JP6447228B2 - トリフルオレンジエステル、オリゴフルオレンジエステル組成物、樹脂組成物、延伸フィルム、円偏光板及び画像表示装置 - Google Patents
トリフルオレンジエステル、オリゴフルオレンジエステル組成物、樹脂組成物、延伸フィルム、円偏光板及び画像表示装置 Download PDFInfo
- Publication number
- JP6447228B2 JP6447228B2 JP2015032947A JP2015032947A JP6447228B2 JP 6447228 B2 JP6447228 B2 JP 6447228B2 JP 2015032947 A JP2015032947 A JP 2015032947A JP 2015032947 A JP2015032947 A JP 2015032947A JP 6447228 B2 JP6447228 B2 JP 6447228B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- carbon atoms
- optionally substituted
- atom
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 0 CCCN(CC*I)C(C)c1ccccc1 Chemical compound CCCN(CC*I)C(C)c1ccccc1 0.000 description 11
- LXPNURSVCSRUFT-UHFFFAOYSA-N CC(C)(C)CC[ClH]c1ccc(C)cc1 Chemical compound CC(C)(C)CC[ClH]c1ccc(C)cc1 LXPNURSVCSRUFT-UHFFFAOYSA-N 0.000 description 1
- PTTJIILDALEIGH-UHFFFAOYSA-N CC(C)CCOC(CC1)=CC=C1C(CC1C(C2)C3)CC1C2C3c(cc1)ccc1[ClH]CC1C(C)C1 Chemical compound CC(C)CCOC(CC1)=CC=C1C(CC1C(C2)C3)CC1C2C3c(cc1)ccc1[ClH]CC1C(C)C1 PTTJIILDALEIGH-UHFFFAOYSA-N 0.000 description 1
- UIABHKLZDGJSNV-UHFFFAOYSA-N CC(C)CCOC(CC=C1)C=C1c1cccc(OCCC(C)(C)C)c1 Chemical compound CC(C)CCOC(CC=C1)C=C1c1cccc(OCCC(C)(C)C)c1 UIABHKLZDGJSNV-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Polarising Elements (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Polyesters Or Polycarbonates (AREA)
Description
ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンがよく用いられている。特許文献4には、同一分子内に2つのフルオレン環を有するジエステル化合物が開示されており、さらにそれを用いたポリエステル樹脂が記載されている。特許文献5では、同一分子内に2つのフルオレン環を有するジヒドロキシ化合物やジエステル化合物が開示されており、さらにそれを用いたポリエステル樹脂の延伸フィルムが記載されている。
ン環を有する繰り返し単位の割合を高くする必要があるため、脆いフィルムになりやすく、柔軟性に問題があった。一方、特許文献3の9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレンを用いた樹脂では、柔軟性に優れているものの、所望の逆波長分散性を発現するためには、フルオレン環を有する繰り返し単位の割合を高くする必要があり、耐熱性などの諸物性と、光学物性との両立が困難であった。このため、樹脂の光学物性と耐熱性、柔軟性などの諸物性をさらに改良するには、光学物性と機械強度などの諸物性のバランスに優れた新しい化合物を原料に用いることが求められる。
即ち本発明は以下を要旨とする。
該フルオレン単位aの9位の炭素原子同士が直接結合、又は、置換基を有していてもよいアルキレン基、置換基を有していてもよいアリーレン基、若しくは置換基を有していてもよいアラルキレン基を介して鎖状に結合されたことを特徴とする、トリフルオレンジエステル。
[2] 下記一般式(1)で表されることを特徴とする、[1]に記載のトリフルオレンジエステル。
又は置換されていてもよい炭素数1〜10のアルキレン基、置換されていてもよい炭素数4〜10のアリーレン基及び置換されていてもよい炭素数6〜10のアラルキレン基からなる群から選ばれる2つ以上の基が、酸素原子、置換されていてもよい硫黄原子、置換されていてもよい窒素原子若しくはカルボニル基で連結された基であり、
R3a及びR3bは、それぞれ独立に、置換されていてもよい炭素数1〜10のアルキレン基、置換されていてもよい炭素数4〜10のアリーレン基、又は置換されていてもよい炭素数6〜10のアラルキレン基であり、
R4〜R9は、それぞれ独立に、水素原子、置換されていてもよい炭素数1〜10のアルキル基、置換されていてもよい炭素数4〜10のアリール基、置換されていてもよい炭素数1〜10のアシル基、置換されていてもよい炭素数1〜10のアルコキシ基、置換されていてもよい炭素数1〜10のアリールオキシ基、置換されていてもよいアミノ基、置換基を有する硫黄原子、ハロゲン原子、ニトロ基又はシアノ基である。ただし、R4〜R9のうち隣接する少なくとも2つの基が互いに結合して環を形成していてもよい。
R10は、炭素数1〜10の有機置換基である。)
[4] [1]〜[3]のいずれかに記載のトリフルオレンジエステルと、ジフルオレンジエステルとを含むオリゴフルオレンジエステル組成物であって、
前記ジフルオレンジエステルは、置換基を有していてもよい2つのフルオレン単位bを含み、
該フルオレン単位bの9位の炭素原子同士が直接結合、又は、置換基を有していてもよいアルキレン基、置換基を有していてもよいアリーレン基、若しくは置換基を有していてもよいアラルキレン基を介して結合されていることを特徴とする、オリゴフルオレンジエステル組成物。
[5] 前記ジフルオレンジエステルが、下記一般式(2)で表されることを特徴とする、[4]に記載のオリゴフルオレンジエステル組成物。
又は置換されていてもよい炭素数1〜10のアルキレン基、置換されていてもよい炭素数4〜10のアリーレン基及び置換されていてもよい炭素数6〜10のアラルキレン基からなる群から選ばれる2つ以上の基が、酸素原子、置換されていてもよい硫黄原子、置換されていてもよい窒素原子若しくはカルボニル基で連結された基であり、
R3は、置換されていてもよい炭素数1〜10のアルキレン基、置換されていてもよい
炭素数4〜10のアリーレン基、又は置換されていてもよい炭素数6〜10のアラルキレン基であり、
R4〜R9は、それぞれ独立に、水素原子、置換されていてもよい炭素数1〜10のアルキル基、置換されていてもよい炭素数4〜10のアリール基、置換されていてもよい炭素数1〜10のアシル基、置換されていてもよい炭素数1〜10のアルコキシ基、置換されていてもよい炭素数1〜10のアリールオキシ基、置換されていてもよいアミノ基、置換基を有する硫黄原子、ハロゲン原子、ニトロ基又はシアノ基である。ただし、R4〜R9のうち隣接する少なくとも2つの基が互いに結合して環を形成していてもよい。
R10は、炭素数1〜10の有機置換基である。)
[7] 2価のトリフルオレンを繰り返し単位として有する重合体からなる又は該重合体を含有する樹脂組成物であって、
前記2価のトリフルオレンは、置換基を有していてもよい3つのフルオレン単位aを含み、該フルオレン単位aの9位の炭素原子同士が、直接結合、又は、置換基を有していてもよいアルキレン基、置換基を有していてもよいアリーレン基、若しくは置換基を有していてもよいアラルキレン基を介して鎖状に結合されることを特徴とする樹脂組成物。
[8] 前記2価のトリフルオレンが、下記一般式(11)で表されることを特徴とする[7]に記載の樹脂組成物。
又は置換されていてもよい炭素数1〜10のアルキレン基、置換されていてもよい炭素数4〜10のアリーレン基及び置換されていてもよい炭素数6〜10のアラルキレン基からなる群から選ばれる2つ以上の基が、酸素原子、置換されていてもよい硫黄原子、置換されていてもよい窒素原子若しくはカルボニル基で連結された基であり、
R3a及びR3bは、それぞれ独立に、置換されていてもよい炭素数1〜10のアルキレン基、置換されていてもよい炭素数4〜10のアリーレン基、又は置換されていてもよい炭素数6〜10のアラルキレン基であり、
R4〜R9は、それぞれ独立に、水素原子、置換されていてもよい炭素数1〜10のアルキル基、置換されていてもよい炭素数4〜10のアリール基、置換されていてもよい炭素数1〜10のアシル基、置換されていてもよい炭素数1〜10のアルコキシ基、置換されていてもよい炭素数1〜10のアリールオキシ基、置換されていてもよいアミノ基、置換基を有する硫黄原子、ハロゲン原子、ニトロ基又はシアノ基である。ただし、R4〜R9のうち隣接する少なくとも2つの基が互いに結合して環を形成していてもよい。)
前記2価のジフルオレンは、置換基を有していてもよい2つのフルオレン単位bを含み、該フルオレン単位bの9位の炭素原子同士が、直接結合、又は、置換基を有していてもよいアルキレン基、置換基を有していてもよいアリーレン基、若しくは置換基を有していてもよいアラルキレン基を介して結合されることを特徴とする、[7]又は[8]に記載の樹脂組成物。
[10] 波長450nmで測定した位相差(Re450)と波長550nmで測定した位相差(Re550)の比が下記式(20)を満足することを特徴とする、[7]〜[9]のいずれかに記載の樹脂組成物。
Re450/Re550 ≦ 1.0 (20)
[12] [7]〜[10]のいずれかに記載の樹脂組成物からなることを特徴とする光学部材。
[13] [7]〜[10]のいずれかに記載の樹脂組成物からなることを特徴とするフィルム。
[14] [13]に記載のフィルムを少なくとも一方向に延伸して得られることを特徴とする延伸フィルム。
[15] [14]に記載の延伸フィルムからなることを特徴とする1/4λ板。
[16] [15]に記載の1/4λ板を有することを特徴とする円偏光板。
[17] [16]に記載の円偏光板を備えることを特徴とする画像表示装置。
本発明において繰り返し単位とは、重合体において任意の連結基に挟まれた部分構造を示す。重合体の末端部分で一方が連結基であり、もう一方が重合反応性基である部分構造も含む。
また本発明において、「置換基を有していてもよい」は「置換されていてもよい」と同義である。
本発明のトリフルオレンジエステルは、置換基を有していてもよい3つのフルオレン単位aを含む。
トリフルオレンジエステルにおいてフルオレン単位aは、9位の炭素原子同士が直接結合、又は、置換基を有していてもよいアルキレン基、置換基を有していてもよいアリーレン基、若しくは置換基を有していてもよいアラルキレン基を介して鎖状に結合されている。
このように、本発明のトリフルオレンジエステルは、フルオレン環の積層構造により、構造が剛直なため、ジフルオレン化合物よりも良好な耐熱性を有するものとなると考えられる。
本発明のトリフルオレンジエステルにおいて、フルオレン単位aを結合するアルキレン基は特に限定されないが、後述のフルオレン比率を高めるとの観点からは、その炭素数が通常1以上であり、また、通常10以下であり、好ましくは5以下であり、より好ましくは3以下である。
前記アルキレン基の具体的な構造は以下に挙げられ、これに限定されるものではないが、メチレン基、エチレン基、n−プロピレン基、n−ブチレン基、n−ペンチレン基、n−ヘキシレンなどの直鎖状のアルキレン基;メチルメチレン基、ジメチルメチレン基、エチルメチレン基、プロピルメチレン基、ブチルメチレン基、(1−メチルエチル)メチレン基、1−メチルエチレン基、2−メチルエチレン基、1−エチルエチレン基、2−エチルエチレン基、1−メチルプロピレン基、2−メチルプロピレン基、1,1−ジメチルエチレン基、2,2−ジメチルプロピレン基、3−メチルプロピレン基などの分岐鎖を含むアルキレン基(置換位置の数値は、フルオレン環側の炭素からつけるものとする);下記[A]群に示されるような脂環構造の任意の2箇所に直鎖状又は分岐状のアルキレン基の結合手を持つ脂環式アルキレン基
どのアルキル基置換アルキレン基;フェニルメチレン基、1−フェニルエチレン基、1−フェニルプロピレン基などのアリール基置換アルキレン基;1,1,2,2−テトラフルオロエチレン基、トリクロロメチルメチレン基、トリフルオロメチルメチレン基などのハロゲン原子置換アルキレン基;2−メトキシメチル−2−メチルプロピレン基などのアルコキシ基置換アルキレン基などが挙げられる(置換位置の数値は、フルオレン環側の炭素からつけるものとする)。
前記アリーレン基の具体的な構造は以下に挙げられ、これに限定されるものではないが、1,2−フェニレン基、1,3−フェニレン基、1,4−フェニレン基等のフェニレン基;1,5−ナフチレン基、2,6−ナフチレン基等のナフチレン基;2,5−ピリジレン基、2,4−チエニレン基、2,4−フリレン基などのヘテロアリーレン基が挙げられる。
当該アラルキレン基が有していてもよい置換基としては、ハロゲン原子(例、フッ素原子、塩素原子、臭素原子、ヨウ素原子);炭素数1〜10のアルキル基(例、メチル基、
エチル基、イソプロピル基等);炭素数1〜10のアルコキシ基(例、メトキシ基、エトキシ基等);炭素数1〜10のアシル基(例、アセチル基、ベンゾイル基等);炭素数1〜10のアシルアミノ基(例、アセトアミド基、ベンゾイルアミド基等);ニトロ基;シアノ基;ハロゲン原子(例、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、炭素数1〜10のアルキル基(例、メチル基、エチル基、イソプロピル基等)、炭素数1〜10のアルコキシ基(例、メトキシ基、エトキシ基等)、炭素数1〜10のアシル基(例、アセチル基、ベンゾイル基等)、炭素数1〜10のアシルアミノ基(例、アセトアミド基、ベンゾイルアミド基等)、ニトロ基、シアノ基などから選ばれる1〜3個の置換基を有していてもよい炭素数6〜10のアリール基(例、フェニル基、ナフチル基等)等が挙げられる。当該置換基の数は、特に限定されないが、1〜3個が好ましい。置換基が2個以上ある場合は、置換基の種類は同一でも異なっていてもよい。また、工業的に安価に製造できるとの観点からは無置換であることが好ましい。
本発明のトリフルオレンジエステルにおいて、前記フルオレン単位aが有していてもよい置換基としては、ハロゲン原子(例、フッ素原子、塩素原子、臭素原子、ヨウ素原子);炭素数1〜10のアルキル基(例、メチル基、エチル基、イソプロピル基等);炭素数1〜10のアルコキシ基(例、メトキシ基、エトキシ基等);炭素数1〜10のアシル基(例、アセチル基、ベンゾイル基等);炭素数1〜10のアシルアミノ基(例、アセトアミド基、ベンゾイルアミド基等);ニトロ基;シアノ基;ハロゲン原子(例、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、炭素数1〜10のアルキル基(例、メチル基、エチル基、イソプロピル基等)、炭素数1〜10のアルコキシ基(例、メトキシ基、エトキシ基等)、炭素数1〜10のアシル基(例、アセチル基、ベンゾイル基等)、炭素数1〜10のアシルアミノ基(例、アセトアミド基、ベンゾイルアミド基等)、ニトロ基、シアノ基などから選ばれる1〜3個の置換基を有していてもよい炭素数6〜10のアリール基(例、フェニル基、ナフチル基等)等が挙げられる。当該置換基の数は、特に限定されないが、1〜3個が好ましい。置換基が2個以上ある場合は、置換基の種類は同一でも異なっていてもよい。また、工業的に安価に製造できるとの観点からは無置換であることが好ましい。
本発明のトリフルオレンジエステルは、3つのフルオレン単位aのうち、両末端に位置するフルオレン単位aの9位の炭素原子にそれぞれ置換基α1及びα2を結合させ、該置換基α1及びα2にエステル基が結合したものとすることができる。この場合、α1とα2とは同じであっても異なっていてもよい。また、置換基α1及びα2には直接結合が含まれ、つまり、フルオレン単位aの9位の炭素原子に直接エステル基が結合してもよい。
本発明のトリフルオレンジエステルが有するエステル基としては特に限定されないが、工業的に安価に入手できるとの観点から、末端基が炭素数1〜10の有機置換基のエステル基であることが好ましい。
置換基α1及びα2としては特に限定されないが、直接結合、置換されていてもよい炭素数1〜10のアルキレン基、置換されていてもよい炭素数4〜10のアリーレン基、若しくは置換されていてもよい炭素数6〜10のアラルキレン基、又は置換されていてもよい炭素数1〜10のアルキレン基、置換されていてもよい炭素数4〜10のアリーレン基及び置換されていてもよい炭素数6〜10のアラルキレン基からなる群から選ばれる2つ以上の基が、酸素原子、置換されていてもよい硫黄原子、置換されていてもよい窒素原子若しくはカルボニル基で連結された基が挙げられる。
置換されていてもよい炭素数6〜10のアラルキレン基」としては、フルオレン単位aを結合するアラルキレン基として例示したものを好ましく用いることができる。
及びα2の少なくとも1つの炭素数が2以上である場合には、フルオレン環(フルオレン
単位a)が主鎖に対して略垂直に配向するため、樹脂組成物中の2価のトリフルオレンの割合が少量であっても、逆波長分散性を発現しやすくなる傾向がある。後者の場合には、同様の観点から、α1及びα2の両方を、炭素数2以上のものとすることが好ましい。一方で、置換基α1及びα2の両方を炭素数1のもの(すなわち、置換されていてもよいメチレン基)とした場合には、フルオレン環(フルオレン単位)が主鎖に対して略垂直に配向せず、大きく傾いて配向するために、樹脂組成物中の2価のトリフルオレンの割合を広い範囲で変化させても、広帯域で位相差の差が小さいフラット分散性となりやすい傾向がある。
び置換されていてもよい炭素数6〜10のアラルキレン基からなる群から選ばれる2つ以上の基が、酸素原子、置換されていてもよい硫黄原子、置換されていてもよい窒素原子若しくはカルボニル基で連結された基である。
本発明のトリフルオレンジエステルとしては、具体的には、下記一般式(1)で表されるものを好ましく用いることができる。
又は置換されていてもよい炭素数1〜10のアルキレン基、置換されていてもよい炭素数4〜10のアリーレン基及び置換されていてもよい炭素数6〜10のアラルキレン基からなる群から選ばれる2つ以上の基が、酸素原子、置換されていてもよい硫黄原子、置換されていてもよい窒素原子若しくはカルボニル基で連結された基であり、
R4〜R9は、それぞれ独立に、水素原子、置換されていてもよい炭素数1〜10のアルキル基、置換されていてもよい炭素数4〜10のアリール基、置換されていてもよい炭素数1〜10のアシル基、置換されていてもよい炭素数1〜10のアルコキシ基、置換されていてもよい炭素数1〜10のアリールオキシ基、置換されていてもよいアミノ基、置換基を有する硫黄原子、ハロゲン原子、ニトロ基又はシアノ基である。ただし、R4〜R9のうち隣接する少なくとも2つの基が互いに結合して環を形成していてもよい。
R10は、炭素数1〜10の有機置換基である。
α2>にて例示したものを好ましく用いることができる。
同様に、R3a及びR3bとしては、<1.1 アルキレン基、アリーレン基、アラルキレン基>にて例示したものを好ましく用いることができる。なお、本明細書においてR3a及びR3bを併せてR3と記載する場合がある。
また、R10としては、<1.3 エステル基>にて炭素数1〜10の有機置換基として例示したものを好ましく用いることができる。
士の立体障害が生じにくく、フルオレン環に由来する所望の光学特性が得られる傾向がある。
これらの中でも、酸性度の高いプロトンを持たず、分子量が小さく、フルオレン比率を高めることができる傾向があることから、N,N−ジメチルアミノ基、N−エチルアミノ基、又はN,N−ジエチルアミノ基が好ましく、N,N−ジメチルアミノ基であることがより好ましい。
これらの中でも、酸性度の高いプロトンを持たず、分子量が小さく、フルオレン比率を高めることができる傾向があることから、メチルスルフィニル基、エチルスルフィニル基、又はフェニルスルフィニル基が好ましく、メチルスルフィニル基であることがより好ましい。
これらの中でも、比較的導入が容易で、電子吸引性の置換基のため、フルオレン9位の反応性を高める傾向があることから、フッ素原子、塩素原子、又は臭素原子が好ましく、塩素原子又は臭素原子であることがより好ましい。
これらR4〜R9の中で好ましくは、全て水素原子、或いはR4及び/又はR9がハロゲン原子、アシル基、ニトロ基、シアノ基、及びスルホ基からなる群から選ばれるいずれかであり、かつ、R5〜R8が水素原子である。全て水素原子の場合、工業的にも安価なフルオレンから誘導できる。また、R4及び/又はR9がハロゲン原子、アシル基、ニトロ基、シアノ基、及びスルホ基からなる群から選ばれるいずれかで、かつ、R5〜R8が水素原子の場合、フルオレン9位の反応性が向上するため、様々な誘導反応が適応可能となる傾向が
ある。より好ましくは、全て水素原子、或いはR4及び/又はR9がフッ素原子、塩素原子、臭素原子、及びニトロ基からなる群から選ばれるいずれかで、かつ、R5〜R8が水素原子であり、特に好ましくは全て水素原子の場合である。また、上記のものとすることで、フルオレン比率を高めることができ、かつ、フルオレン環同士の立体障害が生じにくく、フルオレン環に由来する所望の光学特性が得られる傾向もある。
本発明のトリフルオレンジエステルの具体例としては、下記[H]群に示されるような構造が挙げられる。
本発明のトリフルオレンジエステルの物性値は特に限定されないが、以下に例示する物性値を満足するものであることが好ましい。
本発明のトリフルオレンジエステル中の塩素含有割合は、Cl換算質量で100質量ppm以下であることが好ましい。さらには10質量ppm以下であることが好ましい。塩素成分の含有割合が多い場合、重合反応に用いる触媒を失活させてしまい、所望の分子量まで重合が進行しなくなったり、反応が不安定化し、生産性が悪化する可能性がある。また、得られたポリマー中にも塩素成分が残存し、ポリマーの熱安定性を低下させるおそれがある。
全トリフルオレン化合物の質量の10質量%以下であることが好ましい。さらには2質量%以下であることが好ましい。トリフルオレンモノエステル体は重合反応でポリマーに取り込まれると、末端封鎖基となるため、トリフルオレンモノエステル体が多くなると、所望の分子量まで重合が進行しなくなったり、ポリマー中のオリゴマーなどの低分子成分の残存量が多くなり、得られたポリマーの機械強度や耐熱性を低下させるおそれがある。また、成形体から低分子成分がブリードアウトするなどして、製品の品質を低下させる可能性も考えられる。なお、モノエステル体とは、トリフルオレンジエステルの末端エステル基のうちいずれか1つが、重合反応性基以外の基となっているものを意味する。
上であることがさらに好ましく、通常380℃以下である。本発明のトリフルオレンジエステルはフルオレン環の積層構造により、構造が剛直なため、分解温度が前記範囲を満足する傾向がある。このように分解温度が前記範囲を満足することにより、トリフルオレンジエステルから得られるポリエステル、ポリカーボネートの熱安定性を向上できる傾向がある。分解温度は例えば、TG−DTAにより測定することができる。
本発明で使用されるトリフルオレンジエステル、特に前記一般式(1)で表されるトリフルオレンジエステルの製造方法は何ら限定されないが、例えば、下記式に示される製造法A又は製造法B等の方法により製造することができる。
なお、ジフルオレンジエステルは、トリフルオレン化合物(II)の製造法に従い、R3に対応する試薬量を調整することで、ジフルオレン化合物を得た後、製造法Cと同様の
条件で製造することができる。
又は置換されていてもよい炭素数1〜10のアルキレン基、置換されていてもよい炭素数4〜10のアリーレン基及び置換されていてもよい炭素数6〜10のアラルキレン基からなる群から選ばれる2つ以上の基が、酸素原子、置換されていてもよい硫黄原子、置換されていてもよい窒素原子若しくはカルボニル基で連結された基であり、
R4〜R9は、それぞれ独立に、水素原子、置換されていてもよい炭素数1〜10のアルキル基、置換されていてもよい炭素数4〜10のアリール基、置換されていてもよい炭素数1〜10のアシル基、置換されていてもよい炭素数1〜10のアルコキシ基、置換されていてもよい炭素数1〜10のアリールオキシ基、置換されていてもよいアミノ基、置換基を有する硫黄原子、ハロゲン原子、ニトロ基又はシアノ基である。ただし、R4〜R9の
うち隣接する少なくとも2つの基が互いに結合して環を形成していてもよい。
R10は、炭素数1〜10の有機置換基である。
製造法Aは、フルオレン類(I)を原料として、9−ヒドロキシメチルフルオレン類(IV)へと変換した後に、脱水により合成したオレフィン体(V)をフルオレニルアニオンと反応させ、オリゴフルオレンの混合物中からカラム精製などで精製し、R3がメチレ
ン基であるトリフルオレン化合物(IIa)を製造する方法である。なお、無置換の9−ヒドロキシメチルフルオレンは試薬として購入可能である。ここで得られるトリフルオレン化合物(II)から製造法Cの工程(ii)に従い、エステル基を導入して、トリフルオレンジエステル(1)とすることもできる。
製造法Bは、原料のフルオレン類(I)の架橋反応(工程(i))を行うことで、トリフルオレン化合物(II)を合成し、その後、エステル基を導入(工程(ii))することで、トリフルオレンジエステル(1)を製造する方法である。
以下、製造法Bを、工程(i)トリフルオレン化合物(II)の製造法と、工程(ii)トリフルオレンジエステル(1)の製造法に分けて記載する。
以下、工程(i)におけるトリフルオレン化合物(II)の製造方法をR3の場合に分
けて記載する。
の製造方法>
9,9’:9’, 9”‐ターフルオレニルの合成法は知られており、フルオレノンか
ら合成できる(Eur.J.Org.Chem.1999,1979−1984.)。
下記一般式(IIa)で表されるメチレン架橋を有するトリフルオレン化合物は、フルオレン類(I)及びホルムアルデヒド類から、塩基存在下、下記式で表される反応に従って製造することができる。
工程(ia)で用いられるホルムアルデヒド類とは、反応系中にホルムアルデヒドを供給できる物質であれば特に限定されないが、ガス状のホルムアルデヒド、ホルムアルデヒド水溶液、ホルムアルデヒドが重合したパラホルムアルデヒド、トリオキサン等が挙げられる。工業的に安価かつ粉末状のため操作性が容易で正確に秤量することが可能であるという観点では、パラホルムアルデヒドがより好ましい。一方で、工業的に安価かつ液体のため添加時に暴露の危険が少ないという観点では、ホルマリンがより好ましい。
目的とするトリフルオレン化合物(IIa)を製造する場合、原料のフルオレン類(I)に対するホルムアルデヒド類の理論量(モル比)とは、2/3で表される。
(理論量を超えない方がよい理由)
フルオレン類(I)に対して、理論量超過のホルムアルデヒド類を用いた場合、目的とするトリフルオレン化合物(IIa)よりさらにフルオレンが架橋したオリゴフルオレン化合物が生成する傾向がある。オリゴフルオレン化合物のフルオレン環の数が増加するほど、溶解性が低下するために、目的物に4つ以上フルオレン環が架橋したオリゴフルオレン化合物が存在する場合、精製負荷が大きくなる傾向があることが解っている。そのため、通常、ホルムアルデヒド類の使用量は目的の理論量となる2/3倍モル以下であることが好ましい。
また、ホルムアルデヒド類の使用量が理論量となる2/3を大きく下回ると、目的とするトリフルオレン化合物(IIa)よりもフルオレン環の架橋数の少ないジフルオレン化合物が主生成物となるか、あるいは、原料のフルオレン類(I)が未反応で残るため、収率が大きく低下する傾向があることが解っている。
そのため、最適なホルムアルデヒド類の使用量は、具体的には、原料のフルオレン類(I)に対して通常0.5倍モル以上、好ましくは0.55倍モル以上、さらに好ましくは0.6倍モル以上、また、通常0.67倍モル以下、好ましくは0.65倍モル以下、さらに好ましくは0.63倍モル以下である。このように、ホルムアルデヒド類の使用量に従って、主生成物の構造と生成物の比率が大きく変化することが解っており、ホルムアル
デヒド類の使用量を限られた条件で用いることで、目的とするトリフルオレン化合物(IIa)を高収率で得ることができる傾向がある。
工程(ia)で用いられる塩基としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物、水酸化カルシウム、水酸化バリウムなどのアルカリ土類金属の水酸化物、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウムなどのアルカリ金属の炭酸塩、炭酸マグネシウム、炭酸カルシウムなどのアルカリ土類金属の炭酸塩、燐酸ナトリウム、燐酸水素ナトリウム、燐酸カリウムなどの燐酸のアルカリ金属塩、n−ブチルリチウム、ターシャリブチルリチウムなどの有機リチウム塩、ナトリウムメトキシド、ナトリウムエトキシド、カリウムターシャリーブトキシド、などのアルカリ金属のアルコキシド塩、水素化ナトリウムや水素化カリウムなどの水素化アルカリ金属塩、トリエチルアミン、ジアザビシクロウンデセンなどの三級アミン、テトラメチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシドなどの四級アンモニウムヒドロキシドなどが用いられる。これらは1種を単独で用いても良く、2種以上を併用しても良い。
一方、二層系で反応を行う場合、これらの中で好ましくは、本反応において十分な塩基性を有するアルカリ金属水酸化物の水溶液であり、より好ましくは、工業的に安価な水酸化ナトリウム、又は水酸化カリウムの水溶液であり、さらに好ましくは水酸化ナトリウムの水溶液である。
一方、2層系で反応を行う場合、塩基の使用量は原料であるフルオレン類(I)に対して、上限は特にないが、使用量が多すぎると撹拌や反応後の精製負荷が大きくなる傾向があるので、通常、フルオレン類(I)の10倍モル以下、好ましくは5倍モル以下、さらに好ましくは2倍モル以下である。一方、塩基の使用量が少なすぎると反応の進行が遅くなる傾向があるので、下限としては、通常、原料のフルオレン類(I)に対して0.1倍モル以上、好ましくは0.3倍モル以上、さらに好ましくは0.4倍モル以上である。
工程(ia)は溶媒を用いて行うことが望ましい。使用可能な溶媒の具体例としては、アルキルニトリル系溶媒としては、アセトニトリル、プロピオニトリルなど、エーテル系溶媒としては、ジエチルエーテル、テトラヒドロフラン、1,4−ジオキサン、メチルシクロペンチルエーテル、ターシャリーブチルメチルエーテルなど、ハロゲン系溶媒として
は、1,2−ジクロロエタン、ジクロロメタン、クロロホルム、1,1,2,2−テトラクロロエタンなど、ハロゲン系芳香族炭化水素としては、クロロベンゼン、1,2−ジクロロベンゼンなど、アミド系溶媒としては、N,N−ジメチルホルムアミド、N,N,−ジメチルアセトアミド、N−メチルピロリドンなど、スルホキシド系溶媒としては、ジメチルスルホキシド、スルホランなど、環状式脂肪族炭化水素としては、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタンなどの単環状式脂肪族炭化水素;その誘導体であるメチルシクロペンタン、エチルシクロペンタン、メチルシクロヘキサン、エチルシクロヘキサン、1,2−ジメチルシクロヘキサン、1,3−ジメチルシクロヘキサン、1,4−ジメチルシクロヘキサン、イソプロピルシクロヘキサン、n−プロピルシクロヘキサン、tert−ブチルシクロヘキサン、n−ブチルシクロヘキサン、イソブチルシクロヘキサン、1,2,4−トリメチルシクロヘキサン、1,3,5−トリメチルシクロヘキサンなど;デカリンなどの多環状式脂肪族炭化水素;n−ペンタン、n−ヘキサン、n−ヘプタン、n−オクタン、イソオクタン、n−ノナン、n−デカン、n−ドデカン、n−テトラデカンなどの非環状式脂肪族炭化水素、芳香族炭化水素としては、トルエン、p−キシレン、o−キシレン、m−キシレンなど、アルコール系溶媒としては、メタノール、エタノール、イソプロパノール、n−ブタノール、ターシャリーブタノール、ヘキサノール、オクタノール、シクロヘキサノールなどが挙げられる。
2層系の反応において、塩基性水溶液と2層を形成し、フルオレン類(I)から生じるアニオンの溶解性が高く、反応の進行が良好である傾向があることから、極性溶媒のエーテル系溶媒、又はハロゲン系溶媒が好ましい。その中で、テトラヒドロフランが特に好ましい。これは、テトラヒドロフランに対するトリフルオレン化合物(IIa)の溶解性が低く、目的物は生成後、速やかに析出し、それ以上の反応の進行が抑制され、目的物の選択性が上がる傾向があるためである。
溶媒の使用量は、通常、原料のフルオレン類(I)の10倍体積量、好ましくは7倍体積量、さらに好ましくは4倍体積量となるような量が使用される。一方、溶媒の使用量が少なすぎると、攪拌が難しくなるとともに反応の進行が遅くなる傾向があるので、下限としては、通常、原料のフルオレン類(I)の1倍体積量、好ましくは2倍体積量、さらに好ましくは3倍体積量となるような量が使用される。
工程(ia)を行う際、反応の形式はバッチ型反応でも流通型反応でもそれらを組み合わせたものでも特にその形式は制限なく採用できる。
<1.8.3.2.5 反応条件>
工程(ia)は、トリフルオレン化合物(IIa)よりもフルオレン環が架橋した化合物の生成を抑制するためには、なるべく低温で反応を行うことが好ましい。一方、温度が低すぎると十分な反応速度が得られない可能性がある。
工程(ia)における一般的な反応時間は、通常下限が30分、好ましくは60分、さ
らに好ましくは2時間で、上限は特に限定はされないが通常20時間、好ましくは10時間、更に好ましくは5時間である。
反応終了後、目的物であるトリフルオレン化合物(IIa)は、反応液を希塩酸などの酸性水に添加し、あるいは希塩酸などの酸性水を反応液に添加し、析出させることにより単離することができる。
また、反応終了後、目的物であるトリフルオレン化合物(IIa)が可溶な溶媒と水を反応液に添加して抽出してもよい。溶媒により抽出された目的物は、溶媒を濃縮する方法、或いは貧溶媒を添加する方法などにより単離することができる。ただし、室温では溶媒に対するトリフルオレン化合物(IIa)の溶解性が非常に低い傾向があるため、通常は酸性水と接触させて析出させる方法が好ましい。
下記一般式(IIb)で表されるトリフルオレン化合物は、フルオレン類(I)を原料として、アルキル化剤(VIIIa)と塩基存在下、下記工程(ib)で表される反応に従って製造される。
ロモ−3−クロロプロパンなどの直鎖状のアルキルジハライド(フッ素原子を除く)、2,2−ジメチル−1,3−ジクロロプロパンなどの分岐鎖を含むアルキルジハライド(フッ素原子を除く)、1,4−ビス(ブロモメチル)ベンゼン、1,3−ビス(ブロモメチル)ベンゼンなどのアラルキルジハライド(フッ素原子を除く)、エチレングリコールジメシラート、エチレングリコールジトシラート、プロピレングリコールジメシラート、テトラメチレングリコールジメシラート、などのグリコールのジスルホネートなどが挙げられる。
以下、下記式で示される工程(ii)におけるトリフルオレンジエステル(1)の製造方法をR1の種類ごとに分けて記載する。
下記一般式(1a)で表されるトリフルオレンジエステルは、トリフルオレン化合物(II)及びα,β‐不飽和エステル(VI)から、塩基存在下、下記の工程(iia)で表される反応に従って製造される。
反応試剤としてのα,β‐不飽和エステルは、工程(iia)における一般式(VI)で表されるものであり、一般式(VI)中、Ri、Rii及びRiiiは、それぞれ独立に、水素原子、炭素数1〜10のアルキル基、置換されていてもよい炭素数4〜10のアリール基、又は置換されていてもよい炭素数6〜10のアラルキル基を表す。具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、シクロヘキシル基などの(直鎖であっても分岐鎖であっても良い)アルキル基、フェニル基、1−ナフチル基、2−ナフチル基、2−チエニル基などのアリール基、ベンジル基、2−フェニルエチル基、p−メトキシベンジル基などのアラルキル基が挙げられる。
てもよい炭素数1〜10のアルキル基、置換されていてもよい炭素数4〜10のアリール基、又は置換されていてもよい炭素数6〜10のアラルキル基を表す。)が好ましく、それに含まれる、アクリル酸エステル類、メタクリル酸エステル類又はα−置換不飽和エステル類がより好ましく、Riiiが水素原子又はメチル基であるアクリル酸エステル類又は
メタクリル酸エステル類が、反応速度と反応選択性の観点からさらに好ましい。R10は、より小さいものが工業的に安価かつ蒸留精製も容易で、反応性も高いため、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸フェニル、又はメタクリル酸フェニルが特に好ましい。
異なる2種以上のα,β‐不飽和エステル(VI)を用いてもよいが、精製の簡便性から、1種類のα,β‐不飽和エステル(VI)を用いることが好ましい。
不飽和エステル(VI)の使用量は、原料のトリフルオレン化合物(II)に対して2.2倍モル以上、さらに好ましくは2.5倍モル以上である。
塩基としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物、水酸化カルシウム、水酸化バリウムなどのアルカリ土類金属の水酸化物、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウムなどのアルカリ金属の炭酸塩、炭酸マグネシウム、炭酸カルシウムなどのアルカリ土類金属の炭酸塩、燐酸ナトリウム、燐酸水素ナトリウム、燐酸カリウムなどの燐酸のアルカリ金属塩、n−ブチルリチウム、ターシャリブチルリチウムなどの有機リチウム塩、ナトリウムメトキシド、ナトリウムエトキシド、カリウムターシャリーブトキシド、などのアルカリ金属のアルコキシド塩、水素化ナトリウムや水素化カリウムなどの水素化アルカリ金属塩、トリエチルアミン、ジアザビシクロウンデセンなどの三級アミン、テトラメチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシドなどの四級アンモニウムヒドロキシドが用いられる。これらは1種を単独で用いても良く、2種以上を併用しても良い。
性に大きな違いがある傾向がある。そのため、R3がメチレン基の場合と、それ以外の場
合に分けて記載する。
R3がメチレン基の場合、トリフルオレン化合物(II)は溶媒中、塩基存在下で容易
に分解反応が進行する。そのため、有機層と水層の2層系で反応を行った場合に、分解反応などの副反応が抑制できることから、水溶性の無機塩基を用いることが好ましい。中でもコスト、反応性の面からアルカリ金属の水酸化物の水溶液が好ましく、特に水酸化ナトリウムの水溶液又は水酸化カリウムの水溶液がより好ましく、水酸化ナトリウムの水溶液がさらに好ましい。
R3がメチレン基以外の場合、有機層と水層の2層系でも反応は進行するが、有機層に
溶解する有機塩基を用いて反応を行った場合に、速やかに反応が進行する傾向があるため、有機塩基を用いることが好ましい。これらの中で好ましくは、本反応において十分な塩基性を有する、アルカリ金属のアルコキシドであり、より好ましくは、工業的に安価なナトリウムメトキシド又はナトリウムエトキシドである。ここでアルカリ金属のアルコキシドは、粉状のものを用いてもよく、アルコール溶液等の液状のものを用いてもよい。また、アルカリ金属とアルコールを反応させて調製してもよい。
に対して、上限は特に制限はないが、使用量が多すぎると攪拌や反応後の精製負荷が大きくなる場合があるので、特に好ましい塩基である40wt/wt%以上の水酸化ナトリウム水溶液を用いた場合、通常、トリフルオレン(II)に対して10倍体積量以下、好ましくは5倍体積量以下、さらに好ましくは2倍体積量以下である。塩基量が少なすぎると反応速度が著しく低下するため、通常、塩基は、原料のトリフルオレン化合物(II)に対して、0.1倍体積量以上である。好ましくは、0.2倍体積量以上、より好ましくは0.5倍体積量以上である。
I)に対して、上限は特に制限はないが、使用量が多すぎると攪拌や反応後の精製負荷が
大きくなる場合があるので、特に好ましい塩基であるナトリウムメトキシド又はナトリウムエトキシドを用いた場合、通常、トリフルオレン化合物(II)に対して5倍モル以下、好ましくは2倍モル以下、さらに好ましくは1倍モル以下、特に好ましくは0.5倍モル以下である。塩基量が少なすぎると反応速度が著しく低下する傾向があるため、通常、塩基は、原料のトリフルオレン(II)に対して、0.005倍モル以上である。好ましくは、0.01倍モル以上、より好ましくは0.05倍モル以上、特に好ましくは0.1倍モル以上である。
工程(iia)において、有機層と水層の2層系での反応を行う場合、反応速度を上げるため、相間移動触媒を用いることが好ましい。
相間移動触媒としては、テトラメチルアンモニウムクロリド、テトラブチルアンモニウムブロミド、メチルトリオクチルアンモニウムクロリド、メチルトリデシルアンモニウムクロリド、ベンジルトリメチルアンモニウムクロリド、トリオクチルメチルアンモニウムクロリド、テトラブチルアンモニウムヨージド、アセチルトリメチルアンモニウムブロミド、ベンジルトリエチルアンモニウムクロリドなどの四級アンモニウム塩のハライド(フッ素は除く)、N,N−ジメチルピロリジニウムクロリド、N−エチル−N−メチルピロリジニウムヨージド、N−ブチル−N−メチルピロリジニウムブロミド、N−ベンジル−N−メチルピロリジニウムクロリド、N−エチル−N−メチルピロリジニウムブロミドなどの四級ピロリジニウム塩のハライド(フッ素は除く)、N−ブチル−N−メチルモルホリニウムブロミド、N−ブチル−N−メチルモルホリニウムヨージド、N−アリル−N−メチルモルホリニウムブロミドなどの四級モルホリニウム塩のハライド(フッ素は除く)、N−メチル−N−ベンジルピペリジニウムクロリド、N−メチル−N−ベンジルピペリジニウムブロミド、N,N−ジメチルピペリジニウムヨージド、N−メチル−N−エチルピペリジニウムアセテート、N−メチル−N−エチルピペリジニウムヨージドなどの四級ピペリジニウム塩のハライド(フッ素は除く)、クラウンエーテル類などが挙げられる。好ましくは四級アンモニウム塩、更に好ましくは、テトラブチルアンモニウムブロミド、ベンジルトリメチルアンモニウムクロリド、又はベンジルトリエチルアンモニウムクロリドである。
相間移動触媒の使用量は、原料であるトリフルオレン化合物(II)に対して、多すぎるとエステルの加水分解や逐次マイケル反応などの副反応の進行が顕著になる傾向があり、また、コストの観点からも、通常、トリフルオレン化合物(II)に対して5倍モル以下、好ましくは2倍モル以下、さらに好ましくは1倍モル以下である。相間移動触媒の使用量が少なすぎると反応速度が著しく低下する傾向があるため、通常、相間移動触媒の使用量は、原料のトリフルオレン化合物(II)に対して、0.01倍モル以上である。好ましくは、0.1倍モル以上、より好ましくは0.5倍モル以上である。
工程(iia)は溶媒を用いて行うことが望ましい。
具体的に使用可能な溶媒は、アルキルニトリル系溶媒としては、アセトニトリル、プロピオニトリルなど、ケトン系溶媒としては、アセトン、メチルエチルケトン、メチルイソブチルケトンなど、エステル系溶媒としては、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸フェニル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸フェニル、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸メチル、乳酸メチル、乳酸エチル等の直鎖状のエステル類;γ−ブチロラクトン、カプロラクトン等の環状エステル類;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコール−1−モノメチルエーテルアセテート、プロピレングリコー
ル−1−モノエチルエーテルアセテート等のエーテルエステル類など、エーテル系溶媒としては、ジエチルエーテル、テトラヒドロフラン、1,4−ジオキサン、メチルシクロペンチルエーテル、ターシャリーブチルメチルエーテルなど、ハロゲン系溶媒としては、1,2−ジクロロエタン、ジクロロメタン、クロロホルム、1,1,2,2−テトラクロロエタンなど、ハロゲン系芳香族炭化水素としては、クロロベンゼン、1,2−ジクロロベンゼンなど、アミド系溶媒としては、N,N−ジメチルホルムアミド、N,N,−ジメチルアセトアミドなど、スルホキシド系溶媒としては、ジメチルスルホキシド、スルホランなど、環状式脂肪族炭化水素としては、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタンなどの単環状式脂肪族炭化水素;その誘導体であるメチルシクロペンタン、エチルシクロペンタン、メチルシクロヘキサン、エチルシクロヘキサン、1,2−ジメチルシクロヘキサン、1,3−ジメチルシクロヘキサン、1,4−ジメチルシクロヘキサン、イソプロピルシクロヘキサン、n−プロピルシクロヘキサン、tert−ブチルシクロヘキサン、n−ブチルシクロヘキサン、イソブチルシクロヘキサン、1,2,4−トリメチルシクロヘキサン、1,3,5−トリメチルシクロヘキサンなど;デカリンなどの多環状式脂肪族炭化水素;n−ペンタン、n−ヘキサン、n−ヘプタン、n−オクタン、イソオクタン、n−ノナン、n−デカン、n−ドデカン、n−テトラデカンなどの非環状式脂肪族炭化水素、芳香族炭化水素としては、トルエン、p−キシレン、o−キシレン、m−キシレンなど、芳香族複素環としては、ピリジンなど、アルコール系溶媒としては、メタノール、エタノール、イソプロパノール、n−ブタノール、ターシャリーブタノール、ヘキサノール、オクタノール、シクロヘキサノールなどが挙げられる。
(II)の分解反応などの副反応を抑制できる傾向があることが解っている。さらに、原料のトリフルオレン化合物(II)をよく溶解する溶媒を用いた場合に、反応の進行が良好である傾向があることから、原料のトリフルオレン化合物(II)の溶解度が0.5質量%以上の溶媒を用いることが好ましく、より好ましくは1.0質量%以上、特に好ましくは1.5質量%以上の溶媒を用いることである。具体的には、ハロゲン系脂肪族炭化水素、ハロゲン系芳香族炭化水素、芳香族炭化水素、又はエーテル系溶媒が好ましく、ジクロロメタン、クロロベンゼン、クロロホルム、1,2−ジクロロベンゼン、テトラヒドロフラン、1,4−ジオキサン、又はメチルシクロペンチルエーテルが特に好ましい。
溶媒の使用量は、上限は特に制限はないが、反応器あたりの目的物の生成効率を考えると、通常、原料のトリフルオレン化合物(II)の20倍体積量、好ましくは15倍体積量、さらに好ましくは10倍体積量となるような量が使用される。一方、溶媒の使用量が少なすぎると試剤の溶解性が悪くなり攪拌が難しくなるとともに反応の進行が遅くなる傾向があるので、下限としては、通常、原料のトリフルオレン化合物(II)の1倍体積量、好ましくは2倍体積量、さらに好ましくは4倍体積量となるような量が使用される。
反応速度に大きく影響を与える傾向があることが解っており、その溶解性を確保するために一定値以上の誘電率を持った溶媒を使用することが望ましい。有機塩基及びトリフルオレン化合物(II)をよく溶解する溶媒としては、芳香族複素環、アルキルニトリル系溶媒、アミド系溶媒、スルホキシド系溶媒、が好ましく、ピリジン、アセトニトリル、N,N−ジメチルホルムアミド、N,N,−ジメチルアセトアミド、ジメチルスルホキシド、スルホランが特に好ましい。
溶媒の使用量は、上限は特に制限はないが、反応器あたりの目的物の生成効率を考えると、通常、原料のトリフルオレン(II)の20倍体積量、好ましくは15倍体積量、さ
らに好ましくは10倍体積量となるような量が使用される。一方、溶媒の使用量が少なすぎると試剤の溶解性が悪くなり攪拌が難しくなるとともに反応の進行が遅くなる傾向があるので、下限としては、通常、原料のトリフルオレン(II)の1倍体積量、好ましくは2倍体積量、さらに好ましくは4倍体積量となるような量が使用される。
工程(iia)を行う際、反応の形式はバッチ型反応でも流通型反応でもそれらを組み合わせたものでも特にその形式は制限なく採用できる。
バッチ式の場合の反応試剤の反応器への投入方法は、α,β‐不飽和エステル(VI)を反応開始時に一括添加で仕込んだ場合、α,β‐不飽和エステル(VI)が高濃度で存在するため、副反応の重合反応が進行し易い。よって原料のトリフルオレン化合物(II)、相間移動触媒、溶媒及び塩基を加えた後に、少量ずつα,β‐不飽和エステル(VI)を逐次添加するのが好ましい。
工程(iia)において、温度が低すぎると十分な反応速度が得られず、逆に高すぎるとα,β‐不飽和エステル(VI)の重合反応が進行しやすい傾向があるため、温度管理が重要である。そのため、反応温度としては、具体的には、通常、下限は0℃、好ましくは10℃、より好ましくは15℃で実施される。一方通常、上限は、40℃、好ましくは30℃、より好ましくは20℃で実施される。
工程(iia)における一般的な反応時間は、通常下限が30分、好ましくは1時間、さらに好ましくは2時間で、上限は特に限定はされないが通常20時間、好ましくは10時間、さらに好ましくは5時間である。
反応終了後、目的物であるトリフルオレンジエステル(1a)は、副生した金属ハロゲン化物、及び残存した無機塩基を濾過して反応液から除去した後に、溶媒を濃縮する方法、或いは目的物の貧溶媒を添加する方法などを採用して、目的物であるトリフルオレンジエステル(1a)を析出させることにより単離することができる。
抽出の際に使用可能な溶媒としては、目的物であるトリフルオレンジエステル(1a)が溶解するものであれば良く、特に制限はないが、トルエン、キシレンなどの芳香族炭化水素化合物、ジクロロメタン、クロロホルムなどハロゲン系溶媒などの1種又は2種以上が好適に用いられる。
トリフルオレンジエステル(1b)は、トリフルオレン化合物(II)とアルキル化剤(VIIIb)及び(VIIIc)のアルキル化反応を経る方法により製造することができる。
トリフルオレンジアリールエステル化合物(1c)は、トリフルオレンジエステル化合物(1)を合成する工程(工程(iia)、もしくは工程(iib)と、続くジアリールカーボネート類(11a)とのエステル交換反応(工程(iic))を経る方法により製造することができる。
素数4〜10のアリール基を表す。
Ar1が置換されていてもよい炭素数4〜10のアリール基であるトリフルオレンジア
リールエステル化合物(1c)は、トリフルオレンジエステル化合物(1)及びジアリールカーボネート類(11a)から、エステル交換触媒存在下、工程(iic)で表される反応に従って製造される。
反応試剤としてのジアリールカーボネート類は、ジフェニルカーボネート、ジトリルカーボネート、ビス(クロロフェニル)カーボネート、m−クレジルカーボネート、ジナフチルカーネート、ビス(ビフェニル)カーボネートなどが挙げられる。中でも、安価で、工業的に入手可能なジフェニルカーボネートが好ましい。
これらのジアリールカーボネートは、1種を単独で用いても良く、2種以上を混合して用いてもよい。
一方、塩基の使用量が少なすぎると原料のトリフルオレンジエステル(1)や中間体として、以下に示すようなトリフルオレンモノアリールエステル(1e)が残ってしまう場合があるので、下限としては、通常、原料のトリフルオレンジエステル(1)に対して1倍モル以上、好ましくは1.5倍モル以上、さらに好ましくは2倍モル以上である。
素数4〜10のアリール基を表す。
エステル交換反応触媒としては、テトラブトキシチタン、テトライソブトキシチタン、テトラメトキシチタン、テトライソプロポキシチタン、テトラエトキシチタン、テトラキ
ス(2−エチルヘキシルオキシ)チタン、テトラステアリルオキシチタン、テトラフェノキシチタン、チタニウム(IV)アセチルアセトナート、チタニウム(IV)ジイソプロポキシドビス(アセチルアセトナト)などのチタン化合物;炭酸リチウム、ジブチルアミノリチウム、リチウムアセチルアセトナート、ナトリウムフェノキシド、カリウムフェノキシドなどのアルカリ金属化合物;カドミウムアセチルアセトナート、炭酸カドミウムなどのカドミウム化合物;ジルコニウムアセチルアセトナート、ジルコノセンなどのジルコニウム化合物;硫化鉛、水酸化鉛、鉛酸塩、亜鉛酸塩、炭酸鉛、酢酸鉛、テトラブチル鉛、テトラフェニル鉛、トリフェニル鉛、ジメトキシ鉛、ジフェノキシ鉛などの鉛化合物;酢酸銅、銅ビスアセチルアセトナート、オレイン酸銅、ブチル銅、ジメトキシ銅、塩化銅などの銅化合物;水酸化鉄、炭酸鉄、トリアセトキシ鉄、トリメトキシ鉄、トリフェノキシ鉄などの鉄化合物;亜鉛ビスアセチルアセトナート、ジアセトキシ亜鉛、ジメトキシ亜鉛、ジエトキシ亜鉛、ジフェノキシ亜鉛などの亜鉛化合物;ジn−ブチルスズオキシド、ジフェニルスズオキシド、ジn−オクリルスズオキシド、ジn−ブチルスズジメトキシド、ジn−ブチルスズジアクリレート、ジn−ブチルスズジメタクリレート、ジn−ブチルスズジラウレート、テトラメトキシスズ、テトラフェノキシスズ、テトラブチル−1,3−ジアセトキシジスタノキサンなどの有機スズ化合物;酢酸アルミニウム、アルミニウムメトキシド、アルミニウムエトキシド、アルミニウムフェノキシドなどのアルミニウム化合物;二塩化バナジウム、三塩化バナジウム、四塩化バナジウム、硫酸バナジウムなどのバナジウム化合物;テトラフェニルホスホニウムフェノキシドなどのホスホニウム塩などが挙げられる。これらは1種を単独で用いても良く、2種以上を併用しても良い。
一方、エステル交換反応触媒の使用量が少なすぎると反応時間が長くなりすぎてしまう場合があるため、下限としては、通常、原料のトリフルオレンジエステルに対して0.1モル%以上、好ましくは0.5モル%以上、さらに好ましくは1モル%以上である。
工程(iic)では、反応溶媒を用いてもよいが、反応溶媒を用いずに、原料のトリフルオレンジエステル(1)、ジアリールカーボネート類、及びエステル交換反応触媒だけで反応を行うことが好ましい。しかしながら、原料のトリフルオレンジエステル(1)、ジアリールカーボネート類が常温で固体で、攪拌が困難な場合においては、反応溶媒を使用してもよい。反応溶媒を使用する場合、上述の原料のトリフルオレンジエステル(1)、ジアリールカーボネート類、及びエステル交換反応触媒を好適に溶解及び/又は分散させることが可能な溶媒であれば、その種類は任意である。
、ジメチルスルホキシド、スルホランなど、環状式脂肪族炭化水素としては、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタンなどの単環状式脂肪族炭化水素;その誘導体であるメチルシクロペンタン、エチルシクロペンタン、メチルシクロヘキサン、エチルシクロヘキサン、1,2−ジメチルシクロヘキサン、1,3−ジメチルシクロヘキサン、1,4−ジメチルシクロヘキサン、イソプロピルシクロヘキサン、n−プロピルシクロヘキサン、tert−ブチルシクロヘキサン、n−ブチルシクロヘキサン、イソブチルシクロヘキサン、1,2,4−トリメチルシクロヘキサン、1,3,5−トリメチルシクロヘキサンなど;デカリンなどの多環状式脂肪族炭化水素;n−ペンタン、n−ヘキサン、n−ヘプタン、n−オクタン、イソオクタン、n−ノナン、n−デカン、n−ドデカン、n−テトラデカンなどの非環状式脂肪族炭化水素、芳香族炭化水素としては、トルエン、p−キシレン、o−キシレン、m−キシレン、1,3,5−トリメチルベンゼン、1,2,4−トリメチルベンゼン、1,2,3,4−テトラヒドロナフタレンなど、芳香族複素環としては、ピリジンなどが挙げられる。
溶媒の使用量は、上限は特に制限はないが、反応器あたりの目的物の生成効率を考えると、通常、原料のトリフルオレンジエステル(1)の15倍体積量、好ましくは10倍体積量、さらに好ましくは5倍体積量となるような量が使用される。一方、溶媒の使用量が少なすぎると試剤の溶解性が悪くなり攪拌が難しくなるとともに反応の進行が遅くなる傾向があるので、下限としては、通常、原料のトリフルオレンジエステル(1)の1倍体積量、好ましくは2倍体積量、さらに好ましくは4倍体積量となるような量が使用される。
工程(iic)を行う際、反応の形式はバッチ型反応でも流通型反応でもそれらを組み合わせたものでも特にその形式は制限なく採用できる。
工程(iic)において、温度が低すぎると十分な反応速度が得られない傾向があるため、通常、下限は50℃、好ましくは70℃、より好ましくは100℃で実施される。一方、上限は、通常、250℃、好ましくは200℃、より好ましくは180℃で実施される。
ると、試薬として用いたジアリールカーボネート類まで昇華する可能性があるため、、通常、0.1kPa以上、好ましくは、0.5kPa以上、より好ましくは、1.0kPa以上で実施される。
反応終了後、目的物であるトリフルオレンジアリールエステル(1c)は、反応液に貧溶媒を添加し、析出させることにより単離することができる。
また、反応終了後、目的物であるトリフルオレンジアリールエステル(Ic)が可溶な溶媒と水を反応液に添加して抽出してもよい。溶媒により抽出された目的物は、溶媒を濃縮する方法、或いは貧溶媒を添加する方法などにより単離することができる。
本発明のオリゴフルオレンジエステル組成物は、前述のトリフルオレンジエステルと、ジフルオレンジエステルとを含む。トリフルオレンジエステルだけでなくジフルオレンジエステルをも含むことで、耐熱性や光学特性を所望のものに簡便に調整することが可能となる傾向がある。
本発明のオリゴフルオレンジエステル組成物に含まれるジフルオレンジエステルは、置換基を有していてもよい2つのフルオレン単位bを含み、該フルオレン単位bの9位の炭素原子同士が直接結合、又は、置換基を有していてもよいアルキレン基、置換基を有していてもよいアリーレン基、若しくは置換基を有していてもよいアラルキレン基を介して鎖状に結合されている。
を結合するアラルキレン基と同じであっても異なっていてもよい。
本発明のオリゴフルオレンジエステル組成物に含まれるジフルオレンジエステルとしては、具体的には、下記一般式(2)で表されるものを好ましく用いることができる。
又は置換されていてもよい炭素数1〜10のアルキレン基、置換されていてもよい炭素数4〜10のアリーレン基及び置換されていてもよい炭素数6〜10のアラルキレン基からなる群から選ばれる2つ以上の基が、酸素原子、置換されていてもよい硫黄原子、置換されていてもよい窒素原子若しくはカルボニル基で連結された基であり、
されていてもよい炭素数4〜10のアリーレン基、又は置換されていてもよい炭素数6〜10のアラルキレン基であり、
R4〜R9は、それぞれ独立に、水素原子、置換されていてもよい炭素数1〜10のアルキル基、置換されていてもよい炭素数4〜10のアリール基、置換されていてもよい炭素数1〜10のアシル基、置換されていてもよい炭素数1〜10のアルコキシ基、置換されていてもよい炭素数1〜10のアリールオキシ基、置換されていてもよいアミノ基、置換基を有する硫黄原子、ハロゲン原子、ニトロ基又はシアノ基である。ただし、R4〜R9のうち隣接する少なくとも2つの基が互いに結合して環を形成していてもよい。
R10は、炭素数1〜10の有機置換基である。
前記式(2)におけるR1〜R10としては、前記式(1)におけるR1〜R10として例示したものを好ましく用いることができる。
本発明のオリゴフルオレンジエステル組成物に含まれるジフルオレンジエステルの具体
例としては、下記[I]群に示されるような構造が挙げられる。
本発明のオリゴフルオレンジエステル組成物に含まれるジフルオレンジエステルの物性
値は特に限定されないが、以下に例示する物性値を満足するものであることが好ましい。
本発明のオリゴフルオレンジエステル組成物に含まれる、トリフルオレンジエステルの含有割合については特に限定されないが、耐熱性を向上し、さらに、より少量の使用で所望の光学特性を得るとの観点からは、組成物の全質量に対して、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましく、1質量%以上であることがさらに好ましく、3質量%以上であることがよりさらに好ましく、5質量%以上であることが特に好ましく、また、通常30質量%以下である。
オリゴフルオレンジエステル組成物中に含まれるジフルオレンジエステルや、トリフルオレンジエステルのモル数は、例えば、HPLC分析の面積%から、検量線を用いて見積もることができる。
本発明の樹脂組成物は、2価のトリフルオレンを繰り返し単位として有する重合体を含有する樹脂組成物である。
このように、本発明の樹脂組成物は2価のトリフルオレンを繰り返し単位として有する重合体のほか、後述するその他の重合体を含んでいてもよく、また、添加剤等を含んでいてもよい。また、本発明の樹脂組成物は、2価のトリフルオレンを繰り返し単位として有する重合体からなるものであってもよい。
本発明の樹脂組成物に含まれる重合体は、2価のトリフルオレンを繰り返し単位として有する。このように、2価のトリフルオレンを繰り返し単位として有することにより、該トリフルオレンの少量の使用で所望の光学特性を得ることができ、また、良好な耐熱性を示すことができる傾向がある。
なお、本発明の樹脂組成物に含まれる重合体は、後述のようにさらに2価のジフルオレンを繰り返し単位として有していてもよい。トリフルオレンと、ジフルオレンの両者を総称してオリゴフルオレンと言う場合がある。
フルオレン単位aとしては、トリフルオレンジエステルのフルオレン単位aとして例示したものを好ましく用いることができる。
びα2を2価の基とすることもできる。この場合、α1とα2とは同じであっても異なって
いてもよい。また、置換基α1及びα2には直接結合が含まれ、つまり、フルオレン単位aの9位の炭素原子を2価の基とすることもできる。置換基α1及びα2としては、トリフルオレンジエステルにおける置換基α1及びα2として例示したものを好ましく用いることができる。
及びα2を2価の基とし、かつ、α1とα2の少なくとも1つの炭素数を2以上とする場合
には、フルオレン環(フルオレン単位a)が主鎖に対して略垂直に配向するため、樹脂組成物中の2価のオリゴフルオレンの割合が少量であっても、逆波長分散性を発現しやすくなる傾向がある。後者の場合には、同様の観点から、α1及びα2の両方を、炭素数2以上のものとすることが好ましい。一方で、両末端のフルオレン単位aの9位の炭素原子にそれぞれ結合したα1及びα2を2価の基とし、かつ、α1及びα2の両方を炭素数1のもの(すなわち、置換されていてもよいメチレン基)とした場合には、フルオレン環(フルオレン単位a)が主鎖に対して略垂直に配向せず、大きく傾いて配向するために、樹脂組成物中の2価のオリゴフルオレンの割合を広い範囲で変化させても、広帯域で位相差の差が小さいフラット分散性となりやすい傾向がある。
前記2価のトリフルオレンとしては、具体的には、下記一般式(11)で表されるものを好ましく用いることができる。
前記式(11)におけるR1〜R9としては、前記式(1)におけるR1〜R9として例示したものを好ましく用いることができる。
本発明の樹脂組成物における重合体は、さらに2価のジフルオレンを繰り返し単位として有していてもよい。2価のトリフルオレンに加えて2価のジフルオレンを含むことで、耐熱性や光学特性を所望のものに簡便に調整することが可能となる傾向がある。
て鎖状に結合されたものである。
フルオレン単位bとしては、ジフルオレンジエステルのフルオレン単位bとして例示したものを好ましく用いることができる。
びα4として例示したものを好ましく用いることができる。
及びα4を2価の基とし、かつ、α3とα4の少なくとも1つの炭素数を2以上とする場合
には、フルオレン環(フルオレン単位b)が主鎖に対して略垂直に配向するため、樹脂組成物中の2価のオリゴフルオレンの割合が少量であっても、逆波長分散性を発現しやすくなる傾向がある。後者の場合には、同様の観点から、α3及びα4の両方を、炭素数2以上のものとすることが好ましい。一方で、両末端のフルオレン単位bの9位の炭素原子にそれぞれ結合したα3及びα4を2価の基とし、かつ、α3及びα4の両方を炭素数1のもの(すなわち、置換されていてもよいメチレン基)とした場合には、フルオレン環(フルオレン単位b)が主鎖に対して略垂直に配向せず、大きく傾いて配向するために、樹脂組成物中の2価のオリゴフルオレンの割合を広い範囲で変化させても、広帯域で位相差の差が小さいフラット分散性となりやすい傾向がある。
又は置換されていてもよい炭素数1〜10のアルキレン基、置換されていてもよい炭素数4〜10のアリーレン基及び置換されていてもよい炭素数6〜10のアラルキレン基からなる群から選ばれる2つ以上の基が、酸素原子、置換されていてもよい硫黄原子、置換
されていてもよい窒素原子若しくはカルボニル基で連結された基であり、
されていてもよい炭素数4〜10のアリーレン基、又は置換されていてもよい炭素数6〜10のアラルキレン基であり、
なお、式(21)に2つずつあるR4〜R9は、それぞれ同じであっても異なっていてもよい。
本発明の樹脂組成物に含有される重合体は、2価のトリフルオレンを繰り返し単位として有するものである。例えば、2価のトリフルオレン同士が任意の連結基により連結した重合体が挙げられる。また、該重合体は、2価のジフルオレンや、それら以外の任意の繰り返し単位を有する共重合体であってもよい。
前記重合体において用いられる連結基の具体的な構造は以下に挙げられ、これらに限定されるものではないが、下記[J]群に示される連結基
連結基は1種類のものを単独で用いてもよく、複数種類の連結基を併用してもよい。
繰り返し単位を連結基で連結した重合体として具体的には、ポリオレフィン、ポリエステル、ポリカーボネート、ポリアミド、ポリイミド、ポリウレタン、エポキシ樹脂、ポリアクリレート、ポリメタクリレート、若しくはポリスルホンを含む重合体及びそれらを併用した重合体が挙げられ、好ましくは、一般に透明性の高いポリオレフィン、ポリエステル、ポリカーボネート、エポキシ樹脂、又はポリアクリレートを含む重合体であり、特に好ましくは、耐熱性と溶融加工性や機械強度とのバランスに優れるポリエステル、又はポリカーボネートを含む重合体、特に好ましくは一般に耐熱性や耐薬品性に優れるポリカーボネートを含む重合体である。
2価のトリフルオレンを繰り返し単位として有する重合体は、さらに任意の2価の有機基(ただし、2価のトリフルオレン及び2価のジフルオレンを除く)を繰り返し単位として含む共重合体であってもよい。この場合、繰り返し単位同士は前述の連結基により連結したものであることが好ましい。
共重合体において、2価のトリフルオレンと併用してもよい任意の2価の有機基としては、樹脂組成物に必要とされる光学特性及び物性の範囲に制御するとの観点から、以下の一般式(3)で表される2価の有機基を好ましく用いることができる。この場合、任意の2価の有機基として、一般式(3)で表される2価の有機基以外の2価の有機基をさらに併用してもよい。
前述のとおり、一般式(3)におけるR20は、置換されていてもよい炭素数2〜20のアルキレン基、置換されていてもよい炭素数4〜20のアリーレン基、置換されていてもよい炭素数2〜100のアルキレンエーテル基、置換されていてもよい炭素数4〜20の脂環構造を持つ有機基又は置換されていてもよい炭素数4〜20の複素環構造を持つ有機基を示す。
に挙げられ、これらに限定されるものではないがエチレン基、n−プロピレン基、n−ブチレン基、n−ペンチレン基、n−ヘキシレン基などが挙げられる。その炭素数は2以上であることが好ましく、また、10以下であることが好ましく、4以下であることがより好ましい。
置換基を有するアリーレン基の具体例としては、2−メチル−1,4−フェニレン基、5−メチル−1,3−フェニレン基、2,5−ジメチル−1,4−フェニレン基、2−メトキシ−1,4−フェニレン基、2−トリフルオロメチル−1,4−フェニレン基、2,5−ジメトキシ−1,4−フェニレン基、2,3,5,6−テトラフルオロ−1,4−フェニレン基などの置換アリーレン基が挙げられる。
−メチルプロピレン基、2,2−ジメチルプロピレン基、3−メチルプロピレン基などの分岐鎖を含むアルキレン基(ここで置換位置の数値は、末端側の炭素からつけるものとする)などが挙げられる。
その炭素数は、2以上であり、また、8以下であることが好ましく、4以下であることがより好ましい。
これらR13及びR14の中で好ましくは、不斉点を有さないためモノマーの品質管理が容易な直鎖状のアルキレン基であり、より好ましくは工業的に安価に導入でき、柔軟性と吸水性を与えることができるエチレン基である。
一般式(7)において、pは1〜40の整数であるが、好ましくは1以上、より好ましくは2以上、また、好ましくは30以下、より好ましくは20以下である。
〜10のアルキル基(例、メチル基、エチル基、イソプロピル基等);炭素数1〜10のアルコキシ基(例、メトキシ基、エトキシ基等);炭素数1〜10のアシル基(例、アセチル基、ベンゾイル基等);炭素数1〜10のアシルアミノ基(例、アセトアミド基、ベンゾイルアミド基等);ニトロ基;シアノ基;ハロゲン原子(例、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、炭素数1〜10のアルキル基(例、メチル基、エチル基、イソプロピル基等)、炭素数1〜10のアルコキシ基(例、メトキシ基、エトキシ基等)、炭素数1〜10のアシル基(例、アセチル基、ベンゾイル基等)、炭素数1〜10のアシルアミノ基(例、アセトアミド基、ベンゾイルアミド基等)、ニトロ基、シアノ基などから選ばれる1〜3個の置換基を有していてもよい炭素数6〜10のアリール基(例、フェニル基、ナフチル基等)等が挙げられる。当該置換基の数は、特に限定されないが、1〜3個が好ましい。置換基が2個以上ある場合は、置換基の種類は同一でも異なっていてもよい。また、工業的に安価に製造できるとの観点からは無置換であることが好ましい。
くすることができる傾向があることから、下記[P]群に示されるような脂環構造または複素環構造の任意の2箇所に直鎖状又は分岐状のアルキレン基の結合手を持つ有機基が好ましく挙げられる。
いてもよい。また、工業的に安価に製造できるとの観点からは無置換であることが好ましい。
ンゾイルアミド基等);ニトロ基;シアノ基;ハロゲン原子(例、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、炭素数1〜10のアルキル基(例、メチル基、エチル基、イソプロピル基等)、炭素数1〜10のアルコキシ基(例、メトキシ基、エトキシ基等)、炭素数1〜10のアシル基(例、アセチル基、ベンゾイル基等)、炭素数1〜10のアシルアミノ基(例、アセトアミド基、ベンゾイルアミド基等)、ニトロ基、シアノ基などから選ばれる1〜3個の置換基を有していてもよい炭素数6〜10のアリール基(例、フェニル基、ナフチル基等)等が挙げられる。当該置換基の数は、特に限定されないが、1〜3個が好ましい。置換基が2個以上ある場合は、置換基の種類は同一でも異なっていてもよい。また、工業的に安価に製造できるとの観点からは無置換であることが好ましい。
あることが好ましい。
このように、少なくとも2価のトリフルオレン、2価のジフルオレン、及び一般式(3)で表される2価の有機基を繰り返し単位として含有する共重合体を用いる場合において、2価のトリフルオレン、2価のジフルオレン、一般式(3)で表される2価の有機基は、後述する光学物性が発現する範囲内であれば、前記共重合体中に任意の質量で含まれていてよい。
本発明の樹脂組成物は、2価のトリフルオレンを繰り返し単位として有する重合体を含有するものである。また、本発明の樹脂組成物は該重合体以外に、さらにその他の成分を含有していてもよい。
本発明の樹脂組成物は、ブレンドに起因する他の効果の発現を期待して、その他の成分として任意の重合体を含んでいてもよい。つまり、2価のトリフルオレンを繰り返し単位として有する重合体の他に任意の重合体を共存在させてもよい。
逆波長分散性を発現させ、かつ、溶融加工性や機械強度を保つとの観点から、樹脂組成物における2価のトリフルオレン及び2価のジフルオレンの含有割合の総和は、樹脂組成物全体の質量に対して5質量%以上であることが好ましく、10質量%以上であることがより好ましく、12質量%以上であることがさらに好ましく、15質量%以上であることが特に好ましく、20質量%以上であることが最も好ましく、また、90質量%以下であることが好ましく、80質量%以下であることがより好ましく、70質量%以下であることがさらに好ましく、60質量%以下であることが特に好ましい。また同様の観点から、一般式(3)で表される2価の有機基の好ましい含有割合は、樹脂組成物全体の質量に対して10質量%以上であることが好ましく、20質量%以上であることがより好ましく、30質量%以上であることがさらに好ましく、40質量%以上であることが特に好ましく、また、95質量%以下であることが好ましく、90質量%以下であることがより好ましく、88質量%以下であることがさらに好ましく、85質量%以下であることが特に好ましく、80質量%以下であることが最も好ましい。
、40質量%以下であることがさらに好ましい。
本発明の樹脂組成物の物性値は特に限定されないが、以下に例示する物性値を満足するものであることが好ましい。
本発明の樹脂組成物の屈折率異方性は正負のどちらであっても、後述の<3.11 位相差比>に記載の逆波長分散フィルムに用いる場合の条件を満足することで、逆波長分散性を示す。ここで、負の屈折率異方性を有する逆波長分散フィルムを得るには、正の屈折率異方性を有し、短波長ほど波長分散が大きくなる波長分散性の大きな繰り返し単位と、大きな負の屈折率異方性を有し、波長分散性の小さな繰り返し単位を組み合わせて用いることが必要となるが、後者の材料は一般には知られておらず、負の屈折率異方性を有する逆波長分散フィルムを得ることは一般には難しい。そのため、本発明の樹脂組成物は、逆波長分散性やフラット分散性などの所望の光学特性を示す光学材料として用いる場合には、正の屈折率異方性を有するものであることが好ましい。
本発明において「正の屈折率異方性を有する樹脂組成物」とは、延伸フィルムに成形した際に、以下の測定条件において正の屈折率異方性を示す樹脂組成物を意味する。また「負の屈折率異方性」についても同様に定義される。
本発明の樹脂組成物は、位相差フィルム用途を想定した場合、波長450nmで測定した位相差(Re450)と波長550nmで測定した位相差(Re550)の比、すなわち位相差比が下記式(20)を満足することが好ましい。
Re450/Re550 ≦ 1.0 (20)
ここで、「本発明の樹脂組成物は、位相差比が上記式(20)を満足する」とは、延伸フィルムに成形した際に、以下の測定条件において波長450nmで測定した位相差(R
e450)と波長550nmで測定した位相差(Re550)の比が上記式(20)を満足することを意味する。
1.0 ≦ Re630/Re550 (25)
ここで、「本発明の樹脂組成物は、位相差比’が上記式(25)を満足する」とは、延伸フィルムに成形した際に、以下の測定条件において波長630nmで測定した位相差(Re630)と波長550nmで測定した位相差(Re550)の比が上記式(25)を満足することを意味する。
比(Re630/Re550)の下限は、1.00以上であることが好ましく、1.01以上であることがより好ましく、1.02以上であることがさらに好ましく、1.03以上であることが特に好ましい。
びR2を2価の基とし、かつ、R1とR2の少なくともいずれか一方の炭素数を2以上とし
たものを、所定量使用する方法が挙げられる。この場合において、さらに、両末端に位置するフルオレンの9位の炭素原子にそれぞれ結合した炭素数が1のR1及びR2を2価の基とした、2価のトリフルオレンを併用してもよい。
0.9 < Re450/Re550 < 1.1 (23)
ここで、「本発明の樹脂組成物において、位相差比が上記式(23)を満足する」とは、延伸フィルムに成形した際に、以下の測定条件において波長450nmで測定した位相差(Re450)と波長550nmで測定した位相差(Re550)の比が上記式(23)を満足することを意味する。
0.97 < Re630/Re550 < 1.02 (26)
ここで、「本発明の樹脂組成物は、位相差比’が上記式(26)を満足する」とは、延伸フィルムに成形した際に、以下の測定条件において波長630nmで測定した位相差(Re630)と波長550nmで測定した位相差(Re550)の比が上記式(26)を満足することを意味する。
フルオレンを繰り返し単位として有する重合体を含有する樹脂組成物は、芳香環を有するフルオレン環が主鎖に配向することで所望の光学特性を発現する傾向がある。例えば、フルオレン環が主鎖に略垂直に配向した場合、逆波長分散性を示し、フルオレン環が主鎖に対して45度程度傾いて配向した場合、フラット分散性を示すようになる。そのため、逆波長分散性、フラット分散性や、広帯域ゼロ複屈折などの所望の光学物性を効率よく発現するためには、繰り返し単位中のフルオレン環の割合を高めることが望ましい。これを本明細書中では、フルオレン比率と呼び、下記式(27)にて定義することとする。ここで、フルオレン環の分子量は炭素原子13個分の原子量の総和とし、水素原子は該分子量には含まず、また、置換基を有する場合であっても置換基は該分子量には含まれない。また、フルオレン環の分子量の総和とは、フルオレンを有する繰り返し単位に含まれる、全てのフルオレン環の分子量の合計値を意味し、例えば、2つフルオレン環を有する場合にはフルオレン環2つ分の分子量となり、同様に3つ有する場合にはフルオレン環3つ分の分子量となる。一方で、フルオレンを有する繰り返し単位の分子量とは、該繰り返し単位そのものの分子量を意味する。
フルオレン比率(%) = フルオレン環の分子量の総和/フルオレンを有する繰り
返し単位の分子量 × 100 (27)
本発明の樹脂組成物のガラス転移温度は90℃以上であることが好ましく、100℃以上であることがより好ましく、110℃以上であることがさらに好ましく、120℃以上であることが特に好ましく、また、170℃以下であることが好ましく、160℃以下であることがより好ましく、150℃以下であることがさらに好ましい。この範囲を下回ると、使用環境下において、光学物性が設計値から変化してしまうおそれがあり、実用的に必要な耐熱性を満たさない可能性がある。また、この範囲を上回ると、樹脂組成物の溶融加工性が低下し、良好な外観や寸法精度の高い成形体が得られない可能性がある。さらに、耐熱性が高すぎてしまい、その反面、機械強度は低下するため、樹脂組成物が脆くなって、加工性や成形体の取り扱い性が悪化する場合があることが考えられる。
本発明の樹脂組成物の溶融粘度は、測定温度240℃、剪断速度91.2sec-1において、500Pa・s以上であることが好ましく、800Pa・s以上であることがより好ましく、1000Pa・s以上であることがさらに好ましく、また、5000Pa・s以下であることが好ましく、4500Pa・s以下であることがより好ましく、4000Pa・s以下であることがさらに好ましい。この範囲を下回ると、実用に耐えうる機械強度が得られない可能性がある。また、後述する溶融製膜法に適切な溶融粘度範囲から外れてしまう可能性がある。この範囲を上回ると、前記のガラス転移温度が高すぎる場合と同様に、成形性が悪化する可能性がある。
本発明の樹脂組成物の分子量は、還元粘度で表すことができる。本発明の樹脂組成物の還元粘度は、後掲の実施例の項に記載されるように、溶媒として塩化メチレンを用い、高分子濃度を0.6g/dLに精密に調整し、温度20.0℃±0.1℃でウベローデ粘度管を用いて測定される。本発明の樹脂組成物の還元粘度に特に制限は無いが、好ましくは0.30dL/g以上であり、より好ましくは0.35dL/g以上である。還元粘度の上限は、好ましくは1.20dL/g以下、より好ましくは0.60dL/g以下、更に好ましくは0.50dL/g以下である。
本発明の樹脂組成物は、多量の金属及び金属イオンを含有すると、重合や加工時に着色したり、熱分解が起こりやすくなるおそれがある。例えば、樹脂組成物を製造する際に用いた触媒の残存物や、樹脂組成物の原料中にコンタミしている金属成分や、反応装置などから溶出する金属なども可能な限り低減することが重要である。特にNa、K、Cs、Feの影響が顕著であるため、本発明のポリカーボネート樹脂組成物は、Na、K、Cs、Feの含有割合の合計が3質量ppm以下であることが好ましく、1質量ppm以下であることがより好ましく、0.8質量ppm以下であることがさらに好ましく、0.5質量ppm以下であることが特に好ましい。樹脂組成物中の金属量は、湿式灰化などの方法で樹脂組成物中の金属を回収した後、原子発光、原子吸光、ICP等の方法を使用して測定することが出来る。
本発明の樹脂組成物の光弾性係数は45×10-12Pa-1以下であることが好ましい。
さらに好ましくは40×10-12Pa-1以下であり、特に好ましくは35×10-12Pa-1以下であり、また、通常5×10-12Pa-1以上である。光弾性係数が高くなると、大型
の成形品に使用する場合や、成形品を折り曲げたりする場合に、応力が発生する部分において、材料の複屈折が変化し、光学物性の均一性が損なわれる可能性がある。
本発明の樹脂組成物は、逆波長分散性を示す位相差フィルムや、フラット分散性を示す位相差フィルム用途を想定した場合、フィルムにした際に、550nmにおける複屈折が0.001以上であることが好ましい。後述のように本発明の樹脂組成物を用いて成形するフィルムの厚みを非常に薄く設計するためには、複屈折が高い方が好ましい。従って、550nmにおける複屈折は0.002以上であることが更に好ましく、また、通常0.005以下である。550nmにおける複屈折が0.001未満の場合には、フィルムの厚みを過度に大きくする必要があり、製膜材料の使用量が増え、厚み・透明性・位相差の点から均質性の制御が困難となる傾向がある。そのため、550nmにおける複屈折が0.001未満の場合には、精密性・薄型・均質性を求められる機器に適合できない可能性がある。
一方で本発明の樹脂組成物は、広帯域ゼロ複屈折材料を想定した場合には、フィルムにした際に、550nmにおける複屈折が0.0005以下であることが好ましい。前述のように本発明の樹脂組成物を用いて広帯域ゼロ複屈折を有する偏光板保護フィルムを設計するためには、複屈折が低い方が好ましい。従って、550nmにおける複屈折は0.0002以下であることが更に好ましく、0.0001以下が特に好ましく、また、通常0.00001以上である。550nmにおける複屈折が0.0005超過の場合には、複屈折が十分に小さくないため、フィルムの厚みが厚いと色抜けが起こる可能性がある。
本発明の樹脂組成物は、光学レンズなどの広帯域ゼロ複屈折材料を想定した場合には、589nmにおける屈折率が1.54以上であることが好ましい。本発明の樹脂組成物を用いて光学レンズを設計するためには、レンズを薄くするためにも、屈折率が高い方が好ましい。従って、589nmにおける屈折率は、1.56以上であることが更に好ましく、1.58以上が特に好ましく、通常1.65以下である。
本発明の樹脂組成物は、撮像系光学レンズなどの広帯域ゼロ複屈折材料を想定した場合には、アッベ数が35以下であることが好ましい。本発明の樹脂組成物を用いて撮像系光学レンズを設計するためには、アッベ数が低い方が好ましい。従って、アッベ数は、30以下であることが更に好ましく、25以下が特に好ましく、通常15以上である。
本発明の樹脂組成物は、フルオレン環の配向に由来する740cm-1の吸収の延伸方向
と垂直方向の強度比が、1.2以上であることが好ましく、1.3以上であることがより好ましく、1.4以上であることがさらに好ましく、また、通常2.0以下である。本発明の樹脂組成物を逆波長分散フィルム用途として用いる場合、フルオレン環の配向に由来する740cm-1の吸収の延伸方向と垂直方向の強度比が高い方が、その樹脂組成物中に含まれるフルオレン環を有する繰り返し単位はその割合が少なくても逆波長分散性を示す傾向にある。なお、前記強度比は以下の方法にて測定することができる。
まず本発明の樹脂組成物から延伸フィルムを作成し、偏光ATR分析を実施する。その分析結果において、カルボニルの配向に由来する1245cm-1の吸収の延伸方向と垂直方向の強度比(2色比:延伸方向の強度/垂直方向の強度)が1.2以上であり、主鎖が延伸方向へ配向していることを確認する。次に、フルオレン環の配向に由来する740cm-1の吸収の延伸方向と垂直方向の強度比を算出する。
本発明の樹脂組成物は、2価のトリフルオレンの特定配座(コンフォメーション)が、ゴーシュ配座を安定配座としない場合であって、トランス配座の主鎖とフルオレン環のなす角度が50°以上、好ましくは60°以上、より好ましくは70°以上の時に、逆波長分散性が発現されると予想できる。
2価のトリフルオレンの特定配座(コンフォメーション)のエネルギー計算及び該配座におけるフルオレン環と主鎖がなす角度の計算は以下の通りに算出することができる。
ここで、2価のトリフルオレンに関しては、ポリカーボネート樹脂組成物の場合には繰り返し単位の両末端をメチルカーボネート化した構造に対して、ポリエステル又はポリエステルカーボネート樹脂組成物の場合には繰り返し単位の両末端をメチルエステル化した構造に対して計算する。
る。
本発明の樹脂組成物に上記一般式(3)で表される2価の有機基を繰り返し単位として導入する方法としては、得られる樹脂組成物の透明性や均一性の観点から、
1. トリフルオレンを有するジヒドロキシ化合物と、前記一般式(3)で表される有機基を有する下記式(21)で表されるジヒドロキシ化合物とを共重合する方法、
2. トリフルオレンジエステル化合物を、前記一般式(3)で表される有機基を有する下記式(21)で表されるジヒドロキシ化合物でエステル交換をした後に、前記一般式(3)で表される有機基を有する下記式(21)で表されるジヒドロキシ化合物とを共重合する2段階で導入する方法、
3. トリフルオレンジアリールエステル化合物と、前記一般式(3)で表される有機基を有する下記式(21)で表されるジヒドロキシ化合物とを共重合する方法、
4. トリフルオレンを有するジヒドロキシ化合物、前記一般式(3)で表される有機基を有する下記一般式(28)で表されるジカルボン酸化合物、及び、前記一般式(3)で表される有機基を有する下記一般式(21)で表されるジヒドロキシ化合物とを共重合する方法、
が好ましい。
HOCOR20−COOH (28)
ここで、上記一般式(3)で表される2価の有機基は単一種類のものを用いてもよく、異なる複数種類の有機基を組み合わせて用いてもよい。異なる複数種類の有機基を組み合わせて用いることは、異なる複数種類の上記一般式(21)で表されるジヒドロキシ化合物、及び/又は、上記一般式(28)で表されるジカルボン酸化合物を用いることで達成される。
前述のとおり、重合体としてはポリエステル、ポリカーボネート、ポリエステルカーボネートが好ましく、一般的に、ポリエステルよりもポリカーボネートの方が十分なガラス転移温度を有し、耐加水分解性に優れていることから、ポリカーボネートが特に好ましい。一方で、一般的に、柔軟性においては、ポリカーボネートよりもポリエステルの方が優れていることから、ポリエステルが特に好ましい。ポリエステルカーボネートは、ガラス転移温度と耐加水分解性、及び、柔軟性のバランスが優れていることから、特に好ましい。
なお、ポリカーボネート及びポリエステルカーボネートは<3.25 ポリカーボネートの重合方法>等の方法により製造することができる。また、ポリエステルについても同様の方法により製造することができ、具体的には<3.26 ポリエステルの重合方法>等の方法により製造することができる。
本発明のポリカーボネート樹脂組成物の製造方法としては、ジヒドロキシ化合物と、下記一般式(11)で表される炭酸ジエステルとを溶融重縮合する方法(溶融重合法)を含むことが好ましい。もう一つの一般的なポリカーボネートの製造方法として知られる界面重合法は、使用できるモノマーが芳香族ジヒドロキシ化合物に限定されるため、アルコール性ヒドロキシ基を有するジヒドロキシ化合物も含む、より幅広い構造に適用できる溶融法を用いることが好ましい。また、界面法は毒性の強いホスゲンや塩化メチレン、クロロベンゼン等の含塩素溶媒を用いる必要もあり、環境負荷も高い傾向がある。
この溶融重合法で用いられる炭酸ジエステルとしては、通常、前記一般式(11)で表されるものが挙げられる。前記式(11)で表される炭酸ジエステルとしては、例えば、ジフェニルカーボネート、ジトリルカーボネート、ビス(クロロフェニル)カーボネート、m−クレジルカーボネート、ジナフチルカーネート、ビス(ビフェニル)カーボネートなどに代表されるジアリールカーボネート類、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジシクロヘキシルカーボネートなどに代表されるジアルキルカーボネート類が挙げられる。なかでも、好ましくはジアリールカーボネート類が用いられ、特にジフェニルカーボネートが好ましく用いられる。これらの炭酸ジエステルは、1種を単独で用いても良く、2種以上を混合して用いてもよい。
重合に用いる炭酸ジエステルの一部を上記一般式(28)で表されるジカルボン酸化合物と置換する、重合に用いるジヒドロキシ化合物の一部としてジヒドロキシエステル、及び/又はジヒドロキシエステルオリゴマーを用いる等の方法により、ポリエステルカーボネートが得られる。ここで用いることのできるジヒドロキシエステル、及び/又はジヒドロキシエステルオリゴマーは、ジカルボン酸化合物とジヒドロキシ化合物の反応により、合成することが可能である。上記一般式(28)で表されるジカルボン酸化合物としては、テレフタル酸、フタル酸、イソフタル酸、4,4’−ジフェニルジカルボン酸、4,4’−ジフェニルエーテルジカルボン酸、4,4’−ベンゾフェノンジカルボン酸、4,4’−ジフェノキシエタンジカルボン酸、4,4’−ジフェニルスルホンジカルボン酸、2,6−ナフタレンジカルボン酸などの芳香族ジカルボン酸、1,2−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸などの脂環式ジカルボン酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸などの脂肪族ジカルボン酸などを挙げることができ、得られたポリエステルカーボネートの耐熱性や熱安定性の観点から、芳香族ジカルボン酸が好ましく、特には取扱いや入手のし易さから、テレフタル酸、又はイソフタル酸が好ましく、中でもテレフタル酸が好適である。これらのジカルボン酸成分はジカルボン
酸そのものとして前記ポリエステルカーボネートの原料とすることができるが、製造法に応じて、メチルエステル体、フェニルエステル体等のジカルボン酸エステルや、ジカルボン酸ハライド等のジカルボン酸誘導体を原料とすることもできる。
溶融重合における重合触媒(エステル交換触媒)としては、例えば長周期型周期表第1族及び/又は、第2族の金属化合物が使用される。エステル交換触媒(以下、単に触媒、重合触媒と言うことがある)は、反応速度または重縮合して得られるポリカーボネート樹脂組成物の品質に非常に大きな影響を与え得る。
基性リン化合物、塩基性アンモニウム化合物、アミン系化合物等の塩基性化合物を併用することも可能であるが、長周期型周期表第1族及び/又は、第2族の金属化合物のみを使用することが特に好ましい。
前記の塩基性リン化合物としては、例えば、トリエチルホスフィン、トリ−n−プロピルホスフィン、トリイソプロピルホスフィン、トリ−n−ブチルホスフィン、トリフェニルホスフィン、トリブチルホスフィン及び四級ホスホニウム塩等が挙げられる。
脂組成物中に多く含まれると色相に悪影響を及ぼす可能性がある。そして、これらの金属は使用する触媒からのみではなく、原料または反応装置から混入する場合がある。出所にかかわらず、ポリカーボネート樹脂組成物中のこれらの金属の化合物の合計量は、金属量として、1重量ppm以下であることが好ましく、さらには0.5重量ppm以下であることがより好ましい。
本発明のポリカーボネート樹脂組成物に含有されるポリカーボネートを溶融重合法で製造する方法としては、ジヒドロキシ化合物と、必要に応じジカルボン酸化合物を重合触媒の存在下で炭酸ジエステルと反応させる。重合は、通常、2段階以上の多段工程で実施され、重合反応器は1つで条件を変えて2段階以上の工程で実施してもよいし、2つ以上の反応器を用いて、それぞれの条件を変えて2段階以上の工程で実施してもよいが、生産効率の観点からは、2つ以上、好ましくは3つ以上、更に好ましくは3〜5つ、特に好ましくは、4つの反応器を用いて実施する。重合反応はバッチ式、連続式、あるいはバッチ式と連続式の組み合わせの何れでも構わないが、生産効率と品質の安定性の観点から、連続式が好ましい。
特に本発明のポリカーボネート樹脂組成物の着色や熱劣化を抑制し、色相や耐光性の良好なポリカーボネート樹脂組成物を得るには、全反応段階における内温の最高温度が270℃以下、特に260℃以下であることが好ましい。
本発明のポリカーボネート樹脂組成物は、上述の通り重縮合後、通常、冷却固化させ、回転式カッター等でペレット化することができる。ペレット化の方法は限定されるものではないが、最終重合反応器から溶融状態で抜き出し、ストランドの形態で冷却固化させてペレット化させる方法、最終重合反応器から溶融状態で一軸または二軸の押出機に樹脂を供給し、溶融押出しした後、冷却固化させてペレット化させる方法、又は、最終重合反応器から溶融状態で抜き出し、ストランドの形態で冷却固化させて一旦ペレット化させた後に、再度一軸または二軸の押出機に樹脂を供給し、溶融押出しした後、冷却固化させてペレット化させる方法等が挙げられる。後述するように、副生する炭酸ジエステル由来のモノヒドロキシ化合物がポリカーボネート中に多く含まれると、位相差フィルムに加工した後に、環境変化による光学的特性の変化を招くことがあるため、本発明のポリカーボネート樹脂組成物は、押出機を使用して炭酸ジエステル由来のモノヒドロキシ化合物を除去することが好ましく、中でも、最終重合反応器から溶融状態で単数または複数のベント口を有する一軸または二軸の押出機に樹脂を供給し、ベント口を減圧にしてモノヒドロキシ化合物を除去しつつ溶融押出しした後、冷却固化させてペレット化させる方法が好ましい。
溶融重合法では重合反応において炭酸ジエステルからフェノール等のモノヒドロキシ化合物が副生するため、これが本発明のポリカーボネート樹脂組成物中に残存し、フィルム製膜時や延伸時に揮発して、臭気の原因となったり、フィルムの欠陥を招いたりすることがある。また、本発明のポリカーボネート樹脂組成物が位相差フィルムに加工された後に、該フィルム中に残存している炭酸ジエステル由来のモノヒドロキシ化合物は、環境変化により位相差フィルムの光学的特性を変化させることがあるため、本発明のポリカーボネート樹脂組成物に含まれる炭酸ジエステル由来のモノヒドロキシ化合物は1500質量ppm以下であることが好ましい。さらには1000質量ppm以下であることが好ましい。下限については、上記問題を解決するために少ない方がよいが、溶融重合法では高分子中に残存するモノヒドロキシ化合物をゼロにすることは困難であること、除去のためには過大な労力が必要であることから、通常1質量ppmである。本発明のポリカーボネート樹脂組成物中に残存する炭酸ジエステル由来のモノヒドロキシ化合物を低減するためには、上記のように高分子を押出機で脱揮処理すること、重合終盤の圧力を3kPa以下、好ましくは2kPa以下にすることが効果的であるが、圧力を下げすぎると分子量が急激に上昇して、反応の制御が困難になる場合があるため、高分子の末端基濃度を水酸基過剰かアリール基過剰にして、末端基バランスを偏らせて製造することが好ましい。中でも熱安定性の観点から、水酸基末端濃度を50mol/ton以下、特には30mol/ton以下にすることが好ましい。水酸基末端濃度は、1H−NMR等で定量することができる
。水酸基末端濃度は炭酸ジエステルと全ジヒドロキシ化合物の仕込みのモル比により調節することができる。
重合に用いる炭酸ジエステルを上記一般式(28)で表されるジカルボン酸化合物と置換する等の方法により、ポリエステルが得られる。
好ましいジカルボン酸、重合触媒、重合条件等は<3.25 ポリカーボネートの重合方法>記載の方法と同じである。
本発明の樹脂組成物には、任意の添加剤を含有させてもよい。同様に、本発明の樹脂組成物に含有される重合体にも、任意の添加剤を含有させてもよい。
本発明の樹脂組成物には、成形時等における分子量の低下や色相の悪化を防止するために熱安定剤を配合することができる。同様に、本発明の樹脂組成物に含有される重合体にも、同様の理由から、熱安定剤を配合することができる。
かかる熱安定剤としては、通常知られるヒンダードフェノール系熱安定剤及び/またはリン系熱安定剤が挙げられる。
組成物又はポリカーボネート樹脂組成物中に前記熱安定剤等を添加して、ペレット等の形状にして用いてもよい。
また、本発明の樹脂組成物には、酸化防止の目的で通常知られた酸化防止剤を配合することもできる。かかる酸化防止剤としては、例えばペンタエリスリトールテトラキス(3−メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)、グリセロール−3−ステアリルチオプロピオネート、トリエチレングリコール−ビス[3−(3−tert−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、ペンタエリスリトール−テトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、N,N−ヘキサメチレンビス(3,5−ジ−tert−ブチル−4−ヒドロキシ−ヒドロシンナマイド)、3,5−ジ−tert−ブチル−4−ヒドロキシ−ベンジルホスホネート−ジエチルエステル、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、4,4’−ビフェニレンジホスフィン酸テトラキス(2,4−ジ−tert−ブチルフェニル)、3,9−ビス{1,1−ジメチル−2−[β−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]エチル}−2,4,8,10−テトラオキサスピロ(5,5)ウンデカン等の1種又は2種以上が挙げられる。これら酸化防止剤の配合量は、本発明の樹脂組成物又は本発明のポリカーボネート樹脂組成物を100質量部とした場合、0.0001質量部以上が好ましく、また、0.5質量部が好ましい。
本発明の樹脂組成物には、重合触媒を失活させるために触媒失活剤を配合することができる。かかる触媒失活剤としては例えば、リン系化合物が挙げられる。
なお、リン系化合物は、配合量を調整すれば高温下での樹脂組成物の着色を抑制する熱安定剤として作用させることもできる。このリン系化合物としては、リン酸、亜リン酸、ホスホン酸、次亜リン酸、ポリリン酸、ホスホン酸エステル、酸性リン酸エステル、脂肪族環状亜リン酸エステルからなる群より選ばれる少なくとも1種を用いることが好ましい。上記の中でも触媒失活と着色抑制の効果がさらに優れているのは、亜リン酸、ホスホン酸、ホスホン酸エステルであり、特にホスホン酸エステルが好ましい。
酸ジメチル、フェニルホスホン酸ジエチル、フェニルホスホン酸ジプロピル、(メトキシメチル)ホスホン酸ジエチル、ビニルホスホン酸ジエチル、ヒドロキシメチルホスホン酸ジエチル、(2−ヒドロキシエチル)ホスホン酸ジメチル、p−メチルベンジルホスホン酸ジエチル、ジエチルホスホノ酢酸、ジエチルホスホノ酢酸エチル、ジエチルホスホノ酢酸tert−ブチル、(4−クロロベンジル)ホスホン酸ジエチル、シアノホスホン酸ジエチル、シアノメチルホスホン酸ジエチル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸ジエチル、ジエチルホスホノアセトアルデヒドジエチルアセタール、(メチルチオメチル)ホスホン酸ジエチルなどが挙げられる。
前記リン系化合物の含有量が少なすぎると、触媒失活や着色抑制の効果が不十分であり、多すぎるとかえって樹脂組成物が着色してしまう傾向があるため、リン系化合物の含有量は、樹脂組成物中のリン原子の含有量として1質量ppm以上、8質量ppm以下とすることが好ましく、さらには1.2質量ppm以上、7質量ppm以下が好ましく、特には1.5質量ppm以上、6質量ppm以下が好ましい。
上記の添加剤は、本発明の樹脂組成物に上記成分を同時に、または任意の順序でタンブラー、V型ブレンダー、ナウターミキサー、バンバリーミキサー、混練ロール、押出機等
の混合機により混合して製造することができるが、中でも押出機、特には二軸押出機により混練することが、分散性向上の観点から好ましい。
本発明にかかる樹脂組成物は光弾性係数が小さく、耐熱性及び成形性にも優れ、さらに着色が少なく高い透明性を兼ね備えている傾向があるため、それらを成形して得られる成形体はフィルムやレンズ、プリズムといった光学部材に好適である。例えば、本発明にかかるフィルムは、各種ディスプレイ(液晶表示装置、有機EL表示装置、プラズマ表示装置、FED電界放出表示装置、SED表面電界表示装置)の視野角補償用、外光の反射防止用、色補償用、直線偏光の円偏光への変換用などの位相差フィルムとして用いることができる。また、本発明にかかるレンズ、プリズムは、フレネルレンズ、ピックアップレンズ等の光学レンズや光学プリズムにも用いることもできる。
本発明の樹脂組成物は、フィルムとして好適に用いることができる。本発明の樹脂組成物を製膜することでフィルムを得ることができる。
本発明の樹脂組成物を用いて原反フィルムを製膜する方法としては、本発明の樹脂組成物を溶媒に溶解させてキャストした後、溶媒を除去する流延法、溶媒を用いず溶融製膜する方法、具体的にはTダイを用いた溶融押出法、カレンダー成形法、熱プレス法、共押出法、共溶融法、多層押出、インフレーション成形法等があり、特に限定されないが、流延法は、残存溶媒による問題が生じるおそれがあるため、好ましくは溶融製膜法、中でも後の延伸処理のし易さから、Tダイを用いた溶融押出法が好ましい。
本発明のフィルムは、内部ヘイズが3%以下であることが好ましく、1.5%以下であることがより好ましい。位相差フィルムの内部ヘイズが上記上限値よりも大きいと光の散乱が起こり、例えば偏光子と積層した際、偏光解消を生じる原因となる場合がある。内部ヘイズの下限値は特に定めないが、通常0.2%以上である。測定サンプルは、事前にヘイズ測定を行っておいた粘着剤付き透明フィルムを、試料フィルムの両面に貼り合せ、外部ヘイズの影響を除去した状態のものを作成して用い、測定値は、粘着剤付き透明フィルムのヘイズ値の差分を用いる。
本発明のフィルムは、厚みによらず、当該フィルムそのものの全光線透過率が80%以上であることが好ましく、この透過率は90%以上であることが更に好ましい。透過率が上記下限以上であれば、着色の少ないフィルムが得られ、偏光板と貼り合わせた際、偏光度や透過率の高い円偏光板となり、画像表示装置に用いた際に、高い表示品位を実現することが可能となる。なお、本発明のフィルムの全光線透過率の上限は特に制限はないが通常99%以下である。
このようにして得られる原反フィルムは、少なくとも一方向に延伸することにより本発明の延伸フィルムとすることができる。その延伸の方法は、自由端延伸、固定端延伸、自由端収縮、固定端収縮等、様々な延伸方法を、単独で用いることも、同時もしくは逐次で用いることもできる。また、延伸方向に関しても、水平方向・垂直方向・厚さ方向、対角方向等、様々な方向や次元に行なうことが可能であり、特に限定されない。好ましくは、横一軸延伸方法、縦横同時二軸延伸方法、縦横逐次二軸延伸方法等が挙げられる。延伸する手段としては、テンター延伸機、二軸延伸機等、任意の適切な延伸機を用いることができる。
ある。また、延伸速度が過度に小さいと生産性が低下するだけでなく、所望の位相差を得るのに延伸倍率を過度に大きくしなければならない場合がある。
歪み速度(%/分)= 延伸速度(mm/分)/原反フィルムの長さ(mm) ×100
また、延伸後加熱炉で熱固定処理を行っても良いし、テンターの幅を制御したり、ロール周速を調整したりして、緩和工程を行っても良い。この処理を行うことで、高温条件下での長期使用による光学的特性の変動を抑制することができる。
本発明の延伸フィルムは、このような延伸工程における処理条件を適宜選択・調整することによって作製することができる。
本発明の延伸フィルムは、波長450nmで測定した位相差(Re450)と波長550nmで測定した位相差(Re550)の比が下記式(20)を満足する位相差フィルムであることが好ましい。
Re450/Re550 ≦ 1.0 (20)
本発明のフィルムは、飽和吸水率が1.0質量%より大きいことが好ましい。飽和吸水率が1.0質量%より大きければ、このフィルムを他のフィルムなどと貼りあわせる際、容易に接着性を確保することができる傾向がある。例えば、偏光板と貼りあわせる際、フィルムが親水性であるため、水の接触角も低く、接着剤を自由に設計し易く、高い接着設計ができる。飽和吸水率が1.0質量%以下の場合は、疎水性となり、水の接触角も高く、接着性の設計が困難になる。また、フィルムが帯電し易くなり、異物の巻き込み等、円偏光板、画像表示装置に組み込んだ際、外観欠点が多くなるという問題が生じる傾向がある。一方、飽和吸水率が2.0質量%より大きくなると湿度環境下での光学特性の耐久性が悪くなる傾向があるため好ましくない。本発明のフィルムは、飽和吸水率が1.0質量%より大きいことが好ましく、1.1質量%以上であることがより好ましく、また、2.0質量%以下であることが好ましく、1.5質量%以下であることがより好ましい。
一方で、フィルムやそれを用いた画像表示装置の使用条件によっては、飽和吸水率を1.0質量%以下としてもよい。
本発明にかかるフィルムは、各種ディスプレイ(液晶表示装置、有機EL表示装置、プラズマ表示装置、FED電界放出表示装置、SED表面電界表示装置)の視野角補償用、外光の反射防止用、色補償用、直線偏光の円偏光への変換用などの位相差フィルムとして用いることができる。
本発明にかかる延伸フィルムの用途には特に制限はないが、可視領域の各波長において理想的な位相差特性を備え、光弾性係数が小さく、耐熱性及び成形性にも優れ、さらに着色が少なく高い透明性を兼ね備えている傾向があるため、1/4λ板、円偏光板、画像表示装置等に好適である。
ステルの品質評価、及び樹脂組成物と透明フィルムの特性評価は次の方法により行った。なお、特性評価手法は以下の方法に限定されるものではなく、当業者が適宜選択することができる。
ISB;イソソルビド(ロケットフルーレ社製、商品名:POLYSORB)
DPC;ジフェニルカーボネート(三菱化学(株)製)
CHDM;1,4−シクロヘキサンジメタノール(シス、トランス混合物、SKケミカル社製)
SPG;スピログリコール(三菱ガス化学(株)製)
BHEPF:9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]−フルオレン(大阪ガスケミカル(株)製)
THF:テトラヒドロフラン(安定剤不含、WAKO社製)
オリゴフルオレンモノマーの分解開始温度、融点は、示差熱重量同時分析装置(エスアイアイ・ナノテクノロジー社製TG−DTA6300)を用いて測定した。分析試料約4mgを同社製アルミパンに入れて密封し、200mL/分の窒素気流下、昇温速度10℃/分で室温(20〜30℃)から600℃まで昇温した。得られたTGデータ(熱重量データ)より、減量挙動の低温側ベースライン外挿基線と減量最大傾斜点の接線との交点温度を分解開始温度とした。また、得られたTGデータ(熱重量データ)より、試料重量の減少が認められず、かつ、急峻な吸熱ピークが観測された、そのピークトップを試料の融点とした。
樹脂組成物の還元粘度は次のとおり測定した。森友理化工業社製ウベローデ型粘度管を用いて、溶媒として塩化メチレンを用い、温度20.0℃±0.1℃で測定した。濃度は0.6g/dLになるように、精密に調製した。
溶媒の通過時間t0、溶液の通過時間tから、式:ηrel=t/t0より相対粘度ηrelを求め、相対粘度ηrelから、式:ηsp=(η−η0)/η0=ηrel−1より比粘度ηspを求めた。比粘度ηspを濃度c(g/dL)で割って、式:ηred=ηsp/cより還元粘度(
換算粘度)ηredを求めた。この数値が高いほど分子量が大きい。
樹脂組成物のガラス転移温度は、示差走査熱量計(エスアイアイ・ナノテクノロジー社製DSC6220)を用いて測定した。樹脂組成物試料約10mgを同社製アルミパンに入れて密封し、50mL/分の窒素気流下、昇温速度20℃/分で30℃から250℃まで昇温した。3分間温度を保持した後、30℃まで20℃/分の速度で冷却した。30℃で3分保持し、再び200℃まで20℃/分の速度で昇温した。2回目の昇温で得られたDSCデータより、低温側のベースラインを高温側に延長した直線と、ガラス転移の階段状変化部分の曲線の勾配が最大になるような点で引いた接線との交点の温度である、補外ガラス転移開始温度を求め、それをガラス転移温度とした。
測定前に樹脂組成物試料を80℃で5時間以上、真空乾燥を行った。東洋精機株式会社製キャピログラフを用いて、直径1mm×長さ10mmのダイを使用して、温度240℃、剪断速度91.2sec-1における溶融粘度を測定した。
パーキンエルマー社製マイクロウェーブ分解容器に樹脂組成物試料約0.5gを精秤し
、97%硫酸(多摩化学製超高純度硫酸)2mLを加え、密閉状態にして230℃で10分間マイクロウェーブ加熱した。室温(30℃以下)まで冷却後、68%硝酸(多摩化学製超高純度硝酸)1.5mLを加えて、密閉状態にして150℃で10分間マイクロウェーブ加熱した後、再度室温(30℃以下)まで冷却を行い、68%硝酸2.5mLを加え、再び密閉状態にして230℃で10分間マイクロウェーブ加熱し、内容物を完全に分解させた。マイクロウェーブ加熱器はパーキンエルマー社製Multiwave3000を用いて、300Wから1000Wの間で出力を調整することで、温度を調整した。室温(30℃以下)まで冷却後、上記で得られた液を純水で希釈し、サーモクエスト社製ICP−MSで定量した。
樹脂組成物試料約1gを精秤し、塩化メチレン5mLに溶解した後、総量が25mLになるようにアセトンを添加した。溶液を0.2μmディスクフィルターでろ過して、液体クロマトグラフィーにてフェノールの定量を行った後、含有割合を算出した。
He−Neレーザー、偏光子、補償板、検光子、及び光検出器からなる複屈折測定装置と振動型粘弾性測定装置(レオロジー社製「DVE−3」)を組み合わせた装置を用いて測定した。(詳細は、日本レオロジー学会誌Vol.19,p93−97(1991)を参照。)
C=O’/E’
前述の熱プレスによる方法で厚み100〜200μmのフィルムを成形し、このフィルムから幅6cm、長さ6cmの試料を切り出した。この試料をバッチ式二軸延伸装置(アイランド工業社製二軸延伸装置BIX−277−AL)を用いて、延伸温度を樹脂組成物試料のガラス転移温度+15℃、延伸速度1000%/分、延伸倍率2倍で、自由端一軸延伸を行い、延伸フィルムを得た。得られた延伸フィルムから幅4cm、長さ4cmに切り出したサンプルを位相差測定装置(王子計測機器社製KOBRA−WPR)により測定波長450nmの位相差(Re450)及び550nmの位相差(Re550)を測定した。両測定値の比(Re450/Re550)を位相差の波長分散性の指標とした。また、この位相差の測定において、延伸方向の位相差の測定値に正の値が出た場合、この樹脂の屈折率異方性は正である。
前述の熱プレスによる方法で厚み100〜200μmのフィルムを成形し、このフィル
ムから長さ40mm、幅10mmの長方形の試験片を作製した。万力の左右の接合面の間隔を40mmに開き、試験片の両端を接合面内に固定した。次に左右の接合面の間隔を2mm/秒以下の速度で狭めていき、フィルムが万力の接合面の外にはみ出さないようにしながら、くの字に折れ曲がったフィルム全体を該接合面内で圧縮していった。接合面間が完全に密着する迄に試験片が折れ曲がり部で2片(又は3片以上の破片)に割れた場合を「割れあり」、接合面間が完全に密着してもなお試験片が割れずに折り曲げられた場合「割れなし」とした。同一の種類のフィルムについて5回繰り返して試験を実施し、そのうち4回以上「割れあり」となったものを「×:脆性破壊する」、3回以下「割れあり」となったものを「○:脆性破壊しない」とした。
前述の熱プレスによる方法で取得したフィルムから、長さ40mm、幅8mmの長方形の試験片を切り出して測定試料とした。多波長アッベ屈折率計(株式会社アタゴ製DR−M4/1550)で、波長656nm(C線)、589nm(D線)、486nm(F線)の干渉フィルターを用いて、各波長の屈折率、nC、nD、nFを測定した。測定は、界面液としてモノブロモナフタレンを用い、20℃で行った。
アッベ数νdは次の式で計算した。
νd=(1−nD)/(nC−nF)
アッベ数が大きいほど、屈折率の波長依存性が小さいことを表す。
<合成例1>
1L四口フラスコにフルオレン(120g、722mmol)、N,N−ジメチルホルムアミド(480ml)を入れ、窒素置換後、5℃以下に冷却した。ナトリウムエトキシド(24.6g、361mmol)を加え、パラホルムアルデヒド(8.7g、289mmol)を10℃を越えないように少量ずつ添加し、撹拌した。2時間後、1N塩酸(440ml)を滴下し、反応を停止した。得られた懸濁溶液を吸引ろ過し、脱塩水(240ml)でふりかけ洗浄した。その後、得られた粗生成物を脱塩水(240ml)に分散させ、1時間撹拌した。この懸濁液を吸引ろ過後、脱塩水(120ml)でふりかけ洗浄した。得られた粗生成物をトルエン(480ml)に分散させた後、ディーン−スターク装置を用いて、加熱還流条件下で脱水を行なった。室温(20℃)に戻した後、吸引ろ過し、80℃で恒量になるまで減圧乾燥することで、白色固体としてビス(フルオレン−9−イル)メタン(化合物1)を84.0g(収率:84.5%、HPLC純度:94.0%)得た。
ビス{[9−(2−エトキシカルボニルエチル)フルオレン−9−イル]−メチル}フルオレン(化合物3)及び、ビス[9−(2−エトキシカルボニルエチル)フルオレン−9
−イル]メタン(化合物2)の合成
0(102mmol)、THF175mLを添加し、窒素雰囲気下15℃にて攪拌した。50wt%水酸化ナトリウム水溶液 28.68g、ベンジルトリエチルアンモニウムク
ロリド4.61g(20.2mL)を添加後、15分攪拌した。エチルアクリレート22.4mL(224mmol)を60分かけて添加後、16℃にて2時間熟成した。反応終了時点のHPLC分析を行ったところ、化合物2(13.5min)は、75.3面積%、化合物3(15.2min)は、8.4面積%であった。3N塩酸にて中和した後、分液して水層を除いた。ここにトルエン70mLを添加して、水105mLで5回有機層を洗浄した。有機層へトルエン35mL、THF35mLを加えた後、内温60℃以上を保ちながら70mLまで加熱・減圧濃縮した。トルエン35mLを加えた後、45℃まで放冷して、メタノール210mLを加えて、ビス[9−(2−エトキシカルボニルエチル)フルオレン−9−イル]メタン(化合物2)の晶析を行った。晶析物をろ過し、ろ液を室温で数日静置して生じるビス{[9−(2−エトキシカルボニルエチル)フルオレン−9
−イル]−メチル}フルオレン(化合物3)の白色結晶をろ過により回収した。
HPLC分析結果 化合物2(13.5min):91.7面積%、化合物3(15.2min):5.2面積%
6.97(dt,J1=7.6Hz,J2=1.5Hz,4H),6.82(dt,J1=7.6Hz,J2=1.3Hz,4H),6.77(d,J=7.6Hz,4H),3.88(q,J=7.1Hz,4H),3.12(s,2H),2.23(m,4H),1.13(m,4H),1.02(t,J=7.1Hz,6H).
分解開始温度(窒素雰囲気下):295℃
m.p.:141℃
HPLC分析結果 化合物2(13.5min):3.5面積%、化合物3(15.2min):92.6面積%
分解開始温度(窒素雰囲気下):364℃
m.p.:166℃
カラム:Inertsil ODS−3V 150mm×4.8mmφ
温度:40℃
溶離液条件:0−5min:テトラヒドロフラン/=50/50,20min:テトラヒドロフラン/水=100/0
流速:1.0ml/min
注入量:2μl
ビス{[9−(2−フェノキシカルボニルエチル)フルオレン−9−イル]−メチル}フルオレン(化合物5)及び、ビス[9−(2−フェノキシカルボニルエチル)フルオレン−9−イル]メタン(化合物4)の合成
−エトキシカルボニルエチル)フルオレン−9−イル]−メチル}フルオレン(化合物3
、3.3g、6.9mmol)を含有するテトラヒドロフラン/o−キシレン混合溶液に、ジフェニルカーボネート(147.5g、5685.5mmol)添加後、内温を104℃まで徐々に昇温し、その後、3kPaまで減圧にして、溶媒を留去した。復圧して、オルトチタン酸テトライソプロピル(2.45g、8.61mmol)を入れ、再度、3kPaまで減圧にし、184℃まで徐々に昇温しながら、反応留出物を留去した。184℃到達後、3hr反応させた後、90℃まで降温、復圧し、HPLC分析により反応の進行を確認した。o−キシレン(144ml)を加え、41℃まで降温したところ、結晶の析出が認められた。40℃へ冷却後、メタノール(356mL)を加え、さらに5℃まで冷却後、吸引ろ過を行った。得られた粗結晶をo−キシレン(272mL)に分散させ、水(0.32g)添加後、80℃まで昇温し、溶解させた。水(240mL)で2回有機層を洗浄した後、PTFEメンブレンフィルター(0.5μm)で加圧ろ過(0.25MPa)した。その後、エバポレーターで溶媒を110g留去後、50℃まで降温したところ、結晶の析出が見られた。さらに40℃まで冷却後、メタノール(336mL)を加え、室温(20℃)へ冷却後、吸引ろ過を行い、80℃で恒量になるまで減圧乾燥することで、ビス[9−(2−フェノキシカルボニルエチル)フルオレン−9−イル]メタン(化合物4)59.9g(収率:55.6%、46.8mmol)と、ビス{[9−(2−フ
ェノキシカルボニルエチル)フルオレン−9−イル]−メチル}フルオレン(化合物5)
0.2g(収率:2.2%、0.15mmol)の混合物として白色固体を得た。
なお、反応終了後、晶析及びろ過後のHPLCは、いずれも以下の条件にて実施した。
カラム:Inertsil ODS−3V 150mm×4.8mmφ
温度:40℃
溶離液条件:0−5min:テトラヒドロフラン/=50/50,20min:テトラヒドロフラン/水=100/0
流速:1.0ml/min
注入量:2μl
1H−NMR(400MHz,CDCl3)δ7.23−7.28(m,4H),7.07−7.16(m,6H),7.03(dt,J1=6.9Hz,J2=2.0,4H),6.78−6.90(m,12H),3.20(s,2H),2.37(t,J=8.3Hz,4H),1.40(t,J=8.3Hz,4H).
m.p.(化合物4):176℃
化合物4(13.1min):(Exact Mass)640
(Positive)663[M+Na]+、679[M+K]+、(Negative)639[M−H]−
化合物5(14.2min):(Exact Mass)818
(Positive)841[M+Na]+、875[M+K]+、(Negative)817[M−H]−
LCシステム:Agilent 1200
カラム:Inertsil ODS−3 5μm 4.6×150mm No.2EI85047
温度:40℃
溶離液条件:0−5min:テトラヒドロフラン/=50/50,20min:テトラヒドロフラン/水=100/0
流速:1.0ml/min
注入量:0.2μl
質量分析装置:Agilent LC/MS 6130
イオンモード:AJS(Positive/Negative)
Capillary Voltage:4500V(P/N)
Fragment Voltage:100V
Mass Range:m/z=100−1500
Driving gas:N2、DG=12L/min、NP=60psi、DGT=300℃
その他条件:SG=12L/min、ST=300℃、NV=1000
<実施例3>
ビス{[9−(2−エトキシカルボニルエチル)フルオレン−9−イル]−メチル}フルオレン(化合物3)0.05質量部(0.0001モル)を含有するビス[9−(2−エトキシカルボニルエチル)フルオレン−9−イル]メタン(化合物2)26.44質量部(0.0489モル)、CHDM10.37質量部(0.072モル)および触媒としてテトラ―n―ブチルチタネート14.65×10−3質量部(4.30×10−5モル)を反応容器に投入し、窒素雰囲気下にて、220℃にて120分間常圧にて反応した。次いで、圧力を13.3kPaまで30分かけて減圧し、13.3kPaで30分保持し発生するエタノールを反応容器外へ抜出した。その後、反応液を一旦室温(20℃)まで冷却し、ISB31.43質量部(0.215モル)、DPC51.66質量部(0.24
1モル)を同じ反応容器に投入し、窒素雰囲気下にて、加熱槽温度を150℃にし必要に応じ攪拌しながら、原料を溶解させた(約10分間)。溶解後、反応1段目の工程として220℃まで30分かけて昇温し、60分間常圧にて反応した。次いで圧力を常圧から13.3kPaまで90分かけて減圧し、13.3kPaで30分間保持し発生するフェノールを反応容器外へ抜出した。
得られた樹脂組成物のガラス転移温度等、フィルム成形して延伸した際の延伸フィルムの屈折率異方性、位相差比(Re450/Re550)、フィルムの靱性等の測定結果を表1に示す。
ビス{[9−(2−フェノキシカルボニルエチル)フルオレン−9−イル]−メチル}フルオレン(化合物5)0.1質量部(0.0001モル)を含有するビス[9−(2−フェノキシカルボニルエチル)フルオレン−9−イル]メタン(化合物4)29.5質量部(0.0458モル)、SPG30.20質量部(0.099モル)、ISB40.34質量部(0.276モル)、DPC70.49質量部(0.329モル)および触媒として酢酸カルシウム1水和物9.91×10−4質量部(5.63×10−6モル)を反応容器に投入し、窒素雰囲気下にて、加熱槽温度を150℃にし必要に応じ攪拌しながら、原料を溶解させた(約10分間)。溶解後、反応1段目の工程として220℃まで30分かけて昇温し、60分間常圧にて反応した。次いで圧力を常圧から13.3kPaまで90分かけて減圧し、13.3kPaで15分間保持し発生するフェノールを反応容器外へ抜出した。
得られた樹脂組成物のガラス転移温度等、フィルム成形して延伸した際の延伸フィルムの屈折率異方性、位相差比(Re450/Re550)、フィルムの靱性等の測定結果を表1に示す。
ビス[9−(2−エトキシカルボニルエチル)フルオレン−9−イル]メタン(化合物2)22.65質量部(0.042mol)、CHDM10.77質量部(0.075mol)及び触媒としてテトラ−n−ブチルチタネート15.54×10-3質量部(4.57×10-5mol)を反応容器に投入し、窒素雰囲気下にて、220℃にて120分間常圧にて反応した。次いで、圧力を13.3kPaまで30分かけて減圧し、13.3kPaで30分保持し発生するエタノールを反応容器外へ抜出した。その後、反応液を一旦室温まで冷却し、ISB33.58質量部(0.230mol)、DPC56.96質量部(0.266mol)を同じ反応容器に投入し、窒素雰囲気下にて、加熱槽温度を150℃にし必要に応じ攪拌しながら、原料を溶解させた(約10分間)。溶解後、反応1段目の工程として220℃まで30分かけて昇温し、60分間常圧にて反応した。次いで圧力を常圧から13.3kPaまで90分かけて減圧し、13.3kPaで30分間保持し発生するフェノールを反応容器外へ抜出した。
、圧力を0.10kPa以下まで15分かけて減圧し、発生するフェノールを反応容器外へ抜出した。所定のトルクに到達後、反応を終了し、生成したポリマーを水中に押し出して、ポリエステルカーボネート樹脂のペレットを得た。
得られた樹脂組成物のガラス転移温度等、フィルム成形して延伸した際の延伸フィルムの屈折率異方性、位相差比(Re450/Re550)、フィルムの靱性等の測定結果を表1に示す。
9,9−ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレン(BHEPF)62.40質量部(0.142mol)、ISB28.78質量部(0.197mol)、DPC73.40質量部(0.343mol)、及び触媒として酢酸マグネシウム4水和物7.28×10-4質量部(3.39×10-6mol)を反応容器に投入し、窒素雰囲気下にて、加熱槽温度を150℃にし必要に応じ攪拌しながら、原料を溶解させた(約10分間)。溶解後、反応1段目の工程として220℃まで30分かけて昇温し、60分間常圧にて反応した。次いで圧力を常圧から13.3kPaまで90分かけて減圧し、13.3kPaで30分間保持し発生するフェノールを反応容器外へ抜出した。
得られた樹脂組成物のガラス転移温度等、フィルム成形して延伸した際の延伸フィルムの屈折率異方性、位相差比(Re450/Re550)、フィルムの靱性等の測定結果を表1に示す。
オリゴフルオレンの化学構造と光学特性との関係を検討するために、オリゴフルオレンモノマーに由来する繰り返し単位の特定配座(コンフォメーション)のエネルギー計算及び該配座におけるフルオレン環と主鎖がなす角度の計算を以下の通りに行った。
ソフトウェアは、AM1法については米国Wavefunction社製PC Spartan Pro 1.0.5(Windows(登録商標)32bit版)を使用した。なお、収束判定値等、計算精度にかかわる入力値は全て当該ソフトウェアのデフォルト値を使用した。
レン9位の炭素原子と結合するメチルエステルを有する置換基を側鎖と呼ぶ。ここでは各繰り返し単位の重合体中の立体構造を推測するため、各化合物に2つある側鎖の両方を変化させている。すなわち、表2においてトランス配座とは、各モノマーに存在する2つの側鎖の両方がトランス配座の構造であり、ゴーシュ配座とは、各モノマーに存在する2つの側鎖の両方がゴーシュ配座の構造である。また、ゴーシュ配座は60°及び−60°の2種類があるが、2つの側鎖の両方が60°及び−60°の2種類について計算している。
また、トランス配座と2種類のゴーシュ配座について、主鎖とフルオレン環のなす角度を計算して記載した。
化合物3と化合物2の比較において、トランス配座の主鎖とフルオレン環のなす角度については、フルオレン基を3つ有する化合物3が84.2°、フルオレン基を2つ有する化合物2が74.6°と化合物3の方が90°に近い値を示している。
また、化合物3は、化合物2よりも融点が20℃以上高く、分解開始温度も高いことから、樹脂にした場合のガラス転移温度は、化合物2を用いた樹脂よりも高いことが想定され、熱安定性も高いと考えられる。
表3に、実施例1、2にて合成したフルオレン環含有モノマーに由来する繰り返し単位の化学構造式と、フルオレン比率とを整理して示す。なお、フルオレン比率は下記式から算出した。ただし、下記式におけるフルオレン骨格の分子量は、炭素原子13個分(水素原子含まず)として計算している。
フルオレン比率(%) = フルオレン骨格の分子量/繰り返し単位の分子量 X 100
Claims (3)
- 下記一般式(1)で表されることを特徴とする、トリフルオレンジアルキルエステル。
0のアルキレン基、置換されていてもよい炭素数4〜10のアリーレン基、若しくは置換
されていてもよい炭素数6〜10のアラルキレン基、
又は置換されていてもよい炭素数1〜10のアルキレン基、置換されていてもよい炭素
数4〜10のアリーレン基及び置換されていてもよい炭素数6〜10のアラルキレン基か
らなる群から選ばれる2つ以上の基が、酸素原子、置換されていてもよい硫黄原子、置換
されていてもよい窒素原子若しくはカルボニル基で連結された基であり、
R3a及びR3bは、それぞれ独立に、置換されていてもよい炭素数1〜10のアルキレン
基、置換されていてもよい炭素数4〜10のアリーレン基、又は置換されていてもよい炭
素数6〜10のアラルキレン基であり、
R4〜R9は、それぞれ独立に、水素原子、置換されていてもよい炭素数1〜10のアル
キル基、置換されていてもよい炭素数4〜10のアリール基、置換されていてもよい炭素
数1〜10のアシル基、置換されていてもよい炭素数1〜10のアルコキシ基、置換され
ていてもよい炭素数1〜10のアリールオキシ基、置換されていてもよいアミノ基、置換
基を有する硫黄原子、ハロゲン原子、ニトロ基又はシアノ基である。ただし、R4〜R9の
うち隣接する少なくとも2つの基が互いに結合して環を形成していてもよい。
R10は、炭素数1〜6のアルキル基である。) - 請求項1に記載のトリフルオレンジアルキルエステルと、ジフルオレンジエステルとを
含むオリゴフルオレンジエステル組成物であって、
前記ジフルオレンジエステルが、下記一般式(2)で表されることを特徴とする、オリ
ゴフルオレンジエステル組成物。
0のアルキレン基、置換されていてもよい炭素数4〜10のアリーレン基、若しくは置換
されていてもよい炭素数6〜10のアラルキレン基、
又は置換されていてもよい炭素数1〜10のアルキレン基、置換されていてもよい炭素
数4〜10のアリーレン基及び置換されていてもよい炭素数6〜10のアラルキレン基か
らなる群から選ばれる2つ以上の基が、酸素原子、置換されていてもよい硫黄原子、置換
されていてもよい窒素原子若しくはカルボニル基で連結された基であり、
R 3 は、置換されていてもよい炭素数1〜10のアルキレン基、置換されていてもよい
炭素数4〜10のアリーレン基、又は置換されていてもよい炭素数6〜10のアラルキレ
ン基であり、
R 4 〜R 9 は、それぞれ独立に、水素原子、置換されていてもよい炭素数1〜10のアル
キル基、置換されていてもよい炭素数4〜10のアリール基、置換されていてもよい炭素
数1〜10のアシル基、置換されていてもよい炭素数1〜10のアルコキシ基、置換され
ていてもよい炭素数1〜10のアリールオキシ基、置換されていてもよいアミノ基、置換
基を有する硫黄原子、ハロゲン原子、ニトロ基又はシアノ基である。ただし、R 4 〜R 9 の
うち隣接する少なくとも2つの基が互いに結合して環を形成していてもよい。
R 10 は、炭素数1〜6のアルキル基である。) - 組成物の全質量に対する、前記トリフルオレンジアルキルエステルの含有割合が1質量
%以上であることを特徴とする、請求項4又は5に記載のオリゴフルオレンジエステル組
成物。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015032947A JP6447228B2 (ja) | 2014-02-27 | 2015-02-23 | トリフルオレンジエステル、オリゴフルオレンジエステル組成物、樹脂組成物、延伸フィルム、円偏光板及び画像表示装置 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014037216 | 2014-02-27 | ||
JP2014037216 | 2014-02-27 | ||
JP2015032947A JP6447228B2 (ja) | 2014-02-27 | 2015-02-23 | トリフルオレンジエステル、オリゴフルオレンジエステル組成物、樹脂組成物、延伸フィルム、円偏光板及び画像表示装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015178607A JP2015178607A (ja) | 2015-10-08 |
JP6447228B2 true JP6447228B2 (ja) | 2019-01-09 |
Family
ID=54262877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015032947A Active JP6447228B2 (ja) | 2014-02-27 | 2015-02-23 | トリフルオレンジエステル、オリゴフルオレンジエステル組成物、樹脂組成物、延伸フィルム、円偏光板及び画像表示装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6447228B2 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6446800B2 (ja) * | 2014-03-19 | 2019-01-09 | 三菱ケミカル株式会社 | オリゴフルオレン、オリゴフルオレン組成物、樹脂組成物、フィルム及び画像表示装置 |
JP2015199706A (ja) * | 2014-04-04 | 2015-11-12 | 三菱化学株式会社 | オリゴフルオレンジエステル、及びそれを用いた樹脂組成物の製造方法 |
JP6873208B2 (ja) * | 2019-10-21 | 2021-05-19 | 日東電工株式会社 | 位相差フィルムおよびその製造方法、ならびに、該位相差フィルムを用いた円偏光板および画像表示装置 |
WO2021186946A1 (ja) * | 2020-03-18 | 2021-09-23 | 日東電工株式会社 | 位相差層および粘着剤層付偏光板、ならびに、該位相差層および粘着剤層付偏光板を用いた画像表示装置 |
KR20230161958A (ko) * | 2021-03-26 | 2023-11-28 | 닛토덴코 가부시키가이샤 | 위상차 필름, 해당 위상차 필름을 이용한 원편광판 및 화상 표시 장치 |
CN115677999B (zh) * | 2021-07-21 | 2024-05-14 | 华为技术有限公司 | 聚碳酸酯及其制备方法和应用 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3205257A (en) * | 1962-09-10 | 1965-09-07 | Union Carbide Corp | Bis[9-(2-cyanoalkyl) fluoren-9-yl] alkane compound |
US3280169A (en) * | 1962-09-18 | 1966-10-18 | Union Carbide Corp | Sulfo-substituted aromatic dicarboxylic compounds |
JP4865411B2 (ja) * | 2006-06-15 | 2012-02-01 | キヤノン株式会社 | 有機発光素子、ディスプレイ装置および表示装置 |
US8854730B2 (en) * | 2010-12-30 | 2014-10-07 | 3M Innovative Properties Company | Negatively birefringent polyesters and optical films |
CN106986748B (zh) * | 2012-10-16 | 2020-10-09 | 三菱化学株式会社 | 低聚芴二醇、低聚芴二芳基酯及它们的制造方法 |
-
2015
- 2015-02-23 JP JP2015032947A patent/JP6447228B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015178607A (ja) | 2015-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6311264B2 (ja) | 樹脂組成物、延伸フィルム、円偏光板及び画像表示装置 | |
JP6447228B2 (ja) | トリフルオレンジエステル、オリゴフルオレンジエステル組成物、樹脂組成物、延伸フィルム、円偏光板及び画像表示装置 | |
JP6189355B2 (ja) | 位相差フィルム、円偏光板及び画像表示装置 | |
CN106489085B (zh) | 相位差膜、圆偏振片及图像显示装置 | |
JP6398242B2 (ja) | 樹脂組成物及びそれを用いたフィルム | |
WO2015159929A1 (ja) | 位相差フィルム、円偏光板及び画像表示装置 | |
TW201920353A (zh) | 聚碳酸酯樹脂、其製造方法以及光學透鏡 | |
WO2015129833A1 (ja) | 重縮合系樹脂及びそれよりなる光学フィルム | |
JP2020114933A (ja) | 重縮合系樹脂及びそれよりなる光学フィルム | |
JP6446800B2 (ja) | オリゴフルオレン、オリゴフルオレン組成物、樹脂組成物、フィルム及び画像表示装置 | |
CN113950500B (zh) | 热塑性树脂、由其构成的光学膜、二醇化合物、二酯化合物 | |
JP2015199706A (ja) | オリゴフルオレンジエステル、及びそれを用いた樹脂組成物の製造方法 | |
TWI853962B (zh) | 熱可塑性樹脂、由該樹脂所成之光學膜、二元醇化合物、二酯化合物 | |
JP6318787B2 (ja) | オリゴフルオレンジアリールエステルの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20170424 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170829 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180530 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A132 Effective date: 20180703 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180829 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181106 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181119 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6447228 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |