CN112397316B - 氧化钌水化物-钌纳米颗粒复合材料及其制备方法和应用 - Google Patents

氧化钌水化物-钌纳米颗粒复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN112397316B
CN112397316B CN202011201858.6A CN202011201858A CN112397316B CN 112397316 B CN112397316 B CN 112397316B CN 202011201858 A CN202011201858 A CN 202011201858A CN 112397316 B CN112397316 B CN 112397316B
Authority
CN
China
Prior art keywords
ruthenium
oxide hydrate
parts
composite material
ruthenium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011201858.6A
Other languages
English (en)
Other versions
CN112397316A (zh
Inventor
郭彦
李壮
朱屹豪
何辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Information Science and Technology
Original Assignee
Nanjing University of Information Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Information Science and Technology filed Critical Nanjing University of Information Science and Technology
Priority to CN202011201858.6A priority Critical patent/CN112397316B/zh
Publication of CN112397316A publication Critical patent/CN112397316A/zh
Application granted granted Critical
Publication of CN112397316B publication Critical patent/CN112397316B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明公开了一种氧化钌水化物‑钌纳米颗粒复合材料,所述钌纳米颗粒被有机碳链包裹,所述氧化钌水化物与包裹钌纳米颗粒的有机碳链之间形成氢键;同时公开了上述复合材料的制备方法和其在电容电极领域的应用。本发明将赝电容氧化钌水化物和双电层电容有机材料包覆的钌纳米颗粒复合,由于二者结构相近、表面性质类似,复合后协同作用,显著提升了材料的电容行为,有效解决了氧化钌水化物稳定性差的问题。

Description

氧化钌水化物-钌纳米颗粒复合材料及其制备方法和应用
技术领域
本发明涉及一种氧化钌水化物-钌纳米颗粒复合材料及其制备方法和应用。
背景技术
超级电容器为一种能量转换和存储器件,具有较高的能量密度,快速的能量存储能力,持久的循环寿命。
通常超级电容器可以分为双电层电容器和法拉第赝电容。双电层电容器一般多为碳基材料,特点是比表面积大,响应速度快、放电倍率大、电化学性能稳定,但是实际使用过程中存在比电容、能量密度较小的缺点。法拉第赝电容通常为金属氧化物或导电高分子材料,特点为结构较致密、比电容大、能量密度高,但是也存在着电化学性能稳定性差、响应速度慢等缺点。由于双电层电容材料和赝电容材料都有各自的优缺点,单一材料不足以能适应实际应用的需求,如何将二者结合起来、形成优势互补,成为了该领域的研究热点。
钌隶属铂族过渡金属,硬、脆、抗蚀能力超强。氧化钌水化物是电容器应用中最为理想的材料之一,为典型的法拉第赝电容。钌基电极材料的优点在于比电容大(RuO2理论比电容值达1358F g-1),优异的导电性(37μS cm-1)、能量密度大、可逆的氧化还原特性、电位窗口宽和良好的速率性能。其中氧化钌水化物为无定型结构,结构疏松,特别有利于质子扩散至材料内部参与电极过程,进而获得优异的电容行为,但因为结构疏松导致其电化学稳定性明显下降。
为了提升钌基材料的稳定性,弥补氧化钌水化物的结构缺陷,研究人员采用了氧化钌水化物与碳基双电层材料复合的的方式,以复合电极材料的方式来提升钌基材料的整体电容性能。本专业领域技术研究人员展开了相关研究,专利“CN 102354604”将二氧化钌表面沉积/涂覆于石墨烯的表面。“CN 108461307 A”将碳纳米管与钌盐共混,形成钌基复合材料。“CN 1964917A”采用超离心作用获得内包二氧化钌的石墨烯复合结构。“CN103887077 A”采用石墨烯与二氧化钌一起研磨的方式获得复合材料。“CN 104124071 A”中采用碳源与钌盐搅拌吸附的方式获得。“CN 109859955 A”中采用炭粉与钌盐球墨的方式混合。“CN 102005307 A”和“CN 104616915 A”均采用石墨烯与钌盐水热吸附的方式。
但是由于氧化钌水化物与碳基材料的表面性质相差较大,界面处基本没有相互作用,这种简单的物理涂覆、吸附或包覆并不能充分发挥氧化钌水化物和碳基材料的协同作用,使得复合材料的电容行为不能有效提升,钌基材料的稳定性没有显著提升。
发明内容
发明目的:本发明的目的是提供一种能够使电容性能显著提升,电化学稳定性也显著增强的氧化钌水化物-钌纳米颗粒复合材料,本发明的另一个目的是提供上述复合材料的制备方法和其在电容电极领域的应用。
技术方案:本发明所述一种氧化钌水化物-钌纳米颗粒复合材料,所述钌纳米颗粒被有机碳链包裹,所述氧化钌水化物与包裹钌纳米颗粒的有机碳链之间形成氢键。
将氧化钌水化物与钌纳米颗粒这一双电层电容材料以氢键键合的方式键合复合。由于这两种材料结构相近、表面性质相类似,二者优势互补,实现了复合增效,使得氧化钌水化物-钌纳米颗粒复合材料的电容性能显著提升,电化学稳定性也显著增强。
进一步的,所述有机碳链的碳原子数量不大于6碳的羧基硫醇。
一种氧化钌水化物-钌纳米颗粒复合材料的制备方法,包括以下步骤:
(a)以质量份数计,将1-6份三氯化钌和0.25-1份表面活性剂溶于水中,制备氧化钌水化物;
(b)以质量份数计,将1-4份三氯化钌、1-5份羧基硫醇和0.02-0.1份水合联氨溶于乙醇溶液中,制备钌纳米颗粒;
(c)将步骤(a)和步骤(b)中混合制备得到氧化钌水化物-钌纳米颗粒复合材料。
采用羧基硫醇配体和水合联氨还原剂来制备钌纳米颗粒,一方面,水合联氨的还原性能较硼氢化钠的还原性能弱,在还原时不会导致大量的金属钌生成,而团聚成大颗粒,有效降低钌纳米颗粒的粒径;另一方面,羧基硫醇配体在金属钌刚生成的同时,就以Ru-S键键合,以碳链包裹住钌核,有效的降低了钌核的表面能,制得的纳米钌颗粒的粒径低至2nm。
进一步的,所述(a)具体为将1-6份三氯化钌、0.25-1份表面活性剂和200份水置于水热反应釜中,溶解后将pH值调节为6-9,进行60-90℃水热反应;中反应完全后,将得到的沉淀进行洗涤干燥。
进一步的,所述(b)具体为,在容器中加入1-4份三氯化钌、1-5份羧基硫醇和160份乙醇,搅拌溶解后,加入0.02-0.1份水合联氨进行还原反应,反应完全后旋转浓缩,将沉淀物干燥得钌纳米颗粒。
进一步的,所述(c)具体为,将(a)得到的沉淀物和(b)得到的沉淀物,以及水置于水热反应釜中,调节pH=3-5,50-80℃进行水热反应,反应完全后对沉淀进行抽滤、洗涤、干燥后得氧化钌水化物-钌纳米颗粒复合材料。
进一步的,所述羧基硫醇为羧基乙硫醇、羧基丁硫醇、羧基己硫醇、羧基辛硫醇中的一种或者几种,进一步优选为羧基己硫醇。
进一步的,所述表面活性剂为吐温-80、司盘-80、山梨醇、聚乙二醇-200中的一种,进一步优选为山梨醇,采用表面活性剂山梨醇来稳定三氯化钌水溶液,可以使其在沉淀时以水化物的形式生成,避免晶体RuO2的产生。
一种氧化钌水化物-钌纳米颗粒复合材料在电容电极领域的应用,将80份氧化钌水化物-钌纳米颗粒复合材料、15份导电碳粉和5份聚偏氟乙烯树脂分散于2000份甲苯中,制成钌分散液,涂渍于玻碳电极表面,晾干后即制得氧化钌水化物-钌纳米颗粒复合材料电极。
应用原理:有机配体包覆的钌纳米颗粒,为双电层电容器材料,它的电化学稳定性极佳,循环10000圈后,电容性能保持率仍为98%。钌纳米颗粒与氧化钌水化物化学组成接近,表面性质类似,如若通过二者复合,可以实现赝电容和双电层电容材料的复合,有效发挥协同作用。相较于化学组成和表面性质差异较大的碳基双电层电容材料复合,有明显的优势。
本发明专利围绕双电层电容材料和赝电容材料这一问题,采用氧化钌水化物和钌纳米颗粒通过氢键结合的方式形成复合物,这种化学键合方式有效发挥了复合材料的协同作用,同时提升了钌基复合材料的稳定性,有效解决了氧化钌水化物因结构缺陷导致的稳定性差的问题。钌纳米颗粒的粒径越小,与氧化钌水化物的有效接触面积越大,越有利于与氧化钌水化物键合,从而帮助氧化钌水化物稳定和分散。本发明进一步采用羧基硫醇配体和水合联氨还原剂来制备钌纳米颗粒。一方面,水合联氨的还原性能较硼氢化钠的还原性能弱,在还原时不会导致大量的金属钌生成,而团聚成大颗粒,有效降低钌纳米颗粒的粒径。另一方面,羧基硫醇配体在金属钌刚生成的同时,就以Ru-S键键合,以碳链包裹住钌核,有效的降低了钌核的表面能,降低纳米钌颗粒的粒径至2nm;同时羧基可以与氧化钌水化物形成氢键,有利于后续与氧化钌水化物复合。羧基硫醇的碳链越长,越有利对纳米钌颗粒的表面覆盖,提升纳米钌颗粒的分散和稳定性,但是实验发现当碳链长于6碳时,分散效果变差,可能与碳链过长导致的空间折叠效应有关,使得其有效覆盖面积反而下降,不利于降低钌纳米颗粒的表面能。优选的表面活性剂山梨醇在氧化钌水化物形成过程能显著提升氧化钌的分散性,显著提升结构性能。
有益效果:本发明采用制备钌基复合材料的方法,将赝电容氧化钌水化物和双电层电容有机材料包覆的钌纳米颗粒复合。二者结构相近、表面性质类似,复合后协同作用,显著提升了材料的电容行为,有效解决了氧化钌水化物稳定性差的问题。在0.5M H2SO4溶液,10mV/s扫数条件下,其比电容可以达到1200F/g。循环稳定性显著提升:10000圈后的电容保持率从75%提升至93%。相较于现有技术中通常采用的石墨烯、碳管等碳基材料,复合材料多为物理混合的方式,本发明中氧化钌水化物和功能化的钌纳米颗粒通过氢键作用结合,形成键合的复合材料,结构更加稳定,较传统的碳基材料与氧化钌复合后,电容性能提升了50-60%。本发明中在制备有机材料包覆的钌纳米颗粒时,采用水合联氨做还原剂,水合联氨还原性能温和,可以避免强还原剂还原过程中大量金属钌的集中还原而发生团聚,细化钌金属颗粒,帮助纳米材料的稳定和分散。由水合联氨还原制备的有机材料包覆的钌纳米颗粒直径在2nm,比表面积有效提升。
附图说明
图1a为实施例1中氧化钌水化物-钌纳米颗粒复合材料的电镜图,b为实施例1中钌纳米颗粒的电镜图;
图2为实施例1中氧化钌水化物-钌纳米颗粒复合物的XRD谱图;
图3为实施例5制得钌基复合材料电极的电容图;
图4实施例5制得钌基复合材料电极的电化学稳定性图。
具体实施方式
为进一步了解本发明的内容,结合附图及实施例对本发明作详细描述。
实施例1
在25mL水热反应釜中加入0.1克三水合三氯化钌、0.025克吐温-80和20mL水,搅拌溶解后,用3mol/L氢氧化钠溶液调节pH值为7,80℃水热反应2个小时。将沉淀产物抽滤,2mL去离子水洗涤3次,40℃干燥12小时,得产物I。
在50mL烧杯中加入0.1克三水合三氯化钌、0.2克羧基己硫醇和20mL乙醇,搅拌溶解后,用0.06克水合联氨还原反应4个小时。旋转蒸发浓缩至1mL,离心3次,40℃干燥12小时,得产物II。
将所制得的产物I、产物II和20mL水在25mL水热反应釜中搅拌混合,用0.1mol/L稀盐酸溶液调节pH=4,60℃水热反应48个小时,将产物抽滤,用2mL去离子水洗涤3次,40℃干燥24小时,得氧化钌水化物-钌纳米颗粒复合材料。
实施例2
在25mL水热反应釜中加入0.3克三水合三氯化钌、0.05克司盘-80和20mL水,搅拌溶解后,用3mol/L氢氧化钠溶液调节pH值为6,70℃水热反应3个小时。将沉淀产物抽滤,2mL去离子水洗涤3次,40℃干燥24小时,得产物I。
在50mL烧杯中加入0.4克三水合三氯化钌、0.5克羧基丁硫醇和20mL乙醇,搅拌溶解后,用0.1克水合联氨还原反应6个小时。旋转蒸发浓缩至1mL,离心3次,40℃干燥24小时,得产物II。
将所制得的产物I、产物II和20mL水在25mL水热反应釜中搅拌混合,用0.1mol/L稀盐酸溶液调节pH=4,70℃水热反应48个小时,将产物抽滤,用2mL去离子水洗涤3次,40°干燥24小时,得氧化钌水化物-钌纳米颗粒复合材料。
实施例3
在25mL水热反应釜中加入0.5克三水合三氯化钌、0.085克山梨醇和20mL水,搅拌溶解后,用3mol/L氢氧化钠溶液调节pH值为9,90℃水热反应4个小时。将沉淀产物抽滤,2mL去离子水洗涤3次,40℃干燥36小时,得产物I。
在50mL烧杯中加入0.2克三水合三氯化钌、0.1克羧基己硫醇和20mL乙醇,搅拌溶解后,用0.02克水合联氨还原反应12个小时。旋转蒸发浓缩至1mL,离心3次,40℃干燥48小时,得产物II。
将所制得的产物I、产物II和20mL水在25mL水热反应釜中搅拌混合,用0.1mol/L稀盐酸溶液调节pH=5,50℃水热反应60个小时,将产物抽滤,用2mL去离子水洗涤3次,40°干燥24小时,得氧化钌水化物-钌纳米颗粒复合材料。
实施例4
在25mL水热反应釜中加入0.6克三水合三氯化钌、0.1克聚乙二醇-200和20mL水,搅拌溶解后,用3mol/L氢氧化钠溶液调节pH值为9,80℃水热反应4个小时。将沉淀产物抽滤,2mL去离子水洗涤3次,40℃干燥48小时,得产物I。
在50mL烧杯中加入0.3克三水合三氯化钌、0.3克羧基辛硫醇和20mL乙醇,搅拌溶解后,用0.08克水合联氨还原反应12个小时。旋转蒸发浓缩至1mL,离心3次,40℃干燥36小时,得产物II。
将所制得的产物I、产物II和20mL水在25mL水热反应釜中搅拌混合,用0.1mol/L稀盐酸溶液调节pH=3,80℃水热反应72个小时,将产物抽滤,用2mL去离子水洗涤3次,40°干燥24小时,得氧化钌水化物-钌纳米颗粒复合材料。
图1a为实施例1中氧化钌水化物-钌纳米颗粒复合材料的电镜图,可以看出复合材料是由小颗粒键合而成;b为实施例1中钌纳米颗粒的电镜图,可以看成钌纳米颗粒的粒径在2nm左右。
图2为实施例1中氧化钌水化物-钌纳米颗粒复合材料的XRD谱图,星标为分别为RuO2和Ru的晶体XRD峰,图中没有尖锐衍射峰,仅仅是一些峰包,且能与RuO2和Ru的衍射峰对应上,说明产物为目标无定形态。
实施例5
将80份氧化钌水化物-钌纳米颗粒材料、15份导电碳粉和5份聚偏氟乙烯树脂分散于2000份甲苯中,制成钌分散液。涂渍于玻碳电极表面,晾干后制得钌基复合材料电极,对其进行电容性能测试。性能测试参数:循环伏安:电压窗口0-0.8V,扫描速度0.01-1V/s。充放电:电压窗口0-0.8V,电流10-6-10-4A。测试结果如图1。
图1
电容 电容稳定性
实施例1 1200F/g 93%
实施例2 1190F/g 93.5%
实施例3 1220F/g 94%
实施例4 1170F/g 93%
图3为实施例5制得钌基复合材料电极的电容图,由图可得氧化钌水化物-钌纳米颗粒复合物电极的电容为1200F/g。
图4为实施例5制得钌基复合材料电极的电化学稳定性图,由图可见氧化钌水化物-钌纳米颗粒复合物电极10000圈后,电容稳定性为93%。

Claims (3)

1.一种氧化钌水化物-钌纳米颗粒复合材料,其特征在于,所述钌纳米颗粒被有机碳链包裹,所述氧化钌水化物与包裹钌纳米颗粒的有机碳链之间形成氢键,所述有机碳链的碳原子数量不大于6碳的羧基硫醇,所述氧化钌水化物-钌纳米颗粒复合材料的制备方法,包括以下步骤:
(a)以质量份数计,将1-6份三氯化钌和0.25-1份表面活性剂溶于200份水中,制备氧化钌水化物;
(b)以质量份数计,将1-4份三氯化钌、1-5份羧基硫醇和0.02-0.1份水合联氨溶于乙醇溶液中,制备钌纳米颗粒;
(c)将步骤(a)和步骤(b)中混合制备得到氧化钌水化物-钌纳米颗粒复合材料,
所述(a)具体为将1-6份三氯化钌、0.25-1份表面活性剂和200份水置于水热反应釜中,溶解后将pH值调节为6-9,进行70-90 ℃水热反应;反应完全后,将得到的沉淀进行洗涤干燥;
所述(b)具体为,在容器中加入1-4份三氯化钌、1-5份羧基硫醇和160份乙醇,搅拌溶解后,加入0.02-0.1份水合联氨进行还原反应,反应完全后旋转浓缩,将沉淀物干燥得钌纳米颗粒;
所述(c)具体为,将(a)得到的沉淀物和(b)得到的沉淀物,以及水置于水热反应釜中,调节pH=3-5,50-70 ℃进行水热反应,反应完全后对沉淀进行抽滤、洗涤、干燥后得氧化钌水化物-钌纳米颗粒复合材料;
所述羧基硫醇为羧基乙硫醇、羧基丁硫醇、羧基己硫醇、羧基辛硫醇中的一种或者几种;
所述表面活性剂为吐温-80、司盘-80、山梨醇、聚乙二醇-200中的一种。
2.根据权利要求1所述氧化钌水化物-钌纳米颗粒复合材料,其特征在于,所述氧化钌水化物-钌纳米颗粒复合材料在电容电极领域的应用。
3.根据权利要求2所述氧化钌水化物-钌纳米颗粒复合材料,其特征在于,将80份氧化钌水化物-钌纳米颗粒复合材料、15份导电碳粉和5份聚偏氟乙烯树脂分散于2000份甲苯中,制成钌分散液,涂渍于玻碳电极表面,晾干后即制得氧化钌水化物-钌纳米颗粒复合材料电极。
CN202011201858.6A 2020-11-02 2020-11-02 氧化钌水化物-钌纳米颗粒复合材料及其制备方法和应用 Active CN112397316B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011201858.6A CN112397316B (zh) 2020-11-02 2020-11-02 氧化钌水化物-钌纳米颗粒复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011201858.6A CN112397316B (zh) 2020-11-02 2020-11-02 氧化钌水化物-钌纳米颗粒复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN112397316A CN112397316A (zh) 2021-02-23
CN112397316B true CN112397316B (zh) 2022-06-10

Family

ID=74597281

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011201858.6A Active CN112397316B (zh) 2020-11-02 2020-11-02 氧化钌水化物-钌纳米颗粒复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112397316B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010139911A1 (fr) * 2009-06-05 2010-12-09 Centre National De La Recherche Scientifique (C.N.R.S.) Procédé de préparation d'une composition organocompatible et hydrocompatible de nanocristaux métalliques et composition obtenue
CN108237223A (zh) * 2018-01-11 2018-07-03 苏州大学 核壳型金-氧化钌纳米复合材料及其制备方法
WO2019027057A1 (ja) * 2017-08-04 2019-02-07 国立大学法人北海道大学 酸化分解用触媒及びその利用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7404928B2 (en) * 2002-07-29 2008-07-29 The United States Of America As Represented By The Secretary Of The Navy Thiol terminated monodisperse ethylene oxide oligomer capped gold nanoclusters
WO2005121022A1 (ja) * 2004-06-11 2005-12-22 Tokyo University Of Agriculture And Technology, National University Corporation 酸化ルテニウム内包ナノカーボン複合構造体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010139911A1 (fr) * 2009-06-05 2010-12-09 Centre National De La Recherche Scientifique (C.N.R.S.) Procédé de préparation d'une composition organocompatible et hydrocompatible de nanocristaux métalliques et composition obtenue
WO2019027057A1 (ja) * 2017-08-04 2019-02-07 国立大学法人北海道大学 酸化分解用触媒及びその利用
CN108237223A (zh) * 2018-01-11 2018-07-03 苏州大学 核壳型金-氧化钌纳米复合材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
《Facile synthesis of ruhtenium nanoparticles capped by grapheme and thiols for high-performance supercapacitors》;Yan Guo;《Electrochimica Acta》;20200526;全文 *
《Ruthenium nanoparticles stabilized by mercaptan and acetylene derivatives with supercapacitor application》;Yan Guo;《Electrochimica Acta》;20180306;全文 *
Yan Guo.《Facile synthesis of ruhtenium nanoparticles capped by grapheme and thiols for high-performance supercapacitors》.《Electrochimica Acta》.2020, *

Also Published As

Publication number Publication date
CN112397316A (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
Zhang et al. Ultra-high-rate, ultra-long-life asymmetric supercapacitors based on few-crystalline, porous NiCo 2 O 4 nanosheet composites
Ouyang et al. Nickel sulfide/activated carbon nanotubes nanocomposites as advanced electrode of high-performance aqueous asymmetric supercapacitors
Jayaseelan et al. Mesoporous 3D NiCo2O4/MWCNT nanocomposite aerogels prepared by a supercritical CO2 drying method for high performance hybrid supercapacitor electrodes
Zhou et al. Nickel hexacyanoferrate on graphene sheets for high-performance asymmetric supercapacitors in neutral aqueous electrolyte
Zhang et al. Development of redox deposition of birnessite-type MnO2 on activated carbon as high-performance electrode for hybrid supercapacitors
Lian et al. Nb2O5 quantum dots coated with biomass carbon for ultra-stable lithium-ion supercapacitors
Jyothibasu et al. Cellulose/carbon nanotube/MnO 2 composite electrodes with high mass loadings for symmetric supercapacitors
Lamiel et al. Synthesis of mesoporous RGO@(Co, Mn) 3O4 nanocomposite by microwave-assisted method for supercapacitor application
Zhang et al. Graphene–MnO2 nanocomposite for high-performance asymmetrical electrochemical capacitor
Mohamed et al. Synthesis, surface characterization and electrochemical performance of ZnO@ activated carbon as a supercapacitor electrode material in acidic and alkaline electrolytes
Parveen et al. Renewable biopolymer-derived carbon–nickel oxide nanocomposite as an emerging electrode material for energy storage applications
Zhou et al. Microwave-assisted anchoring of flowerlike Co (OH) 2 nanosheets on activated carbon to prepare hybrid electrodes for high-rate electrochemical capacitors
Huang et al. Construction of hydrangea-like ZnCo2O4/Ni3V2O8 hierarchical nanostructures for asymmetric all-solid-state supercapacitors
Zhang et al. High electrochemical performance of Bi2WO6/carbon nano-onion composites as electrode materials for pseudocapacitors
Viswanathan et al. Reduced graphene oxide/vanadium pentoxide nanocomposite as electrode material for highly rate capable and durable supercapacitors
Rajesh et al. 2D layered nickel-cobalt double hydroxide nano sheets@ 1D silver nanowire-graphitic carbon nitrides for high performance super capacitors
Shehzad et al. Sono-chemical assisted synthesis of carbon nanotubes-nickel phosphate nanocomposites with excellent energy density and cyclic stability for supercapattery applications
Wang et al. Highly dispersed redox-active polyoxometalates’ periodic deposition on multi-walled carbon nanotubes for boosting electrocatalytic triiodide reduction in dye-sensitized solar cells
Kasturi et al. Hydrothermally derived porous carbon and its improved electrochemical performance for supercapacitors using redox additive electrolytes
Zhang et al. Facile synthesis, microstructure and electrochemical performance of peanut shell derived porous activated carbon/Co3O4 composite for hybrid supercapacitors
CN105261487A (zh) 用于超级电容器电极的核壳多孔纳米碳材料的制备方法
Zhang et al. A nickel coordination supramolecular network synergized with nitrogen-doped graphene as an advanced cathode to significantly boost the rate capability and durability of supercapacitors
Cheng et al. Supramolecule-assisted synthesis of in-situ carbon-coated MnO2 nanosphere for supercapacitors
Zhao et al. One-step synthesis of amino acid-derived HTC/NiO/Ni (OH) 2@ Ni cathode for high performance supercapacitors
Li et al. Mechanochemical production of graphene/amorphous carbon/Mn3O4 nanocomposites for asymmetric supercapacitor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant