WO2005121022A1 - 酸化ルテニウム内包ナノカーボン複合構造体 - Google Patents

酸化ルテニウム内包ナノカーボン複合構造体 Download PDF

Info

Publication number
WO2005121022A1
WO2005121022A1 PCT/JP2005/010717 JP2005010717W WO2005121022A1 WO 2005121022 A1 WO2005121022 A1 WO 2005121022A1 JP 2005010717 W JP2005010717 W JP 2005010717W WO 2005121022 A1 WO2005121022 A1 WO 2005121022A1
Authority
WO
WIPO (PCT)
Prior art keywords
ruthenium oxide
composite structure
nanocarbon
nanocarbon composite
encapsulated
Prior art date
Application number
PCT/JP2005/010717
Other languages
English (en)
French (fr)
Inventor
Katsuhiko Naoi
Original Assignee
Tokyo University Of Agriculture And Technology, National University Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University Of Agriculture And Technology, National University Corporation filed Critical Tokyo University Of Agriculture And Technology, National University Corporation
Priority to US11/628,853 priority Critical patent/US7572542B2/en
Priority to KR1020077000585A priority patent/KR101167744B1/ko
Priority to JP2006514593A priority patent/JP4765077B2/ja
Priority to EP05749032A priority patent/EP1772428A4/en
Priority to CN2005800184061A priority patent/CN1964917B/zh
Publication of WO2005121022A1 publication Critical patent/WO2005121022A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/755Nanosheet or quantum barrier/well, i.e. layer structure having one dimension or thickness of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/811Of specified metal oxide composition, e.g. conducting or semiconducting compositions such as ITO, ZnOx

