WO2006041190A1 - Polycarbonate de faible constante photoélastique et film fabriqué à partir dudit polycarbonate - Google Patents

Polycarbonate de faible constante photoélastique et film fabriqué à partir dudit polycarbonate Download PDF

Info

Publication number
WO2006041190A1
WO2006041190A1 PCT/JP2005/019157 JP2005019157W WO2006041190A1 WO 2006041190 A1 WO2006041190 A1 WO 2006041190A1 JP 2005019157 W JP2005019157 W JP 2005019157W WO 2006041190 A1 WO2006041190 A1 WO 2006041190A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate
film
repeating unit
retardation
photoelastic constant
Prior art date
Application number
PCT/JP2005/019157
Other languages
English (en)
Japanese (ja)
Inventor
Hideaki Nitta
Original Assignee
Teijin Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Limited filed Critical Teijin Limited
Priority to JP2006540999A priority Critical patent/JP4759518B2/ja
Publication of WO2006041190A1 publication Critical patent/WO2006041190A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/16Aliphatic-aromatic or araliphatic polycarbonates
    • C08G64/1608Aliphatic-aromatic or araliphatic polycarbonates saturated
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133637Birefringent elements, e.g. for optical compensation characterised by the wavelength dispersion

Definitions

  • the present invention relates to polycarbonate.
  • the present invention relates to a film useful as a retardation film, comprising a polycarbonate having a low photoelastic constant, and the polycarbonate.
  • Aromatic polycarbonates containing bisphenol A as the bisphenol component are used in various applications including optical applications such as optical disk substrates and retardation films.
  • JP-A 2000-169573 and JP-A 2002.308978 describe copolymer polycarbonates of aromatic bisphenol having a fluorene structure and alicyclic diol as polycarbonate having excellent heat resistance. ing.
  • a liquid crystal display device is usually provided with a phase difference film for improving display quality such as color compensation of liquid crystal, widening of viewing angle, and improvement of contrast.
  • Polycarbonate, polyethersulfone, etc. are often used as the polymer material for the retardation film.
  • ⁇ / 4 plates with a retardation value of 1/4 wavelength and ⁇ 2 plates with 1Z2 are reflective LCDs, anti-glare films, optical disk pickups, liquid crystal projectors, etc.
  • the phase difference is ⁇ 4 or ⁇ / 2 over a wide range of 400 to 700 nm in the visible light region. That is, a phase difference film having a wavelength dispersion characteristic such that the phase difference value becomes smaller as the wavelength becomes shorter is desirable.
  • the birefringence of a polymer material has the property that it increases as the wavelength becomes shorter. ing.
  • a retardation film made of a general-purpose polymer such as polycarbonate
  • a ⁇ / 4 plate and a ⁇ / 2 plate are laminated together
  • a method of laminating two retardation films having different Abbe numbers has been known (Japanese Patent Laid-Open Nos. 10-688 and 16 and Japanese Patent Laid-Open No. 2-285315).
  • Japanese Patent Laid-Open Nos. 10-688 and 16 and Japanese Patent Laid-Open No. 2-285315 Japanese Patent Laid-Open No.
  • the retardation film is made of a polymer material composed of a combination of polymer units having positive and negative refractive index anisotropies having different birefringence wavelength dispersion properties.
  • a polymer material an aromatic polycarbonate containing a fluorene component is described.
  • the polycarbonate obtained from such an alicyclic diol has a smaller photoelastic constant than the case where an aromatic diol is used, but the glass transition point is almost lowered. In particular, when applied as a retardation film, it cannot be said that heat resistance is sufficient. This is because excellent heat stability is desired for optical films for liquid crystal display devices. Disclosure of the invention
  • Another object of the present invention is to provide a liquid crystal display device comprising the retardation film.
  • R 2 are the same or different and are a hydrogen atom or a methyl group
  • R 3 is an aliphatic or alicyclic hydrocarbon group having 2 to 20 carbon atoms, or from 2 to 20 carbon atoms and 1 to 6 oxygen atoms.
  • the repeating unit (A) is 5 to 3 0 mol 0/0
  • the repeating unit (B) is 1 0-9 0 mol%
  • Repetitive return unit (C) is achieved by a polycarbonate, in a proportion of 5-8 5 mol 0/0.
  • the inventor of the present invention relates to a copolymer polycarbonate having an aromatic bisphenol having a fluorene ring in the side chain and an alicyclic diol as a diol component, its molecular structure and copolymer composition, and a retardation comprising the copolymer polycarbonate. The film and its wavelength dispersion characteristics were studied.
  • FIG. 1 is a chart of the 1 H-NMR spectrum of the polycarbonate produced in Example 1. Preferred embodiments of the invention
  • the polycarbonate of the present invention contains repeating units represented by the above formulas (A), (B) and (C). Specifically, it has a structure having a fluorene ring, a structure derived from isosorbide, and a structure having a specific aliphatic or alicyclic hydrocarbon group.
  • the above formula (B) is a repeating unit derived from isosorbide (1,4: 3,6-dianhydro-D-glucitol). By containing such a unit, heat resistance is improved and high stability to heat is given.
  • Isosorbide is derived from natural products and is also obtained from natural biomass, contributing to the effective use of resources. In this respect, the polycarbonate of the present invention is extremely useful.
  • R 3 is an aliphatic or alicyclic hydrocarbon group having 2 to 20 carbon atoms, or an aliphatic group having 2 to 20 carbon atoms and 1 to 6 oxygen atoms. Or it is an alicyclic hydrocarbon group. Such an aliphatic or alicyclic hydrocarbon group may contain an ether bond.
  • R 3 for example, repeating units represented by the following formulas (D) to (G) are excellent in optical properties and economically advantageous.
  • the above formula (D) is a repeating unit having a carbonate bond derived from spiroglycol.
  • the above formula is a repeating unit having a carbonate bond derived from tricyclodecane dimethanol.
  • the above formula (F) is a repeating unit having a carbonate bond derived from cyclohexanedimethanol.
  • the above formula (G) is a repeating unit having a carbonate bond derived from a chain aliphatic diol.
  • m is an integer of 2 to 12. Specific examples include those derived from ethylene dalycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol.
  • the repeating units represented by the above formulas (D) to (G) may be one type or a combination thereof.
  • the ratio of the repeating units represented by the above formulas (A), (B) and (C) is based on the sum of the above repeating units (A), (B) and (C). a), (B) the sum of ⁇ Pi (C) as a 1 0 0 mole 0/0, the repeating unit (a) force S. 5 to 3 0 mol 0/0, the repeating unit (B) power 1 0-9 0 Mol%, repeating unit (C) occupies a proportion of 5 to 85 mol%.
  • a poly-force-bonate having the characteristics of high heat resistance and low photoelastic constant is provided. Furthermore, it is possible to provide a film that is excellent in film moldability and that develops a phase difference by stretching. Furthermore, it is possible to provide a retardation film having wavelength dispersion characteristics such that the retardation value becomes smaller as the wavelength becomes shorter.
  • the repeating unit represented by the above formulas (A), (B) and (C) may satisfy the above ratio. Therefore, a copolymer is preferable as the polycarbonate of the present invention.
  • the copolymer composition ratio is different. Even if it is a mixture of two or more, or a combination of them. In the case of a mixture, transparency is good if it is a combination of highly compatible polymers.
  • the polycarbonate of the present invention has the following formula (H) as long as the heat resistance is not greatly impaired, the photoelastic constant is increased, and the wavelength dispersion characteristic of retardation is not impaired.
  • a repeating unit comprising an aromatic diol represented by The repeating unit is preferably 10 mol% or less of all the repeating units constituting the polycarbonate.
  • Rn R ⁇ is independently at least one group selected from a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, and an aryl group having 6 to 12 carbon atoms. Is a group represented by the following formula.
  • R 19 to R 22 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or 1 to
  • At least one group selected from the group consisting of 20 alkoxy groups and aryl groups having 6 to 20 carbon atoms, and 9 and R 20 are combined to form a cycloalkyl ring or heterocyclic ring having 3 to 8 carbon atoms. And may further have an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms as a substituent on a carbon atom of these rings.
  • the polycarbonate of the present invention is preferably a copolymer made of a repeating unit represented by the above formulas (A), (B) and (C).
  • “Substantially” means that the repeating unit composed of the aromatic diol represented by the above formula (H) may be contained in 10 mol% or less of all repeating units. The explanation of the above formula (H) is as described above.
  • the polycarbonate of the present invention has a molecular weight of reduced viscosity (qs measured in a mixed solvent of phenol 1,1,2,2-tetrachloroethane (volume ratio 50/50) at a concentration of 0.5 gZd L and 30 ° C. p / c) is preferably in the range of 0.1 to L 0 dL / g, more preferably 0.30 to 8 dL. 4 0-5 d L "g. If the reduced viscosity is less than 0.1 dLZ g, the toughness of the film cannot be maintained, and more than 10 dLZ g. If it is too large, it will be difficult to produce polymers and films.
  • the polycarbonate of the present invention has high heat resistance and good stability against heat.
  • such polycarbonates preferably have a glass transition temperature (T g) in the range of 120 to 200 ° C.
  • T g glass transition temperature
  • a more preferable Tg is in the range of 1300 to 1700C.
  • the polycarbonate of the present invention is characterized by a small photoelastic constant.
  • Is the absolute value of photoelastic constant it is preferable that 2 5 X 1 0- 1 2 P a 1 or less.
  • this photoelastic constant is low in order to maintain a display stability with little change in retardation due to stress applied to the film.
  • the absolute value of the more preferred photoelastic constant is 0 ⁇ 2 0 X 1 0- 1 2 P a- 1.
  • a method of polymerizing by a melt polymerization method using these and a carbonic acid diester as a raw material can be preferably mentioned.
  • carbonic acid diester used in the melt polymerization examples include diphenyl carbonate, dinaphthyl carbonate, bis (diphenyl) carbonate, dimethyl carbonate, jetyl carbonate, dibutyl carbonate, and the like. In terms of cost, diphenol carbonate is preferred.
  • the raw material diol and carbonic acid diester are heated at normal pressure in the presence of a polymerization catalyst, pre-reacted, and then stirred while heating at a temperature of 28 ° C. or lower under reduced pressure. Then, the generated phenol is distilled off.
  • the reaction system is preferably maintained in an atmosphere of a gas, such as nitrogen, which is inert with respect to the raw materials, reaction mixture and reaction product. Examples of inert gases other than nitrogen include argon.
  • the polycarbonate of the present invention when it is a copolymer, it is heated at normal pressure at the beginning of the reaction. Preferably. This is because the oligomerization reaction proceeds, and when the aromatic alcohol or aliphatic alcohol such as phenol is distilled off in the latter stage of the reaction to distill off the unreacted monomer, the molar balance is lost and the degree of polymerization decreases. Is to prevent.
  • the reaction can be advanced by appropriately removing the aromatic alcohol or aliphatic alcohol from the system (reactor). For this purpose, it is effective to reduce the pressure.
  • the polymerization temperature is preferably in the range of 180 ° C. or more and 2 80 ° C. or less, and more preferably in the range of 230 to 2700 ports. Although it is preferable to make the temperature as low as possible from the viewpoint of suppressing the coloration of the copolymer, it is necessary to raise the temperature to some extent in order to appropriately proceed the polymerization reaction and to have a random composition of the copolymer. There is.
  • polymerization catalyst for such polymerization examples include known compounds such as (i) a nitrogen-containing basic compound, (ii) an alkali metal compound, and (iii) an alkaline earth metal compound. These may be used alone or in combination of two or more, but (i) and (ii), (i) and (iii) or (i) and (ii) and (iii) In many cases, it is preferable to use them in combination.
  • nitrogen-containing basic compounds include tetramethylammonium hydroxide, tetraptylammonium hydroxide, trimethylbenzylammonium hydroxide, triethylamine, 2-methylimidazole, tetra Examples include methylammoniumborohydride. .
  • alkali metal compounds include sodium hydride, lithium oxide, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium acetate, disodium hydrogen phosphate, disodium salt of bisphenol ⁇ , dipotassium salt, Examples include dilithium salt, disodium salt of phenol, dipotassium salt, and dilithium salt.
  • alkaline earth metal compounds include calcium hydroxide, magnesium hydroxide, hydribalium hydroxide, calcium hydrogen carbonate, magnesium hydrogen carbonate, calcium carbonate, calcium acetate, calcium stearate and the like. I can do it.
  • the polycarbonate of the present invention may contain various additives as necessary.
  • additives include heat stabilizers, stabilization aids, plasticizers, antioxidants, light stabilizers, heavy metal deactivators, flame retardants, lubricants, antistatic agents, surfactants, UV absorption And antibacterial agents.
  • the polycarbonate of the present invention is excellent in moldability and transparency, it is useful as, for example, a film, a sheet, and various molded articles. Specific examples include optical films, lenses, automotive parts, transparent containers, and optical disk substrates.
  • a film made of the polycarbonate of the present invention can be stretched, and an oriented film obtained by stretching has birefringence, and therefore is suitable as a retardation film.
  • Examples of the method for producing the film include known methods such as a solution casting method, a melt extrusion method, a heat pressing method, and a calendar method.
  • the polycarbonate (especially copolymer polycarbonate) used in the present invention has good solubility in an organic solvent
  • a solution casting method can be applied.
  • the solvent salt methylene, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane, dioxolane, dioxane and the like are preferably used.
  • the amount of residual solvent in the film obtained by the solution casting method is preferably 2% by weight or less, more preferably 1% by weight or less. When the amount of residual solvent is 2% by weight or more, the glass transition temperature of the film is remarkably lowered, which is not preferable from the viewpoint of heat resistance.
  • the melt extrusion method is preferred from the viewpoint of productivity.
  • a method in which a resin is extruded to a cooling roll using a T die is preferably used.
  • the temperature at this time is a force determined by the molecular weight, Tg, melt flow characteristics, etc. of the polycarbonate. Is more preferable. If the temperature is too low, the viscosity increases and polymer orientation and stress strain may remain. If the temperature is too high, problems such as thermal deterioration, coloring, and die lines (stripe) from the T-die are likely to occur.
  • the thickness of the film of the present invention is preferably in the range of 30 to 40 ⁇ , and more preferably in the range of 40 to 30 ⁇ .
  • a film is further stretched to obtain a retardation film, it may be appropriately determined within the above range in consideration of a desired retardation value and thickness of the retardation film.
  • the unstretched film thus obtained is stretched and oriented, whereby the retardation film of the present invention can be obtained.
  • the stretching method a known method such as longitudinal uniaxial stretching, lateral uniaxial stretching using a tenter, or the like, simultaneous biaxial stretching combining them, or sequential biaxial stretching can be used.
  • the longitudinal uniaxial stretching is preferred. Further, it is preferable to carry out continuously in terms of productivity, but it may be carried out batchwise.
  • the stretching temperature is in the range of (Tg-20 ° C) to (Tg + 30 ° C) with respect to the glass transition temperature (Tg) of the polycarbonate, preferably (Tg-10 ° C) to (Tg + 20 It is within the range of ° C).
  • the draw ratio is determined by the target retardation value, but it is 1.05 to 4 times, more preferably 1.1 to 3 times in the vertical and horizontal directions.
  • stretching the film obtained by the solution cast method means the glass transition temperature which contains a trace amount solvent in this film.
  • the retardation film of the present invention is characterized in that in the visible light region having a wavelength of 400 to 700 nm, the retardation in the film plane becomes smaller as the wavelength becomes shorter. That is, the in-plane retardation values R (450), R (550), and R (650) at wavelengths of 450 nm, 550 ⁇ m, and 650 nm are represented by the following equation (1). And (2)
  • the retardation value R in the film plane is defined by the following formula (3), and is a characteristic representing the phase delay of light transmitted in the direction perpendicular to the film.
  • n x is a refractive index in a slow axis in the film plane (highest refractive index axis)
  • n y is a refractive index of n x and the vertical direction in the film plane
  • d Is the thickness of the film.
  • the wavelength dispersion characteristic of the phase difference preferably
  • the retardation value R (550) in the film plane at a wavelength of 550 nm is preferably R (5′50)> 50 nm.
  • the retardation film of the present invention can be used as a wide band ⁇ / 4 plate or ⁇ 2 plate without being laminated. In such applications, it is further desirable that 100 nm ⁇ R (550) ⁇ 180 nm for the ⁇ 4 plate, and 220 nm ⁇ R (550), 330 nm for the ⁇ / 2 plate.
  • the thickness of the retardation film of the present invention is related to the target retardation value, but is in the range of 20 to 20 ⁇ , more preferably 30 to 15 ⁇ .
  • the retardation film of the present invention has a low photoelastic constant of the polycarbonate constituting it. Therefore, the change of the retardation with respect to the stress is small, and the liquid crystal display device provided with such a retardation film has excellent display stability.
  • the retardation film of the present invention needs to have high transparency, and is desirably 85% or more in total light transmittance, more preferably 88% or more.
  • the haze value is preferably 5% or less, more preferably 3% or less.
  • T g Glass transition temperature
  • In-plane retardation value of film R Measured in a wavelength range of 400 to 800 nm using a spectroscopic ellipsometer Ml 50 manufactured by JASCO Corporation. The in-plane retardation value R was measured with the incident light beam perpendicular to the film surface. ⁇
  • Photoelastic constant of film Measured with a spectroscopic lipometer Ml 50 manufactured by JASCO Corporation. It was calculated from the change in retardation value when stress was applied to the film at a measurement wavelength of 5500 nm.
  • B CF biscresol fluorene
  • the pressure in the reaction vessel was reduced to 1.3 3 X 10 to 2 MPa, and the reaction was carried out for 20 minutes while distilling off the phenol formed. Then temperature was raised to 2 0 0 ° C, the pressure was gradually reduced, while distilling phenol 3. 9 9 X 1 0 one 3 MP a at reacted 2 0 minutes, further, the 2 1 5 ° C The temperature was raised and reacted for 20 minutes. Next, the temperature was raised to 230 ° C. and allowed to react for 10 minutes, and the pressure was reduced to 2.6 6 X 1 0 to 3 MPa to react for 10 minutes. Was continued, and the temperature was raised to 250 ° C. and reacted for 10 minutes.
  • the pressure was reduced to 1.33 ⁇ 10 to 3 MPa, 10 minutes, and further reduced to 1.33 ⁇ 10 to 4 MPa or less for 1.5 hours to complete the polymerization reaction.
  • the polymer obtained had a reduced viscosity sp Zc of 0.72 dL / g and a glass transition temperature of 142 ° C.
  • 1 H-NMR measurement of the polymer was carried out using deuterated form solvent, and it was confirmed that a copolymerized polycarbonate having a composition according to the monomer charge ratio was obtained (see Fig. 1).
  • the resin was dissolved in methylene chloride to prepare a 15 wt% solution, and a cast film was prepared by a solution casting method.
  • the unstretched film was stretched by a batch-type biaxial stretching apparatus in which the film end was fixed with a chuck. The horizontal direction is free, and the film is stretched uniaxially by 1/5 times at a temperature of 147 ° C.
  • the film thickness at the center of the film after stretching, phase difference R (550), and its wavelength dispersion, total light transmittance, haze were measured. The results are shown in Table 1.
  • the other diols used were tricyclodecane dimethanol (14.72 g, 0.075 mol), isosorbide (6.58 g), and BCF 11.36 g (0.03 mol).
  • the copolymerized polycarbonate was melt-polymerized.
  • the polymer obtained had a reduced viscosity of 0.47 dL / g and a glass transition temperature of 143 ° C.
  • An unstretched film was prepared in the same manner as in Example 1, and longitudinally uniaxially stretched 1.5 times at a temperature of 148 ° C. Table 1 shows the physical properties of the stretched film. '
  • Example 1 As the diols, Example 1 was used except that 24.20 g (0.0795 monole) of spiroglyconole, 7.67 g (0.0525 mol) of isosonolevid and 6.81 g (0.018 mol) of BCF were used as diols. Similarly, melt polymerization of the copolymerized polycarbonate was performed. The polymer obtained had a reduced viscosity of 0.990 dL / g and a glass transition temperature of 138 ° C. An unstretched film was prepared in the same manner as in Example 1, and longitudinally uniaxially stretched 1.5 times at a temperature of 143 ° C. Table 1 shows the physical properties of the stretched film.
  • an optical laminated film having a constitution of polarizing plate / stretched film / aluminum reflector was prepared by shifting the angle between the polarizing plate transmission axis and the retardation film slow axis by 45 degrees. Viscosity between each film A dressing was used. When the laminated film was visually observed, it was black with no coloration.
  • Such a retardation film was used for a reflective TFT or a transflective TFT; it was found to have excellent characteristics as an L / 4 plate.
  • 1,3-propanediol 136.8 g (1.8 mol), isosorbide 10 52 g (7.2 mol) and BCF 378.5 g (1.0 mol) were used, and diphenyl carbonate was used. 2163 g (10.1 mol), 9 2. lmg (1.01 mmol) of tetramethylammonium hydroxide as a polymerization catalyst and 1.36 mg of 2,2-bis (4-hydroxyphenyl) propaninatrium salt (5.0 ⁇ mol) was used, and the copolymerization polycarbonate was melt-polymerized in the same manner as in Example 1 except for the charging procedure and reaction conditions.
  • the polymer obtained had a reduced viscosity of 0.59 dL Zg and a glass transition temperature of 1.47 ° C.
  • the polymer is melt-extruded from a T-die with a width of 15 cm using a twin-screw extruder (TEX 30 SS-42 BW-3 V manufactured by Nippon Steel Works) and continuously formed with a cooling drum. did.
  • Film formation was carried out at a cylinder 1 and a T-die temperature of 250 ° C, a cooling drum temperature of 140 ° C, and a film formation speed of 1 m / min.
  • a film with a thickness of 104 ⁇ m excellent in transparency and uniformity was obtained.
  • This film was stretched 1.5 times longitudinally and uniaxially at a temperature of 152 ° C. using the same stretching equipment as in Example 1.
  • Table 1 shows the physical properties of the stretched film. table 1
  • the polycarbonate of the present invention has high heat resistance and low photoelastic constant. In addition, a film with good transparency can be obtained. Therefore, it is extremely useful as a polymer for optical applications such as a retardation film.

