JP2015199706A - オリゴフルオレンジエステル、及びそれを用いた樹脂組成物の製造方法 - Google Patents

オリゴフルオレンジエステル、及びそれを用いた樹脂組成物の製造方法 Download PDF

Info

Publication number
JP2015199706A
JP2015199706A JP2015055333A JP2015055333A JP2015199706A JP 2015199706 A JP2015199706 A JP 2015199706A JP 2015055333 A JP2015055333 A JP 2015055333A JP 2015055333 A JP2015055333 A JP 2015055333A JP 2015199706 A JP2015199706 A JP 2015199706A
Authority
JP
Japan
Prior art keywords
group
carbon atoms
optionally substituted
ester
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015055333A
Other languages
English (en)
Inventor
寛幸 林
Hiroyuki Hayashi
寛幸 林
上原 久俊
Hisatoshi Uehara
久俊 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2015055333A priority Critical patent/JP2015199706A/ja
Publication of JP2015199706A publication Critical patent/JP2015199706A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

【課題】光学用途の樹脂組成物のモノマーの原料として好適に用いることができ、樹脂設計の自由度を高め、樹脂組成物を効率よく製造可能なオリゴフルオレンジエステルであって、溶融プロセスを経た際に生じうる着色や分解反応の抑制が可能なオリゴフルオレンジエステル化合物を提供すること。
【解決手段】置換基を有していてもよい2以上のフルオレン単位を含むオリゴフルオレンジエステルであって、該フルオレン単位の9位の炭素原子同士が、直接結合、又は、置換基を有していてもよいアルキレン基、置換基を有していてもよいアリーレン基、若しくは置換基を有していてもよいアラルキレン基を介して鎖状に結合され、かつ、金属の含有割合が500質量ppm以下であることを特徴とするオリゴフルオレンジエステル。
【選択図】なし

Description

本発明は、オリゴフルオレンジエステル、及びそれを用いた樹脂組成物の製造方法に関する。
近年、フルオレン環を側鎖に有するジヒドロキシ化合物から誘導されたポリカーボネート樹脂やポリエステル樹脂が報告されており、フルオレン環に由来する光学特性と耐熱性といった特徴を活かし、光学用途に有用な材料として提案されている(例えば、特許文献1参照)。特許文献2、3では、ポリカーボネート樹脂中のフルオレン環を有する繰り返し単位の含有量を特定の範囲に制御することで、そのポリカーボネート樹脂からなる延伸フィルムが、短波長になるほど位相差が小さくなる逆波長分散性を示すことから、位相差フィルムとして優れた性能を有していることが開示されている。短波長になるほど位相差が小さくなる、いわゆる逆波長分散性を示す位相差フィルムは、可視領域の各波長において理想的な位相差特性を得ることができ、円偏光板として画像表示装置の外光反射防止や視野角補正などに有用である。
フルオレン環を側鎖に有するジヒドロキシ化合物としては、特許文献2や3に記載されている9,9−ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレンや9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンがよく用いられている。
他方、逆波長分散用途ではないが、ポリエステルカーボネート原料として、特定のジエステル化合物を用いる場合に、光線透過率の観点から当該化合物に含まれる塩素の含有量を所定量以下にすることが知られている(特許文献4参照)。
特開平10−101786号公報 国際公開第2006/041190号パンフレット 国際公開第2011/149073号パンフレット 特開平2−20518号公報
本発明者らが逆波長分散用の樹脂組成物について鋭意検討を行った結果、原料モノマーとして特定のオリゴフルオレンジエステル化合物を用いることにより、樹脂中の含有割合が低くても所望の光学特性を効率よく発現することができ、樹脂設計の自由度を高めることができることが見出された。
通常、樹脂組成物を製造する上で、重合速度や得られる樹脂組成物の物性を所定のものとするためには原料の量比を厳密に制御する必要がある。オリゴフルオレンジエステル化合物は通常固体であり、樹脂組成物の原料として用いる上でその量比を制御するためには溶融させて用いることが望ましい。本発明者らが鋭意検討した結果、当該化合物中に含まれる金属量によっては、溶融プロセスを経た際に当該化合物に着色が生じてしまい、光学用途の樹脂組成物のモノマーとして使用することが困難であることが新たに見出された。
また、ジエステル化合物を用いたポリエステルカーボネート樹脂の製造方法は種々あるが、その一般的な方法として、エステル交換法によりジオール類、炭酸ジアリールおよびジエステル類を溶融状態で重合する溶融重縮合法が知られている。この方法では、炭酸ジ
アリールと、ジエステル類としてジアルキルエステルを用いた場合、エステル交換反応とポリカーボネート重合の反応速度が大きく異なるため、ジアルキルエステルがポリエステルカーボネート樹脂中に取り込まれにくいという問題があり、ジエステル類として、ジジアリールエステルを用いるのが望ましい。また、両末端にアリール基を有するオリゴフルオレンジアリール化合物を製造する方法としては、オリゴフルオレンジエステル化合物の両末端をアリール基に置換する方法が挙げられるが、該オリゴフルオレンジエステル化合物中に含まれるカルボン酸の量によっては、得られるオリゴフルオレンジアリール化合物中の金属量が高くなり、溶融プロセスを経た際に着色が生じることが新たに見出された。
そこで本発明は、光学用途の樹脂組成物のモノマーとして好適に用いることができ、樹脂設計の自由度を高めることが可能なオリゴフルオレンジエステルであって、溶融プロセスを経た際に生じうる着色の抑制が可能なオリゴフルオレンジエステル化合物を提供することを目的とする。
さらに本発明は、着色の抑制が可能なオリゴフルオレンジアリールエステル化合物を製造するための原料として用いることができる、オリゴフルオレンジエステル化合物を提供することを目的とする。
本発明者らが上記課題を解決すべく鋭意検討を重ねた結果、オリゴフルオレンジエステル化合物に含まれる金属成分の含有割合を特定の範囲とすることで、溶融状態における安定性が向上し、着色を抑制することが可能であることを見出した。
さらに、着色の抑制が可能なオリゴフルオレンジアリールエステル化合物を製造するための原料として、カルボン酸の含有割合を特定の範囲としたオリゴフルオレンジエステル化合物を用いることで、得られるジアリールエステル化合物中に含まれる金属成分の含有割合を低減することが可能であることを見出した。
即ち本発明は以下を要旨とする。
[1] 置換基を有していてもよい2以上のフルオレン単位を含むオリゴフルオレンジエステルであって、
該フルオレン単位の9位の炭素原子同士が、直接結合、又は、置換基を有していてもよいアルキレン基、置換基を有していてもよいアリーレン基、若しくは置換基を有していてもよいアラルキレン基を介して鎖状に結合され、かつ、
金属の含有割合が500質量ppm以下であることを特徴とするオリゴフルオレンジエステル。
[2] 前記金属が、長周期型周期表第1族、第2族、第12族、第14族、及び遷移金属からなる群から選ばれる少なくとも1種の金属であることを特徴とする、[1]に記載のオリゴフルオレンジエステル。
[3] 下記一般式(1)で表されることを特徴とする[1]又は[2]に記載のオリゴフルオレンジエステル。
Figure 2015199706
(式中、R1及びR2は、それぞれ独立に、直接結合、置換されていてもよい炭素数1〜
10のアルキレン基、置換されていてもよい炭素数4〜10のアリーレン基、若しくは置換されていてもよい炭素数6〜10のアラルキレン基、
又は置換されていてもよい炭素数1〜10のアルキレン基、置換されていてもよい炭素数4〜10のアリーレン基及び置換されていてもよい炭素数6〜10のアラルキレン基からなる群から選ばれる2つ以上の基が、酸素原子、置換されていてもよい硫黄原子、置換されていてもよい窒素原子若しくはカルボニル基で連結された基であり、
3は、それぞれ独立に、置換されていてもよい炭素数1〜10のアルキレン基、置換
されていてもよい炭素数4〜10のアリーレン基、又は置換されていてもよい炭素数6〜10のアラルキレン基であり、
4〜R9は、それぞれ独立に、水素原子、置換されていてもよい炭素数1〜10のアルキル基、置換されていてもよい炭素数4〜10のアリール基、置換されていてもよい炭素数1〜10のアシル基、置換されていてもよい炭素数1〜10のアルコキシ基、置換されていてもよい炭素数1〜10のアリールオキシ基、置換されていてもよい炭素数1〜10のアシルオキシ基、置換されていてもよいアミノ基、置換されていてもよい炭素数1〜10のビニル基、置換されていてもよい炭素数1〜10のエチニル基、置換基を有するケイ素原子、置換基を有する硫黄原子、ハロゲン原子、ニトロ基又はシアノ基である。ただし、R4〜R9のうち隣接する少なくとも2つの基が互いに結合して環を形成していてもよい。
10は、炭素数1〜10の有機置換基である。
nは1〜5の整数値を示す。)
[4] 前記一般式(1)におけるR10が、炭素数4〜10のアリール基であることを特徴とする、[3]に記載のオリゴフルオレンジエステル。
[5] 置換基を有していてもよい2以上のフルオレン単位を含むオリゴフルオレンジエステルであって、
前記フルオレン単位の9位の炭素原子同士が、直接結合、又は、置換基を有していてもよいアルキレン基、置換基を有していてもよいアリーレン基、若しくは置換基を有していてもよいアラルキレン基を介して鎖状に結合され、かつ、
カルボン酸の含有割合が10質量%以下であることを特徴とするオリゴフルオレンジエステル。
[6] 下記一般式(1)で表されることを特徴とする[5]に記載のオリゴフルオレンジエステル。
Figure 2015199706
(式中、R1及びR2は、それぞれ独立に、直接結合、置換されていてもよい炭素数1〜10のアルキレン基、置換されていてもよい炭素数4〜10のアリーレン基、若しくは置換されていてもよい炭素数6〜10のアラルキレン基、又は置換されていてもよい炭素数1〜10のアルキレン基、置換されていてもよい炭素数4〜10のアリーレン基及び置換されていてもよい炭素数6〜10のアラルキレン基からなる群から選ばれる2つ以上の基が、酸素原子、置換されていてもよい硫黄原子、置換されていてもよい窒素原子若しくはカルボニル基で連結された基であり、
3は、それぞれ独立に、置換されていてもよい炭素数1〜10のアルキレン基、置換
されていてもよい炭素数4〜10のアリーレン基、又は置換されていてもよい炭素数6〜10のアラルキレン基であり、
4〜R9は、それぞれ独立に、水素原子、置換されていてもよい炭素数1〜10のアルキル基、置換されていてもよい炭素数4〜10のアリール基、置換されていてもよい炭素数1〜10のアシル基、置換されていてもよい炭素数1〜10のアルコキシ基、置換されていてもよい炭素数1〜10のアリールオキシ基、置換されていてもよい炭素数1〜10のアシルオキシ基、置換されていてもよいアミノ基、置換されていてもよい炭素数1〜10のビニル基、置換されていてもよい炭素数1〜10のエチニル基、置換基を有するケイ素原子、置換基を有する硫黄原子、ハロゲン原子、ニトロ基又はシアノ基である。ただし、R4〜R9のうち隣接する少なくとも2つの基が互いに結合して環を形成していてもよい。
10は、炭素数1〜10の有機置換基である。
nは1〜5の整数値を示す。)
[7] [6]に記載のオリゴフルオレンジエステルを原料として、前記R10基をアリール基で置換してジアリールエステルを得ることを特徴とするオリゴフルオレンジアリールエステルの製造方法。
[8] [1]〜[6]のいずれかに記載のオリゴフルオレンジエステルを重合反応させて樹脂組成物を得ることを特徴とする樹脂組成物の製造方法。
本発明に係るオリゴフルオレンジエステル化合物は、光学用途の樹脂組成物のモノマーや、モノマーの原料として好適に用いることができ、また、樹脂設計の自由度を高め、さらに、溶融プロセスを経た際に生じうる着色の抑制が可能である。
図1は、実施例及び比較例のオリゴフルオレンジエステル中の金属含有量と、加熱前後の吸光度差を比較したグラフである。 図2は、参考例A及び参考例Bのオリゴフルオレンジエステルの粒径分布を表したグラフである。
以下に本発明の実施の形態を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、以下の内容に限定されない。本発明において、「重量」は「質量」と同義である。
本発明において繰り返し単位とは、重合体において任意の連結基に挟まれた部分構造を示す。重合体の末端部分で一方が連結基であり、もう一方が重合反応性基である部分構造も含む。
また本発明において、「置換基を有していてもよい」は「置換されていてもよい」と同義である。
<1 オリゴフルオレンジエステルA>
本発明のオリゴフルオレンジエステル(以下、「オリゴフルオレンジエステルA」と略記する場合がある)は、置換基を有していてもよい2以上のフルオレン単位を含み、
該フルオレン単位の9位の炭素原子同士が、直接結合、又は、置換基を有していてもよいアルキレン基、置換基を有していてもよいアリーレン基、若しくは置換基を有していてもよいアラルキレン基を介して鎖状に結合され、かつ、
金属の含有割合が500質量ppm以下である。
<1.1 アルキレン基、アリーレン基、アラルキレン基>
本発明のオリゴフルオレンジエステルにおいて、フルオレン単位を結合するアルキレン基は特に限定されないが、後述のフルオレン比率を高めるとの観点からは、その炭素数が通常1以上であり、また、通常10以下であり、好ましくは5以下であり、より好ましくは3以下である。
前記アルキレン基の具体的な構造は以下に挙げられ、これに限定されるものではないが、メチレン基、エチレン基、n−プロピレン基、n−ブチレン基、n−ペンチレン基、n−ヘキシレンなどの直鎖状のアルキレン基;メチルメチレン基、ジメチルメチレン基、エチルメチレン基、プロピルメチレン基、ブチルメチレン基、(1−メチルエチル)メチレン基、1−メチルエチレン基、2−メチルエチレン基、1−エチルエチレン基、2−エチルエチレン基、1−メチルプロピレン基、2−メチルプロピレン基、1,1−ジメチルエチレン基、2,2−ジメチルプロピレン基、3−メチルプロピレン基などの分岐鎖を含むアルキレン基(置換位置の数値は、フルオレン環側の炭素からつけるものとする);下記[A]群に示されるような脂環構造の任意の2箇所に直鎖状又は分岐状のアルキレン基の結合手を持つ脂環式アルキレン基
Figure 2015199706
(上記[A]群に示される各環構造における2つの結合手の置換位置については任意であり、同一炭素に2つの結合手が置換していてもよい。);下記[B]群に示されるような複素環構造の任意の2箇所に直鎖状又は分岐状のアルキレン基の結合手を持つ複素環式アルキレン基
Figure 2015199706
(上記[B]群に示される各環構造における2つの結合手の置換位置については任意であり、同一炭素に2つの結合手が置換していてもよい。)が挙げられる。
上記[A]群に示されるような脂環構造や、上記[B]群に示されるような複素環構造が、任意の2箇所に有している直鎖状又は分岐状のアルキレン基の結合手の具体的な構造は以下に挙げられ、これらに限定されるものではないが、メチレン基、エチレン基、n−プロピレン基、n−ブチレン基、n−ペンチレン基、n−ヘキシレンなどの直鎖状のアルキレン基;1−メチルエチレン基、2−メチルエチレン基、1−エチルエチレン基、2−エチルエチレン基、1−メチルプロピレン基、2−メチルプロピレン基、1,1−ジメチルエチレン基、2,2−ジメチルプロピレン基、3−メチルプロピレン基などの分岐鎖を含むアルキレン基(ここで置換位置の数値は、上記環構造に結合した炭素からつけるもの
とする)が挙げられる。
当該アルキレン基が有していてもよい置換基としては、ハロゲン原子(例、フッ素原子、塩素原子、臭素原子、ヨウ素原子);炭素数1〜10のアルコキシ基(例、メトキシ基、エトキシ基等);炭素数1〜10のアシル基(例、アセチル基、ベンゾイル基等);炭素数1〜10のアシルアミノ基(例、アセトアミド基、ベンゾイルアミド基等);ニトロ基;シアノ基;ハロゲン原子(例、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、炭素数1〜10のアルキル基(例、メチル基、エチル基、イソプロピル基等)、炭素数1〜10のアルコキシ基(例、メトキシ基、エトキシ基等)、炭素数1〜10のアシル基(例、アセチル基、ベンゾイル基等)、炭素数1〜10のアシルアミノ基(例、アセトアミド基、ベンゾイルアミド基等)、ニトロ基、シアノ基などから選ばれる1〜3個の置換基を有していてもよい炭素数6〜10のアリール基(例、フェニル基、ナフチル基等)等が挙げられる。当該置換基の数は、特に限定されないが、1〜3個が好ましい。置換基が2個以上ある場合は、置換基の種類は同一でも異なっていてもよい。また、工業的に安価に製造できるとの観点からは無置換であることが好ましい。
置換されたアルキレン基の具体例としては、シクロブチルメチレン基、シクロペンチルメチレン基、シクロヘキシルメチレン基、1−シクロヘキシルプロピレン基などのアルキル基置換アルキレン基;フェニルメチレン基、1−フェニルエチレン基、1−フェニルプロピレン基などのアリール基置換アルキレン基;1,1,2,2−テトラフルオロエチレン基、トリクロロメチルメチレン基、トリフルオロメチルメチレン基などのハロゲン原子置換アルキレン基;2−メトキシメチル−2−メチルプロピレン基などのアルコキシ基置換アルキレン基などが挙げられる(置換位置の数値は、フルオレン環側の炭素からつけるものとする)。
また、本発明のオリゴフルオレンジエステルにおいて、フルオレン単位を結合するアリーレン基は特に限定されないが、後述のフルオレン比率を高めるとの観点からは、その炭素数が通常4以上であり、また、通常10以下であり、好ましくは8以下であり、より好ましくは6以下である。
前記アリーレン基の具体的な構造は以下に挙げられ、これに限定されるものではないが、1,2−フェニレン基、1,3−フェニレン基、1,4−フェニレン基等のフェニレン基;1,5−ナフチレン基、2,6−ナフチレン基等のナフチレン基;2,5−ピリジレン基、2,4−チエニレン基、2,4−フリレン基などのヘテロアリーレン基が挙げられる。
当該アリーレン基が有していてもよい置換基としては、ハロゲン原子(例、フッ素原子、塩素原子、臭素原子、ヨウ素原子);炭素数1〜10のアルキル基(例、メチル基、エチル基、イソプロピル基等);炭素数1〜10のアルコキシ基(例、メトキシ基、エトキシ基等);炭素数1〜10のアシル基(例、アセチル基、ベンゾイル基等);炭素数1〜10のアシルアミノ基(例、アセトアミド基、ベンゾイルアミド基等);ニトロ基;シアノ基等が挙げられる。当該置換基の数は、特に限定されないが、1〜3個が好ましい。置換基が2個以上ある場合は、置換基の種類は同一でも異なっていてもよい。また、工業的に安価に製造できるとの観点からは無置換であることが好ましい。
置換されたアリーレン基の具体例としては、2−メチル−1,4−フェニレン基、3−メチル−1,4−フェニレン基、3,5−ジメチル−1,4−フェニレン基、3−メトキシ−1,4−フェニレン基、3−トリフルオロメチル−1,4−フェニレン基、2,5−ジメトキシ−1,4−フェニレン基、2,3,5,6−テトラフルオロ−1,4−フェニレン基、2,3,5,6−テトラクロロ−1,4−フェニレン基、3−ニトロ−1,4−フェニレン基、3−シアノ−1,4−フェニレン基などが挙げられる。
さらに、本発明のオリゴフルオレンジエステルにおいて、フルオレン単位を結合するアラルキレン基は特に限定されないが、後述のフルオレン比率を高めるとの観点からは、その炭素数が通常6以上であり、また、通常10以下であり、好ましくは9以下であり、より好ましくは8以下である。
前記アラルキレン基の具体的な構造は以下に挙げられ、これに限定されるものではないが、下記[C]群に示されるようなアラルキレン基が挙げられる。
Figure 2015199706
当該アラルキレン基が有していてもよい置換基としては、ハロゲン原子(例、フッ素原子、塩素原子、臭素原子、ヨウ素原子);炭素数1〜10のアルキル基(例、メチル基、エチル基、イソプロピル基等);炭素数1〜10のアルコキシ基(例、メトキシ基、エトキシ基等);炭素数1〜10のアシル基(例、アセチル基、ベンゾイル基等);炭素数1〜10のアシルアミノ基(例、アセトアミド基、ベンゾイルアミド基等);ニトロ基;シアノ基;ハロゲン原子(例、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、炭素数1〜10のアルキル基(例、メチル基、エチル基、イソプロピル基等)、炭素数1〜10のアルコキシ基(例、メトキシ基、エトキシ基等)、炭素数1〜10のアシル基(例、アセチル基、ベンゾイル基等)、炭素数1〜10のアシルアミノ基(例、アセトアミド基、ベンゾイルアミド基等)、ニトロ基、シアノ基などから選ばれる1〜3個の置換基を有していてもよい炭素数6〜10のアリール基(例、フェニル基、ナフチル基等)等が挙げられる。当該置換基の数は、特に限定されないが、1〜3個が好ましい。置換基が2個以上ある場合は、置換基の種類は同一でも異なっていてもよい。また、工業的に安価に製造できるとの観点からは無置換であることが好ましい。
置換されたアラルキレン基の具体例としては、2−メチル−1,4−キシリレン基、2,5−ジメチル−1,4−キシリレン基、2−メトキシ−1,4−キシリレン基、2,5−ジメトキシ−1,4−キシリレン基、2,3,5,6−テトラフルオロ−1,4−キシリレン基、α,α−ジメチル−1,4−キシリレン基、α,α,α’,α’−テトラメチル−1,4−キシリレン基、などが挙げられる。
これらの中でもフルオレン比率が高く優れた光学物性を期待でき、かつ、剛直であり樹脂のガラス転移温度を高めることが期待されることから、メチレン基、エチレン基、フェニレン基、又は1,4−キシリレン基が好ましく、メチレン基がより好ましい。
<1.2 フルオレン単位が有していてもよい置換基>
本発明のオリゴフルオレンジアリールエステルにおいて、前記フルオレン単位が有していてもよい置換基としては、ハロゲン原子(例、フッ素原子、塩素原子、臭素原子、ヨウ素原子);炭素数1〜10のアルキル基(例、メチル基、エチル基、イソプロピル基等);炭素数1〜10のアルコキシ基(例、メトキシ基、エトキシ基等);炭素数1〜10のアシル基(例、アセチル基、ベンゾイル基等);炭素数1〜10のアシルアミノ基(例、アセトアミド基、ベンゾイルアミド基等);炭素数1〜10のアシルオキシ基(例、アセトキシ基、ベンゾイルオキシ基等);ニトロ基;シアノ基;ハロゲン原子(例、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、炭素数1〜10のアルキル基(例、メチル基、エチル基、イソプロピル基等)、炭素数1〜10のアルコキシ基(例、メトキシ基、エト
キシ基等)、炭素数1〜10のアシル基(例、アセチル基、ベンゾイル基等)、炭素数1〜10のアシルアミノ基(例、アセトアミド基、ベンゾイルアミド基等)、炭素数1〜10のビニル基(ビニル基、2−メチルビニル基、2,2−ジメチルビニル基、2−フェニルビニル基、2−アセチルビニル基等)、炭素数1〜10のエチニル基(エチニル基、メチルエチニル基、tert―ブチルエチニル基、フェニルエチニル基、アセチルエチニル基、トリメチルシリルエチニル基等)、置換基を有するケイ素原子(トリメチルシリル基、トリエチルシリル基等のトリアルキルシリル基;トリメトキシシリル基、トリエトキシシリル基等のトリアルコキシシリル基等)、ニトロ基、シアノ基などから選ばれる1〜3個の置換基を有していてもよい炭素数6〜10のアリール基(例、フェニル基、ナフチル基等)等が挙げられる。当該置換基の数は、特に限定されないが、1〜3個が好ましい。置換基が2個以上ある場合は、置換基の種類は同一でも異なっていてもよい。また、工業的に安価に製造できるとの観点からは無置換であることが好ましい。
<1.3 エステル基>
本発明のオリゴフルオレンジエステルは、両末端に位置するフルオレン単位の9位の炭素原子にそれぞれ置換基α1及びα2を結合させ、該置換基α1及びα2にエステル基が結合したものとすることができる。この場合、α1とα2とは同じであっても異なっていてもよい。また、置換基α1及びα2には直接結合が含まれ、つまり、フルオレン単位の9位の炭素原子に直接エステル基が結合してもよい。
本発明のオリゴフルオレンジエステルが有するエステル基としては特に限定されないが、末端基として炭素数1〜10の有機置換基を有するエステル基であることが好ましい。
エステル基が末端基として有する炭素数1〜10の有機置換基の具体的な構造は以下に挙げられ、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル、n−デシルなどの直鎖状のアルキル基;イソプロピル基、2−メチルプロピル基、2,2−ジメチルプロピル基、2−エチルヘキシル基などの分岐鎖を含むアルキル基;シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基などの環状のアルキル基;フェニル基、1−ナフチル基、2−ナフチル基等のアリール基;2−ピリジル基、2−チエニル基、2−フリル基などのヘテロアリール基;ベンジル基、2−フェニルエチル基、p−メトキシベンジル基などのアラルキル基などが挙げられる。
前記有機置換基における炭素数は工業的に安価に入手可能であるとの観点から、1以上であることが好ましく、2以上であることがより好ましく、また、8以下であることが好ましく、6以下であることがより好ましい。
これらの中で、直鎖状のアルキル基の場合、ジヒドロキシ化合物とのエステル交換で生じる低沸点のアルコールを除去することでポリエステル及びポリエステルカーボネートを効率的に合成できるため、特に好ましい。係る観点から、炭素数1〜4の直鎖状のアルキル基であることが好ましく、メチル基又はエチル基であることがより好ましい。
他方、アリール基の場合、エステル交換反応が容易に進行するため、ジアリールエステル化合物とジヒドロキシ化合物、炭酸ジエステルを一括添加で反応器に仕込むことで、好ましい重合体であるポリエステルカーボネートを1段階で合成することができるため、好ましい。係る観点から、炭素数4〜10のアリールであることが好ましい。
特に、分子量が小さく、ポリエステルカーボネート合成後、フェノールとして留去できるフェニル基が特に好ましい。また、アリール基の場合、重合時の反応性の観点から、炭酸ジエステルとして後述のジアリールカーボネート類を用いることが好ましく、副生物を容易に除去できるとの観点からは、当該アリール基と、ジアリールカーボネート類におけるアリール基とが同じであることがより好ましい。
<1.4 置換基α1及びα2
置換基α1及びα2としては特に限定されないが、直接結合、置換されていてもよい炭素数1〜10のアルキレン基、置換されていてもよい炭素数4〜10のアリーレン基、若しくは置換されていてもよい炭素数6〜10のアラルキレン基、又は置換されていてもよい炭素数1〜10のアルキレン基、置換されていてもよい炭素数4〜10のアリーレン基及び置換されていてもよい炭素数6〜10のアラルキレン基からなる群から選ばれる2つ以上の基が、酸素原子、置換されていてもよい硫黄原子、置換されていてもよい窒素原子若しくはカルボニル基で連結された基が挙げられる。
「置換されていてもよい炭素数1〜10のアルキレン基」としては、フルオレン単位を結合するアルキレン基として例示したものを好ましく用いることができる。この場合、逆波長分散性を発現するとの観点からは、炭素数が2以上のものを用いることが好ましい。一方で、フラット分散性を発現するとの観点からは、その炭素数を1とすることが好ましい。さらに、逆波長分散性を発現させる場合においては、フルオレン環の配向を主鎖に対して固定しやすくし、効率的に逆波長分散特性を得るとの観点からは炭素数は5以下であることが好ましく、4以下であることがより好ましく、3以下であることがさらに好ましく、2以下であることが特に好ましい。一方で樹脂組成物に柔軟性を付与するとの観点からは、その炭素数は2以上であることが好ましく、3以上であることがより好ましく、4以上であることがさらに好ましい。
「置換されていてもよい炭素数4〜10のアリーレン基」としては、フルオレン単位aを結合するアリーレン基として例示したものを好ましく用いることができる。同様に、「置換されていてもよい炭素数6〜10のアラルキレン基」としては、フルオレン単位aを結合するアラルキレン基として例示したものを好ましく用いることができる。
「置換されていてもよい炭素数1〜10のアルキレン基、置換されていてもよい炭素数4〜10のアリーレン基及び置換されていてもよい炭素数6〜10のアラルキレン基からなる群から選ばれる2つ以上の基が、酸素原子、置換されていてもよい硫黄原子、置換されていてもよい窒素原子またはカルボニル基で連結された基」の具体的な構造は以下に挙げられ、これらに限定されるものではないが、下記[D]群に示されるような2価の基が挙げられる。
Figure 2015199706
これらの中で好ましくは、樹脂組成物の透明性と安定性を保持したまま柔軟性を付与することができる、アルキレン基、アリーレン基またはアラルキレン基から選ばれる2つ以上の基が酸素原子で連結された基であり、より好ましくは、柔軟性を付与しつつ樹脂組成物のガラス転移温度を高くできる、下記[E]群に示されるようなアルキレン基が酸素原子で連結された基である。
Figure 2015199706
また、フルオレン比率を高めるとの観点からは、これらの連結された基とする場合には、その炭素数を2以上とすることが好ましく、また、6以下とすることが好ましく、4以下とすることがより好ましい。
これらの中でも、置換基α1及びα2の少なくとも1つが直接結合であるか、置換基α1
及びα2の少なくとも1つの炭素数が2以上である場合には、フルオレン環(フルオレン
単位)が主鎖に対して略垂直に配向するため、樹脂組成物中の2価のオリゴフルオレンの割合が少量であっても、逆波長分散性を発現しやすくなる傾向がある。後者の場合には、同様の観点から、α1及びα2の両方を、炭素数2以上のものとすることが好ましい。一方で、置換基α1及びα2の両方を炭素数1のもの(すなわち、置換されていてもよいメチレン基)とした場合には、フルオレン環(フルオレン単位)が主鎖に対して略垂直に配向せず、大きく傾いて配向するために、樹脂組成物中の2価のオリゴフルオレンの割合を広い範囲で変化させても、広帯域で位相差の差が小さいフラット分散性となりやすい傾向がある。
これらの中で好ましくは、直接結合、置換されていてもよい炭素数1〜10のアルキレン基、置換されていてもよい炭素数4〜10のアリーレン基、又は置換されていてもよい炭素数1〜10のアルキレン基、置換されていてもよい炭素数4〜10のアリーレン基及び置換されていてもよい炭素数6〜10のアラルキレン基からなる群から選ばれる2つ以上の基が、酸素原子、置換されていてもよい硫黄原子、置換されていてもよい窒素原子若しくはカルボニル基で連結された基である。
より好ましくは、直接結合、直鎖状のアルキレン基、分岐鎖を含むアルキレン基、上記[A]群に示されるような脂環構造の任意の2箇所に直鎖状若しくは分岐状のアルキレン基の結合手を持つ脂環式アルキレン基、フェニレン基、又は置換されていてもよい炭素数1〜10のアルキレン基、置換されていてもよい炭素数4〜10のアリーレン基及び置換されていてもよい炭素数6〜10のアラルキレン基からなる群から選ばれる2つ以上の基が、酸素原子で連結された基である。
さらに好ましくは、芳香環を有さないことで光学フィルムに求められる低い光弾性係数を達成できる傾向がある、直接結合、メチレン基、エチレン基、n−プロピレン基、n−ブチレン基、メチルメチレン基、1−メチルエチレン基、2−メチルエチレン基、2,2−ジメチルプロピレン基、2−メトキシメチル−2−メチルプロピレン基又は下記[F]群に示されるような脂環式アルキレン基
Figure 2015199706
(上記[F]群に示される各環構造における2つの結合手の置換位置については任意であり、同一炭素に2つの結合手が置換していてもよい。)である。
よりさらに好ましくは、直接結合、メチレン基、エチレン基、n−プロピレン基、n−ブチレン基、メチルメチレン基、1−メチルエチレン基、2−メチルエチレン基、又は2,2−ジメチルプロピレン基である。特に好ましくは、メチレン基、エチレン基、又はn−プロピレン基である。
鎖長が長いとガラス転移温度が低くなる傾向があるため、短い鎖状の基、例えば炭素数2以下の基が好ましい。さらに、分子構造が小さくなるので繰り返し中のフルオレン環の濃度(フルオレン比率)を高くすることができる傾向があることから、所望とする光学物性を効率良く発現させることができる。
他方、得られたフィルムの機械強度や高温での信頼性を改善する目的で、樹脂組成物のガラス転移温度を高くすることのできる、炭素数4〜10のアリーレン基、又は置換されていてもよい炭素数1〜10のアルキレン基及び置換されていてもよい炭素数4〜10のアリーレン基からなる群から選ばれる2つ以上の基が、酸素原子で連結された基が好ましく、1,4−フェニレン基、1,5−ナフチレン基、2,6−ナフチレン基、又は下記[D2]群に示されるような2価の基がより好ましい。
Figure 2015199706
また、
逆波長分散性を有する位相差フィルムへ適用する場合、置換基α1及びα2を適切に選択することが重要である。例えばメチレン基に代表される炭素数1の基は予想外に逆波長分散性が低い傾向があるので、置換基α1及びα2は直接結合であるか、その少なくともいずれか一方が炭素数2以上の基であることが好ましい。
より好ましくは直接結合、置換されていてもよい炭素数2〜10のアルキレン基、置換されていてもよい炭素数4〜10のアリーレン基、又は置換されていてもよい炭素数1〜10のアルキレン基、置換されていてもよい炭素数4〜10のアリーレン基及び置換されていてもよい炭素数6〜10のアラルキレン基からなる群から選ばれる2つ以上の基が、酸素原子、置換されていてもよい硫黄原子、置換されていてもよい窒素原子若しくはカルボニル基で連結された基である。
さらに好ましくは直接結合、直鎖状のアルキレン基、分岐鎖を含むアルキレン基、上記[A]群に示されるような脂環構造の任意の2箇所に直鎖状若しくは分岐状のアルキレン基の結合手を持つ脂環式アルキレン基、フェニレン基、又は置換されていてもよい炭素数1〜10のアルキレン基、置換されていてもよい炭素数4〜10のアリーレン基及び置換されていてもよい炭素数6〜10のアラルキレン基からなる群から選ばれる2つ以上の基が、酸素原子で連結された基である。
よりさらに好ましくは、芳香環を有さないことで光学フィルムに求められる低い光弾性係数を達成できる、直接結合、エチレン基、n−プロピレン基、n−ブチレン基、メチルメチレン基、1−メチルエチレン基、2−メチルエチレン基、2,2−ジメチルプロピレン基、2−メトキシメチル−2−メチルプロピレン基又は上記[F]群に示されるような脂環式アルキレン基、或いは、樹脂組成物のガラス転移温度を高くできる、1,4−フェニレン基、置換されていてもよい炭素数1〜10のアルキレン基及び置換されていてもよい炭素数4〜10のアリーレン基からなる群から選ばれる2つ以上の基が、酸素原子で連結された基である。
特に好ましくは、直接結合、エチレン基、n−プロピレン基、n−ブチレン基、メチルメチレン基、1−メチルエチレン基、2−メチルエチレン基、又は2,2−ジメチルプロピレン基である。
最も好ましくは、エチレン基、又はn−プロピレン基である。鎖長が長いとガラス転移温度が低くなる傾向があるため、短い鎖状の基、例えば炭素数3以下の基が好ましい。さらに、分子構造が小さくなるので繰り返し単位中のフルオレン環の濃度(フルオレン比率)を高くすることができることから、所望とする光学物性を効率良く発現させることができる。
また、置換基α1及びα2は同一であることが、製造を容易にするため好ましい。
<1.4 具体的な構造>
本発明のオリゴフルオレンジエステルとしては、具体的には、下記一般式(1)で表されるものを好ましく用いることができる。
Figure 2015199706
式中、R1及びR2は、それぞれ独立に、直接結合、置換されていてもよい炭素数1〜10のアルキレン基、置換されていてもよい炭素数4〜10のアリーレン基、若しくは置換されていてもよい炭素数6〜10のアラルキレン基、
又は置換されていてもよい炭素数1〜10のアルキレン基、置換されていてもよい炭素数4〜10のアリーレン基及び置換されていてもよい炭素数6〜10のアラルキレン基からなる群から選ばれる2つ以上の基が、酸素原子、置換されていてもよい硫黄原子、置換されていてもよい窒素原子若しくはカルボニル基で連結された基であり、
3は、それぞれ独立に、置換されていてもよい炭素数1〜10のアルキレン基、置換
されていてもよい炭素数4〜10のアリーレン基、又は置換されていてもよい炭素数6〜10のアラルキレン基であり、
4〜R9は、それぞれ独立に、水素原子、置換されていてもよい炭素数1〜10のアルキル基、置換されていてもよい炭素数4〜10のアリール基、置換されていてもよい炭素数1〜10のアシル基、置換されていてもよい炭素数1〜10のアルコキシ基、置換されていてもよい炭素数1〜10のアリールオキシ基、置換されていてもよい炭素数1〜10のアシルオキシ基、置換されていてもよいアミノ基、置換されていてもよい炭素数1〜10のビニル基、置換されていてもよい炭素数1〜10のエチニル基、置換基を有するケイ素原子、置換基を有する硫黄原子、ハロゲン原子、ニトロ基又はシアノ基である。ただし、R4〜R9のうち隣接する少なくとも2つの基が互いに結合して環を形成していてもよい。
10は、炭素数1〜10の有機置換基である。
nは1〜5の整数値を示す。
前記式(1)において、R1及びR2としては、それぞれ<1.4 置換基α1及びα2>にて例示したものを好ましく用いることができる。
同様に、R3としては、<1.1 アルキレン基、アリーレン基、アラルキレン基>に
て例示したものを好ましく用いることができる。
また、R10としては、<1.3 エステル基>にて有機置換基として例示したものを好ましく用いることができる。
4〜R9において「置換されていてもよい炭素数1〜10のアルキル基」の具体的な構造は以下に挙げられ、これらに限定されるものではないが、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル、n−デシルなどの直鎖状のアルキル基;イソプロピル基、2−メチルプロピル基、2,2−ジメチルプロピル基、2−エチルヘキシル基などの分岐鎖を含むアルキル基;シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基などの環状のアルキル基が挙げられる。
置換されていてもよい炭素数1〜10のアルキル基における炭素数は、4以下であることが好ましく、2以下であることがより好ましい。この範囲内であると、フルオレン環同士の立体障害が生じにくく、フルオレン環に由来する所望の光学特性が得られる傾向がある。
当該アルキル基が有していてもよい置換基としては、ハロゲン原子(例、フッ素原子、塩素原子、臭素原子、ヨウ素原子);炭素数1〜10のアルコキシ基(例、メトキシ基、エトキシ基等);炭素数1〜10のアシル基(例、アセチル基、ベンゾイル基等);炭素数1〜10のアシルアミノ基(例、アセトアミド基、ベンゾイルアミド基等);ニトロ基;シアノ基;ハロゲン原子(例、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、炭素数1〜10のアルキル基(例、メチル基、エチル基、イソプロピル基等)、炭素数1〜10のアルコキシ基(例、メトキシ基、エトキシ基等)、炭素数1〜10のアシル基(例、アセチル基、ベンゾイル基等)、炭素数1〜10のアシルアミノ基(例、アセトアミド基、ベンゾイルアミド基等)、ニトロ基、シアノ基などから選ばれる1〜3個の置換基を有していてもよい炭素数6〜10のアリール基(例、フェニル基、ナフチル基等)等が挙げられる。当該置換基の数は、特に限定されないが、1〜3個が好ましい。置換基が2個以上ある場合は、置換基の種類は同一でも異なっていてもよい。また、工業的に安価に製造できるとの観点からは無置換であることが好ましい。
置換されたアルキル基の具体例としては、トリフルオロメチル基、ベンジル基、4−メトキシベンジル基、メトキシメチル基などが挙げられる。
4〜R9において「置換されていてもよい炭素数4〜10のアリール基」の具体的な構造は以下に挙げられ、これらに限定されるものではないが、フェニル基、1−ナフチル基、2−ナフチル基等のアリール基;2−ピリジル基、2−チエニル基、2−フリル基などのヘテロアリール基が挙げられる。
置換されていてもよい炭素数4〜10のアリール基における炭素数は、8以下であることが好ましく、7以下であることがより好ましい。この範囲内であると、フルオレン環同士の立体障害が生じにくく、フルオレン環に由来する所望の光学特性が得られる傾向がある。
当該アリール基が有していてもよい置換基としては、ハロゲン原子(例、フッ素原子、塩素原子、臭素原子、ヨウ素原子);炭素数1〜10のアルキル基(例、メチル基、エチル基、イソプロピル基等);炭素数1〜10のアルコキシ基(例、メトキシ基、エトキシ基等);炭素数1〜10のアシル基(例、アセチル基、ベンゾイル基等);炭素数1〜10のアシルアミノ基(例、アセトアミド基、ベンゾイルアミド基等);ニトロ基;シアノ基等が挙げられる。当該置換基の数は、特に限定されないが、1〜3個が好ましい。置換基が2個以上ある場合は、置換基の種類は同一でも異なっていてもよい。また、工業的に安価に製造できるとの観点からは無置換であることが好ましい。
置換されたアリール基の具体例としては、2−メチルフェニル基、4−メチルフェニル基、3,5−ジメチルフェニル基、4−ベンゾイルフェニル基、4−メトキシフェニル基、4−ニトロフェニル基、4−シアノフェニル基、3−トリフルオロメチルフェニル基、3,4−ジメトキシフェニル基、3,4−メチレンジオキシフェニル基、2,3,4,5,6−ペンタフルオロフェニル基、4−メチルフリル基などが挙げられる。
4〜R9において「置換されていてもよい炭素数1〜10のアシル基」の具体的な構造は以下に挙げられ、これらに限定されるものではないが、ホルミル基、アセチル基、プロピオニル基、2−メチルプロピオニル基、2,2−ジメチルプロピオニル基、2−エチルヘキサノイル基等の脂肪族アシル基;ベンゾイル基、1−ナフチルカルボニル基、2−ナフチルカルボニル基、2−フリルカルボニル基などの芳香族アシル基が挙げられる。
置換されていてもよい炭素数1〜10のアシル基における炭素数は、4以下であることが好ましく、2以下であることがより好ましい。この範囲内であると、フルオレン環同士の立体障害が生じにくく、フルオレン環に由来する所望の光学特性が得られる傾向がある。
当該アシル基が有していてもよい置換基としては、ハロゲン原子(例、フッ素原子、塩素原子、臭素原子、ヨウ素原子);炭素数1〜10のアルキル基(例、メチル基、エチル基、イソプロピル基等);炭素数1〜10のアルコキシ基(例、メトキシ基、エトキシ基等);炭素数1〜10のアシルアミノ基(例、アセトアミド基、ベンゾイルアミド基等);ニトロ基;シアノ基;ハロゲン原子(例、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、炭素数1〜10のアルキル基(例、メチル基、エチル基、イソプロピル基等)、炭素数1〜10のアルコキシ基(例、メトキシ基、エトキシ基等)、炭素数1〜10のアシル基(例、アセチル基、ベンゾイル基等)、炭素数1〜10のアシルアミノ基(例、アセトアミド基、ベンゾイルアミド基等)、ニトロ基、シアノ基などから選ばれる1〜3個の置換基を有していてもよい炭素数6〜10のアリール基(例、フェニル基、ナフチル基等)等が挙げられる。当該置換基の数は、特に限定されないが、1〜3個が好ましい。置換基が2個以上ある場合は、置換基の種類は同一でも異なっていてもよい。また、工業的に安価に製造できるとの観点からは無置換であることが好ましい。
置換されたアシル基の具体例としては、クロロアセチル基、トリフルオロアセチル基、メトキシアセチル基、フェノキシアセチル基、4−メトキシベンゾイル基、4−ニトロベンゾイル基、4−シアノベンゾイル基、4−トリフルオロメチルベンソイル基などが挙げられる。
4〜R9において「置換されていてもよい炭素数1〜10のアルコキシ基またはアリールオキシ基またはアシルオキシ基」の具体的な構造は以下に挙げられ、これらに限定されるものではないが、メトキシ基、エトキシ基、イソプロポキシ基、t−ブトキシ基、トリフルオロメトキシ基等のアルコキシ基;フェノキシ基等のアリールオキシ基;アセトキシ基、ベンゾイルオキシ基等のアシルオキシ基が挙げられる。
置換されていてもよい炭素数1〜10のアルコキシ基またはアリールオキシ基またはアシルオキシ基における炭素数は、4以下であることが好ましく、2以下であることがより好ましい。この範囲内であると、フルオレン環同士の立体障害が生じにくく、フルオレン環に由来する所望の光学特性が得られる傾向がある。
当該アルコキシ基またはアリールオキシ基が有していてもよい置換基としては、ハロゲン原子(例、フッ素原子、塩素原子、臭素原子、ヨウ素原子);炭素数1〜10のアルキ
ル基(例、メチル基、エチル基、イソプロピル基等);炭素数1〜10のアルコキシ基(例、メトキシ基、エトキシ基等);炭素数1〜10のアシルアミノ基(例、アセトアミド基、ベンゾイルアミド基等);ニトロ基;シアノ基;ハロゲン原子(例、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、炭素数1〜10のアルキル基(例、メチル基、エチル基、イソプロピル基等)、炭素数1〜10のアルコキシ基(例、メトキシ基、エトキシ基等)、炭素数1〜10のアシル基(例、アセチル基、ベンゾイル基等)、炭素数1〜10のアシルアミノ基(例、アセトアミド基、ベンゾイルアミド基等)、ニトロ基、シアノ基などから選ばれる1〜3個の置換基を有していてもよい炭素数6〜10のアリール基(例、フェニル基、ナフチル基等)等が挙げられる。当該置換基の数は、特に限定されないが、1〜3個が好ましい。置換基が2個以上ある場合は、置換基の種類は同一でも異なっていてもよい。また、工業的に安価に製造できるとの観点からは無置換であることが好ましい。
4〜R9において「置換されていてもよいアミノ基」の具体的な構造は以下に挙げられ、これらに限定されるものではないが、アミノ基;N−メチルアミノ基、N,N−ジメチルアミノ基、N−エチルアミノ基、N,N−ジエチルアミノ基、N,N−メチルエチルアミノ基、N−プロピルアミノ基、N,N−ジプロピルアミノ基、N−イソプロピルアミノ基、N,N−ジイソプロピルアミノ基等の脂肪族アミノ基;N−フェニルアミノ基、N,N−ジフェニルアミノ基等の芳香族アミノ基;ホルムアミド基、アセトアミド基、デカノイルアミド基、ベンゾイルアミド基、クロロアセトアミド基等のアシルアミノ基;ベンジルオキシカルボニルアミノ基、tert−ブチルオキシカルボニルアミノ基等のアルコキシカルボニルアミノ基等が挙げられる。
これらの中でも、酸性度の高いプロトンを持たず、分子量が小さく、フルオレン比率を高めることができる傾向があることから、N,N−ジメチルアミノ基、N−エチルアミノ基、又はN,N−ジエチルアミノ基が好ましく、N,N−ジメチルアミノ基であることがより好ましい。
当該アミノ基が有していてもよい置換基としては、ハロゲン原子(例、フッ素原子、塩素原子、臭素原子、ヨウ素原子);炭素数1〜10のアルキル基(例、メチル基、エチル基、イソプロピル基等);炭素数1〜10のアルコキシ基(例、メトキシ基、エトキシ基等);炭素数1〜10のアシルアミノ基(例、アセトアミド基、ベンゾイルアミド基等);ニトロ基;シアノ基;ハロゲン原子(例、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、炭素数1〜10のアルキル基(例、メチル基、エチル基、イソプロピル基等)、炭素数1〜10のアルコキシ基(例、メトキシ基、エトキシ基等)、炭素数1〜10のアシル基(例、アセチル基、ベンゾイル基等)、炭素数1〜10のアシルアミノ基(例、アセトアミド基、ベンゾイルアミド基等)、ニトロ基、シアノ基などから選ばれる1〜3個の置換基を有していてもよい炭素数6〜10のアリール基(例、フェニル基、ナフチル基等)等が挙げられる。当該置換基の数は、特に限定されないが、1〜3個が好ましい。置換基が2個以上ある場合は、置換基の種類は同一でも異なっていてもよい。また、工業的に安価に製造できるとの観点からは無置換であることが好ましい。
4〜R9において「置換されていてもよい炭素数1〜10のビニル基」または「置換されていてもよい炭素数1〜10のエチニル基」の具体的な構造としては、ビニル基、2−メチルビニル基、2,2−ジメチルビニル基、2−フェニルビニル基、2−アセチルビニル基、エチニル基、メチルエチニル基、tert―ブチルエチニル基、フェニルエチニル基、アセチルエチニル基、トリメチルシリルエチニル基等が挙げられる。
置換されていてもよい炭素数1〜10のビニル基またはエチニル基における炭素数は、4以下であることが好ましい。この範囲内であると、フルオレン環同士の立体障害が生じにくく、フルオレン環に由来する所望の光学特性が得られる傾向がある。
当該ビニル基またはエチニル基が有していてもよい置換基としては、ハロゲン原子(例、フッ素原子、塩素原子、臭素原子、ヨウ素原子);炭素数1〜10のアルキル基(例、メチル基、エチル基、イソプロピル基等);炭素数1〜10のアルコキシ基(例、メトキシ基、エトキシ基等);炭素数1〜10のアシルアミノ基(例、アセトアミド基、ベンゾイルアミド基等);ニトロ基;シアノ基;ハロゲン原子(例、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、炭素数1〜10のアルキル基(例、メチル基、エチル基、イソプロピル基等)、炭素数1〜10のアルコキシ基(例、メトキシ基、エトキシ基等)、炭素数1〜10のアシル基(例、アセチル基、ベンゾイル基等)、炭素数1〜10のアシルアミノ基(例、アセトアミド基、ベンゾイルアミド基等)、ニトロ基、シアノ基などから選ばれる1〜3個の置換基を有していてもよい炭素数6〜10のアリール基(例、フェニル基、ナフチル基等)等が挙げられる。当該置換基の数は、特に限定されないが、1〜3個が好ましい。置換基が2個以上ある場合は、置換基の種類は同一でも異なっていてもよい。また、工業的に安価に製造できるとの観点からは無置換であることが好ましい。
4〜R9において「置換基を有するケイ素原子」の具体的な構造としては、トリメチルシリル基、トリエチルシリル基等のトリアルキルシリル基;トリメトキシシリル基、トリエトキシシリル基等のトリアルコキシシリル基が挙げられる。これらの中でも安定に扱えるトリアルキルシリル基が好ましい。
4〜R9において「置換基を有する硫黄原子」の具体的な構造は以下に挙げられ、これらに限定されるものではないが、スルホ基;メチルスルホニル基、エチルスルホニル基、プロピルスルホニル基、イソプロピルスルホニル基等のアルキルスルホニル基;フェニルスルホニル基、p−トリルスルホニル基等のアリールスルホニル基;メチルスルフィニル基、エチルスルフィニル基、プロピルスルフィニル基、イソプロピルスルフィニル基等のアルキルスルフィニル基;フェニルスルフィニル基、p−トリルスルフィニル基等のアリールスルフィニル基;メチルチオ基、エチルチオ基等のアルキルチオ基;フェニルチオ基、p−トリルチオ基等のアリールチオ基;メトキシスルホニル基、エトキシスルホニル基等のアルコキシスルホニル基;フェノキシスルホニル基等のアリールオキシスルホニル基;アミノスルホニル基;N−メチルアミノスルホニル基、N−エチルアミノスルホニル基、N−tert−ブチルアミノスルホニル基、N,N−ジメチルアミノスルホニル基、N,N−ジエチルアミノスルホニル基等のアルキルスルホニル基;N−フェニルアミノスルホニル基、N,N−ジフェニルアミノスルホニル基等のアリールアミノスルホニル基等が挙げられる。なお、スルホ基は、リチウム、ナトリウム、カリウム、マグネシウム、アンモニウム等と塩を形成していてもよい。
これらの中でも、酸性度の高いプロトンを持たず、分子量が小さく、フルオレン比率を高めることができる傾向があることから、メチルスルフィニル基、エチルスルフィニル基、又はフェニルスルフィニル基が好ましく、メチルスルフィニル基であることがより好ましい。
4〜R9において「ハロゲン原子」としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
これらの中でも、比較的導入が容易で、電子吸引性の置換基のため、フルオレン9位の反応性を高める傾向があることから、フッ素原子、塩素原子、又は臭素原子が好ましく、塩素原子又は臭素原子であることがより好ましい。
隣接するR4〜R9は、互いに結合して環を形成していてもよい。その具体例としては、下記[G]群に示されるような置換フルオレン構造が挙げられる。
Figure 2015199706
このように、R4〜R9を上述のような特定の原子又は置換基にすることで、主鎖とフルオレン環との間や、フルオレン環同士の間の立体障害が少なく、フルオレン環に由来する所望の光学特性を得ることができる傾向がある。
これらR4〜R9の中で好ましくは、全て水素原子、或いはR4及び/又はR9がハロゲン原子、アシル基、ニトロ基、シアノ基、及びスルホ基からなる群から選ばれるいずれかであり、かつ、R5〜R8が水素原子である。全て水素原子の場合、工業的にも安価なフルオレンから誘導できる。また、R4及び/又はR9がハロゲン原子、アシル基、ニトロ基、シアノ基、及びスルホ基からなる群から選ばれるいずれかで、かつ、R5〜R8が水素原子の場合、フルオレン9位の反応性が向上するため、様々な誘導反応が適応可能となる傾向がある。より好ましくは、全て水素原子、或いはR4及び/又はR9がフッ素原子、塩素原子、臭素原子、及びニトロ基からなる群から選ばれるいずれかで、かつ、R5〜R8が水素原子であり、特に好ましくは全て水素原子の場合である。また、上記のものとすることで、フルオレン比率を高めることができ、かつ、フルオレン環同士の立体障害が生じにくく、フルオレン環に由来する所望の光学特性が得られる傾向もある。
また、前記一般式(1)においてnは1〜5の整数値を表わすが、合成上の容易さの観点からは4以下であることが好ましく、3以下であることがより好ましい。
<1.5 オリゴフルオレンジエステルAの具体例>
本発明のオリゴフルオレンジエステルの具体例としては、下記[H]群に示されるような構造が挙げられる。
Figure 2015199706
Figure 2015199706
Figure 2015199706
Figure 2015199706
<1.6 オリゴフルオレンジエステルAの物性>
前述のとおり、本発明のオリゴフルオレンジエステルAは、金属の含有割合が500質量ppm以下である。このように金属の含有量を所定範囲にすることで、溶融プロセスを経た場合であっても、当該オリゴフルオレンジエステルに生じうる着色を効果的に抑制することができる傾向がある。
<1.6.1 金属の含有量>
前記金属の含有量は、オリゴフルオレンジエステルAの熱安定性を低下させ、着色の原因となることから500質量ppm以下、好ましくは400質量ppm以下であり、より好ましくは200質量ppm以下であり、さらに好ましくは100質量ppm以下であり、よりさらに好ましくは50質量ppm以下であり、特に好ましくは10ppm以下であり、最も好ましくは5質量ppm以下である。
前記金属の種類については特に限定されないが、オリゴフルオレンジエステル製造時に触媒として使用した金属が混入する可能性があることから、長周期型周期表第1族、第2族、第12族、第14族及び遷移金属から選ばれる少なくとも1種の金属であることが考えられる。具体的には、第1族金属としては、リチウム、ナトリウム、カリウム、セシウ
ムが挙げられ、第2族金属としてはマグネシウム、カルシウム、バリウムが挙げられ、第12族金属としては亜鉛、カドミウムが挙げられ、第13族金属としてはアルミニウム、第14族金属としてはスズ、鉛が挙げられ、遷移金属としては鉄、銅、チタン、ジルコニウム、マンガン、コバルト、バナジウムが挙げられる。本発明のオリゴフルオレンジエステルは、製造時の触媒が残存するなどして、通常金属を含有する。
本発明のオリゴフルオレンジエステル中には、塩基存在下、ホルムアルデヒド類を作用させて、ヒドロキシメチル化を行う工程由来のナトリウムやカリウムなどの長周期型周期表第1族の金属やカルシウムなどの第2族の金属が含有する可能性ある。また、エステル交換反応触媒存在下、炭酸ジアリール類を作用させて、エステル交換を行う工程に起因するチタン、銅、鉄などの遷移金属や、ナトリウム、カリウムなどの長周期型周期表第1族や、マグネシウム、カルシウムなどの第2族の金属や、亜鉛やカドミウムなどの第12族の金属や、スズなどの第14族の金属が含有する可能性がある。
これらの中でもエステル交換反応触媒の反応性の観点から、遷移金属であることが好ましく、チタン又はジルコニウムであることがより好ましく、チタンであることがさらに好ましい。
金属の含有量の測定法としては、例えば、ICP−QMS法が挙げられる。
金属量を上記範囲にする方法としては、例えば、通常の精製法、例えば、再結晶や、再沈法、抽出精製、フィルターろ過などのろ過操作、カラムクロマトグラフィーなどが挙げられる。また、本発明のオリゴフルオレンジエステルAをエステル交換法で製造する場合には、原料中の水分や不純物のカルボン酸成分を低減しておくことが重要である。
<1.6.2 その他の物性値>
本発明のオリゴフルオレンジエステルのその他の物性値は特に限定されないが、以下に例示する物性値を満足するものであることが好ましい。
本発明のオリゴフルオレンジエステル中の塩素含有割合は、Cl換算質量で100質量ppm以下であることが好ましい。さらには10質量ppm以下であることが好ましい。塩素成分の含有割合が多い場合、オリゴフルオレンを原料として得たモノマー中にも塩素成分が多量に含まれ、重合反応に用いる触媒を失活させてしまい、所望の分子量まで重合が進行しなくなったり、反応が不安定化し、生産性が悪化する可能性がある。また、得られたポリマー中にも塩素成分が残存し、ポリマーの熱安定性を低下させるおそれがある。
本発明のオリゴフルオレンジエステルは、10質量%のテトラヒドロフラン溶液の色調が50以下であることが好ましい。さらには10以下であることが好ましい。オリゴフルオレンは可視光に近い領域まで吸収端が伸びており、重合や樹脂の加工により高温にさらされた時に着色しやすい性質がある。色相の良好なポリマーを得るためには、重合反応に用いるモノマーは可能な限り着色が少ないことが好ましく、係る観点から、モノマー原料であるオリゴフルオレンジエステルは可能な限り着色が少ないことが好ましい。色調は濃度に比例するので、異なる濃度で測定して、10質量%濃度に規格化した値であってもよい。ここで、オリゴフルオレンジエステルの色調(APHA値)は、JIS−K0071−1(1998年)に準じ、キシダ化学社製色度標準液(1000度)を希釈して作成した液とオリゴフルオレンジエステルを内径20mmの比色管に入れて比較することにより測定できる。
本発明のオリゴフルオレンジエステルは、熱重量測定における5%質量減少温度が230℃以上であることが好ましく、250℃以上であることがより好ましい。さらには270℃以上であることが特に好ましい。フルオレンは非常に電子リッチな構造であり、フルオレン環に結合する置換基の反応性が高まっており、熱分解が起こりやすくなっている。重合反応に熱分解温度が低いモノマーを用いると、重合時に熱分解が起こり、所望の分子
量まで重合が進行しなかったり、得られるポリマーが着色するおそれがあるため、モノマーであるオリゴフルオレンジエステルも熱分解温度が高いことが好ましい。
<1.7 オリゴフルオレンジエステルAの製造方法>
本発明のオリゴフルオレンの製造方法については特に限定されないが、例えば、下記式に示される製造法A又は製造法B等の方法により製造することができる。
Figure 2015199706
ここで各構造式中、R1及びR2は、それぞれ独立に、直接結合、置換されていてもよい炭素数1〜10のアルキレン基、置換されていてもよい炭素数4〜10のアリーレン基、若しくは置換されていてもよい炭素数6〜10のアラルキレン基、
又は置換されていてもよい炭素数1〜10のアルキレン基、置換されていてもよい炭素数4〜10のアリーレン基及び置換されていてもよい炭素数6〜10のアラルキレン基からなる群から選ばれる2つ以上の基が、酸素原子、置換されていてもよい硫黄原子、置換されていてもよい窒素原子若しくはカルボニル基で連結された基であり、
3は、それぞれ独立に、置換されていてもよい炭素数1〜10のアルキレン基、置換
されていてもよい炭素数4〜10のアリーレン基、又は置換されていてもよい炭素数6〜10のアラルキレン基であり、
4〜R9は、それぞれ独立に、水素原子、置換されていてもよい炭素数1〜10のアルキル基、置換されていてもよい炭素数4〜10のアリール基、置換されていてもよい炭素数1〜10のアシル基、置換されていてもよい炭素数1〜10のアルコキシ基、置換されていてもよい炭素数1〜10のアリールオキシ基、置換されていてもよい炭素数1〜10のアシルオキシ基、置換されていてもよいアミノ基、置換されていてもよい炭素数1〜10のビニル基、置換されていてもよい炭素数1〜10のエチニル基、置換基を有するケイ素原子、置換基を有する硫黄原子、ハロゲン原子、ニトロ基又はシアノ基である。ただし、R4〜R9のうち隣接する少なくとも2つの基が互いに結合して環を形成していてもよい。
10は、炭素数1〜10の有機置換基である。
<1.7.1 製造法A>
製造法Aは、フルオレン類(I)を原料として、9―ヒドロキシメチルフルオレン類(IV)へと変換した後に、脱水により合成したオレフィン体(V)をフルオレニルアニオンと反応させ、R3がメチレン基であるオリゴフルオレン化合物(II)を製造する方法
である。なお、無置換の9―ヒドロキシメチルフルオレンは試薬として購入可能である。ここで得られるオリゴフルオレン化合物(II)から後述の工程(ii)に従い、エステル基を導入して、オリゴフルオレンジエステル(1)とすることができる。
例えば、9―ヒドロキシメチルフルオレンをジベンゾフルバンに変換した後、アニオン重合によって、オリゴフルオレンの混合物を合成する方法が知られている(J.Am.C
hem.Soc.,123,2001,9182−9183.)。これらを参考に、オリゴフルオレン化合物(II)を製造できる。
<1.7.2 製造法B>
製造法Bは、原料のフルオレン類(I)の架橋反応(工程(i))を行うことで、オリゴフルオレン化合物(II)を合成し、その後、エステル基を導入(工程(ii))することで、オリゴフルオレンジエステル(1)を製造する方法である。
Figure 2015199706
上記各式中、R1〜R10は、式(1)中のR1〜R10と同義である。
以下、製造法Bを、工程(i)オリゴフルオレン化合物(II)の製造法と、工程(ii)オリゴフルオレンジエステル(1)の製造法に分けて記載する。
<1.7.3 工程(i):オリゴフルオレン化合物(II)の製造方法>
Figure 2015199706
上記各式中、R3〜R9及びnは前記式(1)中のR3〜R9と同義である。
以下、工程(i)におけるオリゴフルオレン化合物(II)の製造方法をn及び、R3
の場合に分けて記載する。
<1.7.3.1 n=1、R3が直接結合の場合:9,9’:9’,9”−ターフル
オレニルの製造方法>
9,9’−ビフルオレニルの合成法は複数知られており、フルオレノンや9−ブロモフルオレンから合成できる(J.Chem.Res.,2004,760;Tetrahedron Lett.,2007,48,6669.)。なお、9,9’−ビフルオレニルは試薬として購入可能である。
<1.7.3.2 n=2、R3が直接結合の場合:9,9’:9’,9”−ターフル
オレニルの製造方法>
9,9’:9’,9”‐ターフルオレニルの合成法は知られており、フルオレノンから合成できる(Eur.J.Org.Chem.1999,1979−1984.)。
<1.7.3.3 工程(ia):R3がメチレン基の場合の製造方法>
下記一般式(IIa)で表されるメチレン架橋を有するオリゴフルオレン化合物は、フルオレン類(I)及びホルムアルデヒド類から、塩基存在下、下記式で表される反応に従って製造することができる。
Figure 2015199706
上記各式中、R4〜R9及びnは前記式(1)中のR4〜R9と同義である。
<1.7.3.3.1 ホルムアルデヒド類>
工程(ia)で用いられるホルムアルデヒド類とは、反応系中にホルムアルデヒドを供給できる物質であれば特に限定されないが、ガス状のホルムアルデヒド、ホルムアルデヒド水溶液、ホルムアルデヒドが重合したパラホルムアルデヒド、トリオキサン等が挙げられる。工業的に安価かつ粉末状のため操作性が容易で正確に秤量することが可能であるという観点では、パラホルムアルデヒドがより好ましい。一方で、工業的に安価かつ液体のため添加時に暴露の危険が少ないという観点では、ホルマリンがより好ましい。
(理論量の定義)
目的とするオリゴフルオレン化合物(IIa)を製造する場合、原料のフルオレン類(I)に対するホルムアルデヒド類の理論量(モル比)とは、n/(n+1)で表される。
(理論量を超えない方がよい理由)
フルオレン類(I)に対して、理論量超過のホルムアルデヒド類を用いた場合、目的とするオリゴフルオレン化合物(IIa)よりさらにフルオレンが架橋したオリゴフルオレン化合物が生成する傾向がある。オリゴフルオレン化合物のフルオレン環の数が増加するほど、溶解性が低下するために、目的物に4つ以上フルオレン環が架橋したオリゴフルオレン化合物が存在する場合、精製負荷が大きくなる傾向があることが解っている。そのため、通常、ホルムアルデヒド類の使用量は目的の理論量のn/(n+1)倍モル以下であることが好ましい。
(理論量を大きく下回わらない方がよい理由)
また、ホルムアルデヒド類の使用量が理論量のn/(n+1)を大きく下回ると、目的とするオリゴフルオレン化合物(IIa)よりもフルオレン環の架橋数の少ないオリゴフルオレン化合物が主生成物となるか、あるいは、原料のフルオレン類(I)が未反応で残るため、収率が大きく低下する傾向があることが解っている。
そのため、最適なホルムアルデヒド類の使用量は、具体的には、n=1の場合、通常フルオレン類(I)に対して0.1倍モル以上、好ましくは0.3倍モル以上、さらに好ましくは0.38倍モル以上、また、通常0.5倍モル以下、好ましくは0.46倍モル以下、さらに好ましくは0.42倍モル以下である。
また、n=2の場合、通常0.5倍モル以上、好ましくは0.55倍モル以上、さらに好ましくは0.6倍モル以上、また、通常0.66倍モル以下、好ましくは0.65倍モル以下、さらに好ましくは0.63倍モル以下である。このように、ホルムアルデヒド類の使用量に従って、主生成物の構造と生成物の比率が大きく変化することが解っており、ホルムアルデヒド類の使用量を限られた条件で用いることで、目的とするn数のオリゴフルオレン化合物(IIa)を高収率で得ることができる。
<1.7.3.3.2 塩基>
工程(ia)で用いられる塩基としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物、水酸化カルシウム、水酸化バリウムなどのアルカリ土類金属の水酸化物、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウムなどのアルカリ金属の炭酸塩、炭酸マグネシウム、炭酸カルシウムなどのアルカリ土類金属の炭酸塩、燐酸ナトリウム、燐酸水素ナトリウム、燐酸カリウムなどの燐酸のアルカリ金属塩、n−ブチルリチウム、ターシャリブチルリチウムなどの有機リチウム塩、ナトリウムメトキシド、ナトリウムエトキシド、カリウムターシャリーブトキシド、などのアルカリ金属のアルコキシド塩、水素化ナトリウムや水素化カリウムなどの水素化アルカリ金属塩、トリエチルアミン、ジアザビシクロウンデセンなどの三級アミン、テトラメチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシドなどの四級アンモニウムヒドロキシドなどが用いられる。これらは1種を単独で用いても良く、2種以上を併用しても良い。
均一系で反応を行う場合、これらの中で好ましくは、本反応において十分な塩基性を有する、アルカリ金属のアルコキシドであり、より好ましくは、工業的に安価なナトリウムメトキシド及びナトリウムエトキシドである。ここでアルカリ金属のアルコキシドは、粉状のものを用いてもよく、アルコール溶液等の液状のものを用いてもよい。また、アルカリ金属とアルコールを反応させて調製してもよい。
一方、二層系で反応を行う場合、これらの中で好ましくは、本反応において十分な塩基性を有するアルカリ金属水酸化物の水溶液であり、より好ましくは、工業的に安価な水酸化ナトリウム、水酸化カリウムの水溶液である。
また、水溶液の濃度は、特に好ましい水酸化ナトリウム水溶液を用いた場合、濃度が薄いと反応速度が著しく低下するため、通常は10wt/wt%以上、好ましくは25wt/wt%以上、より好ましくは40wt/wt%以上の水溶液を用いるのが特に好ましい。
均一系で反応を行う場合、塩基の使用量は原料であるフルオレン類(I)に対して、上限は特にないが、使用量が多すぎると撹拌や反応後の精製負荷が大きくなるので、通常、フルオレン類(I)の10倍モル以下、好ましくは5倍モル以下、さらに好ましくは1倍モル以下である。一方、塩基の使用量が少なすぎると反応の進行が遅くなるので、下限としては、通常、原料のフルオレン類(I)に対して0.01倍モル以上、好ましくは0.1倍モル以上、さらに好ましくは0.2倍モル以上である。
他方、2層系で反応を行う場合、塩基の使用量は原料であるフルオレン類(I)に対して、上限は特にないが、使用量が多すぎると撹拌や反応後の精製負荷が大きくなるので、通常、フルオレン類(I)の10倍モル以下、好ましくは5倍モル以下、さらに好ましくは2倍モル以下である。一方、塩基の使用量が少なすぎると反応の進行が遅くなるので、下限としては、通常、原料のフルオレン類(I)に対して0.1倍モル以上、好ましくは0.3倍モル以上、さらに好ましくは0.4倍モル以上である。
<1.7.3.3.3 溶媒>
工程(ia)は溶媒を用いて行うことが望ましい。使用可能な溶媒の具体例としては、アルキルニトリル系溶媒としては、アセトニトリル、プロピオニトリルなど、エーテル系溶媒としては、ジエチルエーテル、テトラヒドロフラン、1,4−ジオキサン、メチルシクロペンチルエーテル、ターシャリーブチルメチルエーテルなど、ハロゲン系溶媒としては、1,2−ジクロロエタン、ジクロロメタン、クロロホルム、1,1,2,2−テトラクロロエタンなど、ハロゲン系芳香族炭化水素としては、クロロベンゼン、1,2−ジクロロベンゼンなど、アミド系溶媒としては、N,N−ジメチルホルムアミド、N,N,−ジメチルアセトアミド、N−メチルピロリドンなど、スルホキシド系溶媒としては、ジメ
チルスルホキシド、スルホランなど、環状式脂肪族炭化水素としては、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタンなどの単環状式脂肪族炭化水素;その誘導体であるメチルシクロペンタン、エチルシクロペンタン、メチルシクロヘキサン、エチルシクロヘキサン、1,2−ジメチルシクロヘキサン、1,3−ジメチルシクロヘキサン、1,4−ジメチルシクロヘキサン、イソプロピルシクロヘキサン、n−プロピルシクロヘキサン、tert−ブチルシクロヘキサン、n−ブチルシクロヘキサン、イソブチルシクロヘキサン、1,2,4−トリメチルシクロヘキサン、1,3,5−トリメチルシクロヘキサンなど;デカリンなどの多環状式脂肪族炭化水素;n−ペンタン、n−ヘキサン、n−ヘプタン、n−オクタン、イソオクタン、n−ノナン、n−デカン、n−ドデカン、n−テトラデカンなどの非環状式脂肪族炭化水素、芳香族炭化水素としては、トルエン、p−キシレン、o−キシレン、m−キシレンなど、アルコール系溶媒としては、メタノール、エタノール、イソプロパノール、n−ブタノール、ターシャリーブタノール、ヘキサノール、オクタノール、シクロヘキサノールなどが挙げられる。
均一系の反応において、フルオレン類(I)から生じるアニオンの溶解性が高く、反応の進行が良好である傾向があることから、極性溶媒のアミド系溶媒、又はスルホキシド系溶媒が好ましい。その中で、N,N−ジメチルホルムアミドが特に好ましい。これは、N,N−ジメチルホルムアミドに対するオリゴフルオレン化合物(IIa)の溶解性が低く、目的物は生成後、速やかに析出し、それ以上の反応の進行が抑制され、目的物の選択性が上がる傾向があるためである。
2層系の反応において、塩基性水溶液と2層を形成し、フルオレン類(I)から生じるアニオンの溶解性が高く、反応の進行が良好である傾向があることから、極性溶媒のエーテル系溶媒、又はハロゲン系溶媒が好ましい。その中で、テトラヒドロフランが特に好ましい。これは、テトラヒドロフランに対するオリゴフルオレン化合物(IIa)の溶解性が低く、目的物は生成後、速やかに析出し、それ以上の反応の進行が抑制され、目的物の選択性が上がる傾向があるためである。
これらの溶媒は1種を単独で用いても良く、2種以上を混合して用いても良い。
溶媒の使用量は、通常、原料のフルオレン類(I)の10倍体積量、好ましくは7倍体積量、さらに好ましくは4倍体積量となるような量が使用される。一方、溶媒の使用量が少なすぎると、攪拌が難しくなるとともに反応の進行が遅くなるので、下限としては、通常、原料のフルオレン類(I)の1倍体積量、好ましくは2倍体積量、さらに好ましくは3倍体積量となるような量が使用される。
<1.7.3.3.4 反応形式>
工程(ia)を行う際、反応の形式はバッチ型反応でも流通型反応でもそれらを組み合わせたものでも特にその形式は制限なく採用できる。
<1.7.3.3.5 反応条件>
工程(ia)は、オリゴフルオレン化合物(IIa)よりもフルオレン環が架橋した化合物の生成を抑制するためには、なるべく低温で反応を行うことが好ましい。一方、温度が低すぎると十分な反応速度が得られない可能性がある。
そのため、具体的な反応温度としては、通常上限が40℃、好ましくは30℃、より好ましくは20℃で実施される。一方、下限は−50℃、好ましくは−20℃、より好ましくは0℃以上で実施される。
工程(ia)における一般的な反応時間は、通常下限が30分、好ましくは60分、さらに好ましくは2時間で、上限は特に限定はされないが通常20時間、好ましくは10時間、更に好ましくは5時間である。
<1.7.3.3.6 目的物の分離・精製>
反応終了後、目的物であるオリゴフルオレン化合物(IIa)は、反応液を希塩酸などの酸性水に添加し、あるいは希塩酸などの酸性水を反応液に添加し、析出させることにより単離することができる。
また、反応終了後、目的物であるオリゴフルオレン化合物(IIa)が可溶な溶媒と水を反応液に添加して抽出してもよい。溶媒により抽出された目的物は、溶媒を濃縮する方法、或いは貧溶媒を添加する方法などにより単離することができる。ただし、室温では溶媒に対するオリゴフルオレン化合物(IIa)の溶解性が非常に低い傾向があるため、通常は酸性水と接触させて析出させる方法が好ましい。
得られたオリゴフルオレン化合物(IIa)は、そのまま工程(ii)の原料として使用することも可能であるが、精製を行った後に工程(ii)に用いても良い。精製法としては、通常の精製法、例えば、再結晶や、再沈法、抽出精製、カラムクロマトグラフィーなど制限なく採用可能である。
<1.7.3.4 工程(ib):R3が直接結合以外の場合の製造方法> 下記一般
式(IIb)で表されるオリゴフルオレン化合物は、フルオレン類(I)を原料として、アルキル化剤(VIIIa)と塩基存在下、下記式(ib)で表される反応に従って製造される。
Figure 2015199706
上記式中のオリゴフルオレン化合物は、構造式(IIb)で表されるものである。
上記式中、R3は、置換されていてもよい炭素数1〜10のアルキレン基、置換されて
いてもよい炭素数4〜10のアリーレン基、又は置換されていてもよい炭素数6〜10のアラルキレン基である。R4〜R9及びnは前記式(1)中のR4〜R9及びnと同義である。Xは、脱離基を表す。脱離基の例としては、ハロゲン原子(フッ素を除く。)またはメシル基、またはトシル基などが挙げられる。
オリゴフルオレン化合物(IIb)の製造法はn−ブチルリチウムを塩基として用い、フルオレン類(I)のアニオンを発生させた後に、アルキル化剤(VIIIa)とカップリングさせる方法が知られており、R3がエチレン基の場合や、R3がプロピレン基などの製造法が知られている(Organometallics,2008,27,3924;J.Molec.Cat.A:Chem.,2004,214,187.)。また、アルキレン基以外にも、キシリレン基で架橋した報告例がある(J.Am.Chem.Soc.,2007,129,8458.)。しかしながら、これらのn−ブチルリチウムを用いた方法で工業的に製造することは、安全面でも、コスト面でも非常に困難となる傾向がある。
工程(ib)で用いられるアルキル化剤としては、ジヨードメタン、1,2−ジヨードエタン、1,3−ジヨードプロパン、1,4−ジヨードブタン、1,5−ジヨードペンタン、1,6−ジヨードヘキサン、ジブロモメタン、1,2−ジブロモエタン、1,3−ジブロモプロパン、1,4−ジブロモブタン、1,5−ジブロモペンタン、1,6−ジブロモヘキサン、ジクロロメタン、1,2−ジクロロエタン、1,3−ジクロロプロパン、1
,4−ジクロロブタン、1,5−ジクロロペンタン,1,6−ジクロロへキサン、1−ブロモ−3−クロロプロパンなどの直鎖状のアルキルジハライド(フッ素原子を除く)、2,2−ジメチル−1,3−ジクロロプロパンなどの分岐鎖を含むアルキルジハライド(フッ素原子を除く)、1,4−ビス(ブロモメチル)ベンゼン、1,3−ビス(ブロモメチル)ベンゼンなどのアラルキルジハライド(フッ素原子を除く)、エチレングリコールジメシラート、エチレングリコールジトシラート、プロピレングリコールジメシラート、テトラメチレングリコールジメシラート、などのグリコールのジスルホネートなどが挙げられる。
<1.7.4 オリゴフルオレンジエステル(1)の製造方法>
以下、下記式で示される工程(ii)におけるオリゴフルオレンジエステル(1)の製造方法をR1及びR2の種類ごとに分けて記載する。
Figure 2015199706
上記各式中、R1〜R9及びnは前記式(1)中のR1〜R9及びnと同義である。Ri
ii及びRiiiは、水素原子、置換されていてもよい炭素数1〜10のアルキル基、置換
されていてもよい炭素数4〜10のアリール基、又は置換されていてもよい炭素数6〜10のアラルキル基を表す。
<1.7.4.1 工程(iia):一般式(1)において、マイケル付加による製造法>
下記一般式(1a)で表されるオリゴフルオレンジエステルは、オリゴフルオレン化合物(II)及びα,β‐不飽和エステル(VI)から、塩基存在下、下記の工程(iia)で表される反応に従って製造される。
Figure 2015199706
上記式中、R3〜R10及びnは前記式(1)中のR3〜R10及びnと同義である。Ri
ii及びRiiiは、それぞれ独立に、水素原子、置換されていてもよい炭素数1〜10の
アルキル基、置換されていてもよい炭素数4〜10のアリール基、又は置換されていてもよい炭素数6〜10のアラルキル基を表す。
<1.7.4.1.1 α,β‐不飽和エステル>
反応試剤としてのα,β‐不飽和エステルは、工程(iia)における一般式(VI)で表されるものであり、一般式(VI)中、Ri、Rii及びRiiiは、それぞれ独立に、水素原子、炭素数1〜10のアルキル基、置換されていてもよい炭素数4〜10のアリール基、又は置換されていてもよい炭素数6〜10のアラルキル基を表す。具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、シクロヘキシル基などの(直鎖であっても分岐鎖であっても良い)アルキル基、フェニル基、1−ナフチル基、2−ナフチル基、2−チエニル基などのアリール基、ベンジル基、2−フェニルエチル基、p−メトキシベンジル基などのアラルキル基が挙げられる。
α,β‐不飽和エステル(VI)として、アクリル酸メチル、アクリル酸エチル、アクリル酸フェニル、アクリル酸アリル、アクリル酸グリシジル、アクリル酸2−ヒドロキシエチル、アクリル酸4−ヒドロキシブチル、1,4−シクロヘキサンジメタノールモノアクリレート等のアクリル酸エステル類、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸フェニル、メタクリル酸アリル、メタクリル酸グリシジル、メタクリル酸2−ヒドロキシエチル等のメタクリル酸エステル類、2−エチルアクリル酸メチル、2−フェニルアクリル酸メチル等のα−置換不飽和エステル類、桂皮酸メチル、桂皮酸エチル、クロトン酸メチル、クロトン酸エチルなどのβ−置換不飽和エステル類が挙げられる。中でも、重合反応性基を直接導入できる下記一般式(VI−1)で表される不飽和カルボン酸エステル
Figure 2015199706
上式中、R10は炭素数1〜10の有機置換基を示し、Riiiは、水素原子、置換されて
いてもよい炭素数1〜10のアルキル基、置換されていてもよい炭素数4〜10のアリール基、又は置換されていてもよい炭素数6〜10のアラルキル基を表す。)が好ましく、それに含まれる、アクリル酸エステル類、メタクリル酸エステル類又はα−置換不飽和エステル類がより好ましく、Riiiが水素原子又はメチル基であるアクリル酸エステル類又
はメタクリル酸エステル類が、反応速度と反応選択性の観点からさらに好ましい。R10は、より小さいものが工業的に安価かつ蒸留精製も容易で、反応性も高いため、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸フェニル、又はメタクリル酸フェニルがよりさらに好ましい。これらの中で、加水分解を受けにくく、副生物のカルボン酸を生成しにくいため、アクリル酸エチル、メタクリル酸エチルが特に好ましい。
他方、エステル基の有機置換基は、アクリル酸2−ヒドロキシエチル、アクリル酸4−ヒドロキシブチル、1,4−シクロヘキサンジメタノールモノアクリレート基等のヒドロキシアルキル基を有するエステル類である場合、1段階でポリエステルカーボネート、ポリエステルの原料を得ることができるため、特に好ましい。
異なる2種類以上のα,β‐不飽和エステル(VI)を用いてもよいが、精製の簡便性から、1種類のα,β‐不飽和エステル(VI)を用いることが好ましい。
α,β‐不飽和エステル(VI)は、重合活性が高いため、高濃度で存在すると、光、熱、酸・塩基などの外部刺激により、容易に重合する傾向がある。その際、大きな発熱を伴うため、非常に危険となる場合がある。そのため、α,β‐不飽和エステル(VI)の使用量は、安全性の観点から、あまり過剰に用いない方がよい。通常、原料であるオリゴフルオレン化合物(II)に対して、10倍モル以下、好ましくは5倍モル以下、さらに好ましくは3倍モル以下である。下限は、原料に対して理論量で2倍モルであるので通常は2倍モル以上である。反応の進行を速め、原料や中間体を残存させないために、α,β‐不飽和エステル(VI)の使用量は、原料のオリゴフルオレン化合物(II)に対して2.2倍モル以上、さらに好ましくは2.5倍モル以上である。
<1.7.4.1.2 塩基>
塩基としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物、水酸化カルシウム、水酸化バリウムなどのアルカリ土類金属の水酸化物、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウムなどのアルカリ金属の炭酸塩、炭酸マグネシウム、炭酸カルシウムなどのアルカリ土類金属の炭酸塩、燐酸ナトリウム、燐酸水素ナトリウム、燐酸カリウムなどの燐酸のアルカリ金属塩、n−ブチルリチウム、ターシャリブチルリチウムなどの有機リチウム塩、ナトリウムメトキシド、ナトリウムエトキシド、カリウムターシャリーブトキシド、などのアルカリ金属のアルコキシド塩、水素化ナトリウムや水素化カリウムなどの水素化アルカリ金属塩、トリエチルアミン、ジアザビシクロウンデセンなどの三級アミン、テトラメチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシドなどの四級アンモニウムヒドロキシドが用いられる。これらは1種を単独で用いても良く、2種以上を併用しても良い。
3がメチレン基の場合と、それ以外の場合ではオリゴフルオレン化合物(II)の反
応性に大きな違いがある傾向がある。そのため、R3がメチレン基の場合と、それ以外の
場合に分けて記載する。
3がメチレン基の場合、オリゴフルオレン化合物(II)は溶媒中、塩基存在下で容
易に分解反応が進行する。そのため、有機層と水層の2層系で反応を行った場合に、分解反応などの副反応が抑制できることから、水溶性の無機塩基を用いることが好ましい。中でもコスト、反応性の面からアルカリ金属の水酸化物の水溶液が好ましく、特に水酸化ナトリウムの水溶液又は水酸化カリウムの水溶液がより好ましい。
また、水溶液の濃度は、特に好ましい水酸化ナトリウム水溶液を用いた場合、濃度が薄いと反応速度が著しく低下するため、通常は10wt/wt%以上、好ましくは30wt/wt%以上、より好ましくは40wt/wt%以上の水溶液を用いるのが特に好ましい。
3がメチレン基以外の場合、有機層と水層の2層系でも反応は進行するが、有機層に
溶解する有機塩基を用いて反応を行った場合に、速やかに反応が進行するため、有機塩基を用いることが好ましい。これらの中で好ましくは、本反応において十分な塩基性を有する、アルカリ金属のアルコキシドであり、より好ましくは、工業的に安価なナトリウムメトキシド又はナトリウムエトキシドである。ここでアルカリ金属のアルコキシドは、粉状のものを用いてもよく、アルコール溶液等の液状のものを用いてもよい。また、アルカリ金属とアルコールを反応させて調製してもよい。
3がメチレン基の場合、塩基の使用量は、原料であるオリゴフルオレン化合物(II
)に対して、上限は特に制限はないが、使用量が多すぎると攪拌や反応後の精製負荷が大きくなる場合があるので、特に好ましい塩基である40wt/wt%以上の水酸化ナトリウム水溶液を用いた場合、通常、オリゴフルオレン(II)に対して10倍体積量以下、
好ましくは5倍体積量以下、さらに好ましくは2倍体積量以下である。塩基量が少なすぎると反応速度が著しく低下するため、通常、塩基は、原料のオリゴフルオレン化合物(II)に対して、0.1倍体積量以上である。好ましくは、0.2倍体積量以上、より好ましくは0.5倍体積量以上である。
3がメチレン基以外の場合、塩基の使用量は、原料であるオリゴフルオレン化合物(
II)に対して、上限は特に制限はないが、使用量が多すぎると攪拌や反応後の精製負荷が大きくなる場合があるので、特に好ましい塩基であるナトリウムメトキシド又はナトリウムエトキシドを用いた場合、通常、オリゴフルオレン化合物(II)に対して5倍モル以下、好ましくは2倍モル以下、さらに好ましくは1倍モル以下、特に好ましくは0.5倍モル以下である。塩基量が少なすぎると反応速度が著しく低下するため、通常、塩基は、原料のオリゴフルオレン(II)に対して、0.005倍モル以上である。好ましくは、0.01倍モル以上、より好ましくは0.05倍モル以上、特に好ましくは0.1倍モル以上である。
<1.7.4.1.3 相間移動触媒>
工程(iia)において、有機層と水層の2層系での反応を行う場合、反応速度を上げるため、相間移動触媒を用いることが好ましい。
相間移動触媒としては、テトラメチルアンモニウムクロリド、テトラブチルアンモニウムブロミド、メチルトリオクチルアンモニウムクロリド、メチルトリデシルアンモニウムクロリド、ベンジルトリメチルアンモニウムクロリド、トリオクチルメチルアンモニウムクロリド、テトラブチルアンモニウムヨージド、アセチルトリメチルアンモニウムブロミド、ベンジルトリエチルアンモニウムクロリドなどの四級アンモニウム塩のハライド(フッ素は除く)、N,N−ジメチルピロリジニウムクロリド、N−エチル−N−メチルピロリジニウムヨージド、N−ブチル−N−メチルピロリジニウムブロミド、N−ベンジル−N−メチルピロリジニウムクロリド、N−エチル−N−メチルピロリジニウムブロミドなどの四級ピロリジニウム塩のハライド(フッ素は除く)、N−ブチル−N−メチルモルホリニウムブロミド、N−ブチル−N−メチルモルホリニウムヨージド、N−アリル−N−メチルモルホリニウムブロミドなどの四級モルホリニウム塩のハライド(フッ素は除く)、N−メチル−N−ベンジルピペリジニウムクロリド、N−メチル−N−ベンジルピペリジニウムブロミド、N,N−ジメチルピペリジニウムヨージド、N−メチル−N−エチルピペリジニウムアセテート、N−メチル−N−エチルピペリジニウムヨージドなどの四級ピペリジニウム塩のハライド(フッ素は除く)、クラウンエーテル類などが挙げられる。好ましくは四級アンモニウム塩、更に好ましくは、テトラブチルアンモニウムブロミド、ベンジルトリメチルアンモニウムクロリド、又はベンジルトリエチルアンモニウムクロリドである。
これらは1種を単独で用いても良く、2種以上を併用しても良い。
相間移動触媒の使用量は、原料であるオリゴフルオレン化合物(II)に対して、多すぎるとエステルの加水分解や逐次マイケル反応などの副反応の進行が顕著になる傾向があり、また、コストの観点からも、通常、オリゴフルオレン化合物(II)に対して5倍モル以下、好ましくは2倍モル以下、さらに好ましくは1倍モル以下である。相間移動触媒の使用量が少なすぎると反応速度が著しく低下する傾向があるため、通常、相間移動触媒の使用量は、原料のオリゴフルオレン化合物(II)に対して、0.01倍モル以上である。好ましくは、0.1倍モル以上、より好ましくは0.5倍モル以上である。
<1.7.4.1.4 溶媒>
工程(iia)は溶媒を用いて行うことが望ましい。
具体的に使用可能な溶媒は、アルキルニトリル系溶媒としては、アセトニトリル、プロピオニトリルなど、ケトン系溶媒としては、アセトン、メチルエチルケトン、メチルイソ
ブチルケトンなど、エステル系溶媒としては、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸フェニル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸フェニル、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸メチル、乳酸メチル、乳酸エチル等の直鎖状のエステル類;γ―ブチロラクトン、カプロラクトン等の環状エステル類;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコール−1−モノメチルエーテルアセテート、プロピレングリコール−1−モノエチルエーテルアセテート等のエーテルエステル類など、エーテル系溶媒としては、ジエチルエーテル、テトラヒドロフラン、1,4−ジオキサン、メチルシクロペンチルエーテル、ターシャリーブチルメチルエーテルなど、ハロゲン系溶媒としては、1,2−ジクロロエタン、ジクロロメタン、クロロホルム、1,1,2,2−テトラクロロエタンなど、ハロゲン系芳香族炭化水素としては、クロロベンゼン、1,2−ジクロロベンゼンなど、アミド系溶媒としては、N,N−ジメチルホルムアミド、N,N,−ジメチルアセトアミドなど、スルホキシド系溶媒としては、ジメチルスルホキシド、スルホランなど、環状式脂肪族炭化水素としては、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタンなどの単環状式脂肪族炭化水素;その誘導体であるメチルシクロペンタン、エチルシクロペンタン、メチルシクロヘキサン、エチルシクロヘキサン、1,2−ジメチルシクロヘキサン、1,3−ジメチルシクロヘキサン、1,4−ジメチルシクロヘキサン、イソプロピルシクロヘキサン、n−プロピルシクロヘキサン、tert−ブチルシクロヘキサン、n−ブチルシクロヘキサン、イソブチルシクロヘキサン、1,2,4−トリメチルシクロヘキサン、1,3,5−トリメチルシクロヘキサンなど;デカリンなどの多環状式脂肪族炭化水素;n−ペンタン、n−ヘキサン、n−ヘプタン、n−オクタン、イソオクタン、n−ノナン、n−デカン、n−ドデカン、n−テトラデカンなどの非環状式脂肪族炭化水素、芳香族炭化水素としては、トルエン、p−キシレン、o−キシレン、m−キシレンなど、芳香族複素環としては、ピリジンなど、アルコール系溶媒としては、メタノール、エタノール、イソプロパノール、n−ブタノール、ターシャリーブタノール、ヘキサノール、オクタノール、シクロヘキサノールなどが挙げられる。
3がメチレン基の場合、水と相分離する溶媒を用いることで、オリゴフルオレン化合
物(II)の分解反応などの副反応を抑制できる傾向があることが解っている。さらに、原料のオリゴフルオレン化合物(II)をよく溶解する溶媒を用いた場合に、反応の進行が良好である傾向があることから、原料のオリゴフルオレン化合物(II)の溶解度が0.5質量%以上の溶媒を用いることが好ましく、より好ましくは1.0質量%以上、特に好ましくは1.5質量%以上の溶媒を用いることである。具体的には、ハロゲン系脂肪族炭化水素、ハロゲン系芳香族炭化水素、芳香族炭化水素、又はエーテル系溶媒が好ましく、ジクロロメタン、クロロベンゼン、クロロホルム、1,2−ジクロロベンゼン、テトラヒドロフラン、1,4−ジオキサン、又はメチルシクロペンチルエーテルが特に好ましい。
これらの溶媒は1種を単独で用いても良く、2種以上を混合して用いても良い。
溶媒の使用量は、上限は特に制限はないが、反応器あたりの目的物の生成効率を考えると、通常、原料のオリゴフルオレン化合物(II)の20倍体積量、好ましくは15倍体積量、さらに好ましくは10倍体積量となるような量が使用される。一方、溶媒の使用量が少なすぎると試剤の溶解性が悪くなり攪拌が難しくなるとともに反応の進行が遅くなるので、下限としては、通常、原料のオリゴフルオレン化合物(II)の1倍体積量、好ましくは2倍体積量、さらに好ましくは4倍体積量となるような量が使用される。
3がメチレン基以外の場合、有機塩基及びオリゴフルオレン化合物(II)の溶解性
が反応速度に大きく影響を与える傾向があることが解っており、その溶解性を確保するために一定値以上の誘電率を持った溶媒を使用することが望ましい。有機塩基及びオリゴフ
ルオレン化合物(II)をよく溶解する溶媒としては、芳香族複素環、アルキルニトリル系溶媒、アミド系溶媒、スルホキシド系溶媒、が好ましく、ピリジン、アセトニトリル、N,N−ジメチルホルムアミド、N,N,−ジメチルアセトアミド、ジメチルスルホキシド、スルホランが特に好ましい。
これらの溶媒は1種を単独で用いても良く、2種以上を混合して用いても良い。
溶媒の使用量は、上限は特に制限はないが、反応器あたりの目的物の生成効率を考えると、通常、原料のオリゴフルオレン(II)の20倍体積量、好ましくは15倍体積量、さらに好ましくは10倍体積量となるような量が使用される。一方、溶媒の使用量が少なすぎると試剤の溶解性が悪くなり攪拌が難しくなるとともに反応の進行が遅くなる傾向があるので、下限としては、通常、原料のオリゴフルオレン(II)の1倍体積量、好ましくは2倍体積量、さらに好ましくは4倍体積量となるような量が使用される。
<1.7.4.1.5 反応形式>
工程(iia)を行う際、反応の形式はバッチ型反応でも流通型反応でもそれらを組み合わせたものでも特にその形式は制限なく採用できる。
バッチ式の場合の反応試剤の反応器への投入方法は、α,β‐不飽和エステル(VI)を反応開始時に一括添加で仕込んだ場合、α,β‐不飽和エステル(VI)が高濃度で存在するため、副反応の重合反応が進行し易い。よって原料のオリゴフルオレン化合物(II)、相間移動触媒、溶媒及び塩基を加えた後に、少量ずつα,β‐不飽和エステル(VI)を逐次添加するのが好ましい。
<1.7.4.1.6 反応条件>
工程(iia)において、温度が低すぎると十分な反応速度が得られず、逆に高すぎるとα,β‐不飽和エステル(VI)の重合反応の進行や、加水分解により下記一般式(1a−I)で表されるオリゴフルオレンモノエステルモノカルボン酸及び、(1a−II)で表されるオリゴフルオレンジカルボン酸が生成しやすい傾向があるため、温度管理を行うことが好ましい。そのため、反応温度としては、具体的には、通常、下限は0℃、好ましくは10℃、より好ましくは15℃で実施される。一方通常、上限は、40℃、好ましくは30℃、より好ましくは20℃で実施される。
Figure 2015199706
上記式中、n、R3〜R10、Ri、Rii及びRiiiは、前記式(1a)中のn、R3〜R10、Ri、Rii及びRiiiと同義である。
工程(iia)における一般的な反応時間は、通常下限が30分、好ましくは1時間、さらに好ましくは2時間で、反応時間が長いと生成したオリゴフルオレンジエステル(1
a)が加水分解し、カルボン酸が生成する恐れがあるため、通常10時間、好ましくは5時間、さらに好ましくは2時間である。
<1.7.4.1.7 目的物の分離・精製>
反応終了後、目的物であるオリゴフルオレンジエステル(1a)は、副生した金属ハロゲン化物、及び残存した無機塩基をろ過して反応液から除去した後に、溶媒を濃縮する方法、或いは目的物の貧溶媒を添加する方法などを採用して、目的物であるオリゴフルオレンジエステル(1a)を析出させることにより単離することができる。
また、反応終了後、反応液に酸性水と目的物であるオリゴフルオレンジエステル(1a)が可溶な溶媒とを添加して抽出してもよい。溶媒により抽出された目的物は、溶媒を濃縮する方法、或いは貧溶媒を添加する方法などにより単離することができる。
抽出の際に使用可能な溶媒としては、目的物であるオリゴフルオレンジエステル(1a)が溶解するものであれば良く、特に制限はないが、トルエン、キシレンなどの芳香族炭化水素化合物、ジクロロメタン、クロロホルムなどハロゲン系溶媒などの1種又は2種以上が好適に用いられる。
ここで得られるオリゴフルオレンジエステル(1a)は、そのままポリエステル、又は、ポリエステルカーボネート原料モノマーとして、あるいはポリカーボネート原料モノマーの前駆体として使用することなどが可能であるが、精製を行ってから使用しても良い。特に、不純物として、オリゴフルオレンモノエステルモノカルボン酸(1a−I)及び、オリゴフルオレンジカルボン酸(1a−II)などのカルボン酸成分を含有している場合、オリゴフルオレンジアリールエステル(2)の製造時に、エステル交換反応触媒の触媒毒になるだけでなく、オリゴフルオレンジアリールエステル(2)に含まれる金属含有量が増加し、熱安定性の低下につながることが分かっているため、精製操作を行うことが好ましい。精製法としては、通常の精製法、例えば、再結晶や、再沈法、抽出精製、カラムクロマトグラフィーなど制限なく採用可能である。抽出精製は、塩基性の水溶液を用いることで、カルボン酸成分をカルボン酸塩として、水層に除去することができるため、好ましい。より好ましくは炭酸水素ナトリウム、炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウムなどの無機塩基の水溶液を用いるのが好ましく、よりさらに好ましくは、加水分解が起こりにくい、炭酸水素ナトリウム、炭酸ナトリウム、炭酸カリウムなどの弱塩基の水溶液である。また、オリゴフルオレンジエステル(1a)を適当な溶媒に溶解して活性炭で処理することも可能である。その際に使用可能な溶媒は、抽出の際に使用可能な溶媒と同じである。
ここで得られるオリゴフルオレンジエステル(1a)は、そのままポリエステル、又は、ポリエステルカーボネート原料モノマーとして、あるいはポリカーボネート原料モノマーの前駆体として使用することなどが可能である。
<1.7.4.2 工程(iib):アルキル化反応による製造方法>
オリゴフルオレンジエステル(1b)は、オリゴフルオレン化合物(II)とアルキル化剤(VIIIb)及び(VIIIc)のアルキル化反応を経る方法により製造することができる。
Figure 2015199706
上記式中、R1〜R10及びnは前記式(1)中のR1〜R10及びnと同義である。Xは、脱離基を表す。脱離基の例としては、ハロゲン原子(フッ素を除く。)、メシル基、またはトシル基などが挙げられる。
フルオレン類のアルキル化反応は広く知られており、例えば、9,9−ビス(ブロモへキシル)フルオレンや9,9−ビス(ヨードへキシル)フルオレンなどの9,9−ビス(ハロアルキル)フルオレンが報告されている(J.Org.Chem.,2010,75,2714.)。これらの知見から、オリゴフルオレン化合物(II)を原料とすることで、オリゴフルオレンジエステル(1b)の合成は可能である。
工程(iib)で用いられるアルキル化剤としては、クロロ酢酸メチル、ブロモ酢酸メチル、ヨード酢酸メチル、クロロ酢酸エチル、ブロモ酢酸エチル、ヨード酢酸エチル、クロロ酢酸プロピル、クロロ酢酸n−ブチル、クロロ酢酸tert−ブチル、ブロモ酢酸tert−ブチル、ヨード酢酸tert−ブチル、クロロプロピオン酸メチル、ブロモプロピオン酸メチル、ヨードプロピオン酸メチル、クロロプロピオン酸エチル、クロロプロピオン酸tert−ブチル、ブロモプロピオン酸tert−ブチル、ブロモプロピオン酸エチル、ヨードプロピオン酸エチル、クロロ酪酸メチル、ブロモ酪酸メチル、ヨード酪酸メチル、クロロ酪酸エチル、クロロ酪酸エチル、ヨード酪酸エチル、ヨードプロピオン酸tert−ブチルなどのハロアルカン酸アルキル、クロロ酢酸フェニル、ブロモ酢酸フェニル、ヨード酢酸フェニルなどのハロアルカン酸アリール、4−クロロメチル安息香酸メチル、4−ブロモメチル安息香酸メチル、4−クロロメチル安息香酸エチル、4−ブロモメチル安息香酸エチル、3−クロロメチル安息香酸メチル、3−ブロモメチル安息香酸メチルなどハロアルキル安息香酸アルキルなどが挙げられる。
なお、工程(iib)の反応終了後、目的物であるオリゴフルオレンジエステル(1b)を単離・精製することが好ましい。単離・精製の方法としては、<1.7.4.1.7
目的物の分離・精製>に記載した方法を好ましく採用することができる。
<1.7.4.3 一般式(2)のオリゴフルオレンジアリールエステルの製造方法エステル交換反応によるオリゴフルオレンジアリールエステル化合物(2)の製造法)>
オリゴフルオレンジアリールエステル化合物(2)は、オリゴフルオレンジエステル化合物(1)と、ジアリールカーボネート類(11a)とのエステル交換反応工程(工程(iic))を経る方法により製造することができる。
Figure 2015199706
上記式中、R1〜R10及びnは前記式(1)中のR1〜R10及びnと同義である。Ar1
は、置換されていてもよい炭素数4〜10のアリール基を表す。
<1.7.4.3.1 一般式(2)のオリゴフルオレンジアリールエステルの製造方法(エステル交換反応によるオリゴフルオレンジアリールエステル化合物(2)の製造法)>
Ar1が置換されていてもよい炭素数4〜10のアリール基であるオリゴフルオレンジ
アリールエステル化合物(2)は、オリゴフルオレンジエステル化合物(1)、ジアリールカーボネート類(11a)から、エステル交換触媒存在下、工程(iic)で表される反応に従って製造される。
<1.7.4.3.1.1 オリゴフルオレンジエステル化合物(1)>
オリゴフルオレンジエステル化合物(1)のカルボン酸の含有量が多いと、カルボン酸がエステル交換反応触媒の触媒毒となり、エステル交換反応触媒を多量に用いる必要が生じる傾向がある。そのため、カルボン酸の含有量が多いと、オリゴフルオレンジアリールエステル化合物(2)に含まれる金属含有量が増加する傾向にある。オリゴフルオレンジアリールエステル(2)に含まれる金属量低減の観点から、オリゴフルオレンジエステル化合物(1)におけるカルボン酸の含有量は好ましくは5質量%以下であり、より好ましくは3質量%以下であり、さらに好ましくは2質量%以下であり、よりさらに好ましくは、1質量%以下である。また、カルボン酸含有量は、少なければ少ないほど好ましいが、0質量%にしようとすると、不純物混入の防止等のために著しいコストアップや生産効率の低下を伴う恐れがある。生産性を維持して到達できるカルボン酸の含有量は、通常0.1質量%以上である。
オリゴフルオレンジエステル化合物(1)に含まれるカルボン酸としては、例えば、オリゴフルオレンモノエステルモノカルボン酸や、オリゴフルオレンジカルボン酸が挙げられる。
オリゴフルオレンジエステル化合物(1)に含まれるオリゴフルオレンモノエステルモノカルボン酸や、オリゴフルオレンジカルボン酸のモル数は、例えば、HPLC分析の面積%から、検量線を用いて見積もることができる。
<1.7.4.3.1.2 ジアリールカーボネート類>
反応試剤としてのジアリールカーボネート類は、ジフェニルカーボネート、ジトリルカーボネート、ビス(クロロフェニル)カーボネート、m−クレジルカーボネート、ジナフチルカーネート、ビス(ビフェニル)カーボネートなどが挙げられる。中でも、安価で、工業的に入手可能なジフェニルカーボネートが好ましい。
これらのジアリールカーボネートは、1種を単独で用いても良く、2種以上を混合して用いてもよい。
ジアリールカーボネート類の使用量は原料であるオリゴフルオレンジエステル(1)に対して、上限は特にないが、使用量が多すぎると反応後の精製負荷が大きくなる傾向があるので、通常、オリゴフルオレンジエステルの20倍モル以下、好ましくは10倍モル以下、さらに好ましくは5倍モル以下である。
一方、ジアリールカーボネート類の使用量が少なすぎると原料のオリゴフルオレンジエステル(1)や、中間体である以下に示すようなオリゴフルオレンモノアリールエステル(10e)が残ってしまう場合があるので、下限としては、通常、原料のオリゴフルオレンジエステル(1)に対して1倍モル以上、好ましくは1.5倍モル以上、さらに好ましくは2倍モル以上である。
Figure 2015199706
上記式中、R1〜R10及びnは前記式(1)中のR1〜R10及びnと同義である。Ar1
は、置換されていてもよい炭素数4〜10のアリール基を表す。
<1.7.4.3.1.3 エステル交換反応触媒>
エステル交換反応触媒としては、テトラブトキシチタン、テトライソブトキシチタン、テトラメトキシチタン、テトライソプロポキシチタン、テトラエトキシチタン、テトラキス(2−エチルヘキシルオキシ)チタン、テトラステアリルオキシチタン、テトラフェノキシチタン、チタニウム(IV)アセチルアセトナート、チタニウム(IV)ジイソプロポキシドビス(アセチルアセトナト)などのチタン化合物;、炭酸リチウム、ジブチルアミノリチウム、リチウムアセチルアセトナート、ナトリウムフェノキシド、カリウムフェノキシドなどのアルカリ金属化合物;カドミウムアセチルアセトナート、炭酸カドミウムなどのカドミウム化合物;ジルコニウムアセチルアセトナート、ジルコノセンなどのジルコニウム化合物;硫化鉛、水酸化鉛、鉛酸塩、亜鉛酸塩、炭酸鉛、酢酸鉛、テトラブチル鉛、テトラフェニル鉛、トリフェニル鉛、ジメトキシ鉛、ジフェノキシ鉛などの鉛化合物;酢酸銅、銅ビスアセチルアセトナート、オレイン酸銅、ブチル銅、ジメトキシ銅、塩化銅などの銅化合物;水酸化鉄、炭酸鉄、トリアセトキシ鉄、トリメトキシ鉄、トリフェノキシ鉄などの鉄化合物;亜鉛ビスアセチルアセトナート、ジアセトキシ亜鉛、ジメトキシ亜鉛、ジエトキシ亜鉛、ジフェノキシ亜鉛などの亜鉛化合物;ジn−ブチルスズオキシド、ジフェニルスズオキシド、ジn−オクリルスズオキシド、ジn−ブチルスズジメトキシド、ジn−ブチルスズジアクリレート、ジn−ブチルスズジメタクリレート、ジn−ブチルスズジラウレート、テトラメトキシスズ、テトラフェノキシスズ、テトラブチル−1,3−ジアセトキシジスタノキサンなどの有機スズ化合物;酢酸アルミニウム、アルミニウムメトキシド、アルミニウムエトキシド、アルミニウムフェノキシドなどのアルミニウム化合物;二塩化バナジウム、三塩化バナジウム、四塩化バナジウム、硫酸バナジウムなどのバナジウム化合物;テトラフェニルホスホニウムフェノキシドなどのホスホニウム塩などが挙げられる。これらは1種を単独で用いても良く、2種以上を併用しても良い。
これらの中で、工業的に安価であり、反応操作上の優位性があることから、ホスホニウム塩、リチウム化合物、ジルコニウム化合物、有機スズ化合物、又はチタン化合物等を用いることが好ましく、中でも有機スズ化合物又はチタン化合物が特に好ましい。
エステル交換反応触媒の使用量は原料であるオリゴフルオレンジエステル(1)に対して、上限は特にないが、使用量が多すぎると反応後の精製負荷が大きくなるので、通常、フルオレンの20モル%以下、好ましくは10モル%以下、さらに好ましくは5モル%以下である。
一方、エステル交換反応触媒の使用量が少なすぎると反応時間が長くなりすぎてしまう場合があるため、下限としては、通常、原料のオリゴフルオレンジエステルに対して0.1モル%以上、好ましくは0.5モル%以上、さらに好ましくは1モル%以上である。
<1.7.4.3.1.4 溶媒>
工程(iic)では、反応溶媒を用いてもよいが、反応溶媒を用いずに、原料のオリゴフルオレンジエステル(1)、ジアリールカーボネート類、及びエステル交換反応触媒だ
けで反応を行うことが好ましい。しかしながら、原料のオリゴフルオレンジエステル(1)、ジアリールカーボネート類が常温で固体で、攪拌が困難な場合においては、反応溶媒を使用してもよい。反応溶媒を使用する場合、上述の原料のオリゴフルオレンジエステル(1)、ジアリールカーボネート類、及びエステル交換反応触媒を好適に溶解及び/又は分散させることが可能な溶媒であれば、その種類は任意である。
具体的に使用可能な溶媒は、アルキルニトリル系溶媒としては、アセトニトリル、プロピオニトリルなど、ケトン系溶媒としては、アセトン、メチルエチルケトン、メチルイソブチルケトンなど、エーテル系溶媒としては、ジエチルエーテル、テトラヒドロフラン、1,4−ジオキサン、メチルシクロペンチルエーテル、ターシャリーブチルメチルエーテルなど、ハロゲン系溶媒としては、1,2−ジクロロエタン、ジクロロメタン、クロロホルム、1,1,2,2−テトラクロロエタンなど、ハロゲン系芳香族炭化水素としては、クロロベンゼン、1,2−ジクロロベンゼンなど、アミド系溶媒としては、N,N−ジメチルホルムアミド、N,N,−ジメチルアセトアミドなど、スルホキシド系溶媒としては、ジメチルスルホキシド、スルホランなど、環状式脂肪族炭化水素としては、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタンなどの単環状式脂肪族炭化水素;その誘導体であるメチルシクロペンタン、エチルシクロペンタン、メチルシクロヘキサン、エチルシクロヘキサン、1,2−ジメチルシクロヘキサン、1,3−ジメチルシクロヘキサン、1,4−ジメチルシクロヘキサン、イソプロピルシクロヘキサン、n−プロピルシクロヘキサン、tert−ブチルシクロヘキサン、n−ブチルシクロヘキサン、イソブチルシクロヘキサン、1,2,4−トリメチルシクロヘキサン、1,3,5−トリメチルシクロヘキサンなど;デカリンなどの多環状式脂肪族炭化水素;n−ペンタン、n−ヘキサン、n−ヘプタン、n−オクタン、イソオクタン、n−ノナン、n−デカン、n−ドデカン、n−テトラデカンなどの非環状式脂肪族炭化水素、芳香族炭化水素としては、トルエン、p−キシレン、o−キシレン、m−キシレン、1,3,5−トリメチルベンゼン、1,2,4−トリメチルベンゼン、1,2,3,4−テトラヒドロナフタレンなど、芳香族複素環としては、ピリジンなどが挙げられる。
本反応は通常100℃以上の高温で行うことが好ましいため、上記の溶媒の中でも沸点が100℃以上の溶媒であるクロロベンゼン、1,2−ジクロロベンゼン、トリクロロベンゼン、トルエン、p−キシレン、o−キシレン、m−キシレン、1,3,5−トリメチルベンゼン、1,2,4−トリメチルベンゼン、1,2,3,4−テトラヒドロナフタレン、デカヒドロナフタレン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、又はスルホランが好ましく、原料のオリゴフルオレンジエステル(10b)を好適に溶解させることができ、沸点が130℃以上で、より高温での反応が可能になることから、1,2−ジクロロベンゼン、キシレン、1,3,5−トリメチルベンゼン、1,2,4−トリメチルベンゼン・BR>A又は1,2,3,4−テトラヒドロナフタレン、デカヒドロナフタレンが特に好ましい。
これらの溶媒は1種を単独で用いても良く、2種以上を混合して用いても良い。
溶媒の使用量は、上限は特に制限はないが、反応器あたりの目的物の生成効率を考えると、通常、原料のオリゴフルオレンジエステル(1)の15倍体積量、好ましくは10倍体積量、さらに好ましくは5倍体積量となるような量が使用される。一方、溶媒の使用量が少なすぎると試剤の溶解性が悪くなり攪拌が難しくなるとともに反応の進行が遅くなるので、下限としては、通常、原料のオリゴフルオレンジエステル(1)の濃度として1倍体積量、好ましくは2倍体積量、さらに好ましくは4倍体積量となるような量が使用される。
<1.7.4.3.1.5 反応形式>
工程(iic)を行う際、反応の形式はバッチ型反応でも流通型反応でもそれらを組み
合わせたものでも特にその形式は制限なく採用できる。
<1.7.4.3.1.6 反応条件>
工程(iic)において、温度が低すぎると十分な反応速度が得られない傾向があるため、通常、下限は50℃、好ましくは70℃、より好ましくは100℃で実施される。一方、上限は、通常、250℃、好ましくは200℃、より好ましくは180℃で実施される。
工程(iic)における一般的な反応時間は、通常下限が1時間、好ましくは2時間、さらに好ましくは3時間で、上限は特に限定はされないが通常30時間、好ましくは20時間、さらに好ましくは10時間である。
工程(iic)において、平衡を生成物側に偏らせるために、減圧下で副生物を留去しながら反応を行ってもよい。減圧にする場合の圧力は、通常、20kPa以下、好ましくは10kPa以下、より好ましくは、5kPa以下で実施される。一方、減圧度が高すぎると、試薬として用いたジアリールカーボネート類まで昇華する可能性があるため、通常、0.1kPa以上、好ましくは、0.5kPa以上、より好ましくは、1.0kPa以上で実施される。
<1.7.4.3.1.7 目的物の分離・精製>
反応終了後、目的物であるオリゴフルオレンジアリールエステル(2)は、反応液に貧溶媒を添加し、析出させることにより単離することができる。
また、反応終了後、目的物であるオリゴフルオレンジアリールエステル(2)が可溶な溶媒と水を反応液に添加して抽出してもよい。溶媒により抽出された目的物は、温度差による溶解度差を利用する方法、溶媒を濃縮する方法、或いは貧溶媒を添加する方法などにより単離することができる。
得られたオリゴフルオレンジアリールエステル(2)は、ポリエステルカーボネートを含むポリカーボネート原料、またはポリエステル原料として、そのまま重合に使用することも可能である。精製法としては、通常の精製法、例えば、再結晶や、再沈法、抽出精製、カラムクロマトグラフィーなど制限なく採用可能である。
再結晶や再沈法などの精製法で精製する際には、良溶媒として具体的に使用可能な溶媒は、アルキルニトリル系溶媒としては、アセトニトリル、プロピオニトリルなど、ケトン系溶媒としては、アセトン、メチルエチルケトン、メチルイソブチルケトンなど、エーテル系溶媒としては、ジエチルエーテル、テトラヒドロフラン、1,4−ジオキサン、メチルシクロペンチルエーテル、ターシャリーブチルメチルエーテルなど、ハロゲン系溶媒としては、1,2−ジクロロエタン、ジクロロメタン、クロロホルム、1,1,2,2−テトラクロロエタンなど、ハロゲン系芳香族炭化水素としては、クロロベンゼン、1,2−ジクロロベンゼンなど、アミド系溶媒としては、N,N−ジメチルホルムアミド、N,N,−ジメチルアセトアミドなど、スルホキシド系溶媒としては、ジメチルスルホキシド、スルホランなど、芳香族炭化水素としては、トルエン、p−キシレン、o−キシレン、m−キシレン、1,3,5−トリメチルベンゼン、1,2,4−トリメチルベンゼン、1,2,3,4−テトラヒドロナフタレンなど、芳香族複素環としては、ピリジンなどが挙げられる。
オリゴフルオレンジアリールエステル(2)は温度に対する溶解度差が大きいため、沸点が100℃以上である、メチルイソブチルケトン、1,4−ジオキサン、メチルシクロペンチルエーテル、ターシャリーブチルメチルエーテル、1,1,2,2−テトラクロロエタン、クロロベンゼン、1,2−ジクロロベンゼン、N,N−ジメチルホルムアミド、
N,N,−ジメチルアセトアミド、ジメチルスルホキシド、スルホラン、トルエン、p−キシレン、o−キシレン、m−キシレン、1,3,5−トリメチルベンゼン、1,2,4−トリメチルベンゼン、1,2,3,4−テトラヒドロナフタレン、ピリジンが好ましい。これらの中でも、エステル交換触媒存在下でも高温で安定で、非ハロゲン系で環境負荷の小さい芳香族炭化水素のトルエン、p−キシレン、o−キシレン、m−キシレン、1,3,5−トリメチルベンゼン、1,2,4−トリメチルベンゼンがより好ましい。
これらの良溶媒は1種を単独で用いても良く、2種以上を混合して用いても良い。
溶媒の使用量は、上限は特に制限はないが、反応器あたりの目的物の精製効率を考えると、通常、オリゴフルオレンジアリールエステル(2)の15倍質量量、好ましくは10倍質量量、さらに好ましくは5倍質量量となるような量が使用される。一方、溶媒の使用量が少なすぎると試剤の溶解性が悪くなり攪拌が難しくなるとともに反応の進行が遅くなるので、下限としては、通常、オリゴフルオレンジアリールエステル(2)の濃度として0.3倍質量量、好ましくは0.5倍質量量、さらに好ましくは1倍質量量となるような量が使用される。
再結晶や再沈法などの精製法で精製する際には、温度による溶解度差を利用して、良溶媒だけで晶析を行っても良いが、回収率を上げるため、貧溶媒を用いる方が好ましい。使用可能な貧溶媒の具体例としては、環状式脂肪族炭化水素としては、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタンなどの単環状式脂肪族炭化水素;その誘導体であるメチルシクロペンタン、エチルシクロペンタン、メチルシクロヘキサン、エチルシクロヘキサン、1,2−ジメチルシクロヘキサン、1,3−ジメチルシクロヘキサン、1,4−ジメチルシクロヘキサン、イソプロピルシクロヘキサン、n−プロピルシクロヘキサン、tert−ブチルシクロヘキサン、n−ブチルシクロヘキサン、イソブチルシクロヘキサン、1,2,4−トリメチルシクロヘキサン、1,3,5−トリメチルシクロヘキサンなど;デカリンなどの多環状式脂肪族炭化水素;n−ペンタン、n−ヘキサン、n−ヘプタン、n−オクタン、イソオクタン、n−ノナン、n−デカン、n−ドデカン、n−テトラデカンなどの非環状式脂肪族炭化水素、アルコール系溶媒としては、メタノール、エタノール、イソプロパノール、n−ブタノール、ターシャリーブタノール、ヘキサノール、オクタノール、シクロヘキサノールなどが挙げられる。
高極性の不純物を除去することができるため、貧溶媒としてはメタノール、エタノール、イソプロパノール、n−ブタノール、ターシャリーブタノール、ヘキサノール、オクタノール、シクロヘキサノールなどのアルコール系溶媒が好ましく、炭素鎖の短いメタノール、エタノールがより好ましい。
オリゴフルオレンジアリールエステル(2)には、安定形と準安定形の結晶多形が存在する。良溶媒を用いて温度による溶解度差により結晶を析出させた場合、準安定形で析出した結晶は、脆く、安定形に相変化する際に微粉化する傾向にある。微粉化した結晶は樹脂原料として工業的に使用する際に流動性が悪く、仕込み不良を起こす可能性がある。一方で、良溶媒として、トルエン、p−キシレン、o−キシレン、m−キシレン、1,3,5−トリメチルベンゼン、1,2,4−トリメチルベンゼン、1,2,3,4−テトラヒドロナフタレンなどの芳香族炭化水素と、貧溶媒として、メタノール、エタノール、イソプロパノール、n−ブタノール、ターシャリーブタノール、ヘキサノール、オクタノール、シクロヘキサノールなどのアルコール系溶媒を組み合わせた場合には、最初から安定形の結晶が得られ、微粉化が起こらないために好ましい。
良溶媒として芳香族炭化水素を、貧溶媒としてアルコール系溶媒を組み合わせた場合には、アルコール系溶媒の添加温度が低いと、アルコール系溶媒の添加前に準安定形の結晶が析出し、その割合が増える傾向にある。そのため、アルコール系溶媒の添加温度は通常
20℃以上、好ましくは30℃以上、より好ましくは40℃以上、特に好ましくは50℃以上である。
オリゴフルオレンジアリールエステル(2)の準安定形の結晶には、粉末X線回折測定装置(XRD)で分析すると、2θ=5.6°、8.5°、11.0°、12.5°、12.9°、14.9°、16.3°、19.1°(θ=±0.2°)に特徴的なピークが観測される。準安定形の結晶は脆く、相転移を起こしやすいため、晶析中に攪拌を続けることで微粉化し、反応器からの抜き出し不良や、ろ過性の悪化を引き起こす。また、準安定形の結晶は衝撃にもよわいや、粉体流動性の低下による仕込み不良を避けるため、結晶中にこれらの入射角のピークを含まないことが好ましい。
オリゴフルオレンジアリールエステル(2)の晶析に用いられる良溶媒の量が少なすぎると、オリゴフルオレンジアリールエステル(2)を溶解させることが困難になり、精製効率も落ちることから、良溶媒の量の下限は、オリゴフルオレンジアリールエステル(2)に対して通常0.3倍質量量、好ましくは0.5倍質量量、より好ましくは0.7倍質量量、よりさらに好ましくは0.9倍質量量である。また、良溶媒の量が多すぎると、オリゴフルオレンジアリールエステル(2)のろ液へのロスが増加し、歩留まりが低下することから、良溶媒の量の上限は、オリゴフルオレンジアリールエステル(2)に対して通常5倍質量量、好ましくは4倍質量量、より好ましくは3倍質量量、よりさらに好ましくは2倍質量量である。
オリゴフルオレンジアリールエステル(2)の晶析に用いられる貧溶媒の量が少なすぎると、オリゴフルオレンジアリールエステル(2)のろ液へのロスが増加し、歩留まりが低下するため、貧溶媒の量の下限は、オリゴフルオレンジアリールエステル(2)に対して通常2倍質量量、好ましくは3倍質量量、より好ましくは3.5倍質量量、よりさらに好ましくは4倍質量量である。また、貧溶媒の量が多すぎると、精製効率も低下する上に、釜効率が低下し、生産性が低下することから、貧溶媒の量の上限は、オリゴフルオレンジアリールエステル(2)に対して通常10倍質量量、好ましくは9倍質量量、より好ましくは8倍質量量、よりさらに好ましくは7倍質量量である。
最初から安定形の結晶を得るために、一度に大量の貧溶媒を加えると、溶解度が急激に下がり、結晶が一度に析出するため、結晶のサイズが大きくなりにくい。オリゴフルオレンジアリールエステル(2)には、特定の良溶媒に特定の貧溶媒を少量添加すると、溶解度が上がる傾向がある。この性質を利用して、特定の貧溶媒を分割して添加する、又は、特定の貧溶媒を断続的に供給することで、結晶サイズをより大きくできる傾向にある。特定の良溶媒としては、トルエン、p−キシレン、o−キシレン、m−キシレン、1,3,5−トリメチルベンゼン、1,2,4−トリメチルベンゼン、1,2,3,4−テトラヒドロナフタレンなどの芳香族炭化水素が好ましく、工業的に安価で入手が容易なトルエン、p−キシレン、o−キシレン、m−キシレンがより好ましい。特定の貧溶媒として、メタノール、エタノール、イソプロパノール、n−ブタノール、ターシャリーブタノール、ヘキサノール、オクタノール、シクロヘキサノールなどのアルコール系溶媒が好ましく、工業的に安価で入手が容易なイソプロパノール、メタノール、エタノールがより好ましい。特に好ましくは、特定の良溶媒としてo−キシレン、特定の貧溶媒としてメタノールの組み合わせである。
特定の貧溶媒を2回に分割添加する場合、最初に添加する特定の貧溶媒の割合が高すぎると貧溶媒の影響が強くなり、溶解度向上の効果が見られないため、通常、40質量%以下、好ましくは30質量%以下、より好ましくは20質量%以下である。一方で、最初に添加する特定の貧溶媒の割合が低すぎると、貧溶媒添加効果が見られないため、通常、5質量%以下、好ましくは、10質量%以下、より好ましくは15質量%以下である。
特定の貧溶媒を2回に分割添加する場合、特定の良溶媒と特定の貧溶媒の組み合わせによって最適な添加温度は調整する必要があるが、特に好ましいo−キシレンとメタノールの場合、メタノールの添加温度が低いと、メタノールの添加前に準安定形の結晶が析出し、その割合が増える傾向にある。そのため、最初に添加するメタノールの添加温度は通常45℃以上、好ましくは50℃以上、より好ましくは55℃以上、よりさらに好ましくは60℃以上である。次に添加するメタノールの温度の下限は通常0℃以上、好ましくは5℃以上、より好ましくは10℃以上である。一方、次に添加するメタノールの温度の上限は通常42℃以下、好ましくは40℃以下、より好ましくは38℃以下である。
オリゴフルオレンジアリールエステル(2)は晶析条件により粒子の粒径が大きく変動する。粒子の粒径が小さすぎると、結晶のろ過工程でろ布の目詰まりが起きやすくなり、ろ過時間が長くなったり、含液率が高くなり、オリゴフルオレンジアリールエステル(2)の純度が低下する傾向にある。また、樹脂原料として用いる際に、粉体流動性が悪化し、仕込み不良を起こす可能性がある。そのため、オリゴフルオレンジアリールエステル(2)の粒子の平均粒径の下限は、通常、50μm以上、好ましくは70μm以上、より好ましくは90μm以上、よりさらに好ましくは130μm以上、特に好ましくは170μm以上である。オリゴフルオレンジアリールエステル(2)の粒子の平均粒径は大きすぎると、樹脂原料として用いる際に、フィルターに詰まる可能性がある。そのため、オリゴフルオレンジアリールエステル(2)の粒子の平均粒径の上限は、通常、2cm以下、好ましくは1cm以下、より好ましくは0.5cm以下、よりさらに好ましくは0.3cm以下である。
オリゴフルオレンジアリールエステル(2)は晶析条件により粒子の粒径が大きく変動する。粒子の粒径が小さすぎると、結晶のろ過工程でろ布の目詰まりが起きやすくなり、ろ過時間が長くなったり、含液率が高くなり、オリゴフルオレンジアリールエステル(2)の純度が低下する傾向にある。また、樹脂原料として用いる際に、粉体流動性が悪化し、仕込み不良を起こす可能性がある。そのため、オリゴフルオレンジアリールエステル(2)の粒子の粒径が50μm以上の累積%は、通常、50μm以上が50%以上、好ましくは60%以上、より好ましくは70%以上、よりさらに好ましくは80%以上、特に好ましくは90%以上である。
晶析により得られた一次結晶や一次結晶が凝集した凝集物の粒径は、反応器や攪拌翼の形状、攪拌速度、反応器の材質など種々の条件により変化する。一般的にスケールが大きくなると、せん断力が増すため粉砕されやすくなり、粒径は小さくなる傾向にある。しかしながら、上述の晶析条件に従うことで、例えば、1m以上の反応器を用いても好ましい粒径のオリゴフルオレンジアリールエステル(2)を得ることができる。
金属の含有量は晶析操作を繰り返すことにより、低減することが可能である。この際、晶析温度が低いほど、目的とするオリゴフルオレンジアリールエステル(2)の回収量は向上するが、金属の精製効率は低下する傾向にある。
特に好ましいエステル交換反応触媒であるTi化合物を触媒として用いた場合、オリゴフルオレンジアリールエステル(2)中のTiの除去が困難で、Tiの残存が問題となる場合がある。そのような場合、反応終了後の反応液、もしくは一度単離したオリゴフルオレンジアリールエステル(2)を再度、前述の溶媒に溶解させた溶液に水を添加し、Ti化合物を失活させて、不溶性のチタン残渣に変化させた後に、ろ過工程でチタン残渣を除くことが好ましい。この際、反応終了後の反応液に水を添加した場合、精製するチタン残渣量が多く、ろ過工程に大きな負荷がかかるため、ろ過性が悪化する傾向にある。そのため、一度、反応終了液に貧溶媒を添加して、大部分のTi化合物を除去した後に、単離したオリゴフルオレンジアリールエステル(2)を再溶解し、水で失活後、ろ過工程に進む
ことが好ましい。
チタン残渣の粒径は非常に細かいために、孔径が大きいとチタン残渣を除ききれず、製品中に混入する恐れがある。そのため、ろ過工程に使用するろ材の孔径は、通常10μm以下、好ましくは5μ以下、より好ましくは1μm以下である。一方で、ろ材の孔径が小さすぎると、ろ過速度が低下し、工程時間の遅延を招く恐れがある。そのため、ろ過工程に使用するろ材の孔径としては、通常0.01μm以上、好ましくは0.05μm以上、より好ましくは、0.1μm以上である。また、ろ過工程に使用するろ材のろ過面が平面であるものは、チタン残渣がろ過面に堆積し、閉塞させてしまうため、ろ過時間を短縮するためには過剰なろ過面積が必要となる。一方で、ろ過工程に使用するろ材の形状がフィルターバッグのような底面を閉じた筒状の形状であれば、チタン残渣は底面に堆積し、側面からもろ過ができるため、閉塞の危険を低減することができ、好ましい。また、ろ過工程に使用するろ材の材質は、安価で工業的に入手が容易という観点では、ポリプロピレン製、コットン製及びポリエステル製が好ましく、耐熱性が高いという観点では、ポリエステル製、コットン製及びテフロン(登録商標)製が好ましく、より好ましくは安価で耐熱性も高いコットン製及びポリエステル製のろ材である。ろ過工程として、吸引ろ過、セントルろ過、加圧ろ過が挙げられる。中でも加圧ろ過が、ろ過速度が速く好ましい。加圧ろ過の圧力は、ろ過速度を上げるため、通常、0.11MPa以上、好ましくは0.15Mpa以上、より好ましくは0.20MPa以上である。加圧ろ過の上限値は、設備にもよるが、設備に大きな負荷がかかるのを避けるため、通常、5.0MPa以下、好ましくは、3.0MPa以下、より好ましくは、1.0MPa以下である。
ろ過工程では、ろ過助剤を用いても良い。ろ過助剤としては、珪藻土、粉末セルロース、硫酸マグネシウム、硫酸ナトリウム、シリカゲル、活性アルミナ、活性炭、活性白土、パーライト、ガラス繊維、ガラスビーズなどが挙げられる。これらの中で、ろ過面積が大きく、吸着によるロスが少ない珪藻土、粉末セルロース、パーライトが好ましい。
<2 オリゴフルオレンジエステルB>
本発明のオリゴフルオレンジエステル(以下、「オリゴフルオレンジエステルB」と略記する場合がある)は、置換基を有していてもよい2以上のフルオレン単位を含み、
該フルオレン単位の9位の炭素原子同士が、直接結合、又は、置換基を有していてもよいアルキレン基、置換基を有していてもよいアリーレン基、若しくは置換基を有していてもよいアラルキレン基を介して鎖状に結合され、かつ、
カルボン酸の含有割合が5質量%以下である。
アルキレン基、アリーレン基、アラルキレン基としては、<1.1 アルキレン基、アリーレン基、アラルキレン基>において例示したものを好ましく採用することができる。
同様に、フルオレン単位としては、<1.2 フルオレン単位が有していてもよい置換基>において例示したものを好ましく採用することができる。
本発明のオリゴフルオレンジエステルBは、両末端に位置するフルオレン単位の9位の炭素原子にそれぞれ置換基α1及びα2を結合させ、該置換基α1及びα2にエステル基が結合したものとすることができる。この場合、α1とα2とは同じであっても異なっていてもよい。また、置換基α1及びα2には直接結合が含まれ、つまり、フルオレン単位の9位の炭素原子に直接エステル基が結合してもよい。
エステル基としては、<1.3 エステル基>において例示したものを好ましく採用することができる。特に、加水分解に対する耐性が高くなる傾向があることからは、直鎖状のアルキル基であることが好ましく、メチル基又はエチル基であることがより好ましい。
置換基α1及びα2としては、<1.4 置換基α1及びα2>において例示したものを好ましく採用することができる。
また、オリゴフルオレンジエステルBの具体的な構造としては、前記一般式(1)で表せるものを好ましく用いることができる。また、具体例としては、前記[H]群に示した構造が挙げられる。
<2.1 オリゴフルオレンジエステルBの物性>
前述のとおり、本発明のオリゴフルオレンジエステルは、カルボン酸の含有割合が10質量%以下である。このようにカルボン酸の含有量を所定範囲にすることで、該オリゴフルオレンジエステルを原料としてジアリールエステルを製造した場合に、該ジアリールエステルに含まれる金属量を所定範囲に低減することができる傾向がある。
前記カルボン酸の含有量は、ジアリールエステルに含まれる金属量低減の観点から好ましくは8質量%以下であり、より好ましくは5質量%以下であり、さらに好ましくは4質量%以下であり、よりさらに好ましくは3質量%以下であり、特に好ましくは2質量%以下であり、最も好ましくは1質量%以下である。また、カルボン酸含有量は、少なければ少ないほど好ましいが、0質量%にしようとすると、不純物混入の防止等のために著しいコストアップや生産効率の低下を伴う恐れがある。生産性を維持して到達できるカルボン酸の含有量は、通常0.1質量%以上である。
前記カルボン酸は、オリゴフルオレンジエステル製造時に、加水分解により副生することが考えられる。前記カルボン酸の種類については特に限定されないが、例えば、オリゴフルオレンモノエステルモノカルボン酸(オリゴフルオレンジエステルにおいて、いずれか一方のエステル基をカルボン酸に置換したもの)、オリゴフルオレンジカルボン酸(オリゴフルオレンジエステルにおいて、2つのエステル基をカルボン酸に置換したもの)が挙げられる。
カルボン酸の含有量の測定法としては、例えば、単離したカルボン酸を高速液体クロマトグラフィーで定量する方法が挙げられる。
カルボン酸量を上記範囲にする方法としては、例えば、通常の精製法、例えば、塩基水での水洗操作、再結晶、再沈法、抽出精製、フィルターろ過などのろ過操作、カラムクロマトグラフィーなどが挙げられる。また、本発明のオリゴフルオレンジエステルBを2層系の反応で製造する場合には、反応温度の低温化、反応時間の短縮などにより加水分解反応を抑制することが重要である。
また、本発明のオリゴフルオレンジエステルBのその他の物性値は特に限定されないが、<1.6.2 その他の物性値>に例示した物性値を満たすことが好ましい。
<2.2 オリゴフルオレンジエステルBの製造方法>
本発明のオリゴフルオレンBの製造方法については特に限定されないが、例えば、<1.7.4 オリゴフルオレンジエステル(1)の製造方法>に記載の方法と同様の方法で製造できる。
<3 樹脂組成物>
本発明のオリゴフルオレンジエステルを原料として用いて重合反応させることで、2価のオリゴフルオレンを繰り返し単位として有する重合体からなる、又は該重合体を含有する樹脂組成物を製造することができる。
<4.1 2価のオリゴフルオレン>
本発明の樹脂組成物に含有される重合体は、2価のオリゴフルオレンを繰り返し単位として有する。
この場合、本発明の樹脂組成物は2価のオリゴフルオレンを繰り返し単位として有する
重合体のほか、後述するその他の重合体を含んでいてもよく、また、添加剤等を含んでいてもよい。また、本発明の樹脂組成物は、2価のオリゴフルオレンを繰り返し単位として有する重合体からなるものであってもよい。
2価のオリゴフルオレンは、置換基を有していてもよい2以上のフルオレン単位を含み、かつ、該フルオレン単位の9位の炭素原子同士が直接結合されたもの、又は、該フルオレン単位bの9位の炭素原子同士が、置換基を有していてもよいアルキレン基、置換基を有していてもよいアリーレン基、若しくは置換基を有していてもよいアラルキレン基を介して鎖状に結合されたものである。
フルオレン単位を結合するアルキレン基、アリーレン基、アラルキレン基としては、<1.1 アルキレン基、アリーレン基、アラルキレン基>において例示したものを好ましく採用することができる。
同様に、フルオレン単位が有していてもよい置換基としては、<1.2 フルオレン単位が有していてもよい置換基>において例示したものを好ましく採用することができる。
前記2価のオリゴフルオレンは、2以上のフルオレン単位のうち、両末端に位置するフルオレン単位の9位の炭素原子にそれぞれ置換基α1及びα2を結合させ、該置換基α1
びα2を2価の基とすることもできる。この場合、α1とα2とは同じであっても異なって
いてもよい。また、置換基α1及びα2には直接結合が含まれ、つまり、フルオレン単位の9位の炭素原子を2価の基とすることもできる。
置換基α1及びα2としては、<1.4 置換基α1及びα2>において例示したものを好ましく採用することができる。
前記2価のオリゴフルオレンとしては、具体的には、下記一般式(11)で表されるものを好ましく用いることができる。
Figure 2015199706
式(11)中、R1及びR2は、それぞれ独立に、直接結合、置換されていてもよい炭素数1〜10のアルキレン基、置換されていてもよい炭素数4〜10のアリーレン基、若しくは置換されていてもよい炭素数6〜10のアラルキレン基、又は置換されていてもよい炭素数1〜10のアルキレン基、置換されていてもよい炭素数4〜10のアリーレン基及び置換されていてもよい炭素数6〜10のアラルキレン基からなる群から選ばれる2つ以上の基が、酸素原子、置換されていてもよい硫黄原子、置換されていてもよい窒素原子若しくはカルボニル基で連結された基であり、
3は、それぞれ独立に、置換されていてもよい炭素数1〜10のアルキレン基、置換
されていてもよい炭素数4〜10のアリーレン基、又は置換されていてもよい炭素数6〜10のアラルキレン基であり、
4〜R9は、それぞれ独立に、水素原子、置換されていてもよい炭素数1〜10のアルキル基、置換されていてもよい炭素数4〜10のアリール基、置換されていてもよい炭素数1〜10のアシル基、置換されていてもよい炭素数1〜10のアルコキシ基、置換されていてもよい炭素数1〜10のアリールオキシ基、置換されていてもよい炭素数1〜10のアシルオキシ基、置換されていてもよいアミノ基、置換基を有する硫黄原子、ハロゲン
原子、ニトロ基又はシアノ基である。ただし、R4〜R9のうち隣接する少なくとも2つの基が互いに結合して環を形成していてもよい。nは1〜5の整数値を示す。
前記式(11)におけるR1〜R9及びnとしては、それぞれ、前記式(1)におけるR1〜R9及びnとして例示したものを好ましく用いることができる。
<4.2 重合体>
本発明の樹脂組成物に含有される重合体は、2価のオリゴオレンを繰り返し単位として有するものである。例えば、2価のオリゴフルオレン同士が任意の連結基により連結した重合体が挙げられる。また、該重合体は、2価のオリゴフルオレン以外の任意の繰り返し単位を有する共重合体であってもよい。
<4.3 連結基>
前記重合体において用いられる連結基の具体的な構造は以下に挙げられ、これらに限定されるものではないが、下記[I]群に示される連結基
Figure 2015199706
(上記[I]群に示される各連結基において、Zは繰り返し単位が連結する部位を示し、Yは他の連結基との結合部位、又は連結基同士を結合させる任意の構造単位が連結する部位を示す。)が挙げられ、これらの連結基のうち複数種を併用してもよい。また、連結基が非対称である場合、連結基は、繰り返し単位に対して、任意の向きで連結してよい。これらのうち好ましくは、耐熱性と溶融加工性や機械強度とのバランスに優れるポリエステル、ポリカーボネート、ポリエステルカーボネートを構成する、下記[J]群に示される連結基である。
Figure 2015199706
上記[J]群に示される各連結基において、Zは繰り返し単位が連結する部位を示す。
連結基は1種類のものを単独で用いてもよく、複数種類の連結基を併用してもよい。
繰り返し単位を連結基で連結した重合体として具体的には、ポリオレフィン、ポリエステル、ポリカーボネート、ポリアミド、ポリイミド、ポリウレタン、エポキシ樹脂、ポリアクリレート、ポリメタクリレート、若しくはポリスルホンを含む重合体及びそれらを併
用した重合体が挙げられ、好ましくは、一般に透明性の高いポリオレフィン、ポリエステル、ポリカーボネート、エポキシ樹脂、又はポリアクリレートを含む重合体であり、特に好ましくは、耐熱性と溶融加工性や機械強度とのバランスに優れるポリエステル、又はポリカーボネートを含む重合体、特に好ましくは一般に耐熱性や耐薬品性に優れるポリカーボネートを含む重合体である。
複数種類の連結基を併用した重合体とする場合、連結基の組み合わせについては特に限定されないが、例えば、連結基としてカーボネート構造とエステル構造を併用した重合体、連結基としてカーボネート構造とウレタン構造を併用した重合体、連結基としてエステル構造とアミドを併用した重合体などが挙げられるが、好ましくは連結基としてカーボネート構造とエステル構造を併用した重合体が挙げられる。ここで、複数種の連結基を併用する重合体の具体例としては、ポリエステルカーボネート、カーボネート結合を有するポリウレタン、ポリエステルアミド、ポリエステルイミド等が挙げられ、これらの中で好ましくは、耐熱性と溶融加工性や機械強度とのバランスに優れるポリエステルカーボネートである。本明細書中において、カーボネート結合を有する重合体をポリカーボネートと呼び、カーボネート結合のみを連結基として有する重合体の他、ポリエステルカーボネート(エステル結合とカーボネート結合を有する重合体)、カーボネート結合を有するポリウレタン等も含まれる。ここで、ポリカーボネートを含む重合体中のカーボネート結合の割合は任意の値でよいが、カーボネート結合に起因する、耐熱性や耐薬品性等の優れた特性を樹脂組成物に付与するために、一定割合以上であることが好ましく、全連結基におけるカーボネート結合のモル分率は、好ましくは30%以上、より好ましくは50%以上、更に好ましくは60%以上、特に好ましくは70%以上であり、通常100%以下である。
<4.4 共重合体>
2価のオリゴフルオレンを繰り返し単位として有する重合体は、さらに任意の2価の有機基(ただし、2価のオリゴフルオレン及び2価のジフルオレンを除く)を繰り返し単位として含む共重合体であってもよい。この場合、繰り返し単位同士は前述の連結基により連結したものであることが好ましい。
共重合体において、2価のオリゴフルオレンと併用してもよい任意の2価の有機基としては、樹脂組成物に必要とされる光学特性及び物性の範囲に制御するとの観点から、以下の一般式(3)で表される2価の有機基を好ましく用いることができる。この場合、任意の2価の有機基として、一般式(3)で表される2価の有機基以外の2価の有機基をさらに併用してもよい。
Figure 2015199706
式中、R20は、置換されていてもよい炭素数2〜20のアルキレン基、置換されていてもよい炭素数4〜20のアリーレン基、置換されていてもよい炭素数2〜100のアルキレンエーテル基、置換されていてもよい炭素数4〜20の脂環構造を持つ有機基又は置換されていてもよい炭素数4〜20の複素環構造を持つ有機基を示す。
重合体が前記一般式(3)で表される2価の有機基を含む場合、樹脂組成物に正の屈折率異方性を付与する機能を担うことができる他、位相差の波長分散性や光弾性係数といった光学物性や、機械強度、耐熱性、溶融加工性などの種々の樹脂物性を好ましい範囲に制御する等、樹脂組成物の物性を任意に制御することができる傾向がある。
なお、主鎖に対して垂直に配向した芳香環を持たないか、そのような芳香環を持っていてもその割合が全体の中で少ない樹脂組成物は、一般に正の屈折率異方性を示すことが知られている。前記一般式(3)で表される2価の有機基の繰り返し単位においても、側鎖に芳香環を有するもの以外は、全て正の屈折率異方性を示す構造であるため、前記一般式(3)で表される2価の有機基を50モル%以上含む樹脂組成物は正の屈折率異方性を示すと考えられる。
<4.5 有機基の具体例>
前述のとおり、一般式(3)におけるR20は、置換されていてもよい炭素数2〜20のアルキレン基、置換されていてもよい炭素数4〜20のアリーレン基、置換されていてもよい炭素数2〜100のアルキレンエーテル基、置換されていてもよい炭素数4〜20の脂環構造を持つ有機基又は置換されていてもよい炭素数4〜20の複素環構造を持つ有機基を示す。
「置換されていてもよい炭素数2〜20のアルキレン基」の具体的な構造は以下に挙げられ、これらに限定されるものではないが、エチレン基、n−プロピレン基、n−ブチレン基、n−ペンチレン基、n−ヘキシレンなどの直鎖状のアルキレン基;1−メチルエチレン基、2−メチルエチレン基、1−エチルエチレン基、2−エチルエチレン基、1−メチルプロピレン基、2−メチルプロピレン基、2,2−ジメチルプロピレン基、3−メチルプロピレン基などの分岐鎖を含むアルキレン基が挙げられる。その炭素数は、2以上であり、また、12以下であることが好ましく、6以下であることがより好ましい。これらの中で好ましくは、適度な疎水性と柔軟性があり、低い光弾性係数を与える傾向がある、下記一般式(5)で表される直鎖状のアルキレン基である。
Figure 2015199706
上式中、R11は置換されていてもよい炭素数0〜18の直鎖状アルキレン基を示す。
「置換されていてもよい炭素数0〜18の直鎖状アルキレン基」の具体的な構造は以下に挙げられ、これらに限定されるものではないがエチレン基、n−プロピレン基、n−ブチレン基、n−ペンチレン基、n−ヘキシレン基などが挙げられる。その炭素数は2以上であることが好ましく、また、10以下であることが好ましく、4以下であることがより好ましい。
「置換されていてもよい炭素数4〜20のアリーレン基」の具体的な構造は以下に挙げられ、これらに限定されるものではないが、1,2−フェニレン基、1,3−フェニレン基、1,4−フェニレン基等のフェニレン基;、1,5−ナフチレン基、2,6−ナフチレン基等のナフチレン基;2,5−ピリジレン基、2,4−チエニレン基、・BR>Q,4−フリレン基などのヘテロアリーレン基が挙げられる。その炭素数は、4以上であり、また、8以下であることが好ましく、6以下であることがより好ましい。これらの中でも、工業的に安価に入手できるとの観点から、1,2−フェニレン基、1,3−フェニレン基又は1,4−フェニレン基が好ましい。
「置換されていてもよい炭素数2〜20のアルキレン基」、「置換されていてもよい炭素数2〜20の直鎖状アルキレン基」及び「置換されていてもよい炭素数4〜20のアリ
ーレン基」が有していてもよい置換基としては、ハロゲン原子(例、フッ素原子、塩素原子、臭素原子、ヨウ素原子);炭素数1〜10のアルキル基(例、メチル基、エチル基、イソプロピル基等);炭素数1〜10のアルコキシ基(例、メトキシ基、エトキシ基等);炭素数1〜10のアシル基(例、アセチル基、ベンゾイル基等);炭素数1〜10のアシルアミノ基(例、アセトアミド基、ベンゾイルアミド基等);ニトロ基;シアノ基;ハロゲン原子(例、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、炭素数1〜10のアルキル基(例、メチル基、エチル基、イソプロピル基等)、炭素数1〜10のアルコキシ基(例、メトキシ基、エトキシ基等)、炭素数1〜10のアシル基(例、アセチル基、ベンゾイル基等)、炭素数1〜10のアシルアミノ基(例、アセトアミド基、ベンゾイルアミド基等)、ニトロ基、シアノ基などから選ばれる1〜3個の置換基を有していてもよい炭素数6〜10のアリール基(例、フェニル基、ナフチル基等)等が挙げられる。当該置換基の数は、特に限定されないが、1〜3個が好ましい。置換基が2個以上ある場合は、置換基の種類は同一でも異なっていてもよい。また、工業的に安価に製造できるとの観点からは無置換であることが好ましい。
置換基を有するアルキレン基の具体例としては、フェニルエチレン基、1−フェニルプロピレン基、1−シクロヘキシルプロピレン基、1,1,2,2−テトラフルオロエチレン基等が挙げられる。
置換基を有するアリーレン基の具体例としては、2−メチル−1,4−フェニレン基、5−メチル−1,3−フェニレン基、2,5−ジメチル−1,4−フェニレン基、2−メトキシ−1,4−フェニレン基、2−トリフルオロメチル−1,4−フェニレン基、2,5−ジメトキシ−1,4−フェニレン基、2,3,5,6−テトラフルオロ−1,4−フェニレン基などの置換アリーレン基が挙げられる。
「置換されていてもよい炭素数6〜20のアラルキレン基」の具体的な構造は以下に挙げられ、これらに限定されるものではないが、下記[K]群に示されるようなアラルキレン基が挙げられる。
Figure 2015199706
その炭素数は、6以上であり、また、10以下であることが好ましく、8以下であることがより好ましい。これらの中でも、工業的に安価に入手できるとの観点から、o−キシリレン基、m−キシリレン基又はp−キシリレン基が好ましい。
「置換されていてもよい炭素数6〜20のアラルキレン基」が有していてもよい置換基としては、ハロゲン原子(例、フッ素原子、塩素原子、臭素原子、ヨウ素原子);炭素数1〜10のアルキル基(例、メチル基、エチル基、イソプロピル基等);炭素数1〜10のアルコキシ基(例、メトキシ基、エトキシ基等);炭素数1〜10のアシル基(例、アセチル基、ベンゾイル基等);炭素数1〜10のアシルアミノ基(例、アセトアミド基、ベンゾイルアミド基等);ニトロ基;シアノ基;ハロゲン原子(例、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、炭素数1〜10のアルキル基(例、メチル基、エチル基、イソプロピル基等)、炭素数1〜10のアルコキシ基(例、メトキシ基、エトキシ基等)、炭素数1〜10のアシル基(例、アセチル基、ベンゾイル基等)、炭素数1〜10のアシルアミノ基(例、アセトアミド基、ベンゾイルアミド基等)、ニトロ基、シアノ基などから選ばれる1〜3個の置換基を有していてもよい炭素数6〜10のアリール基(例、フェニル基、ナフチル基等)等が挙げられる。当該置換基の数は、特に限定されないが、1
〜3個が好ましい。置換基が2個以上ある場合は、置換基の種類は同一でも異なっていてもよい。また、工業的に安価に製造できるとの観点からは無置換であることが好ましい。
「置換されていてもよい炭素数2〜100のアルキレンエーテル基」とは、1つ以上のアルキレン基とエーテル性酸素原子を有する2価の基である。その炭素数は、4以上であることが好ましく、6以上であることがより好ましく、また、60以下であることが好ましく、50以下であることがより好ましく、40以下であることがさらに好ましく、30以下であることが特に好ましい。より具体的には、下記一般式(7)
Figure 2015199706
(式中、R13は置換されていてもよい炭素数2〜10のアルキレン基を示し、pは1〜40の整数である。)で表される基、又は下記一般式(8)
Figure 2015199706
(式中、R14は置換されていてもよい炭素数2〜10のアルキレン基を示し、R15は置換されていてもよい炭素数12〜30のアリーレン基を示す。)が挙げられる。
一般式(7)及び一般式(8)において、R13及びR14は、置換されていてもよい炭素数2〜10のアルキレン基を示す。その具体的な構造は以下に挙げられ、これらに限定されるものではないが、エチレン基、n−プロピレン基、n−ブチレン基、n−ペンチレン基、n−ヘキシレンなどの直鎖状のアルキレン基;1−メチルエチレン基、2−メチルエチレン基、1−エチルエチレン基、2−エチルエチレン基、1−メチルプロピレン基、2−メチルプロピレン基、2,2−ジメチルプロピレン基、3−メチルプロピレン基などの分岐鎖を含むアルキレン基(ここで置換位置の数値は、末端側の炭素からつけるものとする)などが挙げられる。
その炭素数は、2以上であり、また、8以下であることが好ましく、4以下であることがより好ましい。
「置換されていてもよい炭素数2〜100のアルキレンエーテル基」及び「置換されていてもよい炭素数2〜10のアルキレン基」が有していてもよい置換基としては、ハロゲン原子(例、フッ素原子、塩素原子、臭素原子、ヨウ素原子);炭素数1〜10のアルキル基(例、メチル基、エチル基、イソプロピル基等);炭素数1〜10のアルコキシ基(例、メトキシ基、エトキシ基等);炭素数1〜10のアシル基(例、アセチル基、ベンゾイル基等);炭素数1〜10のアシルアミノ基(例、アセトアミド基、ベンゾイルアミド基等);ニトロ基;シアノ基;ハロゲン原子(例、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、炭素数1〜10のアルキル基(例、メチル基、エチル基、イソプロピル基等)、炭素数1〜10のアルコキシ基(例、メトキシ基、エトキシ基等)、炭素数1〜10のアシル基(例、アセチル基、ベンゾイル基等)、炭素数1〜10のアシルアミノ基(例、アセトアミド基、ベンゾイルアミド基等)、ニトロ基、シアノ基などから選ばれる1〜
3個の置換基を有していてもよい炭素数6〜10のアリール基(例、フェニル基、ナフチル基等)等が挙げられる。当該置換基の数は、特に限定されないが、1〜3個が好ましい。置換基が2個以上ある場合は、置換基の種類は同一でも異なっていてもよい。また、工業的に安価に製造できるとの観点からは無置換であることが好ましい。
置換基を有するアルキレン基の具体例としては、フェニルエチレン基、1−フェニルプロピレン基、1−シクロヘキシルプロピレン基、1,1,2,2−テトラフルオロエチレン基等が挙げられる。
これらR13及びR14の中で好ましくは、不斉点を有さないためモノマーの品質管理が容易な直鎖状のアルキレン基であり、より好ましくは工業的に安価に導入でき、柔軟性と吸水性を与えることができるエチレン基である。
一般式(7)において、pは1〜40の整数であるが、好ましくは1以上、より好ましくは2以上、また、好ましくは30以下、より好ましくは20以下である。
一般式(8)において、R15は、置換されていてもよい炭素数12〜30のアリーレン基を示す。その具体的な構造は以下に挙げられ、これらに限定されるものではないが、樹脂組成物のガラス転移温度を高くすることができるとの観点からは下記[L]群に示されるようなアリーレン基が好ましく挙げられる。
Figure 2015199706
「置換されていてもよい炭素数6〜20のアリーレン基」が有していてもよい置換基としては、ハロゲン原子(例、フッ素原子、塩素原子、臭素原子、ヨウ素原子);炭素数1〜10のアルキル基(例、メチル基、エチル基、イソプロピル基等);炭素数1〜10のアルコキシ基(例、メトキシ基、エトキシ基等);炭素数1〜10のアシル基(例、アセチル基、ベンゾイル基等);炭素数1〜10のアシルアミノ基(例、アセトアミド基、ベンゾイルアミド基等);ニトロ基;シアノ基;ハロゲン原子(例、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、炭素数1〜10のアルキル基(例、メチル基、エチル基、イソプロピル基等)、炭素数1〜10のアルコキシ基(例、メトキシ基、エトキシ基等)、炭素数1〜10のアシル基(例、アセチル基、ベンゾイル基等)、炭素数1〜10のアシルアミノ基(例、アセトアミド基、ベンゾイルアミド基等)、ニトロ基、シアノ基などから選ばれる1〜3個の置換基を有していてもよい炭素数6〜10のアリール基(例、フェニル基、ナフチル基等)等が挙げられる。当該置換基の数は、特に限定されないが、1〜3個が好ましい。置換基が2個以上ある場合は、置換基の種類は同一でも異なっていてもよい。また、工業的に安価に製造できるとの観点からは無置換であることが好ましい。
一般式(7)の具体的な構造は以下に挙げられ、これらに限定されるものではないが、下記[M]群に示されるようなアルキレンエーテル基
Figure 2015199706
(上記[M]群において、ジアステレオマーが可能な構造については、いずれのジアステレオマーであってもよく、ジアステレオマー混合物であってもよい。)が挙げられる。
式(8)の具体的な構造は以下に挙げられ、これらに限定されるものではないが、下記[N]群に示されるようなアルキレンエーテル基
Figure 2015199706
(上記[N]群において、ジアステレオマーが可能な構造については、いずれのジアステレオマーであってもよく、ジアステレオマー混合物であってもよい。)が挙げられる。
「置換されていてもよい炭素数4〜20の脂環構造を持つ有機基又は置換されていてもよい炭素数4〜20の複素環構造を持つ有機基」の具体的な構造は以下に挙げられ、これらに限定されるものではないが、ガラス転移温度を高くすることができ、光弾性係数を低くすることができる傾向があることから、下記[O]群に示されるような脂環構造または複素環構造の任意の2箇所に直鎖状又は分岐状のアルキレン基の結合手を持つ有機基が好ましく挙げられる。
Figure 2015199706
(上記[O]群に示される各環構造における2つの結合手の置換位置については任意であり、同一炭素に2つの結合手が置換していてもよい。)ここで結合手とは、直接結合、又は炭素数1〜5の直鎖状若しくは分岐状のアルキレン基であり、2つの結合手の長さは異
なっていてもよい。好ましい結合手は、ガラス転移温度の低下が少ない直接結合、又はメチレン基である。
「置換されていてもよい炭素数4〜20の脂環構造を持つ有機基又は置換されていてもよい炭素数4〜20の複素環構造を持つ有機基」が有していてもよい置換基としては、ハロゲン原子(例、フッ素原子、塩素原子、臭素原子、ヨウ素原子);炭素数1〜10のアルキル基(例、メチル基、エチル基、イソプロピル基等);炭素数1〜10のアルコキシ基(例、メトキシ基、エトキシ基等);炭素数1〜10のアシル基(例、アセチル基、ベンゾイル基等);炭素数1〜10のアシルアミノ基(例、アセトアミド基、ベンゾイルアミド基等);ニトロ基;シアノ基;ハロゲン原子(例、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、炭素数1〜10のアルキル基(例、メチル基、エチル基、イソプロピル基等)、炭素数1〜10のアルコキシ基(例、メトキシ基、エトキシ基等)、炭素数1〜10のアシル基(例、アセチル基、ベンゾイル基等)、炭素数1〜10のアシルアミノ基(例、アセトアミド基、ベンゾイルアミド基等)、ニトロ基、シアノ基などから選ばれる1〜3個の置換基を有していてもよい炭素数6〜10のアリール基(例、フェニル基、ナフチル基等)等が挙げられる。当該置換基の数は、特に限定されないが、1〜3個が好ましい。置換基が2個以上ある場合は、置換基の種類は同一でも異なっていてもよい。また、工業的に安価に製造できるとの観点からは無置換であることが好ましい。
「置換されていてもよい炭素数4〜20の脂環構造を持つ有機基又は置換されていてもよい炭素数4〜20の複素環構造を持つ有機基」の好ましい具体的な構造は以下に挙げられ、これらに限定されるものではないが、高い透明性とガラス転移温度、吸水性、複屈折、低い光弾性係数を与える傾向がある、下記一般式(4)
Figure 2015199706
で表される基、下記一般式(6)
Figure 2015199706
(式中、R12は置換されていてもよい炭素数4〜20のシクロアルキレン基を示す。)で表される基、又は下記一般式(9)
Figure 2015199706
(式中、R16は置換されていてもよい炭素数2〜20のアセタール環を有する基を示す。)で表される基が挙げられる。
式(6)において、R12は、置換されていてもよい炭素数4〜20のシクロアルキレン基を示す。その具体的な構造は以下に挙げられ、これらに限定されるものではないが、ガラス転移温度を高くすることができ、光弾性係数を低くすることができる傾向があることから、下記[P]群に示されるようなシクロアルキレン基
Figure 2015199706
(上記[P]群において、ジアステレオマーが可能な構造については、いずれのジアステレオマーであってもよく、ジアステレオマー混合物であってもよい。)が好ましく挙げられる。
「置換されていてもよい炭素数4〜20のシクロアルキレン基」が有していてもよい置換基としては、ハロゲン原子(例、フッ素原子、塩素原子、臭素原子、ヨウ素原子);炭素数1〜10のアルキル基(例、メチル基、エチル基、イソプロピル基等);炭素数1〜10のアルコキシ基(例、メトキシ基、エトキシ基等);炭素数1〜10のアシル基(例、アセチル基、ベンゾイル基等);炭素数1〜10のアシルアミノ基(例、アセトアミド基、ベンゾイルアミド基等);ニトロ基;シアノ基;ハロゲン原子(例、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、炭素数1〜10のアルキル基(例、メチル基、エチル基、イソプロピル基等)、炭素数1〜10のアルコキシ基(例、メトキシ基、エトキシ基等)、炭素数1〜10のアシル基(例、アセチル基、ベンゾイル基等)、炭素数1〜10のアシルアミノ基(例、アセトアミド基、ベンゾイルアミド基等)、ニトロ基、シアノ基などから選ばれる1〜3個の置換基を有していてもよい炭素数6〜10のアリール基(例、フェニル基、ナフチル基等)等が挙げられる。当該置換基の数は、特に限定されないが、1〜3個が好ましい。置換基が2個以上ある場合は、置換基の種類は同一でも異なっていてもよい。また、工業的に安価に製造できるとの観点からは無置換であることが好ましい。
式(6)の具体的な構造は以下に挙げられ、これらに限定されるものではないが、下記[Q]群に示されるような脂環構造を持つ有機基
Figure 2015199706
(上記[Q]群において、ジアステレオマーが可能な構造については、いずれのジアステ
レオマーであってもよく、ジアステレオマー混合物であってもよい。)が挙げられる。これらの中でも、工業的に安価に入手できるとの観点から下記[Q−2]群に示される脂環構造を持つ有機基が好ましい。
Figure 2015199706
式(9)において、R16は、置換されていてもよい炭素数2〜20のアセタール環を有する基を示す。その具体的な構造は以下に挙げられ、これらに限定されるものではないが、ガラス転移温度と複屈折を高くすることができ、光弾性係数を低くすることができる傾向があることから、下記[R]群に示されるようなアセタール環を有する基
Figure 2015199706
(上記[R]群において、ジアステレオマーが可能な構造については、いずれのジアステレオマーであってもよい。)が好ましく挙げられる。
「置換されていてもよい炭素数2〜20のアセタール環」が有していてもよい置換基としては、ハロゲン原子(例、フッ素原子、塩素原子、臭素原子、ヨウ素原子);炭素数1〜10のアルキル基(例、メチル基、エチル基、イソプロピル基等);炭素数1〜10のアルコキシ基(例、メトキシ基、エトキシ基等);炭素数1〜10のアシル基(例、アセチル基、ベンゾイル基等);炭素数1〜10のアシルアミノ基(例、アセトアミド基、ベンゾイルアミド基等);ニトロ基;シアノ基;ハロゲン原子(例、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、炭素数1〜10のアルキル基(例、メチル基、エチル基、イソプロピル基等)、炭素数1〜10のアルコキシ基(例、メトキシ基、エトキシ基等)、炭素数1〜10のアシル基(例、アセチル基、ベンゾイル基等)、炭素数1〜10のアシルアミノ基(例、アセトアミド基、ベンゾイルアミド基等)、ニトロ基、シアノ基などから選ばれる1〜3個の置換基を有していてもよい炭素数6〜10のアリール基(例、フェニル基、ナフチル基等)等が挙げられる。当該置換基の数は、特に限定されないが、1〜3個が好ましい。置換基が2個以上ある場合は、置換基の種類は同一でも異なっていてもよい。また、工業的に安価に製造できるとの観点からは無置換であることが好ましい。
一般式(3)で表される2価の有機基の中で好ましいものは、主鎖に芳香環を有さない、又は主鎖に芳香環以外の部分構造を多く含むため、光学フィルムに求められる低い光弾性係数を達成できる傾向がある、置換されていてもよいアルキレン基、置換されていてもよいアルキレンエーテル基、置換されていてもよい脂環構造を持つ有機基又は置換されていてもよい複素環構造を持つ有機基である。より好ましくは、高い透明性とガラス転移温度、吸水性、複屈折、低い光弾性係数を与える傾向がある、下記一般式(4)
Figure 2015199706
又は、適度な疎水性と柔軟性があり、低い光弾性係数を与える傾向がある、下記一般式(5)
Figure 2015199706
(式中、R11は置換されていてもよい炭素数0〜18の直鎖状アルキレン基を示す。)、又は、高い透明性とガラス転移温度、適度な柔軟性を与える傾向がある、下記一般式(6)
Figure 2015199706
(式中、R12は置換されていてもよい炭素数4〜20のシクロアルキレン基を示す。)、又は、柔軟性と吸水性、低い光弾性係数を与える傾向がある、下記一般式(7)
Figure 2015199706
(式中、R13は置換されていてもよい炭素数2〜10のアルキレン基を示し、pは1〜40の整数である。)又は、高い透明性とガラス転移温度を与える傾向がある、下記一般式(8)
Figure 2015199706
(式中、R14は置換されていてもよい炭素数2〜10のアルキレン基を示し、R15は置換されていてもよい炭素数12〜30のアリーレン基を示す。)又は、高い透明性とガラス転移温度、複屈折を与える傾向がある、下記一般式(9)
Figure 2015199706
(式中、R16は置換されていてもよい炭素数2〜20のアセタール環を有する基を示す。)から選ばれる少なくとも1種である。更に好ましくは、高い透明性とガラス転移温度、吸水性、低い光弾性係数を与えることで、位相差フィルムとして優れた物性を付与する傾向がある、上記一般式(4)で表される基である。
一般式(3)で表される2価の有機基は、1種類のものを単独で用いてもよく、2種類以上のものを併用して用いてもよい。光学物性や機械物性のロットごとのばらつきを減らすなどといった品質管理の観点からは1種類のものを単独で用いるのが好ましい。一方で光学特性や機械物性を両立させるとの観点からは2種類以上のものを併用して用いるのが好ましく、また、通常4種類以下であり、3種類以下で用いるのが好ましい。
一般式(3)で表される2価の有機基を2種類以上併用して用いる場合、その組み合わせについては特に限定されない。例えば、高い透明性とガラス転移温度、複屈折を与える目的では、上記一般式(4)で表される有機基又は、上記一般式(9)で表される有機基が好ましく、柔軟性を付与する目的では、上記一般式(5)で表される有機基、又は上記一般式(7)で表される有機基が好ましく、一方で、高い透明性とガラス転移温度、適度な柔軟性を与える目的では、上記一般式(6)で表される有機基が好ましく、これらのうち、要求される目的の組み合わせに応じて、それに対応する有機基の組み合わせを選択すればよい。具体的には、上記一般式(4)で表される有機基に該当するISB(イソソルビド)由来の繰り返し単位と上記一般式(6)で表される有機基に該当するCHDM(1,4−シクロヘキサンジメタノール)由来の繰り返し単位の組み合わせ、又は上記一般式(9)で表される有機基に該当するSPG(スピログリコール)由来の繰り返し単位と上記一般式(6)で表される有機基に該当するCHDM由来の繰り返し単位の組み合わせであることが好ましい。
<4.6 共重合組成>
このように、2価のオリゴフルオレンと、一般式(3)で表される2価の有機基の、少なくとも2種類以上を繰り返し単位として含有する共重合体を用いる場合において、2価のオリゴフルオレンと、一般式(3)で表される2価の有機基は、後述する光学物性が発現する範囲内であれば、前記共重合体中に任意の質量で含まれていてよい。
2価のオリゴフルオレンと2価のジフルオレンの含有割合の総和は、逆波長分散性を発現させ、かつ、溶融加工性や機械強度を保つためには、前記共重合体全体の質量に対して5質量%以上であることが好ましく、10質量%以上であることがより好ましく、12質量%以上であることがさらに好ましく、15質量%以上であることが特に好ましく、また、90質量%以下であることが好ましく、80質量%以下であることがより好ましく、70質量%以下であることがさらに好ましく、60質量%以下であることが特に好ましい。
また、より少量の使用で所望の光学特性を得るとの観点から、2価のオリゴフルオレンの含有割合は、共重合体全体の質量に対して1%以上であることが好ましく、3%以上であることがより好ましく、5%以上であることがさらに好ましく、10%以上であることが特に好ましく、また、50%以下であることが好ましく、40%以下であることがより好ましく、30%以下であることがさらに好ましい。
また柔軟性を付与し、低い光弾性係数などの所望の光学特性を得るとの観点から、一般式(3)で表される2価の有機基の好ましい含有割合は、前記共重合体全体の質量に対して10質量%以上であることが好ましく、20質量%以上であることがより好ましく、30質量%以上であることがさらに好ましく、40質量%以上であることが特に好ましく、また、95質量%以下であることが好ましく、90質量%以下であることがより好ましく、88質量%以下であることがさらに好ましく、85質量%以下であることが特に好ましく、80質量%以下であることが最も好ましい。
<4.7 重合体ブレンド>
本発明の樹脂組成物は、2価のオリゴフルオレンを繰り返し単位として有する重合体を含有するものである。また、本発明の樹脂組成物は該重合体以外に、さらにその他の成分を含有していてもよい。
本発明の樹脂組成物は、ブレンドに起因する他の効果の発現を期待して、その他の成分として任意の重合体を含んでいてもよい。つまり、2価のオリゴフルオレンを繰り返し単位として有する重合体の他に任意の重合体を共存在させてもよい。
ここで、共存在させるとは、樹脂組成物の中に2種以上の重合体が存在していることを意味し、その手法は問わないが、2種以上の重合体を溶液の状態、または溶融の状態で混合する方法、1つ以上の重合体を含む溶液中又は溶融液中で重合を進行させる方法などが挙げられる。
例えば、一般式(3)で表される2価の有機基を繰り返し単位として有する重合体をブレンドしてもよく、任意の繰り返し単位を有する重合体をブレンドしてもよい。なお、一般式(3)で表される2価の有機基を繰り返し単位として有する重合体は、一般式(3)以外の2価の有機基をさらに繰り返し単位として有するものであってもよく、一般式(3)で表される2価の有機基を2種類以上繰り返し単位として有するものであってもよい。ここで、一般式(3)で表される2価の有機基としては、共重合体において好ましく例示したものを用いることができる。
特に、位相差フィルム用として好適に用いられるとの観点からは、正の屈折率異方性を示すポリマーまたはオリゴマーのブレンド若しくは共重合体を共存在させることが好ましく、光学性能が良好で、溶融製膜や溶液キャスト製膜ができる傾向があることから、熱可塑性樹脂を共存在させることがより好ましい。共存在させるものとしては、具体的には、重縮合系ポリマー、オレフィン系ポリマー、又は付加重合系ポリマーがあげられ、重縮合系ポリマーが好ましい。重縮合系ポリマーとしては、ポリエステル、ポリアミド、ポリエステルカーボネート、ポリアミド、ポリイミド等があげられ、中でもポリエステル又はポリカーボネートが好ましい。
より具体的には、ポリエチレン、ポリプロピレン等のオレフィン系ポリマー;ビスフェノールAやビスフェノールZ、イソソルビド等由来の構造単位を有するポリカーボネート;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリナフタレンジカルボキシレート、ポリシクロヘキサンジメチレンシクロヘキサンジカルボキシレート、ポリシクロヘキサンジメチレンテレフタレートなどのポリエステル等が挙げられ、これらのうち2種以上の重合体を併用していてもよい。
本発明の樹脂組成物をフィルム成形した場合、フィルムが光学的に透明であることが好ましいため、ブレンドされる重合体は、2価のフルオレンを繰り返し単位として有する重合体と屈折率が近いものや、相溶性を有する組み合わせを選択するのが好ましい。
<4.8 樹脂組成物の組成>
逆波長分散性を発現させ、かつ、溶融加工性や機械強度を保つとの観点から、樹脂組成物における2価のオリゴフルオレン及び2価のジフルオレンの含有割合の総和は、樹脂組成物全体の質量に対して5質量%以上であることが好ましく、10質量%以上であることがより好ましく、12質量%以上であることがさらに好ましく、15質量%以上であることが特に好ましく、20質量%以上であることが最も好ましく、また、90質量%以下であることが好ましく、80質量%以下であることがより好ましく、70質量%以下であることがさらに好ましく、60質量%以下であることが特に好ましい。また同様の観点から
、一般式(3)で表される2価の有機基の好ましい含有割合は、樹脂組成物全体の質量に対して10質量%以上であることが好ましく、20質量%以上であることがより好ましく、30質量%以上であることがさらに好ましく、40質量%以上であることが特に好ましく、また、95質量%以下であることが好ましく、90質量%以下であることがより好ましく、88質量%以下であることがさらに好ましく、85質量%以下であることが特に好ましく、80質量%以下であることが最も好ましい。
また、本発明の樹脂組成物は、前記一般式(3)で表される2価の有機基を2種類以上含んでいてもよく、例えば、ISB由来の繰り返し単位とCHDM由来の繰り返し単位を組み合わせて用いる場合、その含有割合については特に限定されないが、高いガラス転移温度と複屈折、吸水率の観点からは樹脂組成物に対するISB由来の繰り返し単位のモル分率で、30モル%以上であることが好ましく、40モル%以上であることがより好ましく、50モル%以上であることがさらに好ましく、また、95モル%以下であることが好ましく、90モル%以下であることがより好ましく、85モル%以下であることがさらに好ましい。
また、ISB由来の繰り返し単位とCHDM由来の繰り返し単位を組み合わせて用いる場合、その含有割合については特に限定されないが、柔軟性の観点からは樹脂組成物に対するCHDM由来の繰り返し単位のモル分率で、5モル%以上であることが好ましく、10モル%以上であることがより好ましく、15モル%以上であることがさらに好ましく、また、50モル%以下であることが好ましく、40モル%以下であることがより好ましく、30モル%以下であることがさらに好ましい。
SPG由来の繰り返し単位とCHDM由来の繰り返し単位を組み合わせて用いる場合、その含有割合については特に限定されないが、高いガラス転移温度と複屈折、吸水率の観点からは樹脂組成物に対するSPG由来の繰り返し単位のモル分率で、30モル%以上であることが好ましく、40モル%以上であることがより好ましく、50モル%以上であることがさらに好ましく、また、95モル%以下であることが好ましく、90モル%以下であることがより好ましく、85モル%以下であることがさらに好ましい。
また、SPG由来の繰り返し単位とCHDM由来の繰り返し単位を組み合わせて用いる場合、その含有割合については特に限定されないが、柔軟性の観点からは樹脂組成物に対するCHDM由来の繰り返し単位のモル分率で、5モル%以上であることが好ましく、10モル%以上であることがより好ましく、15モル%以上であることがさらに好ましく、また、50モル%以下であることが好ましく、40モル%以下であることがより好ましく、30モル%以下であることがさらに好ましい。
<4.9 物性値>
本発明の樹脂組成物の物性値は特に限定されないが、以下に例示する物性値を満足する者であることが好ましい。
<4.10 屈折率異方性>
本発明の樹脂組成物の屈折率異方性は正負のどちらであっても、後述の<4.11 位相差比>に記載の逆波長分散フィルムに用いる場合の条件を満足することで、逆波長分散性を示す。ここで、負の屈折率異方性を有する逆波長分散フィルムを得るには、正の屈折率異方性を有し、短波長ほど波長分散が大きくなる波長分散性の大きな繰り返し単位と、大きな負の屈折率異方性を有し、波長分散性の小さな繰り返し単位を組み合わせて用いることが必要となるが、後者の材料は一般には知られておらず、負の屈折率異方性を有する逆波長分散フィルムを得ることは一般には難しい。そのため、本発明の樹脂組成物は、逆波長分散性やフラット分散性などの所望の光学特性を示す光学材料として用いる場合には
、正の屈折率異方性を有するものであることが好ましい。
本発明において「正の屈折率異方性を有する樹脂組成物」とは、延伸フィルムに成形した際に、以下の測定条件において正の屈折率異方性を示す樹脂組成物を意味する。また「負の屈折率異方性」についても同様に定義される。
本発明において、樹脂組成物の屈折率異方性は次の方法で測定される。まず、熱プレス機にて樹脂組成物をプレスし、フィルムを作成する。そのフィルムを所定のサイズに切り出して、自由端一軸延伸して延伸フィルムを作成する。位相差測定装置(王子計測機器社製KOBRA−WPR)を用いて、この延伸フィルムの位相差を測定する。延伸方向に対して、正の位相差が発現する場合、この樹脂組成物は正の屈折率異方性を示すことになり、負の位相差が発現する場合、この樹脂組成物は負の屈折率異方性を示すことになる。詳細な測定条件は後述する。
<4.11 位相差比>
本発明の樹脂組成物は、位相差フィルム用途を想定した場合、波長450nmで測定した位相差(Re450)と波長550nmで測定した位相差(Re550)の比、すなわち位相差比が下記式(2)を満足することが好ましい。
Re450/Re550 ≦ 1.0 (2)
ここで、「本発明の樹脂組成物は、位相差比が上記式(2)を満足する」とは、延伸フィルムに成形した際に、以下の測定条件において波長450nmで測定した位相差(Re450)と波長550nmで測定した位相差(Re550)の比が上記式(2)を満足することを意味する。
位相差比は次の方法で測定される。熱プレス機にて樹脂組成物をプレスし、フィルムを作成する。そのフィルムを所定のサイズに切り出して、自由端一軸延伸して延伸フィルムを作成する。位相差測定装置(王子計測機器社製KOBRA−WPR)を用いて、この延伸フィルムの波長450nmでの位相差(Re450)と波長550nmでの位相差(Re550)を測定する。延伸方向に対して、位相差比(Re450/Re550)が上記式(2)を満足する場合、この樹脂組成物は位相差フィルムとして有用な、波長分散性を示す。また、位相差比(Re450/Re550)が上記式(2’)を満足する場合、この樹脂組成物は逆波長分散フィルムとして有用な、逆波長分散性を示す。詳細な測定条件は後述する。
本発明の樹脂組成物は、位相差フィルムのうち逆波長分散フィルム用途を想定した場合、位相差比(Re450/Re550)の上限が、1.0以下であることが好ましく、1.0未満であることがより好ましく、0.95以下であることが更に好ましく、0.93以下であることがより更に好ましく、0.91以下が特に好ましい。また、位相差比(Re450/Re550)の下限は、0以上であることが好ましく、0.50以上であることがより好ましく、0.50超過であることがさらに好ましく、0.70以上であることがより更に好ましく、0.75以上であることが特に好ましく、0.80以上が最も好ましい。
位相差比(Re450/Re550)の値が上記範囲内であれば、長波長ほど位相差が発現し、可視領域の各波長において理想的な位相差特性を得ることができる。例えば、互いに垂直な方向に振動する偏光の位相を1/4波長(90°)変化させる1/4λ板として、このような波長分散性を有する本発明の樹脂組成物から得た位相差フィルムを用いて、それを偏光板と貼り合わせることにより円偏光板等を作製することができ、あらゆる波長において外光反射防止機能を有する黒色性に優れた円偏光板及び画像表示装置の実現が可能である。一方、位相差比(Re450/Re550)の値が上記範囲外の場合には、
波長による色抜けが大きくなり、円偏光板や画像表示装置に着色の問題が生じる傾向がある。
また、本発明の樹脂組成物は、逆波長分散フィルム用途を想定した場合、波長630nmで測定した位相差(Re630)と波長550nmで測定した位相差(Re550)の比、すなわち位相差比’が下記式(25)を満足することが好ましい。
1.0 ≦ Re630/Re550 (25)
ここで、「本発明の樹脂組成物は、位相差比’が上記式(25)を満足する」とは、延伸フィルムに成形した際に、以下の測定条件において波長630nmで測定した位相差(Re630)と波長550nmで測定した位相差(Re550)の比が上記式(25)を満足することを意味する。
位相差比’は次の方法で測定される。熱プレス機にて樹脂組成物をプレスし、フィルムを作成する。そのフィルムを所定のサイズに切り出して、自由端一軸延伸して延伸フィルムを作成する。位相差測定装置(王子計測機器社製KOBRA−WPR)を用いて、この延伸フィルムの波長630nmでの位相差(Re630)と波長550nmでの位相差(Re550)を測定する。延伸方向に対して、位相差比’(Re630/Re550)が上記式(25)を満足する場合、この樹脂組成物は位相差フィルムとして有用な、波長分散性を示す。
本発明の樹脂組成物は、位相差フィルムのうち逆波長分散フィルム用途を想定した場合、位相差比’(Re630/Re550)の上限が、1.25以下であることが好ましく、1.20以下であることがより好ましく、1.15以下が特に好ましい。また、位相差比(Re630/Re550)の下限は、1.00以上であることが好ましく、1.01以上であることがより好ましく、1.02以上であることがさらに好ましく、1.03以上であることが特に好ましい。
位相差比’(Re630/Re550)の値が上記範囲内であれば、長波長ほど位相差が発現し、可視領域の各波長において理想的な位相差特性を得ることができる。例えば、1/4λ板としてこのような波長分散性を有する本発明の樹脂組成物から得た位相差フィルムを用いて、それを偏光板と貼り合わせることにより円偏光板等を作製することができ、あらゆる波長において外光反射防止機能を有する黒色性に優れた円偏光板及び画像表示装置の実現が可能である。一方、位相差比’(Re630/Re550)の値が上記範囲外の場合には、波長による色抜けが大きくなり、円偏光板や画像表示装置に着色の問題が生じる傾向がある。特に、波長に寄らずに外交反射防止機能を得るとの観点からは、位相差比(Re450/Re550)と位相差比’(Re630/Re550)の両者の値を、共に上記範囲内にすることが好ましい。
このように、位相差比(Re450/Re550)や位相差比’(Re630/Re550)を上記範囲内にするための具体的な方法については何ら限定されないが、例えば、2価のオリゴフルオレンとして、両末端に位置するフルオレンの9位の炭素原子を2価の基としたものや、両末端に位置するフルオレンの9位の炭素原子にそれぞれ結合したR1
及びR2を2価の基とし、かつ、R1とR2の少なくともいずれか一方の炭素数を2以上と
したものを、所定量使用する方法が挙げられる。この場合において、さらに、両末端に位置するフルオレンの9位の炭素原子にそれぞれ結合した炭素数が1のR1及びR2を2価の基とした、2価のオリゴフルオレンを併用してもよい。
また、画像表示装置の色漏れを補正する逆波長分散フィルム用途を想定した場合は、装置に応じて色漏れを補正するために最適な位相差比(Re450/Re550)を設定すればよく、上限が1.0未満であれば、特に下限は設定しない。
一方で、本発明の樹脂組成物において、位相差の波長分散性の小さいフラット分散材料を想定した場合、位相差比が下記式(23)を満足することが好ましい。
0.9 < Re450/Re550 < 1.1 (23)
ここで、「本発明の樹脂組成物において、位相差比が上記式(23)を満足する」とは、延伸フィルムに成形した際に、以下の測定条件において波長450nmで測定した位相差(Re450)と波長550nmで測定した位相差(Re550)の比が上記式(23)を満足することを意味する。
本発明の樹脂組成物は、位相差の波長分散性の小さいフラット分散材料を想定した場合、位相差比(Re450/Re550)が、0.93以上であることが好ましく、0.95以上であることがより好ましく、0.98以上であることが特に好ましく、また、1.08以下であることが好ましく、1.06以下であることがより好ましく、1.05以下であることが特に好ましい。
位相差比(Re450/Re550)の値が上記範囲内である場合には、本発明の樹脂組成物を用いることでVAモードの液晶表示装置の色抜けを補正する位相差フィルムを得ることができ、波長による色抜けの少ない液晶表示装置の実現が可能となる。さらに、後述の<4.18 複屈折>に記載の条件を満足させることで、可視領域の各波長において理想的な位相差特性を得ることができ、広帯域ゼロ複屈折材料とすることができる。また、液晶表示装置の偏光板保護フィルムとして、本発明の広帯域ゼロ複屈折材料を偏光板と貼り合わせることにより、波長による色抜けの少ない偏光板及び画像表示装置の実現が可能である。
また、本発明の樹脂組成物は、フラット分散材料を想定した場合、波長630nmで測定した位相差(Re630)と波長550nmで測定した位相差(Re550)の比、すなわち位相差比’が下記式(26)を満足することが好ましい。
0.97 < Re630/Re550 < 1.02 (26)
ここで、「本発明の樹脂組成物は、位相差比’が上記式(26)を満足する」とは、延伸フィルムに成形した際に、以下の測定条件において波長630nmで測定した位相差(Re630)と波長550nmで測定した位相差(Re550)の比が上記式(26)を満足することを意味する。
本発明の樹脂組成物は、フラット分散材料を想定した場合、位相差比’(Re630/Re550)の上限が、1.02以下であることが好ましく、1.01以下であることがより好ましく、1.00以下が特に好ましい。また、位相差比(Re630/Re550)の下限は、0.97以上であることが好ましく、0.98以上であることがより好ましく、0.99以上であることが特に好ましい。
位相差比’(Re630/Re550)の値が上記範囲内である場合には、本発明の樹脂組成物を用いることでVAモードの液晶表示装置の色抜けを補正する位相差フィルムを得ることができ、波長による色抜けの少ない液晶表示装置の実現が可能となる。さらに、後述の<4.18 複屈折>に記載の条件を満足させることで、可視領域の波長において理想的な位相差特性を得ることができ、広帯域ゼロ複屈折材料とすることができる。また、液晶表示装置の偏光板保護フィルムとして、本発明の広帯域ゼロ複屈折材料を偏光板と貼り合わせることにより、波長による色抜けの少ない偏光板及び画像表示装置の実現が可能である。さらに、位相差比(Re450/Re550)と位相差比’(Re630/Re550)の両者の値を、共に上記範囲内にすることが特に好ましい。
このように、位相差比(Re450/Re550)や位相差比’(Re630/Re5
50)を上記範囲内にするための具体的な方法については何ら限定されないが、例えば、2価のオリゴフルオレンとして、両末端に位置するフルオレンの9位の炭素原子にそれぞれ結合した炭素数が1のR1及びR2を2価の基としたものを、所定量使用する方法が挙げられる。この場合において、さらに、両末端に位置するフルオレンの9位の炭素原子を2価の基としたものや、両末端に位置するフルオレンの9位の炭素原子にそれぞれ結合した炭素数が2以上のR1及びR2を2価の基としたものを併用してもよい。
<4.12 フルオレン比率>
フルオレンを繰り返し単位として有する重合体を含有する樹脂組成物は、芳香環を有するフルオレン環が主鎖に配向することで所望の光学特性を発現する傾向がある。例えば、フルオレン環が主鎖に略垂直に配向した場合、逆波長分散性を示し、フルオレン環が主鎖に対して45度程度傾いて配向した場合、フラット分散性を示すようになる。そのため、逆波長分散性、フラット分散性や、広帯域ゼロ複屈折などの所望の光学物性を効率よく発現するためには、繰り返し単位中のフルオレン環の割合を高めることが望ましい。これを本明細書中では、フルオレン比率と呼び、下記式(27)にて定義することとする。ここで、フルオレン環の分子量は炭素原子13個分の原子量の総和とし、水素原子は該分子量には含まず、また、置換基を有する場合であっても置換基は該分子量には含まれない。また、フルオレン環の分子量の総和とは、フルオレンを有する繰り返し単位に含まれる、全てのフルオレン環の分子量の合計値を意味し、例えば、2つフルオレン環を有する場合にはフルオレン環2つ分の分子量となり、同様に3つ有する場合にはフルオレン環3つ分の分子量となる。一方で、フルオレンを有する繰り返し単位の分子量とは、該繰り返し単位そのものの分子量を意味する。
フルオレン比率(%) = フルオレン環の分子量の総和/フルオレンを有する繰り返し単位の分子量 × 100 (27)
本発明では特定の2価のオリゴフルオレンを用いることで、繰り返し単位中のフルオレン環の割合を高めることができるため、その含有割合が少なくても、所望の光学物性を発現することができる傾向がある。係る観点からフルオレン比率は、30%以上であることが好ましく、40%以上であることが好ましく、50%以上であることがさらに好ましく、60%以上であることが好ましく、また、通常、90%以下である。
<4.13 ガラス転移温度>
本発明の樹脂組成物のガラス転移温度は90℃以上であることが好ましく、100℃以上であることがより好ましく、110℃以上であることがさらに好ましく、120℃以上であることが特に好ましく、また、170℃以下であることが好ましく、160℃以下であることがより好ましく、150℃以下であることがさらに好ましい。この範囲を下回ると、使用環境下において、光学物性が設計値から変化してしまうおそれがあり、実用的に必要な耐熱性を満たさない可能性がある。また、この範囲を上回ると、樹脂組成物の溶融加工性が低下し、良好な外観や寸法精度の高い成形体が得られない可能性がある。さらに、耐熱性が高すぎてしまい、その反面、機械強度は低下するため、樹脂組成物が脆くなって、加工性や成形体の取り扱い性が悪化する場合があることが考えられる。
<4.14 溶融粘度>
本発明の樹脂組成物の溶融粘度は、測定温度240℃、剪断速度91.2sec-1において、500Pa・s以上であることが好ましく、800Pa・s以上であることがより好ましく、1000Pa・s以上であることがさらに好ましく、また、5000Pa・s以下であることが好ましく、4500Pa・s以下であることがより好ましく、4000Pa・s以下であることがさらに好ましい。この範囲を下回ると、実用に耐えうる機械強度が得られない可能性がある。また、後述する溶融製膜法に適切な溶融粘度範囲から外れてしまう可能性がある。この範囲を上回ると、前記のガラス転移温度が高すぎる場合と同
様に、成形性が悪化する可能性がある。
<4.15 分子量>
本発明の樹脂組成物の分子量は、還元粘度で表すことができる。本発明の樹脂組成物の還元粘度は、後掲の実施例の項に記載されるように、溶媒として塩化メチレンを用い、高分子濃度を0.6g/dLに精密に調整し、温度20.0℃±0.1℃でウベローデ粘度管を用いて測定される。本発明の樹脂組成物の還元粘度に特に制限は無いが、好ましくは0.30dL/g以上であり、より好ましくは0.35dL/g以上である。還元粘度の上限は、好ましくは1.20dL/g以下、より好ましくは0.60dL/g以下、更に好ましくは0.50dL/g以下である。
<4.16 金属含有割合>
本発明の樹脂組成物は、多量の金属および金属イオンを含有すると、重合や加工時に着色したり、熱分解が起こりやすくなるおそれがある。例えば、樹脂組成物を製造する際に用いた触媒の残存物や、樹脂組成物の原料中にコンタミしている金属成分や、反応装置などから溶出する金属なども可能な限り低減することが重要である。特にNa、K、Cs、Feの影響が顕著であるため、本発明のポリカーボネート樹脂組成物は、Na、K、Cs、Feの含有割合の合計が3質量ppm以下であることが好ましく、1質量ppm以下であることがより好ましく、0.8質量ppm以下であることがさらに好ましく、0.5質量ppm以下であることが特に好ましい。樹脂組成物中の金属量は、湿式灰化などの方法で樹脂組成物中の金属を回収した後、原子発光、原子吸光、ICP等の方法を使用して測定することが出来る。
<4.17 光弾性係数>
本発明の樹脂組成物の光弾性係数は45×10-12Pa-1以下であることが好ましい。
さらに好ましくは40×10-12Pa-1以下であり、特に好ましくは35×10-12Pa-1以下であり、また、通常5×10-12Pa-1以上である。光弾性係数が高くなると、大型
の成形品に使用する場合や、成形品を折り曲げたりする場合に、応力が発生する部分において、材料の複屈折が変化し、光学物性の均一性が損なわれる可能性がある。
<4.18 複屈折>
本発明の樹脂組成物は、逆波長分散性を示す位相差フィルムや、フラット分散性を示す位相差フィルム用途を想定した場合、フィルムにした際に、550nmにおける複屈折が0.001以上であることが好ましい。後述のように本発明の樹脂組成物を用いて成形するフィルムの厚みを非
常に薄く設計するためには、複屈折が高い方が好ましい。従って、550nmにおける複屈折は0.002以上であることが更に好ましく、また、通常0.005以下である。550nmにおける複屈折が0.001未満の場合には、フィルムの厚みを過度に大きくする必要があり、製膜材料の使用量が増え、厚み・透明性・位相差の点から均質性の制御が困難となる傾向がある。そのため、550nmにおける複屈折が0.001未満の場合には、精密性・薄型・均質性を求められる機器に適合できない可能性がある。
複屈折は、位相差をフィルム厚みで割ったものであるので、位相差測定装置(王子計測機器社製KOBRA−WPR)を用いてフィルムの位相差を測定し、フィルム厚みを測定することで求めることができる。
一方で本発明の樹脂組成物は、広帯域ゼロ複屈折材料を想定した場合には、フィルムにした際に、550nmにおける複屈折が0.0005以下であることが好ましい。前述のように本発明の樹脂組成物を用いて広帯域ゼロ複屈折を有する偏光板保護フィルムを設計するためには、複屈折が低い方が好ましい。従って、550nmにおける複屈折は0.0002以下であることが更に好ましく、0.0001以下が特に好ましく、また、通常0
.00001以上である。550nmにおける複屈折が0.0005超過の場合には、複屈折が十分に小さくないため、フィルムの厚みが厚いと色抜けが起こる可能性がある。
この光学フィルムは、特に液晶表示装置の偏光板の保護フィルムに用いた時、極めて優れた特性を発現する。ただし、偏光板の保護フィルムに限らず、位相差フィルム、プラセル基盤フィルム、反射防止フィルム、輝度上昇フィルム、光ディスクの保護フィルム、拡散フィルムなど他の用途に用いても良い。
<4.19 屈折率>
本発明の樹脂組成物は、光学レンズなどの広帯域ゼロ複屈折材料を想定した場合には、589nmにおける屈折率が1.54以上であることが好ましい。本発明の樹脂組成物を用いて光学レンズを設計するためには、レンズを薄くするためにも、屈折率が高い方が好ましい。従って、589nmにおける屈折率は、1.56以上であることが更に好ましく、1.58以上が特に好ましく、通常1.65以下である。
<4.20 アッベ数>
本発明の樹脂組成物は、撮像系光学レンズなどの広帯域ゼロ複屈折材料を想定した場合には、アッベ数が35以下であることが好ましい。本発明の樹脂組成物を用いて撮像系光学レンズを設計するためには、アッベ数が低い方が好ましい。従って、アッベ数は、30以下であることが更に好ましく、25以下が特に好ましく、通常15以上である。
<4.21 フルオレン環の配向>
本発明の樹脂組成物は、フルオレン環の配向に由来する740cm-1の吸収の延伸方向と垂直方向の強度比が、1.2以上であることが好ましく、1.3以上であることがより好ましく、1.4以上であることがさらに好ましく、また、通常2.0以下である。本発明の樹脂組成物を逆波長分散フィルム用途として用いる場合、フルオレン環の配向に由来する740cm-1の吸収の延伸方向と垂直方向の強度比が高い方が、その樹脂組成物中に含まれるフルオレン環を有する繰り返し単位はその割合が少なくても逆波長分散性を示す傾向にある。なお、前記強度比は以下の方法にて測定することができる。
まず本発明の樹脂組成物から延伸フィルムを作成し、偏光ATR分析を実施する。その分析結果において、カルボニルの配向に由来する1245cm-1の吸収の延伸方向と垂直方向の強度比(2色比:延伸方向の強度/垂直方向の強度)が1.2以上であり、主鎖が延伸方向へ配向していることを確認する。次に、フルオレン環の配向に由来する740cm-1の吸収の延伸方向と垂直方向の強度比を算出する。
<4.22 主鎖とフルオレンのなす角度>
本発明の樹脂組成物は、2価のオリゴフルオレンの特定配座(コンフォメーション)が、ゴーシュ配座を安定配座としない場合であって、トランス配座の主鎖とフルオレン環のなす角度が50°以上、好ましくは60°以上、より好ましくは70°以上の時に、逆波長分散性が発現されると予想できる。
2価のオリゴフルオレンの特定配座(コンフォメーション)のエネルギー計算及び該配座におけるフルオレン環と主鎖がなす角度の計算は以下の通りに算出することができる。
ソフトウェアは、AM1法について米国Wavefunction社製PC Spartan Pro 1.0.5(Windows(登録商標)32bit版)を使用する。なお、収束判定値等、計算精度にかかわる入力値は全て当該ソフトウェアのデフォルト値を使用する。
ここで、2価のオリゴフルオレンに関しては、ポリカーボネート樹脂組成物の場合には繰り返し単位の両末端をメチルカーボネート化した構造に対して、ポリエステル又はポリ
エステルカーボネート樹脂組成物の場合には繰り返し単位の両末端をメチルエステル化した構造に対して計算する。
AM1法を用いて各モノマーに存在する2つの側鎖の両方がトランス配座と、2種類のゴーシュ配座であるコンフォマーのエネルギー差を計算する。また、トランス配座とゴーシュ配座(2種類のゴーシュ配座のうち安定なもの)について、主鎖とフルオレン環のなす角度を計算する。
なお、主鎖とフルオレン環のなす角度は、以下のように定める。まず、両末端のメチル基の炭素原子同士を結ぶ直線を主鎖方向、フルオレンの3位、6位、9位の炭素原子を通る平面をフルオレン平面とする。このとき、主鎖方向と交差するフルオレン平面上の直線は無限に存在するが、主鎖方向との角度が最小となるフルオレン平面上の直線は一意に定まる。その角度を主鎖とフルオレン環のなす角度とする。
<4.23 有機基の導入方法>
本発明の樹脂組成物に上記一般式(3)で表される2価の有機基を繰り返し単位として導入する方法としては、得られる樹脂組成物の透明性や均一性の観点から、
1. オリゴフルオレンを有するジヒドロキシ化合物と、前記一般式(3)で表される有機基を有する下記式(21)で表されるジヒドロキシ化合物とを共重合する方法、
2. オリゴフルオレンジエステル化合物を、前記一般式(3)で表される有機基を有する下記式(21)で表されるジヒドロキシ化合物でエステル交換をした後に、前記一般式(3)で表される有機基を有する下記式(21)で表されるジヒドロキシ化合物とを共重合する2段階で導入する方法、
3. オリゴフルオレンジアリールエステル化合物と、前記一般式(3)で表される有機基を有する下記式(21)で表されるジヒドロキシ化合物とを共重合する方法、
4. オリゴフルオレンを有するジヒドロキシ化合物、前記一般式(3)で表される有機基を有する下記一般式(28)で表されるジカルボン酸化合物、及び、前記一般式(3)で表される有機基を有する下記一般式(21)で表されるジヒドロキシ化合物とを共重合する方法、
が好ましい。
HO−R20−OH (21)
HOCOR20−COOH (28)
式(21)及び式(28)中、R20は、前記一般式(3)のそれと同じである。
ここで、上記一般式(3)で表される2価の有機基は単一種類のものを用いてもよく、異なる複数種類の有機基を組み合わせて用いてもよい。異なる複数種類の有機基を組み合わせて用いることは、異なる複数種類の上記一般式(21)で表されるジヒドロキシ化合物、及び/又は、上記一般式(28)で表されるジカルボン酸化合物を用いることで達成される。
<4.24 重合体の製造方法>
前述のとおり、重合体としてはポリエステル、ポリカーボネート、ポリエステルカーボネートが好ましく、一般的に、ポリエステルよりもポリカーボネートの方が十分なガラス転移温度を有し、耐加水分解性に優れていることから、ポリカーボネートが特に好ましい。一方で、一般的に、柔軟性においては、ポリカーボネートよりもポリエステルの方が優れていることから、ポリエステルが特に好ましい。ポリエステルカーボネートは、ガラス転移温度と耐加水分解性、及び、柔軟性のバランスが優れていることから、特に好ましい。
なお、ポリカーボネート及びポリエステルカーボネートは<4.25 ポリカーボネートの重合方法>等の方法により製造することができる。また、ポリエステルについても同様の方法により製造することができ、具体的には<4.26 ポリエステルの重合方法>
等の方法により製造することができる。
<4.25 ポリカーボネートの重合方法>
本発明のポリカーボネート樹脂組成物の製造方法としては、ジヒドロキシ化合物と、下記一般式(11)で表される炭酸ジエステルとを溶融重縮合する方法(溶融重合法)を含むことが好ましい。もう一つの一般的なポリカーボネートの製造方法として知られる界面重合法は、使用できるモノマーが芳香族ジヒドロキシ化合物に限定されるため、アルコール性ヒドロキシ基を有するジヒドロキシ化合物も含む、より幅広い構造に適用できる溶融法を用いることが好ましい。また、界面法は毒性の強いホスゲンや塩化メチレン、クロロベンゼン等の含塩素溶媒を用いる必要もあり、環境負荷も高い傾向がある。
Figure 2015199706
上記一般式(11)中、A1およびA2は、それぞれ置換もしくは無置換の炭素数1〜18の脂肪族炭化水素基または置換もしくは無置換の芳香族炭化水素基であり、A1とA2とは同一であっても異なっていてもよい。
<4.25.1 炭酸ジエステル等>
この溶融重合法で用いられる炭酸ジエステルとしては、通常、前記一般式(11)で表されるものが挙げられる。前記式(11)で表される炭酸ジエステルとしては、例えば、ジフェニルカーボネート、ジトリルカーボネート、ビス(クロロフェニル)カーボネート、m−クレジルカーボネート、ジナフチルカーネート、ビス(ビフェニル)カーボネートなどに代表されるジアリールカーボネート類、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジシクロヘキシルカーボネートなどに代表されるジアルキルカーボネート類が挙げられる。なかでも、好ましくはジアリールカーボネート類が用いられ、特にジフェニルカーボネートが好ましく用いられる。これらの炭酸ジエステルは、1種を単独で用いても良く、2種以上を混合して用いてもよい。
炭酸ジエステルは、反応に用いる全ジヒドロキシ化合物に対して、0.90以上のモル分率で用いることが好ましく、より好ましくは0.96以上、さらに好ましくは0.98以上、また、1.10以下であることが好ましく、1.05以下であることがより好ましく、1.03以下であることがさらに好ましい。また、ジカルボン酸構造を導入する場合には、全ジヒドロキシ化合物のモル数から全ジカルボン酸のモル数を差し引いたジヒドロキシ化合物のモル数に対し、0.90以上のモル分率で用いることが好ましく、より好ましくは0.96以上、さらに好ましくは0.98以上、また、1.10以下であることが好ましく、1.05以下であることがより好ましく、1.03以下であることがさらに好ましい。このモル比率が前記下限値より小さくなると、製造されたポリカーボネートの末端水酸基が増加して、ポリカーボネートの熱安定性が悪化したり、所望する高分子量体が得られなかったりする。また、このモル比率が前記上限値より大きくなると、同一条件下ではエステル交換反応の速度が低下したり、所望とする分子量のポリカーボネートの製造が困難となるばかりか、製造されたポリカーボネート中の残存炭酸ジエステル量が増加し、この残存炭酸ジエステルが、原反製膜時や延伸時に揮発し、フィルムの欠陥を招く可能性がある。
本発明のポリカーボネート樹脂組成物に含有されるポリカーボネートは、ジヒドロキシ化合物に由来する繰り返し単位が、カーボネート結合で連結された構造を有するポリマー
であるが、本発明においては、カーボネート結合の一部がジカルボン酸構造に置換されたポリエステルカーボネートの他、カーボネート結合を有するポリウレタン等も含むものとする。
<4.25.2 ポリエステルカーボネート>
重合に用いる炭酸ジエステルの一部を上記一般式(28)で表されるジカルボン酸化合物と置換する、重合に用いるジヒドロキシ化合物の一部としてジヒドロキシエステル、及び/又はジヒドロキシエステルオリゴマーを用いる等の方法により、ポリエステルカーボネートが得られる。ここで用いることのできるジヒドロキシエステル、及び/又はジヒドロキシエステルオリゴマーは、ジカルボン酸化合物とジヒドロキシ化合物の反応により、合成することが可能である。上記一般式(28)で表されるジカルボン酸化合物としては、テレフタル酸、フタル酸、イソフタル酸、4,4’−ジフェニルジカルボン酸、4,4’−ジフェニルエーテルジカルボン酸、4,4’−ベンゾフェノンジカルボン酸、4,4’−ジフェノキシエタンジカルボン酸、4,4’−ジフェニルスルホンジカルボン酸、2,6−ナフタレンジカルボン酸などの芳香族ジカルボン酸、1,2−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸などの脂環式ジカルボン酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸などの脂肪族ジカルボン酸などを挙げることができ、得られたポリエステルカーボネートの耐熱性や熱安定性の観点から、芳香族ジカルボン酸が好ましく、特には取扱いや入手のし易さから、テレフタル酸、又はイソフタル酸が好ましく、中でもテレフタル酸が好適である。これらのジカルボン酸成分はジカルボン酸そのものとして前記ポリエステルカーボネートの原料とすることができるが、製造法に応じて、メチルエステル体、フェニルエステル体等のジカルボン酸エステルや、ジカルボン酸ハライド等のジカルボン酸誘導体を原料とすることもできる。
前記ポリエステルカーボネートにおいて、全ジカルボン酸化合物に由来する繰り返し単位構造の含有割合は、全ジヒドロキシ化合物に由来する繰り返し単位構造と全カルボン酸化合物に由来する構造単位の合計を100モル%とした場合に、通常45モル%以下であり、好ましくは30モル%以下、より好ましくは20モル%以下、さらに好ましくは0モル%である。ここでジカルボン酸化合物に由来する繰り返し単位構造の含有割合におけるジカルボン酸化合物とは、重合に用いられる全ジカルボン酸化合物のことである。ジカルボン酸化合物に由来する繰り返し単位構造の含有比率が前記上限値よりも多くなると、重合性が低下し、所望とする分子量まで重合が進行しなくなることがある。
<4.25.3 重合触媒>
溶融重合における重合触媒(エステル交換触媒)としては、例えば長周期型周期表第1族及び/又は、第2族の金属化合物が使用される。エステル交換触媒(以下、単に触媒、重合触媒と言うことがある)は、反応速度または重縮合して得られるポリカーボネート樹脂組成物の品質に非常に大きな影響を与え得る。
用いられる触媒としては、製造されたポリカーボネート樹脂組成物の透明性、色相、耐熱性、耐候性、及び機械的強度を満足させ得るものであれば限定されない。例えば、長周期型周期表における1族及び/又は2族(以下、単に「1族」、「2族」と表記する。)の金属化合物が挙げられる。
前記の1族金属化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素リチウム、炭酸水素セシウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム、酢酸ナトリウム、酢酸カリウム、酢酸リチウム、酢酸セシウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸リチウム、ステアリン酸セシウム、水素化ホウ素ナ
トリウム、水素化ホウ素カリウム、水素化ホウ素リチウム、水素化ホウ素セシウム、フェニル化ホウ素ナトリウム、フェニル化ホウ素カリウム、フェニル化ホウ素リチウム、フェニル化ホウ素セシウム、安息香酸ナトリウム、安息香酸カリウム、安息香酸リチウム、安息香酸セシウム、リン酸水素2ナトリウム、リン酸水素2カリウム、リン酸水素2リチウム、リン酸水素2セシウム、フェニルリン酸2ナトリウム、フェニルリン酸2カリウム、フェニルリン酸2リチウム、フェニルリン酸2セシウム、ナトリウム、カリウム、リチウム、セシウムのアルコレート、フェノレート、ビスフェノールAの2ナトリウム塩、2カリウム塩、2リチウム塩および2セシウム塩等が挙げられる。中でも重合活性と得られるポリカーボネート樹脂組成物の色相の観点から、リチウム化合物が好ましい。
前記の2族金属化合物としては、例えば、水酸化カルシウム、水酸化バリウム、水酸化マグネシウム、水酸化ストロンチウム、炭酸水素カルシウム、炭酸水素バリウム、炭酸水素マグネシウム、炭酸水素ストロンチウム、炭酸カルシウム、炭酸バリウム、炭酸マグネシウム、炭酸ストロンチウム、酢酸カルシウム、酢酸バリウム、酢酸マグネシウム、酢酸ストロンチウム、ステアリン酸カルシウム、ステアリン酸バリウム、ステアリン酸マグネシウムおよびステアリン酸ストロンチウム等が挙げられる。中でもマグネシウム化合物、カルシウム化合物またはバリウム化合物が好ましく、重合活性と得られるポリカーボネート樹脂組成物の色相の観点から、マグネシウム化合物及び/又はカルシウム化合物が更に好ましく、最も好ましくはカルシウム化合物である。
長周期型周期表第1族と第2族の金属化合物と共に補助的に、塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、アミン系化合物等の塩基性化合物を併用することも可能であるが、長周期型周期表第1族及び/又は、第2族の金属化合物のみを使用することが特に好ましい。
前記の塩基性リン化合物としては、例えば、トリエチルホスフィン、トリ−n−プロピルホスフィン、トリイソプロピルホスフィン、トリ−n−ブチルホスフィン、トリフェニルホスフィン、トリブチルホスフィンおよび四級ホスホニウム塩等が挙げられる。
前記の塩基性アンモニウム化合物としては、例えば、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、トリエチルメチルアンモニウムヒドロキシド、トリエチルベンジルアンモニウムヒドロキシド、トリエチルフェニルアンモニウムヒドロキシド、トリブチルベンジルアンモニウムヒドロキシド、トリブチルフェニルアンモニウムヒドロキシド、テトラフェニルアンモニウムヒドロキシド、ベンジルトリフェニルアンモニウムヒドロキシド、メチルトリフェニルアンモニウムヒドロキシドおよびブチルトリフェニルアンモニウムヒドロキシド等が挙げられる。
前記のアミン系化合物としては、例えば、4−アミノピリジン、2−アミノピリジン、N,N−ジメチル−4−アミノピリジン、4−ジエチルアミノピリジン、2−ヒドロキシピリジン、2−メトキシピリジン、4−メトキシピリジン、2−ジメチルアミノイミダゾール、2−メトキシイミダゾール、イミダゾール、2−メルカプトイミダゾール、2−メチルイミダゾール、アミノキノリンおよびグアニジン等が挙げられる。
上記重合触媒の使用量は、長周期型周期表第1族と第2族の金属化合物を用いる場合、反応に用いる全ジヒドロキシ化合物1モルに対して、金属換算量として、通常、0.1μmol〜100μmolの範囲内で用い、好ましくは0.5μmol〜50μmolの範囲内であり、さらに好ましくは1μmol〜25μmolの範囲内である。重合触媒の使用量が少なすぎると、所望の分子量のポリカーボネートを製造するのに必要な重合活性が
得られない場合があり、一方、重合触媒の使用量が多すぎると、得られるポリマーの色相が悪化し、副生成物が発生したりして流動性の低下やゲルの発生が多くなり、目標とする品質のポリカーボネートの製造が困難になる場合がある。
中でも長周期型周期表における2族からなる群及びリチウムより選ばれた少なくとも1種の金属を含む化合物を用いる場合、特にはマグネシウム化合物及び/又はカルシウム化合物を用いる場合は、金属換算量として、前記全ジヒドロキシ化合物1モル当たり、0.1μmol以上が好ましく、より好ましくは0.3μmol以上、特に好ましくは0.5μmol以上とする。また上限としては、20μmol以下が好ましく、より好ましくは10μmol以下であり、さらに好ましくは5μmol以下で、特に好ましくは3μmol以下である。
触媒量が少なすぎると、重合速度が遅くなるため、所望の分子量のポリカーボネート樹脂組成物を得ようとするにはその分だけ重合温度を高くせざるを得なくなる傾向がある。そのために、得られたポリカーボネート樹脂組成物の色相が悪化する可能性が高くなり、また、未反応の原料が重合途中で揮発してジヒドロキシ化合物と炭酸ジエステルのモル比率が崩れ、所望の分子量に到達しない可能性がある。一方、重合触媒の使用量が多すぎると、好ましくない副反応を併発し、得られるポリカーボネート樹脂組成物の色相の悪化または成形加工時の樹脂の着色を招く可能性がある。
ただし、1族金属の中でもナトリウム、カリウム又はセシウムは、ポリカーボネート樹脂組成物中に多く含まれると色相に悪影響を及ぼす可能性がある。そして、これらの金属は使用する触媒からのみではなく、原料または反応装置から混入する場合がある。出所にかかわらず、ポリカーボネート樹脂組成物中のこれらの金属の化合物の合計量は、金属量として、1質量ppm以下であることが好ましく、さらには0.5質量ppm以下であることがより好ましい。
また、ジカルボン酸構造を導入する場合には、上記塩基性化合物と併用して、または併用せずに、チタン化合物、スズ化合物、ゲルマニウム化合物、アンチモン化合物、ジルコニウム化合物、鉛化合物、オスミウム化合物等のエステル交換触媒を用いることもできる。これらのエステル交換触媒の使用量は、反応に用いる全ジヒドロキシ化合物1molに対して、金属換算量として、通常、10μmol以上、好ましくは20μmol以上、より好ましくは50μmol以上、また、通常1mmol以下、好ましくは800μmol以下、より好ましくは500μmol以下である。
<4.25.4 重合法>
本発明のポリカーボネート樹脂組成物に含有されるポリカーボネートを溶融重合法で製造する方法としては、ジヒドロキシ化合物と、必要に応じジカルボン酸化合物を重合触媒の存在下で炭酸ジエステルと反応させる。重合は、通常、2段階以上の多段工程で実施され、重合反応器は1つで条件を変えて2段階以上の工程で実施してもよいし、2つ以上の反応器を用いて、それぞれの条件を変えて2段階以上の工程で実施してもよいが、生産効率の観点からは、2つ以上、好ましくは3つ以上、更に好ましくは3〜5つ、特に好ましくは、4つの反応器を用いて実施する。重合反応はバッチ式、連続式、あるいはバッチ式と連続式の組み合わせの何れでも構わないが、生産効率と品質の安定性の観点から、連続式が好ましい。
本発明のポリカーボネート樹脂組成物に含有されるポリカーボネートを得るための溶融重合反応においては、温度と反応系内の圧力のバランスを制御することが重要である。温度、圧力のどちらか一方でも早く変化させすぎると、未反応のモノマーが反応系外に留出し、ジヒドロキシ化合物と炭酸ジエステルのモル比率が変化し、所望の高分子が得られな
い場合がある。
具体的には、第1段目の反応は、重合反応器の内温の最高温度として、通常130℃以上、好ましくは140℃以上、より好ましくは150℃以上、また、通常250℃以下、好ましくは240℃以下、より好ましくは230℃以下である。また、圧力は通常110kPa以上、好ましくは70kPa以上、より好ましくは30kPa以上、また、通常5kPa以下、好ましくは3kPa以下、より好ましくは1kPa以下(絶対圧力)の圧力下である。また、反応時間は通常0.1時間以上、好ましくは0.5時間以上、また、通常10時間以下、好ましくは3時間以下であり、発生する炭酸ジエステル由来のモノヒドロキシ化合物(炭酸ジエステルとしてジフェニルカーボネートを用いる場合、モノヒドロキシ化合物とはフェノールのことを示す。)を反応系外へ留去しながら実施される。
第2段目以降は、反応系の圧力を第1段目の圧力から徐々に下げ、引き続き発生するモノヒドロキシ化合物を反応系外へ除きながら、最終的には反応系の圧力(絶対圧力)を5kPa以下、好ましくは3kPaにして、内温の最高温度を通常210℃以上、好ましくは220℃以上、また、通常270℃以下、好ましくは260℃以下で、通常0.1時間以上、好ましくは0.5時間以上、より好ましくは1時間以上、また、通常10時間以下、好ましくは6時間以下、より好ましくは3時間以下行う。
特に本発明のポリカーボネート樹脂組成物の着色や熱劣化を抑制し、色相や耐光性の良好なポリカーボネート樹脂組成物を得るには、全反応段階における内温の最高温度が270℃以下、特に260℃以下であることが好ましい。
<4.25.5 ペレット化>
本発明のポリカーボネート樹脂組成物は、上述の通り重縮合後、通常、冷却固化させ、回転式カッター等でペレット化することができる。ペレット化の方法は限定されるものではないが、最終重合反応器から溶融状態で抜き出し、ストランドの形態で冷却固化させてペレット化させる方法、最終重合反応器から溶融状態で一軸または二軸の押出機に樹脂を供給し、溶融押出しした後、冷却固化させてペレット化させる方法、又は、最終重合反応器から溶融状態で抜き出し、ストランドの形態で冷却固化させて一旦ペレット化させた後に、再度一軸または二軸の押出機に樹脂を供給し、溶融押出しした後、冷却固化させてペレット化させる方法等が挙げられる。後述するように、副生する炭酸ジエステル由来のモノヒドロキシ化合物がポリカーボネート中に多く含まれると、位相差フィルムに加工した後に、環境変化による光学的特性の変化を招くことがあるため、本発明のポリカーボネート樹脂組成物は、押出機を使用して炭酸ジエステル由来のモノヒドロキシ化合物を除去することが好ましく、中でも、最終重合反応器から溶融状態で単数または複数のベント口を有する一軸または二軸の押出機に樹脂を供給し、ベント口を減圧にしてモノヒドロキシ化合物を除去しつつ溶融押出しした後、冷却固化させてペレット化させる方法が好ましい。
<4.25.6 炭酸ジエステル由来のモノヒドロキシ化合物含量>
溶融重合法では重合反応において炭酸ジエステルからフェノール等のモノヒドロキシ化合物が副生するため、これが本発明のポリカーボネート樹脂組成物中に残存し、フィルム製膜時や延伸時に揮発して、臭気の原因となったり、フィルムの欠陥を招いたりすることがある。また、本発明のポリカーボネート樹脂組成物が位相差フィルムに加工された後に、該フィルム中に残存している炭酸ジエステル由来のモノヒドロキシ化合物は、環境変化により位相差フィルムの光学的特性を変化させることがあるため、本発明のポリカーボネート樹脂組成物に含まれる炭酸ジエステル由来のモノヒドロキシ化合物は1500質量ppm以下であることが好ましい。さらには1000質量ppm以下であることが好ましい。下限については、上記問題を解決するために少ない方がよいが、溶融重合法では高分子中に残存するモノヒドロキシ化合物をゼロにすることは困難であること、除去のためには過大な労力が必要であることから、通常1質量ppmである。本発明のポリカーボネート
樹脂組成物中に残存する炭酸ジエステル由来のモノヒドロキシ化合物を低減するためには、上記のように高分子を押出機で脱揮処理すること、重合終盤の圧力を3kPa以下、好ましくは2kPa以下にすることが効果的であるが、圧力を下げすぎると分子量が急激に上昇して、反応の制御が困難になる場合があるため、高分子の末端基濃度を水酸基過剰かアリール基過剰にして、末端基バランスを偏らせて製造することが好ましい。中でも熱安定性の観点から、水酸基末端濃度を50mol/ton以下、特には30mol/ton以下にすることが好ましい。水酸基末端濃度は、1H−NMR等で定量することができる
。水酸基末端濃度は炭酸ジエステルと全ジヒドロキシ化合物の仕込みのモル比により調節することができる。
<4.26 ポリエステルの重合方法>
重合に用いる炭酸ジエステルを上記一般式(28)で表されるジカルボン酸化合物と置換する等の方法により、ポリエステルが得られる。
好ましいジカルボン酸、重合触媒、重合条件等は<4.25 ポリカーボネートの重合方法>記載の方法と同じである。
<4.27 添加剤>
本発明の樹脂組成物には、任意の添加剤を含有させてもよい。同様に、本発明の樹脂組成物に含有される重合体にも、任意の添加剤を含有させてもよい。
<4.27.1 熱安定剤>
本発明の樹脂組成物には、成形時等における分子量の低下や色相の悪化を防止するために熱安定剤を配合することができる。同様に、本発明の樹脂組成物に含有される重合体にも、同様の理由から、熱安定剤を配合することができる。
かかる熱安定剤としては、通常知られるヒンダードフェノール系熱安定剤および/またはリン系熱安定剤が挙げられる。
ヒンダードフェノール系化合物としては、具体的には、2,6−ジ−tert−ブチルフェノール、2,4−ジ−tert−ブチルフェノール、2−tert−ブチル−4−メトキシフェノール、2−tert−ブチル−4,6−ジメチルフェノール、2,6−ジ−tert−ブチル−4−メチルフェノール、2,6−ジ−tert−ブチル−4−エチルフェノール、2,5−ジ−tert−ブチルヒドロキノン、n−オクタデシル−3−(3’,5’−ジ−tert−ブチル−4’−ヒドロキシフェニル)プロピオネート、2−tert−ブチル−6−(3’−tert−ブチル−5’−メチル−2’−ヒドロキシベンジル)−4−メチルフェニルアクリレート、2,2’−メチレン−ビス−(4−メチル−6−tert−ブチルフェノール)、2,2’−メチレン−ビス−(6−シクロヘキシル−4−メチルフェノール)、2,2’−エチリデン−ビス−(2,4−ジ−tert−ブチルフェノール)、テトラキス−[メチレン−3−(3’,5’−ジ−tert−ブチル−4’−ヒドロキシフェニル)プロピオネート]−メタン、1,3,5−トリメチル−2,4,6−トリス−(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼンなどが挙げられる。中でも、テトラキス−[メチレン−3−(3’,5’−ジ−tert−ブチル−4’−ヒドロキシフェニル)プロピオネート]−メタン、n−オクタデシル−3−(3’,5’−ジ−tert−ブチル−4’−ヒドロキシフェニル)プロピオネート、1,3,5−トリメチル−2,4,6−トリス−(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼンが挙げられる。
リン系化合物としては、亜リン酸、リン酸、亜ホスホン酸、ホスホン酸及びこれらのエステル等が挙げられ、具体的には、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデ
シルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ジステアリルペンタエリスリトールジホスファイト、トリブチルホスフェート、トリエチルホスフェート、トリメチルホスフェート、トリフェニルホスフェート、ジフェニルモノオルソキセニルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェート、4,4’−ビフェニレンジホスフィン酸テトラキス(2,4−ジ−tert−ブチルフェニル)、ベンゼンホスホン酸ジメチル、ベンゼンホスホン酸ジエチル、ベンゼンホスホン酸ジプロピル等が挙げられる。これらの熱安定剤は、1種を単独で用いても良く、2種以上を併用してもよい。
かかる熱安定剤は、溶融重合時に添加した添加量に加えて更に追加で配合することができる。即ち、適当量の熱安定剤を配合して、本発明の樹脂組成物又は本発明のポリカーボネート樹脂組成物を得た後に、さらに熱安定剤を配合すると、ヘイズの上昇、着色、及び耐熱性の低下を回避して、さらに多くの熱安定剤を配合でき、色相の悪化の防止が可能となる。また、熱安定剤は、例えば、溶融押出し法等の押出機を用いてフィルムを製膜する場合、押出機に前記熱安定剤等を添加して製膜してもよいし、予め押出機を用いて、樹脂組成物又はポリカーボネート樹脂組成物中に前記熱安定剤等を添加して、ペレット等の形状にして用いてもよい。
これらの熱安定剤の配合量は、本発明の樹脂組成物を100質量部とした場合、0.0001質量部以上が好ましく、0.0005質量部以上がより好ましく、0.001質量部以上がさらに好ましく、また、1質量部以下が好ましく、0.5質量部以下がより好ましく、0.2質量部以下がさらに好ましい。
<4.27.2 酸化防止剤>
また、本発明の樹脂組成物には、酸化防止の目的で通常知られた酸化防止剤を配合することもできる。かかる酸化防止剤としては、例えばペンタエリスリトールテトラキス(3−メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)、グリセロール−3−ステアリルチオプロピオネート、トリエチレングリコール−ビス[3−(3−tert−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、ペンタエリスリトール−テトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、N,N−ヘキサメチレンビス(3,5−ジ−tert−ブチル−4−ヒドロキシ−ヒドロシンナマイド)、3,5−ジ−tert−ブチル−4−ヒドロキシ−ベンジルホスホネート−ジエチルエステル、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、4,4’−ビフェニレンジホスフィン酸テトラキス(2,4−ジ−tert−ブチルフェニル)、3,9−ビス{1,1−ジメチル−2−[β−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]エチル}−2,4,8,10−テトラオキサスピロ(5,5)ウンデカン等の1種又は2種以上が挙げられる。これら酸化防止剤の配合量は、本発明の樹脂組成物又は本発明のポリカーボネート樹脂組成物を100質量部とした場合、0.0001質量部以上が好ましく、また、0.5質量部が好ましい。
更に、本発明の樹脂組成物には、本発明の目的を損なわない範囲で、通常用いられる核剤、難燃剤、無機充填剤、衝撃改良剤、発泡剤、染顔料等が含まれても差し支えない。
上記の添加剤は、本発明の樹脂組成物に上記成分を同時に、または任意の順序でタンブラー、V型ブレンダー、ナウターミキサー、バンバリーミキサー、混練ロール、押出機等の混合機により混合して製造することができるが、中でも押出機、特には二軸押出機により混練することが、分散性向上の観点から好ましい。
<4.27.3 触媒失活剤>
本発明の樹脂組成物
には、重合触媒を失活させるために触媒失活剤を配合することができる。
かかる触媒失活剤としては例えば、リン系化合物が挙げられる。なお、リン系化合物は、高温下での樹脂組成物の着色を抑制するための熱安定剤として作用させることもできる傾向がある。このリン系化合物としては、リン酸、亜リン酸、ホスホン酸、次亜リン酸、ポリリン酸、ホスホン酸エステル、酸性リン酸エステル、脂肪族環状亜リン酸エステルからなる群より選ばれる少なくとも1種を用いることが好ましい。上記の中でも触媒失活と着色抑制の効果がさらに優れているのは、亜リン酸、ホスホン酸、ホスホン酸エステルであり、特にホスホン酸エステルが好ましい。
ホスホン酸としては、ホスホン酸(亜リン酸)、メチルホスホン酸、エチルホスホン酸、ビニルホスホン酸、デシルホスホン酸、フェニルホスホン酸、ベンジルホスホン酸、アミノメチルホスホン酸、メチレンジホスホン酸、1−ヒドロキシエタン−1,1−ジホスホン酸、4−メトキシフェニルホスホン酸、ニトリロトリス(メチレンホスホン酸)、プロピルホスホン酸無水物などが挙げられる。
ホスホン酸エステルとしては、ホスホン酸ジメチル、ホスホン酸ジエチル、ホスホン酸ビス(2−エチルヘキシル)、ホスホン酸ジラウリル、ホスホン酸ジオレイル、ホスホン酸ジフェニル、ホスホン酸ジベンジル、メチルホスホン酸ジメチル、メチルホスホン酸ジフェニル、エチルホスホン酸ジエチル、ベンジルホスホン酸ジエチル、フェニルホスホン酸ジメチル、フェニルホスホン酸ジエチル、フェニルホスホン酸ジプロピル、(メトキシメチル)ホスホン酸ジエチル、ビニルホスホン酸ジエチル、ヒドロキシメチルホスホン酸ジエチル、(2−ヒドロキシエチル)ホスホン酸ジメチル、p−メチルベンジルホスホン酸ジエチル、ジエチルホスホノ酢酸、ジエチルホスホノ酢酸エチル、ジエチルホスホノ酢酸tert−ブチル、(4−クロロベンジル)ホスホン酸ジエチル、シアノホスホン酸ジエチル、シアノメチルホスホン酸ジエチル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸ジエチル、ジエチルホスホノアセトアルデヒドジエチルアセタール、(メチルチオメチル)ホスホン酸ジエチルなどが挙げられる。
酸性リン酸エステルとしては、リン酸ジメチル、リン酸ジエチル、リン酸ジビニル、リン酸ジプロピル、リン酸ジブチル、リン酸ビス(ブトキシエチル)、リン酸ビス(2−エチルヘキシル)、リン酸ジイソトリデシル、リン酸ジオレイル、リン酸ジステアリル、リン酸ジフェニル、リン酸ジベンジルなどのリン酸ジエステル、またはジエステルとモノエステルの混合物、クロロリン酸ジエチル、リン酸ステアリル亜鉛塩などが挙げられる。
脂肪族環状亜リン酸エステルは、リン原子を含む環状構造中に芳香族基を含まない亜リン酸エステル化合物と定義する。例えば、ビス(デシル)ペンタエリスリトールジホスファイト、ビス(トリデシル)ペンタエリスリトールジホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,6−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイ
ト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、水添ビスフェノールA・ペンタエリスリトールホスファイトポリマーなどジヒドロキシ化合物とペンタエリスリトールジホスファイトからなるポリマー型の化合物などが挙げられる。
これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。
前記リン系化合物の含有量が少なすぎると、触媒失活や着色抑制の効果が不十分であり、多すぎるとかえって樹脂組成物が着色してしまう傾向があるため、リン系化合物の含有量は、樹脂組成物中のリン原子の含有量として1質量ppm以上、8質量ppm以下とすることが好ましく、さらには1.2質量ppm以上、7質量ppm以下が好ましく、特には1.5質量ppm以上、6質量ppm以下が好ましい。
前記リン系化合物は通常、三塩化リンを出発原料に用いられるため、未反応物や脱離した塩酸由来の含塩素成分が残存する場合があるが、前記リン系化合物に含有される塩素原子の量は5質量%以下であることが好ましい。塩素原子の残存量が多いと、前記リン系化合物を添加する製造設備の金属部を腐食させたり、樹脂組成物の熱安定性を低下させたり、着色や熱劣化による分子量低下を促進させたりする懸念がある。
前記リン系化合物は、押出機を用いて樹脂組成物に添加、混練されることが好ましい。特に、樹脂組成物を重合後に溶融状態のまま押出機に供給し、ただちに前記リン系化合物を樹脂組成物に添加することが最も効果的である。さらに、触媒を失活させた状態で、押出機で真空ベントにより脱揮処理を行うと、効率的に低分子成分を脱揮除去することができる傾向がある。
<4.28 用途>
本発明にかかる樹脂組成物は光弾性係数が小さく、耐熱性および成形性にも優れ、さらに着色が少なく高い透明性を兼ね備えている傾向があるため、それらを成形して得られる成形体はフィルムやレンズ、プリズムといった光学部材に好適である。例えば、本発明にかかるフィルムは、各種ディスプレイ(液晶表示装置、有機EL表示装置、プラズマ表示装置、FED電界放出表示装置、SED表面電界表示装置)の視野角補償用、外光の反射防止用、色補償用、直線偏光の円偏光への変換用などの位相差フィルムとして用いることができる。また、本発明にかかるレンズ、プリズムは、フレネルレンズ、ピックアップレンズ等の光学レンズや光学プリズムにも用いることもできる。
<4.28.1 フィルム>
本発明の樹脂組成物は、フィルムとして好適に用いることができる。本発明の樹脂組成物を製膜することでフィルム(以下、「本発明のフィルム」という場合がある。)を得ることができる。
<4.28.2 フィルム製造法>
本発明の樹脂組成物を用いて原反フィルムを製膜する方法としては、本発明の樹脂組成物を溶媒に溶解させてキャストした後、溶媒を除去する流延法、溶媒を用いず溶融製膜する方法、具体的にはTダイを用いた溶融押出法、カレンダー成形法、熱プレス法、共押出法、共溶融法、多層押出、インフレーション成形法等があり、特に限定されないが、流延法は、残存溶媒による問題が生じるおそれがあるため、好ましくは溶融製膜法、中でも後の延伸処理のし易さから、Tダイを用いた溶融押出法が好ましい。
溶融製膜法で原反フィルムを成形する場合、成形温度は好ましくは265℃以下であって、より好ましくは260℃以下、特には258℃以下とすることが好ましい。成形温度
が高過ぎると、得られる原反フィルム中の異物や気泡の発生による欠陥が増加したり、原反フィルムが着色したりする可能性がある。ただし、成形温度が低過ぎると本発明の樹脂組成物又は本発明のポリカーボネート樹脂組成物の粘度が高くなりすぎ、原反フィルムの成形が困難となり、厚みの均一な原反フィルムを製造することが困難になる可能性があるので、成形温度の下限は通常200℃以上、好ましくは210℃以上、より好ましくは220℃以上である。ここで、原反フィルムの成形温度とは、溶融製膜法における成形時の温度であって、通常、溶融樹脂を押出すダイス出口の温度を測定した値である。
原反フィルムの厚みに制限はないが、厚すぎると厚み斑が生じやすく、薄すぎると延伸時の破断を招く可能性があるため、通常50μm以上、好ましくは70μm以上、また、通常200μm以下、好ましくは120μm以下である。また、原反フィルムに厚み斑があると、位相差フィルムの位相差斑を招く可能性があるため、位相差フィルムとして使用する部分の厚みは設定厚み±3μm以下であることが好ましく、設定厚み±2μm以下であることが更に好ましく、設定厚み±1μm以下であることが特に好ましい。
<4.28.3 フィルム物性>
本発明のフィルムは、内部ヘイズが3%以下であることが好ましく、1.5%以下であることがより好ましい。位相差フィルムの内部ヘイズが上記上限値よりも大きいと光の散乱が起こり、例えば偏光子と積層した際、偏光解消を生じる原因となる場合がある。内部ヘイズの下限値は特に定めないが、通常0.2%以上である。測定サンプルは、事前にヘイズ測定を行っておいた粘着剤付き透明フィルムを、試料フィルムの両面に貼り合せ、外部ヘイズの影響を除去した状態のものを作成して用い、測定値は、粘着剤付き透明フィルムのヘイズ値の差分を用いる。
本発明のフィルムは、b*値が3以下であることが好ましい。フィルムのb*値が大き過ぎると着色等の問題が生じる。本発明のフィルムのb*値はより好ましくは2以下、特に好ましくは1以下である。
本発明のフィルムは、厚みによらず、当該フィルムそのものの全光線透過率が80%以上であることが好ましく、この透過率は90%以上であることが更に好ましい。透過率が上記下限以上であれば、着色の少ないフィルムが得られ、偏光板と貼り合わせた際、偏光度や透過率の高い円偏光板となり、画像表示装置に用いた際に、高い表示品位を実現することが可能となる。なお、本発明のフィルムの全光線透過率の上限は特に制限はないが通常99%以下である。
本発明のフィルムは、後述する折り曲げ試験において脆性破壊しないことが好ましい。脆性破壊が生じるフィルムでは、フィルムの製膜時や延伸時にフィルムの破断が起こりやすく、製造の歩留まりを悪化させるおそれがある。脆性破壊しないフィルムとするには、本発明の樹脂組成物の分子量や溶融粘度、ガラス転移温度を、前述の好ましい範囲に設計することが重要である。また、樹脂組成物中に柔軟性を付与できる成分を共重合したり、ブレンドすることにより、フィルムの物性を調整する方法も効果的である。
<4.28.4 延伸フィルムの製造法>
上記のようにして得られる原反フィルムは、少なくとも一方向に延伸することにより本発明の延伸フィルムとすることができる。その延伸の方法は、自由端延伸、固定端延伸、自由端収縮、固定端収縮等、様々な延伸方法を、単独で用いることも、同時もしくは逐次で用いることもできる。また、延伸方向に関しても、水平方向・垂直方向・厚さ方向、対角方向等、様々な方向や次元に行なうことが可能であり、特に限定されない。好ましくは、横一軸延伸方法、縦横同時二軸延伸方法、縦横逐次二軸延伸方法等が挙げられる。延伸する手段としては、テンター延伸機、二軸延伸機等、任意の適切な延伸機を用いることができる。
延伸温度は、目的に応じて、適宜、適切な値が選択され得る。好ましくは、延伸は、原反フィルム(即ち、原反フィルムの製膜材料である樹脂組成物)のガラス転移温度(Tg)に対し、通常Tg−20℃以上、好ましくはTg−10℃以上、より好ましくはTg−5℃以上、また、通常Tg+30℃以下、好ましくはTg+20℃以下、より好ましくはTg+10℃以下の範囲で行なう。このような条件を選択することによって、位相差値が均一になり易く、かつ、フィルムが白濁しにくくなる。具体的には、上記延伸温度は通常90℃以上、好ましくは100℃以上、また、通常210℃以下、好ましくは200℃以下、より好ましくは180℃以下である。
延伸倍率は、目的に応じて適宜選択され、未延伸の場合を1倍として、好ましくは1.1倍以上、より好ましくは1.5倍以上、さらに好ましくは1.8倍以上、特に好ましくは2倍以上、また、好ましくは6倍以下、より好ましくは4倍以下、更に好ましくは3倍以下であり、特に好ましくは2.5倍以下である。延伸倍率が過度に大きいと延伸時の破断を招く可能性があるだけでなく、高温条件下での長期使用による光学的特性の変動が大きくなる可能性があり、過度に低いと所望の厚みにおいて意図した光学的特性が付与できなくなる可能性がある。
延伸速度も目的に応じて適宜選択されるが、下記式で表される歪み速度で通常50%以上、好ましくは100%以上、より好ましくは200%以上、特に好ましくは250%以上、また、通常2000%以下、好ましくは1500%以下、より好ましくは1000%以下、特に好ましくは500%以下である。延伸速度が過度に大きいと延伸時の破断を招いたり、高温条件下での長期使用による光学的特性の変動が大きくなったりする可能性がある。また、延伸速度が過度に小さいと生産性が低下するだけでなく、所望の位相差を得るのに延伸倍率を過度に大きくしなければならない場合がある。
歪み速度(%/分)= 延伸速度(mm/分)/原反フィルムの長さ(mm) ×100
また、延伸後加熱炉で熱固定処理を行っても良いし、テンターの幅を制御したり、ロール周速を調整したりして、緩和工程を行っても良い。この処理を行うことで、高温条件下での長期使用による光学的特性の変動を抑制することができる。
本発明の延伸フィルムは、このような延伸工程における処理条件を適宜選択・調整することによって作製することができる。
<4.28.5 延伸フィルム物性>
本発明の延伸フィルムは、波長450nmで測定した位相差(Re450)と波長550nmで測定した位相差(Re550)の比が下記式(2)を満足する位相差フィルムであることが好ましい。
Re450/Re550 ≦ 1.0 (2)
Re450/Re550が0.50以上1.00以下であることが好ましく、0.5超過1.00未満であることがより好ましく、0.70以上0.95以下であることがさらに好ましく、0.75以上0.93以下であることがよりさらに好ましく、0.80以上0.91以下であることが特に好ましい。Re450/Re550の値が上記範囲であれば、長波長ほど位相差が発現し、可視領域の各波長において理想的な位相差特性を得ることができる。例えば1/4λ板としてこのような波長依存性を有する本発明の位相差フィルムを偏光板と貼り合わせることにより、円偏光板等を作製することができ、あらゆる波長において外光反射防止機能を有する黒色性に優れた円偏光板及び画像表示装置の実現が可能である。一方、Re450/Re550の値が上記範囲外の場合には、波長による色抜けが大きくなり、円偏光板や画像表示装置に着色の問題が生じる傾向がある。
また、本発明の延伸フィルムは、<3.11 位相差比>に記載した物性値を満足することが好ましい。同様に、<3.17 光弾性係数>に記載した物性値を満足することが好ましい。同様に、<3.18 複屈折>に記載した物性値を満足することが好ましい。
本発明の延伸フィルムの厚みは、通常150μm以下であることが好ましく、100μm以下であることが更に好ましく、60μm以下であることがより好ましい。位相差フィルムの厚みが過度に厚いと、同じ面積のフィルムを製造するのにより多くの製膜材料が必要になり非効率であったり、当該フィルムを使用する製品の厚みが厚くなったりする可能性があると共に、均一性の制御が困難となり、精密性・薄型・均質性を求められる機器に適合できない場合がある。本発明の位相差フィルムの厚みの下限としては、好ましくは5μm以上、より好ましくは10μm以上である。位相差フィルムの厚みが過度に薄いとフィルムの取り扱いが困難になり、製造中にしわが発生したり、保護フィルムなどの他のフィルムやシートなどと貼合わせることが困難になったりすることがある。
本発明の延伸フィルムは、複屈折が、0.001以上であることが好ましい。後述の本発明の樹脂組成物を用いて成形するフィルムの厚みを非常に薄く設計するためには、複屈折が高い方が好ましい。従って、複屈折は0.002以上であることが更に好ましい。複屈折が0.001未満の場合には、フィルムの厚みを過度に大きくする必要があるため、製膜材料の使用量が増え、厚み・透明性・位相差の点から均質性の制御が困難となる。そのため、複屈折が0.001未満の場合には、精密性・薄型・均質性を求められる機器に適合できない可能性がある。
<4.28.6 吸水率>
本発明のフィルムは、飽和吸水率が1.0質量%より大きいことが好ましい。飽和吸水率が1.0質量%より大きければ、このフィルムを他のフィルムなどと貼りあわせる際、容易に接着性を確保することができる傾向がある。例えば、偏光板と貼りあわせる際、フィルムが親水性であるため、水の接触角も低く、接着剤を自由に設計し易く、高い接着設計ができる。飽和吸水率が1.0質量%以下の場合は、疎水性となり、水の接触角も高く、接着性の設計が困難になる。また、フィルムが帯電し易くなり、異物の巻き込み等、円偏光板、画像表示装置に組み込んだ際、外観欠点が多くなるという問題が生じる傾向がある。一方、飽和吸水率が2.0質量%より大きくなると湿度環境下での光学特性の耐久性が悪くなる傾向があるため好ましくない。本発明のフィルムは、飽和吸水率が1.0質量%より大きいことが好ましく、1.1質量%以上であることがより好ましく、また、2.0質量%以下であることが好ましく、1.5質量%以下であることがより好ましい。
一方で、フィルムやそれを用いた画像表示装置の使用条件によっては、飽和吸水率を1.0質量%以下としてもよい。
<4.28.7 デバイス用途など>
本発明のフィルムは、各種ディスプレイ(液晶表示装置、有機EL表示装置、プラズマ表示装置、FED電界放出表示装置、SED表面電界表示装置)の視野角補償用、外光の反射防止用、色補償用、直線偏光の円偏光への変換用などの位相差フィルムとして用いることができる。
本発明にかかる樹脂組成物及びポリカーボネート樹脂組成物は光弾性係数が小さく、耐熱性および成形性にも優れ、さらに着色が少なく高い透明性を兼ね備えている傾向があるため、その他の光学フィルムや光ディスク、光学プリズム、ピックアップレンズ等にも用いることもできる。
本発明の延伸フィルムの用途には特に制限はないが、可視領域の各波長において理想的な位相差特性を備え、光弾性係数が小さく、耐熱性および成形性にも優れ、さらに着色が少なく高い透明性を兼ね備えている傾向があるため、1/4λ板、円偏光板、画像表示装
置等に好適である。
例えば、本発明の延伸フィルムを前述の<4.11 位相差比>に記載の条件を満足させることで、1/4λ板として用いることができる。このようにして作成した本発明の1/4λ板を偏光板と貼り合わせることにより、円偏光板等を作製することができ、あらゆる波長において外光反射防止機能を有する黒色性に優れた円偏光板とすることができ、さらには画像表示装置に適用した場合には黒色の再現性が極めて良好な画像表示装置の実現が可能である。前記偏光板としては、公知の様々な構成のものを採用することができる。例えば、従来公知の方法により、各種フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて染色し、架橋、延伸、乾燥することによって調製した偏光子に保護フィルムを積層させたもの等が使用できる。
また、本発明の延伸フィルムを前述の<4.11 位相差比>に記載の条件を満足させることで、VAモードの液晶表示装置の色抜けを補正する位相差フィルムを得ることができ、波長による色抜けの少ない液晶表示装置の実現が可能となる。さらに、前述の<4.18 複屈折>に記載の条件を満足させることで、可視領域の波長において理想的な位相差特性を得ることができ、広帯域ゼロ複屈折材料とすることができる。また、液晶表示装置の偏光板保護フィルムとして、本発明の広帯域ゼロ複屈折材料を偏光板と貼り合わせることにより、波長による色抜けの少ない偏光板及び画像表示装置の実現が可能である。
以下、実施例及び比較例により本発明を更に詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例により限定されるものではない。本発明のオリゴフルオレンモノマーの品質評価、および樹脂組成物と透明フィルムの特性評価は次の方法により行った。なお、特性評価手法は以下の方法に限定されるものではなく、当業者が適宜選択することができる。
また、以下の合成例および実施例で用いた化合物の略号等は以下の通りである。
ISB;イソソルビド(ロケットフルーレ社製、商品名:POLYSORB(登録商標))
DPC;ジフェニルカーボネート(三菱化学(株)製)
CHDM;1,4−シクロヘキサンジメタノール(シス、トランス混合物、SKケミカル社製)
BHEPF:9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]−フルオレン(大阪ガスケミカル(株)製)
(1)オリゴフルオレンジエステルの融点(TG−DTA)
オリゴフルオレンジエステルの融点は、示差熱重量同時分析装置(エスアイアイ・ナノテクノロジー社製TG−DTA6300)を用いて測定した。分析試料約4mgを同社製アルミパンに入れて密封し、200mL/分の窒素気流下、昇温速度10℃/分で室温(20〜30℃)から600℃まで昇温した。得られたTGデータ(熱重量データ)より、試料重量の減少が認められず、かつ、急峻な吸熱ピークが観測された、そのピークトップを試料の融点とした。
(2)オリゴフルオレンジエステルのTi含有割合は、湿式分解処理後、ICP−AES(堀場製作所製ULTIMA2C)にて測定を行った。Ti含有割合の検出限界は0.1質量ppmである。
(3)オリゴフルオレンジエステルの熱安定性評価
オリゴフルオレンジエステル500mgを30mLフラスコに添加し、窒素雰囲気下、185℃で7時間攪拌を行った。加熱前後の色調を目視で確認した。また、加熱前後のオ
リゴフルオレンジエステルの1wt%THF溶液を調製し、紫外可視吸収分光光度計(島津製作所社製UV−1650PC)を用いて、400nmの波長の吸光度を測定した。
(4)オリゴフルオレンジエステルの粉末X線回折
オリゴフルオレンジエステルの粉末X線回折パターンは粉末X線回折測定装置(スペクトリクスPANalitical事業部X−Pert‘Pro)を用いて測定した。
(5)オリゴフルオレンジエステルの粒度分布測定
オリゴフルオレンジエステルの粒度分布は、レーザー回折・散乱式粒子径分布測定装置(マイクロトラック・ベル社製MT3300EX)を用い、溶媒のメタノール中に分散させて測定した。
(6)オリゴフルオレンジエステルの回転安息角
オリゴフルオレンジエステルの回転安息角は、三輪式安息角測定器(筒井理化学器械社製)を用い、円筒回転法で測定を行った。
<実施例1>
Figure 2015199706
<実施例1A> ビス[9−(2−エトキシカルボニルエチル)フルオレン−9−イル]メタン(化合物1)の合成
1Lセパラブルフラスコにビス(フルオレン−9−イル)メタン(50g、145.2mmol)、ベンジルトリエチルアンモニウムクロリド(6.6g、29.0mmol)、テトラヒドロフラン(250mL)を入れ、窒素置換後、水浴で17℃〜19℃に制御し、50wt/vol%水酸化ナトリウム水溶液(26.5mL)を加えたところ、溶液の色は薄赤色に変化した。その後、アクリル酸エチル(15.1mL、145.2mmol)を30分かけて滴下した。その後、ベンジルトリエチルアンモニウムクロリド(6.6g、29.0mmol)を添加し、さらにアクリル酸エチル(30.2mL、290.2mmol)を加え、反応の進行をHPLCで追跡しながら、2時間撹拌した。HPLCでモノ付加体が2%以下になったのを確認後、氷浴で冷却し、3N塩酸(166.4mL)を温度見合いで滴下し、クエンチした。水層を廃棄後、トルエンを100mL添加し、飽和炭酸水素ナトリウム水溶液(150mL)で有機層を洗浄後、さらに脱塩水(150mL)で有機層を洗浄した。その後、テトラヒドロフランを減圧留去後、メタノール(200mL)を添加し、晶析を行った。吸引ろ過後、100℃で恒量になるまで減圧乾燥することで、白色固体としてビス[9−(2−エトキシカルボニルエチル)フルオレン−9−イル]メタン(化合物1)を61.9g(収率:78.0%、HPLC純度:87.4面積%)得た。
<HPLC条件>
カラム:Inertsil ODS−3V 150mm×4.8mmφ
温度:40℃
溶離液条件:0−5min:テトラヒドロフラン/水=50/50,20min:テトラヒドロフラン/水=100/0
流速:1.0mL/min
注入量:2μL
HPLC分析結果 化合物4(5.9min):0.0面積%(0.0質量%)、化合物5(10.4min):3.0面積%(2.9質量%)、化合物1(13.5min):87.4面積%(89.0質量%)
()内は検量線から算出された定量値を表す。
化合物1のケミカルシフトは以下のとおりである。
1H−NMR(400MHz,CDCl3)δ7.03(d,J=7.6Hz,4H),6.97(dt,J1=7.6Hz,J2=1.5Hz,4H),6.82(dt,J1=7.6Hz,J2=1.3Hz,4H),6.77(d,J=7.6Hz,4H),3.88(q,J=7.1Hz,4H),3.12(s,2H),2.23(m,4H),1.13(m,4H),1.02(t,J=7.1Hz,6H).
m.p.:141℃
<実施例1B> ビス[9−(2−フェノキシカルボニルエチル)フルオレン−9−イル]メタン(化合物2)の合成
1L四口フラスコにビス[9−(2−エトキシカルボニルエチル)フルオレン−9−イル]メタン(化合物1、49.7g、91.2mmol)、ジフェニルカーボネート(98.3g、459mmol)、オルトチタン酸テトライソプロピル(1.3mL、4.59mmol)を入れ、減圧度を3〜2kPaに調整し、140℃〜150℃の温度範囲で、副生物を留去しながら、10時間撹拌した。90℃に冷却し、HPLCで反応の終了を確認後、トルエン(100mL)を加え、50℃まで冷却した。そこへ、メタノール(250mL)を加え、室温まで冷却後、吸引ろ過を行った。得られた白色固体をトルエン(100mL)に分散させ、30分加熱還流した。50℃へ冷却後、メタノール(250mL)を加えた。室温(20℃)へ冷却後、吸引ろ過を行い、100℃で恒量になるまで減圧乾燥することで、白色固体としてビス[9−(2−フェノキシカルボニルエチル)フルオレン−9−イル]メタン(化合物2)を35.2g(収率:60%、HPLC純度:98.4面積%)得た。化合物2のケミカルシフト及び金属含有割合を以下に示す。
1H−NMR(400MHz,CDCl3)δ7.23−7.28(m,4H),7.07−7.16(m,6H),7.03(dt,J1=6.9Hz,J2=2.0,4H),6.78−6.90(m,12H),3.20(s,2H),2.37(t,J=8.3Hz,4H),1.40(t,J=8.3Hz,4H).
m.p.:176℃
Ti含有割合:330質量ppm
<実施例2> ビス[9−(2−フェノキシカルボニルエチル)フルオレン−9−イル]メタン(化合物2)の合成
250LGL反応器にジフェニルカーボネート(74.9kg)を添加し、120℃で溶解させた。そこへ、ビス[9−(2−エトキシカルボニルエチル)フルオレン−9−イル]メタン(化合物1、38.1kg)、オルトチタン酸テトライソプロピル(1.0kg)を入れ、減圧度を3.0kPaに調整し、副生物を留去しながら、内温が185℃に到達するまで、7時間撹拌した。窒素で常圧に復圧した後、90℃に冷却し、HPLCで反応の終了を確認後、トルエン(66kg)を加え、400LGL反応器に移送し、50℃まで冷却した。そこへ、メタノール(151kg)を加え、5℃まで冷却後、セントルろ過を行った。得られた粗生成物をトルエン(66kg)に分散させ、30分加熱還流した。50℃へ冷却後、メタノール(151kg)を加え、22℃まで冷却後、セントルろ過を行った。さらに、得られた粗生成物をトルエン(66kg)に分散させ、30分加熱還流した。50℃へ冷却後、メタノール(151kg)を加え、22℃まで冷却後、セン
トルろ過を行った。80℃で恒量になるまで減圧乾燥することで、白色固体としてビス[9−(2−フェノキシカルボニルエチル)フルオレン−9−イル]メタン(化合物2)を27.2g(収率:61%、HPLC純度:99.5面積%)得た。金属(Ti)の含有割合は40質量ppmであった。
<実施例3> ビス[9−(2−フェノキシカルボニルエチル)フルオレン−9−イル]メタン(化合物2)の合成
1Lセパラブルフラスコに実施例2で得られたビス[9−(2−フェノキシカルボニルエチル)フルオレン−9−イル]メタン(化合物2、60g)、トルエン(120mL)を加え、80℃に昇温して、溶解させた後、脱塩水(180mL)を加え、30分攪拌した後、分液操作により水層を廃棄した。再度、脱塩水(180mL)を加え、30分攪拌した後、船木操作により水層を廃棄した後、有機層を加圧ろ過(0.2MPa、ADVANTEC PTFEメンブレンフィルター、孔径0.5μm:H050A47A)し、有機層を1Lセパラブルフラスコに添加して、攪拌し、40℃まで冷却した。そこへ、メタノール(300mL)を加え、22℃まで冷却後、吸引ろ過を行った。80℃で恒量になるまで減圧乾燥することで、白色固体としてビス[9−(2−フェノキシカルボニルエチル)フルオレン−9−イル]メタン(化合物2)を54.1g(収率:90%)得た。金属(Ti)の含有割合は0.1質量ppm未満であった。
<実施例4>
実施例2で得られたビス[9−(2−フェノキシカルボニルエチル)フルオレン−9−イル]メタン(化合物2、61.7g)をクロロホルムに溶解させ、シリカゲルカラムクロマトグラフィー(溶離液:クロロホルム)で精製した。得られたクロロホルム溶液をエバポレーターで、クロロホルムを減圧留去し、MeOH(300mL)を加えた。室温(20℃)へ冷却後、吸引ろ過を行い、80℃で恒量になるまで減圧乾燥することで、白色固体としてビス[9−(2−フェノキシカルボニルエチル)フルオレン−9−イル]メタン(化合物2)を59.8g(収率:97%、HPLC純度:99.5面積%)得た。金属(Ti)の含有割合は0.1質量ppm未満であった。
<比較例1> ビス[9−(2−フェノキシカルボニルエチル)フルオレン−9−イル]メタン(化合物2)の合成
500mL四口フラスコにビス[9−(2−エトキシカルボニルエチル)フルオレン−9−イル]メタン(化合物1、35.0g、64.3mmol)、ジフェニルカーボネート(68.8g、321mmol)、オルトチタン酸テトライソプロピル(0.95mL、3.24mmol)を入れ、減圧度を2.8〜3.2kPaに調整し、135℃〜150℃の温度範囲で、副生物を留去しながら、6時間撹拌した。90℃に冷却し、HPLCで反応の終了を確認後、トルエン(70mL)を加え、50℃まで冷却した。そこへ、メタノール(175mL)を加え、5℃まで冷却後、吸引ろ過を行った。得られた白色固体をトルエン(70mL)に分散させ、30分加熱還流した。50℃へ冷却後、メタノール(175mL)を加えた。室温(20℃)へ冷却後、吸引ろ過を行い、80℃で恒量になるまで減圧乾燥することで、白色固体としてビス[9−(2−フェノキシカルボニルエチル)フルオレン−9−イル]メタン(化合物2)を32.2g(収率:78%、HPLC純度:99.0面積%)得た。金属(Ti)の含有割合は770質量ppmであった。
<比較例2>
Figure 2015199706
<比較例2A> ビス[9−(2−メトキシカルボニルエチル)フルオレン−9−イル]メタン(化合物3)の合成
200mL四ツ口フラスコにビス(フルオレン−9−イル)メタン(10.01g、29.06mmol)、N−ベンジル−N,N,N−トリエチルアンモニウムクロリド(1.32g、5.78mmol)、テトラヒドロフラン(50mL)を入れ、窒素置換後、水浴で15〜20℃に制御し、50%水酸化ナトリウム水溶液(8mL)を加えたところ、溶液の色は淡赤色に変化した。その後、氷浴を用いて内温を17〜18℃に制御してアクリル酸メチル(7.8mL、86mmol)を3時間かけて滴下した。反応の進行をHPLCで追跡しながら、3時間攪拌した後、氷浴で冷却し、3N塩酸(22mL)を内温が18℃を超えないように制御しながら滴下してクエンチした。分液して得られた有機層へトルエン(20mL)を加え、脱塩水を用いて洗浄した後、溶媒を減圧留去して濃縮した。濃縮液を室温(20℃)へ戻し、メタノール(40mL)を加えて晶析した。吸引ろ過後、80℃で恒量になるまで減圧乾燥することで、白色固体としてビス[9−(2−メ
トキシカルボニルエチル)フルオレン−9−イル]メタン(化合物3)を7.05g(収
率:47.0%、HPLC純度:80.0面積%)得た。
<HPLC条件>
カラム:Inertsil ODS−3V 150mm×4.8mmφ
温度:40℃
溶離液条件:0−5min:テトラヒドロフラン/水=50/50,20min:テトラヒドロフラン/水=100/0
流速:1.0ml/min
注入量:2μL
HPLC分析結果 化合物4(5.9min):12.8面積%(12.8質量%)、化合物6(未検出):未検出、化合物3(11.8min):80.0面積%(84.6質量%)
()内は検量線から算出された定量値を表す。
化合物3のケミカルシフトを以下に示す。
1H−NMR(400MHz,CDCl3)δ7.02(m,4H),6.97(m,4
H),6.84−6.76(m,8H),3.39(s,6H),3.13(s,2H),2.25(m,4H),1.15(m,4H).
<比較例2B> ビス[9−(2−フェノキシカルボニルエチル)フルオレン−9−イル]メタン(化合物2)の合成
50mL三口フラスコにビス[9−(2−メトキシカルボニルエチル)フルオレン−9−イル]メタン(化合物3、6.0g、11.6mmol)、ジフェニルカーボネート(12.1g、56.6mmol)、オルトチタン酸テトライソプロピル(0.16mL、0.55mmol)を入れ、145℃まで昇温して、1時間撹拌した。HPLCで反応が
進行していないことを確認したため、さらにオルトチタン酸テトライソプロピル(0.32mL、1.1mmol)を加え、1時間後に再度HPLC分析を行ったところ、化合物4のピークの消失と反応の進行が認められたため、さらに145℃で1時間攪拌した。H
PLCで反応終了を確認後、トルエン(15ml)を加え、1時間加熱還流した。50℃へ冷却後、メタノール(18mL)を加えた。室温(20℃)へ冷却後、吸引ろ過を行った。得られた白色固体をトルエン(12mL)に分散させ、1時間加熱還流した。50℃へ冷却後、メタノール(18mL)を加えた。室温(20℃)へ冷却後、吸引ろ過を行い、100℃で恒量になるまで減圧乾燥することで、白色固体としてビス[9−(2−フェノキシカルボニルエチル)フルオレン−9−イル]メタン(化合物2)を5.39g(収率:64%、HPLC純度:98.1面積%)得た。金属(Ti)の含有割合は3300質量ppmであった。
実施例1と実施例2を比較すると、トルエン/メタノールの晶析回数を増やすことで、目的とするオリゴフルオレンジアリールエステル(化合物2)のTi含有量が330ppmから、40ppmへと減少することが分かる。また、実施例1と比較例1を比較すると比較例1では、トルエン/メタノール晶析温度を室温から5℃へ下げることにより、収率は60%から78%・BR>ヨ改善されているものの、Tiの残存量が330ppmから7
70ppmと大幅に悪化していることが分かる。また、比較例2では、オリゴフルオレンジカルボン酸を10質量%超える割合で含有している原料を用いた場合、所定量のエステル交換反応触媒では、反応が進行せず、エステル交換反応触媒を追加する必要があった。これは、オリゴフルオレンジカルボン酸がエステル交換反応触媒のTi化合物と錯体を形成し、失活させていたことが原因と考えられる。このため、得られたオリゴフルオレンジアリールエステル(化合物2)のTi含有量が大幅に増加していることが分かる。実施例3では、実施例2で得られた化合物2を水洗工程と加圧ろ過を実施することにより、実施例4では、実施例2で得られた化合物をシリカゲルカラムクロマトグラフィーで精製することにより、Ti含有量を検出限界以下まで減らすことができている。特に、水洗工程と加圧ろ過による精製方法は、比較的低コストであり、工業的にも実施可能なため優れた精製方法であると言える。
表1に各実施例及び比較例のオリゴフルオレンジエステル中のTi含有量と、熱安定性評価の結果を整理して示す。
Figure 2015199706
次に表1に基づいて加熱による溶融状態での結晶の色調変化について議論する。加熱前の色調は、実施例1でわずかに黄色味がかった淡黄色であったが、実施例2、実施例3及び実施例4は白色であった。それに対し、比較例1、比較例2は加熱前から黄色に着色していた。さらに185℃、7時間の加熱を行ったところ、実施例3、実施例4においては着色は見られず、無色透明の結晶が得られた。実施例2、実施例1、比較例1及び比較例2とTi含有量が増加するにつれて、明らかに着色が濃くなる傾向が見られ、特に比較例1、比較例2の加熱後の結晶は褐色であった。
着色の詳細は明らかではないが、金属成分のキレート化が原因の一つと考えられる。
次に図1に基づいて加熱前後の色調変化を1wt%THF溶液の400nmの吸光度変化により議論する。図1より、実施例2(40ppm)、実施例3(<0.1ppm)、実施例4(<0.1ppm)は加熱前後により、ほとんどTHF溶液の吸光度に変化は見られなかった。実施例1(330ppm)と比較例1(770ppm)ではTi含有量は2倍程度であるが、その吸光度差は4倍近い差が見られた。このことから、Ti含有量が色調に与える影響には、実施例1の330ppmと比較例1の770ppmの間に大きな隔たりがあることが確認された。また、比較例2(3300ppm)に関しては、色調の悪化、また、不溶成分の析出が激しく、400nmの吸光度測定が困難であった。
以上のことより、本発明のオリゴフルオレンジエステルを用いることで、溶融状態でも色調の変化が少ないため、溶融プロセスを経た際に生じうる樹脂組成物の着色の抑制が可能であることを示している。
<参考例A>
ビス[9−(2−フェノキシカルボニルエチル)フルオレン−9−イル]メタン(化合物2、1201重量部)の32.7wt%o−キシレン溶液をグラスライニング製12m反応器で86℃から徐々に降温し、60℃に到達した時点でメタノール(551重量部)を添加し、さらに55℃に達した時点で種晶を添加し、結晶を析出させた。その後、5hrかけて40℃まで冷却し、メタノール(3548重量部)を1hrかけて添加し、さらに5hrかけて21℃まで冷却した。セントルろ過で10バッチに分けて結晶を取得し、コニカルドライヤーで2バッチに分けて80℃で恒量になるまで乾燥させることで、白色固体としてビス[9−(2−フェノキシカルボニルエチル)フルオレン−9−イル]メタン(化合物2)を1125重量部(回収率:94%、HPLC純度:99.8面積%)得た。
平均粒子径:178μm、50μm以上粒子径累積%:99%
回転安息角:55°
粉末X線回折パターン:2θ=6.9°、9.8°、10.3°、11.7°、12.0°、12.7°、13.3°、13.8°、15.0°、15.8°、17.3°、17.9°、18.9°、19.6°
<参考例B>
ビス[9−(2−フェノキシカルボニルエチル)フルオレン−9−イル]メタン(化合物2、1224重量部)の32.0wt%o−キシレン溶液をグラスライニング製12m反応器で81℃から徐々に降温し、68℃に到達した時点で種晶を添加した。その後、49℃まで冷却し、メタノール(4579重量部)を1hrかけて添加し、さらに5hrかけて21℃まで冷却した。セントルろ過で6バッチに分けて結晶を取得し、コニカルドライヤーで2バッチに分けて80℃で恒量になるまで乾燥させることで、白色固体としてビス[9−(2−フェノキシカルボニルエチル)フルオレン−9−イル]メタン(化合物2)を1043重量部(回収率:85%、HPLC純度:99.8面積%)得た。
平均粒子径:44μm、50μm以上粒子径累積%:30%
回転安息角:62°
<参考例C>
グラスライニング製1m反応器を窒素置換後、ビス[9−(2−フェノキシカルボニルエチル)フルオレン−9−イル]メタン(化合物2、250重量部)、o−キシレン(450重量部)を添加し、100℃以上まで昇温して溶解させた。その後、80℃まで冷却し、種晶を添加後、1時間に10℃の冷却速度で20℃まで冷却し、セントルろ過を開始した。
1セントル目は順調にろ過することができたが、次第に反応器中の結晶が微粉化するこ
とにより、スラリー性状が劇的に悪化、3セントル目までろ過できたが、その後、抜出が困難になり、セントルろ過を中断した。得られた3セントル目までを80℃で恒量になるまで乾燥させることで、白色固体としてビス[9−(2−フェノキシカルボニルエチル)フルオレン−9−イル]メタン(化合物2)を63.2重量部(回収率:25%)得た。1セントル目
粉末X線回折パターン:2θ=5.6°、6.9°、8.5°、9.8°、10.3°、11.0°、11.7°、12.0°、12.5°、12.7°、12.9°、13.3°、13.8°、14.9°、15.0°、15.8°、17.3°、17.9°、16.3°、18.9°、19.1°、19.6°
平均粒子径:220μm、50μm以上粒子径累積%:88%
3セントル目
粉末X線回折パターン:2θ=6.9°、9.8°、10.3°、11.7°、12.0°、12.7°、13.3°、13.8°、15.0°、15.8°、17.3°、17.9°、18.9°、19.6°
平均粒子径:25μm、50μm以上粒子径累積%:5%
図2に示すように12mのグラスライニング製反応器で晶析を行っている参考例Aと参考例Bを比較すると、参考例Bでは得られた結晶の平均粒子径が44μmと小さく、粉体流動性の指標である回転安息角も62°と高い値を示した。それに対して、参考例Aではメタノールを分割添加することで、結晶の平均粒子径が178μmと大きくなり、回転安息角も55°に改善した。以上のことより、本発明の平均粒子径の大きな結晶を用いることで、樹脂原料として用いても仕込み性に問題のないものであることを示している。
参考例Cでは良溶媒であるo−キシレンのみで晶析を行ったところ、1セントル目の乾燥後の平均粒子径は220μmの大きい良好な結晶が得られたが、経時的にスラリー溶液の性状が粘性の高いポタージュ状の懸濁液に変化し、3セントル目の乾燥後の平均粒子径は25μmまで微粉化することが明らかとなった。また、3セントル目以降は流動性が更に悪化したため、反応液からの抜き出しが困難となり、セントルろ過は中断し、再溶解させることとなった。また、1セントル目を乾燥させた後の粉末をXRD分析を実施したところ、2θ=5.6°、8.5°、11.0°、12.5°、12.9°、14.9°、16.3°、19.1°のピークが観測され、3セントル目を乾燥させた粉末からはこのピークが観測されなかった。このことから1セントル目の粉末は準安定形の結晶を含有しており、徐々に安定形に相転移するにつれて、微粉化することが明らかとなった。
参考例Aの良溶媒にo−キシレン、貧溶媒にメタノールを使用した場合には、2θ=5.6°、8.5°、11.0°、12.5°、12.9°、14.9°、16.3°、19.1°のピークは観測されず、微粉化も起こらないことから、良溶媒にo−キシレンに代表される芳香族炭化水素と、貧溶媒にメタノールに代表されるアルコール系溶媒を用いることで、平均粒子径の大きい粒子を得ることができると考えられる。
[ポリマーの合成例]
<参考例1>
ビス[9−(2−フェノキシカルボニルエチル)フルオレン−9−イル]メタン(化合物2)26.63質量部(0.042モル)、CHDM10.78質量部(0.075モル)、ISB33.58質量部(0.230モル)、DPC56.33質量部(0.263モル)および触媒として酢酸カルシウム1水和物5.36×10-4質量部(3.04×10-6モル)を反応容器に投入し、窒素雰囲気下にて、加熱槽温度を150℃にし必要に応じ攪拌しながら、原料を溶解させた(約10分間)。溶解後、反応1段目の工程として220℃まで30分かけて昇温し、60分間常圧にて反応した。次いで圧力を常圧から13.3kPaまで90分かけて減圧し、13.3kPaで30分間保持し発生するフェノールを反応容器外へ抜出した。
次いで反応2段目の工程として加熱槽の温度を15分かけて240℃まで昇温しながら、圧力を0.10kPa以下まで15分かけて減圧し、発生するフェノールを反応容器外へ抜出した。所定のトルクに到達後、反応を終了し、生成したポリマーを水中に押し出して、ポリエステルカーボネートのペレットを得た。
得られた樹脂組成物をフィルム成形して延伸した際の延伸フィルムの屈折率異方性、位相差比(Re450/Re550)等の測定結果を表2に示す。
<参考例2>
9,9−ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレン(BHEPF)62.40質量部(0.142モル)、ISB28.78質量部(0.197モル)、DPC73.40質量部(0.343モル)、および触媒として酢酸マグネシウム4水和物7.28×10-4質量部(3.39×10-6モル)を反応容器に投入し、窒素雰囲気下にて、加熱槽温度を150℃にし必要に応じ攪拌しながら、原料を溶解させた(約10分間)。溶解後、反応1段目の工程として220℃まで30分かけて昇温し、60分間常圧にて反応した。次いで圧力を常圧から13.3kPaまで90分かけて減圧し、13.3kPaで30分間保持し発生するフェノールを反応容器外へ抜出した。
次いで反応2段目の工程として加熱槽の温度を15分かけて240℃まで昇温しながら、圧力を0.10kPa以下まで15分かけて減圧し、発生するフェノールを反応容器外へ抜出した。所定のトルクに到達後、反応を終了し、生成したポリマーを水中に押し出して、ポリカーボネートのペレットを得た。
得られた樹脂組成物をフィルム成形して延伸した際の延伸フィルムの屈折率異方性、位相差比(Re450/Re550)等の測定結果を表2に示す。
Figure 2015199706
表2より、参考例1の化合物2を用いたポリエステルカーボネートと参考例2のBHEPFを用いたポリカーボネートを比較すると、参考例1の方が少ないモノマー量で、位相差比(Re450/Re550)が同等であるため、強い逆波長分散性を示すことが分かる。さらに、光弾性係数も半分以下の値である。このことから、本発明のオリゴフルオレンジエステルは非常に優れたモノマーであると言える。

Claims (8)

  1. 置換基を有していてもよい2以上のフルオレン単位を含むオリゴフルオレンジエステルであって、
    該フルオレン単位の9位の炭素原子同士が、直接結合、又は、置換基を有していてもよいアルキレン基、置換基を有していてもよいアリーレン基、若しくは置換基を有していてもよいアラルキレン基を介して鎖状に結合され、かつ、
    金属の含有割合が500質量ppm以下であることを特徴とするオリゴフルオレンジエステル。
  2. 前記金属が、長周期型周期表第1族、第2族、第12族、第14族、及び遷移金属からなる群から選ばれる少なくとも1種の金属であることを特徴とする、請求項1に記載のオリゴフルオレンジエステル。
  3. 下記一般式(1)で表されることを特徴とする請求項1又は2に記載のオリゴフルオレンジエステル。
    Figure 2015199706
    (式中、R1及びR2は、それぞれ独立に、直接結合、置換されていてもよい炭素数1〜10のアルキレン基、置換されていてもよい炭素数4〜10のアリーレン基、若しくは置換されていてもよい炭素数6〜10のアラルキレン基、
    又は置換されていてもよい炭素数1〜10のアルキレン基、置換されていてもよい炭素数4〜10のアリーレン基及び置換されていてもよい炭素数6〜10のアラルキレン基からなる群から選ばれる2つ以上の基が、酸素原子、置換されていてもよい硫黄原子、置換されていてもよい窒素原子若しくはカルボニル基で連結された基であり、
    3は、それぞれ独立に、置換されていてもよい炭素数1〜10のアルキレン基、置換
    されていてもよい炭素数4〜10のアリーレン基、又は置換されていてもよい炭素数6〜10のアラルキレン基であり、
    4〜R9は、それぞれ独立に、水素原子、置換されていてもよい炭素数1〜10のアルキル基、置換されていてもよい炭素数4〜10のアリール基、置換されていてもよい炭素数1〜10のアシル基、置換されていてもよい炭素数1〜10のアルコキシ基、置換されていてもよい炭素数1〜10のアリールオキシ基、置換されていてもよい炭素数1〜10のアシルオキシ基、置換されていてもよいアミノ基、置換されていてもよい炭素数1〜10のビニル基、置換されていてもよい炭素数1〜10のエチニル基、置換基を有するケイ素原子、置換基を有する硫黄原子、ハロゲン原子、ニトロ基又はシアノ基である。ただし、R4〜R9のうち隣接する少なくとも2つの基が互いに結合して環を形成していてもよい。
    10は、炭素数1〜10の有機置換基である。
    nは1〜5の整数値を示す。)
  4. 前記一般式(1)におけるR10が、炭素数4〜10のアリール基であることを特徴とする、請求項3に記載のオリゴフルオレンジエステル。
  5. 置換基を有していてもよい2以上のフルオレン単位を含むオリゴフルオレンジエステルであって、
    前記フルオレン単位の9位の炭素原子同士が、直接結合、又は、置換基を有していてもよいアルキレン基、置換基を有していてもよいアリーレン基、若しくは置換基を有していてもよいアラルキレン基を介して鎖状に結合され、かつ、
    カルボン酸の含有割合が10質量%以下であることを特徴とするオリゴフルオレンジエステル。
  6. 下記一般式(1)で表されることを特徴とする請求項5に記載のオリゴフルオレンジエステル。
    Figure 2015199706
    (式中、R1及びR2は、それぞれ独立に、直接結合、置換されていてもよい炭素数1〜10のアルキレン基、置換されていてもよい炭素数4〜10のアリーレン基、若しくは置換されていてもよい炭素数6〜10のアラルキレン基、又は置換されていてもよい炭素数1〜10のアルキレン基、置換されていてもよい炭素数4〜10のアリーレン基及び置換されていてもよい炭素数6〜10のアラルキレン基からなる群から選ばれる2つ以上の基が、酸素原子、置換されていてもよい硫黄原子、置換されていてもよい窒素原子若しくはカルボニル基で連結された基であり、
    3は、それぞれ独立に、置換されていてもよい炭素数1〜10のアルキレン基、置換
    されていてもよい炭素数4〜10のアリーレン基、又は置換されていてもよい炭素数6〜10のアラルキレン基であり、
    4〜R9は、それぞれ独立に、水素原子、置換されていてもよい炭素数1〜10のアルキル基、置換されていてもよい炭素数4〜10のアリール基、置換されていてもよい炭素数1〜10のアシル基、置換されていてもよい炭素数1〜10のアルコキシ基、置換されていてもよい炭素数1〜10のアリールオキシ基、置換されていてもよい炭素数1〜10のアシルオキシ基、置換されていてもよいアミノ基、置換されていてもよい炭素数1〜10のビニル基、置換されていてもよい炭素数1〜10のエチニル基、置換基を有するケイ素原子、置換基を有する硫黄原子、ハロゲン原子、ニトロ基又はシアノ基である。ただし、R4〜R9のうち隣接する少なくとも2つの基が互いに結合して環を形成していてもよい。
    10は、炭素数1〜10の有機置換基である。
    nは1〜5の整数値を示す。)
  7. 請求項6に記載のオリゴフルオレンジエステルを原料として、前記R10基をアリール基で置換してジアリールエステルを得ることを特徴とするオリゴフルオレンジアリールエステルの製造方法。
  8. 請求項1〜6のいずれか1項に記載のオリゴフルオレンジエステルを重合反応させて樹脂組成物を得ることを特徴とする樹脂組成物の製造方法。
JP2015055333A 2014-04-04 2015-03-18 オリゴフルオレンジエステル、及びそれを用いた樹脂組成物の製造方法 Pending JP2015199706A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015055333A JP2015199706A (ja) 2014-04-04 2015-03-18 オリゴフルオレンジエステル、及びそれを用いた樹脂組成物の製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014078068 2014-04-04
JP2014078068 2014-04-04
JP2015055333A JP2015199706A (ja) 2014-04-04 2015-03-18 オリゴフルオレンジエステル、及びそれを用いた樹脂組成物の製造方法

Publications (1)

Publication Number Publication Date
JP2015199706A true JP2015199706A (ja) 2015-11-12

Family

ID=54551341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015055333A Pending JP2015199706A (ja) 2014-04-04 2015-03-18 オリゴフルオレンジエステル、及びそれを用いた樹脂組成物の製造方法

Country Status (1)

Country Link
JP (1) JP2015199706A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018172659A (ja) * 2017-03-30 2018-11-08 大阪ガスケミカル株式会社 フルオレン骨格を有するポリエステル樹脂及びその製造方法、並びに成形体

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3324084A (en) * 1962-09-18 1967-06-06 Union Carbide Corp Sulfo-substituted aromatic dicarboxylic compounds and polyesters thereof
JPH10101786A (ja) * 1996-09-30 1998-04-21 Teijin Ltd ポリカーボネート共重合体およびその製造方法
WO2005070913A1 (en) * 2004-01-22 2005-08-04 University Of Ottawa Thermally modulated antioxidants
WO2006041190A1 (ja) * 2004-10-14 2006-04-20 Teijin Limited 光弾性定数の低いポリカーボネート及びそれからなるフィルム
WO2011149073A1 (ja) * 2010-05-27 2011-12-01 三菱化学株式会社 ポリカーボネート樹脂およびそれよりなる透明フィルム
US20120170118A1 (en) * 2010-12-30 2012-07-05 3M Innovative Properties Company Negatively birefringent polyesters and optical films
JP2015178607A (ja) * 2014-02-27 2015-10-08 三菱化学株式会社 トリフルオレンジエステル、オリゴフルオレンジエステル組成物、樹脂組成物、延伸フィルム、円偏光板及び画像表示装置
JP6311264B2 (ja) * 2012-10-16 2018-04-18 三菱ケミカル株式会社 樹脂組成物、延伸フィルム、円偏光板及び画像表示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3324084A (en) * 1962-09-18 1967-06-06 Union Carbide Corp Sulfo-substituted aromatic dicarboxylic compounds and polyesters thereof
JPH10101786A (ja) * 1996-09-30 1998-04-21 Teijin Ltd ポリカーボネート共重合体およびその製造方法
WO2005070913A1 (en) * 2004-01-22 2005-08-04 University Of Ottawa Thermally modulated antioxidants
WO2006041190A1 (ja) * 2004-10-14 2006-04-20 Teijin Limited 光弾性定数の低いポリカーボネート及びそれからなるフィルム
WO2011149073A1 (ja) * 2010-05-27 2011-12-01 三菱化学株式会社 ポリカーボネート樹脂およびそれよりなる透明フィルム
US20120170118A1 (en) * 2010-12-30 2012-07-05 3M Innovative Properties Company Negatively birefringent polyesters and optical films
JP6311264B2 (ja) * 2012-10-16 2018-04-18 三菱ケミカル株式会社 樹脂組成物、延伸フィルム、円偏光板及び画像表示装置
JP2015178607A (ja) * 2014-02-27 2015-10-08 三菱化学株式会社 トリフルオレンジエステル、オリゴフルオレンジエステル組成物、樹脂組成物、延伸フィルム、円偏光板及び画像表示装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CANADIAN JOURNAL OF CHEMISTRY, vol. 38, JPN6018020025, 1960, pages 1099 - 1103, ISSN: 0003808488 *
EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, vol. 27(1), JPN6018020024, 1992, pages 53 - 56, ISSN: 0003808487 *
JOURNAL OF ORGANIC CHEMISTRY, vol. 64(11), JPN6018020023, 1999, pages 4187 - 4190, ISSN: 0003808485 *
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A:CHEMISTRY, vol. 93(2-3), JPN6018020026, 1996, pages 165 - 167, ISSN: 0003808486 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018172659A (ja) * 2017-03-30 2018-11-08 大阪ガスケミカル株式会社 フルオレン骨格を有するポリエステル樹脂及びその製造方法、並びに成形体
JP7210148B2 (ja) 2017-03-30 2023-01-23 大阪ガスケミカル株式会社 フルオレン骨格を有するポリエステル樹脂及びその製造方法、並びに成形体

Similar Documents

Publication Publication Date Title
JP6562091B2 (ja) 樹脂組成物、延伸フィルム、円偏光板及び画像表示装置
TWI787317B (zh) 熱塑性樹脂及光學構件
KR102306920B1 (ko) 위상차 필름, 원편광판 및 화상 표시 장치
JP6447228B2 (ja) トリフルオレンジエステル、オリゴフルオレンジエステル組成物、樹脂組成物、延伸フィルム、円偏光板及び画像表示装置
JP6398242B2 (ja) 樹脂組成物及びそれを用いたフィルム
JP2015212817A (ja) 位相差フィルム、円偏光板及び画像表示装置
JP2015212818A (ja) 位相差フィルム、円偏光板及び画像表示装置
KR102341901B1 (ko) 중축합계 수지 및 그것으로 이루어지는 광학 필름
JP2020114933A (ja) 重縮合系樹脂及びそれよりなる光学フィルム
JP6446800B2 (ja) オリゴフルオレン、オリゴフルオレン組成物、樹脂組成物、フィルム及び画像表示装置
JP7117932B2 (ja) 熱可塑性樹脂および光学部材
JP2015199706A (ja) オリゴフルオレンジエステル、及びそれを用いた樹脂組成物の製造方法
CN113950500B (zh) 热塑性树脂、由其构成的光学膜、二醇化合物、二酯化合物
TWI853962B (zh) 熱可塑性樹脂、由該樹脂所成之光學膜、二元醇化合物、二酯化合物
JP2017025121A (ja) イミド構造含有アクリル系樹脂およびその製造方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181204