Definitions

  • the present invention relates to a novel ruthenium oxide-encapsulated nanocarbon composite structure, and more particularly, to a power storage device used in combination with a capacitor for an electric vehicle, a power storage element for a power business, a fuel cell, a solar cell, or the like.
  • a capacitor for an electric vehicle a power storage element for a power business
  • a fuel cell a fuel cell, a solar cell, or the like.
  • emergency power supply and backup power supply for element, emergency power supply and backup power supply
  • the present invention relates to a ruthenium oxide-containing nanocarbon composite structure having high electrochemical activity and suitable as an electric energy storage element such as a capacitor.
  • Hydrated ruthenium oxide has attracted attention as an electrode material for next-generation supercapacitors, and many reports have been made.
  • TR Jow et al. Have made ruthenium hydrate nanoparticles into nanoparticles (diameter lOOnm) by the sol-gel method and reported a large capacity (600 to 700 FZg)! / Pul (see Non-Patent Document 1). .
  • a sheet electrode using a powder obtained by carrying out a high dispersion of ruthenium hydroxide hydrate on a carbon powder having a large specific surface area and drying the powder at a low temperature in a nitrogen gas stream has a ruthenium weight. It has been reported that the output density per sheet electrode weight is large because the electric capacity per unit is large (see Patent Document 1). However, the ruthenium hydroxide hydrate may elute into the aqueous electrolyte during the charge / discharge cycle. In addition, although this report states the electric capacity per ruthenium weight, it does not state the capacity density per material (ruthenium hydroxide hydrate-supported powder) weight. However, since the content of ruthenium in the sheet electrode is as small as 3.82% by weight, It is assumed that the value is extremely small and far from practical use.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-36441
  • Non-Patent Document 1 J. Electrochemical.Soc, 142, 2699 (1995)
  • Non-patent Document 2 Proceedings of the 83rd Annual Meeting of the Niigata Society, p74 (2003)
  • the present invention has been made in view of the above circumstances, and has as its object to provide a luteum oxide-containing nanoparticle having high electrochemical activity, which is suitable as an electric energy storage element such as a large-capacity capacitor.
  • An object of the present invention is to provide a carbon composite structure.
  • the present invention has been achieved based on the above findings, and the gist of the present invention is that an inner graphite layer (carbon layer) of hollow nanocarbon having a nanoparticle force of 30% by volume or more of porosity of ruthenium oxide It is an object of the present invention to provide a ruthenium oxide-encapsulated nanocarbon composite structure characterized by being highly dispersed in water.
  • the ruthenium oxide-encapsulated nanocarbon composite structure of the present invention has high electrochemical activity, it can be used in combination with a capacitor for an electric vehicle, a power storage element for a power business, a fuel cell, a solar cell, or the like.
  • a capacitor used for an emergency power supply or a backup power supply When used as a material for an electric energy storage element such as a power storage element used, a capacitor used for an emergency power supply or a backup power supply, a high-capacity electrochemical capacitor can be obtained.
  • FIG. 1 is a schematic diagram showing a mechanism for forming a composite structure of the present invention.
  • FIG. 2 is a photograph showing a TEM image of Sample A obtained in Example 1.
  • FIG. 3 is a photograph showing a TEM image in which a part of the above is enlarged.
  • FIG. 4 is a photograph showing a TEM image of Sample B obtained in Example 2.
  • FIG. 5 is a diagram showing a cyclic voltammogram obtained in an application evaluation example. BEST MODE FOR CARRYING OUT THE INVENTION
  • the ruthenium oxide-containing nanocarbon composite structure of the present invention has a structure in which ruthenium oxide nanoparticles are highly dispersed inside and outside a hollow nanocarbon graphene layer (carbon layer) having a porosity of 30% by volume or more.
  • the ruthenium oxide nanoparticles are preferably hydrated ruthenium oxide.
  • the hydration number of the hydrated ruthenium oxide is not particularly limited, it is generally in the range of 0.3 or more and 2.0 or less, preferably 0.5 or more and 0.9 or less. When the hydration number of the hydrated ruthenium oxide is less than 0.3, the rate of occurrence of the specific capacitance is significantly reduced.
  • the nanoparticle size of ruthenium oxide is usually lOnm or less, preferably 0.5 Inm or more and 1 Onm or less, particularly preferably 0.5 nm or more and 5 nm or less. If it is larger than lOnm, it is difficult to produce nanoparticles smaller than 0. Inm, while the charge utilization of the electrode is low.
  • the porosity (pore volume per unit volume) of the hollow nanocarbon used in the present invention is usually 30% by volume or more, preferably 50% by volume to 90% by volume.
  • conductive carbon black having a high porosity can be used, and for example, commercially available Ketjen black can be mentioned.
  • the conductive carbon black is composed of a crystallite force called a pseudo-graphite structure, and the crystallites aggregate to form primary particles, and the secondary particles (primary particles) are fused with the primary particles. Agglomerates).
  • Ketjen black has an extremely high porosity compared to other conductive carbon blacks.
  • the porosity of acetylene black is about 22% by volume
  • the hollow ketjen black has a porosity of more than 50%.
  • Ketjen black currently on the market has two porosity types of about 60% by volume and about 78% by volume, and these can be suitably used.
  • the ruthenium oxide-encapsulated nanocarbon composite structure of the present invention is characterized in that the ruthenium oxide nanoparticles are highly dispersed in the daraphen layer inside the secondary particle nanocarbon to which the hollow primary particles are fused.
  • the porosity of the ruthenium oxide-containing nanocarbon composite structure is 30% by volume or more, and the particle size of the secondary particles constituting the ruthenium oxide-containing nanocarbon composite structure is usually 300 nm or less, preferably 100 nm or more and 300 nm or less. It is. When the particle size of the secondary particles constituting the ruthenium oxide-encapsulated nanocarbon composite structure is within this range, an optimum specific capacitance can be exhibited.
  • the content of ruthenium oxide in the ruthenium oxide-encapsulated nanocarbon composite structure of the present invention is generally 5% by mass to 95% by mass, preferably 7.8% by mass to 75% by mass, based on the entire composite structure. Range.
  • the content of ruthenium oxide varies depending on the intended use, depending on the relationship between the energy density required for the electrochemical capacitor and the cost. For example, in applications that require medium energy density and require low-cost device manufacturing (for example, automotive applications), about 5-50% by mass, while large energy density is required regardless of cost In certain applications (for example, memory backup for mobile phones), 50-95% by mass is likely to be used.
  • the method for producing a ruthenium oxide-encapsulated nanocarbon composite structure of the present invention includes a precursor adjustment step, a ruthenium oxide formation step, and a hollow nanocarbon reaggregation step.
  • a conductive hollow nanocarbon having a hollow structure having a porosity of 30% by volume or more, preferably 50% by volume or more is highly dispersed in water, and thereafter, an aqueous solution of ruthenium chloride is added.
  • a precursor with ruthenium chloride adsorbed on the outer surface of the hollow nanocarbon is prepared.
  • the ruthenium oxide forming step by applying an appropriate shear stress to the precursor obtained in the above-mentioned precursor adjusting step, part of the carbon graphene constituting the hollow nanocarbon is pulverized to form the hollow nanocarbon. While agglomerated secondary particles of nanocarbon are crushed and the primary particles are partially broken and opened, an aqueous solution of sodium hydroxide is added and the sol-gel reaction proceeds to form ruthenium oxide nanoparticles. Let it. Shear stress loosens the aggregates of hollow nanocarbon, reduces the secondary particle size, and at the same time, increases the dispersion of ruthenium chloride that constitutes the precursor.
  • the progress of the sol-gel reaction forms primary particles of several nanometers of ruthenium oxide inside and outside of the daraphen of the hollow nanocarbon to achieve high dispersion. Let it.
  • the sol-gel reaction proceeds while pulverizing the aggregated secondary particles of hollow nanocarbon and partially breaking open the primary particles.
  • a method for easily providing a mechanochemical effect for example, a method of applying a centrifugal force and using a shear stress in a vessel wall can be cited.
  • the energy of the stress at this time is preferably in the range of 0.5 MPa or more and 2 MPa or less.
  • the centrifugal force treatment centrifugal treatment
  • 20,000 G to 75,000 G can be mentioned. It is. This makes it possible to obtain a composite structure in which ruthenium oxide is ultra-dispersed with nanodots on both sides of the surface of the hollow nanocarbon graphene layer and the inside thereof.
  • the time required for centrifugation depends on the strength of the centrifugal reaction field, but is usually about 3 to 20 minutes.
  • the formed ruthenium oxide is subjected to shear stress at the stage of nanoparticle growth. For this reason, even if particles grow to a certain size, shear stress And thus the particles of ruthenium oxide formed are refined. The fine particles are supported on the carbon inner wall and do not grow any further. With such a mechanism, ruthenium oxide becomes nano-fine, and nanoparticles as small as 0.5 to 2 nm can be obtained.
  • the broken graphene layer is rearranged.
  • the hollow nanocarbon primary particles that have been broken open are reagglomerated while enclosing the ruthenium oxide primary particles, and secondary particles having a sharp particle size distribution and a reduced average particle diameter are formed.
  • a composite structure in which ruthenium oxide is highly dispersed in the graphene layer inside carbon can be obtained.
  • the obtained ruthenium oxide-encapsulated nanocarbon composite structure is usually filtered and dried, and used as a powder.
  • FIG. 1 schematically shows a mechanism in a case where a method for applying shear stress in the production process of the composite structure of the present invention is a centrifugal treatment.
  • STEP1 the hollow nanocarbon aggregates are loosened by the centrifugation, and the secondary particle diameter is reduced.
  • the precursor, ruthenium chloride (RuCl) becomes highly dispersed.
  • hollow nanocarbon primary particles RuCl
  • Ruthenium chloride (RuCl) is converted to ruthenium oxide
  • a hollow nanocarbon containing 22 nanodots is obtained.
  • the specific capacitance of the ruthenium oxide-encapsulated nanocarbon composite structure of the present invention depends on the ratio of ruthenium chloride used to carbon black as a material, the nanocarbon fracture / opening. Forces that vary depending on the strength of the centrifugal reaction field in the process.Based on the weight of the ruthenium oxide-encapsulated nanocarbon composite, when measured by a three-electrode measurement method, it is usually 400 FZg or more, preferably 500 F / g or more and 600 F / g or less. It is also possible to obtain one with a specific capacitance.
  • the ruthenium oxide-containing nanocarbon composite structure of the present invention can be used as it is as an electrode material.
  • an electrode is formed by dispersing in water, alcohol, or a solvent such as N-methylpyrrolidine to form a slurry, and applying the slurry to an aluminum sheet, a titanium sheet, a carbon sheet, or the like.
  • the aqueous electrolyte and / or the non-aqueous electrolyte may contain 400 FZg or more and 600 FZg or less, high capacitance and specific capacitance can be obtained, and a capacitor that reaches several times the value of conventional electric double layer capacitors can be obtained.
  • an electrolytic solution used for example, an aqueous solution containing 3 to 30 wt% sulfuric acid, hydroxide sodium Umuya aqueous potassium containing 3 to 30 weight 0/0 hydroxide, preferably in propylene carbonate Natick DOO Examples thereof include those containing 15 to 30% by weight of tetraethylammonium tetraborate tetramethylammonium-tetrafluoroborate.
  • hydrated ruthenium oxide may be ruthenium oxide, which is an example.
  • Ketjen Black (Ketjen 'Black' International Co., Ltd., trade name: Ketjen Black EC600JD, porosity 78 Vol.%, Primary particle diameter 40 nm, average secondary particle diameter 337.8 nm) 0.35 g
  • the centrifugal force is a value obtained by the following equation.
  • N is the number of revolutions (rpm)
  • R is the radius (cm) of the rotor.
  • Table 1 shows the average particle size (average particle size of secondary particles) and particle size distribution of Ketjen Black used and Ketjen Black after centrifugation.
  • the average particle size (average particle size of the secondary particles) and the particle size distribution were measured with a laser light scattering meter ELS-8000 manufactured by Otsuka Electronics Co., Ltd. Since the particle size distribution range was narrowed by the centrifugation and the average particle size (the average particle size of the secondary particles) was also reduced, it is considered that the Ketjen black became highly dispersed by the centrifugation.
  • the above hollow nanocarbon (Ketjen Black, made by Ketjen 'Black' International, trade name: Ketjen Black EC600JD, porosity 78Vol.%, Primary particle diameter 40nm, average secondary particle diameter) 337.8 nm), and a 10 mM aqueous ruthenium chloride solution was added thereto, followed by high dispersion to prepare a precursor having ruthenium chloride adsorbed inside and outside the hollow nanocarbon.
  • Ketjen Black made by Ketjen 'Black' International, trade name: Ketjen Black EC600JD, porosity 78Vol.%, Primary particle diameter 40nm, average secondary particle diameter 337.8 nm
  • a 10 mM aqueous ruthenium chloride solution was added thereto, followed by high dispersion to prepare a precursor having ruthenium chloride adsorbed inside and outside the hollow nanocarbon.
  • the obtained ruthenium oxide-encapsulated nanocarbon composite structure was filtered using an aspirator, a suction bottle, and a filter folder, and dried at 100 ° C for 6 hours, whereby 0.5-hydrated ruthenium oxide nanoparticles were obtained.
  • a highly dispersed ruthenium oxide-containing nanocarbon composite structure powder was obtained by highly dispersing in the inner and outer dalaphen layers of hollow nanocarbon (Sample A).
  • Figures 2 and 3 show TEM images of Sample A.
  • a bead-like network called a hollow nanocarbon force having a primary particle diameter of 30 to 40 nm is formed, and secondary particles of 300 to 500 nm are formed. It is observed that This network is thought to function as an electronic path.
  • the primary particles of hollow nanocarbon have a distorted structure rather than a spherical shape, which is caused by the fact that the dalaphen layer forming the primary particles of hollow nanocarbon is once broken and rearranged. I do. Further, it can be confirmed that ruthenium oxide nanoparticles having a diameter of 0.5 to 2 nm are monodispersed inside the primary particles of the hollow nanocarbon.
  • a ruthenium oxide-encapsulated nanocarbon composite structure powder was obtained in the same manner as in Example 1 except that the time for the centrifugal treatment in the surface sol-gel reaction was set to 20 minutes (Sample: B).
  • Figure 4 shows a TEM image of Sample B.
  • hollow nanocarbon having a primary particle size of about 20 nm forms an aggregate, and the secondary particle size is about 200 to 300 nm.
  • the ruthenium oxide nanodots (average diameter lnm) encapsulated in the hollow nanocarbon are more agglomerated compared to sample A, and the darafene layer forming the primary particles of the hollow nanocarbon is once broken and It can be seen that the spherical shape is broken due to the arrangement.
  • Example 1 The average particle size of the primary particles, the average particle size of the ruthenium oxide particles, and the specific capacitance on a weight basis when measured by a three-electrode measurement method were measured.
  • a slurry is prepared by mixing the powder with water or 1-methylbiphenylidonediacetonitrile, propylene carbonate, etc., and the slurry is used as a current collector substrate made of carbon, aluminum, nickel, copper or the like.
  • the coated and dried was used as the positive and negative electrodes of a coin cell, and was subjected to a charge / discharge test and cyclic voltammetry. Table 2 shows the results.
  • Example 1 Example 2 (Sample A) (Sample B) Average particle size of primary particles (nm) 3 0 2 0 Average particle size of ruthenium oxide particles ⁇ (nm) 11 1 Specific electrostatic Capacity (F / g ) 4 2 0 6 0 0 [Measurement of cyclic voltammogram]
  • Example A The ruthenium oxide-containing nanocarbon composite structure (sample A) obtained in Example 1 was dispersed in water to form a slurry, which was applied to a flat carbon electrode surface and dried to obtain a capacitor test electrode.
  • the cyclic voltammogram was measured by a three-electrode method using the obtained electrode as a working electrode and a silver-silver chloride electrode as a reference electrode.
  • As the electrolyte a 30% by weight sulfuric acid solution was used.
  • Fig. 5 shows the results.
  • the ruthenium oxide-encapsulated nanocarbon composite structure of the present invention has a large specific capacity of 400 to 600 FZg based on the weight of the composite and 10 60 to 1200 FZg based on the weight of the ruthenium oxide.
  • the charging / discharging speed is increased (5 to 10% loss when increasing from 2mVZs to 100mVZs).
  • there is hardly any decrease in capacity due to charge and discharge cycles (decrease in capacity after 100,000 cycles: 5%).
  • the energy density is 2 to 3 times larger and the output density is 10 to 15 times larger.
  • the energy density is about twice as large and the output density is about 2 times. About 7 times larger. Therefore, by using the ruthenium oxide-encapsulated nanocarbon composite structure of the present invention as an electrode material, a high-performance capacitor is constructed, and the merits and impact when it is put to practical use are great.
  • Example 3 A ruthenium oxide-containing nanocarbon composite structure powder was obtained in the same manner as in Example 1 except that centrifugation was performed at 45,000 G for 10 minutes in Example 1. About the obtained sample C, the same evaluation as the sample A and the sample B was performed. As a result, the average secondary particle size was 380 nm, the average primary particle size was 30 nm, and the average ruthenium oxide particle size was 10 nm. The specific capacitance was 300 F / g.
  • Example 1 ruthenium oxide-supported nanocarbon powder was obtained in the same manner as in Example 1 except that the centrifugal treatment was not performed. The same evaluation as that of Sample A and Sample B was performed using the obtained powder.
  • Example 1 was repeated except that solid acetylene black (porosity: 22% by volume, primary particle diameter: 35 nm, average secondary particle diameter: 360 nm) manufactured by Denki Kagaku Kogyo KK was used. In the same manner as in 1, ruthenium oxide-supported carbon powder was obtained. The same evaluation as that of Samples A and B was performed using the obtained powder. Table 3 compares the evaluation results obtained in Comparative Examples 1 and 2 with the values of Example 1 (sample A).
  • the ruthenium oxide-encapsulated nanocarbon composite structure obtained by the present invention can be used as a power storage element used in combination with a capacitor for an electric vehicle, a power storage element for a power business, a fuel cell, a solar cell, or the like, and an emergency power supply.
  • an electric energy storage element such as a capacitor used for a backup power supply, and is extremely useful as an electrode material for a high-capacity electrochemical capacitor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 ケッチェンブラックを使用し、超遠心反応場を用いたメカノケミカルな効果により、酸化ルテニウムの比表面積と、電極物質の空間と、の双方を拡大させた、酸化ルテニウムのナノ粒子がグラフェン層に高分散してなる新規な酸化ルテニウム内包ナノカーボン複合構造体を提供する。本発明の酸化ルテニウム内包ナノカーボン複合構造体は、電気化学活性が高いため、大容量キャパシタ等の電気エネルギー貯蔵素子として好適である。

Description

明 細 書
酸化ルテニウム内包ナノカーボン複合構造体
技術分野
[0001] 本発明は、新規な酸化ルテニウム内包ナノカーボン複合構造体に関し、より詳しく は、電気自動車用キャパシタゃ電力事業用の電力貯蔵素子、燃料電池や太陽電池 等との組み合わせで用いられる電力貯蔵素子、非常用電源やバックアップ電源に用
V、られるキャパシタ等の電気エネルギー貯蔵素子として好適な、高電気化学活性を 有する酸化ルテニウム内包ナノカーボン複合構造体に関する。
背景技術
[0002] 水和酸化ルテニウムは次世代スーパーキャパシタの電極材料として注目されており 、多くの報告がなされてきた。例えば、 T. R. Jowらはゾルーゲル法によって水和酸ィ匕 ルテニウムのナノ粒子化(直径 lOOnm)を行 、、大きな容量(600〜700FZg)を報 告して!/ヽる (非特許文献 1参照)。
[0003] また、水和酸化ルテニウム電極中のプロトン拡散が遅いという問題に対して、直井ら は、水和酸化ルテニウム粒子の周りをプロトン伝導性ポリマーのナノ薄膜で被覆させ たコアシェル型ナノ複合体を作成し、高速充放電が可能となることを報告した (非特 許文献 2参照)。し力しながら、これらの従来の提案では、次世代スーパーキャパシタ の電極材料としては、未だ十分とは言えず、更に高容量の電極材料が求められてい る。
[0004] 一方、比表面積の大きなカーボン粉末に、水酸化ルテニウム水和物を高分散に担 持させて得られる粉末を、窒素気流中で低温乾燥させた粉末を用いたシート電極は 、ルテニウム重量当たりの電気容量が大きぐシート電極重量当たりの出力密度が大 きいことが報告されている (特許文献 1参照)。し力しながら、水酸化ルテニウム水和 物は、充放電サイクルに伴い水溶液電解液中に溶出する虞がある。また、この報告 には、ルテニウム重量当たりの電気容量の記載はあるものの、材料 (水酸化ルテユウ ム水和物担持粉末)重量当たりの容量密度が記載されていない。しかしながら、シー ト電極中のルテニウムの含有量が 3. 82重量%と少ないことから、材料重量当たりの 値は極めて小さぐ実用には程遠いものと推測される。
特許文献 1:特開 2000— 36441号公報
非特許文献 1 :J. Electrochemical. Soc, 142, 2699(1995)
非特許文献 2:日本ィ匕学会第 83春季年会予稿集 p74 (2003)
発明の開示
発明が解決しょうとする課題
[0005] 本発明は、上記の実情に鑑みてなされたものであり、その目的は、大容量キャパシ タ等の電気エネルギー貯蔵素子として好適な、高電気化学活性を有する酸化ルテ- ゥム内包ナノカーボン複合構造体を提供することにある。
課題を解決するための手段
[0006] 本発明者は、鋭意検討した結果、酸化ルテニウムと特定のカーボン材料を複合ィ匕 させることによって、酸化ルテニウムの比表面積と、電極物質の空間と、の双方を拡 大させることができ、したがって、ナノコンポジットィ匕による電荷利用率の向上が達成 できることを見出し、本発明に至った。
[0007] 本発明は、上記の知見に基づき達成されたものであり、その要旨は、酸化ルテニゥ ムのナノ粒子力 空隙率 30容量%以上の中空ナノカーボンの内側部グラフ ン層 ( 炭素層)に高分散していることを特徴とする酸化ルテニウム内包ナノカーボン複合構 造体を提供することにある。
発明の効果
[0008] 本発明の酸化ルテニウム内包ナノカーボン複合構造体は、高 ヽ電気化学活性を有 することから、電気自動車用キャパシタゃ電力事業用の電力貯蔵素子、燃料電池や 太陽電池等との組み合わせで用いられる電力貯蔵素子、非常用電源やバックアップ 電源に用いられるキャパシタ等の電気エネルギー貯蔵素子の材料として用いた場合 に、高容量の電気化学キャパシタを得ることができる。
図面の簡単な説明
[0009] [図 1]図 1は本発明の複合構造体が形成されるメカニズムを示す模式図である。
[図 2]図 2は実施例 1にお 、て得られたサンプル Aの TEM像を示す写真である。 [図 3]図 3は上記の一部を拡大した TEM像を示す写真である。
[図 4]図 4は実施例 2において得られたサンプル Bの TEM像を示す写真である。
[図 5]図 5は応用評価例において得られたサイクリックボルタモグラム示す図である。 発明を実施するための形態
[0010] 以下、本発明を詳細に説明する。
[0011] 本発明の酸化ルテニウム内包ナノカーボン複合構造体は、酸化ルテニウムのナノ 粒子が、空隙率 30容量%以上の中空ナノカーボンのグラフェン層(炭素層)の内外 に高分散した構造を有する。
[0012] [酸化ルテニウムのナノ粒子の水和数]
本発明の酸化ルテニウム内包ナノカーボン複合構造体においては、酸化ルテユウ ムのナノ粒子は、水和酸化ルテニウムであることが好ましい。水和酸化ルテニウムの 水和数は特に限定されないが、通常 0. 3以上 2. 0以下、好ましくは 0. 5以上 0. 9以 下の範囲である。水和酸化ルテニウムの水和数が 0. 3より小さい場合には、比静電 容量の発現率が著しく低下する。
[0013] [酸化ルテニウムのナノ粒子径]
また、酸化ルテニウムのナノ粒子径は、通常 lOnm以下、好ましくは 0. Inm以上 1 Onm以下、特〖こ好ましくは 0. 5nm以上 5nm以下の範囲である。 lOnmより大きい場 合には、電極とした場合の電荷利用率が低ぐ一方で、 0. Inmより小さいナノ粒子を 製造することは困難である。
[0014] [中空ナノカーボンの空隙率]
本発明に用いられる中空ナノカーボンの空隙率 (単位容積当たりの細孔容積)は、 通常 30容量%以上、好ましくは 50容量%以上 90容量%以下である。このような中空 ナノカーボンの調製には、空隙率の高い導電性カーボンブラックを用いることができ 、例えば、市販のケッチェンブラックを挙げることができる。
[0015] 導電性カーボンブラックは、擬似グラフアイト構造と呼ばれる結晶子力 構成されて おり、その結晶子が集合して一次粒子を形成し、一次粒子が融着した二次粒子 (スト ラクチャ一やアグロメレート)として存在して 、る。
[0016] ケッチェンブラックは、他の導電性カーボンブラックに比べて空隙率が極めて高い。 例えば、アセチレンブラックの空隙率が約 22容量%であるのに対し、中空のケッチェ ンブラックでは、空隙率が 50%を超えるものが存在している。現在市販されているケ ッチェンブラックとしては、空隙率が約 60容量%と約 78容量%の 2種であり、これらを 好適に使用することができる。
[0017] [酸化ルテニウム内包ナノカーボン複合構造体の粒径]
本発明の酸化ルテニウム内包ナノカーボン複合構造体は、中空の一次粒子が融着 した二次粒子ナノカーボンの内側部ダラフェン層に酸化ルテニウムのナノ粒子が高 分散していることを特徴とする。酸化ルテニウム内包ナノカーボン複合構造体の空隙 率は 30容量%以上であり、酸化ルテニウム内包ナノカーボン複合構造体を構成する 二次粒子の粒径は、通常 300nm以下、好ましくは lOOnm以上 300nm以下の範囲 である。酸化ルテニム内包ナノカーボン複合構造体を構成する二次粒子の粒径がこ の範囲にある場合には、最適な比静電容量を発現することができる。
[0018] [酸化ルテニウムの含有量]
本発明の酸化ルテニウム内包ナノカーボン複合構造体における酸化ルテニウムの 含有量は、複合構造体全体に対して、通常 5質量%以上 95質量%以下、好ましくは 7. 8質量%以上 75質量%以下の範囲である。酸化ルテニウムの含有量は、電気化 学キャパシタとして要求されるエネルギー密度とコストとの関係により、用いられる用 途によって変化する。例えば、中程度のエネルギー密度が必要であり、低コストでの デバイスの製造を要求する用途 (例えば自動車用途など)では、 5〜50質量%程度、 一方で、コストにこだわらず大きなエネルギー密度が要求される用途 (例えば携帯電 話のメモリバックアップなど)では、 50〜95質量%のものが使用されると思われる。
[0019] [酸化ルテニウム内包ナノカーボン複合構造体の製造方法]
以下に、本発明の酸化ルテニウム内包ナノカーボン複合構造体の製造方法を説明 するが、本発明にお ヽては特にこれに限定されるものではな 、。
[0020] 本発明の酸化ルテニウム内包ナノカーボン複合構造体の製造方法は、前駆体調 整工程と、酸化ルテニウム形成工程と、中空ナノカーボン再凝集工程と、を含むもの である。
[0021] <前駆体調整工程 > 前駆体調整工程においては、空隙率 30容量%以上、好ましくは 50容量%以上の 中空構造を有する導電性中空ナノカーボンを水に高分散させ、その後、塩化ルテ- ゥム水溶液を加えることにより、塩化ルテニウムが中空ナノカーボンの外表面に吸着 した状態の前駆体を調製する。
[0022] <酸化ルテニウム形成工程 >
酸化ルテニウム形成工程にぉ ヽては、上記の前駆体調整工程により得られた前駆 体に適当なずり応力を与えることにより、中空ナノカーボンを構成する炭素のグラフェ ンの一部を粉砕し、中空ナノカーボンの凝集二次粒子を粉砕すると共に一次粒子を 部分的に破断 ·開口させながら、水酸ィ匕ナトリウム水溶液を加えることでゾル一ゲル 反応を進行させることにより、酸化ルテニウムのナノ粒子を形成させる。ずり応力によ り、中空ナノカーボンの凝集体がほぐれ、二次粒子径が減少すると同時に、前駆体を 構成する塩化ルテニウムの高分散化が起こる。更に、中空ナノカーボン一次粒子の グラフェン層の破断 ·開口と同時に、ゾルーゲル反応の進行により、中空ナノカーボ ンのダラフェン内側および外側で、数ナノメーターの酸化ルテニウムの一次粒子を形 成させて高分散化させる。
[0023] 酸化ルテニウム形成工程におけるずり応力を掛ける方法としては特に制限はない 力 中空ナノカーボンの凝集二次粒子を粉砕すると共に一次粒子を部分的に破断' 開口させつつ、ゾルーゲル反応を進行させてメカノケミカルな効果を簡便に与える方 法としては、例えば、遠心力を掛け、器壁に於けるずり応力を利用することが挙げら れる。
[0024] この際の応力のエネルギーとしては、 0. 5MPa以上 2MPa以下の範囲が好ましぐ 具体的には、 20, 000G〜75, 000Gの遠心力処理 (遠心処理)を行うことが挙げら れる。これにより、中空ナノカーボンのグラフヱン層表面および内側部の両側におい て、酸化ルテニウムがナノドットで超高分散した複合構造体を得ることができる。遠心 処理に要する時間は、遠心力反応場の強度にもよるが、通常 3分から 20分間程度で ある。
[0025] 酸化ルテニウム形成工程にぉ 、ては、形成される酸化ルテニウムは、ナノ粒子の成 長の段階でずり応力がかかる。このため、粒子があるサイズまで成長しても、ずり応力 により粉砕され、したがって、形成される酸化ルテニウムの粒子は微細化される。微細 化した粒子はカーボン内壁に担持され、それ以上大きく成長しない。このようなメカ- ズムで酸化ルテニウムがナノ微細化し、 0. 5〜2nmという小さいナノ粒子を得ることが できる。
[0026] <中空ナノカーボン再凝集工程 >
[0027] 最後に、ずり応力を止めることにより、破断されたグラフェン層を再び配列させる。こ の際、破断 '開口された中空ナノカーボン一次粒子は、酸化ルテニウム一次粒子を 内包しながら再凝集し、シャープな粒度分布を有する、平均粒子径が減少した二次 粒子が形成され、中空ナノカーボンの内側部グラフェン層に酸化ルテニウムが高分 散した複合構造体を得ることができる。
[0028] 得られた酸化ルテニウム内包ナノカーボン複合構造体は、通常、ろ過、乾燥して、 粉体として使用する。
[0029] [酸化ルテニウム内包ナノカーボン複合構造体の製造方法の具体例]
具体例として、本発明の複合構造体の製造過程におけるずり応力をかける方法を 遠心処理とした場合のメカニズムを図 1に模式的に示す。 STEP1では、遠心処理に より、中空ナノカーボン凝集体がほぐれ、二次粒子径が減少する。同時に、前駆体で ある塩化ルテニウム (RuCl )の高分散化が起こる。次いで、中空ナノカーボン一次粒
3
子のダラフェン層が破断されると同時に、塩化ルテニウム (RuCl )が酸化ルテニウム
3
(RuO ·ηΗ Ο)に変化する(STEP2)。酸化ルテニウム(RuO ·ηΗ Ο)の生成は、
2 2 2 2 破断したグラフヱン層の内側部や外側部で起こる。更に、 STEP3で、遠心処理を止 めると、破断されたグラフ ン層が再び配列し、中空構造を取り戻す。その際、酸ィ匕 ルテニウム(RuO ·ηΗ Ο)ナノドットが中空ナノカーボンの内側部グラフェン層へ取り
2 2
込まれる。グラフヱン層の外側部のベーサルな面には酸化ルテニウム(RuO ·ηΗ Ο
2 2
)は付きにくいためである。この様にして、 STEP4の酸化ルテニウム(RuO ·ηΗ Ο)
2 2 ナノドットを内包した中空ナノカーボンが得られる。
[0030] [酸化ルテニウム内包ナノカーボン複合構造体の比静電容量]
本発明の酸化ルテニウム内包ナノカーボン複合構造体の比静電容量は、材料とな るカーボンブラックに対する塩化ルテニウムの使用割合や、ナノカーボン破断 ·開口 工程における遠心力反応場の強度によって異なる力 酸化ルテニウム内包ナノカー ボン複合体の重量基準で、三電極式測定法で測定した場合、通常 400FZg以上、 好ましくは 500F/g以上 600F/g以下の範囲の比静電容量のものを得ることも可能 である。
[0031] [酸化ルテニウム内包ナノカーボン複合構造体の用途]
本発明の酸化ルテニウム内包ナノカーボン複合構造体は、そのまま電極材料として 使用することが出来る。例えば、水、アルコール、又は N—メチルピロリジン等の溶媒 に分散させてスラリーとし、アルミニウムシート、チタンシート、カーボンシート等に塗 布することで電極となる。
[0032] 本発明の酸化ルテニウム内包ナノカーボン複合構造体を電極材料として使用し、 定法により電極化し、電気化学キャパシタを構築した場合には、水系電解液及び, 又は非水系電解液中にぉ 、て 400FZg以上 600FZg以下と 、う高 、比容量を発 現し、従来の電気 2重層キャパシタの数倍の値に達するキャパシタを得ることができる
[0033] 使用する電解液としては、例えば、硫酸を 3〜30重量%含む水溶液、水酸化ナトリ ゥムゃ水酸化カリウムを 3〜30重量0 /0含む水溶液、好ましくはプロピレンカーボネー ト中にテトラェチルアンモ-ゥムテトラボレートゃテトラメチルアンモ-ゥムテトラフルォ ロボレートを 15〜30重量%含んだもの等を例示することができる。
実施例
[0034] 以下、実施例を挙げて本発明を更に詳細に説明するが、本発明は、その要旨を超 えない限り、以下の実施例に限定されるものではない。例えば、ここでは水和酸化ル テニゥムにつ 、ての例を示す力 酸化ルテニウムであってもよ 、。
[0035] [中空ナノカーボンの分散]
先ず、水とケッチェンブラック(ケッチェン 'ブラック'インターナショナル社製、商品名 :ケッチェンブラック EC600JD、空隙率 78Vol. %、一次粒子径 40nm、平均二次粒 径 337.8nm) 0. 35gを遠心処理装置に入れ、 75, OOOGで 5分間、遠心処理して水 にナノカーボンを高分散化させた。なお、遠心力は次式により求めた値である。
[0036] [数 1] G = 1 1 . 1 8 X ( N / 1 0 0 0 ) 2 X R
[0037] ここで、 Nは回転数 (rpm)、 Rはロータの半径(cm)である。
[0038] 表 1に、使用したケッチェンブラック及び遠心処理した後のケッチェンブラックの平 均粒子径 (二次粒子の平均粒径)と粒度分布を示す。平均粒子径 (二次粒子の平均 粒径)および粒度分布は、大塚電子社製レーザー光散乱計 ELS— 8000により測定 した。遠心処理によって粒度分布範囲が狭くなり、また、平均粒子径 (二次粒子の平 均粒径)も減少していることから、遠心処理によりケッチェンブラックが高分散状態に なったと考えられる。
[0039] [表 1]
Figure imgf000010_0001
[0040] <実施例 1 >
遠心処理装置の中で上記の中空ナノカーボン(ケッチェンブラック、ケッチェン 'ブラ ック 'インターナショナル社製、商品名:ケッチェンブラック EC600JD、空隙率 78Vol . %、一次粒子径 40nm、平均二次粒径 337.8nm)を高分散化させ、これに 10mM の塩化ルテニウム水溶液を加え、引き続き高分散化させることにより、中空ナノカーボ ンの内外に塩化ルテニウムが吸着した前駆体を調製した。これに 30mMの水酸ィ匕ナ トリウム水溶液を添カ卩して PH7とし、 75, OOOGの遠心力で 10分間遠心処理し、表面 ゾルーゲル反応を進行させることにより、酸化ルテニウム内包ナノカーボン複合構造 体を得た。
[0041] 得られた酸化ルテニウム内包ナノカーボン複合構造体をァスピレーターと吸引瓶、 フィルターフォルダーを用いてろ過し、 100°Cで 6時間乾燥することにより、 0. 5水和 酸化ルテニウムのナノ粒子が中空ナノカーボンの内外ダラフェン層に高分散して!/、る 酸化ルテニウム内包ナノカーボン複合構造体粉末を得た (サンプル A)。図 2および 図 3にサンプル Aの TEM像を示す。
[0042] 図 2および図 3においては、一次粒子径 30〜40nmの中空ナノカーボン力 ストラタ チヤ一と呼ばれる数珠状のネットワークを形成し、 300〜500nmの二次粒子を形成 して 、ることが観察される。このネットワークは電子パスとして機能すると考えられる。 また、中空ナノカーボンの一次粒子は球形ではなぐ歪んだ構造をとつており、これ は、中空ナノカーボンの一次粒子を形成しているダラフェン層が一度破壊され、再配 列していることに起因する。また、中空ナノカーボンの一次粒子の内部に、直径 0. 5 〜2nmの酸ィ匕ルテニウムナノ粒子が単分散して存在していることが確認できる。
[0043] <実施例 2 >
実施例 1において、表面ゾルーゲル反応の遠心処理時間を 20分間とした他は、実 施例 1と同様にして、酸化ルテニウム内包ナノカーボン複合構造体粉末を得た (サン プル: B)。図 4にサンプル Bの TEM像を示す。
[0044] 図 4においては、一次粒子径約 20nmの中空ナノカーボンが凝集体を形成しており 、その二次粒子径は約 200〜300nmであることが分かる。中空ナノカーボンに内包 された酸化ルテニウムナノドット (平均直径 lnm)はサンプル Aと比較して、より凝集し ており、また、中空ナノカーボンの一次粒子を形成しているダラフェン層が一度破壊 され、再配列したことに起因し、球形が崩れていることがわかる。
[0045] [測定評価]
実施例 1 (サンプル A)及び実施例 2 (サンプル B)で得られたサンプルにつ!/、て、一 次粒子の平均粒径、酸化ルテニウム粒子の平均粒径、および三電極式測定法で測 定した場合の重量基準による比静電容量を測定した。一次粒子の平均粒径および 酸化ルテニウム粒子の平均粒径は、大塚電子社製レーザー光散乱計 ELS - 8000 により測定を行なった。また、粉体の比静電容量測定は、粉体を水又は 1—メチルビ 口リドンゃァセトニトリル、プロピレンカーボネート等に混ぜてスラリーとし、それをカー ボン、アルミニウム、ニッケル、銅などの集電体基板に塗布、乾燥したものをコインセ ルの正、負極とし、充放電試験やサイクリックボルタンメトリーにより行った。結果を表 2に示す。
[0046] [表 2] 実施例 1 実施例 2 (サンプル A) (サンプル B ) 一次粒子の平均粒径 (n m) 3 0 2 0 酸化ルテニウム粒子の平均粒径 · ( n m ) 1 1 比静電容量 (F / g ) 4 2 0 6 0 0 [0047] [サイクリックボルタモグラムの測定]
実施例 1で得られた酸化ルテニウム内包ナノカーボン複合構造体 (サンプル A)を 水に分散させてスラリーとし、それを平坦なカーボン電極表面に塗布 '乾燥し、キャパ シタ試験電極を得た。得られた電極を作用電極に用い、参照電極に銀塩化銀電極 を用いて、 3電極法により、サイクリックボルタモグラムを測定した。電解液には、 30重 量%硫酸溶液を使用した。結果を図 5に示す。
[0048] 図 5から、本発明の酸化ルテニウム内包ナノカーボン複合構造体力もなるキャパシ タ試験電極は、複合体重量基準で 400〜600FZg、酸化ルテニウム重量基準で 10 60〜1200FZgという大きな比容量を発現することがわかる。また、充放電速度を速 くしても容量のロスはほとんどない(2mVZsから lOOmVZsまで速くした場合で、 5 〜10%のロス)。更に、充放電サイクルによる容量低下もほとんど見られない(100, 000サイクル後の容量の減少: 5%)。また、 15〜30重量0 /0のテトラェチルアンモ-ゥ ムテトラフルォロボレートを溶解したプロピレンカーボネート電解液を使用して同様の 測定を行なったところ、同様の結果が得られた。
[0049] 上記の結果から、キャパシタとしてのエネルギー密度と出力密度を計算した。エネ ルギー密度としては、 E = 0. 5 XV2 X CZ4の式を用い、
Figure imgf000012_0001
作動電圧 V=0. 8Vを代入して計算した。その結果、エネルギー密度は 33. 6WhZkgとなつ た。また、 P = EZsで表される出力密度(sは、一回の放電に必要な時間)は、 s = 4秒 で 300FZgの値が得られ、この値から E = 24WhZkgとなるため、計算の結果、 216 OOWZkgとなる。
[0050] この値を従来の電気二重層キャパシタと比較すると、エネルギー密度で 2〜3倍、 出力密度で 10〜15倍大きい。また、特許文献 1に記載されている水酸化ルテニウム をベースとしたキャパシタの値である、エネルギー密度 16. 9WhZkg、及び出力密 度 3244WZkgと比較しても、エネルギー密度で約 2倍、出力密度で約 7倍大きい。 したがって、本発明の酸化ルテニウム内包ナノカーボン複合構造体を電極材料とし て用いることにより、高性能なキャパシタが構築され、実用化したときのメリットやイン パクトは大きい。
[0051] <実施例 3> 実施例 1において、 45, 000Gで 10分間遠心処理した他は、実施例 1と同様にして 、酸化ルテニウム内包ナノカーボン複合構造体粉末を得た (サンプル C)。得られた サンプル Cについて、サンプル A及びサンプル Bと同様な評価を行った。その結果、 平均二次粒径 380nm、一次粒子の平均粒径 30nm、酸化ルテニウム粒子の平均粒 径は 10nmであった。また、比静電容量は 300F/gであった。
[0052] <比較例 1 >
実施例 1において、遠心処理を行わな力つた以外は、実施例 1と同様にして、酸ィ匕 ルテニウム担持ナノカーボン粉末を得た。得られた粉末を用いてサンプル A及びサン プル Bと同様な評価を行った。
[0053] <比較例 2 >
実施例 1において、中実のカーボン粉末である電気化学工業社製、粒状ァセチレ ンブラック (空隙率 22容量%、一次粒子径 35nm、平均二次粒径 360nm)を使用し た以外は、実施例 1と同様にして、酸化ルテニウム担持カーボン粉末を得た。得られ た粉末を用いてサンプル A及びサンプル Bと同様な評価を行った。比較例 1、 2で得 られた評価結果を、実施例 1 (サンプル A)の値と対比させ、表 3に示す。
[0054] [表 3]
Figure imgf000013_0001
産業上の利用可能性
[0055] 本発明で得られる酸化ルテニウム内包ナノカーボン複合構造体は、電気自動車用 キャパシタゃ電力事業用の電力貯蔵素子、燃料電池や太陽電池等との組み合わせ で用いられる電力貯蔵素子、非常用電源やバックアップ電源に用いられるキャパシタ 等の電気エネルギー貯蔵素子として好適であり、高容量の電気化学キャパシタの電 極材料として、極めて有用性が高い。

Claims

請求の範囲
[1] 酸化ルテニウムのナノ粒子力 空隙率 30容量%以上の中空ナノカーボンの内側部 ダラフェン層に高分散して ヽることを特徴とする酸化ルテニウム内包ナノカーボン複 合構造体。
[2] 前記酸化ルテニウムのナノ粒子は、水和数が 0. 3以上 2. 0以下の水和酸化ルテ- ゥムである請求項 1記載の酸化ルテニウム内包ナノカーボン複合構造体。
[3] 前記酸化ルテニウムのナノ粒子径は、 10nm以下である請求項 1又は 2記載の酸ィ匕 ルテニウム内包ナノカーボン複合構造体。
[4] 粒径が 300nm以下である請求項 1から 3いずれか記載の酸化ルテニウム内包ナノ カーボン複合構造体。
[5] 前記酸化ルテニウムの含有量は、酸化ルテニウム内包ナノカーボン複合構造体全 体に対して 5質量%以上 95質量%以下である請求項 1から 4いずれか記載の酸化ル テ -ゥム内包ナノカーボン複合構造体。
[6] 酸化ルテニウム内包ナノカーボン複合構造体の重量基準による比静電容量力 10
OFZg以上である請求項 1から 5いずれか記載の酸化ルテニウム内包ナノカーボン 複合構造体。
[7] 請求項 1から 6いずれか記載の酸化ルテニウム内包ナノカーボン複合構造体を電 極材料とする電気化学キャパシタ。
[8] 水系電解液及び Z又は非水系電解液中における、酸化ルテニウム内包ナノカーボ ン複合構造体の重量基準による比静電容量が、 400F/g以上 600F/g以下である 請求項 7記載の電気化学キャパシタ。
PCT/JP2005/010717 2004-06-11 2005-06-10 酸化ルテニウム内包ナノカーボン複合構造体 WO2005121022A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US11/628,853 US7572542B2 (en) 2004-06-11 2005-06-10 Nanocarbon composite structure having ruthenium oxide trapped therein
KR1020077000585A KR101167744B1 (ko) 2004-06-11 2005-06-10 산화루테늄 내포 나노카본 복합구조체
JP2006514593A JP4765077B2 (ja) 2004-06-11 2005-06-10 酸化ルテニウム内包ナノカーボン複合構造体
EP05749032A EP1772428A4 (en) 2004-06-11 2005-06-10 NANOCARBON COMPOSITE STRUCTURE WITH RUTHENIUM OXIDE TAPPED INTO
CN2005800184061A CN1964917B (zh) 2004-06-11 2005-06-10 内包氧化钌的纳米碳复合结构体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-173452 2004-06-11
JP2004173452 2004-06-11

Publications (1)

Publication Number Publication Date
WO2005121022A1 true WO2005121022A1 (ja) 2005-12-22

Family

ID=35502971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010717 WO2005121022A1 (ja) 2004-06-11 2005-06-10 酸化ルテニウム内包ナノカーボン複合構造体

Country Status (6)

Country Link
US (1) US7572542B2 (ja)
EP (1) EP1772428A4 (ja)
JP (1) JP4765077B2 (ja)
KR (1) KR101167744B1 (ja)
CN (1) CN1964917B (ja)
WO (1) WO2005121022A1 (ja)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100346876C (zh) * 2006-04-14 2007-11-07 浙江大学 碳表面负载中空铂钌合金纳米粒子电催化剂及其制备方法
JP2008244355A (ja) * 2007-03-28 2008-10-09 Nippon Chemicon Corp 電気化学素子用電極
JP2008244354A (ja) * 2007-03-28 2008-10-09 Nippon Chemicon Corp 電気化学素子用電極
JP2008252002A (ja) * 2007-03-30 2008-10-16 Nippon Chemicon Corp 電気化学素子用電極
JP2008277790A (ja) * 2007-03-30 2008-11-13 Nippon Chemicon Corp 電気二重層キャパシタ
JP2010010623A (ja) * 2008-06-30 2010-01-14 Chubu Electric Power Co Inc 電気化学キャパシタ及びその製造方法
US20100028766A1 (en) * 2008-07-18 2010-02-04 University Of Maryland Thin flexible rechargeable electrochemical energy cell and method of fabrication
JP2010225590A (ja) * 2010-03-31 2010-10-07 Nippon Chemicon Corp 金属酸化物ナノ粒子を高分散担持したカーボン、このカーボンを含有する電極材料、この電極材料を用いた電極及び電気化学素子
US7914664B2 (en) * 2006-10-23 2011-03-29 Cleveland State University Nitric oxide sensor
CN102005307A (zh) * 2010-09-28 2011-04-06 中国科学院电工研究所 一种石墨烯负载氧化钌的电极材料的制备方法
CN102354604A (zh) * 2011-08-05 2012-02-15 贵州大学 复合电极超级电容器及其制备方法
WO2012165358A1 (en) * 2011-06-03 2012-12-06 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing electrode
JP2013502070A (ja) * 2009-08-11 2013-01-17 シーメンス エナジー インコーポレイテッド 高エネルギー密度スーパーキャパシタ用の多孔質炭素酸化物ナノコンポジット電極
JP2013158940A (ja) * 2012-02-02 2013-08-19 Toray Ind Inc 積層基板
JP2013219009A (ja) * 2012-10-29 2013-10-24 Nippon Chemicon Corp 反応方法及びこの方法で得られた金属酸化物ナノ粒子、またはこの金属酸化物ナノ粒子を担持したカーボン及びこのカーボンを含有する電極、並びにこれを用いた電気化学素子
JP2015163582A (ja) * 2015-03-31 2015-09-10 日本ケミコン株式会社 金属酸化物の製造方法、電極、及び電気化学素子
US9252419B2 (en) 2011-09-09 2016-02-02 Semiconductor Energy Laboratory Co., Ltd. Positive electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery
US9293770B2 (en) 2012-04-10 2016-03-22 Semiconductor Energy Laboratory Co., Ltd. Graphene oxide, positive electrode for nonaqueous secondary battery using graphene oxide, method of manufacturing positive electrode for nonaqueous secondary battery, nonaqueous secondary battery, and electronic device
US9373834B2 (en) 2011-12-16 2016-06-21 Semiconductor Energy Laboratory Co., Ltd. Method for forming positive electrode for lithium-ion secondary battery
US9385366B2 (en) 2012-08-27 2016-07-05 Semiconductor Energy Laboratory Co., Ltd. Positive electrode for secondary battery, secondary battery, and method for fabricating positive electrode for secondary battery
CN105954334A (zh) * 2016-05-04 2016-09-21 嘉兴学院 一种用于检测二苯胺的分子印迹电化学传感器及其应用
JP2017147228A (ja) * 2017-03-06 2017-08-24 日本ケミコン株式会社 電極材料、及び電気化学素子
CN107651676A (zh) * 2017-09-26 2018-02-02 昆明理工大学 一种提高石墨烯的水分散性的优化方法

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101084623B (zh) * 2004-10-29 2012-02-01 北电网络有限公司 带阻滤波器
WO2008112650A2 (en) * 2007-03-15 2008-09-18 Yazaki Corporation Capacitor electrodes comprising carbon nanotubes filled with one or more non- carbon materials
CN101162651B (zh) * 2007-09-27 2010-06-02 南京航空航天大学 水系钌基复合金属氧化物超级电容器
JP5348135B2 (ja) * 2008-07-04 2013-11-20 日産自動車株式会社 排気ガス浄化用触媒
TWI412493B (en) * 2008-07-08 2013-10-21 Graphene and hexagonal boron nitride planes and associated methods
US8178155B2 (en) * 2009-01-27 2012-05-15 Applied Materials, Inc. Carbon-based ultracapacitor
CN101550003B (zh) * 2009-04-22 2012-10-03 湖南大学 纳米石墨烯基复合吸波材料及其制备方法
CN101894679B (zh) * 2009-05-20 2011-09-28 中国科学院金属研究所 一种石墨烯基柔性超级电容器及其电极材料的制备方法
CN101714463B (zh) * 2009-12-14 2012-08-15 浙江大学 一种超级电容器用石墨烯/Ru纳米复合材料及其制备方法
WO2012164334A1 (en) 2011-05-31 2012-12-06 Indian Institute Of Technology Madras Electrode and/or capacitor formation
US9218916B2 (en) 2011-06-24 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Graphene, power storage device, and electric device
US9249524B2 (en) 2011-08-31 2016-02-02 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of composite oxide and manufacturing method of power storage device
CN103858259B (zh) 2011-09-30 2018-03-06 株式会社半导体能源研究所 石墨烯及蓄电装置、及它们的制造方法
CN103035922B (zh) 2011-10-07 2019-02-19 株式会社半导体能源研究所 蓄电装置
KR20130049441A (ko) * 2011-11-04 2013-05-14 삼성전기주식회사 전극 활물질 조성물, 이의 제조 방법, 및 이를 이용한 전기 화학 캐패시터
US9487880B2 (en) 2011-11-25 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Flexible substrate processing apparatus
US9680272B2 (en) 2012-02-17 2017-06-13 Semiconductor Energy Laboratory Co., Ltd. Method for forming negative electrode and method for manufacturing lithium secondary battery
JP5719859B2 (ja) 2012-02-29 2015-05-20 株式会社半導体エネルギー研究所 蓄電装置
US9225003B2 (en) 2012-06-15 2015-12-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing storage battery electrode, storage battery electrode, storage battery, and electronic device
JP6159228B2 (ja) 2012-11-07 2017-07-05 株式会社半導体エネルギー研究所 非水系二次電池用正極の製造方法
US9673454B2 (en) 2013-02-18 2017-06-06 Semiconductor Energy Laboratory Co., Ltd. Sodium-ion secondary battery
US9490472B2 (en) 2013-03-28 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing electrode for storage battery
PL404381A1 (pl) 2013-06-19 2014-12-22 Instytut Elektrotechniki Sposób wytwarzania tlenkowego materiału elektrodowego, tlenkowy materiał elektrodowy i zastosowanie tlenkowego materiału elektrodowego
US20150044560A1 (en) 2013-08-09 2015-02-12 Semiconductor Energy Laboratory Co., Ltd. Electrode for lithium-ion secondary battery and manufacturing method thereof, and lithium-ion secondary battery
JP6745587B2 (ja) 2014-05-29 2020-08-26 株式会社半導体エネルギー研究所 電極の製造方法
CN104465122B (zh) * 2014-11-28 2017-07-21 中国科学院过程工程研究所 超级电容器用空心结构或摇铃型二氧化钌/碳复合纳米材料、制备方法及其用途
JP6563029B2 (ja) 2015-04-13 2019-08-21 ガーマー インク.Garmor, Inc. コンクリート又はアスファルトなどのホスト中の酸化グラファイト強化繊維
CN109859955B (zh) * 2018-11-27 2021-02-09 昆明理工大学 一种二氧化钌/炭复合电极材料的制备方法
JP6803582B2 (ja) * 2019-03-06 2020-12-23 株式会社ダイセル 電気化学キャパシタ用電極形成材料
US10889892B1 (en) 2019-12-16 2021-01-12 Quantum Elements Development, Inc. Quantum printing apparatus
CN111628187A (zh) * 2020-05-05 2020-09-04 江苏大学 一种碳载氧化钌催化剂及其制备方法
CN112397316B (zh) * 2020-11-02 2022-06-10 南京信息工程大学 氧化钌水化物-钌纳米颗粒复合材料及其制备方法和应用
US11484941B2 (en) * 2020-12-15 2022-11-01 Quantum Elements Development Inc. Metal macrostructures
US11862395B2 (en) * 2021-11-30 2024-01-02 Nissan North America, Inc. Energy bank including integrated supercapacitor-battery structures
US11817260B2 (en) * 2021-11-30 2023-11-14 Nissan North America, Inc. Integrated supercapacitor-battery structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036441A (ja) * 1998-07-17 2000-02-02 Fuji Electric Co Ltd 電気エネルギー貯蔵素子およびその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621609A (en) * 1994-12-09 1997-04-15 The United States Of America As Represented By The Secretary Of The Army Composite electrode materials for high energy and high power density energy storage devices
US20020122985A1 (en) * 2001-01-17 2002-09-05 Takaya Sato Battery active material powder mixture, electrode composition for batteries, secondary cell electrode, secondary cell, carbonaceous material powder mixture for electrical double-layer capacitors, polarizable electrode composition, polarizable electrode, and electrical double-layer capacitor
CN1300812C (zh) * 2001-10-31 2007-02-14 中国科学院上海冶金研究所 一种高容量电化学电容器的制造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036441A (ja) * 1998-07-17 2000-02-02 Fuji Electric Co Ltd 電気エネルギー貯蔵素子およびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MACHIDA K ET AL: "Preparation and Electrochemistry of Nano-composites Based on Metal Oxides and Supramolecules.", THE ELECTROCHEMICAL SOCIETY OF JAPAN., vol. 69, 25 March 2002 (2002-03-25), pages 133, XP002996919 *
See also references of EP1772428A4 *

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100346876C (zh) * 2006-04-14 2007-11-07 浙江大学 碳表面负载中空铂钌合金纳米粒子电催化剂及其制备方法
US7914664B2 (en) * 2006-10-23 2011-03-29 Cleveland State University Nitric oxide sensor
JP2008244355A (ja) * 2007-03-28 2008-10-09 Nippon Chemicon Corp 電気化学素子用電極
JP2008244354A (ja) * 2007-03-28 2008-10-09 Nippon Chemicon Corp 電気化学素子用電極
JP2008252002A (ja) * 2007-03-30 2008-10-16 Nippon Chemicon Corp 電気化学素子用電極
JP2008277790A (ja) * 2007-03-30 2008-11-13 Nippon Chemicon Corp 電気二重層キャパシタ
JP2010010623A (ja) * 2008-06-30 2010-01-14 Chubu Electric Power Co Inc 電気化学キャパシタ及びその製造方法
US9484155B2 (en) * 2008-07-18 2016-11-01 University Of Maryland Thin flexible rechargeable electrochemical energy cell and method of fabrication
US20100028766A1 (en) * 2008-07-18 2010-02-04 University Of Maryland Thin flexible rechargeable electrochemical energy cell and method of fabrication
JP2013502070A (ja) * 2009-08-11 2013-01-17 シーメンス エナジー インコーポレイテッド 高エネルギー密度スーパーキャパシタ用の多孔質炭素酸化物ナノコンポジット電極
JP2010225590A (ja) * 2010-03-31 2010-10-07 Nippon Chemicon Corp 金属酸化物ナノ粒子を高分散担持したカーボン、このカーボンを含有する電極材料、この電極材料を用いた電極及び電気化学素子
CN102005307A (zh) * 2010-09-28 2011-04-06 中国科学院电工研究所 一种石墨烯负载氧化钌的电极材料的制备方法
JP2013101983A (ja) * 2011-06-03 2013-05-23 Semiconductor Energy Lab Co Ltd 正極
JP2013101978A (ja) * 2011-06-03 2013-05-23 Semiconductor Energy Lab Co Ltd 電極の作製方法
WO2012165358A1 (en) * 2011-06-03 2012-12-06 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing electrode
KR101972609B1 (ko) 2011-06-03 2019-04-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 전극의 제조 방법
KR20140044821A (ko) * 2011-06-03 2014-04-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 전극의 제조 방법
US10243214B2 (en) 2011-06-03 2019-03-26 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing electrode
CN102354604A (zh) * 2011-08-05 2012-02-15 贵州大学 复合电极超级电容器及其制备方法
US9252419B2 (en) 2011-09-09 2016-02-02 Semiconductor Energy Laboratory Co., Ltd. Positive electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery
US9935313B2 (en) 2011-09-09 2018-04-03 Semiconductor Energy Laboratory Co., Ltd. Positive electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery
US9556536B2 (en) 2011-09-09 2017-01-31 Semiconductor Energy Laboratory Co., Ltd. Positive electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery
US9373834B2 (en) 2011-12-16 2016-06-21 Semiconductor Energy Laboratory Co., Ltd. Method for forming positive electrode for lithium-ion secondary battery
JP2013158940A (ja) * 2012-02-02 2013-08-19 Toray Ind Inc 積層基板
US9293770B2 (en) 2012-04-10 2016-03-22 Semiconductor Energy Laboratory Co., Ltd. Graphene oxide, positive electrode for nonaqueous secondary battery using graphene oxide, method of manufacturing positive electrode for nonaqueous secondary battery, nonaqueous secondary battery, and electronic device
US9385366B2 (en) 2012-08-27 2016-07-05 Semiconductor Energy Laboratory Co., Ltd. Positive electrode for secondary battery, secondary battery, and method for fabricating positive electrode for secondary battery
US11108038B2 (en) 2012-08-27 2021-08-31 Semiconductor Energy Laboratory Co., Ltd. Positive electrode for secondary battery, secondary battery, and method for fabricating positive electrode for secondary battery
JP2013219009A (ja) * 2012-10-29 2013-10-24 Nippon Chemicon Corp 反応方法及びこの方法で得られた金属酸化物ナノ粒子、またはこの金属酸化物ナノ粒子を担持したカーボン及びこのカーボンを含有する電極、並びにこれを用いた電気化学素子
JP2015163582A (ja) * 2015-03-31 2015-09-10 日本ケミコン株式会社 金属酸化物の製造方法、電極、及び電気化学素子
CN105954334A (zh) * 2016-05-04 2016-09-21 嘉兴学院 一种用于检测二苯胺的分子印迹电化学传感器及其应用
JP2017147228A (ja) * 2017-03-06 2017-08-24 日本ケミコン株式会社 電極材料、及び電気化学素子
CN107651676A (zh) * 2017-09-26 2018-02-02 昆明理工大学 一种提高石墨烯的水分散性的优化方法

Also Published As

Publication number Publication date
JPWO2005121022A1 (ja) 2008-04-10
US7572542B2 (en) 2009-08-11
KR20070030274A (ko) 2007-03-15
CN1964917B (zh) 2012-07-18
CN1964917A (zh) 2007-05-16
JP4765077B2 (ja) 2011-09-07
EP1772428A4 (en) 2008-05-14
EP1772428A1 (en) 2007-04-11
US20080048153A1 (en) 2008-02-28
KR101167744B1 (ko) 2012-07-23

Similar Documents

Publication Publication Date Title
WO2005121022A1 (ja) 酸化ルテニウム内包ナノカーボン複合構造体
Iqbal et al. Ultrasonication-assisted synthesis of novel strontium based mixed phase structures for supercapattery devices
Tian et al. The effect of annealing on a 3D SnO2/graphene foam as an advanced lithium-ion battery anode
Zhang et al. Spherical nano-Sb@ C composite as a high-rate and ultra-stable anode material for sodium-ion batteries
Wang et al. Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors
JP7075346B2 (ja) Si/Cコンポジット粒子の製造
JP7387624B2 (ja) 珪藻エネルギー貯蔵デバイス
Lijuan et al. Phenylalanine-functionalized graphene quantum dot-silicon nanoparticle composite as an anode material for lithium ion batteries with largely enhanced electrochemical performance
Jiang et al. A sustainable route from fly ash to silicon nanorods for high performance lithium ion batteries
Borysiewicz et al. Highly transparent supercapacitors based on ZnO/MnO 2 nanostructures
JP6621664B2 (ja) 導電性カーボンの製造方法、このカーボンを含む電極材料の製造方法、この電極材料を用いた電極の製造方法及びこの電極を備えた蓄電デバイスの製造方法
JP6621663B2 (ja) 導電性カーボンの製造方法、このカーボンを含む電極材料の製造方法、この電極材料を用いた電極の製造方法及びこの電極を備えた蓄電デバイスの製造方法
JP2005136397A (ja) 活性炭及びそれを用いた電極材料並びに電気二重層キャパシタ
Şahan et al. A novel and green synthesis of mixed phase CoO@ Co 3 O 4@ C anode material for lithium ion batteries
Hu et al. Confinement of PMo 12 in hollow SiO 2-PMo 12@ rGO nanospheres for high-performance lithium storage
Benzait et al. Synergistic effect of carbon nanomaterials on a cost-effective coral-like Si/rGO composite for lithium ion battery application
JP6436472B2 (ja) 導電性カーボンの製造方法、導電性カーボンを含む電極材料の製造方法、及び、電極材料を用いた電極の製造方法
Rajagopalan et al. Redox synthesis of poly (p–phenylenediamine)–reduced graphene oxide for the improvement of electrochemical performance of lithium titanate in lithium–ion battery anode
Chen et al. Core-shell structured Si@ Cu nanoparticles segregated in graphene-carbon nanotube networks enable high reversible capacity and rate capability of anode for lithium-ion batteries
Huang et al. TiO2 quantum dots decorated Si nanocage for enhanced lithium ion batteries
Stenina et al. LiFePO4/carbon nanomaterial composites for cathodes of high-power lithium ion batteries
JP6931186B2 (ja) 導電性カーボン混合物、この混合物を用いた電極、及びこの電極を備えた蓄電デバイス
JP6170804B2 (ja) 導電性カーボン
Di et al. Hierarchical microspheres assembled from Li 4 Ti 5 O 12-TiO 2 nanosheets with advanced lithium ion storage
KR102371496B1 (ko) 유체역학을 이용하여 2차원의 몰리브덴 디설파이드 나노시트를 제조하는 방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006514593

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580018406.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11628853

Country of ref document: US

Ref document number: 2005749032

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077000585

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020077000585

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005749032

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11628853

Country of ref document: US