Abstract

La présente invention décrit un polycarbonate comportant une structure incluant un cycle fluorène ainsi qu’une structure dérivée d’un isosorbide. Ledit polycarbonate présente une résistance à la chaleur élevée ainsi qu’une faible constante photoélastique, et permet l'obtention d'un film de transparence satisfaisante. Ledit polycarbonate peut ainsi être employé en tant que polymère dans des applications optiques, comme les films retardateurs optiques.
PCT/JP2005/019157 2004-10-14 2005-10-12 Polycarbonate de faible constante photoélastique et film fabriqué à partir dudit polycarbonate WO2006041190A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006540999A JP4759518B2 (ja) 2004-10-14 2005-10-12 光弾性定数の低いポリカーボネート及びそれからなるフィルム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-299828 2004-10-14
JP2004299828 2004-10-14

Publications (1)

Publication Number Publication Date
WO2006041190A1 true WO2006041190A1 (fr) 2006-04-20

Family

ID=36148474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019157 WO2006041190A1 (fr) 2004-10-14 2005-10-12 Polycarbonate de faible constante photoélastique et film fabriqué à partir dudit polycarbonate

Country Status (3)

Country Link
JP (1) JP4759518B2 (fr)
TW (1) TW200628511A (fr)
WO (1) WO2006041190A1 (fr)

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006232897A (ja) * 2005-02-22 2006-09-07 Mitsubishi Gas Chem Co Inc コポリカーボネート樹脂
JP2008024919A (ja) * 2006-06-19 2008-02-07 Mitsubishi Chemicals Corp ポリカーボネート共重合体及びその製造方法
JP2008222965A (ja) * 2007-03-15 2008-09-25 Mitsubishi Chemicals Corp ポリカーボネート樹脂及び光学フィルム
JP2008274203A (ja) * 2007-03-30 2008-11-13 Teijin Ltd 押出成形品および光学用フィルム
WO2008156186A1 (fr) 2007-06-19 2008-12-24 Teijin Chemicals Ltd. Film optique
EP2033981A1 (fr) * 2006-06-19 2009-03-11 Mitsubishi Chemical Corporation Copolymère de polycarbonate et son procédé de production
JP2009062501A (ja) * 2007-09-10 2009-03-26 Teijin Ltd 光学素子成形品およびそのための成形材料
JP2009079190A (ja) * 2007-09-27 2009-04-16 Teijin Ltd 表面保護フィルムまたはシート
JP2009079191A (ja) * 2007-09-27 2009-04-16 Teijin Ltd 光学フィルム
EP2053072A1 (fr) * 2006-08-18 2009-04-29 Mitsubishi Gas Chemical Company, Inc. Résine de polycarbonate et film optique utilisant celle-ci
JP2009102536A (ja) * 2007-10-24 2009-05-14 Teijin Ltd 共重合ポリカーボネート樹脂およびその製造方法
JP2009144014A (ja) * 2007-12-12 2009-07-02 Mitsubishi Chemicals Corp ポリカーボネートからなる車両用ランプレンズ
JP2009144019A (ja) * 2007-12-12 2009-07-02 Mitsubishi Chemicals Corp ポリカーボネートからなる金属・無機薄膜を有する成形品
JP2009191226A (ja) * 2008-02-18 2009-08-27 Teijin Ltd 光拡散性ポリカーボネート樹脂組成物
JP2009191227A (ja) * 2008-02-18 2009-08-27 Teijin Ltd ポリカーボネート樹脂組成物
EP2163583A1 (fr) * 2007-06-05 2010-03-17 Teijin Limited Composition de résine de polycarbonate
WO2010064721A1 (fr) * 2008-12-05 2010-06-10 帝人化成株式会社 Film optique
JP2010134232A (ja) * 2008-12-05 2010-06-17 Teijin Chem Ltd 光学フィルム
WO2010071079A1 (fr) * 2008-12-16 2010-06-24 帝人化成株式会社 Film optique
US7753825B2 (en) 2005-10-19 2010-07-13 Performance Health Systems, Llc Systems and methods for administering an exercise program
JP2010230832A (ja) * 2009-03-26 2010-10-14 Teijin Chem Ltd 光学フィルム
WO2010119574A1 (fr) * 2009-04-16 2010-10-21 帝人株式会社 Polycarbonate copolymérisé et son procédé de fabrication
JP2010261008A (ja) * 2008-11-28 2010-11-18 Mitsubishi Chemicals Corp ポリカーボネート樹脂、ポリカーボネート樹脂の製造方法及び透明フィルム
JP2011500925A (ja) * 2007-10-18 2011-01-06 サビック・イノベーティブ・プラスチックス・アイピー・ベスローテン・フェンノートシャップ イソソルビド系ポリカーボネート、製造方法、及びそれから形成される物品
JP2011079898A (ja) * 2009-10-05 2011-04-21 Teijin Chem Ltd 光弾性定数が低いポリカーボネート樹脂および光学フィルム
JP2011079897A (ja) * 2009-10-05 2011-04-21 Teijin Chem Ltd 光弾性定数が低いポリカーボネート樹脂および光学フィルム
JP2011079899A (ja) * 2009-10-05 2011-04-21 Teijin Chem Ltd 光弾性定数が低いポリカーボネート樹脂および光学フィルム
WO2011062163A1 (fr) 2009-11-17 2011-05-26 三菱化学株式会社 Résine de polycarbonate et film transparent la comprenant
JP2011127108A (ja) * 2009-11-19 2011-06-30 Mitsubishi Chemicals Corp ポリカーボネート共重合体
JP2011148942A (ja) * 2010-01-25 2011-08-04 Teijin Chem Ltd 光弾性定数の低いポリカーボネート樹脂およびフィルム
WO2011149073A1 (fr) 2010-05-27 2011-12-01 三菱化学株式会社 Résine de polycarbonate et film transparent à base de celle-ci
JP2012111794A (ja) * 2010-11-19 2012-06-14 Mitsubishi Gas Chemical Co Inc ポリカーボネート樹脂、それを用いた光学フィルム、位相差フィルムおよび偏光板
WO2012133856A1 (fr) * 2011-03-31 2012-10-04 三菱化学株式会社 Procédé pour la préparation d'une résine de polycarbonate, pellets de résine de polycarbonate et film étiré
WO2012153738A1 (fr) 2011-05-09 2012-11-15 三菱化学株式会社 Résine polycarbonate et film transparent comprenant celle-ci
JP2012236877A (ja) * 2011-05-10 2012-12-06 Mitsubishi Chemicals Corp ポリカーボネート樹脂組成物及びそれよりなる光学フィルム
JPWO2011021720A1 (ja) * 2009-08-21 2013-01-24 帝人株式会社 射出成形用加飾シート
WO2013039179A1 (fr) 2011-09-14 2013-03-21 三菱化学株式会社 Film à différence de phase, plaque de polarisation circulaire l'utilisant, et dispositif d'affichage d'images
WO2013039178A1 (fr) 2011-09-14 2013-03-21 三菱化学株式会社 Film à différence de phase, plaque de polarisation circulaire l'utilisant, et dispositif d'affichage d'images
JP2013129829A (ja) * 2011-11-22 2013-07-04 Mitsubishi Chemicals Corp ポリカーボネートの製造方法
WO2013147091A1 (fr) * 2012-03-30 2013-10-03 日東電工株式会社 Film de long retard, plaque de polarisation circulaire et panneau électroluminescent organique
KR20140010109A (ko) 2011-03-31 2014-01-23 미쓰비시 가가꾸 가부시키가이샤 폴리카보네이트의 제조 방법 및 투명 필름
WO2014021346A1 (fr) 2012-08-01 2014-02-06 三菱化学株式会社 Composition de résine polycarbonate et film transparent
WO2014061677A1 (fr) 2012-10-16 2014-04-24 三菱化学株式会社 Composition de résine, film allongé, plaque de polarisation de façon circulaire et dispositif d'affichage d'image
CN103992469A (zh) * 2007-12-13 2014-08-20 三菱化学株式会社 聚碳酸酯及其成型物
JP2014205829A (ja) * 2013-03-21 2014-10-30 三菱化学株式会社 樹脂組成物及びそれを用いたフィルム
JP5674802B2 (ja) * 2010-10-05 2015-02-25 帝人株式会社 ポリカーボネート樹脂からなる成形品
US9018340B2 (en) 2011-04-19 2015-04-28 Teijin Limited Copolycarbonate and transparent molded article obtained therefrom
KR101522053B1 (ko) * 2007-10-04 2015-05-20 데이진 가부시키가이샤 식물 유래 성분을 갖는 폴리카보네이트 및 그 제조 방법
JP2015199706A (ja) * 2014-04-04 2015-11-12 三菱化学株式会社 オリゴフルオレンジエステル、及びそれを用いた樹脂組成物の製造方法
KR20160126998A (ko) 2014-02-27 2016-11-02 미쓰비시 가가꾸 가부시키가이샤 중축합계 수지 및 그것으로 이루어지는 광학 필름
KR20180022712A (ko) 2015-06-30 2018-03-06 미쯔비시 케미컬 주식회사 폴리카보네이트 수지 조성물, 그 제조 방법, 성형체
EP3409708A1 (fr) 2008-11-28 2018-12-05 Mitsubishi Chemical Corporation Procédé de préparation d'un matériau brut de polycarbonate et procédé de fabrication de polycarbonate
CN109642978A (zh) * 2016-08-30 2019-04-16 日东电工株式会社 偏振片
JP2022110005A (ja) * 2020-07-28 2022-07-28 三井化学株式会社 ポリカーボネート樹脂、および光学成形体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5448264B2 (ja) 2009-11-19 2014-03-19 三菱化学株式会社 ポリカーボネート樹脂フィルム並びに透明フィルム
KR102285517B1 (ko) 2014-04-16 2021-08-03 닛토덴코 가부시키가이샤 위상차 필름, 원 편광판 및 화상 표시 장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09268225A (ja) * 1996-01-30 1997-10-14 Teijin Ltd オキサスピロウンデカン基を含有するポリカーボネート共重合体およびその製造法
JP2002338668A (ja) * 2001-05-15 2002-11-27 Fuji Photo Film Co Ltd 光学活性ポリエステル、光反応型キラル剤、液晶組成物、液晶カラーフィルタ、光学フィルム及び記録媒体、並びに液晶の螺旋構造を変化させる方法、液晶の螺旋構造を固定化する方法
JP2003090917A (ja) * 2001-07-09 2003-03-28 Teijin Chem Ltd 位相差フィルム
JP2003292603A (ja) * 2002-03-29 2003-10-15 Matsushita Electric Ind Co Ltd 熱可塑性成形材料
JP2003321596A (ja) * 2002-05-02 2003-11-14 Teijin Ltd 非晶性ノルボルネン系樹脂組成物、光ディスク基板および光ディスク
WO2004111106A1 (fr) * 2003-06-16 2004-12-23 Teijin Limited Polycarbonate et procede de fabrication correspondant
JP2005146140A (ja) * 2003-11-17 2005-06-09 Mitsubishi Gas Chem Co Inc ポリカーボネート共重合体およびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4313542B2 (ja) * 2002-03-29 2009-08-12 帝人株式会社 位相差フィルム及びその製造方法
JP4196326B2 (ja) * 2002-06-12 2008-12-17 三菱瓦斯化学株式会社 ポリカーボネート共重合体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09268225A (ja) * 1996-01-30 1997-10-14 Teijin Ltd オキサスピロウンデカン基を含有するポリカーボネート共重合体およびその製造法
JP2002338668A (ja) * 2001-05-15 2002-11-27 Fuji Photo Film Co Ltd 光学活性ポリエステル、光反応型キラル剤、液晶組成物、液晶カラーフィルタ、光学フィルム及び記録媒体、並びに液晶の螺旋構造を変化させる方法、液晶の螺旋構造を固定化する方法
JP2003090917A (ja) * 2001-07-09 2003-03-28 Teijin Chem Ltd 位相差フィルム
JP2003292603A (ja) * 2002-03-29 2003-10-15 Matsushita Electric Ind Co Ltd 熱可塑性成形材料
JP2003321596A (ja) * 2002-05-02 2003-11-14 Teijin Ltd 非晶性ノルボルネン系樹脂組成物、光ディスク基板および光ディスク
WO2004111106A1 (fr) * 2003-06-16 2004-12-23 Teijin Limited Polycarbonate et procede de fabrication correspondant
JP2005146140A (ja) * 2003-11-17 2005-06-09 Mitsubishi Gas Chem Co Inc ポリカーボネート共重合体およびその製造方法

