WO2006011520A1 - セラミックヒーター及びそれを用いた加熱用コテ - Google Patents

セラミックヒーター及びそれを用いた加熱用コテ Download PDF

Info

Publication number
WO2006011520A1
WO2006011520A1 PCT/JP2005/013748 JP2005013748W WO2006011520A1 WO 2006011520 A1 WO2006011520 A1 WO 2006011520A1 JP 2005013748 W JP2005013748 W JP 2005013748W WO 2006011520 A1 WO2006011520 A1 WO 2006011520A1
Authority
WO
WIPO (PCT)
Prior art keywords
brazing material
lead member
ceramic heater
lead
metallized layer
Prior art date
Application number
PCT/JP2005/013748
Other languages
English (en)
French (fr)
Inventor
Takafumi Tsurumaru
Takahiro Maruyama
Original Assignee
Kyocera Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corporation filed Critical Kyocera Corporation
Priority to KR1020077002712A priority Critical patent/KR101201388B1/ko
Priority to JP2006527827A priority patent/JPWO2006011520A1/ja
Priority to GB0703837A priority patent/GB2432093B/en
Priority to CN200580023302XA priority patent/CN101015231B/zh
Publication of WO2006011520A1 publication Critical patent/WO2006011520A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/06Heater elements structurally combined with coupling elements or holders
    • H05B3/08Heater elements structurally combined with coupling elements or holders having electric connections specially adapted for high temperatures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/48Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/022Heaters specially adapted for heating gaseous material

Definitions

  • the present invention relates to a ceramic heater and a heating iron constructed using the ceramic heater.
  • ceramic heaters have been widely used as heat sources for petroleum vaporizers such as semiconductor heaters, soldering irons, hair irons, petroleum fan heaters, etc., or as heat sources in glow systems, etc. Yes.
  • This ceramic heater has various shapes such as a flat plate, a "columnar", and a cylindrical shape.
  • any force such as W, Re, Mo, etc. in a ceramic substrate mainly composed of alumina. It is configured by embedding a conductor made of a melting point metal.
  • Figure 11 shows a cylindrical ceramic heater as an example.
  • This ceramic heater includes a ceramic body in which a conductor is embedded, a terminal mounting electrode portion 106 provided on the surface thereof, and a lead member 110 joined to the surface by a brazing material 111.
  • the terminal electrode portion 106 is composed of a metallized layer and a Ni plating layer, and the embedded conductor and the metallized layer are connected to supply power to the embedded conductor (Patent Document 1). ).
  • Patent Document 1 JP-A-8-109063
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-286047
  • the present invention provides a highly durable ceramic heater that has excellent durability even under severe conditions such as high temperature, vibration, and exhaust gas atmosphere, and is highly resistant to rapid heating and cooling.
  • the purpose is to provide.
  • Another object of the present invention is to provide a heating iron having high durability.
  • a first ceramic heater according to the present invention includes a ceramic body having a built-in conductor and a metallized layer electrically connected to the conductor, and a brazing material bonded to the metallized layer.
  • a second ceramic heater according to the present invention includes a ceramic body having a built-in conductor and a metallized layer electrically connected to the conductor, and a lead member joined to the metallized layer with a brazing material.
  • the brazing material contains two or more kinds of metals, and the two or more kinds of metals are identifiable in the brazing material.
  • “identifiable” in the present invention means that two or more kinds of metals are mixed together without becoming a solid solution.
  • the cross section of the brazing portion is scanned using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • Each metal phase can be confirmed by looking at the backscattered electron image (BEI). Double of observation
  • BEI backscattered electron image
  • the heating iron according to the present invention is characterized in that the first or second ceramic heater according to the present invention is used as a heating means.
  • the first ceramic heater according to the present invention configured as described above secures a bonding area between the lead wire and the brazing material by determining a covering region range of the brazing material to the lead member at the joining portion, The stress generated in the thermal cycle can be reduced.
  • the first ceramic heater of the present invention a highly reliable joint with excellent durability can be formed, and a highly durable ceramic heater can be provided.
  • the second ceramic heater according to the present invention includes two or more kinds of metals as a brazing material, and the two or more kinds of metals are present in an identifiable state, thereby constituting the brazing material. Since the composition part on the lower resistance side of two or more types of metals involved in the energization, the electrical resistance value can be reduced. As a result, the amount of heat generated in the brazing material can be reduced, the reliability of the joining of the brazing material to the metallized layer and the lead member can be improved, and a ceramic heater with high durability can be provided.
  • FIG. 1A is a perspective view of a ceramic heater according to a first embodiment of the present invention.
  • FIG. 1B is a cross-sectional view of the ceramic heater according to the first embodiment.
  • FIG. 2 is a cross-sectional view for illustrating a joint portion of a lead member 10 in the ceramic heater according to the first embodiment.
  • FIG. 3A is a perspective view showing a first step in the process of manufacturing the ceramic heater of the first embodiment.
  • FIG. 3B is a perspective view showing a second step in the process of manufacturing the ceramic heater according to the first embodiment.
  • FIG. 3C is a perspective view showing a third step in the process of manufacturing the ceramic heater according to the first embodiment.
  • FIG. 3D is a perspective view showing a fourth step in the process of manufacturing the ceramic heater according to the first embodiment.
  • FIG. 4 is a perspective view of a ceramic heater 100 according to a second embodiment of the present invention.
  • FIG. 5 is a schematic sectional view of a brazed portion of the ceramic heater 100 shown in FIG.
  • FIG. 6 is a cross-sectional photograph showing an example of a cross section of a brazed portion of the ceramic heater 100 of the second embodiment.
  • FIG. 7 is an enlarged photograph of region E shown in FIG.
  • FIG. 8 is an enlarged photograph of region D shown in FIG.
  • FIG. 9 is an enlarged photograph of region C shown in FIG.
  • FIG. 10 is a perspective view showing a heating iron that works according to an embodiment of the present invention.
  • FIG. 11 is a perspective view of a conventional ceramic heater.
  • FIG. 12 is a cross-sectional photograph of a brazed portion of a conventional ceramic heater.
  • FIG. 1A is a perspective view schematically showing a ceramic heater according to Embodiment 1 of the present invention
  • FIG. 1B is a cross-sectional view taken along line AA in FIG. 1A
  • FIG. It is sectional drawing which shows a structure.
  • the ceramic heater 1 includes a cylindrical ceramic core material 2 and ceramic ceramics wound around the ceramic core material 2 with an adhesive layer 8 interposed therebetween.
  • the conductor 4, the lead lead-out portion 5, and the electrode lead-out portion 12 are embedded between the ceramic core 2 and the ceramic sheet 3.
  • the electrode extraction part 12 is connected to a metallized layer 6 a provided on the outer side of the ceramic sheet 3.
  • a Ni layer plating layer 6b is formed on the surface of the metallization layer 6a.
  • the metallization layer 6a and the plating layer 6b constitute a terminal lead electrode 6, and the terminal lead electrode 6 and the lead member 10 are brazed. Bonded and fixed by material 11.
  • the electrode extraction part 12 and the metallized layer 6a are connected via a via hole 7 provided under the metallized layer 6a of the ceramic sheet 3 as shown in FIG. 1B.
  • the conductor 4 when the metallized layer 6a is energized through the lead member 10, the conductor 4 generates heat and functions as a heater.
  • the covering height 18 of the covering region which is the region where the brazing material 11 covers the lead member 10
  • the terminal mounting current in the lead member 10 It is characterized by being set in the range of 40 to 99% of the distance between the closest end closest to the pole 6 and the upper end farthest from the terminal mounting electrode 6 of the lead member 10.
  • the covering height 18 in the cross section of the lead member 10 is from the nearest end 16 closest to the terminal mounting electrode 6 to the far end from the terminal mounting electrode 6 to the upper end 17. If the distance is less than 40% of the distance (hereinafter referred to as the lead height in the present specification), the area of the bonding interface between the lead member 10 and the brazing material 11 is small, so the initial lead bonding strength The variation of low will become large. However, when the covering height of the brazing material 11 is 40% to 99% of the lead height as in the first embodiment, a sufficient bonding area can be secured. In addition, the initial lead bonding strength can be increased and the variation can be reduced.
  • the lead height is the diameter of the circular cross section of the lead member 10.
  • the covering height 18 covering the lead member 10 with the brazing material 11 exceeds 99% of the lead height and is covered with the filler material, when the thermal cycle test is performed, the lead member Cracks are easily generated at the interface between 10 and the brazing material 1 1 and lead bonding strength is reduced.
  • the lead member 10 is covered with the brazing material to such an extent that the lead height exceeds 99% with respect to the coating height 18, the lead member 10 is relieved by the difference in linear thermal expansion between the lead member 10 and the brazing material 11. Stress is generated at the interface between the solder member and the brazing material, and cracks are generated at the interface because there is no stress escape.
  • the linear thermal expansion values of the lead member 10 and the brazing material 11 are compared, the lead member 10 and the brazing material 11 are obtained. Specifically, when the thermal cycle test is performed with the lead member covered with the brazing material V around the entire circumference, cracks are generated at the interface between the lead member and the brazing material.
  • the covering height 18 with respect to the lead height is set in the range of 40% to 99%, a part of the lead member 10 is covered with the brazing material 11, and therefore, the thermal cycle.
  • the stress generated by the difference in thermal expansion between the lead member 10 and the brazing material 11 can be relieved, and cracks do not occur at the interface between the lead member and the brazing material in the thermal cycle test.
  • the coating height 1 8 is preferably set in the range of 60% to 99%.
  • the range of the covering height 18 with respect to the lead height can be controlled by the wettability of the lead member 10 and the brazing material, and more specifically, the material and surface roughness of the lead member 10 and the brazing material. It is controlled by the material, temperature during bonding, and atmosphere. In the first embodiment, it is particularly preferable to control by the surface roughness of the lead member 10, and if this is controlled, the covering height can be set within a predetermined range relatively easily and reliably.
  • the void 13 is present at the interface between the lead member 10 and the brazing material. If there is no void at the interface between the lead member 10 and the brazing material, the surface temperature of the lead member increases due to heat conduction from the ceramic body 9 to the lead member 10 when the ceramic heater 1 generates heat. When the void 13 is present, heat conduction from the ceramic body 9 to the lead member 10 is hindered, and the surface temperature of the lead member is lower than when no void is present. Therefore, if there is a void 13 at the interface between the lead member 10 and the brazing material, the thermal stress at the joint is reduced, and deterioration of the lead joint strength after the thermal cycle test can be reduced.
  • a void 13 of 0.1 to 200 ⁇ m is formed in the range of 20 to 40% of the interface. More preferably it is present.
  • the first embodiment when there is no diffusion layer 14 to the brazing material 11 of the component of the lead member 10, there is a diffusion layer 14 at the interface where the lead bonding strength after the initial and thermal cycles is low.
  • the initial lead bonding strength is increased. This is thought to be due to the diffusion of the components of the lead member 10 into the brazing material 11, and a part of the interface changed from physical bonding to chemical bonding, leading to high lead bonding strength. Therefore, in the present invention, it is preferable that the components of the lead member 10 are diffused in the brazing material 11.
  • the distance (thickness) of the diffusion layer 14 at the interface is preferably 3 to 30 111, more preferably 0.1 to 30 111.
  • the diffusion layer 14 is less than 0.1 m, it has the effect of improving the lead bonding strength.
  • the diffusion layer is larger than 30 m, the lead member 10 component diffuses to the brazing material 11 in a large amount. As a result, the hardness of the brazing material 11 becomes high, and cracks are likely to occur in the brazing material 11 after the thermal cycle test, which may reduce the lead joint strength.
  • the arithmetic average surface roughness Ra on the surface of the lead member 10 is 0.05 to A range of 5 m is preferred. If the arithmetic average surface roughness Ra on the surface of the lead member 10 is less than 0.05 ⁇ m, the diffusion layer 14 may only form 0.05 ⁇ m, which is effective in improving the lead joint strength after thermal cycling. If the arithmetic mean surface roughness Ra is greater than 5 ⁇ m, when the lead bond strength after thermal cycling is measured, the lead surface force may crack due to thermal cycling, leading to lead wire breakage.
  • the ceramic green sheet 23 is inverted to form a conductor base layer that becomes the metallized layer 26 on the back surface (see FIG. 3C).
  • the formed body thus formed is fired in a reducing atmosphere of 1500 to 1650 ° C to obtain a ceramic body 9, and then Ni is formed on the surface of the metallized layer 6a as shown in FIG. After forming the plating layer 6b which also has a force, the lead member 10 is fixed by the brazing material 11 to obtain the ceramic heater 1.
  • alumina, silicon nitride, aluminum nitride, silicon carbide, mullite, or the like can be used as the material of the ceramic heater 1.
  • MgOO. 5 to 3% by weight, ZrO 0 to 3% by weight can be used.
  • silicon nitride Si N 85-95 wt%, rare earth such as Y 2 O, Yb 2 O, Er 2 O
  • the shape of the ceramic heater 1 may be a plate shape in addition to a cylindrical shape and a cylindrical shape.
  • the ceramic heater of the present invention is not limited to these examples, and does not depart from the gist of the present invention!
  • the ceramic heater 100 according to the second embodiment shown in FIGS. 4 and 5 is similar to the first embodiment in that the conductor 4 is built in the ceramic base 9, and the electrode is extended to the surface of the ceramic base 9.
  • a metallized layer 6a connected to the electrode extraction part 12 is formed on the part 12.
  • the lead member 10 is brazed with the brazing material 11 to the terminal mounting electrode 6 constituted by the metallized layer 6a.
  • a metal layer is formed on the metallized layer 6a as necessary (not shown), and the terminal-attached electrode 6 is constituted by the metallized layer 6a and the metal layer.
  • the ceramic substrate 9 is produced by, for example, producing a green sheet (a portion that becomes the sheet 3 after firing) by a doctor blade method, and producing a molded body that becomes the cylindrical ceramic core material 2 by an extrusion method, It is possible to obtain these by integrating them.
  • alumina ceramics Al O 88 to 95 weight 0/0, SiO 2 to 7 weight 0/0, Ca
  • silicon nitride ceramics, aluminum nitride ceramics, silicon carbide ceramics, and the like are not limited to alumina ceramics.
  • the conductor 4 is printed on the green sheet by a screen printing method, and the electrode extraction portion 12 is formed in a through-hole formed in advance by punching or the like at a predetermined position on the green sheet.
  • the material of the conductor 4 and the electrode lead-out part 12 is mainly composed of W, Mo, and Re, and alloys thereof, metal silicides such as TiN and WC, and metal carbides are added.
  • the conductor 4 and the electrode lead-out portion 12 are preferably screen-printed separately by adjusting these materials so that the resistance of the conductor 4 is high and the resistance of the electrode lead-out portion 12 is low.
  • Al O is the main component on the conductor 4, and SiO, MgO, etc. are covered. Frightened
  • the integrated molded body is fired in a reducing atmosphere of 1500 ° C to 1650 ° C, whereby a desired sintered body can be obtained.
  • a paste containing W as a main component is applied to the electrode extraction portion 12 of the obtained sintered body and baked in a vacuum to form the metallized layer 6a.
  • the material of the metallized layer 6a conductive components and thus, it is preferable to contain W, Mo, Re, which are refractory metals, and alloys thereof.
  • the thickness of the metallized layer 6a is preferably 10 m or more. If the thickness is less than 10 / zm, the adhesion strength between the electrode extraction portion 4 and the ceramic substrate 9 is low, and the durability of the tensile strength of the lead member 10 against the heat cycle during use is not preferable. More preferably, the thickness is 15 m or more, ideally 20 m or more.
  • the thickness of the metallized layer 6a affects the tensile strength of the lead member 10 is that the metallized layer 6a is a porous sintered body of a refractory metal having W, Mo, Re, etc. This is because the glass component of the boundary diffuses and the strength is increased by this anchor effect. Therefore, as the thickness of the metallized layer 6a increases, the tensile strength of the joined lead member 10 increases.
  • the metallized layer 6a may be subjected to plating.
  • the lead member 10 is attached to the metallized layer 6a by vacuum brazing.
  • the material of the lead member 10 it is preferable to use a Ni-based or Fe-Ni-based alloy having good heat resistance. This is because the heat transfer from the conductor 4 may cause the temperature of the lead member 10 to increase during use and deteriorate.
  • the average crystal grain size is preferably 400 m or less. If the average particle size force exceeds OO / zm, the lead member in the vicinity of the brazed portion is fatigued and cracks are generated due to vibration and thermal cycle during use, which is not preferable.
  • the particle diameter of the lead member 10 is larger than the thickness of the lead member 10, stress is concentrated on the grains near the boundary between the brazing material 11 and the lead member 10, and cracks are generated. Absent . To reduce the average crystal grain size of the lead member 10 to 400 m or less, lower the brazing temperature as much as possible and shorten the processing time.
  • the feature of the present invention is the structure in the brazing material 11. That is, as shown in FIGS. 6 to 9, the brazing material contains two or more kinds of metals, preferably two kinds of metals, and has a structure in which these metals are present in spots or a structure in which they are scattered.
  • “present in spots” and “spotted” mean that two or more kinds of these metals exist in a state where they can be distinguished using a microscope, for example.
  • Figure 6 also shows a rectangular cross section An example using the lead member 10a is shown.
  • the mottled or scattered metal may be selected from at least two elements of Group 10 (Ni, Pd, Pt, etc.) or Group 11 (Cu, Ag, Au, etc.) as the main component. desirable. This is because Group 10 and Group 11 elements have a relatively small diffusion coefficient and suppress metal diffusion, making it difficult to form a uniform phase. Because it is excellent.
  • brazing material 11 examples include Ag-Cu brazing, Au-Cu brazing, and the like, but it is more preferable to employ Ag-Cu brazing.
  • the brazing material 11 After brazing the lead member 10 to the metallized layer 6a as described above, in order to cause two or more kinds of metals (for example, Ag and Cu) to be present or scattered in the brazing material 11, the brazing material 11 It is necessary to adjust the holding time when kissing.
  • the melting temperature (melting point) of BAg-8 is about 780 ° C, so the brazing temperature is maintained from 780 ° C to 800 ° C.
  • the time within this range where it is preferable to set the time to 5 to 40 minutes, it is possible to disperse the Ag and Cu inside the brazing material 11 and to make it scattered. .
  • the holding time at the brazing temperature is preferably less than 60 minutes.
  • the holding time at the brazing temperature is at least 5 minutes in order to sufficiently dissolve the brazing material.
  • FIG. 12 is a cross-sectional photograph showing the brazed portion of the brazing material 111 in the ceramic heater shown in FIG.
  • the brazing material 111 an Ag—Cu based or Au—Cu based brazing material composed of two or more kinds of metals is used.
  • the cross section of the brazing material portion after brazing is present as a uniform metal without segregation of the metal composition.
  • the holding time at the brazing temperature should be less than 60 minutes, and the Ag content should be 60 to 90% by weight.
  • the Ag content preferably set to 70 to 75 weight 0/0.
  • the melting temperature of the Ag-Cu wax approaches the eutectic point (the temperature at which Ag and Cu melt together, and one of them does not exist as a solid), and the temperature at which Ag and Cu are in the liquid phase is lowered.
  • the brazing temperature can be lowered and the residual stress after brazing is also reduced.
  • FIG. 7 is an enlarged photograph of region E in FIG. 6 (near the interface between the brazing material and the metallized layer), and region D (near the interface between the brazing material and the metallized layer and the brazing material and the lead member) in FIG. ) Is a magnified photograph of region C (near the interface between the brazing material and the lead member) in FIG. 8 and FIG.
  • a Cu layer 6c is formed in the brazing material 11 made of a metal layer having a Young's modulus of 180 GPa or less, for example, Ag and Cu, which is not patchy. Preferably it is done.
  • the Cu layer 6c adjacent to the interface between the brazing material 11 and the metallized layer 6a functions as a stress relaxation layer against the residual stress after soldering, the residual stress in this part is reduced, and brazing The joint strength of the lead member 7 is improved and the joint strength after durability is improved.
  • the Cu layer 6c In order to form the Cu layer 6c, it is effective to apply a Cu plating to the metallized layer 6a and the portion in contact with the brazing material 11 in advance by attaching the lead member 10 in advance.
  • a Cu plating In Ag and Cu, Cu has a lower surface tension, so it is easy to selectively wet Cu in the part where the brazing material 11 melts and contacts during brazing.
  • the Cu layer 6c can be formed at a portion adjacent to the interface between the metallized layer 6a and the lead member in contact with the brazing material.
  • the Cu layer 6c has irregularities on the side opposite to the interface with the metallized layer 6a, and the thickness of the convex portions is preferably 10 ⁇ m or less including the convex portions.
  • the total thickness of layer 6c is It is preferably 20 ⁇ m or less.
  • the Cu layer 6c forms unevenness at the interface with the dissimilar material in contact with this, and the unevenness functions as a stress relaxation layer, so that the bonding strength after durability is improved.
  • the force described for the uneven surface of the Cu layer 6c is not limited to Cu.
  • the present invention is not limited to Cu, and the height of the entire layer including the protrusions is 10 m or less. Even when a metal layer other than Cu is present at the interface, the adhesion strength at the interface can be improved, and the reliability and durability can be improved.
  • the adhesion strength of the brazing material is lowered.
  • the retention time at the melting temperature of the brazing material is preferably 5 to 20 minutes.
  • the metallized layer 6 a is preferably made of a conductive material having a low coefficient of thermal expansion in order to reduce residual stress due to a difference in thermal expansion with the ceramic substrate 9, which is baked onto the ceramic substrate 9 in a vacuum.
  • the main component of the metallized layer 6a is more preferably 5.5 X 10 _6 Z ° C or less in terms of thermal expansion coefficient. Specifically, it is preferable that W or Mo having the above physical properties be a main component. Thereby, the residual stress at the time of baking of the metallized layer 6a generated at the interface between the ceramic substrate 9 and the metallized layer 6a is relaxed.
  • the diffusion of such metal into the brazing material reduces the thermal expansion coefficient of the brazing material, reduces the residual stress after brazing that occurs at the interface with the metallized layer, and the electrode extraction portion.
  • the reliability of joining with the brazing material and the lead member is improved, and the reliability and durability of the ceramic heater can be further improved.
  • the main component of the metallized layer 6a having a small thermal expansion coefficient may be diffused into the brazing material. This can be done by heat treatment after brazing. This heat treatment is preferably performed at a temperature below the melting temperature of the brazing material in a reducing atmosphere containing hydrogen gas or the like, and more preferably at 700 ° C to 750 ° C.
  • the metal or alloy having a coefficient of thermal expansion of 5.5 X 10 _6 Z ° C or less is soldered. It diffuses into the material, reduces the thermal expansion coefficient of the brazing material, and improves the strength of the brazed part after durability.
  • a plating layer such as N on the surface of the brazing material 11 in order to improve the high temperature durability and protect the brazing material 11 from corrosion.
  • this Ni plating layer In order for this Ni plating layer to function as a protective layer, if the grain size of the crystals constituting the plating layer is 10 m or less, it should be present as a dense and dense plating layer on the surface of the brazed portion. Can do. When this particle size is 5 m or less, the surface plating layer is further densified, and at the same time, Ni can diffuse into the brazing material 11.
  • Ni has a hard Young's modulus of 250 MPa
  • the Ni diffused into the brazing material 11 increases the internal hardness of the brazing material 11 and improves the internal strength of the brazing material 11.
  • the initial bonding strength with the lead member and the bonding strength after durability can be improved.
  • the reliability and durability of the ceramic heater can be improved.
  • the plating layer it is preferable to use a boron-based electroless Ni plating.
  • the electroless plating can be coated with a phosphorus-based electroless plating layer.
  • boron-based electroless plating is usually used. It is common to apply electrolytic Ni plating.
  • FIG. 10 is a perspective view showing an example of a heating iron using the ceramic heater 1 or the ceramic heater 100 of the present invention.
  • This heating iron inserts hair between the arms 32 at the tip, and grips the handle 31 to heat and pressurize the hair to process the hair.
  • Ceramic heater 1 or ceramic heater 100 is inserted inside arm 32, and a metal plate 33 such as aluminum, a metal plate coated with a surface, a ceramic plate, etc. are installed in the part that directly touches the hair. Has been.
  • a heat-resistant plastic cover is attached to the outside of the arm 32 to prevent burns.
  • the ceramic heater of the present invention was produced by the following method.
  • the main component is alumina, and 6% by weight of SiO, 2% by weight of MgO,
  • Ceramic core material 2 with an outer diameter of 15 mm and ceramic green with a thickness of 800 ⁇ m Sheet 23 was prepared by extrusion and tape casting methods.
  • a conductor 24 made of tungsten (W), a lead extraction portion 25 and an electrode extraction portion 28 were printed on one main surface of the ceramic green sheet 23.
  • the metallized layer 26 was printed on the back surface of the end of the electrode lead-out portion 28, and a through hole for a via hole was formed in the metallized layer 26.
  • a via hole 7 was formed by embedding a paste having a tungsten (W) force in the through hole, and the electrode extraction part 28 and the metallized layer 26 were connected.
  • the raw ceramic body 9 thus prepared was fired and sintered at 1600 ° C in a reducing atmosphere, and a metal layer 6b was formed to have a thickness of 5 m by electroless plating with N on the surface of the metallized layer 6a.
  • the lead member 10 is brazed on the terminal mounting electrode 6 of the sample obtained as described above.
  • the lead member 10 is joined by changing the amount of the brazing material 11 that also has Ag brazing force.
  • Samples for evaluation having different brazing material coating heights 18 on the surface of the lead member 10 were produced within a range of 20 to 100% of the lead height. For each of these evaluation samples, initial lead bonding strength, thermal cycle test (25 ° C '3 min 400 ° C' 3 min), lead bond strength after 3,000 cycle test, and occurrence of interface cracks 0 confirmed percentage
  • the lead joint strength was measured by pulling the lead member 10 in a direction perpendicular to the terminal mounting electrode 6.
  • Table 1 shows the results of determination of the covering region 18 on the surface of the lead member 10, the initial lead joint strength, and the lead joint strength after the thermal cycle test (3000 cycles).
  • Nos. 1 and 6 are outside the scope of the present invention.
  • the data after the thermal cycle test in the table The data is the data after 3000 cycles of the thermal cycle test.
  • the value of “cover height with respect to lead height” is a value obtained by measuring the portion where the cover height with respect to the lead height is the highest in the length direction of the lead member.
  • the initial lead bonding strength was determined to be 85N or more, the lead bonding strength after the thermal cycle test was 35 to 50N, ⁇ was 50 to 60N, and ⁇ was 60N or more.
  • the coating area 18 on the surface of the lead members 10 of No 2 to 5 within the range of Example 1 of the present invention was 40 to 99%.
  • Initial force and thermal cycle The average value of the lead joint strength after the test was high, and good results were obtained. Among them, the results with a coating area 18 on the surface of the No. 3-5 lead member 10 of 60-99% were very good.
  • the covering area 18 on the surface of the lead member 10 of Nol which is a comparative example, is 20%, the lead bonding strength after the initial and thermal cycle tests is low, and the surface of the No6 lead member 10 is reduced. Although the initial lead joint strength was high when the coating area 18 was 100%, the lead joint strength after the thermal cycle test was low.
  • the surface area of the lead member 10 of Nos. 2 to 5, which is Example 1 of the present invention, has a coating area 18 of 40 to 99%. Since there is no crack at the interface, there is little decrease in lead joint strength. This is considered to be the result.
  • the V deviation is also a sample with a coating height of 60%.
  • Example 1 of the present invention the size of the void 13 generated at the interface between Nol 3 to 15 and 17 to 19 is 0.1 to 200 / ⁇ , and the occupation ratio of the void 13 at the interface is 20 to 40%. Range strength of lead The lead joint strength after thermal cycling test was over 60%, and very good results were obtained.
  • the lead member surface temperature of No7 is high, leading to a decrease in lead joint strength after the thermal cycle test, and No20 to 23 have a large void 13 occupancy ratio of 50% in the interface.
  • the surface temperature of the lead member is 20 ° C or less, but the joint strength is low.
  • Nol2 and 16 are considered to have a low lead joint strength due to the large void 13 size of 250 m.
  • Samples were prepared by changing the distance and the distance of the diffusion layer 14 from the interface by changing the bonding temperature and time.
  • the lead bonding strength after the initial and thermal cycle tests was measured, and the initial lead bonding strength was measured.
  • Table 3 shows the results of determining that the degree of adhesion was 85N or higher, the lead joint strength after thermal cycling test was ⁇ for 35-50N, ⁇ for 50-60N, and ⁇ for 60N or more.
  • Example 1 of the present invention the distance of the diffusion layer 14 from the interface of No. 26 to 29 is in the range of 3 to 30 / ⁇ ⁇ , and the lead joint strength after the thermal cycle test is as high as 60 mm or more, which is very good. Results were obtained. In addition, when the distance of the diffusion layer 14 from the interface of ⁇ 25 was 0.1 ⁇ m, the lead joint strength after the thermal cycle test was 50 to 60 N, and good results were obtained. This is thought to be due to the fact that the lead bonding strength increased because the lead member component diffused into the brazing material and the interface changed from physical bonding to chemical bonding.
  • No24 which has no diffusion layer, has a diffusion layer 14 of 45 / zm at the initial stage and low in the lead bonding strength after the thermal cycle test.
  • No30 has a large amount of lead component to the brazing material 11.
  • the brazing material 11 increased in hardness due to diffusion, and cracks occurred in the brazing material 11 after the thermal cycle test, leading to a decrease in lead joint strength.
  • the arithmetic mean surface roughness Ra of the lead member 10 of 32 ⁇ 32 to 37 which is Example 1 of the present invention, is in the range of 0.05 to 5 / ⁇ ⁇ , and the lead joint strength after the thermal cycle test is 60 ⁇ or more Very good results were obtained. From the evaluation results, as the arithmetic average surface roughness Ra of the lead member 10 increases, the diffusion layer 14 having an interfacial force tends to be easily generated, and as the arithmetic average surface roughness Ra of the lead member 10 increases, The lead joint strength after the thermal cycle test tends to increase due to the anchor effect.
  • the arithmetic average surface roughness Ra of the lead member 10 having a small distance between the diffusion layers 14 having an interfacial force is small, and thus a sufficient anchor effect cannot be obtained, so that the lead after the thermal cycle test is obtained.
  • the joint strength is considered to be low, and No38 has a lead joint strength of 9 ⁇ m because the distance of the diffusion layer from the interface is sufficient, but the arithmetic average surface roughness Ra of lead member 10 is 7 ⁇ m.
  • the surface force of the lead member 10 also developed cracks, so it broke at 36N in the lead break mode.
  • the conductor 4 and the electrode extraction part 12 were formed by printing a paste made of W.
  • a cylindrical molded body is manufactured by an extrusion molding method, and a ceramic sheet on which the conductor 4 is printed is wound around and closely adhered to the cylindrical molded body, and fired in a reducing atmosphere at 1600 ° C to be a ceramic heater. 20 100 each were prepared. [0091] Then, an electroless Ni plating having a thickness of 5 ⁇ m was applied to the surface of the electrode extraction portion 12, and a paste containing W as a main component was applied to the electrode extraction portion 12 and baked in a vacuum furnace.
  • brazing was carried out by changing the brazing conditions to brazing temperatures of 780 ° C, 800 ° C, 820 ° C and holding times of 5, 10, 40, and 60 minutes, respectively.
  • the initial tensile strength and the tensile strength after continuous energization at 400 ° C for 800 hours were measured.
  • the peel strength was measured by pulling the end of the lead member 4 in a direction perpendicular to the main surface of the ceramic heater 100.
  • the cross section of two each mouthpiece was observed with an electron microscope, and the structure inside the brazing material was confirmed. The results are shown in Table 5.
  • the layer of the brazing material interface means a layer at the interface between the metallized layer and the brazing material and the interface between the lead member and the brazing material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Resistance Heating (AREA)

Abstract

 高温や振動や排気ガス雰囲気などの過酷な条件下でも耐久性に優れ、急速な加熱冷却に対して高い信頼性を有する耐久性の高いセラミックヒーターを提供するために、そのセラミックヒーターは、内蔵された導体とその導体と導通するメタライズ層とを有するセラミック体と、前記メタライズ層にロウ材で接合されたリード部材とを備え、前記ロウ材の前記リード部材を覆う被覆領域が、前記リード部材における前記メタライズ層に最も近い近接端と前記メタライズ層から最も離れた上端までの距離の40~99%の範囲に設定されている。

Description

明 細 書
セラミックヒーター及びそれを用いた加熱用コテ
技術分野
[0001] 本発明は、セラミックヒーターとそれを用いて構成した加熱コテに関するものである。
背景技術
[0002] 従来から、セラミックヒーターは、半導体加熱用ヒーター、半田ごて、ヘアーごて、石 油ファンヒーター等の石油気化器用熱源等として、またはグロ一システム等における 発熱源として広範囲に使用されている。また、近年では、空燃比検知センサ (酸素セ ンサ一)加熱用など、特に車載向けのセラミックヒーターの用途が増大している。
[0003] このセラミックヒーターには、平板状'円柱状'円筒状など種々の形状のものがある 力 いずれも、例えば、アルミナを主成分とするセラミック基体中に、 W、 Re、 Mo等の 高融点金属からなる導体を埋設することにより構成されている。図 11には、その一例 として、円柱形状のセラミックヒーターを示す。このセラミックヒーターは、導体が埋設 されたセラミック体とその表面に設けられた端子取付電極部 106とその表面にロウ材 111により接合されたリード部材 110からなつている。この端子電極部 106は、メタラ ィズ層と Niメツキ層からなっており、埋設された導体に電力を供給する為に、埋設さ れた導体とメタライズ層が接続されて ヽる (特許文献 1)。
[0004] また、近年では、信頼性を向上させるために、ロウ材外縁のロウ材端部における接 線と、電極外縁のロウ材端点と接する点における接線とのなす角度の範囲規定した セラミックヒーターも提案されて 、る(特許文献 2)。
特許文献 1 :特開平 8— 109063号公報
特許文献 2:特開 2000 - 286047号公報
発明の開示
発明が解決しょうとする課題
[0005] し力しながら、近年、需要が増大している車載向けのセラミックヒーターにおいては 、高温や振動や廃棄ガス雰囲気などの過酷な使用環境下にあるため、信頼性、特に リード部材を固定して 、る接合部にぉ 、て高 、信頼性が求められるようになってきて いる。
[0006] また、最近、セラミックヒーターを用いて構成した装置において、早い立ち上がり特 性が要求されるようになっており、このような早い立ち上がりが要求されるセラミックヒ 一ターでは接合部における温度変化も激しぐ接合部において高い信頼性が求めら れる。すなわち、リード部材を端子取付電極部に固定するためのロウ材とセラミック基 体との熱膨張差によりこのロウ付け部に応力が集中し、セラミックヒーターの耐久性が 低下すると 、う問題が発生してきて 、る。
[0007] 特に、例えばヘアアイロンのように、発熱領域が広くセラミックヒーター全体が保持 部材に挟持されるようなセラミックヒーターにおいては、加熱と同時に電極取出部が 急速加熱されるため、耐久性の向上が重要な課題となってきている。
[0008] そこで、本発明は、高温や振動や排気ガス雰囲気などの過酷な条件下でも耐久性 に優れ、急速な加熱冷却に対して高 、信頼性を有する耐久性の高 、セラミックヒータ 一を提供することを目的とする。
本発明は、また、高い耐久性を有する加熱コテを提供することを目的とする。
課題を解決するための手段
[0009] 以上の目的を達成するために、本発明に係る第 1のセラミックヒーターは、内蔵され た導体とその導体と導通するメタライズ層とを有するセラミック体と、前記メタライズ層 にロウ材で接合されたリード部材とを備え、前記ロウ材の前記リード部材を覆う被覆領 域力 前記リード部材における前記メタライズ層に最も近!、近接端と前記メタライズ層 力も最も離れた上端までの距離の 40〜99%の範囲に設定されていることを特徴とす る。
[0010] また、本発明に係る第 2のセラミックヒーターは、内蔵された導体とその導体と導通 するメタライズ層とを有するセラミック体と、前記メタライズ層にロウ材で接合されたリー ド部材とを備え、前記ロウ材が 2種類以上の金属を含有してなり、該 2種類以上の金 属が前記ロウ材において識別可能に各々存在することを特徴とする。
尚、本発明における識別可能とは、 2種類以上の金属が固溶体となることなく入り混 じっていることをいい、例えば、ロウ付け部の断面を走査型電子顕微鏡 (SEM)を用 いて、反射電子像 (BEI)を見ることで各金属相が確認できることをいう。観察時の倍 率は、例えば、 50倍以上である。
[0011] さらに、本発明に係る加熱用ゴテは、本発明に係る第 1又は第 2のセラミックヒータ 一を発熱手段として用いたことを特徴とする。
発明の効果
[0012] 以上のように構成された本発明に係る第 1のセラミックヒーターは、接合部において リード部材へのロウ材の被覆領域範囲を決めることによりリード線とロウ材の接合面積 を確保し、熱サイクルで発生する応力を少なくすることができる。
従って、本発明に係る第 1のセラミックヒーターによれば、耐久性に優れた高信頼性 の接合が形成でき、耐久性の高いセラミックヒーターを提供することが可能になる。
[0013] また、本発明に係る第 2のセラミックヒーターは、ロウ材として 2種類以上の金属を含 有させ、この 2種類以上の金属を識別可能な状態で存在させることにより、ロウ材を構 成する 2種類以上の金属のより低抵抗側の組成部分が通電に関わるため、電気的抵 抗値を低減させることが可能となる。これにより、ロウ材における発熱量を低減し、ロウ 材とメタライズ層およびリード部材との接合の信頼性を向上させることができ、耐久性 の高 、セラミックヒーターを提供できる。
図面の簡単な説明
[0014] [図 1A]本発明に係る実施の形態 1のセラミックヒーターの斜視図である。
[図 1B]実施の形態 1のセラミックヒーターの断面図である。
[図 2]実施の形態 1のセラミックヒーターにおけるリード部材 10の接合部を示すための 断面図である。
[図 3A]実施の形態 1のセラミックヒーターの製造工程における、第 1工程を示す斜視 図である。
[図 3B]実施の形態 1のセラミックヒーターの製造工程における、第 2工程を示す斜視 図である。
[図 3C]実施の形態 1のセラミックヒーターの製造工程における、第 3工程を示す斜視 図である。
[図 3D]実施の形態 1のセラミックヒーターの製造工程における、第 4工程を示す斜視 図である。 [図 4]本発明に係る実施の形態 2のセラミックヒーター 100の斜視図である。
[図 5]図 4に示すセラミックヒーター 100のロウ付け部の断面模式図ある。
[図 6]実施の形態 2のセラミックヒーター 100のロウ付け部断面の一例を示す断面写 真である。
[図 7]図 6に示す領域 Eの拡大写真である。
[図 8]図 6に示す領域 Dの拡大写真である。
[図 9]図 6に示す領域 Cの拡大写真である。
[図 10]本発明の一実施形態に力かる加熱用コテを示す斜視図である。
[図 11]従来のセラミックヒーターの斜視図である。
[図 12]従来のセラミックヒーターのロウ付け部の断面写真である。
符号の説明
1、 100:セラミックヒーター、
2:セラミック芯材、
3:セラミックシート、
4:導体、
5:リード引出部、
6:端子取り出し電極、
6a:メタライズ層、
6b:メツキ層、
7:ビアホール、
8:接着層、
9:セラミック体、
10:リード部材、
11:ロウ材、
12:電極取出部、
13:ボイド、
14:リード部材の成分のロウ材への拡散層、
16:近位端、 17 :遠位端、
18 :被覆領域の被覆高さ
22 :セラミック芯材、
23:セラミックグリーンシート、
24 :導体、
25 :リード引出部、
26 :メタライズ層、
27 :ビアホール用の貫通孔、
28 :電極取出部。
発明を実施するための最良の形態
[0016] 以下、図面を参照しながら、本発明に係る実施の形態について説明する。
実施の形態 1.
図 1Aは、本発明に係る実施の形態 1のセラミックヒーターを模式的に示した斜視図 であり、図 1Bは、図 1Aにおける A— A線についての断面図、図 2は、接合部の詳細 構造を示す断面図である。
[0017] 本実施の形態 1のセラミックヒーター 1は、図 1A、図 IBに示すように、円柱形状のセ ラミック芯材 2とこのセラミック芯材 2に接着層 8を介して巻き付けられたセラミツクシ一 ト 3とからなり、セラミック芯材 2とセラミックシート 3の間に、導体 4とリード引出部 5と電 極取出部 12が埋設されている。そして、この電極取出部 12は、セラミックシート 3の外 側に設けられたメタライズ層 6aと接続されている。また、メタライズ層 6aの表面には Ni 力 なるメツキ層 6bが形成されており、メタライズ層 6aとメツキ層 6bとによって端子取り 出し電極 6が構成され、この端子取り出し電極 6とリード部材 10がロウ材 11により、接 合固定されている。また、電極取出部 12とメタライズ層 6aとは、図 1Bに示すように、 セラミックシート 3のメタライズ層 6aの下に設けられたビアホール 7を介して接続されて いる。このように構成されたセラミックヒーター 1では、メタライズ層 6aにリード部材 10を 介して通電することによって、導体 4が発熱する結果、ヒーターとして機能する。
[0018] そして、本実施の形態 1のセラミックヒーターでは、ロウ材 11がリード部材 10を覆つ ている領域である被覆領域の被覆高さ 18が、リード部材 10における端子取り付け電 極 6に最も近い近接端と、リード部材 10の端子取り付け電極 6から最も離れた上端と の間の距離の 40〜99%の範囲に設定されていることを特徴としている。
すなわち、端子取り付け電極 6とリード部材 10の接合部において、リード部材 10の 横断面における被覆高さ 18が、端子取り付け電極 6に最も近い近接端 16から端子 取り付け電極 6から遠 、上端 17までの距離 (以下、この距離を本明細書にぉ 、てリー ド高さと呼ぶ)の 40%未満であると、リード部材 10とロウ材 11との接合界面の面積が 小さいために初期のリード接合強度が低ぐばらつきが大きくなつてしまう。し力しなが ら、本実施の形態 1のように、ロウ材 11の被覆高さがリード高さの 40%〜99%である 場合には、接合面積を十分確保することができるために、初期のリード接合強度を高 くでき、かつばらつきを小さくできる。
尚、図 2に示すように、リード部材 10が円形の断面を有する線材である場合には、リ ード高さは、リード部材 10の円形断面の直径となる。
[0019] また、ロウ材 11がリード部材 10を覆う被覆高さ 18が、リード高さの 99%を超えて口 ゥ材に覆われているものでは、熱サイクル試験を行った場合、リード部材 10とロウ材 1 1の界面にクラックが発生し易ぐリード接合強度が低下してしまう。
すなわち、リード部材 10が、被覆高さ 18に対してリード高さが 99%を超えるような 範囲までロウ材に覆われていると、リード部材 10とロウ材 11の線熱膨張差によってリ 一ド部材とロウ材の界面に応力が発生し、応力の逃げ場がないために界面にクラック が発生してしまう。尚、リード部材 10とロウ材 11の線熱膨張の値を比較すると、リード 部材 10くロウ材 11となる。具体的には、リード部材がロウ材に全周方向を覆われて V、るもので熱サイクル試験を行った場合、リード部材とロウ材の界面にクラックが発生 してしまう。
[0020] これに対して、リード高さに対する被覆高さ 18を 40%〜99%の範囲に設定すると、 リード部材 10の一部がロウ材 11に覆われて 、な 、ことから、熱サイクル試験を行った 場合に、リード部材 10とロウ材 11の熱膨張差によって発生する応力を緩和すること でき、熱サイクル試験でリード部材とロウ材の界面にクラックが発生しなくなる。
[0021] 本セラミックヒーターにおいては、熱サイクル試験におけるリード部材とロウ材の界 面でのクラックの発生をより効果的に防止するために、リード高さに対して被覆高さ 1 8を好ましくは 60%〜99%の範囲に設定する。
[0022] リード高さに対する被覆高さ 18の範囲は、リード部材 10とロウ材のぬれ性によって 制御することができ、より具体的には、リード部材 10の材質及び表面粗さ、ロウ材の 材質、接合時の温度、雰囲気により制御される。本実施の形態 1では、特にリード部 材 10の表面粗さで制御するのが好ましぐこれにより制御すると比較的簡単にかつ 確実に被覆高さを所定の範囲に設定できる。
[0023] また、本実施の形態 1では、リード部材 10とロウ材の界面にボイド 13があることが好 ましい。リード部材 10とロウ材の界面にボイドが無い場合には、セラミックヒーター 1の 発熱時に、セラミック体 9からリード部材 10への熱伝導がよぐリード部材表面温度が 高くなつてしまうが、界面にボイド 13が存在する場合には、セラミック体 9からリード部 材 10への熱伝導が阻害され、リード部材表面温度はボイドが無い場合よりも低下す る。従って、リード部材 10とロウ材の界面にボイド 13があると、接合部の熱ストレスが 減少し、熱サイクル試験後のリード接合強度の劣化を少なくすることができる。
[0024] ボイド 13の大きさと初期のリード接合強度を確認したところ、ボイド 13が 0. 1〜200 mでは初期と熱サイクル試験後のリード接合強度が高ぐ差がほとんど無いが、 20 0 mより大きいボイド 13の場合には初期と熱サイクル試験後のリード接合強度が低 ぐ 0. 1 m未満のボイド 13の場合にはリード部材 11の表面温度が高いために初期 のリード接合強度は高いのだが、熱サイクル試験後のリード接合強度は低下してしま う結果となった。
[0025] また、ボイド 13が界面の 40%より広い範囲に発生している場合には初期のリード接 合強度が低くなつた。これらのことから、リード部材の表面温度を低下させ、初期と熱 サイクル試験後のリード接合強度を高くするために、界面の 20〜40%の範囲に 0. 1 〜200 μ mのボイド 13が存在するのがより好ましい。
さらに、本実施の形態 1において、リード部材 10の成分のロウ材 11への拡散層 14 が無い場合には、初期と熱サイクル後のリード接合強度が低ぐ界面に拡散層 14が 有る場合に、初期のリード接合強度が高くなる。これは、リード部材 10の成分がロウ 材 11へ拡散することで界面の一部が物理接合から、化学接合へ変化してリード接合 強度が高くなつたと考えられる。 したがって、本発明において、リード部材 10の成分がロウ材 11に拡散していること が好ましい。
[0026] リード接合強度を効果的に高くするために、界面における拡散層 14の距離 (厚さ) が 0. 1〜30 111が好ましぐ3〜30 111がょり好ましぃ。拡散層 14が 0. 1 m未満 の場合にはリード接合強度を向上させる効果力 、さぐ拡散層が 30 mより大きい場 合には、リード部材 10の成分が多量にロウ材 11に拡散することになるためにロウ材 1 1の硬度が高くなつてしまい、熱サイクル試験後にロウ材 11にクラックが発生し易くな りリード接合強度を低下させる虞がある。
[0027] さらに、拡散層 14を安定して生成させ、効果的なアンカー効果を得てリード接合強 度を高くするために、リード部材 10の表面における算術平均表面粗さ Raが 0. 05〜 5 mの範囲内であることが好ましい。リード部材 10の表面における算術平均表面粗 さ Raが 0. 05 μ m未満であると拡散層 14が 0. 05 μ mしか生成しない場合があり、熱 サイクル後のリード接合強度を向上させる効果力 、さぐ算術平均表面粗さ Raが 5 μ mより大きいと熱サイクル後のリード接合強度を測定した場合、熱サイクルによりリード 表面力もクラックが進展しリード線切れを起こすおそれがある。
[0028] 次に本実施の形態 1のセラミックヒーター 1の製法を説明する。
[0029] セラミックヒーター 1を製造する際には、図 3A〜図 3Dに示したような工程を含む方 法を用いる。
[0030] まず、セラミックグリーンシート 23を作製した後、このセラミックグリーンシート 23にビ ァホール用の貫通孔 27を形成する(図 3A参照)。
[0031] 続いて、この貫通孔 27に導体ペーストを充填した後、導体 24とリード引出部 25とな る導体ペースト層を形成して乾燥を行う(図 3B参照)。
[0032] 続いてセラミックグリーンシート 23を反転させて裏面にメタライズ層 26となる導体べ 一スト層を形成する(図 3C参照)。
[0033] さらにもう一度反転させてセラミック芯材 22にセラミックグリーンシート 23を巻き付け ることにより、焼結前の原料からなる生成形体を作製する(図 3D参照)。
[0034] このようにして成形された生成形体を 1500〜1650°Cの還元雰囲気中で焼成する ことによりセラミック体 9を得て、その後図 1に示すように、メタライズ層 6aの表面に Ni 力もなるメツキ層 6bを形成した後、リード部材 10をロウ材 11により固定することにより セラミックヒーター 1を得る。
[0035] セラミックヒーター 1の材質としては、アルミナ、窒化珪素、窒化アルミニウム、炭化 珪素、ムライト等を使用することが可能である。
[0036] 例えば、アルミナとしては、 Al O 88〜95重量0 /0、 SiO 2〜7重量0 /0、 CaOO. 5〜
2 3 2
3重量%、 MgOO. 5〜3重量%、 ZrO 0〜3重量%力もなるものを使用することがで
2
きる。 Al O含有量をこれより少なくすると、ガラス質が多くなるため通電時のマイダレ
2 3
ーシヨンが大きくなるので好ましくない。また、逆に Al O含有量をこれより増やすと、
2 3
内蔵する発熱抵抗体 4の金属層内に拡散するガラス量が減少し、セラミックヒーター 1 の耐久性が劣化するので好ましくな 、。
[0037] 窒化珪素としては、 Si N 85〜95重量%、 Y Oや Yb O、 Er Oのような希土類
3 4 2 3 2 3 2 3
元素酸化物 2〜12重量%、 Al O 0. 3〜2. 0重量%、これに加えて酸素を SiO換
2 3 2 算で 0. 5〜3重量%含有するようなものを使用することが可能である。窒化アルミ-ゥ ムとしては、 A1N85〜97重量0 /0、 Y Oや Yb O、 Er Oのような希土類元素酸化物
2 3 2 3 2 3
2〜8重量%、 CaO0〜5重量%、これに不純物として酸素を Al O換算で 0〜1重量
2 3
%含有するものを使用することが可能である。ムライトとしては、 Al O 58〜75重量
2 3
%、 SiO 25〜42重量%と、 1重量%以下の不可避不純物からなるものを使用するこ
2
とが可能である。
[0038] また、セラミックヒーター 1の形状としては、円筒および円柱状に加え、板状のもので あっても構わない。
[0039] 本発明のセラミックヒーターは、これらに限定されるものではなぐ本発明の要旨を 逸脱しな!、範囲であれば種々の変更は可能である。
[0040] 実施の形態 2.
次に、本発明に係る実施の形態 2のセラミックヒーター 100について図面を参照し ながら説明する。
図 4及び図 5に示す本実施の形態 2のセラミックヒーター 100は、実施の形態 1と同 様、セラミック基体 9の内部に導体 4が内蔵されてなり、セラミック基体 9の表面まで延 びる電極取出部 12の上にその電極取出部 12に接続されたメタライズ層 6aが形成さ れ、そのメタライズ層 6aによって構成される端子取り付け電極 6にリード部材 10がロウ 材 11でロウ付けされた構造となっている。なお、メタライズ層 6aには必要に応じてメッ キ層が形成されて(図示しない)メタライズ層 6aとメツキ層とによって、端子取り付け電 極 6が構成される。
[0041] また、セラミック基体 9は、例えばドクターブレード法によりグリーンシート(焼成後は シート 3となる部分)を作製し、押し出し成形法により円筒状のセラミック芯材 2となる 成形体を作製し、これらを一体化させること〖こより得ることができる。セラミック基体 9の 材質としては、アルミナ、ムライト、フォルステライト等の酸ィ匕物セラミックスや、窒化珪 素、窒化アルミニウム等の非酸ィ匕物セラミックス等を使用可能であるが、中でも酸ィ匕 物セラミックスを使用することが好ましい。例えば、セラミック基体 9の材質としてアルミ ナ質セラミックスを用いる場合は、 Al O 88〜95重量0 /0、 SiO 2〜7重量0 /0、 Ca
2 3 2
O 0. 5〜3重量%、 MgO 0. 5〜3重量%、 ZrO 1〜3重量%力らなる組成が採
2
用される。なお、アルミナ質セラミックスに限定されることはなぐ窒化珪素質セラミック ス、窒化アルミニウム質セラミックス、炭化珪素質セラミックス等も採用できる。
[0042] このとき、グリーンシート上にはスクリーン印刷法により導体 4が印刷され、グリーンシ ート上の所定の位置に打ち抜き等により予め形成されたスルーホールに電極取出部 12が形成される。導体 4および電極取出部 12の材質は、 W、 Mo、 Reの単体を主成 分とし、これらの合金、もしくは TiN、 WC等の金属珪化物、金属炭化物が添加される 。導体 4と電極取出部 12は、これらの材料を、導体 4の抵抗は高めとなり、電極取出 部 12の抵抗は低めとなるように調整し、別々にスクリーン印刷されることが望ましい。
[0043] ここで、グリーンシートと導体 4との段差を解消し、円筒状の成形体にグリーンシート を密着させるために、導体 4の上に Al Oを主成分とし、 SiO、 MgO等をカ卩えたもの
2 3 2
にバインダーをカ卩え、有機溶剤でペースト状にしたものをスクリーン印刷等により塗布 するのが好ましい。
[0044] そして、一体化された成形体は、 1500°C〜1650°Cの還元雰囲気中で焼成するこ とで、所望の焼結体を得ることができる。
[0045] 得られた焼結体の電極取出部 12に Wを主成分とするペーストを塗布し、真空中で 焼き付け、メタライズ層 6aが形成される。メタライズ層 6aの材質としては、導電成分と して、高融点金属である W、 Mo、 Re及びこれらの合金力 なるものを含有することが 好ましい。メタライズ層 6aの厚みについては、 10 m以上とすることが好ましい。厚み が 10 /z m未満では、電極取出部 4のセラミック基体 9との密着強度が低ぐ使用中の 熱サイクルに対するリード部材 10の引張強度の耐久性が低下するので好ましくない 。さらに好ましくは厚みを 15 m以上、理想的には 20 m以上とすることが好ましい 。メタライズ層 6aの厚みがリード部材 10の引張強度に影響する理由は、メタライズ層 6aは W、 Mo、 Re等力 なる高融点金属の多孔質焼結体であり、この孔にセラミック 基体 9から粒界のガラス成分が拡散し、このアンカー効果で強度が増加するからであ る。したがって、メタライズ層 6aの厚みが増すほど、接合されたリード部材 10の引張 強度が増す。
[0046] なお、メタライズ層 6aを形成した後、メタライズ層 6aにメツキを施してもよぐこのメッ キは、 Niを主成分としたものが好ましい。
[0047] そして、真空ロウ付けにより、メタライズ層 6aにリード部材 10が取り付けられる。
[0048] リード部材 10の材質としては、耐熱性良好な Ni系や Fe— Ni系合金等を使用する ことが好ましい。導体 4からの熱伝達により、使用中にリード部材 10の温度が上昇し、 劣化する可能性があるからである。中でも、リード部材 10の材質として Niや Fe— Ni 合金を使用する場合、その平均結晶粒径を 400 m以下とすることが好ましい。前記 平均粒径力 OO /z mを越えると、使用時の振動および熱サイクルにより、ロウ付け部 近傍のリード部材が疲労し、クラックが発生するので好ましくない。他の材質について も、例えばリード部材 10の粒径がリード部材 10の厚みより大きくなると、ロウ材 11とリ 一ド部材 10の境界付近の粒に応力が集中して、クラックが発生するので好ましくない 。リード部材 10の平均結晶粒径を 400 m以下と小さくするためには、ロウ付けの際 の温度をできるだけ下げ、処理時間を短くすればょ 、。
[0049] そして、本発明の特徴はロウ材 11の中の構造にある。すなわち、図 6〜9に示すよう に、ロウ材は 2種類以上の金属、好ましくは 2種類の金属を含有し、この金属が斑に 存在する構造ないし点在する構造となっている。ここで、本明細書において、「斑に 存在する」、「点在する」とは、それらの 2種類以上の金属が、例えば、顕微鏡などを 用いてそれぞれ識別可能な状態で存在することをいう。また、図 6は、断面が矩形の リード部材 10aを用いた例により示している。また、この斑状となる金属ないし点在す る金属は、主成分として少なくとも 10族 (Ni、 Pd、 Pt等)または、 11族(Cu、 Ag、 Au 等)の元素から 2つ選ばれることが望ましい。これは、 10族および 11族の元素は、拡 散係数が比較的小さく金属の拡散が抑制されることから均一な相を形成し難いから であり、また、固有電気抵抗も小さく導電性にも優れているからである。
[0050] このようなロウ材 11としては、 Ag— Cuロウ、 Au—Cuロウ等が挙げられるが、 Ag- Cuロウを採用することがより好まし 、。
[0051] このようにメタライズ層 6aにリード部材 10をロウ付けした後にロウ材 11内部で 2種類 以上の金属(例えば Agと Cu)を斑に存在ないし点在させるためには、ロウ材 11の口 ゥ付け時の保持時間を調整する必要がある。例えば、 Ag— Cuロウのうち BAg— 8 (JI S Z3261)を用いる場合、 BAg— 8の溶解温度 (融点)が約 780°Cであるため、ロウ 付け温度 780°Cから 800°Cで保持時間を 5〜40分とすることが好ましぐこの範囲内 にお 、て設定することにより、ロウ材 11内部にぉ 、て Agと Cuを斑に存在な 、し点在 させることがでさる。
[0052] Agと Cu力 なるロウ材 11はロウ付け温度にぉ 、て 60分以上保持されるとお互!ヽ の拡散が起こり、 Agと Cuが均一に溶融しあった合金となりやすい。均一に溶融して しまうと、より抵抗値の低い Agを選択的に通電できる斑組織と比較し、ロウ材内部で の抵抗値は高めとなり、ロウ材内部での発熱を伴うため、耐久後の接合強度に問題 が残る。このため、ロウ材中で Agと Cuの斑組織を形成するためには前記ロウ付け温 度での保持時間を 60分未満とすることが望ましい。なお、前記ロウ付け温度における 保持時間は、ロウ材の十分な溶解のために、少なくとも 5分は必要である。
[0053] 従来は保持時間の調整がされておらず、上記の範囲力 外れていたため、均一に 溶融していた。図 12は、図 11に示すセラミックヒーターにおいて、ロウ材 111による口 ゥ付け部を示す断面写真である。ロウ材 111としては、 2種類以上の金属で構成され る Ag— Cu系、 Au—Cu系のロウ材が用いられる。ロウ付け後のロウ材部の断面は、 図 12に示す通り、構成される金属組成の偏析はなく均一な金属として存在している。 一方、本発明は保持時間を上記範囲内で調整して均一に溶融する前に前記ロウ付 け温度未満に下げることにより、斑組織を得ることができたものである。 [0054] さらに、ロウ材中で Agと Cuの斑組織を形成するためにはロウ付け温度での保持時 間を 60分未満とした上で、 Ag含有量を 60〜90重量%とするのが好ましぐさらに好 ましくは Ag含有量を 70〜75重量0 /0とするのがよい。これにより、 Ag— Cuロウの溶解 温度が共晶点 (Agと Cuが溶け合い、どちらか一方が固体として存在しない温度)に 近づき、 Agと Cuが互いに液相となる温度が低くなるため、ロウ付け温度を下げること ができ、ロウ付け後の残留応力も低減される。
[0055] このように、ロウ材 11内部に斑組織が形成されることにより、セラミックヒーター 100 にリード部材 10から給電する場合、より抵抗値の低い Ag側に選択的に通電されるこ とになるので、ロウ材 11の抵抗値が低減され、ロウ材 11の温度上昇が抑制され、接 合の信頼性は向上する。
[0056] また、図 6中の領域 E (ロウ材とメタライズ層の界面付近)の拡大写真である図 7、図 6 中の領域 D (ロウ材とメタライズ層及びロウ材とリード部材の界面付近)の拡大写真で ある図 8、図 6中の領域 C (ロウ材とリード部材の界面付近)の拡大写真である図 9に 示すように、ロウ材 11とメタライズ層 6aとの界面、ロウ材 11とリード部材 10との界面の 少なくともいずれか一方に隣接する部位では、斑状ではなぐヤング率が 180GPa以 下である金属層、例えば Agおよび Cuからなるロウ材 11においては、 Cu層 6cが形成 されるのが好ましい。このロウ材 11とメタライズ層 6aの界面に隣接する Cu層 6cは、口 ゥ付け後の残留応力に対して応力緩和層として機能するために、この部分の残留応 力が低減され、ロウ付けによるリード部材 7の接合強度が向上するとともに、耐久後の 接合強度が向上する。
[0057] この Cu層 6cを形成するためには、あらかじめ、メタライズ層 6aおよびリード部材 10 力 ゥ付けによりロウ材 11と接触する部分に Cuメツキを施しておくことが効果的である 。 Agと Cuでは、 Cuのほうが表面張力が小さいためにロウ付け時にロウ材 11が溶融 して接触する部分には、 Cuが選択的に濡れやすい。これを利用し、ロウ材と接触す るメタライズ層 6aおよびリード部材との界面に隣接する部位に Cu層 6cを形成すること ができる。
[0058] そして、この Cu層 6cはメタライズ層 6aとの界面と反対側に凹凸を有しており、この 凸部の厚みは 10 μ m以下であるのが好ましぐ凸部を含めた Cu層 6c全体の厚みが 20 μ m以下であるのが好ましい。 Cu層 6cはこれと接する異種材との界面に凹凸を 形成し、凹凸であることが応力緩和層として機能するため、耐久後の接合強度が向 上する。
尚、ここでは、好ましい例として、 Cu層 6cの凹凸面について説明した力 本発明は Cuに限られるものではなぐ高さが 10 m以下の凸部を有し該凸部を含む層全体の 厚みが 20 m以下である Cu以外の金属層が界面に存在する場合であっても、界面 における密着強度を向上させることができ、信頼性 ·耐久性を向上させることができる
[0059] し力しながら、 Cu層の凸部の厚みが 10 μ m以上、凸部を含めた厚みが 20 μ m以 上となるとロウ材の密着強度が低下するので好ましくない。この場合、ロウ材の溶解温 度での保持時間は、 5〜20分とすることが好ましい。
[0060] メタライズ層 6aは、セラミック基体 9に真空中で焼き付けられる力 セラミック基体 9と の熱膨張差による残留応力を低減するために、熱膨張率の小さい導電材料を用いる ことが好ましい。メタライズ層 6aの主成分は、熱膨張率で言うと、 5. 5 X 10_6Z°C以 下であることがさらに望ましい。具体的には、上記物性を持つ Wまたは、 Moを主成分 とすることが好ましい。これにより、セラミック基体 9とメタライズ層 6aの界面に発生する メタライズ層 6aの焼き付け時の残留応力は緩和される。すなわち、そのような金属が ロウ材中に拡散していることにより、ロウ材の熱膨張率が低減し、メタライズ層との界面 に発生するロウ付け後の残留応力も低減され、電極取出部とロウ材およびリード部材 との接合の信頼性が向上し、よりセラミックヒーターの信頼性 ·耐久性を向上させること ができる。
[0061] し力しながら、メタライズ層 6aとロウ材 11においては、熱膨張率の差が極めて大き いために、ロウ付け後に大きな残留応力が発生する。したがって、ロウ材の熱膨張率 を低減させる必要がある。ロウ材の熱膨張率を低減させるためには、熱膨張率の小さ なメタライズ層 6aの主成分をロウ材中に拡散させればよい。これは、ロウ付け後に熱 処理を行うことで可能となる。この熱処理は、水素ガス等を含む還元雰囲気中でロウ 材の溶解温度以下で行うことが好ましぐ 700°Cから 750°Cで行うことがさらに好まし い。この熱処理により、熱膨張率が 5. 5 X 10_6Z°C以下の金属または、合金がロウ 材中に拡散し、ロウ材の熱膨張率を低減させ、ロウ付け部の耐久後の強度が向上す る。
また、ロウ材 11の表面には、高温耐久性向上及び腐食からロウ材 11を保護するた めに N ゝらなるメツキ層を形成することが好ま ヽ。この Niメツキ層を保護層として機 能させるためには、メツキ層を構成する結晶の粒径を 10 m以下にするとよぐロウ 付け部の表面に緻密で、密度の高いメツキ層として存在させることができる。この粒径 を 5 m以下にすると表面のメツキ層はさらに緻密化すると同時に、ロウ材 11の内部 へ Niを拡散させることができる。 Niはヤング率が 250MPaと硬いため、ロウ材 11の内 部へ拡散した Niは、ロウ材 11の内部の硬度をあげ、ロウ材 11の内部の強度が向上 するため、電極取出部とロウ材およびリード部材との初期接合強度と耐久後の接合 強度を向上させることができる。これにより、セラミックヒーターの信頼性 ·耐久性を向 上させることができる。
[0062] なお、メツキ層としては、硼素系の無電解 Niメツキを用いることが好ましい。無電解メ ツキの種類は硼素系の無電解メツキの他にリン系の無電解メツキ層被覆する事も可能 であるが、高温環境下で使用される可能性があるときは、通常硼素系無電解 Niメツキ を施すのが一般的である。
[0063] また、図 10は、本発明のセラミックヒーター 1またはセラミックヒーター 100を用いた 加熱用コテの一例を示す斜視図である。この加熱用コテは、先端のアーム 32の間に 髪毛を挿入し、取手 31を掴むことにより、髪毛を加熱しながら加圧して髪毛を加工す る。アーム 32の内部には、セラミックヒーター 1またはセラミックヒーター 100が挿入さ れており、髪毛と直接触れる部分には、アルミニウム等の金属板 33、表面をコーティ ングした金属板、セラミックス板などが設置されている。また、アーム 32の外側には火 傷防止のために耐熱プラスチック製のカバーを装着した構造となって 、る。
実施例 1
[0064] 次に示す方法により、本発明のセラミックヒーターを作製した。
まず、アルミナを主成分とし、焼結助剤として、 6重量%の SiO、 2重量%の MgO、
2
2重量%の CaO、 1. 5重量%の ZrOを含有する原料を調製した。この調整された原
2
料を用いて、外径 15mmのセラミック芯材 2および厚み 800 μ mのセラミックグリーン シート 23を、押出成形およびテープキャスティング法により準備した。
[0065] 次に、セラミックグリーンシート 23の一方の主面にタングステン (W)からなる導体 24 とリード引出部 25と電極取出部 28をプリントした。そして、電極取出部 28の端部の裏 面にメタライズ層 26をプリントし、さらに、メタライズ層 26にビアホール用貫通穴を形 成した。さらに、貫通穴にタングステン (W)力 なるペーストを埋めこむことにより、ビ ァホール 7を形成し電極取出部 28とメタライズ層 26とを接続した。
[0066] こうして準備した生のセラミック体 9を還元雰囲気中 1600°Cで焼成して焼結させて 、メタライズ層 6aの表面に N もなる無電界メツキによりメツキ層 6bを 5 m形成した 以上のようにして得られた試料の端子取り付け電極 6の上に、リード部材 10をロウ 付けするが、この実施例 1では、 Agロウ力もなるロウ材 11の量を変えてリード部材 10 の接合を行い、リード部材 10の表面へのロウ材の被覆高さ 18が、リード高さの 20〜1 00%の範囲内で異なる評価用サンプルを作製した。そして、これらの評価用サンプ ルについてそれぞれ、初期のリード接合強度、熱サイクル試験(25°C ' 3分 400°C ' 3分) 3, 000サイクル試験後のリード接合強度および、界面のクラック発生割合を確 した 0
[0067] リード接合強度の測定は、端子取り付け電極 6に対して垂直な方向へリード部材 10 を引っ張り測定を行った。
[0068] 表 1にリード部材 10の表面への被覆領域 18と初期のリード接合強度および、熱サ イタル試験(3000サイクル)後のリード接合強度の判定結果を示した。
[0069] (表 1)
N 0 . リード高さに対 接合強度 ( N) 界面におけるクラ 判定 する被覆高さ 初期 熱サイク ックの発生
ル試験後
1 2 0 6 0 3 1 なし X
2 4 0 1 0 9 5 7 なし 〇
3 6 0 1 1 8 6 1 なし ◎
4 8 0 1 2 0 6 3 なし ◎
5 9 9 1 2 3 6 2 なし ◎
6 1 0 0 1 2 4 2 9 あり X
No. 1, 6は、本発明の範囲外のものである。また、表中の熱サイクル試験後のデー タは、熱サイクル試験を 3000サイクル繰り返した後のデータである。なお、表 1中の「 リード高さに対する被覆高さ」の値は、リード部材の長さ方向において、リード高さに 対する被覆高さが最も高 、部分を測定した値である。
[0070] 初期リード接合強度は 85N以上かつ、熱サイクル試験後のリード接合強度が 35〜 50Nが△、 50〜60Nが〇、 60N以上が◎と判定した。
[0071] 表 1から明らかなように、本発明の実施例 1の範囲内である、 No2〜5のリード部材 1 0の表面への被覆領域 18が 40〜 99 %のもの力 初期と熱サイクル試験後のリード接 合強度の平均値が高く良好な結果が得られた。中でも No3〜5リード部材 10の表面 への被覆領域 18が 60〜99%のものが大変良好な結果が得られた。
[0072] し力し、比較例である Nolのリード部材 10の表面への被覆領域 18が 20%のものは 初期と熱サイクル試験後のリード接合強度が低くなり、 No6リード部材 10の表面への 被覆領域 18が 100%のものは、初期のリード接合強度は高いのだが、熱サイクル試 験後のリード接合強度が低くなつた。
[0073] 本発明の実施例 1である、 No2〜5のリード部材 10の表面への被覆領域 18が 40 〜99%のもの力 界面へのクラックが無いために、リード接合強度の低下が少なくな つたと考えられる。
[0074] し力し、比較例である No6の被覆領域 18が 100%のものには、界面へのクラックが 発生して!/、るために、リード接合強度低くなつたと考えられる。
[0075] 界面に発生するクラックは、リード部材 10とロウ材 11の熱膨張率の違いによって発 生すると考えられる。そのため、被覆領域 18が 100%のものは熱膨張差によって発 生する応力を緩和しにくぐ界面へのクラックが発生し易いと考えられる。
[0076] また、界面に発生するボイド 13の大きさ'界面のボイド占有率と初期と熱サイクル試 験後のリード接合強度とセラミックヒーターが 800°C発熱時のリード部材表面温度の 関係を確認した。初期リード接合強度は 85N以上かつ、熱サイクル試験後のリード接 合強度が 35〜50Nが△、 50〜60Nが〇、 60N以上が◎と判定した結果を表 2に示 した。
[0077] (表 2) N o . 界面にお ボイ ドの 接合強. (N) 800°C発 けるボイ 大きさ 初期 熱サイクル試 熱時のリー
ドの占有 m) 験後 (3000 ド部材の表
率 (%) サイクル後) 面温度 (
)
7 0 0 12 1 48 1 5 7 Δ
8 1 25 0 11 0 47 1 5 1 △
9 1 20 0 11 9 56 1 4 6 〇
10 1 50 125 57 1 4 3 O
1 1 1 0. 1 12 1 59 1 4 1 O
12 20 25 0 98 45 1 4 4 Δ
13 20 20 0 11 2 62 1 3 6 @
14 20 50 11 9 65 1 3 5 ©
15 20 0. 1 11 7 63 1 3 5 @
16 40 25 0 94 47 1 3 3 Δ
17 40 20 0 104 62 1 3 2 ©
18 40 50 11 0 64 1 2 5 ©
19 40 0. 1 108 66 1 2 6 ◎
20 50 25 0 87 41 1 3 0 Δ
21 50 20 0 90 43 1 2 7 △
22 50 50 92 43 1 2 0 △
23 50 0. 1 93 47 1 1 9 △
Vヽずれも被覆高さ 60%のサンプルである。
[0078] 本発明の実施例 1である、 Nol3〜15と 17〜19の界面〖こ発生するボイド 13の大き さが 0.1〜200/ζπιで、界面のボイド 13の占有率が 20〜40%の範囲力 熱サイクル 試験後のリード接合強度が 60Ν以上と大変良好な結果が得られた。
[0079] また Νο9〜: L1の界面に発生するボイド 13の大きさが 0. l〜200/z mで界面のボイ ド 13の占有率が 0.1〜20%の範囲が、熱サイクル試験後のリード接合強度が 50〜 60Nと良好な結果が得られた。これは、界面にあるボイド 13がセラミック体 9からの熱 伝導を阻害し、リード部材表面温度が低下したためと考えられる。
[0080] しかし、 No7はリード部材表面温度が高 、ために熱サイクル試験後のリード接合強 度が低下し、 No20〜23は界面中のボイド 13の占有率が 50%と大きいために、リー ド部材表面温度は 20°C以下になるが接合強度が低ぐ Nol2、 16はボイド 13のサ ィズが 250 mと大きいためにリード接合強度が低くなつたと考えられる。
[0081] また、接合の温度および、時間を変えて界面から拡散層 14の距離を変えたサンプ ルを作製し、初期と熱サイクル試験後のリード接合強度を測定し、初期リード接合強 度が 85N以上かつ、熱サイクル試験後のリード接合強度が 35〜50Nが△、 50〜60 Nが〇、 60N以上が◎と判定した結果を表 3に示した。
[0082] (表 3)
N o . 拡散層の厚さ 接合強度 (N) 判定
m ) 初期 熱サイクル後
2 4 0 9 4 4 1
2 5 0 . 5 2
2 6 3 4 6 3
2 7 5 8 6 6
2 8 1 5 0 6 2
2 9 3 0 9 6 5
3 0 4 5
[0083] 本発明の実施例 1である、 No26〜29の界面からの拡散層 14の距離が 3〜30 /ζ πι の範囲が、熱サイクル試験後のリード接合強度が 60Ν以上と高く大変良好な結果が 得られた。また、 Νο25の界面からの拡散層 14の距離が 0. 1 μ mは熱サイクル試験 後のリード接合強度が 50〜60Nとなり良好な結果が得ら △◎◎©◎△〇れた。これは、リード部材の 成分がロウ材へ拡散することで界面が物理接合から、化学接合へ変わったためにリ ード接合強度が高くなつたと考えられる。
[0084] しかし、拡散層が全くない No24は、初期および、熱サイクル試験後のリード接合強 度が低ぐ拡散層 14が 45 /z mある No30は、ロウ材 11へリード部材の成分が多量に 拡散してしまったためにのロウ材 11の硬度が高くなつてしま 、、熱サイクル試験後に ロウ材 11にクラックが発生しリード接合強度が低くなつた。
[0085] また接合に使用するリード部材 10の算術平均表面粗さ Raと初期と熱サイクル試験 後のリード接合強度を測定し、初期リード接合強度が 85N以上で、熱サイクル試験 後のリード接合強度が 35〜50Nが△、 50〜60Nが〇、 60N以上が◎と判定した結 果を表 4に示した。
[0086] (表 4) N o . 算術平均表面 拡散層の厚 接合強度 ( Ν) 判 粗さ R a ( さ ( μ 111) 初期 熱サイクル後
、ノ
3 1 0 . 0 1 0 . 0 5 1 0 4 4 3 Δ
3 2 0 . 0 5 3 1 1 6 6 3 ©
3 3 0 . 5 9 1 2 3 6 2 ◎
3 4 1 . 0 1 0 1 1 9 6 5 ◎
3 5 2 . 0 9 1 2 3 6 3 ◎
3 6 3 . 0 9 1 1 5 6 2 ◎
3 7 5 . 0 1 2 1 1 7 6 1 ◎
3 8 7 . 0 9 1 1 9 3 6 (リード切れ) △ 熱サイクル後とは、熱サイクル試験を 3000サイクル行った後のデータである。
[0087] 本発明の実施例 1である、 Νο32〜37のリード部材 10の算術平均表面粗さ Raが 0 . 05〜5 /ζ πιの範囲が、熱サイクル試験後のリード接合強度が 60Ν以上と高く大変 良好な結果が得られた。評価結果よりリード部材 10の算術平均表面粗さ Raが大きく なるに従い、界面力もの拡散層 14が生成し易すくなる傾向があり、リード部材 10の算 術平均表面粗さ Raが大きくなるに従い、熱サイクル試験後のリード接合強度がアンカ 一効果で高くなる傾向がある。
[0088] しかし、 No31は界面力もの拡散層 14の距離が少なぐリード部材 10の算術平均 表面粗さ Raが小さ 、ために十分なアンカー効果が得られな力 たため熱サイクル試 験後のリード接合強度が低力つたと考えられ、 No38は界面からの拡散層の距離が 9 μ mありリード接合強度は十分あるのだが、リード部材 10の算術平均表面粗さ Raが 7 μ mあるために、熱サイクル試験によりリード部材 10の表面力もクラックが進展したた めに、 36Nでリード切れのモードで破壊してしまった。
実施例 2
[0089] Al Oを主成分とし、 Si02、 CaO、 MgO、 ZrOを合計 10重量%以内になるように
2 3 2
調整し、ドクターブレード法にてセラミックシートを作製し、該セラミックシートの表面に
Wからなるペーストをプリントして導体 4と電極取出部 12を形成した。
[0090] また、押し出し成形法により、円柱状の成形体を作製し、導体 4を印刷したセラミック シートを円柱状の成形体に巻き付け密着させ、 1600°Cの還元雰囲気中で焼成しセ ラミックヒーター 100を各 20本準備した。 [0091] そして、電極取出部 12の表面に厚み 5 μ mの無電界 Niメツキを施し、さらに、 Wを 主成分としたペーストを電極取出部 12に塗布し、真空炉中で焼き付けた。
[0092] その後、リード部材として φ 1. Ommの Ni線を Ag— Cuロウ(BAg— 8)を用いてロウ 付けした。
[0093] この時にロウ付けの条件を、それぞれロウ付け温度 780°C、 800°C、 820°C、保持 時間を 5分、 10分、 40分、 60分と振ってロウ付けを実施した。
[0094] そして、連続使用における耐久性確認のため、初期の引張強度と 400°C X 800時 間連続通電後の引張強度を測定した。引張試験は、リード部材 4の端部をセラミック ヒーター 100の主面に垂直な方向に引っ張ってその剥離強度を測定した。また、各口 ット 2個ずつ断面を電子顕微鏡にて観察し、ロウ材内部の組織を確認した。その結果 を表 5に示す。
[0095] (表 5) 無有有無禁有有無無有有無
N o . 口ゥ付 保持時 初期引 耐久後 口ゥ材内 口ゥ材界面の層
け温度 間 張強度 引張強 部の斑
(。C) (分) (N) 度 (N )
* 3 9 8 0 5 4 0 7 8 し A g C u合金 4 0 8 0 1 0 4 5 0 3 り C u
4 8 0 4 0 3 C u
* 4 2 8 0 6 0 3 3 9 8 8 し A g C u合金
* 4 3 8 0 0 3 3 8 9 し A g C u合金
8 0 0 1 0 4 0 り C u
4 5 8 0 0 4 0 4 5 0 5 り C u
* 4 6 8 0 0 6 0 3 3 7 8 3 し A g C u合金
* 4 7 8 2 0 3 4 4 8 8 し A g C u合金
8 0 1 0 り C u
4 9 8 0 4 0 3 3 9 3 0 7 り C u
* 5 0 8 0 6 0 3 4 3 1 7 3 し A g C u合金
ここで、ロウ材界面の層とは、メタライズ層とロウ材の間の界面及びリード部材とロウ 材の間の界面にある層をいう。
また、 *印の試料は、本発明の範囲外のものである。
[0096] 表 5からわ力るように、ロウ材内部に、図 7〜9に示すような斑組織が見られない No . 39、 42、 43、 46、 47、 50は、耐久試験後の引張強度が 200N以下と低下した。こ れに対し、図 7〜9に示すような斑糸且織カ S認められた No. 40、 41、 44、 45、 48、 49 は、 300N以上と高い引張強度が得られた。

Claims

請求の範囲
[1] 内蔵された導体とその導体と導通するメタライズ層とを有するセラミック体と、前記メ タラィズ層にロウ材で接合されたリード部材とを備え、
前記ロウ材の前記リード部材を覆う被覆領域が、前記リード部材における前記メタラ ィズ層に最も近 、近接端と前記メタライズ層から最も離れた上端までの距離の 40〜9
9%の範囲に設定されていることを特徴とするセラミックヒーター。
[2] 前記リード部材と前記ロウ材の界面に、直径 0. 1-200 μ mのボイドが存在するこ とを特徴とする請求項 1記載のセラミックヒーター。
[3] 前記ボイドによって、前記リード部材と前記ロウ材との接触面積が前記界面全体の
60〜99%になっていることを特徴とする請求項 2記載のセラミックヒーター。
[4] 前記リード部材の成分が前記ロウ材に拡散しており、その拡散深さが前記界面から
0. 1 m〜30 mの範囲にあることを特徴とする請求項 2または 3に記載のセラミック ヒーター。
[5] 前記リード部材の算術平均表面粗さ Raが 0. 05〜5 μ mであることを特徴とする請 求項 1〜4の!、ずれかに記載のセラミックヒーター。
[6] 内蔵された導体とその導体と導通するメタライズ層とを有するセラミック体と、前記メ タラィズ層にロウ材で接合されたリード部材とを備え、
前記ロウ材が 2種類以上の金属を含有してなり、該 2種類以上の金属が前記ロウ材 にお 、て識別可能な状態で各々存在することを特徴とするセラミックヒーター。
[7] 前記 2種類以上の金属が周期律表第 10族金属及び 11族の金属からなる群力 選 ばれたことを特徴とする請求項 6記載のセラミックヒーター。
[8] 前記 2種類以上の金属のうちの 1つがヤング率 180GPa以下の第 1金属であり、該 第 1金属が前記ロウ材と前記リード部材の境界部及び前記ロウ材と前記メタライズ層 の境界部の少なくとも一方の境界部に在ることを特徴とする請求項 6または 7記載の セラミックヒーター。
[9] 前記第 1金属は、前記リード部材との界面、又は前記メタライズ層との界面との反対 側に凹凸を有し、該凸部の高さが 10 m以下であって該凸部を含む層全体の厚み が 20 μ m以下であることを特徴とする請求項 8に記載のセラミックヒーター。
[10] 前記メタライズ層が主成分として熱膨張率 5. 5 X 10_6Z°C以下の金属を含有して なり、該金属がロウ材中に拡散して 、ることを特徴とする請求項 6〜9のうちの 、ずれ 力 1つに記載のセラミックヒーター。
[11] 前記ロウ材中に Niが拡散して 、ることを特徴とする請求項 6〜10のうちの 、ずれか
1つに記載のセラミックヒーター。
[12] 請求項 1〜: L 1のいずれかに記載セラミックヒーターを発熱手段として用いたことを特 徴とする加熱用コテ。
PCT/JP2005/013748 2004-07-28 2005-07-27 セラミックヒーター及びそれを用いた加熱用コテ WO2006011520A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020077002712A KR101201388B1 (ko) 2004-07-28 2005-07-27 세라믹 히터 및 그것을 사용한 가열용 인두
JP2006527827A JPWO2006011520A1 (ja) 2004-07-28 2005-07-27 セラミックヒーター及びそれを用いた加熱用コテ
GB0703837A GB2432093B (en) 2004-07-28 2005-07-27 Ceramic heater and heating iron using the same
CN200580023302XA CN101015231B (zh) 2004-07-28 2005-07-27 陶瓷加热器及采用它的加热用烙铁

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004220543 2004-07-28
JP2004-220543 2004-07-28
JP2004247202 2004-08-26
JP2004-247202 2004-08-26

Publications (1)

Publication Number Publication Date
WO2006011520A1 true WO2006011520A1 (ja) 2006-02-02

Family

ID=35786270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013748 WO2006011520A1 (ja) 2004-07-28 2005-07-27 セラミックヒーター及びそれを用いた加熱用コテ

Country Status (4)

Country Link
JP (1) JPWO2006011520A1 (ja)
KR (1) KR101201388B1 (ja)
GB (1) GB2432093B (ja)
WO (1) WO2006011520A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017016976A (ja) * 2015-07-06 2017-01-19 日本特殊陶業株式会社 セラミックヒータ及びセンサ
JP2017081797A (ja) * 2015-10-29 2017-05-18 京セラ株式会社 試料保持具

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7919734B2 (en) * 2006-07-24 2011-04-05 Ngk Spark Plug Co., Ltd. Method for manufacturing ceramic heater and ceramic heater
US8420980B2 (en) * 2007-11-26 2013-04-16 Kyocera Corporation Ceramic heater, oxygen sensor and hair iron that uses the ceramic heater
WO2018199094A1 (ja) * 2017-04-26 2018-11-01 京セラ株式会社 ヒータ
JP7361128B2 (ja) * 2019-10-11 2023-10-13 日本碍子株式会社 電極埋設セラミックス構造体

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07272832A (ja) * 1994-03-31 1995-10-20 Kyocera Corp 窒化珪素質セラミックヒータ
JPH08109063A (ja) * 1994-08-18 1996-04-30 Ngk Spark Plug Co Ltd セラミックヒータ
JPH11129091A (ja) * 1997-10-28 1999-05-18 Ngk Spark Plug Co Ltd 半田合金
JPH11292649A (ja) * 1998-01-16 1999-10-26 Denso Corp セラミック―金属接合体及びその製造方法
JP2000106266A (ja) * 1998-07-27 2000-04-11 Denso Corp セラミックヒ―タ
JP2000193751A (ja) * 1998-12-24 2000-07-14 Fuji Photo Film Co Ltd 放射線撮像システム配置確認方法およびそれに使用される配置確認治具
JP2000268944A (ja) * 1998-08-03 2000-09-29 Denso Corp セラミックヒータおよびその製造方法,並びにガスセンサ
JP2000286047A (ja) * 1999-03-31 2000-10-13 Ibiden Co Ltd セラミックヒーター
JP2001230059A (ja) * 2000-02-10 2001-08-24 Ibiden Co Ltd 半導体製造・検査装置用セラミック基板
JP2002015838A (ja) * 2000-06-30 2002-01-18 K-Tech Devices Corp 抵抗発熱体及びその製造方法
JP2003347012A (ja) * 2002-05-23 2003-12-05 Kyocera Corp セラミックヒータおよびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3298194B2 (ja) * 1992-05-12 2002-07-02 富士電機株式会社 はんだ付け方法
JP3588227B2 (ja) 1997-05-28 2004-11-10 京セラ株式会社 セラミックヒータ
JP3801797B2 (ja) * 1998-11-30 2006-07-26 京セラ株式会社 セラミックヒータおよびこれを用いたヘアアイロン
JP2001230362A (ja) * 2000-02-14 2001-08-24 Canon Inc 半導体素子、そのはんだ付け方法および回路基板
JP2001319756A (ja) 2000-05-09 2001-11-16 Ibiden Co Ltd セラミック基板
JP4688376B2 (ja) 2001-09-26 2011-05-25 京セラ株式会社 セラミックヒーター
JP3687845B2 (ja) * 2001-10-25 2005-08-24 矢崎総業株式会社 射出成形用金型の金型構造および射出成形用コアピンの製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07272832A (ja) * 1994-03-31 1995-10-20 Kyocera Corp 窒化珪素質セラミックヒータ
JPH08109063A (ja) * 1994-08-18 1996-04-30 Ngk Spark Plug Co Ltd セラミックヒータ
JPH11129091A (ja) * 1997-10-28 1999-05-18 Ngk Spark Plug Co Ltd 半田合金
JPH11292649A (ja) * 1998-01-16 1999-10-26 Denso Corp セラミック―金属接合体及びその製造方法
JP2000106266A (ja) * 1998-07-27 2000-04-11 Denso Corp セラミックヒ―タ
JP2000268944A (ja) * 1998-08-03 2000-09-29 Denso Corp セラミックヒータおよびその製造方法,並びにガスセンサ
JP2000193751A (ja) * 1998-12-24 2000-07-14 Fuji Photo Film Co Ltd 放射線撮像システム配置確認方法およびそれに使用される配置確認治具
JP2000286047A (ja) * 1999-03-31 2000-10-13 Ibiden Co Ltd セラミックヒーター
JP2001230059A (ja) * 2000-02-10 2001-08-24 Ibiden Co Ltd 半導体製造・検査装置用セラミック基板
JP2002015838A (ja) * 2000-06-30 2002-01-18 K-Tech Devices Corp 抵抗発熱体及びその製造方法
JP2003347012A (ja) * 2002-05-23 2003-12-05 Kyocera Corp セラミックヒータおよびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017016976A (ja) * 2015-07-06 2017-01-19 日本特殊陶業株式会社 セラミックヒータ及びセンサ
JP2017081797A (ja) * 2015-10-29 2017-05-18 京セラ株式会社 試料保持具

Also Published As

Publication number Publication date
KR20070048710A (ko) 2007-05-09
GB2432093A (en) 2007-05-09
GB2432093B (en) 2008-07-30
JPWO2006011520A1 (ja) 2008-05-01
KR101201388B1 (ko) 2012-11-14
GB0703837D0 (en) 2007-04-11

Similar Documents

Publication Publication Date Title
US8604396B2 (en) Ceramic heater, oxygen sensor and hair iron that use the ceramic heater
JP3921327B2 (ja) セラミックヒータ及びその製造方法
JP5479550B2 (ja) セラミックヒータ及びそれを用いたヘアアイロン
EP2237638B1 (en) Ceramic heater, and oxygen sensor and hair iron having the ceramic heater
WO2005060311A1 (ja) セラミックヒータおよびその製造方法
WO2006011520A1 (ja) セラミックヒーター及びそれを用いた加熱用コテ
JP4514653B2 (ja) セラミックヒーター及びこれを用いた加熱用こて
JP3934993B2 (ja) セラミックヒータ及びその製造方法
CN101588655B (zh) 陶瓷加热器及采用它的加热用烙铁
JP4295607B2 (ja) セラミックヒータ
JP4688376B2 (ja) セラミックヒーター
JP3977965B2 (ja) ヒータ装置
JP3366472B2 (ja) セラミックヒータ及びその製造方法
JP4044244B2 (ja) 窒化ケイ素セラミックヒータ
JP2646083B2 (ja) セラミツクヒータ
JP3631728B2 (ja) セラミックヒータ及びその製造方法
JP5058278B2 (ja) セラミックヒーターおよびこれを用いた加熱用こて
GB2443361A (en) Ceramic heater
JP2004281369A (ja) セラミックヒータおよびそれを用いた流体加熱装置
GB2442614A (en) Brazing leads to a ceramic heater assembly
KR100943933B1 (ko) 세라믹 히터와 그것을 이용한 헤어 아이롱
JP4582868B2 (ja) セラミックヒータ
JP2005317233A (ja) セラミックヒータおよびその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580023302.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006527827

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077002712

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 0703837

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20050727

WWE Wipo information: entry into national phase

Ref document number: 0703837.5

Country of ref document: GB

122 Ep: pct application non-entry in european phase