WO2005122318A1 - 非水電解液およびそれを用いたリチウム二次電池 - Google Patents

非水電解液およびそれを用いたリチウム二次電池 Download PDF

Info

Publication number
WO2005122318A1
WO2005122318A1 PCT/JP2005/009049 JP2005009049W WO2005122318A1 WO 2005122318 A1 WO2005122318 A1 WO 2005122318A1 JP 2005009049 W JP2005009049 W JP 2005009049W WO 2005122318 A1 WO2005122318 A1 WO 2005122318A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
group
aqueous electrolyte
carbonate
branched
Prior art date
Application number
PCT/JP2005/009049
Other languages
English (en)
French (fr)
Inventor
Koji Abe
Takaaki Kuwata
Hirofumi Takemoto
Original Assignee
Ube Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries, Ltd. filed Critical Ube Industries, Ltd.
Priority to JP2006514434A priority Critical patent/JP4946437B2/ja
Priority to CA002568335A priority patent/CA2568335A1/en
Priority to US11/596,862 priority patent/US7727677B2/en
Priority to EP05741522A priority patent/EP1758198B1/en
Priority to KR1020067024931A priority patent/KR101158143B1/ko
Priority to DE602005015321T priority patent/DE602005015321D1/de
Publication of WO2005122318A1 publication Critical patent/WO2005122318A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium secondary battery having excellent battery characteristics such as long-term cycle characteristics, electric capacity, storage characteristics, and the like, and a non-aqueous electrolyte used for the lithium secondary battery.
  • a lithium secondary battery mainly includes a positive electrode, a non-aqueous electrolyte, and a negative electrode.
  • a lithium composite oxide such as LiCoO is used as a positive electrode, and a carbon material or lithium metal is used as a negative electrode.
  • a rechargeable lithium battery is used.
  • carbonates such as ethylene carbonate (EC) and propylene carbonate (PC) are used.
  • the decomposition product inhibits the desired U-electrochemical reaction of the battery, thereby lowering the battery performance. This is thought to be due to electrochemical oxidation of the solvent at the interface between the positive electrode material and the non-aqueous electrolyte.
  • the solvent in the nonaqueous electrolyte is reductively decomposed on the surface of the negative electrode during charging, and is used as a nonaqueous electrolyte solvent.
  • EC ethylene carbonate
  • partial reductive decomposition occurs during repeated charging and discharging, and the battery performance is reduced.
  • PC propylene carbonate
  • Patent Document 1 discloses a first solvent such as propylene carbonate, dimethyl carbonate, and getyl carbonate.
  • An electrolytic solution containing 0.01% to 10% by weight of a second solvent and bi-lene carbonate with respect to the solvent mixture is disclosed.
  • Patent Document 2 bi - electrolyte containing alkylene carbonate from 0.1 to 5 weight 0/0 and asymmetric chain carbonate is disclosed.
  • Patent Document 3 discloses a non-aqueous electrolyte in which a dicarboxylic acid diester having an unsaturated group such as acetylenedicarboxylate getyl is added to a mixed solvent such as ethylene carbonate and dimethyl carbonate.
  • Patent Document 4 discloses a non-aqueous electrolyte containing an acetylenedicarboxylic acid diester having a specific structure. This compound is different from the carboxylic acid ester conjugate of the present invention and has a non-aqueous solvent. No detailed examination has been made on the combination with.
  • Patent Literature 5 discloses an electrolyte mainly containing a cyclic carbonate and a chain carbonate and containing 0.1 to 4% by weight of 1,3 propane sultone.
  • Patent Documents 1 to 5 cannot satisfy the battery characteristics required in recent years, and there is a need for an electrolyte solution with even better cycle characteristics in order to increase the capacity of lithium secondary batteries. I have.
  • Patent Document 1 JP-A-8-45545
  • Patent Document 2 JP-A-11-185806
  • Patent Document 3 JP 2001-256995 A
  • Patent Document 4 JP 2003-59532A
  • Patent Document 5 JP-A-2000-3724
  • the present invention provides a lithium secondary battery that is excellent in battery cycle characteristics over a long period of time and also has excellent battery characteristics such as electric capacity and storage characteristics in a charged state, and a non-aqueous battery used in the lithium secondary battery. It is intended to provide an electrolytic solution.
  • the present inventors have conducted studies to solve the above-mentioned problems, and as a result, as additives in a non-aqueous electrolyte, a specific carboxylic acid ester compound, bi-lene carbonate and Z or 1
  • the present invention relates to a non-aqueous electrolyte for a lithium secondary battery in which an electrolyte salt is dissolved in a non-aqueous solvent, wherein the carboxylic acid ester compound represented by the following general formula (I) is contained in the non-aqueous electrolyte. Characterized in that it contains 0.01 to 10% by weight of benzene and / or 0.01 to 10% by weight or 0.01 to 10% by volume of bi-lene carbonate and / or 1,3-propane sultone. Electrolyte.
  • R 1 is an alkyl group having 1 to 12 carbon atoms which may be branched, a cycloalkyl group having 3 to 8 carbon atoms, an optionally branched alkyl group having 2 to 12 carbon atoms, may be branched from 2 12 carbon Al keys - group, an unsubstituted or substituted Hue - indicates Le group, R 2 represents a hydrogen atom or COOR 3 group, and said R 3 is C 1 -C -C12-C12 cycloalkyl group, C2-C8 cycloalkyl group, C2-C12 optionally alkenyl group, C2-C12 optionally branched alkyl group X represents an alkylene group or an alkenylene group having at least one unsaturated bond having 2 to 4 carbon atoms.
  • the present invention provides a lithium secondary battery having a nonaqueous electrolytic solution in which an electrolyte salt is dissolved in a positive electrode, a negative electrode, and a nonaqueous solvent, wherein the positive electrode is a material containing a lithium composite oxide.
  • the non-aqueous electrolyte contains 0.01 to 10% by weight of the carboxylate compound represented by the above general formula (I), and the anode is a material capable of absorbing and releasing lithium.
  • a lithium secondary battery comprising 0.01 to 10% by weight or 0.01 to 10% by volume of carbonate and Z or 1,3-propane sultone.
  • a lithium secondary battery having excellent battery characteristics such as cycle characteristics, electric capacity, and storage characteristics of the battery can be provided.
  • bi-lene carbonate (VC) and Z or 1,3-propane sultone (PS) are contained as additives in the non-aqueous electrolyte in a specific combined use with the carboxylic ester.
  • a non-aqueous electrolytic solution is obtained by adding a specific carboxylic acid ester compound, bi-lene carbonate and Z or 1,3-propane sultone in a specific amount in combination as additives. It has been found that when the obtained nonaqueous electrolyte is used for a lithium secondary battery having a high capacity, the cycle characteristics, which has been a conventional problem, can be improved. Although the function and effect are not clear, it is considered that a strong film is formed on the negative electrode of the lithium secondary battery by using the specific additive in a specific amount.
  • the carboxylic acid ester conjugate used in the present invention is represented by the following general formula (I).
  • R 1 is an alkyl group having 1 to 12 carbon atoms, preferably 1 to 8 carbon atoms, more preferably 1 to 3 carbon atoms, and 3 to 3 carbon atoms.
  • 8 cycloalkyl groups 2 to 12 carbon atoms, preferably 2 to 8 carbon atoms, more preferably 2 to 4 carbon atoms which may be branched, and 2 to 12 carbon atoms, preferably An alkyl group, an unsubstituted or substituted phenyl group which may be branched having 2 to 8, more preferably 2 to 4 carbon atoms.
  • R 2 represents a hydrogen atom or a COOR 3 group, wherein R 3 is an alkyl group having 1 to 12 carbon atoms, preferably 1 to 8 carbon atoms, more preferably 1 to 3 carbon atoms, C3-C8 cycloalkyl group, C2-C12, preferably C2-C8, more preferably C2-C4 optionally branched alkyl group, C2-C12, Preferably 2-8 carbon atoms, more preferred Or an alkyl group or an unsubstituted or substituted phenyl group which may be branched having 2 to 4 carbon atoms.
  • R 3 is an alkyl group having 1 to 12 carbon atoms, preferably 1 to 8 carbon atoms, more preferably 1 to 3 carbon atoms, C3-C8 cycloalkyl group, C2-C12, preferably C2-C8, more preferably C2-C4 optionally branched alkyl group, C2-C12, Preferably 2-8 carbon atoms, more preferred Or an alkyl
  • X represents an alkylene group or an alkylene group having at least one unsaturated bond having 2 to 4 carbon atoms.
  • the alkylene group include an ethylene group, a 2-butylene group, and a butadiene group.
  • Examples of the alkene group include a butadiene group. Among these, an alkynylene group is particularly preferred.
  • X is an ethylene group
  • specific examples where X is an ethylene group include methyl propylate, ethynolepropiolate, n-propylpropiolate, isopropyl Propiolate, n-butynolepropiolate, isobutynolepropiolate, t-butynolepropiolate, n-pentylpropiolate, n-hexylpropiolate, heptinolepropiolate, octyl Propiolate, methyl 2,4 pentadiinate, ethyl 2,4 pentadiinate, propyl 2,4 pentadiinate, butyl 2,4 pentadiinate, pentyl 2,4 pentadiinate, hexyl 2,4 pentadiinate, acetylenedicarboxylic acid Dimethyl, acetylenedicarboxylate getyl, acetylenedicar
  • alkyl esters having an alkyl group having 1 to 4 carbon atoms such as methinolepropiolate, ethynolepropiolate, and t-butinolepropiolate, carbon diols such as dimethyl acetylene dicarboxylate and dimethyl acetylene dicarboxylate.
  • Dialkyl acetylenedicarboxylate having an alkyl group having a number of 1 to 3 is preferred.
  • X is a 2-butylene group
  • specific examples thereof include dimethyl 3-hexyne diacid, getyl 3-hexyne diacid, dipropyl 3-hexyne diacid, and 3-propyl
  • Examples include dibutyl xinniate, dipentyl 3-hexyne diate, dihexyl 3-hexyne diate, diheptyl 3-hexyne diate, and dioctyl 3-hexyne diacid.
  • dialkyl 3-hexyne dialkyl having an alkyl group having 1 to 3 carbon atoms such as dimethyl 3-hexyne diate and getyl 3-hexyne diate, is particularly preferred! /.
  • X is a butadiylene group
  • specific examples include dimethyl 2,4-hexadienedioate, getyl 2,4-hexadienedioate, and 2,4- Dipropyl oxadiininate, dibutyl 2,4-hexadiyne diacid, dipentyl 2,4-hexadiinodiate, dihexyl 2,4-hexadiyne diacid, diheptyl 2,4,1-hexadiyne dinitrate, 2,4— Dioctyl oxadiyne diacid, dinoxyl 2,4-hexadiyne diacid
  • dialkyl 2,4-hexadhenate having an alkyl group having 1 to 3 carbon atoms, such as dimethyl 2,4-hexadenylate is particularly preferred.
  • the carboxylic acid ester compound of the general formula (I) may be asymmetric.
  • asymmetric carboxylic acid diesters include methyl acetylene dicarboxylate, methyl propyl acetylene dicarboxylate, methyl isopropyl acetylene dicarboxylate, methyl butyl acetylene dicarboxylate, methyl isobutyl acetylene dicarboxylate, methyl t-butyl acetylene dicarboxylate, acetylene dicarboxylic acid Methyl pentyl, methyl hexyl acetylenedicarboxylate, methyl acetylenedicarboxylate heptyl, methyl octyl acetylenedicarboxylate, methyl nonyl acetylenedicarboxylate, methyl decyl acetylenedicarboxylate, methyl didecyl acetylenedicarboxylate, methyl dodecyl acetylenedicarboxylate
  • dialkyl acetylenedicarboxylate having an alkyl group having 1 to 3 carbon atoms is particularly preferred.
  • the content of the carboxylate compound represented by the general formula (I) is excessively large, and the conductivity of the electrolytic solution and the like may change to deteriorate the battery performance. 10% by weight or less, preferably 5% by weight or less, and most preferably 3% by weight or less based on the weight of the liquid. On the other hand, if the content is excessively small, a sufficient film is not formed, and the expected battery characteristics cannot be obtained. Weight% or more is preferred 0.1 weight% is most preferred.
  • the non-aqueous electrolyte solution of the present invention contains 0.01 to 10% by weight of the carboxylic acid ester conjugate and 0.01 to 10% of bi-lene carbonate and Z or 1,3-propane sultone. %, Preferably 0.02 to 9% by weight, or 0.01 to 10% by volume, preferably 0.02 to 9% by volume.
  • the content of the bicarbonate contained in the non-aqueous electrolyte of the present invention is too large, the conductivity of the electrolyte may change and the battery performance may be reduced.
  • the amount is preferably 10% by weight or less, more preferably 5% by weight or less based on the weight of
  • the content of the nonaqueous electrolyte is 0.01% by weight or more, particularly 0.05% by weight. % By weight or more is preferred 0.1% by weight or more is most preferred.
  • the content of bi-lene carbonate is preferably 0.01 to 10% by volume, more preferably 0.02 to 9% by volume, and more preferably 0.02 to 8% by volume, based on the non-aqueous solvent.
  • Mashima 0.05 to 6% by volume is particularly preferred.
  • the content of 1,3 propane sultone is excessively large, the conductivity of the electrolytic solution and the like may be changed and battery performance may be reduced.
  • the content of the nonaqueous electrolyte is 0.01% by weight or more, particularly 0.05% by weight. More than 0.1% by weight is most preferred.
  • the content of 1,3 propane sultone is preferably 0.01 to 10% by volume, more preferably 0.02 to 9% by volume, and 0.02 to 6% by volume with respect to the nonaqueous solvent. More preferred 0.05 to 4% by volume is particularly preferred.
  • 1,3 Propane sultone can also be used in combination with bi-lene carbonate.
  • the total content of 1,3 propane sultone and bi-lene carbonate is preferably 0.01 to 10% by volume, more preferably 0.02 to 9% by volume, based on the non-aqueous solvent. 05 to 8% by volume 0.1 to 7% by volume is particularly preferred.
  • the non-aqueous solvent used in the present invention includes, for example, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate, fluoroethylene carbonate, dimethylvinyl carbonate, and butylethylene carbonate.
  • non-aqueous solvents are usually used as a mixture in order to achieve appropriate physical properties.
  • the combination include a combination of a cyclic carbonate and a chain carbonate, a combination of a cyclic carbonate and a ratatone, a combination of a rataton and a chain ester, and a combination of a cyclic carbonate, a rataton and a chain ester.
  • Combinations of cyclic carbonates, chain carbonates and ratatatones, combinations of cyclic carbonates and ethers, combinations of cyclic carbonates, chain carbonates and ethers, combinations of cyclic carbonates and chains There are various combinations such as a combination of linear carbonates and chain esters, and the mixing ratio is not particularly limited.
  • ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate, fluoroethylene carbonate and vinylethylene carbonate are particularly preferred.
  • asymmetric carbonates such as methyl ethyl carbonate (MEC), methyl propyl carbonate, and methyl butyl carbonate; and symmetric carbonates such as dimethinocarbonate (DMC) and jetinole carbonate (DEC)
  • DMC dimethinocarbonate
  • DEC jetinole carbonate
  • methylethyl carbonate which is an asymmetric chain carbonate
  • DMC dimethyl carbonate
  • DEC getyl carbonate
  • the ratio is such that the capacity ratio of ratatones is the largest.
  • electrolyte salt used in the present invention for example, LiPF, LiBF, LiCIO, LiN (SO), LiPF, LiBF, LiCIO, LiN (SO), LiPF, LiBF, LiCIO, LiN (SO), LiPF, LiBF, LiCIO, LiN (SO), LiPF, LiBF, LiCIO, LiN (SO), LiPF, LiBF, LiCIO, LiN (SO), LiPF, LiBF, LiCIO, LiN (SO)
  • Group-containing lithium salts or cyclic salts such as (CF) (SO) NLi and (CF) (SO) NLi
  • a lithium salt containing a alkylene chain may be used.
  • electrolyte salts are LiPF, LiBF, and LiN (SOCF).
  • electrolyte salt is LiPF. These electrolyte salts may be used alone.
  • Preferred combinations of these electrolyte salts include a combination of LiPF and LiBF,
  • LiPF LiB
  • F (capacity ratio) 80: 20-99: 1 is preferred, especially 90: 10-98: 2 is preferred.
  • Electrolyte salt can be mixed in any ratio, but used in combination with LiPF
  • the ratio (molar ratio) of the other electrolyte salt to the total electrolyte salt in the case is preferably 0.01 to 45%, more preferably 0.03 to 20%, still more preferably 0.05 to 10%, Preferably it is 0.05-5%.
  • the concentration at which all these electrolyte salts are dissolved and used is generally Always 0.3M or more is preferred 0.5M or more is more preferred 0.7M or more is most preferred.
  • the concentration of these electrolyte salts is preferably 3M or less, more preferably 2.5M or less, and most preferably 2M or less.
  • the electrolyte solution of the present invention is prepared by mixing a non-aqueous solvent such as ethylene carbonate, propylene carbonate, and methyl ethyl carbonate described above, dissolving the electrolyte salt therein, It can be obtained by dissolving the carboxylic acid ester conjugate represented by (I). Further, after mixing the above-mentioned non-aqueous solvent such as ethylene carbonate, propylene carbonate, and methylethyl carbonate with the carboxylic acid esterified conjugate represented by the general formula (I), the mixture is mixed with the electrolyte salt. Can also be obtained by dissolving a non-aqueous solvent such as ethylene carbonate, propylene carbonate, and methylethyl carbonate described above, dissolving the electrolyte salt therein, It can be obtained by dissolving the carboxylic acid ester conjugate represented by (I). Further, after mixing the above-mentioned non-aqueous solvent such as ethylene carbonate, propylene
  • air or water is injected before the non-aqueous electrolyte is injected into the battery.
  • air or carbon dioxide-containing gas can be contained in the battery. They can be used in combination.
  • the air and the gas containing carbon dioxide preferably contain as little moisture as possible, preferably have a dew point of 40 ° C or less, and more preferably have a dew point of 50 ° C or less.
  • the non-aqueous electrolyte solution of the present invention is used as a component of a secondary battery, particularly a lithium secondary battery.
  • the constituent members other than the non-aqueous electrolyte constituting the secondary battery are not particularly limited, and various constituent members conventionally used can be used.
  • the positive electrode active material a composite metal oxide with lithium containing cobalt, manganese, and nickel is used.
  • One of these positive electrode active materials may be selected and used, or two or more thereof may be used in combination.
  • Such composite metal oxides include, for example, LiCoO, LiMnO, LiNiO, LiCoNiO (0.01 x 1), LiCoN
  • the positive electrode active material full charge such as LiCoO, LiMnO, LiNiO,
  • Lithium composite metal oxides that can be used at a charge potential of the positive electrode in the state of 4.3 V or more on the basis of Li are preferred. Use with a voltage of 4.4 V or more, such as LiCoNiMnO and LiNiMnO.
  • a usable lithium composite oxide film is more preferable. Further, a part of the lithium composite metal oxide may be replaced with another element.
  • part of Co of LiCoO is Sn, Mg, Fe, Ti
  • the conductive agent for the positive electrode is not particularly limited as long as it is an electron conductive material that does not cause a chemical change.
  • Examples include graphites such as natural graphite (flaky graphite and the like) and artificial graphite, and carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black. Further, graphites and carbon blacks may be appropriately mixed and used.
  • the amount of the conductive agent added to the positive electrode mixture is preferably 1 to 10% by weight, and particularly preferably 2 to 5% by weight.
  • the positive electrode is made of a conductive agent such as acetylene black or carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), or a copolymer of styrene and butadiene (SBR). ), Kneaded with a binder such as acrylonitrile-butadiene copolymer (NBR) and carboxymethylcellulose (CMC) to form a positive electrode mixture, and then used this positive electrode material as an aluminum foil as a current collector. It is manufactured by rolling under a vacuum at a temperature of about 50 ° C. to 250 ° C. for about 2 hours.
  • a conductive agent such as acetylene black or carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), or a copolymer of styrene and butadiene (SBR).
  • PTFE polytetrafluoroethylene
  • PVDF polyviny
  • the negative electrode negative electrode active material
  • a material capable of occluding and releasing lithium is used.
  • lithium metal, lithium alloy, and carbon material pyrolytic carbons, coatas, graphites (man-made) Graphite, natural graphite, etc.), organic polymer compound combustion body, carbon fiber], tin, tin conjugate, silicon, silicon compound.
  • Replacing part or all of the carbon material with tin, a tin compound, a silicon, or a silicon compound can increase the battery capacity.
  • the lattice surface (002) which is preferred by the carbon material
  • the spacing (d) is 0.340 nm
  • graphites having a graphite-type crystal structure of 0.335 to 0.340 nm are used. More preferably, it is used.
  • One of these negative electrode active materials may be selected and used, or two or more thereof may be used in combination.
  • Powder materials such as carbon materials include ethylene propylene diene terpolymer (EPDM), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene-butadiene copolymer (SBR), It is kneaded with a binder such as a copolymer of acrylonitrile and butadiene (NBR) and carboxymethylcellulose (CMC) and used as a negative electrode mixture.
  • a binder such as a copolymer of acrylonitrile and butadiene (NBR) and carboxymethylcellulose (CMC) and used as a negative electrode mixture.
  • the method for manufacturing the negative electrode is not particularly limited, and the negative electrode can be manufactured by the same method as the above-described method for manufacturing the positive electrode.
  • the structure of the lithium secondary battery is not particularly limited.
  • a coin-type battery having a positive electrode, a negative electrode, and a single-layer or multiple-layer separator, and a cylindrical battery having a positive electrode, a negative electrode, and a roll-shaped separator Batteries and prismatic batteries are examples.
  • the separator a known microporous film of polyolefin such as polypropylene or polyethylene, a woven fabric, a nonwoven fabric, or the like is used. Further, the battery separator may have a configuration in which the single-layer porous film and the laminated porous film are shifted from each other.
  • the battery separator used in the present invention varies depending on the manufacturing conditions.However, if the air permeability is too high, the lithium ion conductivity is reduced, and the function as the battery separator becomes insufficient.
  • the degree is preferably 1000 seconds or less ZlOOcc 800 seconds Z1 OOcc or less is more preferable 500 seconds ZlOOcc or less is most preferable.
  • the air permeability is too low, the mechanical strength is reduced. Therefore, 50 seconds or more are preferred. 100 seconds or more are more preferred. 300 seconds or more are most preferred.
  • the porosity is preferably from 30 to 60%, more preferably from 35 to 55%, and most preferably from 40 to 50%.
  • the porosity be in this range because the capacity characteristics of the battery are improved.
  • the thickness of the battery separator should be as small as possible to increase the energy density. Therefore, the thickness is preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, and most preferably 25 ⁇ m or less. From the viewpoint of mechanical strength, 5 m or more is preferable, 10 m or more is more preferable, and 15 m or more is most preferable.
  • the density of the electrode material layer is important.
  • Og / cm 3 power S Preferably, 3. 3 ⁇ 3. 9g / cm 3 power S More preferably, 3.4 ⁇ 3.8 gZcm 3 is most preferred.
  • the density of the positive electrode mixture exceeds 4.
  • OgZcm 3 it becomes substantially difficult to prepare.
  • the density of the negative electrode mixture layer formed on the copper foil 1. 3 ⁇ 2.
  • OgZcm 3 it becomes substantially difficult to prepare.
  • the preferable thickness of the electrode layer of the positive electrode is 30 to 120 / ⁇ , preferably 50 to: LOOm.
  • the thickness (per one side of the current collector) is 1 to: L00 ⁇ m, preferably 3 to 70 ⁇ m. If the thickness of the electrode material layer is smaller than the above preferable range, the amount of active material in the electrode material layer is reduced, so that the battery capacity is reduced. On the other hand, if the thickness is larger than the above range, the cycle characteristics and the rate characteristics deteriorate, which is not preferable.
  • the lithium secondary battery of the present invention has excellent cycle characteristics over a long period of time even when the end-of-charge voltage is higher than 4.2V, and particularly when the end-of-charge voltage is higher than 4.3V. It also has excellent cycle characteristics.
  • the discharge end voltage can be set to 2.5 V or more, and can be set to 2.8 V or more.
  • the current value is not particularly limited, it is usually used at a constant current discharge of 0.1 to 3C.
  • the lithium secondary battery according to the present invention has a power capable of charging and discharging at 40 ° C. or higher, and preferably 0 ° C. or higher. Also, the ability to charge and discharge at 100 ° C or less, preferably 80 ° C or less
  • a safety valve can be used for the sealing plate.
  • a method of making a cut in a member such as a battery can or a gasket can also be used.
  • various conventionally known safety elements at least one of a fuse, a metal, and a PTC element as an overcurrent prevention element.
  • a plurality of lithium secondary batteries according to the present invention are assembled in series, Z, or parallel as required, and stored in a battery pack.
  • the battery pack contains a PTC element, thermal fuse,
  • safety circuits circuits that monitor the voltage, temperature, current, etc. of each battery and Z or the entire battery pack and have a function to cut off current
  • Good may be provided.
  • Ethylene carbonate (EC): Bi-lene carbonate (VC): Methynorethinole carbonate (MEC) (volume ratio) 30: 2: 68
  • a non-aqueous solvent was prepared and LiPF was used as an electrolyte salt.
  • non-aqueous electrolyte 6 was dissolved to a concentration of 1M to prepare a non-aqueous electrolyte, and then 1% by weight of methyl propiolate was added to the non-aqueous electrolyte.
  • the non-aqueous solvent and the electrolyte salt used were purified in advance to increase the purity.
  • Hydrofluoric mildew - isopropylidene were mixed at a ratio of (binder) 3 wt 0/0, a mixture was coated on an aluminum foil and added with 1-methyl-2-pyrrolidone solvent, drying, pressurizing A positive electrode was prepared by molding and heat treatment.
  • the battery was provided with a pressure release port and an internal current interrupt device (PTC element). At this time, the electrode density of the positive electrode was 3.5 gZcm 3 , and the electrode density of the negative electrode was 1.6 gZcm 3 .
  • the thickness of the positive electrode layer (one side of the current collector The thickness of the negative electrode layer (per one side of the current collector) was 70 ⁇ m.
  • the battery was charged to 4.2 V at a constant current of 2.2 A (1 C) at 25 ° C., and then charged at a constant voltage of 4.2 V for a total of 3 hours under a constant voltage. The battery was discharged to a final voltage of 3.0 V under a constant current of 2.2 A (1 C), and the charging and discharging were repeated.
  • the initial discharge capacity (mAh) was 1M LiPF ECZMEC (with a capacity ratio of 30Z7
  • a non-aqueous electrolyte was prepared in the same manner as in Example 1 except that ethyl propiolate was used in an amount of 1% by weight with respect to the non-aqueous electrolyte as an additive.
  • a discharge cycle test was performed. The results are shown in Table 1.
  • Ethylene carbonate (EC): 1, 3 Propane sultone (PS): methyl ethyl carbonate (HMEC) (volume ratio) 30: 2: 68
  • PS Propane sultone
  • HMEC methyl ethyl carbonate
  • a non-aqueous electrolyte was prepared in the same manner as in Example 1 except that tyl propiolate was used in an amount of 1% by weight based on the non-aqueous electrolyte. went. The results are shown in Table 1.
  • a non-aqueous electrolyte was prepared in the same manner as in Example 1 except that dimethyl cetylene dicarboxylate was used in an amount of 0.1% by weight with respect to the non-aqueous electrolyte. The test was performed. The results are shown in Table 1.
  • a non-aqueous electrolyte was prepared in the same manner as in Example 1 to produce a cylindrical battery of 18650 size, and a charge / discharge vital test was performed. Table 1 shows the results.
  • a non-aqueous electrolyte was prepared in the same manner as in Example 1 except that dimethyl acetylenedicarboxylate was used in an amount of 5% by weight based on the non-aqueous electrolyte. Was done. The results are shown in Table 1.
  • a non-aqueous electrolyte was prepared in the same manner as in Example 1, except that dimethyl cetylenedicarboxylate was used at 2% by weight based on the non-aqueous electrolyte. The test was performed. The results are shown in Table 1.
  • a non-aqueous electrolyte was prepared in the same manner as in Example 1 except that 1% by weight of acetylenedicarboxylate getyl was used with respect to the non-aqueous electrolyte to prepare an 18650-size cylindrical battery. A cycle test was performed. The results are shown in Table 1.
  • a non-aqueous electrolyte was prepared in the same manner as in Example 1 except that 1-wt% of hexyl diacid getyl was used with respect to the non-aqueous electrolyte to produce an 18650 size cylindrical battery. Then, a charge / discharge cycle test was performed. The results are shown in Table 1.
  • a non-aqueous electrolyte was prepared in the same manner as in Example 1 except that dimethyl 2,4-hexadienedioate was used in an amount of 1% by weight based on the non-aqueous electrolyte. And a charge / discharge cycle test. Table 1 shows the results.
  • Example 11
  • a non-aqueous electrolyte was prepared in the same manner as in Example 1, except that dimethyl 2,4-hexagenniate was used at 1% by weight of the non-aqueous electrolyte as an additive, and a 18650-size cylindrical battery was fabricated. Then, a charge / discharge cycle test was performed. The results are shown in Table 1.
  • LiMn O is used instead of LiCoO as the positive electrode (positive electrode active material), and
  • a non-aqueous electrolyte was prepared in the same manner as in Example 1 except that dimethyl cetylenedicarboxylate was used in an amount of 1% by weight based on the non-aqueous electrolyte. The test was performed. The results are shown in Table 1.
  • a non-aqueous electrolyte After preparing a non-aqueous electrolyte by dissolving it to a concentration of 1M, and using no additives, a non-aqueous electrolyte was prepared in the same manner as in Example 1 except that an 18650 size cylindrical battery was prepared. Was prepared and subjected to a charge / discharge cycle test. The results are shown in Table 1.
  • a non-aqueous electrolyte solution was prepared in the same manner as in Comparative Example 1 except that 1% by weight of dimethyl acetylenedicarboxylate was used as an additive, and a 18650-size cylindrical battery was manufactured, and a charge / discharge cycle test was performed. The results are shown in Table 1.
  • a non-aqueous electrolytic solution was prepared in the same manner as in Example 1 except that no cylindrical battery was manufactured, and a charge / discharge cycle test was performed. The results are shown in Table 1.
  • a non-aqueous electrolytic solution was prepared in the same manner as in Example 1 except that no cylindrical battery was manufactured, and a charge / discharge cycle test was performed. The results are shown in Table 1.
  • a non-aqueous solvent was prepared, and LiPF was dissolved as an electrolyte salt to a concentration of 1M to prepare a non-aqueous electrolyte.
  • LiPF dissolved as an electrolyte salt to a concentration of 1M to prepare a non-aqueous electrolyte.
  • a non-aqueous electrolytic solution was prepared in the same manner as in Example 1 except that 1% by weight of dimethyl acetylenedicarboxylate was used, and an 18650-size cylindrical battery was manufactured. A charge / discharge cycle test was performed. The results are shown in Table 1.
  • Table 2 shows that LiCo Ni Mn O was used instead of LiCoO as the positive electrode (positive electrode active material).
  • the lithium secondary batteries of the above examples had a higher discharge capacity retention rate (%) after 200 cycles of charging and discharging than the lithium secondary batteries of the comparative example. ) Is about 10% or more, which shows that the cycle characteristics are excellent over a long period of time.
  • a lithium secondary battery having excellent battery characteristics such as cycle characteristics, electric capacity, and storage characteristics of the battery can be obtained. Further, the obtained lithium secondary battery can be suitably used as a cylindrical battery, a square battery, a coin battery, a stacked battery, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明は、電池の長期にわたるサイクル特性、電気容量、保存特性などの電池特性に優れたリチウム二次電池、およびそのリチウム二次電池に用いることができる非水電解液を提供する。  非水溶媒に電解質塩が溶解されているリチウム二次電池用非水電解液において、該非水電解液中に、下記一般式(I)で表されるカルボン酸エステル化合物を0.01~10重量%含有し、かつビニレンカーボネートおよび/または1,3-プロパンスルトンを0.01~10重量%または0.01~10容量%含有することを特徴とする非水電解液、およびそれを用いたリチウム二次電池である。(R2は、水素原子またはCOOR3基を示し、R1およびR3は、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、フェニル基を示す。Xはアルキニレン基またはアルケニレン基を示す。)                                                                         

Description

明 細 書
非水電解液およびそれを用いたリチウム二次電池
技術分野
[0001] 本発明は、電池の長期にわたるサイクル特性、電気容量、保存特性などの電池特 性に優れたリチウム二次電池、およびそのリチウム二次電池に用いられる非水電解 液に関する。
背景技術
[0002] 近年、リチウム二次電池は小型電子機器などの駆動用電源として広く使用されてい る。リチウム二次電池は、主に正極、非水電解液および負極カゝら構成されており、特 に、 LiCoOなどのリチウム複合酸ィ匕物を正極とし、炭素材料またはリチウム金属を負
2
極としたリチウム二次電池が使用されている。そして、そのリチウム二次電池用の非水 電解液としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)などの力 ーボネート類が使用されている
し力しながら、電池のサイクル特性および電気容量などの電池特性について、さら に優れた特性を有する二次電池が求められている。
[0003] 正極として、例えば LiCoO、 LiMn O、 LiNiOなどを用いたリチウム二次電池は、
2 2 4 2
非水電解液中の溶媒が充電時に局部的に一部酸化分解することにより、該分解物 が電池の望ま U、電気化学的反応を阻害するために電池性能の低下を生じる。これ は正極材料と非水電解液との界面における溶媒の電気化学的酸ィ匕に起因するもの と考えられる。
また、負極として例えば天然黒鉛や人造黒鉛などの高結晶化した炭素材料を用い たリチウム二次電池は、非水電解液中の溶媒が充電時に負極表面で還元分解し、 非水電解液溶媒として一般に広く使用されているエチレンカーボネート (EC)におい ても充放電を繰り返す間に一部還元分解が起こり、電池性能の低下が起こる。中でも 、融点が低くて誘電率の高いプロピレンカーボネート(PC)を用いた場合には、低温 にお 、ても高 、電気伝導度を有して 、るため非水溶媒として好ま U、が、 PCの分解 が顕著であるためにリチウム二次電池として使用できな力つた。 [0004] このリチウム二次電池の電池特性を向上させるために、種々の提案がなされている 例えば、特許文献 1には、プロピレンカーボネート等の第 1溶媒、ジメチルカーボネ ート、ジェチルカーボネート等の第 2溶媒、およびビ-レンカーボネートを溶媒混合 物に対し 0. 01〜10重量%の割合で含む電解液が開示されている。また、特許文献 2には、ビ-レンカーボネート 0. 1〜5重量0 /0と非対称鎖状カーボネートを含む電解 液が開示されている。
特許文献 3には、エチレンカーボネートとジメチルカーボネートなどの混合溶媒に、 アセチレンジカルボン酸ジェチルのような不飽和基を有するジカルボン酸ジエステル を添加した非水電解液が開示されて ヽる。
特許文献 4には、特定の構造を有するアセチレンジカルボン酸ジエステルを含む非 水電解液が開示されている力 この化合物は本発明のカルボン酸エステルイ匕合物と は異なるものであり、また非水溶媒との組合せにっ ヽての詳細な検討はなされて 、な い。
また、特許文献 5には、環状カーボネートおよび鎖状カーボネートを主成分とし、 0. 1〜4重量%の 1 , 3 プロパンスルトンが含有された電解液が開示されて!、る。
し力しながら、特許文献 1〜5の技術では近年要望されている電池特性を満足でき ず、リチウム二次電池の高容量化のために、更に優れたサイクル特性を有する電解 液が求められている。
[0005] 特許文献 1 :特開平 8— 45545号公報
特許文献 2:特開平 11― 185806号公報
特許文献 3:特開 2001— 256995号公報
特許文献 4:特開 2003— 59532号公報
特許文献 5:特開 2000— 3724号公報
発明の開示
[0006] 本発明は、電池の長期にわたるサイクル特性に優れ、さらに電気容量や充電状態 での保存特性などの電池特性にも優れたリチウム二次電池、およびそのリチウム二 次電池に用いられる非水電解液を提供することを目的とする。 本発明者らは、上記課題を解決すべく検討を行った結果、非水電解液中に添加剤 として、特定のカルボン酸エステル化合物と、ビ-レンカーボネートおよび Zまたは 1
, 3—プロパンスルトンを特定量併用して含有させることにより、上記課題を解決しうる ことを見出した。
すなわち、本発明は、非水溶媒に電解質塩が溶解されているリチウム二次電池用 非水電解液において、該非水電解液中に、下記一般式 (I)で表されるカルボン酸ェ ステル化合物を 0. 01〜10重量%含有し、かつビ-レンカーボネートおよび/または 1, 3—プロパンスルトンを 0. 01〜10重量%または 0. 01〜10容量%含有することを 特徴とする非水電解液である。
[0007] [化 1]
Figure imgf000004_0001
[0008] (R1は、炭素数 1〜12の分枝してもよいアルキル基、炭素数 3〜8のシクロアルキル基 、炭素数 2〜 12の分枝してもよいァルケ-ル基、炭素数 2〜 12の分枝してもよいアル キ-ル基、無置換または置換フエ-ル基を示し、 R2は、水素原子または COOR3基を 示し、前記 R3は、炭素数 1〜12の分枝してもよいアルキル基、炭素数 3〜8のシクロ アルキル基、炭素数 2〜 12の分枝してもよいアルケニル基、炭素数 2〜 12の分枝し てもよいアルキ-ル基、無置換または置換フエ-ル基を示す。 Xは炭素数 2〜4の不 飽和結合を一つ以上有するアルキ-レン基またはァルケ-レン基を示す。 )
[0009] また、本発明は、正極、負極および非水溶媒に電解質塩が溶解されている非水電 解液力もなるリチウム二次電池において、正極がリチウム複合酸ィ匕物を含む材料で あり、負極がリチウムを吸蔵、放出可能な材料であり、該非水電解液中に、前記一般 式 (I)で表されるカルボン酸エステル化合物を 0. 01〜10重量%含有し、かつビ-レ ンカーボネートおよび Zまたは 1, 3—プロパンスルトンを 0. 01〜10重量%または 0 . 01〜10容量%含有することを特徴とするリチウム二次電池である。
[0010] 本発明によれば、電池のサイクル特性、電気容量、保存特性などの電池特性に優 れたリチウム二次電池を提供することができる。 特に、本発明において、非水電解液中に添加剤として、ビ-レンカーボネート (VC )および Zまたは 1, 3—プロパンスルトン (PS)を前記カルボン酸エステルイ匕合物と特 定量併用して含有させることにより、リチウム二次電池において、特に長期にわたりサ イタル特性が向上する。
発明を実施するための最良の形態
[0011] 本発明において、非水電解液中に添加剤として、特定のカルボン酸エステル化合 物と、ビ-レンカーボネートおよび Zまたは 1, 3—プロパンスルトンを特定量併用して 含有させることにより得られた非水電解液を、高容量としたリチウム二次電池用に使 用すると、従来の課題であったサイクル特性を向上させ得ることが見出された。その 作用効果については明らかではないが、前記特定の添加剤を特定量使用することに より、リチウム二次電池の負極上に強固な皮膜が形成されるためではないかと考えら れる。
本発明の具体的な実施の形態を以下に説明する。
[0012] 本発明で用いられるカルボン酸エステルイ匕合物は、下記一般式 (I)で表される。
[0013] [化 2]
Figure imgf000005_0001
[0014] 一般式 (I)において、 R1は、炭素数 1〜12、好ましくは炭素数 1〜8、より好ましくは 炭素数 1〜3の分枝してもよいアルキル基、炭素数 3〜8のシクロアルキル基、炭素数 2〜12、好ましくは炭素数 2〜8、より好ましくは炭素数 2〜4の分枝してもよいアルケ -ル基、炭素数 2〜12、好ましくは炭素数 2〜8、より好ましくは炭素数 2〜4の分枝し てもよ 、アルキ-ル基、無置換または置換フエ-ル基を示す。
R2は、水素原子または COOR3基を示し、前記 R3は、炭素数 1〜12、好ましくは炭 素数 1〜8、より好ましくは炭素数 1〜3の分枝してもよいアルキル基、炭素数 3〜8の シクロアルキル基、炭素数 2〜12、好ましくは炭素数 2〜8、より好ましくは炭素数 2〜 4の分枝してもよいァルケ-ル基、炭素数 2〜12、好ましくは炭素数 2〜8、より好まし くは炭素数 2〜4の分枝してもよ 、アルキ-ル基、無置換または置換フエ-ル基を示 す。
Xは、炭素数 2〜4の不飽和結合を一つ以上有するアルキ-レン基またはァルケ- レン基を示す。アルキ-レン基としては、ェチ-レン基、 2—プチ-レン基、ブタジィ- レン基が挙げられ、ァルケ-レン基としては、ブタジェ-レン基などが挙げられる。こ れらの中では、特にアルキニレン基が好ましい。
[0015] 一般式 (I)にお!/、て、 Xがェチ-レン基の場合の具体例としては、メチルプロビオレ ート、ェチノレプロピオレート、 n—プロピルプロピオレート、イソプロピルプロピオレート 、 n—ブチノレプロピオレート、イソブチノレプロピオレート、 tーブチノレプロピオレート、 n ペンチルプロピオレート、 n—へキシルプロピオレート、へプチノレプロピオレート、ォ クチルプロピオレート、 2, 4 ペンタジイン酸メチル、 2, 4 ペンタジイン酸ェチル、 2 , 4 ペンタジイン酸プロピル、 2, 4 ペンタジイン酸ブチル、 2, 4 ペンタジイン酸 ペンチル、 2, 4 ペンタジイン酸へキシル、アセチレンジカルボン酸ジメチル、ァセ チレンジカルボン酸ジェチル、アセチレンジカルボン酸ジプロピル、アセチレンジカ ルボン酸ジブチル、アセチレンジカルボン酸ジペンチル、アセチレンジカルボン酸ジ へキシル、アセチレンジカルボン酸ジヘプチル、アセチレンジカルボン酸ジォクチル 、アセチレンジカルボン酸ジノ -ル、アセチレンジカルボン酸ジデシル、アセチレンジ カルボン酸ジゥンデシル、アセチレンジカルボン酸ジドデシルなどが挙げられる。 これらの中では、特にメチノレプロピオレート、ェチノレプロピオレート、 tーブチノレプロ ピオレートなどの炭素数 1〜4のアルキル基を有するアルキルプ口ピオレート、ァセチ レンジカルボン酸ジメチル、アセチレンジカルボン酸ジェチルなどの炭素数 1〜3の アルキル基を有するアセチレンジカルボン酸ジアルキルが好ましい。
[0016] 一般式 (I)において、 Xが 2 プチ-レン基の場合の具体例としては、 3 へキシン 二酸ジメチル、 3—へキシン二酸ジェチル、 3—へキシンニ酸ジプロピル、 3—へキシ ンニ酸ジブチル、 3—へキシンニ酸ジペンチル、 3—へキシン二酸ジへキシル、 3— へキシンニ酸ジヘプチル、 3—へキシン二酸ジォクチルなどが挙げられる。
これらの中では、特に 3—へキシン二酸ジメチル、 3—へキシンニ酸ジェチルなどの 炭素数 1〜 3のアルキル基を有する 3 へキシンニ酸ジアルキルが好まし!/、。 [0017] 一般式 (I)において、 Xがブタジィ-レン基の場合の具体例としては、 2, 4—へキサ ジイン二酸ジメチル、 2, 4—へキサジイン二酸ジェチル、 2, 4—へキサジインニ酸ジ プロピル、 2, 4一へキサジイン二酸ジブチル、 2, 4—へキサジインニ酸ジペンチル、 2, 4一へキサジイン二酸ジへキシル、 2, 4一へキサジインニ酸ジヘプチル、 2, 4— へキサジイン二酸ジォクチル、 2, 4—へキサジイン二酸ジノ -ル、 2, 4—へキサジィ ンニ酸ジデシル、 2, 4一へキサジイン二酸ジゥンデシル、 2, 4一へキサジインニ酸ジ ドデシルなどが挙げられる。
これらの中では、特に 2, 4—へキサジインニ酸ジメチルなどの炭素数 1〜3のアル キル基を有する 2, 4—へキサジインニ酸ジアルキルが好ましい。
[0018] 一般式 (I)において、 Xがブタジェ-レン基の場合の具体例としては、 2, 4—へキ サジェンニ酸ジメチル、 2, 4—へキサジェンニ酸ジェチル、 2, 4—へキサジェンニ 酸ジ(n—プロピル)、 2, 4—へキサジェンニ酸ジイソプロピル、 2, 4一へキサジェン 二酸ジァリル、 2, 4一へキサジェンニ酸ジブチル、 2, 4—へキサジェンニ酸ジペン チル、 2, 4—へキサジェンニ酸ジへキシル、 2, 4一へキサジェンニ酸ジヘプチル、 2 , 4一へキサジェンニ酸ジォクチル、 2, 4—へキサジェンニ酸ジノエル、 2, 4一へキ サジェンニ酸ジデシル、 2, 4一へキサジェンニ酸ジゥンデシル、 2, 4一へキサジェ ンニ酸ジドデシルなどが挙げられる。
これらの中では、特に 2, 4—へキサジェンニ酸ジメチルなどの炭素数 1〜3のアル キル基を有する 2, 4—へキサジェンニ酸ジアルキルが好ましい。
[0019] 一般式 (I)のカルボン酸エステル化合物は非対称のものでもよ 、。
非対称なカルボン酸ジエステルの具体例としては、アセチレンジカルボン酸メチル ェチル、アセチレンジカルボン酸メチルプロピル、アセチレンジカルボン酸メチルイソ プロピル、アセチレンジカルボン酸メチルブチル、アセチレンジカルボン酸メチルイソ ブチル、アセチレンジカルボン酸メチル tーブチル、アセチレンジカルボン酸メチルぺ ンチル、アセチレンジカルボン酸メチルへキシル、アセチレンジカルボン酸メチルへ プチル、アセチレンジカルボン酸メチルォクチル、アセチレンジカルボン酸メチルノニ ル、アセチレンジカルボン酸メチルデシル、アセチレンジカルボン酸メチルゥンデシ ル、アセチレンジカルボン酸メチルドデシル、アセチレンジカルボン酸ェチルプロピ ル、アセチレンジカルボン酸ェチルブチル、アセチレンジカルボン酸ェチルペンチル 、アセチレンジカルボン酸ェチルへキシル、アセチレンジカルボン酸ェチルヘプチル 、アセチレンジカルボン酸ェチルォクチル、アセチレンジカルボン酸ェチルノ -ル、ァ セチレンジカルボン酸ェチルデシル、アセチレンジカルボン酸ェチルゥンデシル、了 セチレンジカルボン酸ェチルドデシル、アセチレンジカルボン酸プロピルブチル、了 セチレンジカルボン酸プロピルペンチル、アセチレンジカルボン酸プロピルへキシル 、アセチレンジカルボン酸プロピルォクチル、アセチレンジカルボン酸ブチルペンチ ル、アセチレンジカルボン酸ブチルへキシル、アセチレンジカルボン酸ペンチルへキ シル、 3—へキシンニ酸メチルェチル、 3—へキシン二酸メチルプロピル、 3—へキシ ンニ酸メチルブチル、 3—へキシン二酸ェチルプロピル、 2, 4一へキサジインニ酸メ チルェチル、 2, 4一へキサジイン二酸メチルプロピル、 2, 4一へキサジイン二酸メチ ルブチル、 2, 4—へキサジイン二酸ェチルプロピル、 2, 4一へキサジェンニ酸メチ ルェチル、 2, 4—へキサジェンニ酸メチルプロピル、 2, 4一へキサジェンニ酸メチル ブチル、 2, 4一へキサジェンニ酸ェチルプロピルなどが挙げられる。
これらの中では、特にアセチレンジカルボン酸メチルェチルなどの炭素数 1〜3のァ ルキル基を有するアセチレンジカルボン酸ジアルキルが好ましい。
[0020] 前記一般式 (I)で表されるカルボン酸エステル化合物の含有量は、過度に多、、と、 電解液の電導度などが変わり電池性能が低下することがあるため、非水電解液の重 量に対して 10重量%以下、特に 5重量%以下が好ましぐ 3重量%以下が最も好まし い。また、該含有量が過度に少ないと、十分な被膜が形成されず、期待した電池特 性が得られないので、非水電解液の重量に対して 0. 01重量%以上、特に 0. 05重 量%以上が好ましぐ 0. 1重量%が最も好ましい。
[0021] 本発明の非水電解液は、前記カルボン酸エステルイ匕合物を 0. 01〜10重量%含 有すると共に、ビ-レンカーボネートおよび Zまたは 1, 3—プロパンスルトンを 0. 01 〜10重量%、好ましくは 0. 02〜9重量%、または 0. 01〜10容量%、好ましくは 0. 02〜9容量%含有する。
本発明の非水電解液中に含有されるビ-レンカーボネートの含有量は、過度に多 いと、電解液の電導度などが変わり電池性能が低下することがあるため、非水電解液 の重量に対して 10重量%以下が好ましぐ 5重量%以下がより好ましい。また、該含 有量が過度に少ないと、十分な被膜が形成されず、期待した電池特性が得られない ので、非水電解液の重量に対して 0. 01重量%以上、特に 0. 05重量%以上が好ま しぐ 0. 1重量%以上が最も好ましい。また、ビ-レンカーボネートの含有量は、非水 溶媒に対して 0. 01〜10容量%が好ましぐ 0. 02〜9容量%がより好ましぐ 0. 02 〜8容量%がより好ましぐ 0. 05〜6容量%が特に好ましい。
[0022] また、 1, 3 プロパンスルトンの含有量は、過度に多いと、電解液の電導度などが 変わり電池性能が低下することがあるため、非水電解液の重量に対して 10重量%以 下が好ましぐ 5重量%以下がより好ましい。また、該含有量が過度に少ないと、十分 な被膜が形成されず、期待した電池特性が得られないので、非水電解液の重量に対 して 0. 01重量%以上、特に 0. 05重量%以上が好ましぐ 0. 1重量%以上が最も好 ましい。また、 1, 3 プロパンスルトンの含有量は、非水溶媒に対して 0. 01〜10容 量%が好ましぐ 0. 02〜9容量%がより好ましぐ 0. 02〜6容量%がより好ましぐ 0 . 05〜4容量%が特に好ましい。
1, 3 プロパンスルトンはビ-レンカーボネートと併用することもできる。この場合、 1, 3 プロパンスルトンとビ-レンカーボネートとの合計含有量は、非水溶媒に対し て 0. 01〜10容量%が好ましぐ 0. 02〜9容量%がより好ましぐ 0. 05〜8容量% 力 り好ましぐ 0. 1〜7容量%が特に好ましい。
[0023] 本発明で使用される非水溶媒としては、例えば、エチレンカーボネート (EC)、プロ ピレンカーボネート(PC)、ブチレンカーボネート、フルォロエチレンカーボネート、ジ メチルビ-レンカーボネート、ビュルエチレンカーボネートなどの環状カーボネート類 、 Ύ 一ブチロラタトン、 Ί バレロラタトン、 α アンゲリカラクトンなどのラタトン類、ジ メチノレカーボネート (DMC)、メチノレエチノレカーボネート (MEC)、ジェチノレカーボネ ート(DEC)、メチノレプロピノレカーボネート、ジプロピノレカーボネート、メチノレブチノレカ ーボネート、ジブチルカーボネートなどの鎖状カーボネート類、テトラヒドロフラン、 2 ーメチルテトラヒドロフラン、 1, 4 ジォキサン、 1, 2 ジメトキシェタン、 1, 2 ジエト キシェタン、 1, 2—ジブトキシェタンなどのエーテル類、ァセトニトリル、アジポ-トリル などの二トリル類、リン酸トリメチルやリン酸トリオクチルなどのリン酸エステル類、プロ ピオン酸メチル、ピバリン酸メチル、ピバリン酸ブチル、ピバリン酸へキシル、ピバリン 酸ォクチル、シユウ酸ジメチル、シユウ酸ェチルメチル、シユウ酸ジェチルなどの鎖状 エステル類、ジメチルホルムアミドなどのアミド類、 1, 4 プロパンスルトン、ジビュル スルホン、 1, 4 ブタンジオールジメタンスルホネート、グリコールサルファイト、プロ ピレンサルフアイト、グリコールサルフェート、プロピレンサルフェートなどの硫黄酸ェ ステル化合物、ビフエ-ル、アルキルビフエ-ル、ターフェ-ル、ターフェ-ルの部分 水素化体、シクロへキシルベンゼン、 t—ブチルベンゼン、 t ァミルベンゼン(TAB) 、ジフエ-ルエーテル、ジベンゾフランなどの芳香族化合物などが挙げられる。
[0024] これらの非水溶媒は通常、適切な物性を達成するために、混合して使用される。そ の組み合わせは、例えば、環状カーボネートと鎖状カーボネートの組み合わせ、環 状カーボネート類とラタトン類との組み合わせ、ラタトン類と鎖状エステルの組み合わ せ、環状カーボネート類とラタトン類と鎖状エステルとの組み合わせ、環状カーボネ ート類と鎖状カーボネート類とラタトン類との組み合わせ、環状カーボネート類とエー テル類との組み合わせ、環状カーボネート類と鎖状カーボネート類とエーテル類の組 み合わせ、環状カーボネート類と鎖状カーボネート類と鎖状エステル類との組み合わ せなど種々の組み合わせが挙げられ、その混合比率は特に制限されない。
これらの中でも、環状カーボネートと鎖状カーボネートの組み合わせが好ましぐ環 状カーボネートと鎖状カーボネートの割合は、環状カーボネート:鎖状カーボネート( 容量 it) = 20: 80〜40: 60力好ましく、特に 25: 75〜35: 65力 ^好まし!/、。
[0025] 上記環状カーボネート類の中では、特にエチレンカーボネート (EC)、プロピレン力 ーボネート(PC)、ブチレンカーボネート、フルォロエチレンカーボネート、ビニルェチ レンカーボネートが好まし 、。
また、上記鎖状カーボネートの中では、メチルェチルカーボネート(MEC)、メチル プロピルカーボネート、メチルブチルカーボネートなどの非対称カーボネート、および ジメチノレカーボネート (DMC)、ジェチノレカーボネート (DEC)などの対称カーボネー トを使用することが好ましい。特に、低温で液体であり、比較的沸点が高いために蒸 発が少ないメチルェチルカーボネート(MEC)を使用することが好ましい。更には、鎖 状カーボネートのうち、非対称な鎖状カーボネートであるメチルェチルカーボネート( MEC)と、対称な鎖状カーボネートであるジメチルカーボネート(DMC)および Zま たはジェチルカーボネート(DEC)との容量比は、 100Z0〜5lZ49であることが好 ましく、 100/0〜70/30力より好まし!/ヽ。
また、ジメチノレカーボネート (DMC)とジェチノレカーボネート (DEC)を DMC/DE C (容量比) = 90Z10〜10Z90で使用することもできる。
[0026] また、前記組み合わせのうち、ラタトン類を使用する組み合わせでは、ラタトン類の 容量比が最も大きくなるような割合が好ましい。
例えば、カーボネート類:ラクトン類(容量比)= 10:90〜40 : 60が好ましぐ特に 20 : 80〜35 : 65カ^好まし ヽ。
なお、上記の非水溶媒は予め精製して純度を高めたものを使用することが好ましい
[0027] 本発明で使用される電解質塩としては、例えば、 LiPF、 LiBF、 LiCIO、 LiN (SO
6 4 4
CF ) 、 LiN (SO C F ) 、 LiCF SO、 LiC (SO CF )、 LiPF (CF )、 LiPF (C F
2 3 2 2 2 5 2 3 3 2 3 3 4 3 2 3 2
) 、 LiPF (CF ) 、 LiPF (iso— C F ) 、 LiPF (iso— C F )などの鎖状のアルキル
5 3 3 3 3 3 3 7 3 5 3 7
基を含有するリチウム塩や、 (CF ) (SO ) NLi、 (CF ) (SO ) NLiなどの環状のァ
2 2 2 2 2 3 2 2
ルキレン鎖を含有するリチウム塩が挙げられる。
これらの中でも、特に好ましい電解質塩は、 LiPF、 LiBF、 LiN (SO CF )であり
6 4 2 3 2
、最も好ましい電解質塩は LiPFである。これらの電解質塩は、 1種類で使用してもよ
6
ぐ 2種類以上組み合わせて使用してもよい。
これらの電解質塩の好ましい組み合わせとしては、 LiPFと LiBFとの組み合わせ、
6 4
LiPFと LiN (SO CF )との組み合わせ、 LiBFと LiN (SO CF )との組み合わせ等
6 2 3 2 4 2 3 2
が挙げられる。特に好ましいのは、 LiPFと LiBFとの組み合わせであり、 LiPF: LiB
6 4 6
F (容量比)=80 : 20〜99 : 1が好ましぐ特に90 : 10〜98 : 2が好ましぃ。
4
電解質塩は任意の割合で混合することができるが、 LiPFと組み合わせて使用する
6
場合の他の電解質塩が全電解質塩に占める割合 (モル比)は、好ましくは 0. 01〜4 5%、より好ましくは 0. 03〜20%、さらに好ましくは 0. 05〜10%、最も好ましくは 0. 05〜5%である。
これら全電解質塩が溶解されて使用される濃度は、前記の非水溶媒に対して、通 常 0. 3M以上が好ましぐ 0. 5M以上がより好ましぐ 0. 7M以上が最も好ましい。ま た、これら電解質塩の濃度は、 3M以下が好ましぐ 2. 5M以下がより好ましぐ 2M以 下が最も好ましい。
[0028] 本発明の電解液は、例えば、前記したエチレンカーボネート、プロピレンカーボネ ート、メチルェチルカーボネートのような非水溶媒を混合し、これに前記の電解質塩 を溶解し、前記一般式 (I)で表されるカルボン酸エステルイ匕合物を溶解することにより 得ることができる。また、前記したエチレンカーボネート、プロピレンカーボネート、メチ ルェチルカーボネートのような非水溶媒と前記一般式 (I)で表されるカルボン酸エス テルィ匕合物とを混合した後、これに前記の電解質塩を溶解することにより得ることもで きる。
[0029] また、本発明の非水電解液に、例えば、空気や二酸ィ匕炭素を含ませることにより、 電解液の分解によるガス発生の抑制や、サイクル特性や保存特性などの電池性能を 向上させることができる。
[0030] 非水電解液中に二酸ィ匕炭素または空気を含有 (溶解)させる方法としては、(1)あ らカゝじめ非水電解液を電池内に注液する前に空気または二酸ィ匕炭素含有ガスと接 触させて含有させる方法、(2)注液後、電池封口前または後に空気または二酸化炭 素含有ガスを電池内に含有させる方法のいずれでもよぐまたこれらを組み合わせて 使用することもできる。空気や二酸化炭素含有ガスは、極力水分を含まないものが好 ましぐ露点 40°C以下であることが好ましぐ露点 50°C以下であることが特に好 ましい。
[0031] 本発明の非水電解液は、二次電池、特にリチウム二次電池の構成部材として使用 される。二次電池を構成する非水電解液以外の構成部材につ!/ヽては特に限定され ず、従来使用されている種々の構成部材を使用できる。
[0032] 例えば、正極活物質としてはコバルト、マンガン、ニッケルを含有するリチウムとの複 合金属酸化物が使用される。これらの正極活物質は、 1種類だけを選択して使用して もよいし、 2種類以上を組み合わせて用いてもよい。このような複合金属酸化物として は、例えば、 LiCoO、 LiMn O、 LiNiO、 LiCo Ni O (0. 01く xく 1)、 LiCo N
2 2 4 2 1-x x 2 1/3 i Mn O、 LiNi Mn Oなどが挙げられる。また、 LiCoOと LiMn O、 LiCoO と LiNiO 、 LiMn Oと LiNiOのように適当に混ぜ合わせて使用してもよい。
2 2 4 2
以上のように、正極活物質としては、 LiCoO 、 LiMn O 、 LiNiO、のような満充電
2 2 4 2
状態における正極の充電電位が Li基準で 4. 3V以上で使用可能なリチウム複合金 属酸化物が好ましぐ LiCo Ni Mn O 、 LiNi Mn Oのような 4. 4V以上で使
1/3 1/3 1/3 2 1/2 3/2 4
用可能なリチウム複合酸ィ匕物がより好ましい。また、リチウム複合金属酸化物の一部 が他元素で置換されていても良い。例えば、 LiCoOの Coの一部を Sn、 Mg、 Fe、 Ti
2
、 Al、 Zr、 Cr、 V、 Ga、 Zn、 Cuなどで置換されていてもよい。
[0033] 正極の導電剤として、化学変化を起こさない電子伝導材料であれば特に制限はな い。例えば、天然黒鉛 (鱗片状黒鉛など)、人造黒鉛などのグラフアイト類、ァセチレ ンブラック、ケッチェンブラック、チェンネルブラック、ファーネスブラック、ランプブラッ ク、サーマルブラックなどのカーボンブラック類などが挙げられる。また、グラフアイト類 とカーボンブラック類を適宜混合して用いてもよ 、。
導電剤の正極合剤への添加量は、 1〜10重量%が好ましぐ特に 2〜5重量%が 好ましい。
[0034] 正極は、前記の正極活物質をアセチレンブラック、カーボンブラックなどの導電剤 およびポリテトラフルォロエチレン(PTFE)、ポリフッ化ビ-リデン(PVDF)、スチレン とブタジエンの共重合体(SBR)、アクリロニトリルとブタジエンの共重合体(NBR)、力 ルポキシメチルセルロース(CMC)などの結着剤と混練して正極合剤とした後、この 正極材料を集電体としてのアルミニウム箔ゃステンレス製のラス板に圧延して、 50°C 〜250°C程度の温度で 2時間程度真空下で加熱処理することにより作製される。
[0035] 負極 (負極活物質)は、リチウムを吸蔵,放出可能な材料が使用され、例えば、リチ ゥム金属、リチウム合金、および炭素材料〔熱分解炭素類、コータス類、グラフアイト類 (人造黒鉛、天然黒鉛など)、有機高分子化合物燃焼体、炭素繊維〕、スズ、スズィ匕 合物、ケィ素、ケィ素化合物が使用される。炭素材料の一部または全部をスズ、スズ 化合物、ケィ素、ケィ素化合物で置換することにより、電池容量を上げることができる これらの中では、炭素材料が好ましぐ格子面(002)の面間隔(d )が 0. 340nm
002
以下、特に 0. 335〜0. 340nmである黒鉛型結晶構造を有するグラフアイト類を使 用することがより好ましい。これらの負極活物質は、 1種類だけを選択して使用しても よいし、 2種類以上を組み合わせて用いてもよい。
なお、炭素材料のような粉末材料はエチレンプロピレンジエンターポリマー(EPD M)、ポリテトラフルォロエチレン(PTFE)、ポリフッ化ビ-リデン(PVDF)、スチレンと ブタジエンの共重合体(SBR)、アクリロニトリルとブタジエンの共重合体(NBR)、力 ルポキシメチルセルロース(CMC)などの結着剤と混練して負極合剤として使用され る。負極の製造方法は、特に限定されず、上記の正極の製造方法と同様な方法によ り製造することがでさる。
[0036] リチウム二次電池の構造は特に限定されるものではなぐ正極、負極および単層ま たは複層のセパレータを有するコイン型電池、さらに、正極、負極およびロール状の セパレータを有する円筒型電池や角型電池などが一例として挙げられる。なお、セパ レータとしては公知のポリプロピレン、ポリエチレン等のポリオレフインの微多孔膜、織 布、不織布などが使用される。また、電池用セパレータは単層多孔質フィルムおよび 積層多孔質フィルムの 、ずれの構成であってもよ 、。
本発明で使用される電池用セパレータは、製造条件によっても異なるが、透気度が 高すぎるとリチウムイオン伝導性が低下するために電池用セパレータとしての機能が 十分でなくなることから、その透気度は 1000秒 ZlOOcc以下が好ましぐ 800秒 Z1 OOcc以下がより好ましぐ 500秒 ZlOOcc以下が最も好ましい。また、透気度が低す ぎると機械的強度が低下するので、 50秒 ZlOOcc以上が好ましぐ 100秒 ZlOOcc 以上がより好ましぐ 300秒 ZlOOcc以上が最も好ましい。また、その空孔率は 30〜 60%が好ましぐ 35〜55%がより好ましぐ 40〜50%が最も好ましい。特に空孔率 をこの範囲とすると、電池の容量特性が向上するので好ましい。さらに、電池用セパ レータの厚みはできるだけ薄い方がエネルギー密度を高くできるために、 50 μ m以 下が好ましぐ 40 μ m以下がより好ましぐ 25 μ m以下が最も好ましい。また、機械的 強度の面から 5 m以上が好ましぐ 10 m以上がより好ましぐ 15 m以上が最も 好ましい。
[0037] 本発明にお 、ては、前記一般式 (I)で表されるカルボン酸エステルイ匕合物、ビ-レ ンカーボネートおよび Zまたは 1, 3—プロパンスルトンの有効な添加効果を得るため に、電極材料層の密度が重要である。特に、アルミニウム箔上に形成される正極合剤 層の密度 ίま 3. 2〜4. Og/cm3力 S好ましく、 3. 3〜3. 9g/cm3力 S更に好ましく、 3. 4 〜3. 8gZcm3が最も好ましい。正極合剤密度が 4. OgZcm3を超えて大きくなると、 実質上、作製が困難となる。一方、銅箔上に形成される負極合剤層の密度は 1. 3〜 2. OgZcm3、更に好ましくは 1. 4〜1. 9gZcm3、最も好ましくは 1. 5〜1. 8g/cm3 の間である。負極合剤層の密度が 2. OgZcm3を超えて大きくなると、実質上、作製 が困難となる。
[0038] また、本発明における好適な前記正極の電極層の厚さ (集電体片面当たり)は、 30 〜120 /ζ πι、好ましくは 50〜: LOO mであり、前記負極の電極層の厚さ(集電体片面 当たり)は、 1〜: L00 μ m、好ましくは 3〜70 μ mである。電極材料層の厚みが好適な 前記範囲より薄いと、電極材料層での活物質量が低下するために電池容量が小さく なる。一方、その厚さが前記範囲より厚いと、サイクル特性やレート特性が低下するの で好ましくない。
[0039] 本発明におけるリチウム二次電池は、充電終止電圧が 4. 2Vより大きい場合にも長 期間にわたり、優れたサイクル特性を有しており、特に充電終止電圧が 4. 3V以上の ような場合にも優れたサイクル特性を有している。放電終止電圧は、 2. 5V以上とす ることができ、さらに 2. 8V以上とすることができる。電流値については特に限定され るものではないが、通常 0. 1〜3Cの定電流放電で使用される。また、本発明におけ るリチウム二次電池は、 40°C以上で充放電することができる力 好ましくは 0°C以 上である。また、 100°C以下で充放電することができる力 好ましくは 80°C以下である
[0040] 本発明におけるリチウム二次電池の内圧上昇の対策として、封口版に安全弁を用 いることができる。その他、電池缶やガスケットなどの部材に切り込みを入れる方法も 利用することができる。この他、従来力 知られている種々の安全素子 (過電流防止 素子として、ヒューズ、ノィメタル、 PTC素子の少なくとも 1種以上)を備えつけている ことが好ましい。
[0041] 本発明におけるリチウム二次電池は必要に応じて複数本を直列および Zまたは並 列に組み電池パックに収納される。電池パックには、 PTC素子、温度ヒューズ、ヒユー ズおよび Zまたは電流遮断素子などの安全素子のほか、安全回路 (各電池および Z または組電池全体の電圧、温度、電流などをモニターし、電流を遮断する機能を有 する回路)を設けてもよい。
実施例
[0042] 以下、本発明につ 、て、実施例および比較例を挙げてより具体的に説明する。な お、本発明はこれら実施例に限定されず、発明の趣旨から容易に類推可能な様々な 組み合わせが可能である。特に、下記実施例の溶媒の組み合わせは限定されるもの ではない。
[0043] 実施例 1
〔非水電解液の調製〕
エチレンカーボネート(EC):ビ-レンカーボネート(VC):メチノレエチノレカーボネー ト(MEC) (容量比) = 30 : 2 : 68の非水溶媒を調製し、これに電解質塩として LiPF
6 を 1Mの濃度になるように溶解して非水電解液を調製した後、さらに非水電解液に対 してメチルプロピオレートを 1重量%加えた。なお、非水溶媒および電解質塩は予め 精製して純度を高めたものを使用した。
[0044] 〔リチウム二次電池の作製および電池特性の測定〕
LiCoO (正極活物質)を 94重量0 /0、アセチレンブラック(導電剤)を 3重量0 /0、ポリ
2
フッ化ビ-リデン (結着剤)を 3重量0 /0の割合で混合し、これに 1—メチル—2 ピロリ ドン溶剤を加えて混合したものをアルミニウム箔上に塗布し、乾燥、加圧成型、加熱 処理して正極を調製した。格子面 (002)の面間隔 (d )が 0. 335nmである黒鉛型
002
結晶構造を有する人造黒鉛 (負極活物質)を 95重量%、ポリフッ化ビ-リデン (結着 剤)を 5重量%の割合で混合し、これに 1—メチル—2 ピロリドン溶剤を加え、混合し たものを銅箔上に塗布し、乾燥、加圧成型、加熱処理して負極を調製した。そして、 ポリエチレン微多孔性フィルムのセパレータ (厚さ 20 μ m)を用い、上記の非水電解 液を注入後、電池封口前に露点 60°Cの空気を電池内に含有させて 18650サイズ の円筒電池(直径 18mm、高さ 65mm)を作製した。電池には、圧力開放口および内 部電流遮断装置 (PTC素子)を設けた。この時、正極の電極密度は、 3. 5gZcm3で あり、負極の電極密度は 1. 6gZcm3であった。正極の電極層の厚さ(集電体片面当 たり)は 65 μ mであり、負極の電極層の厚さ(集電体片面当たり)は 70 μ mであった。 この 18650電池を用いて、 25°C下、 2. 2A (1C)の定電流で 4. 2Vまで充電した後 、終止電圧 4. 2Vとして定電圧下に合計 3時間充電した。次〖こ 2. 2A(1C)の定電流 下、終止電圧 3. 0Vまで放電し、この充放電を繰り返した。初期放電容量 (mAh)は 、カルボン酸エステル化合物を添加しない 1M LiPF ECZMEC (容量比 30Z7
6
0)を非水電解液として用いた場合 (比較例 1)とほぼ同等であり、 200サイクル後の電 池特性を測定した。 18650電池の作製条件および電池特性を表 1に示す。
[0045] 実施例 2
添加剤として、ェチルプロピオレートを非水電解液に対して、 1重量%使用したほか は、実施例 1と同様に非水電解液を調製して 18650サイズの円筒電池を作製し、充 放電サイクル試験を行った。結果を表 1に示す。
[0046] 実施例 3
エチレンカーボネート(EC) : 1, 3 プロパンスルトン(PS):メチルェチルカーボネ 一 HMEC) (容量比) = 30 : 2 : 68の非水溶媒を調製し、これに電解質塩として LiPF を 1Mの濃度になるように溶解して非水電解液を調製した後、添加剤として、 t—ブ
6
チルプロピオレートを非水電解液に対して、 1重量%使用したほかは、実施例 1と同 様に非水電解液を調製して 18650サイズの円筒電池を作製し、充放電サイクル試験 を行った。結果を表 1に示す。
[0047] 実施例 4
EC :VC : MEC (容量比) = 30 : 5 : 65の非水溶媒を調製し、これに電解質塩として LiPFを 1Mの濃度になるように溶解して非水電解液を調製した後、添加剤として、ァ
6
セチレンジカルボン酸ジメチルを非水電解液に対して、 0. 1重量%使用したほかは、 実施例 1と同様に非水電解液を調製して 18650サイズの円筒電池を作製し、充放電 サイクル試験を行った。結果を表 1に示す。
[0048] 実施例 5
EC :VC : MEC (容量比) = 30 : 2 : 68の非水溶媒を調製し、これに電解質塩として LiPFを 1Mの濃度になるように溶解して非水電解液を調製した後、添加剤として、ァ
6
セチレンジカルボン酸ジメチルを非水電解液に対して、 2重量%使用したほかは、実 施例 1と同様に非水電解液を調製して 18650サイズの円筒電池を作製し、充放電サ イタル試験を行った。結果を表 1に示す。
[0049] 実施例 6
EC:VC:MEC (容量比) =30:0. 1:69.9の非水溶媒を調製し、これに電解質塩 として LiPFを 1Mの濃度になるように溶解して非水電解液を調製した後、添加剤とし
6
て、アセチレンジカルボン酸ジメチルを非水電解液に対して、 5重量%使用したほか は、実施例 1と同様に非水電解液を調製して 18650サイズの円筒電池を作製し、充 放電サイクル試験を行った。結果を表 1に示す。
[0050] 実施例 7
PC:VC:MEC (容量比) = 30: 2: 68の非水溶媒を調製し、これに電解質塩として LiPFを 1Mの濃度になるように溶解して非水電解液を調製した後、添加剤として、ァ
6
セチレンジカルボン酸ジメチルを非水電解液に対して、 2重量%使用したほかは、実 施例 1と同様に非水電解液を調製して 18650サイズの円筒電池を作製し、充放電サ イタル試験を行った。結果を表 1に示す。
[0051] 実施例 8
添加剤として、アセチレンジカルボン酸ジェチルを非水電解液に対して、 1重量% 使用したほかは、実施例 1と同様に非水電解液を調製して 18650サイズの円筒電池 を作製し、充放電サイクル試験を行った。結果を表 1に示す。
[0052] 実施例 9
添加剤として、 3—へキシン二酸ジェチルを非水電解液に対して、 1重量%使用し たほかは、実施例 1と同様に非水電解液を調製して 18650サイズの円筒電池を作製 し、充放電サイクル試験を行った。結果を表 1に示す。
[0053] 実施例 10
EC:VC:PS: MEC (容量比) =30:1:1: 68の非水溶媒を調製し、これに電解質 塩として LiPFを 1Mの濃度になるように溶解して非水電解液を調製した後、添加剤
6
として、 2, 4一へキサジイン二酸ジメチルを非水電解液に対して、 1重量%使用した ほかは、実施例 1と同様に非水電解液を調製して 18650サイズの円筒電池を作製し 、充放電サイクル試験を行った。結果を表 1に示す。 [0054] 実施例 11
添加剤として、 2, 4—へキサジェンニ酸ジメチルを非水電解液に対して、 1重量% 使用したほかは、実施例 1と同様に非水電解液を調製して 18650サイズの円筒電池 を作製し、充放電サイクル試験を行った。結果を表 1に示す。
[0055] 実施例 12
正極 (正極活物質)として、 LiCoOに代えて LiMn Oを使用し、添加剤として、ァ
2 2 4
セチレンジカルボン酸ジメチルを非水電解液に対して、 1重量%使用したほかは、実 施例 1と同様に非水電解液を調製して 18650サイズの円筒電池を作製し、充放電サ イタル試験を行った。結果を表 1に示す。
[0056] 比較例 1
EC : MEC (容量比) = 30 : 70の非水溶媒を調製し、これに電解質塩として LiPFを
6
1Mの濃度になるように溶解して非水電解液を調製した後、添加剤を使用しなカゝつた ほかは、実施例 1と同様に非水電解液を調製して 18650サイズの円筒電池を作製し 、充放電サイクル試験を行った。結果を表 1に示す。
[0057] 比較例 2
添加剤として、アセチレンジカルボン酸ジメチルを 1重量%使用したほかは、比較例 1と同様に非水電解液を調製して 18650サイズの円筒電池を作製し、充放電サイク ル試験を行った。結果を表 1に示す。
[0058] 比較例 3
EC : PC : γ—プチ口ラタトン (GBL) (容量比) =40 : 20 :40の非水溶媒を調製した ほかは、比較例 1と同様に非水電解液を調製して 18650サイズの円筒電池を作製し 、充放電サイクル試験を行った。結果を表 1に示す。
[0059] 比較例 4
EC :VC : MEC (容量比) = 30 : 2 : 68の非水溶媒を調製し、これに電解質塩として LiPFを 1Mの濃度になるように溶解して非水電解液を調製した後、添加剤を使用し
6
ない以外は実施例 1と同様に非水電解液を調製して 18650サイズの円筒電池を作 製し、充放電サイクル試験を行った。結果を表 1に示す。
[0060] 比較例 5 EC : PS : MEC (容量比) =30:2: 68の非水溶媒を調製し、これに電解質塩として LiPFを 1Mの濃度になるように溶解して非水電解液を調製した後、添加剤を使用し
6
ない以外は実施例 1と同様に非水電解液を調製して 18650サイズの円筒電池を作 製し、充放電サイクル試験を行った。結果を表 1に示す。
[0061] 比較例 6
EC: VC: MEC (容量比) =25:13:62の非水溶媒を調製し、これに電解質塩とし て LiPFを 1Mの濃度になるように溶解して非水電解液を調製した後、添加剤として、
6
アセチレンジカルボン酸ジメチルを 1重量%使用したほかは実施例 1と同様に非水電 解液を調製して 18650サイズの円筒電池を作製し、充放電サイクル試験を行った。 結果を表 1に示す。
[0062] [表 1]
表 1
Figure imgf000021_0001
[0063] 実施例 13〜20
正極(正極活物質)として、 LiCoOに代えて LiCo Ni Mn Oを使用し、表 2に
2 1/3 1/3 1/3 2
示す化合物を非水電解液に対して所定量添加し、表 2に示す組成の非水電解液を 実施例 1と同様に調製して 18650サイズの円筒電池を作製し、充放電サイクル試験 を行った。結果を表 2に示す。
[0064] [表 2]
Figure imgf000022_0001
[0065] 表 1および表 2に示すように、上記実施例のリチウム二次電池は、比較例のリチウム 二次電池に比べて、充放電を 200サイクル繰り返した後の放電容量の維持率(%)が 約 10%以上高ぐ長期にわたりサイクル特性が優れてレ、ることが分る。
産業上の利用可能性
[0066] 本発明の非水電解液を用いることにより、電池のサイクル特性、電気容量、保存特 性などの電池特性に優れたリチウム二次電池を得ることができる。また得られたリチウ ムニ次電池は、円筒型電池、角型電池、コイン型電池および積層型電池などとして 好適に使用できる。

Claims

請求の範囲 [1] 非水溶媒に電解質塩が溶解されているリチウム二次電池用非水電解液において、 該非水電解液中に、下記一般式 (I)で表されるカルボン酸エステルイ匕合物を 0. 01 〜10重量0 /0含有し、かつビ-レンカーボネートおよび Zまたは 1, 3—プロパンスルト ンを 0. 01〜: L0重量%または 0. 01〜: L0容量%含有することを特徴とする非水電解 液。
[化 1]
Figure imgf000023_0001
(R1は、炭素数 1〜12の分枝してもよいアルキル基、炭素数 3〜8のシクロアルキル基 、炭素数 2〜 12の分枝してもよいァルケ-ル基、炭素数 2〜 12の分枝してもよいアル キ-ル基、無置換または置換フエ-ル基を示し、 R2は、水素原子または COOR3基を 示し、前記 R3は、炭素数 1〜12の分枝してもよいアルキル基、炭素数 3〜8のシクロ アルキル基、炭素数 2〜 12の分枝してもよいアルケニル基、炭素数 2〜 12の分枝し てもよいアルキ-ル基、無置換または置換フエ-ル基を示す。 Xは炭素数 2〜4の不 飽和結合を一つ以上有するアルキ-レン基またはァルケ-レン基を示す。 )
[2] 前記一般式 (I)で表されるカルボン酸エステルイ匕合物が、炭素数 1〜4のアルキル 基を有するアルキルプ口ピオレート、炭素数 1〜3のアルキル基を有するアセチレンジ カルボン酸ジアルキル、炭素数 1〜3のアルキル基を有する 3—へキシンニ酸ジアル キル、炭素数 1〜3のアルキル基を有する 2, 4—へキサジインニ酸ジアルキル、炭素 数 1〜 3のアルキル基を有する 2, 4—へキサジェンニ酸ジアルキルから選ばれる 1種 又は 2種以上のものである請求項 1記載の非水電解液。
[3] 前記一般式 (I)で表されるカルボン酸エステルイ匕合物を 0. 05〜5重量%含有し、 かつビ-レンカーボネートおよび Zまたは 1, 3—プロパンスルトンを 0. 02〜9容量0 /0 含有する請求項 1又は 2に記載の非水電解液。
[4] 非水溶媒が、環状カーボネートとしてエチレンカーボネートおよび Zまたはプロピレ ンカーボネートを含むものである請求項 1又は 2に記載の非水電解液。
[5] 非水溶媒が、鎖状カーボネートとしてメチルェチルカーボネート、ジメチルカーボネ ート、ジェチルカーボネートから選ばれる 1種又は 2種以上を含むものである請求項 1 又は 2に記載の非水電解液。
[6] 正極、負極および非水溶媒に電解質塩が溶解されて!ヽる非水電解液からなるリチ ゥム二次電池において、正極がリチウム複合酸ィ匕物を含む材料であり、負極がリチウ ムを吸蔵、放出可能な材料であり、該非水電解液中に、下記一般式 (I)で表される力 ルボン酸エステル化合物を 0. 01〜10重量%含有し、かつビ-レンカーボネートお よび Zまたは 1, 3—プロパンスルトンを 0. 01〜10重量%または 0. 01〜10容量% 含有することを特徴とするリチウム二次電池。
[化 2]
Figure imgf000024_0001
(R1は、炭素数 1〜12の分枝してもよいアルキル基、炭素数 3〜8のシクロアルキル基 、炭素数 2〜 12の分枝してもよいァルケ-ル基、炭素数 2〜 12の分枝してもよいアル キ-ル基、無置換または置換フエ-ル基を示し、 R2は、水素原子または COOR3基を 示し、前記 R3は、炭素数 1〜12の分枝してもよいアルキル基、炭素数 3〜8のシクロ アルキル基、炭素数 2〜 12の分枝してもよいアルケニル基、炭素数 2〜 12の分枝し てもよいアルキ-ル基、無置換または置換フエ-ル基を示す。 Xは炭素数 2〜4の不 飽和結合を一つ以上有するアルキ-レン基またはァルケ-レン基を示す。 )
PCT/JP2005/009049 2004-05-28 2005-05-18 非水電解液およびそれを用いたリチウム二次電池 WO2005122318A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006514434A JP4946437B2 (ja) 2004-05-28 2005-05-18 非水電解液およびそれを用いたリチウム二次電池
CA002568335A CA2568335A1 (en) 2004-05-28 2005-05-18 Nonaqueous electrolyte solution and lithium secondary battery using same
US11/596,862 US7727677B2 (en) 2004-05-28 2005-05-18 Nonaqueous electrolyte solution and lithium secondary battery using same
EP05741522A EP1758198B1 (en) 2004-05-28 2005-05-18 Non-aqueous electrolyte solution and lithium secondary battery using same
KR1020067024931A KR101158143B1 (ko) 2004-05-28 2005-05-18 비수 전해액 및 그것을 이용한 리튬 2차 전지
DE602005015321T DE602005015321D1 (de) 2004-05-28 2005-05-18 Nicht-wässrige elektrolytlösung und lithium-sekundärbatterie dieselbe enthaltend

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004159285 2004-05-28
JP2004-159285 2004-05-28

Publications (1)

Publication Number Publication Date
WO2005122318A1 true WO2005122318A1 (ja) 2005-12-22

Family

ID=35503403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009049 WO2005122318A1 (ja) 2004-05-28 2005-05-18 非水電解液およびそれを用いたリチウム二次電池

Country Status (9)

Country Link
US (1) US7727677B2 (ja)
EP (1) EP1758198B1 (ja)
JP (1) JP4946437B2 (ja)
KR (1) KR101158143B1 (ja)
CN (1) CN100502135C (ja)
CA (1) CA2568335A1 (ja)
DE (1) DE602005015321D1 (ja)
TW (1) TW200603453A (ja)
WO (1) WO2005122318A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188806A (ja) * 2006-01-16 2007-07-26 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2008016267A (ja) * 2006-07-05 2008-01-24 Hitachi Maxell Ltd 非水電解液二次電池
EP2031689A1 (en) * 2006-06-02 2009-03-04 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution and nonaqueous electrolyte battery
WO2009113545A1 (ja) * 2008-03-13 2009-09-17 宇部興産株式会社 リチウム電池用非水電解液、それを用いたリチウム電池、及びそれに用いられるヒドロキシ酸誘導体化合物
JP2009301954A (ja) * 2008-06-16 2009-12-24 Mitsubishi Chemicals Corp 非水系電解液及び非水系電解液電池
JP2010056076A (ja) * 2008-08-01 2010-03-11 Sanyo Electric Co Ltd 非水電解質二次電池
JP2011054516A (ja) * 2009-09-04 2011-03-17 Hitachi Ltd リチウムイオン二次電池
WO2012161184A1 (ja) * 2011-05-24 2012-11-29 富士フイルム株式会社 非水二次電池用電解液及び二次電池
WO2013115040A1 (ja) * 2012-01-30 2013-08-08 日本電気株式会社 共役エステル化合物、電解質およびこれを用いた二次電池
JP2014523096A (ja) * 2011-07-14 2014-09-08 エルジー・ケム・リミテッド 非水電解液及びそれを用いたリチウム二次電池
WO2016104468A1 (ja) * 2014-12-24 2016-06-30 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス
US9666904B2 (en) 2012-07-02 2017-05-30 Nec Corporation Secondary battery
JP2019520687A (ja) * 2017-01-23 2019-07-18 エルジー・ケム・リミテッド 非水電解液用添加剤、それを含むリチウム二次電池用非水電解液、およびリチウム二次電池

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006077763A1 (ja) 2005-01-20 2006-07-27 Ube Industries, Ltd. 非水電解液及びそれを用いたリチウム二次電池
CN101981749B (zh) * 2008-04-02 2014-09-10 宇部兴产株式会社 锂电池用非水电解液以及使用了该非水电解液的锂电池
JP5342552B2 (ja) * 2008-05-07 2013-11-13 日立マクセル株式会社 非水二次電池および電子機器
DE102008041319B4 (de) 2008-08-18 2013-01-03 Dilo Trading Ag Verfahren zum Herstellen von Lithium-Ionen-Zellen und Lithium-Ionen-Zelle
JP5446612B2 (ja) * 2009-08-28 2014-03-19 Tdk株式会社 リチウムイオン二次電池
EP2533344B1 (en) * 2010-02-03 2016-07-20 Ube Industries, Ltd. Non-aqueous electrolytic solution, electrochemical element using the same, and alkynyl compound used therefor
KR101837785B1 (ko) * 2010-05-12 2018-03-12 미쯔비시 케미컬 주식회사 비수계 전해액 2차 전지
WO2012035821A1 (ja) * 2010-09-16 2012-03-22 三菱化学株式会社 非水系電解液及び非水系電解液二次電池
CN102315484A (zh) * 2011-08-30 2012-01-11 珠海汉格能源科技有限公司 一种聚合物锂离子电池的抗过充电解液
KR101656549B1 (ko) * 2013-01-28 2016-09-09 주식회사 엘지화학 리튬 이차전지용 전해액 및 이를 구비한 리튬 이차전지
KR101542071B1 (ko) * 2014-04-02 2015-08-05 파낙스 이텍(주) 장수명 이차 전지용 비수성 전해액 및 이를 포함하는 이차전지
CN104900915A (zh) * 2015-05-25 2015-09-09 宁德时代新能源科技有限公司 锂离子电池电解液及使用它的锂离子电池
DE102016215338A1 (de) * 2016-08-17 2018-02-22 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur herstellung einer elektrode für eine elektrochemische energiespeicherzelle, elektrochemische energiespeicherzelle sowie fahrzeug
CN118026845A (zh) * 2018-01-30 2024-05-14 大金工业株式会社 氟代乙酸酯化合物
KR102679602B1 (ko) * 2018-10-01 2024-07-01 에스케이온 주식회사 리튬 이차전지 전해액 및 이를 포함하는 리튬 이차전지
CN112510259B (zh) * 2020-11-25 2022-04-22 张家港市国泰华荣化工新材料有限公司 一种非水电解液及锂电池
CN112768773A (zh) * 2021-03-15 2021-05-07 蜂巢能源科技有限公司 电解液及锂离子电池
CN113328143A (zh) * 2021-05-28 2021-08-31 远景动力技术(江苏)有限公司 一种锂电池用非水电解液及其制备方法和锂离子电池
CN113871712B (zh) * 2021-09-24 2024-01-26 远景动力技术(江苏)有限公司 锂离子电池电解液及其制备方法和锂离子电池
CN114937850B (zh) * 2022-06-24 2024-09-17 远景动力技术(江苏)有限公司 一种电化学装置和电子装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845545A (ja) * 1994-04-22 1996-02-16 Saft (Soc Accumulateurs Fixes Traction) Sa 炭素アノードを有するリチウム蓄電池
JP2000003724A (ja) * 1997-08-22 2000-01-07 Ube Ind Ltd 非水電解液およびそれを用いたリチウム二次電池
JP2001256995A (ja) * 2000-03-13 2001-09-21 Denso Corp 非水電解液及び非水電解液二次電池
JP2003059532A (ja) * 2001-08-10 2003-02-28 Yuasa Corp 非水電解質電池
JP2003338277A (ja) * 2002-05-20 2003-11-28 Sony Corp 非水電解質二次電池
JP2004134261A (ja) * 2002-10-11 2004-04-30 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2004319212A (ja) * 2003-04-15 2004-11-11 Sony Corp 電解液およびそれを用いた電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3663897B2 (ja) * 1998-03-20 2005-06-22 宇部興産株式会社 リチウム二次電池用電解液およびそれを用いたリチウム二次電池
JP3633269B2 (ja) * 1998-03-20 2005-03-30 宇部興産株式会社 リチウム二次電池用電解液およびそれを用いたリチウム二次電池
JP3163078B2 (ja) * 1998-08-31 2001-05-08 エヌイーシーモバイルエナジー株式会社 非水電解液電池
US6444370B2 (en) 1998-11-20 2002-09-03 Valence Technology, Inc. Electrolytes having improved low temperature performance
JP2001313072A (ja) 2000-04-28 2001-11-09 Ube Ind Ltd リチウム二次電池用電解液およびそれを用いたリチウム二次電池
JP4762411B2 (ja) 2000-06-26 2011-08-31 パナソニック株式会社 二次電池用非水電解液およびこれを用いた非水電解液二次電池
CN1204648C (zh) * 2001-02-28 2005-06-01 东芝株式会社 非水电解质及非水电解质二次电池
JP4934912B2 (ja) * 2001-06-06 2012-05-23 三菱化学株式会社 電解液及び二次電池
JP4830244B2 (ja) * 2001-09-14 2011-12-07 三菱化学株式会社 非水系電解液二次電池及び電解液

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845545A (ja) * 1994-04-22 1996-02-16 Saft (Soc Accumulateurs Fixes Traction) Sa 炭素アノードを有するリチウム蓄電池
JP2004031366A (ja) * 1994-04-22 2004-01-29 Saft (Soc Accumulateurs Fixes Traction) Sa 炭素アノードを有するリチウム蓄電池
JP2000003724A (ja) * 1997-08-22 2000-01-07 Ube Ind Ltd 非水電解液およびそれを用いたリチウム二次電池
JP2001256995A (ja) * 2000-03-13 2001-09-21 Denso Corp 非水電解液及び非水電解液二次電池
JP2003059532A (ja) * 2001-08-10 2003-02-28 Yuasa Corp 非水電解質電池
JP2003338277A (ja) * 2002-05-20 2003-11-28 Sony Corp 非水電解質二次電池
JP2004134261A (ja) * 2002-10-11 2004-04-30 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2004319212A (ja) * 2003-04-15 2004-11-11 Sony Corp 電解液およびそれを用いた電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1758198A4 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188806A (ja) * 2006-01-16 2007-07-26 Matsushita Electric Ind Co Ltd 非水電解液二次電池
EP2360771A1 (en) * 2006-06-02 2011-08-24 Mitsubishi Chemical Corporation Nonaqueous electrolytic solutions and nonaqueous-electrolyte batteries
EP2031689A1 (en) * 2006-06-02 2009-03-04 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution and nonaqueous electrolyte battery
EP2031689A4 (en) * 2006-06-02 2010-04-28 Mitsubishi Chem Corp NON-ACID ELECTROLYTE SOLUTION AND NON-WATER ELECTROLYTE BATTERY
US9231276B2 (en) 2006-06-02 2016-01-05 Mitsubishi Chemical Corporation Nonaqueous electrolytic solutions and nonaqueous-electrolyte batteries
JP2015079767A (ja) * 2006-06-02 2015-04-23 三菱化学株式会社 非水系電解液及び非水系電解液電池
JP2008016267A (ja) * 2006-07-05 2008-01-24 Hitachi Maxell Ltd 非水電解液二次電池
WO2009113545A1 (ja) * 2008-03-13 2009-09-17 宇部興産株式会社 リチウム電池用非水電解液、それを用いたリチウム電池、及びそれに用いられるヒドロキシ酸誘導体化合物
CN101971409A (zh) * 2008-03-13 2011-02-09 宇部兴产株式会社 锂电池用非水电解液、使用其的锂电池、以及其中使用的羟基酸衍生物化合物
US8580429B2 (en) 2008-03-13 2013-11-12 Ube Industries, Ltd. Non-aqueous electrolyte for a lithium battery, lithium battery wherein said electrolyte is used, and hydroxy-acid derivative for use in said electrolyte
JP2009301954A (ja) * 2008-06-16 2009-12-24 Mitsubishi Chemicals Corp 非水系電解液及び非水系電解液電池
JP2010056076A (ja) * 2008-08-01 2010-03-11 Sanyo Electric Co Ltd 非水電解質二次電池
US8679676B2 (en) 2008-08-01 2014-03-25 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery having a nitrile compound and a carboxylic acid ester compound
JP2011054516A (ja) * 2009-09-04 2011-03-17 Hitachi Ltd リチウムイオン二次電池
WO2012161184A1 (ja) * 2011-05-24 2012-11-29 富士フイルム株式会社 非水二次電池用電解液及び二次電池
JP2013122901A (ja) * 2011-05-24 2013-06-20 Fujifilm Corp 非水二次電池用電解液及び二次電池
JP2014523096A (ja) * 2011-07-14 2014-09-08 エルジー・ケム・リミテッド 非水電解液及びそれを用いたリチウム二次電池
WO2013115040A1 (ja) * 2012-01-30 2013-08-08 日本電気株式会社 共役エステル化合物、電解質およびこれを用いた二次電池
US9666904B2 (en) 2012-07-02 2017-05-30 Nec Corporation Secondary battery
WO2016104468A1 (ja) * 2014-12-24 2016-06-30 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス
JPWO2016104468A1 (ja) * 2014-12-24 2017-11-09 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス
JP2019520687A (ja) * 2017-01-23 2019-07-18 エルジー・ケム・リミテッド 非水電解液用添加剤、それを含むリチウム二次電池用非水電解液、およびリチウム二次電池

Also Published As

Publication number Publication date
TW200603453A (en) 2006-01-16
CA2568335A1 (en) 2005-12-22
JP4946437B2 (ja) 2012-06-06
EP1758198A4 (en) 2008-09-24
JPWO2005122318A1 (ja) 2008-04-10
CN1961452A (zh) 2007-05-09
US20080038644A1 (en) 2008-02-14
CN100502135C (zh) 2009-06-17
EP1758198A1 (en) 2007-02-28
KR20070018966A (ko) 2007-02-14
US7727677B2 (en) 2010-06-01
EP1758198B1 (en) 2009-07-08
KR101158143B1 (ko) 2012-06-19
DE602005015321D1 (de) 2009-08-20

Similar Documents

Publication Publication Date Title
WO2005122318A1 (ja) 非水電解液およびそれを用いたリチウム二次電池
JP4710609B2 (ja) リチウム二次電池およびその非水電解液
JP4779651B2 (ja) 非水電解液およびリチウム二次電池
WO2005091422A1 (ja) 非水電解液及びそれを用いたリチウム二次電池
KR20090050951A (ko) 비수전해질 이차전지
WO2009122908A1 (ja) リチウム電池用非水電解液及びそれを用いたリチウム電池
JP4949223B2 (ja) 非水電解質およびこれを含む二次電池
KR20110098669A (ko) 비수 전해질 이차 전지
JP5070780B2 (ja) 非水電解液及びそれを用いたリチウム二次電池
CN105051966A (zh) 非水电解质二次电池
TWI583039B (zh) 非水性電解質鋰二次電池
US20140017526A1 (en) Non-aqueous electrolyte secondary battery system
JP4765629B2 (ja) 非水電解液およびリチウム二次電池
JP2010015719A (ja) 電池用非水電解液及びそれを備えた非水電解液二次電池
JP4826760B2 (ja) 非水電解液及びそれを用いたリチウム二次電池
JP4795019B2 (ja) 非水電解質二次電池
JP4517730B2 (ja) 非水電解液およびそれを用いたリチウム二次電池
WO2023236198A1 (zh) 电解液和电化学装置
JP2011181284A (ja) 非水電解液二次電池
JP2014099262A (ja) 円筒形非水電解質二次電池
KR102601700B1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
KR100804979B1 (ko) 리튬 이온 2차 전지
KR20230141621A (ko) 리튬 이차전지용 비수성 전해액 및 이를 포함하는 리튬 이차전지
JP2014099263A (ja) 非水電解質二次電池
WO2023219102A1 (ja) リチウムイオン二次電池用電解液及びリチウムイオン二次電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006514434

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005741522

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11596862

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2568335

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020067024931

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580017335.3

Country of ref document: CN

Ref document number: 4375/CHENP/2006

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 1020067024931

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005741522

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11596862

Country of ref document: US