Cited By (124)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006232897A (ja) * 2005-02-22 2006-09-07 Mitsubishi Gas Chem Co Inc コポリカーボネート樹脂
US7753825B2 (en) 2005-10-19 2010-07-13 Performance Health Systems, Llc Systems and methods for administering an exercise program
JP2015110807A (ja) * 2006-06-19 2015-06-18 三菱化学株式会社 ポリカーボネート共重合体及びその製造方法
KR101357473B1 (ko) * 2006-06-19 2014-02-03 미쓰비시 가가꾸 가부시키가이샤 폴리카보네이트 공중합체 및 그 제조 방법
EP2489691A1 (fr) * 2006-06-19 2012-08-22 Mitsubishi Chemical Corporation Copolymère de polycarbonate et son procédé de production
EP2033981A1 (fr) * 2006-06-19 2009-03-11 Mitsubishi Chemical Corporation Copolymère de polycarbonate et son procédé de production
JP2013139584A (ja) * 2006-06-19 2013-07-18 Mitsubishi Chemicals Corp ポリカーボネート共重合体及びその製造方法
EP2305734A1 (fr) * 2006-06-19 2011-04-06 Mitsubishi Chemical Corporation Copolymère de polycarbonate et son procédé de production
US8865855B2 (en) 2006-06-19 2014-10-21 Mitsubishi Chemical Corporation Polycarbonate copolymer and method of producing the same
JP2017082249A (ja) * 2006-06-19 2017-05-18 三菱化学株式会社 ポリカーボネート共重合体及びその製造方法
US9193823B2 (en) 2006-06-19 2015-11-24 Mitsubishi Chemical Corporation Polycarbonate copolymer and method of producing the same
CN102276821A (zh) * 2006-06-19 2011-12-14 三菱化学株式会社 聚碳酸酯共聚物及其制造方法
JP2008024919A (ja) * 2006-06-19 2008-02-07 Mitsubishi Chemicals Corp ポリカーボネート共重合体及びその製造方法
CN101448871B (zh) * 2006-06-19 2012-05-30 三菱化学株式会社 聚碳酸酯共聚物及其制造方法
EP2033981A4 (fr) * 2006-06-19 2010-01-27 Mitsubishi Chem Corp Copolymère de polycarbonate et son procédé de production
US8877341B2 (en) 2006-08-18 2014-11-04 Mitsubishi Gas Chemical Company, Inc Polycarbonate resin and optical film using the same
EP2053072A4 (fr) * 2006-08-18 2010-01-27 Mitsubishi Gas Chemical Co Résine de polycarbonate et film optique utilisant celle-ci
KR101501783B1 (ko) * 2006-08-18 2015-03-11 미츠비시 가스 가가쿠 가부시키가이샤 폴리카보네이트 수지 및 이것을 사용한 광학필름
EP2053072A1 (fr) * 2006-08-18 2009-04-29 Mitsubishi Gas Chemical Company, Inc. Résine de polycarbonate et film optique utilisant celle-ci
JP5526545B2 (ja) * 2006-08-18 2014-06-18 三菱瓦斯化学株式会社 ポリカーボネート樹脂およびこれを用いた光学フィルム
JP2008222965A (ja) * 2007-03-15 2008-09-25 Mitsubishi Chemicals Corp ポリカーボネート樹脂及び光学フィルム
JP2008274203A (ja) * 2007-03-30 2008-11-13 Teijin Ltd 押出成形品および光学用フィルム
EP2163583A1 (fr) * 2007-06-05 2010-03-17 Teijin Limited Composition de résine de polycarbonate
EP2163583A4 (fr) * 2007-06-05 2010-07-14 Teijin Ltd Composition de résine de polycarbonate
KR101513317B1 (ko) * 2007-06-19 2015-04-17 테이진 카세이 가부시키가이샤 광학 필름
TWI417315B (zh) * 2007-06-19 2013-12-01 Teijin Chemicals Ltd 光學薄膜
US8877304B2 (en) 2007-06-19 2014-11-04 Teijin Chemicals, Ltd. Optical film
WO2008156186A1 (fr) 2007-06-19 2008-12-24 Teijin Chemicals Ltd. Film optique
JP5119250B2 (ja) * 2007-06-19 2013-01-16 帝人化成株式会社 光学フィルム
JP2009062501A (ja) * 2007-09-10 2009-03-26 Teijin Ltd 光学素子成形品およびそのための成形材料
JP2009079191A (ja) * 2007-09-27 2009-04-16 Teijin Ltd 光学フィルム
JP2009079190A (ja) * 2007-09-27 2009-04-16 Teijin Ltd 表面保護フィルムまたはシート
KR101522053B1 (ko) * 2007-10-04 2015-05-20 데이진 가부시키가이샤 식물 유래 성분을 갖는 폴리카보네이트 및 그 제조 방법
JP2011500925A (ja) * 2007-10-18 2011-01-06 サビック・イノベーティブ・プラスチックス・アイピー・ベスローテン・フェンノートシャップ イソソルビド系ポリカーボネート、製造方法、及びそれから形成される物品
JP2009102536A (ja) * 2007-10-24 2009-05-14 Teijin Ltd 共重合ポリカーボネート樹脂およびその製造方法
JP2009144019A (ja) * 2007-12-12 2009-07-02 Mitsubishi Chemicals Corp ポリカーボネートからなる金属・無機薄膜を有する成形品
JP2009144014A (ja) * 2007-12-12 2009-07-02 Mitsubishi Chemicals Corp ポリカーボネートからなる車両用ランプレンズ
CN103992469A (zh) * 2007-12-13 2014-08-20 三菱化学株式会社 聚碳酸酯及其成型物
JP2009191227A (ja) * 2008-02-18 2009-08-27 Teijin Ltd ポリカーボネート樹脂組成物
JP2009191226A (ja) * 2008-02-18 2009-08-27 Teijin Ltd 光拡散性ポリカーボネート樹脂組成物
EP3409708A1 (fr) 2008-11-28 2018-12-05 Mitsubishi Chemical Corporation Procédé de préparation d'un matériau brut de polycarbonate et procédé de fabrication de polycarbonate
JP2010261008A (ja) * 2008-11-28 2010-11-18 Mitsubishi Chemicals Corp ポリカーボネート樹脂、ポリカーボネート樹脂の製造方法及び透明フィルム
CN102227657A (zh) * 2008-12-05 2011-10-26 帝人化成株式会社 光学膜
EP2354816A4 (fr) * 2008-12-05 2013-01-23 Teijin Chemicals Ltd Film optique
WO2010064721A1 (fr) * 2008-12-05 2010-06-10 帝人化成株式会社 Film optique
TWI466920B (zh) * 2008-12-05 2015-01-01 Teijin Chemicals Ltd Optical film
KR101651306B1 (ko) * 2008-12-05 2016-08-25 테이진 카세이 가부시키가이샤 광학 필름
JP2010134232A (ja) * 2008-12-05 2010-06-17 Teijin Chem Ltd 光学フィルム
KR20110106841A (ko) 2008-12-05 2011-09-29 테이진 카세이 가부시키가이샤 광학 필름
US8293861B2 (en) 2008-12-05 2012-10-23 Teijin Chemicals Ltd. Optical film
EP2354816A1 (fr) * 2008-12-05 2011-08-10 Teijin Chemicals, Ltd. Film optique
US8455611B2 (en) 2008-12-05 2013-06-04 Teijin Chemicals Ltd. Optical film
KR20110099241A (ko) * 2008-12-16 2011-09-07 테이진 카세이 가부시키가이샤 광학 필름
US9598546B2 (en) 2008-12-16 2017-03-21 Teijin Chemicals, Ltd. Optical film
TWI512373B (zh) * 2008-12-16 2015-12-11 Teijin Chemicals Ltd Optical film
JP5241859B2 (ja) * 2008-12-16 2013-07-17 帝人化成株式会社 光学フィルム
WO2010071079A1 (fr) * 2008-12-16 2010-06-24 帝人化成株式会社 Film optique
KR101693056B1 (ko) * 2008-12-16 2017-01-04 테이진 카세이 가부시키가이샤 광학 필름
JP2010230832A (ja) * 2009-03-26 2010-10-14 Teijin Chem Ltd 光学フィルム
CN102395618A (zh) * 2009-04-16 2012-03-28 帝人株式会社 共聚聚碳酸酯及其制造方法
US8399598B2 (en) 2009-04-16 2013-03-19 Teijin Limited Copolycarbonate and process for producing the same
JP5417432B2 (ja) * 2009-04-16 2014-02-12 帝人株式会社 共重合ポリカーボネートおよびその製造方法
WO2010119574A1 (fr) * 2009-04-16 2010-10-21 帝人株式会社 Polycarbonate copolymérisé et son procédé de fabrication
JP5798921B2 (ja) * 2009-08-21 2015-10-21 帝人株式会社 射出成形用加飾シート
JPWO2011021720A1 (ja) * 2009-08-21 2013-01-24 帝人株式会社 射出成形用加飾シート
JP2011079899A (ja) * 2009-10-05 2011-04-21 Teijin Chem Ltd 光弾性定数が低いポリカーボネート樹脂および光学フィルム
JP2011079897A (ja) * 2009-10-05 2011-04-21 Teijin Chem Ltd 光弾性定数が低いポリカーボネート樹脂および光学フィルム
JP2011079898A (ja) * 2009-10-05 2011-04-21 Teijin Chem Ltd 光弾性定数が低いポリカーボネート樹脂および光学フィルム
WO2011062163A1 (fr) 2009-11-17 2011-05-26 三菱化学株式会社 Résine de polycarbonate et film transparent la comprenant
US8778486B2 (en) 2009-11-17 2014-07-15 Mitsubishi Chemical Corporation Polycarbonate resin and transparent film formed therefrom
KR101796442B1 (ko) * 2009-11-17 2017-11-10 미쯔비시 케미컬 주식회사 폴리카보네이트 수지 및 그것으로 이루어지는 투명 필름
JP2012031369A (ja) * 2009-11-17 2012-02-16 Mitsubishi Chemicals Corp ポリカーボネート樹脂
JP2012067300A (ja) * 2009-11-17 2012-04-05 Mitsubishi Chemicals Corp ポリカーボネート樹脂及びそれよりなる透明フィルム
EP2502947A1 (fr) * 2009-11-17 2012-09-26 Mitsubishi Chemical Corporation Résine de polycarbonate et film transparent la comprenant
EP2711386A1 (fr) 2009-11-17 2014-03-26 Mitsubishi Chemical Corporation Résine de polycarbonate et film transparent formé à partir de celle-ci
EP2502947A4 (fr) * 2009-11-17 2013-04-24 Mitsubishi Chem Corp Résine de polycarbonate et film transparent la comprenant
EP2725049A1 (fr) 2009-11-17 2014-04-30 Mitsubishi Chemical Corporation Résine de polycarbonate et film transparent formé à partir de celle-ci
JP2013100528A (ja) * 2009-11-17 2013-05-23 Mitsubishi Chemicals Corp ポリカーボネート樹脂及びそれよりなる透明フィルム
JP2011127108A (ja) * 2009-11-19 2011-06-30 Mitsubishi Chemicals Corp ポリカーボネート共重合体
JP2011148942A (ja) * 2010-01-25 2011-08-04 Teijin Chem Ltd 光弾性定数の低いポリカーボネート樹脂およびフィルム
WO2011149073A1 (fr) 2010-05-27 2011-12-01 三菱化学株式会社 Résine de polycarbonate et film transparent à base de celle-ci
US8487067B2 (en) 2010-05-27 2013-07-16 Mitsubishi Chemical Corporation Polycarbonate resin and transparent film formed therefrom
KR101801580B1 (ko) * 2010-05-27 2017-11-27 미쯔비시 케미컬 주식회사 폴리카보네이트 수지 및 그것으로 이루어지는 투명 필름
CN102939318A (zh) * 2010-05-27 2013-02-20 三菱化学株式会社 聚碳酸酯树脂以及由该聚碳酸酯树脂形成的透明膜
JP2012007160A (ja) * 2010-05-27 2012-01-12 Mitsubishi Chemicals Corp ポリカーボネート樹脂およびそれよりなる透明フィルム
JP5674802B2 (ja) * 2010-10-05 2015-02-25 帝人株式会社 ポリカーボネート樹脂からなる成形品
JP2012111794A (ja) * 2010-11-19 2012-06-14 Mitsubishi Gas Chemical Co Inc ポリカーボネート樹脂、それを用いた光学フィルム、位相差フィルムおよび偏光板
KR20140010109A (ko) 2011-03-31 2014-01-23 미쓰비시 가가꾸 가부시키가이샤 폴리카보네이트의 제조 방법 및 투명 필름
KR101950530B1 (ko) 2011-03-31 2019-02-20 미쯔비시 케미컬 주식회사 폴리카보네이트의 제조 방법 및 투명 필름
WO2012133856A1 (fr) * 2011-03-31 2012-10-04 三菱化学株式会社 Procédé pour la préparation d'une résine de polycarbonate, pellets de résine de polycarbonate et film étiré
US9018340B2 (en) 2011-04-19 2015-04-28 Teijin Limited Copolycarbonate and transparent molded article obtained therefrom
JP2012251141A (ja) * 2011-05-09 2012-12-20 Mitsubishi Chemicals Corp ポリカーボネート樹脂及びそれよりなる透明フィルム
KR101930108B1 (ko) 2011-05-09 2018-12-17 미쯔비시 케미컬 주식회사 폴리카보네이트 수지 및 그것으로 이루어지는 투명 필름
EP2708568A4 (fr) * 2011-05-09 2014-11-26 Mitsubishi Chem Corp Résine polycarbonate et film transparent comprenant celle-ci
WO2012153738A1 (fr) 2011-05-09 2012-11-15 三菱化学株式会社 Résine polycarbonate et film transparent comprenant celle-ci
EP2708568A1 (fr) * 2011-05-09 2014-03-19 Mitsubishi Chemical Corporation Résine polycarbonate et film transparent comprenant celle-ci
US8937146B2 (en) 2011-05-09 2015-01-20 Mitsubishi Chemical Corporation Polycarbonate resin and transparent film comprising the same
JP2012236877A (ja) * 2011-05-10 2012-12-06 Mitsubishi Chemicals Corp ポリカーボネート樹脂組成物及びそれよりなる光学フィルム
CN103930807A (zh) * 2011-09-14 2014-07-16 三菱化学株式会社 相位差膜、以及使用其的圆偏振片及图像显示装置
WO2013039179A1 (fr) 2011-09-14 2013-03-21 三菱化学株式会社 Film à différence de phase, plaque de polarisation circulaire l'utilisant, et dispositif d'affichage d'images
KR20140069157A (ko) 2011-09-14 2014-06-09 미쓰비시 가가꾸 가부시키가이샤 위상차 필름, 그리고 이것을 사용한 원편광판 및 화상 표시 장치
WO2013039178A1 (fr) 2011-09-14 2013-03-21 三菱化学株式会社 Film à différence de phase, plaque de polarisation circulaire l'utilisant, et dispositif d'affichage d'images
JP2013129829A (ja) * 2011-11-22 2013-07-04 Mitsubishi Chemicals Corp ポリカーボネートの製造方法
JP2014044394A (ja) * 2012-03-30 2014-03-13 Nitto Denko Corp 長尺位相差フィルム、円偏光板及び有機elパネル
WO2013147091A1 (fr) * 2012-03-30 2013-10-03 日東電工株式会社 Film de long retard, plaque de polarisation circulaire et panneau électroluminescent organique
US9453951B2 (en) 2012-03-30 2016-09-27 Nitto Denko Corporation Retardation film web, circularly polarizing plate and organic EL panel
KR20150002632A (ko) * 2012-03-30 2015-01-07 닛토덴코 가부시키가이샤 장척 위상차 필름, 원 편광판 및 유기 el 패널
WO2014021346A1 (fr) 2012-08-01 2014-02-06 三菱化学株式会社 Composition de résine polycarbonate et film transparent
JP2014043570A (ja) * 2012-08-01 2014-03-13 Mitsubishi Chemicals Corp ポリカーボネート樹脂組成物及び透明フィルム
EP2881771A4 (fr) * 2012-08-01 2015-08-12 Mitsubishi Chem Corp Composition de résine polycarbonate et film transparent
EP3385300A1 (fr) 2012-10-16 2018-10-10 Mitsubishi Chemical Corporation Composition de résine, film étiré, plaque de polarisation circulaire et dispositif d'affichage d'image
WO2014061677A1 (fr) 2012-10-16 2014-04-24 三菱化学株式会社 Composition de résine, film allongé, plaque de polarisation de façon circulaire et dispositif d'affichage d'image
US9518150B2 (en) 2012-10-16 2016-12-13 Mitsubishi Chemical Corporation Resin composition, stretched film, circularly polarizing plate, and image display device
KR20150073167A (ko) 2012-10-16 2015-06-30 미쓰비시 가가꾸 가부시키가이샤 수지 조성물, 연신 필름, 원 편광판 및 화상 표시 장치
JP2014205829A (ja) * 2013-03-21 2014-10-30 三菱化学株式会社 樹脂組成物及びそれを用いたフィルム
KR20160126998A (ko) 2014-02-27 2016-11-02 미쓰비시 가가꾸 가부시키가이샤 중축합계 수지 및 그것으로 이루어지는 광학 필름
KR20210020179A (ko) 2014-02-27 2021-02-23 미쯔비시 케미컬 주식회사 중축합계 수지 및 그것으로 이루어지는 광학 필름
JP2015199706A (ja) * 2014-04-04 2015-11-12 三菱化学株式会社 オリゴフルオレンジエステル、及びそれを用いた樹脂組成物の製造方法
KR20180022712A (ko) 2015-06-30 2018-03-06 미쯔비시 케미컬 주식회사 폴리카보네이트 수지 조성물, 그 제조 방법, 성형체
US10526446B2 (en) 2015-06-30 2020-01-07 Mitsubishi Chemical Corporation Polycarbonate resin composition, method for producing same, and molded object
CN109642978A (zh) * 2016-08-30 2019-04-16 日东电工株式会社 偏振片
JP2022110005A (ja) * 2020-07-28 2022-07-28 三井化学株式会社 ポリカーボネート樹脂、および光学成形体
JP7286837B2 (ja) 2020-07-28 2023-06-05 三井化学株式会社 ポリカーボネート樹脂、および光学成形体
US11746187B2 (en) 2020-07-28 2023-09-05 Mitsui Chemicals, Inc. Compound, resin, polycarbonate resin, and optical molded article

Also Published As

Publication number Publication date
JP4759518B2 (ja) 2011-08-31
TW200628511A (en) 2006-08-16
JPWO2006041190A1 (ja) 2008-05-22

Similar Documents

Publication Publication Date Title
JP4759518B2 (ja) 光弾性定数の低いポリカーボネート及びそれからなるフィルム
US10754065B2 (en) Retardation film, circularly-polarizing plate, and image-displaying device
US10732323B2 (en) Retardation film, circularly-polarizing plate, and image-displaying device
US8487067B2 (en) Polycarbonate resin and transparent film formed therefrom
US10670773B2 (en) Retardation film, circularly-polarizing plate, and image-displaying device
JP2006028441A (ja) 脂肪族ポリカーボネートからなる光学用フィルム
US20160216408A1 (en) Retardation film, and circularly polarizing plate and image display device each using the same
JP5587617B2 (ja) 光弾性定数の低いポリカーボネート樹脂およびフィルム
US20140285888A1 (en) Retardation film, and circularly polarizing plate and image display device each using the same
KR20090056904A (ko) 적층 광학 필름의 제조 방법, 적층 광학 필름, 편광판 및 액정 표시 장치
WO2014021346A1 (fr) Composition de résine polycarbonate et film transparent
JP6911972B2 (ja) 重縮合系樹脂及びそれよりなる光学フィルム
WO2012153738A1 (fr) Résine polycarbonate et film transparent comprenant celle-ci
JP5391514B2 (ja) 環状オレフィン系共重合体およびその製造方法ならびに用途
JP2009244609A (ja) 積層光学フィルムの製造方法、積層光学フィルムおよびその用途
JP2011079897A (ja) 光弾性定数が低いポリカーボネート樹脂および光学フィルム
JP5583987B2 (ja) 光弾性定数が低いポリカーボネート樹脂および光学フィルム
EP3988599B1 (fr) Résine thermoplastique, film optique fabriqué à partir de celle-ci, composé diol, composé diester
JP5560551B2 (ja) 液晶パネルおよび液晶パネル用光学フィルムセット
JP2010091676A (ja) 光学異方性積層体、該光学異方性積層体を含む光学フィルム及びその製造方法
JP5494718B2 (ja) 環状オレフィン系共重合体およびその用途
JP5580017B2 (ja) 光弾性定数が低いポリカーボネート樹脂および光学フィルム
WO2008013022A1 (fr) Copolymère d'une oléfine cyclique dont le cycle a été ouvert et son utilisation
JP2011079898A (ja) 光弾性定数が低いポリカーボネート樹脂および光学フィルム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006540999

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase