範囲をそれ に限定する趣旨ではなく、 単なる説明例に過ぎない。
【実施例 1】
図 1は、 実施例 1に係るバイォコークス製造装置の該略図である。
原料のバイオマスを含水率 5〜 1 0 %に調湿した後、 バイォマスを粒子径が 3 mm以下、 好ましくは 0 . 1 mm以下になるようにミキサー等の粉碎手段によつ て粉砕し、 受入ホッパ 2 3へ投入する。
バイオマスはそのままの状態では空隙が非常に大きいこと、 受熱表面積が小さ いため、 加熱加工には適さず、 均質な加工を行うために受入ホッパ 23へ投入す る前に粉砕しておくことは重要である。
受入ホッパ 23に投入されたバイオマス原料は、 スクリュー押出機 2 1及び 2 2によって、 ピストン 20を備えたピストン式押出装置 1 0内に送られる。 ビス トン式押出装置 1 0内は加熱反応部 1 1、 冷却部 1 2及び圧力調整部 1 3の 3つ の部位から構成されている。
ピストン式押出装置 1 0内ではピストン 20によって原料バイオマスを押し出 すとともに、圧力調整部 1 3に設けた油圧シリンダ 2 5の圧力を P I C (pressure Interface Controller) 2 によって押出ピストン 1 8のトルクをコントロールし て 8〜2 5MP a、より好ましくは 1 2〜1 9MP aとなるように調節している。 ピストン式押出装置 1 0に送られたバイオマス原料は、 まず加熱反応部 1 1に 入る。 加熱反応部では 1 1 5〜230°C、 好ましくは 1 80〜 2 30°Cにバイオ マス原料を加熱する。 本実施例においては加熱反応部 1 1における加熱は、 電気 ヒータ 14を用いて加熱反応部 1 1のシリンダ内面が 1 1 5〜2 30°C (好まし くは 1 8 0〜 2 30 °C) となるようにシリンダ外表面温度 (シリンダ伝熱損失を とすると 1 1 5 + Q!〜 2 3 0 + α (°C) に制御) を T I C (thermistor Interface Controller) 1 6で熱源 1 5を調節しているが、 加熱反応部 1 1の外表 面を 1 1 5〜 2 30 °C (より好ましくは 1 80〜 2 30 °C) に加熱することがで きればどのような方法でもよく、 例えば加熱反応部 1 1のシリンダを 1 1 5〜2 30°C (より好ましくは 18 0〜2 30°C) に温度調整されたオイルバス内を通 す、 加熱反応部 1 1のシリンダ外周にジャケットを設け、 ジャケットに 1 1 5〜 2 30°C (より好ましくは 1 80〜2 30°C) に温度調整された熱媒 (例えばシ リコンオイル、 スチーム、 高圧加熱水) を流通させる、 といった方法でもよい。 つまり、 加熱反応部 1 1では、 1 1 5〜23 0°C、 8〜 2 5 MP a (より好ま しくは 1 80~2 30° (:、 1 2〜1 9MP a) の条件でバイオマスの加熱及び加 圧成型が行われている。
前記条件で加熱 ·加圧成型を行うことにより、 高硬度かつ高発熱量を有するバ ィォコ一クスを得ることができる。 これは、 1 1 5〜2 3 0 °C (より好ましくは 1 8 0〜2 3 0 °C) の温度条件で加熱を行うことにより、 バイオマス原料の主成 分の 1つであるへミセルロースが熱分解し、 ピストン式押出装置 1 0内に発生す る過熱水蒸気によりリグニンがその骨格を保持したまま低温で反応し、 圧密効果 と相乗的に作用することによって、 より硬度が増すことに起因している。
さらに本発明に特徴的な構成として、 加熱反応部 1 1出口端に赤外放射温度計 1 9を設け、 加熱反応部 1 1出口端であり且つシリンダ中心部の温度を測定でき るようにし、 この位置の温度結果に応じてピストン 2 0の押し出し速度を調整す ることができるようにしている。 このことで、 加熱反応部 1 1の滞留時間、 すな わち加熱及び加圧された状態の保持時間の最適化が可能となり、 生産性の向上に 繋がるとともに、 安定した品質の製品ができる。
加熱反応部 1 1で加熱 ·加圧成型を行った後、 前記ピストン 2 0により加熱反 応部 1 1で製造されたバイオコ一クスを押し出し、 冷却部 1 2に移動させる。 冷 却部 1 2では 4 0〜 5 0 °C以下にバイォマス原料を冷却する。 冷却部 1 2におけ る冷却は、 本実施例においては、 送風機 1 7を用いて風冷しているが、 冷却部 1 2の外表面を 4 0〜 5 0 °C以下に冷却することができればどのような方法でもよ く、 例えば冷却部 1 2のシリンダ外周にジャケットを設け、 ジャケッ卜に 4 0〜 5 0 °Cに温度調整された冷媒を通流させる、 といった方法でもよい。 冷却温度は この温度よりも冷却温度が高いとへミセルロースによる接着効果が低下し、 硬度 の低下の原因となる。
また、 冷却時間は 3 0〜6 0分程度かけることが好ましい。 急速に冷却すると 製造されたバイオコークス表面にひび割れ等が生じ、 硬度の低下の原因となるか らである。
冷却部 1 2で冷却を行つた後、 前記ピストン 2 0により冷却部 1 2で冷却され たバイオコークスは圧力調整部 1 3を経て、 ピストン式押出装置 1 0の出口端に 設けたカッター 2 6で必要な大きさに切断されてバイオコークス製品となる。 【実施例 2】
図 2は、 実施例 2に係るバイオコークス製造装置の該略図である。
バイオマスを含水率 5〜1 0 %に調湿した後、 バイオマスを粒子径が 3 mm以 下、 好ましくは 0 . 1 mm以下になるようにミキサー等の粉砕手段によって粉砕 し、 受入ホッパ 3 3へ投入する。
バイォマスはそのままの状態では空隙が非常に大きいこと、 受熱表面積が小さ いため、 加熱加工には適さず、 均質な加工を行うために受入ホッパ 3 3へ投入す る前に粉碎しておくことは重要である。
受入ホッパ 3 3に投入されたバイオマス原料は、 スクリュー押出機 3 3 aによ つて、原料充填カートリッジ 3 1の 2つの充填部 3 1 a及び 3 l bに充填される。 本実施例においては原料充填カートリッジ 3 1は 2つの充填部を有しているが、 1つの原料充填カートリッジが有する充填部の個数は特に限定されない。 原料を 充填された原料充填力一トリッジ 3 1は 2つのマルチビストン 3 2及び 3 4を有 するマルチ油圧システムへセットされる。
マルチ油圧システム内は 2つのマルチピストン 3 2及び 3 4のうちマルチピス トン 3 4を固定し、 マルチピストン 3 2を移動させることによって、 マルチビス トン 3 2に設けたシリンダ 3 2 a、 3 2 bでそれぞれ前記原料充填力一トリッジ 3 1の 2つの充填部 3 1 a、 3 1 bに充填された原料バイオマスを押し出すこと ができるように構成されている。 そして、 入口側のマルチピストン 3 2の圧力を 8〜2 5 M P a、 より好ましくは 1 2〜1 9 M P aとなるように P I C 4 3で調 整し、 さらにマルチ油圧システム中のバイオマス原料を押し出す際には出口側の マルチピストン 3 4と入口側のマルチピストンの差圧が 0 . 1〜1 . O MP aで あり、 入口側のマルチピストン 3 2の圧力よりも出口側のマルチピストンの圧力 が低くなるように出口側のマルチピストンの圧力を P Iじ4 2及び厶? I C 4 4 で調節し、 マルチ油圧システム中のバイオマス原料を押し出さずに滞留させると きには出口側のマルチピストン 3 4と入口側のマルチピストン 3 2の差圧が 0と なるように出口側のマルチピストンの圧力を P I C 4 2及び Δ Ρ I C 4 4で調節 する。
原料カートリッジ 3 1の充填部 3 1 a及び 3 1 bに充填されたバイォマス原料 は、 それぞれ前記シリンダ 3 2 a及び 3 2 bで押し出され、 まずオイルバス 3 5 内の通路に入る。 オイルバス 3 5では 1 1 5〜2 3 0 °C、 より好ましくは 1 8 0 〜2 3 0 °Cにバイオマス原料を加熱する。 オイルバス 3 5内のオイルの温度の調 整は、 オイルバス 35のオイルを連続的にオイル加温槽 36へ抜き出し、 オイル 加温槽内の温度が 115〜230°C (より好ましくは 180〜230°C) となる ように T I C 37によってオイル加温槽 36内を加温するヒータ 39の熱源 38 を調整して行っている。 本実施例においてはオイルバスを用いて 115〜23 0°C (好ましくは 180~230°C) となるように調節しているが、 115〜2 30°C (好ましくは 180〜230°C) に加熱することができれば流体を介した 伝熱、 抵抗加熱、 高周波加熱若しくは輻射加熱のいずれの方法でもよい。
つまり、オイルバス 35内の通路では、 115〜230°C、 8〜25MP a (好 ましくは 180〜230°C、 12〜 19 MP a) の条件でバイオマスの加熱及び 加圧成型が行われている。
前記条件で加熱 ·加圧成型を行うことにより、 高硬度かつ高発熱量を有するバ ィォコ一クスを得ることができる。 これは、 115〜230°C (好ましくは 18 0〜230 ) の温度条件で加熱を行うことにより、 バイオマス原料の主成分の 1つであるへミセルロースが熱分解し、 通路内に発生する過熱水蒸気によりリグ ニンがその骨格を保持したまま低温で反応し、 圧密効果と相乗的に作用すること によって、 より硬度が増すことに起因している。
さらに本発明に特徴的な構成として、 オイルバス 35部分の出口端に温度検出 端を設け、 オイルバス 35部出口端であり且つバイオマス通路中心部の温度を測 定できるようにし、 この位置の温度結果に応じて出口側のマルチピストン 34と 入口側のマルチピストン 32の差圧を調整して押し出し速度を調整することで、 オイルバス 35部分の滞留時間を最適化することが可能となり、 生産性の向上に 繋がるとともに、 安定した品質の製品ができる。
オイルバス 35内の通路で加熱 ·加圧成型を行つた後、 前記ビストン 32及び 34により製造されたバイオコ一クスを押し出し、 送風機 41により冷却される 部分に移動させる。送風機 41で 40〜50°C以下にバイオマス原料を冷却する。 本実施例においては、 送風機 41を用いて風冷しているが、 40〜50°C以下に 冷却することができればどのような方法でもよい。 冷却温度はこの温度よりも冷 却温度が高いとへミセルロースによる接着効果が低下し、 硬度の低下の原因とな る。 また、 冷却時間は 3 0〜6 0分程度かけることが好ましい。 急速に冷却すると 製造されたバイオコークス表面にひび割れ等が生じ、 硬度の低下の原因となるか らである。
送風機 4 1で冷却された後、 前記ピストン 3 2及び 3 4により押し出されてバ ィォコークス製品となる。
【実施例 3】
図 3は、 実施例 3に係るバイオコークス製造装置の該略図である。
バイォマスを含水率 5〜 1 0 %に調湿した後、 バイォマスを粒子径が 3 mm以 下、 好ましくは 0 . 1 mm以下になるようにミキサー等の粉碎手段によって粉碎 し、 受入ホッパ 5 3へ投入する。 また、 バイオマスの種類によっては乾燥'粉碎 後に調湿する物もある。
バイォマスはそのままの状態では空隙が非常に大きいこと、 受熱表面積が小さ いため、 加熱加工には適さず、 均質な加工を行うために受入ホッパ 5 3へ投入す る前に粉砕しておくことは重要である。
受入ホツバ 5 3に投入されたバイオマスは、 圧縮成型機 5 2によってかさ密度 0 . 9〜1 . 0の円柱状のペレットに成型される。
前記円柱状ペレツトに成型されたバイオマス原料は、 マジックハンド 5 4によ つて圧縮反応機 5 1に円形状に配置された 5 0個の反応容器 7 0のうちの 1つに 投入される。
図 5は前記反応容器 7 0周辺の側面図である。 前記円柱状ペレットに成型され たバイオマスは、 反応容器 7 0内に投入され、 上部油圧シリンダ 7 1によって 8 〜2 5 MP a、 よりこのましくは 1 2〜1 9 M P aに加圧'圧縮される。 反応容 器 7 0及び上部油圧シリンダ 7 1は、 前記 8〜 2 5 MP a (好ましくは 1 2〜 1 9 MP a) の加圧状態を保ったまま回転し、 加熱反応工程 5 6に移動する。 加熱 反応工程 5 6における加熱は、 反応容器 7 0の外部に設けたジャケット 7 9に媒 体供給管 8 1 aより熱媒を連続的に供給し、 媒体排出管 8 2 aより熱媒を連続的 に排出することによって 1 1 5 °C〜2 3 0 °C 好ましくは 1 8 0〜2 3 0 °Cに加 熱する。 ここで、 ジャケット 7 9からの熱を反応容器内部へ伝達しやすくするた め、 上部シリンダ 7 1の下部及び反応容器 7 0下部に例えば銀、 銅等の熱伝導率 の高い金属板 7 7、 7 8を設けることが好ましい。
つまり、 加熱反応工程 5 6では、 1 1 5〜 2 3 0 ° (、 8〜 2 5 MP a (好まし くは 1 8 0〜2 3 0 ° (、 1 2〜1 9 MP a ) の条件でバイオマスの加熱及び加圧 成型が行われている。
前記条件で加熱 ·加圧成型を行うことにより、 高硬度かつ高発熱量を有するバ ィォコ一クスを得ることができる。 これは、 1 1 5〜2 3 0 °C (好ましくは 1 8 0〜2 3 00 の温度条件で加熱を行うことにより、 バイオマス原料の主成分の 1つであるへミセルロースが熱分解し、 反応容器 7 0内に発生する過熱水蒸気に よりリグニンがその骨格を保持したまま低温で反応し、 圧密効果と相乗的に作用 することによって、 より硬度が増すことに起因している。
さらに本発明に特徴的な構成として、 反応容器下端に温度検出端 8 3を設け、 反応容器下端であり且つシリンダ中心部の温度を測定できるようにし、 この位置 の温度結果に応じて反応容器の回転速度を最適化することにより、 加熱反応部 5 6に反応容器 7 0が位置している時間の最適ィヒが可能となり、 生産性の向上に繋 がる。
加熱反応工程 5 6で加熱 ·加圧成型を行った後、 反応容器は前記 8〜 2 5 M P a (より好ましくは 1 2〜1 9 MP a ) の加圧状態を保ったままさらに回転し、 冷却工程 5 7に移動する。 なお、 加熱反応工程 5 6と冷却工程 5 7の間に加熱又 は冷却の何れも行わない断熱部を設けてもよい。 冷却工程 5 7における冷却は、 前記加熱反応工程 5 6と同様に、 反応容器 7 0の外部に設けたジャケット 7 9に 媒体供給管 8 1 aより冷媒を連続的に供給し、 媒体排出管 8 2 aより冷媒を連続 的に排出することによって 4 0 ° (〜 5 0 °C以下に冷却する。 この温度よりも冷却 温度が高いとへミセルロースによる接着効果が低下し、硬度の低下の原因となる。 また、 冷却時間は 3 0〜6 0分程度かけることが好ましい。 急速に冷却すると 製造されたバイオコ一クス表面にひび割れ等が生じ、 硬度の低下の原因となるか らである。
冷却工程 5 7で冷却を行った後、 反応容器 7 0はさらに回転し、 製品排出コン ベア 5 5の位置へ移動し、 反応容器 7 0の下部を開け、 上部油圧シリンダ 7 1に よって反応容器 7 0の下部に位置する製品排出コンベア 5 5へ製造された円柱べ レット状のバイオコ一クスを押し出して排出し、 製品排出コンベア 5 5によって 荷造り ·出荷等の後工程へ排出される。
【実施例 4】
図 4は、 実施例 4に係るバイオコークス製造装置の該略図である。
バイォマスを含水率 5〜 1 0 %に調湿した後、 バイォマスを粒子径が 3 mm以 下、 好ましくは 0 . 1 mm以下になるようにミキサー等の粉碎手段によって粉砕 し、 受入ホッパ 6 1へ投入する。
バイォマスはそのままの状態では空隙が非常に大きいこと、 受熱表面積が小さ いため、 加熱加工には適さず、 均質な加工を行うために受入ホツバ 6 1へ投入す る前に粉碎しておくことは重要である。
受入ホッパ 6 1に投入されたバイオマス原料は、 搬送路 6 4上を移動し、 原料 投入口 6 2より反応容器 7 0へ投入される。 搬送路 6 4はバイォマス原料が外部 に露出しないように密閉系のパイプ状コンベアとすることが好ましい。
反応容器については前記実施例 3と同じものを用いるので、 図 5を用いて説明 する。
反応容器 7 0へバイォマス原料を投入する場合、 まず上部ゲート 7 6 bを開放 する。 まず上部ゲート 7 6 bを開け、 搬送路 6 4から原料投入口 6 2を通してバ ィォマス粉砕物を原料投入容器 7 3に、 バイオマス粉碎物の位置を検出する位置 検出センサ 7 4の位置まで投入する。 その後上部ゲート 7 6 bを閉じ、 下部ゲー 卜 7 6を開放することで一定量のバイオマス粉砕物を反応容器に充填することが できる。
反応容器 7 0内に投入されたバイオマス原料は、 上部油圧シリンダ 7 1によつ て 8〜2 5 MP a (好ましくは 1 2〜 1 9 M P a) に加圧 ·圧縮される。 反応容 器 7 0及び上部油圧シリンダ 7 1は、 前記 8〜2 5 M P a (より好ましくは 1 2 ~ 1 9 M P a ) の加圧状態を保ったまま、 反応容器 7 0の外部に設けたジャケッ ト 7 9に媒体供給管 8 1 aより熱媒を連続的に供給し、 媒体排出管 8 2 aより熱 媒を連続的に排出することによって 1 1 5。C〜2 3 0で (より好ましくは 1 8 0 〜2 3 0 ) に加熱する。 ここで、 ジャケット 7 9からの熱を反応容器内部へ伝 達しやすくするため、上部シリンダ 7 1の下部及び反応容器 7 0下部に例えば銀、 銅等の熱伝導率の高い金属板 77、 78を設けることが好ましい。 つまり、 加熱反応工程 56では、 115〜230°C、 8〜25MPa (より好 ましくは 180〜230°C、 12〜19MPa) の条件でバイオマスの加熱及び 加圧成型が行われている。
前記条件で加熱 ·加圧成型を行うことにより、 高硬度かつ高発熱量を有するバ ィォコ一クスを得ることができる。 これは、 115〜230°C (より好ましくは 180〜230°C) の温度条件で加熱を行うことにより、 バイオマス原料の主成 分の 1つであるへミセルロ一スが熱分解し、 反応容器 70内に発生する過熱水蒸 気によりリグニンがその骨格を保持したまま低温で反応し、 圧密効果と相乗的に 作用することによって、 より硬度が増すことに起因している。
さらに本発明に特徴的な構成として、 反応容器下端に温度検出端 83を設け、 反応容器下端であり且つシリンダ中心部の温度を測定できるようにし、 この位置 の温度結果に応じて反応容器の回転速度を最適化することにより、 加熱時間の最 適化が可能となり、 生産性の向上に繋がる。
加熱 ·加圧成型を行つた後、 反応容器は前記 8〜 25 MP a (好ましくは 12 〜19MP a) の加圧状態を保ったまま前記ジャケット内の熱媒を全て冷媒に入 れ替えて 40°C〜50°C以下に冷却する。 この温度よりも冷却温度が高いとへミ セルロースによる接着効果が低下し、 硬度の低下の原因となる。
また、 冷却時間は 30〜 60分程度かけることが好ましい。 急速に冷却すると 製造されたバイオコークス表面にひび割れ等が生じ、 硬度の低下の原因となるか らである。
冷却を行った後、 反応容器 70の下部を開け、 上部油圧シリンダ 71によって 反応容器 70の下部に円柱ペレツト状のバイオコークスを押し出して排出し、 製 品となる。 産業上の利用可能性
本発明により、 石炭コークス代替燃料となる安定した品質のバイオコークスを 短時間で製造する装置及びその方法として好適に利用することができる。

Claims

請 求 の 範 囲
1 . 光合成を起因とするバイオマス原料を粉碎する粉碎手段と、
該粉砕したバイオマス原料中のへミセルロースが熱分解して接着効果を発現す る温度範囲まで加熱する加熱手段と、
該加熱した状態で前記バイォマス粉碎物中のリグニンが熱硬化反応を発現する 圧力範囲まで加圧して保持する加圧手段と、
該加圧状態を保持した後に冷却する冷却手段とを有し、
前記加熱手段で加熱している区域の出口端に温度検出手段を設け、 該温度検出 結果に応じて反応終点を判断し加熱から冷却への移行するタイミングを調節する 調節手段を備えることを特徴とするバイオコークス製造装置。
2 . 前記バイオマス粉砕物を投入するピストン型押出機を有し、 前記加熱手段 及び冷却手段をピストン押出機内の押出上流から順に設け、 前記温度検出手段を 加熱手段の最下流に設けるとともに、該温度検出結果に応じて反応終点を判断し、 ピストン押出機の押出速度を調節する調節手段を備えることを特徴とする請求項 1記載のバイオコークス製造装置。
3 . 容器を貫通する複数の充填部を有する充填容器と、 該充填容器の充填部に 前記粉碎手段で粉碎したバイオマス原料を充填する充填手段とを有し、
該充填容器の複数の充填部に充填されたバイオマス原料を、 押し出して、 充填 部に充填されたバイオマス原料が押し出される方向に設けた前記加熱部及び冷却 部へ順に移動させるとともに、 前記温度検出手段を加圧加熱手段のバイォマス原 料押出方向最下流に設け、 前記温度検出手段の検出結果に応じて反応終点を判断 し、 前記押し出し速度を調節する調節手段を備えることを特徴とする請求項 1記 載のバイオコークス製造装置。
4. 前記加圧手段、 加熱手段並びに冷却手段及び冷却後の内容物を排出する排 出手段を有する反応容器を複数個設けて円状に配置するとともに、 該円状に配置 した複数の反応容器を円の外周に沿って回転させる回転手段を有し、
前記回転手段によって前記複数個の円形に配置した反応容器を円の外周に沿つ て回転させながら、 反応容器が 1周する前に、 前記充填、 加熱、 加圧、 冷却及び 排出を行うようにし、 前記温度検出手段の検出結果に応じて反応終点を判断し、 加熱から冷却への移行するタイミングを調節する調節手段を備えることを特徴と する請求項 1記載のバイォコークス製造装置。
5 . 熱媒及び冷媒の何れも流通させることのできるジャケットを有する反応容 器と、 前記反応容器に前記粉砕手段によつて粉砕したバイォマス原料を充填する 充填手段と、 該筒状容器内のバイオマス原料を加圧するピストンとを有し、 前記ジャケッ卜に熱媒を流通させて加熱し、 前記ピストンで加圧した状態を保 持する際に、 前記ピストンから最も遠くなる筒状容器内端に設けた温度検出手段 の温度検出結果より反応終点を判断し、 前記ジャケットの流通媒体を熱媒から冷 媒へ切り替えるタイミングを調節する調節手段を備えることを特徴とする請求項
1記載のバイオコークス製造装置。
PCT/JP2008/058231 2007-04-27 2008-04-22 バイオコークス製造装置及び製造方法 WO2008136476A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/597,603 US8454801B2 (en) 2007-04-27 2008-04-22 Apparatus and process for producing biocoke
EP08740916A EP2141218A4 (en) 2007-04-27 2008-04-22 DEVICE AND METHOD FOR PRODUCING BIOKOKOS
CN200880013328XA CN101903505B (zh) 2007-04-27 2008-04-22 用于生产生物炭的设备和工艺
BRPI0810249-0A2A BRPI0810249A2 (pt) 2007-04-27 2008-04-22 Aparelho e processo para a produção de biocoque

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007119267A JP5158751B2 (ja) 2007-04-27 2007-04-27 バイオコークス製造装置及び製造方法
JP2007-119267 2007-04-27

Publications (1)

Publication Number Publication Date
WO2008136476A1 true WO2008136476A1 (ja) 2008-11-13

Family

ID=39943583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/058231 WO2008136476A1 (ja) 2007-04-27 2008-04-22 バイオコークス製造装置及び製造方法

Country Status (6)

Country Link
US (1) US8454801B2 (ja)
EP (1) EP2141218A4 (ja)
JP (1) JP5158751B2 (ja)
CN (1) CN101903505B (ja)
BR (1) BRPI0810249A2 (ja)
WO (1) WO2008136476A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101871650A (zh) * 2010-04-22 2010-10-27 沈阳工程学院 一种双液压加热秸秆压缩成型工艺及设备
US10774270B2 (en) 2015-04-27 2020-09-15 Shell Oil Company Conversion of biomass or residual waste materials to biofuels

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274108A (ja) * 2007-04-27 2008-11-13 Mhi Environment Engineering Co Ltd バイオコークス製造装置及び方法
JP2009185183A (ja) * 2008-02-06 2009-08-20 Mhi Environment Engineering Co Ltd バイオコークス製造装置
JP2010100814A (ja) * 2008-10-27 2010-05-06 Kinki Univ バイオコークスの破断装置
US9909067B2 (en) 2009-01-21 2018-03-06 Cool Planet Energy Systems, Inc. Staged biomass fractionator
CN102041124A (zh) * 2010-12-23 2011-05-04 佛山市绿之果生物质燃料科技有限公司 一种生物质燃料制造方法
AU2012259853B2 (en) * 2011-05-23 2016-05-12 Jfe Engineering Corporation Method of waste melting treatment
DE102011106645A1 (de) * 2011-07-05 2013-01-10 Linde Aktiengesellschaft Verfahren zur Erzeugung von Koks
CN102994119B (zh) * 2011-12-21 2014-12-24 山西鑫立能源科技有限公司 煤热解炉的仪器仪表的控制方法
EP2954034A4 (en) * 2013-02-08 2016-12-28 Zilkha Biomass Tech Llc PROCESS FOR THE PRODUCTION OF FUEL PELLETS AND OTHER LIGNOCELLULOSIC PRODUCTS WITH REDUCED HEMICELLULOSE, ALKALINE METAL, AND CHLORINE CONTENT
CN105597862B (zh) * 2016-01-04 2018-09-04 丁启航 一种生物质燃料块生产方法及设备
KR101939158B1 (ko) * 2018-09-05 2019-01-16 류성기 장식용 바이오차 및 그 제조방법
KR102106804B1 (ko) * 2018-11-07 2020-05-06 경상대학교산학협력단 유기 용매계 보존액을 이용한 장식용 바이오차 및 그 제조방법
GB2590061B (en) * 2019-11-04 2022-05-11 Recycling Tech Ltd Improvements in and relating to reactor feed systems
CN111500302A (zh) * 2020-05-09 2020-08-07 济南大学 秸秆热解碳化设备
CN113604233B (zh) * 2021-07-09 2024-02-02 华北电力大学 一种齿笼式多室有机固废热解反应器及其热解方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52101202A (en) 1976-01-05 1977-08-25 Gunnerman Rudolf W Fuel pellets and method of producing same
JP2003129069A (ja) 2001-10-25 2003-05-08 Jgc Corp バイオマス水スラリー及びその製造方法
JP2003206490A (ja) 2002-01-15 2003-07-22 National Institute Of Advanced Industrial & Technology バイオマス半炭化圧密燃料前駆体およびバイオマス半炭化圧密燃料の製造方法
JP2003213273A (ja) 2002-01-23 2003-07-30 National Institute Of Advanced Industrial & Technology 高発熱量炭化物の製造法
JP2004043517A (ja) 2002-05-22 2004-02-12 Chugoku Shinsho Fukudai Chikumoku Yugenkoshi 高密度竹炭材
JP3613567B1 (ja) 2004-03-26 2005-01-26 株式会社西村組 燃料製造装置および燃料製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3619376A (en) * 1967-04-12 1971-11-09 Great Lakes Carbon Corp Method of making metallurgical coke briquettes from coal, raw petroleum coke, inert material and a binder
US4206713A (en) * 1975-10-17 1980-06-10 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Continuous coal processing method
WO1983001781A1 (en) * 1981-11-12 1983-05-26 Carlos Dias Brosch Method and apparatus for manufacturing carbonaceous products
JPS6127435A (ja) 1984-07-18 1986-02-06 Seiken:Kk 空気清浄化システムに於る汚染空気の誘引混入防止装置
CN1069603C (zh) 1995-11-24 2001-08-15 丸善石油化学株式会社 含有小孔的多孔碳材料、其中间产物和成形制品的制备方法
JP2000273460A (ja) * 1999-03-25 2000-10-03 Japan Steel Works Ltd:The 可燃性廃棄物の合成石炭化方法および合成石炭化装置
DE10000165A1 (de) * 2000-01-05 2001-07-12 Sgl Technik Gmbh Verfahren und Vorrichtung zur Herstellung von Bauteilen und Halbzeugen aus synthetischem Graphit oder keramischem Granulat, insbesondere zur Herstellung von Graphitrohren
JP4290842B2 (ja) * 2000-02-10 2009-07-08 機能性木質新素材技術研究組合 木質バイオマスを原料にした融解物質の製造装置および製造方法
JP3954544B2 (ja) * 2002-12-18 2007-08-08 株式会社神戸製鋼所 植物由来バイオマスの乾燥方法およびバイオマス燃料の製造方法
JP2004292787A (ja) * 2003-03-07 2004-10-21 Ube Techno Enji Kk 植物ペレットの製造方法および装置と植物混合燃料の製造方法。
US7692050B2 (en) 2003-03-28 2010-04-06 Ab-Cwt, Llc Apparatus and process for separation of organic materials from attached insoluble solids, and conversion into useful products
US7179379B2 (en) 2003-03-28 2007-02-20 Ab-Cwt, Llc Apparatus for separating particulates from a suspension, and uses thereof
JP2005126573A (ja) * 2003-10-24 2005-05-19 Hitachi Eng Co Ltd 植物系バイオマス炭の生成装置
WO2006077652A1 (ja) 2005-01-24 2006-07-27 Osaka Industrial Promotion Organization 木質バイオマス固形燃料及びその製法
US8328993B2 (en) * 2009-05-18 2012-12-11 Greenlight Energy Solutions, Llc Pyrolysis reactor for processing municipal wastes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52101202A (en) 1976-01-05 1977-08-25 Gunnerman Rudolf W Fuel pellets and method of producing same
JP2003129069A (ja) 2001-10-25 2003-05-08 Jgc Corp バイオマス水スラリー及びその製造方法
JP2003206490A (ja) 2002-01-15 2003-07-22 National Institute Of Advanced Industrial & Technology バイオマス半炭化圧密燃料前駆体およびバイオマス半炭化圧密燃料の製造方法
JP2003213273A (ja) 2002-01-23 2003-07-30 National Institute Of Advanced Industrial & Technology 高発熱量炭化物の製造法
JP2004043517A (ja) 2002-05-22 2004-02-12 Chugoku Shinsho Fukudai Chikumoku Yugenkoshi 高密度竹炭材
JP3613567B1 (ja) 2004-03-26 2005-01-26 株式会社西村組 燃料製造装置および燃料製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MIZUNO S. ET AL.: "Kogosei ni Kiin suru Sekitan Coke Digital Kano na Bio Coke no Keisei", DAI 44 KAI PROCEEDINGS OF THE JAPANESE SYMPOSIUM ON COMBUSTION, 2006, pages 294 - 295, XP008116977 *
NAKANISHI A. ET AL.: "Mokushitsu Biomass o Gen'ryo to suru Kokyodo Coke Daitai Nen'ryo no Kaihatsu", KANSAI SHIBU DAI 81 KI TEIJI SOKAI KOENKAI KOEN RONBUNSHU, 2006, pages 2 - 30, XP008116978 *
See also references of EP2141218A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101871650A (zh) * 2010-04-22 2010-10-27 沈阳工程学院 一种双液压加热秸秆压缩成型工艺及设备
US10774270B2 (en) 2015-04-27 2020-09-15 Shell Oil Company Conversion of biomass or residual waste materials to biofuels

Also Published As

Publication number Publication date
US8454801B2 (en) 2013-06-04
JP2008274107A (ja) 2008-11-13
JP5158751B2 (ja) 2013-03-06
US20100133086A1 (en) 2010-06-03
EP2141218A1 (en) 2010-01-06
CN101903505A (zh) 2010-12-01
CN101903505B (zh) 2013-09-11
BRPI0810249A2 (pt) 2014-11-18
EP2141218A4 (en) 2012-01-11

Similar Documents

Publication Publication Date Title
WO2008136476A1 (ja) バイオコークス製造装置及び製造方法
JP5216963B2 (ja) バイオコークス製造装置及びその制御方法、並びに製造方法
Peng et al. Torrefaction and densification of different species of softwood residues
US8460515B2 (en) Biocoke producing apparatus and process therefor
US20160053182A1 (en) Method & Apparatus for Producing Biochar
US20110290788A1 (en) Method and apparatus for processing fragmented material by pyrolysis
MY156930A (en) Method and system for producing synthesis gas
CN104471033A (zh) 用于烘干生物质材料的方法和设备
CN106281397B (zh) 基于太阳能集热和自供热的野外生物质热裂解炼油装置
US9719040B2 (en) Method and process for producing a water-resistant, mechanically stable form of torrefied biomass
JP2010100813A (ja) バイオコークス製造装置
WO2008136477A1 (ja) バイオコークス製造装置及び製造方法
CN102994188B (zh) 一种机制木炭的生产方法
JP2018053101A (ja) バイオマス燃料製造方法及びバイオマス燃料製造装置
KR101931159B1 (ko) 식물성 오일 부산물을 이용한 화력발전소 및 제철소용 고발열량 바이오매스 성형연료 및 이의 제조방법
Sui Lam et al. Pretreatment and pelletization of woody biomass
CN104449776A (zh) 一种高效节能环保的成型炭化料的生产方法
Lei et al. A biomass briquetting fuel machine and its large-scale operation system
JP2008274110A (ja) バイオコークス製造方法及びその装置
JP2008274112A (ja) バイオコークス製造装置及び方法
JP2008274109A (ja) バイオコークス製造装置
JP2009185180A (ja) バイオコークス製造装置
CN204529744U (zh) 一种生物质炭化气化设备
Rindyuk et al. Effect of temperature on the process of pressing organic raw materials
JP2009183875A (ja) バイオコークス製造装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880013328.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08740916

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008740916

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 6785/DELNP/2009

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12597603

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0810249

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20091016