WO2005118595A1 - 3−アルケニルセフェム化合物の製造方法 - Google Patents

3−アルケニルセフェム化合物の製造方法 Download PDF

Info

Publication number
WO2005118595A1
WO2005118595A1 PCT/JP2005/010621 JP2005010621W WO2005118595A1 WO 2005118595 A1 WO2005118595 A1 WO 2005118595A1 JP 2005010621 W JP2005010621 W JP 2005010621W WO 2005118595 A1 WO2005118595 A1 WO 2005118595A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
alkali metal
vinyl
amino
aqueous solution
Prior art date
Application number
PCT/JP2005/010621
Other languages
English (en)
French (fr)
Inventor
Yoichi Nishioka
Masahiro Ito
Yutaka Kameyama
Original Assignee
Otsuka Chemical Co., Ltd.
Meiji Seika Kaisha Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co., Ltd., Meiji Seika Kaisha Ltd. filed Critical Otsuka Chemical Co., Ltd.
Priority to EP05751538.9A priority Critical patent/EP1752459B1/en
Priority to US11/628,248 priority patent/US7893254B2/en
Priority to ES05751538.9T priority patent/ES2632500T3/es
Priority to CN2005800177369A priority patent/CN1964981B/zh
Publication of WO2005118595A1 publication Critical patent/WO2005118595A1/ja
Priority to HK07111290.7A priority patent/HK1105968A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D501/00Heterocyclic compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring
    • C07D501/14Compounds having a nitrogen atom directly attached in position 7
    • C07D501/16Compounds having a nitrogen atom directly attached in position 7 with a double bond between positions 2 and 3
    • C07D501/187-Aminocephalosporanic or substituted 7-aminocephalosporanic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D501/00Heterocyclic compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D501/00Heterocyclic compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring
    • C07D501/14Compounds having a nitrogen atom directly attached in position 7
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D501/00Heterocyclic compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring
    • C07D501/14Compounds having a nitrogen atom directly attached in position 7
    • C07D501/16Compounds having a nitrogen atom directly attached in position 7 with a double bond between positions 2 and 3

Definitions

  • the present invention relates to a method for producing 7-amino-3-[(Z) —2- (4-methylthiazol-5-yl) vinyl] -3-sefumu-4 monocarboxylic acid and salts thereof.
  • the trans-rosephem agent cefditoren pivoxil represented by the formula (5) is widely used as an excellent antibacterial agent having a broad antibacterial spectrum and strong antibacterial activity.
  • cefditorenpipoxyl in cephalosporin antibiotics having an alkenyl group at the 3-position, the steric structure of the alkenyl group at the 3-position has an excellent antibacterial action against Gram-negative bacteria. It plays a part in the mechanism of expression. Therefore, it is important to minimize the presence of geometric isomers in the E configuration of cefditoren pipoxyl in order to exert its effect as a pharmaceutical antibacterial agent. Attempts have been made to do so.
  • a Z / E mixture of 7-amino-3- [2- (4-methylthiazol-5-yl) vinyl] -13-cefm-4 monocarboxylic acid, a production intermediate, is prepared as an amine salt or hydrochloride.
  • 7-Amino-3-[(E) -2- (4-methylthiazol-5-yl) vinyl] -13-sefmue 4 Amine salt of rubonic acid by adsorption chromatography of ion exchange resin or activated carbon Or a method for killing hydrochloride is disclosed. (For example, see Patent Document 1).
  • An object of the present invention is to provide a 7-amino-3-[(Z) -12- (4-methylthiazol-5-yl) vinyl] -13-cefmue 4 mono-rubonic acid having a very low E-form content and a salt thereof. To provide an economically superior production method. Disclosure of the invention
  • R 1 represents a benzyl group or a phenoxymethyl group.
  • R 2 represents a carboxylic acid protecting group.
  • R 1 is the same as above.
  • M represents an alkali metal.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, surprisingly, 7-amino-3-[(E / Z) —2- (4-methylthiazoyl 5-yl) vinyl It has been found that a highly pure Z-isomer can be easily obtained at a high yield by treating 1-3-Ru-IV-Rubonic acid as a lithium metal salt with a hypopolymer and Z or activated carbon.
  • the alkali metal atom represented by M is preferably a lithium atom, a sodium atom, or a potassium atom.
  • a sodium atom and a potassium atom are particularly preferred from an economic viewpoint.
  • the present invention relates to an aqueous solution of an alkali metal salt of 7-amino-3-([EZZ) -2- (4-methylthiazol-5-yl) vinyl] -13-sefmue 4 monorubunic acid represented by the formula (1).
  • the E-isomer can be removed with extremely high selectivity simply by directly adding a high-porous polymer and Z or activated carbon and treating for a short time.
  • the content of the E-form is not particularly limited, but in order to obtain the compound represented by the formula (1) with a further improved content of the Z-form, about 1 to 30%, preferably about 1 to 20% The content is more preferably about 1 to 18%. Since the Z-form content can be further improved by repeating this method, the content may be less than 1%.
  • An aqueous solution of an alkali metal salt of the compound of the formula (1) is represented by the corresponding 7-amino-3-[(E / Z) -2- (4-methylthiazol-5-yl) vinyl] 13-cef-14
  • Alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide
  • alkali metal bicarbonates such as sodium hydrogen carbonate
  • alkali metals such as sodium carbonate, potassium carbonate and lithium carbonate
  • the concentration of the alkali metal salt of the compound of the formula (1) in the aqueous solution is not always important, as long as the alkali metal salt of the compound of the formula (1) is sufficiently dissolved. , May be set as appropriate.
  • the high-porous polymer used in the present invention is not particularly limited, and the parent structure thereof may be acryl-based resin such as methyl acrylate copolymer-type resin, phenol-based resin such as phenol-nopolak-type resin, or styrene-divinylbenzene.
  • a high-porous polymer which is a styrene-based resin such as a polymerization type resin is exemplified.
  • a high-porous polymer whose base structure is a styrene-based resin is preferable, and a specific surface area is 400 m 2 Zg or more, particularly 400 to 10 Those at 0 Oml / g are preferred.
  • Examples of such a high-porous polymer include HP-20, SP-207, and RHhm-Haas XAD-118, XAD-160, manufactured by Mitsubishi Chemical Corporation. Amberch omCG-161 manufactured by T oso Ha Ha Co. and the like. These may be used alone or in combination of two or more.
  • the amount of the porous polymer to be used is 0.1 to 5 parts by weight, preferably 0.3 to 4 parts by weight, more preferably 0.5 to 3 parts by weight based on 1 part by weight of the compound represented by the formula (1). It is preferable to use about parts by weight.
  • the processing temperature should be kept in the range of 120 to 50 ° C, preferably 110 to 30 ° C, more preferably 0 to 10 ° C. A processing time of several minutes to 2 hours is sufficient. After processing, the porous polymer can be separated by conventional separation means such as filtration or centrifugation.
  • any type of activated carbon such as zinc chloride charcoal or steam charcoal can be used, and general ones can be used without limitation. They may be used in combination.
  • activated carbons are used in an amount of 0.1 to 5 parts by weight, preferably 0.3 to 4 parts by weight, more preferably 0.3 to 1 part by weight of the alkali metal salt of the compound represented by the formula (1). It is better to use about 5 to 3 parts by weight.
  • the water content of the activated carbon is also not particularly limited, and may be 50% water-activated activated carbon or so-called dry activated carbon having a water content of about 10%.
  • the treatment temperature should be kept in the range of 20 to 50 ° C, preferably 1 to 30 ° C, more preferably 0 to 10 ° C. A processing time of several minutes to 2 hours is sufficient. After the treatment, the activated carbon can be removed by ordinary separation means such as filtration or centrifugation.
  • the compound represented by (1) precipitates in water as crystals.
  • the crystals are separated by a conventional separation means such as filtration or centrifugation, washed with water and acetone to promote drying, and then dried.
  • the content of the E-isomer is less than 0.1% (weight%, the same applies hereinafter) and the content of the Z-isomer is extremely high, specifically, the content of the Z-isomer by one reaction.
  • Rate of 99% or more preferably 99 to 100%, more preferably 99.5 to 99.9%, 99.75 to 99.96%, 99.9 to 99.95% of 7-amino-3- [2- ( 4-Methylthiazole-5-yl) bier] -1-Cefem-4-carboxylic acid can be obtained.
  • the Z-isomer can be obtained at a high yield. By repeating the reaction, the content of the Z-form can be improved.
  • the content of E-isomer means the percentage of E-isomer in E-isomer and Z-isomer. It is determined by the formula.
  • E-isomer content (%) 100 X (E-isomer abundance) Z ⁇ (E-isomer abundance) + (Z-isomer presence) 7-amino-3-[-represented by the formula (1) used in the present invention.
  • R 1 represents a benzyl group or a phenoxymethyl group.
  • M represents an alkali metal.
  • the groups described can be exemplified. Among them, a benzyl group which may have an electron donating group as a substituent on the phenyl ring and a diphenylmethyl group which may have an electron donating group as a substituent on the phenyl ring are preferred.
  • the electron donating group include a C 1 to C 6 alkyl group such as a methyl group, an ethyl group and a tert.-butyl group, a C 1 to C 6 carbon atom such as a hydroxy group, a methoxy group and an ethoxy group.
  • an alkoxy group of In the case of a diphenylmethyl group a group in which a substituted or unsubstituted phenyl group is bonded in a molecule via a methylene chain or a hetero atom may be included.
  • a benzyl group that may have an electron donating group as a substituent on the phenyl ring and / or a diphenylmethyl group that may have an electron donating group as a substituent on the phenyl ring include benzyl group and paramethoxybenzyl group.
  • Orthomethoxybenzyl diphenylmethyl, 3,4,5-trimethoxybenzyl, 3,5-dimethoxy-4-hydroxybenzyl, 2,4,6-trimethylbenzyl, piperonyl , Ditolylmethyl group, naphthylmethyl group, 91-anthryl group and the like.
  • a paramethoxybenzyl group and a diphenylmethyl group which are easily available, are particularly preferable from an economic viewpoint.
  • a deprotection reaction of the carboxylic acid protecting group of a / 3-lactam compound can be used.
  • a method of performing catalytic reduction using a noble metal catalyst, a method of treating with an acid, and the like are known.
  • the latter method includes a method using trifluoroacetic acid [J. Am. Cem. Soc. 91, 56 74 (1969)] and a method using formic acid [Chem. Ph. Arm. 30, 4545 (1982)], a method of reacting aluminum chloride in the presence of anisol [Tetrahedron on Lett. 2793 (1979)], etc.
  • Method of deprotection reaction Japanese Patent Publication 6-4638) Publication No.
  • phenols suitably used in the deprotection reaction of the 4-position carboxylic acid protecting group in this step include, for example, phenol, black phenol, cresol, methoxyphenol, naphthol, and the like.
  • the phenols may be used alone or in combination of two or more. Since the phenols used in the present method have functions not only as reagents but also as solvents, phenols and cresols having low melting points are particularly preferred.
  • phenols for example, water, halogenated hydrocarbon solvents such as methylene chloride and chloroform, ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone, ethyl acetate, butyl acetate as auxiliary solvents And the like, or a mixture of two or more of them can be added in an amount of 50% or less based on the phenols.
  • halogenated hydrocarbon solvents such as methylene chloride and chloroform
  • ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone, ethyl acetate, butyl acetate as auxiliary solvents And the like, or a mixture of two or more of them can be added in an amount of 50% or less based on the phenols.
  • the amount of phenols used is calculated by the formula
  • the amount is preferably 0.5 to 500 parts by weight, preferably 1 to 200 parts by weight, and more preferably about 1 to 50 parts by weight based on 1 part by weight of the compound represented by (3).
  • the reaction temperature varies depending on the type of the phenols used, and cannot be specified unconditionally, but is preferably from 120 to 100, preferably from 110 to 70 ° C, and more preferably from 0 to 60 ° C. Performing in the range of C is advantageous from the viewpoint of the stability of the reactants and products.
  • the reaction time is not particularly limited, and the reaction may be performed until the compound represented by the formula (3) almost disappears. In general, the reaction is completed in about 0.5 to 12 hours, depending on the reaction temperature.
  • the reaction can be completed in a shorter time by adding a catalytic amount of acid to the reaction system.
  • the acidic catalyst suitably used in this step include, for example, hydrochloric acid, sulfuric acid, perchloric acid, phosphoric acid, formic acid, acetic acid, trifluoroacetic acid, methanesulfonic acid, benzenesulfonic acid, and paratoluenesulfonate. Acids and the like. These may be used alone or in combination of two or more.
  • the amount of the catalyst used varies slightly depending on the type of the catalyst, but is generally from 0.01 to 100 mol%, preferably from 0.01 to 50 mol%, more preferably from 0.01 to 100 mol%, based on the compound represented by the formula (3). More preferably, it is 0.01 to 10 mol%.
  • the compound represented by the formula (4) can be easily obtained by a usual extraction operation.
  • organic solvent Ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; ester solvents such as ethyl acetate and butyl acetate; halogenated hydrocarbon solvents such as methylene chloride and chloroform; aromatics such as benzene and toluene.
  • a hydrocarbon solvent, ether solvent such as getyl ether, diisopropyl ether, etc., and use as aqueous layer aqueous solution of alkali metal hydroxide such as aqueous sodium hydroxide solution, aqueous potassium hydroxide solution, aqueous lithium hydroxide solution, aqueous sodium hydrogen carbonate solution.
  • an aqueous solution of an alkali metal salt such as an aqueous solution of sodium carbonate, an aqueous solution of carbonated carbonate, or an aqueous solution of lithium carbonate
  • phenols are removed to the organic solvent layer, and an aqueous solution of the alkali metal salt represented by the formula (4) is obtained. As can be easily obtained.
  • an enzyme reaction is suitably used.
  • the elimination of the substituted acyl group at the 7-position can be easily and almost quantitatively performed by an enzymatic reaction.
  • the reaction solvent is usually used in an aqueous system in order to maintain the activity of the enzyme for a long time.
  • the penicillin-G acylase enzyme (benicillin-G amidase enzyme) is directly added to the aqueous solution. ), And the reaction may be carried out while maintaining the reaction temperature and the pH in the predetermined ranges until the compound of the formula (4) is almost eliminated.
  • Benicillin-G acylase enzymes include, for example, BOEHR INGER MANNHE IM: Penicillin-G amidase PGA-150, PGA-300, PGA-450, DALAS BI OTECH LIMITED: Penicillin-G acylase (enzyme) ), Manufactured by Roche Molecular Biologicals, Inc .: Penicillin-G amidase, manufactured by Altus Biologies Inc .: Synth aCLEC—PA, and the like. The reaction proceeds almost quantitatively, and the 7-amino-3-[(E / Z) -2- (4-methylthiazol-5-yl) vinyl] 13-sefm-41 represented by the formula (1 ') An alkali metal salt of ruboric acid is obtained.
  • the amount of the enzyme used here is 0.1 to 5 parts by weight, preferably 0.3 to 1 part by weight, more preferably 0.4 to 0.7 part by weight with respect to 1 part by weight of the compound represented by the formula (4). It is preferable to use about parts by weight.
  • the reaction temperature varies depending on the type of the enzyme to be used and cannot be specified unconditionally, but is in the range of 10 to 50 ° C, preferably 15 to 40 ° C, more preferably 20 to 35 ° C. It can be carried out.
  • the pH of the above reaction varies depending on the type of the enzyme to be used and cannot be unconditionally determined, but it is 7.0 to 9.5, preferably 7.3 to 9.0, and more preferably 7.5 to 8.8. Is preferable.
  • the reaction time is not particularly limited, and the reaction may be performed until the compound represented by the formula (4) almost disappears. In general, the reaction is completed in about 0.5 to 12 hours, depending on the reaction temperature and pH. In the above reaction, a phenylacetic acid derivative is produced as the reaction proceeds, so that the pH in the reaction system decreases.
  • an aqueous solution of an alkali metal hydroxide such as an aqueous sodium hydroxide solution, an aqueous potassium hydroxide solution, an aqueous lithium hydroxide solution, an aqueous sodium hydrogen carbonate solution, an aqueous sodium carbonate solution
  • an aqueous solution of alkali metal carbonate such as an aqueous solution of potassium carbonate or an aqueous solution of lithium carbonate alone or as a mixture of two or more.
  • the enzyme After completion of the reaction, the enzyme is separated by ordinary separation means such as filtration or centrifugation, and the enzyme represented by the formula (1) is expressed as 7-amino-3_ [2- (4-methylthiazoyl-5-yl) vinyl] -3 -Sefm-4 Alkali metal salt of rubonic acid can be obtained as an aqueous separation mother liquor.
  • the compound represented by the formula (1) is represented by the compound (1)
  • the compound represented by the formula (1 ′) is represented by the compound (1 ′)
  • the compound represented by the formula (2) is represented by the compound (2)
  • the compound represented by (3) is referred to as compound (3)
  • the compound represented by formula (4) is referred to as compound (4).
  • PGA-450 (5 g) is added to this aqueous solution, and a reaction is performed for 4 hours at 25-30 ° C using a 5% aqueous potassium carbonate solution while controlling the pH within the range of 7.7-8.7. went. After completion of the reaction, the enzyme was removed by filtration to obtain an aqueous solution of compound (1 ′) (dipotassium M). In this aqueous solution, 4.93 g (yield: 85.1%) of the compound (1 ') having a content of E-isomer of 12% was present in an amount equivalent to 4.93 g.
  • each of the compounds (1) having a low E isomer content obtained in Examples 1 to 7 can be efficiently converted to cefditorenpipoxil.
  • the compound (1) obtained from Example 1 was prepared by the method described in Japanese Patent No. 2846186 and the journal of the Society of Organic Chemistry, Vol. 60, No. 2, 155-161 (2002). Pipoxyl can be produced. Industrial applicability

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Communicable Diseases (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Oncology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Cephalosporin Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

式(1)で表される7-アミノ-3-[(E/Z)-2-(4-メチルチアゾール-5-イル)ビニル]-3-セフェム-4-カルボン酸のアルカリ金属塩の水溶液に、ハイポーラスポリマー及び/又は活性炭を添加して処理することを特徴とする式(2)で表される7-アミノ-3-[(Z)-2-(4-メチルチアゾール-5-イル)ビニル]-3-セフェム-4-カルボン酸及びそのアルカリ金属塩の含有率が向上した式(1)で表される7-アミノ-3-[(E/Z)-2-(4-メチルチアゾール-5-イル)ビニル]-3-セフェム-4-カルボン酸及びそのアルカリ金属塩の製造方法。(1)(2)

Description

3ーァルケ二ルセフエム化合物の製造方法 技術分野
本発明は、 7—アミノー 3— [ ( Z ) — 2— (4—メチルチアゾールー 5—ィ ル) ビニル] - 3—セフエムー 4一力ルボン酸及びその塩の製造方法に関する。 背景技術
式 (5 ) で表される経ロセフェム剤セフジトレンピボキシルは、 幅広い抗菌ス ぺクトル及び強い抗菌力を持つた優れた抗菌剤として広く使用されている。
Figure imgf000002_0001
セフジトレンピポキシルに見られるように、 3位にアルケニル基を有するセフ ァロスポリン系抗生物質において、 その 3位アルケニル基の立体構造が Z配置で あることが、 グラム陰性菌に対する優れた抗菌作用を発現するメカニズムの一端 を担っている。 よってセフジトレンピポキシルの E配置をとる幾何異性体を極力 存在させないことが医薬抗菌剤としての効果を発揮する上で重要であり、 セフジ トレンピポキシル製造工程において製造中間体の Z体含有率を向上させる試みが なされている。
例えば、 製造中間体の 7—アミノー 3— [ 2— (4ーメチルチアゾールー 5— ィル) ビニル]一 3—セフエム— 4一力ルボン酸の Z / E混合物をアミン塩又は 塩酸塩に調製し、 イオン交換樹脂又は活性炭の吸着クロマトグラフィ一により、 7—ァミノ— 3— [ (E ) — 2— ( 4—メチルチアゾール一 5 _ィル) ビニル]一 3ーセフエムー 4一力ルボン酸のアミン塩又は塩酸塩を枯渴する方法が開示され ている (例えば特許文献 1参照)。
〔特許文献 1〕 特開平 7— 1 88250号公報
しかしながら、 該文献に記載の方法によると、 その実施例 4及び実施例 5では E体含有量 (率) がそれぞれ 14%及び 2 %と満足できるものとなっていない。 最近では特に医薬品製造業界に於いてクロマトグラフィーによる分離精製がェ 業的な手段として用いられているが、 溶離液の回収/カラム充填剤の再生等の負 担が大きく、 必ずしも最適な手法とは言えない。 ましてや、 医薬品製造における 純度及び数%の製造量の向上は薬効及び生産コストに顕著に反映されるものであ り、 より高純度で高収率となる製造方法が望まれている。
本発明の課題は、 E体含有率の極めて少ない 7—アミノー 3— [ (Z) 一 2— (4ーメチルチアゾールー 5—ィル) ビニル]一 3—セフエムー 4一力ルボン酸 及びその塩の経済的に優れた製造方法を提供することにある。 発明の開示
1. 式 (1) で表される 7—アミノー 3— [ (E/Z) - 2 - (4—メチルチ ァゾールー 5—ィル) ビニル]一 3—セフエム— 4一力ルボン酸のアル力リ金属 塩の水溶液に、 ハイポーラスポリマー及び Z又は活性炭を添加して処理すること を特徴とする式 (2) で表される 7_アミノー 3— [ (Z) 一 2— (4一メチル チアゾールー 5—ィル) ビニル]一 3ーセフエムー 4一力ルボン酸及びそのアル カリ金属塩の含有率が向上した式 (1) で表される 7—アミノー 3— [ (E/ Z) — 2— (4—メチルチアゾール— 5—ィル) ビニル]一 3—セフエム— 4— カルボン酸及びそのアルカリ金属塩の製造方法。
Figure imgf000003_0001
Figure imgf000004_0001
2. 式 (3) で表される 7—置換ァシルアミノー 3— [ (E/Z) 一 2— (4 ーメチルチアゾ一ル— 5—ィル) ビニル]—3—セフエム _4一力ルボン酸化合 物に 4位カルボン酸保護基の脱保護反応を行い、 アルカリ金属水酸化物、 アル力 リ金属炭酸水素塩、 及びアルカリ金属炭酸塩から選ばれる化合物の少なくとも 1 種の水溶液で処理して式 (4) の 7—置換ァシルアミノー 3— [ (E/Z) — 2 - (4ーメチルチアゾ一ル— 5—ィル) ビニル]一 3—セフエム— 4一力ルボン 酸のアルカリ金属塩を得た後、 水溶液中で酵素反応を施して得られる式 (1) の 7—ァミノ— 3— [ (E/Z) — 2— (4ーメチルチアゾール一 5—ィル) ビニ ル]一 3ーセフエム— 4—カルポン酸のアルカリ金属塩の水溶液に、 ハイポーラ スポリマー及び Z又は活性炭を添加して処理することを特徴とする式 (2) で表 される 7—アミノー 3— [ (Z) — 2— (4ーメチルチアゾ一ルー 5—ィル) ビ ニル]一 3—セフエムー 4一力ルボン酸及びそのアル力リ金属塩の含有率が向上 した式 (1) で表される 7—アミノー 3_[ (EZZ) -2 - (4—メチルチア ゾールー 5—ィル) ビニル]一 3—セフエムー 4一力ルボン酸及びそのアル力リ 金属塩の製造方法。
Figure imgf000004_0002
[式中、 R1はベンジル基又はフエノキシメチル基を示す。 R2はカルボン酸保 護基を示す。]
Figure imgf000005_0001
[式中、 R1は前記に同じ。 Mはアルカリ金属を示す。]
本発明者らは、 上記課題を解決すべく鋭意研究を重ねてきた結果、 驚くべきこ とに 7—アミノー 3— [ (E/Z) — 2— (4ーメチルチアゾ一ルー 5—ィル) ビニル]一 3ーセフエム— 4一力ルボン酸をアル力リ金属塩としてハイポ一ラス ポリマー及び Z又は活性炭で処理することで極めて純度の高い Z体が簡単に高収 率で得られることを見出した。
本発明において、 Mで示されるアルカリ金属原子としてはリチウム原子、 ナト リウム原子、 カリウム原子が好ましい。 中でも経済的な観点から、 ナトリウム原 子、 カリウム原子が特に好ましい。
本発明は式 (1) で表される 7—ァミノ一 3— [ (EZZ) - 2 - (4ーメチ ルチアゾールー 5—ィル) ビニル]一 3ーセフエムー 4一力ルボン酸のアルカリ 金属塩の水溶液に直接ハイポーラスポリマー及び Z又は活性炭を添加し、 短時間 処理するだけで、 E体を極めて高い選択性で除去できる。 特に上記ハイポーラス ポリマー及び Z又は活性炭を添加して、 撹拌すると E体の除去をより促進させる ことができ好ましい。
本発明で使用する式 (1) で表される 7—アミノー 3— [ (EZZ) -2- (4ーメチルチアゾール— 5—ィル) ビエル]― 3ーセフエムー 4一力ルボン酸 は公知化合物であり、 E体含有率について特に制限されないが、 より Z体含有率 の向上した式 (1) で表される化合物を得るためには、 1〜30%程度、 好まし くは 1〜20%程度、 より好ましくは 1〜18%程度とするのがよく、 本方法を 繰り返すことで更なる Z体含有率の向上が期待できるので、 1 %未満のものであ つてもよい。 式 ( 1 ) の化合物のアルカリ金属塩の水溶液は、 相当する 7—アミノー 3— [ (E/Z) - 2 - (4ーメチルチアゾールー 5—ィル) ビニル]一 3—セフエム 一 4一力ルボン酸を水酸化ナトリウム、 水酸化カリウム、 水酸化リチウム等のァ ルカリ金属水酸化物、 炭酸水素ナトリゥム等のアル力リ金属炭酸水素塩、 炭酸ナ トリウム、 炭酸カリウム、 炭酸リチウム等のアルカリ金属炭酸塩の水溶液で処理 することによって、 容易に得ることができるし、 後述の反応式 1の製造工程によ つて得られる式 (1 ') の化合物を含有する水溶液をそのまま使用することもで きる。
本発明において式 (1) の化合物のアルカリ金属塩の水溶液中の濃度は必ずし も重要ではなく、 式 (1 ) の化合物のアルカリ金属塩が十分に溶解する程度であ ればよいのであって、 適宜設定すればよい。
本発明において使用するハイポーラスポリマーとしては特に制限されず、 母体 構造がメ夕ァクリル酸エステル共重合型樹脂等のァクリル系樹脂、 フエノールー ノポラック型樹脂等のフェノ一ル系樹脂、 スチレンージビニルベンゼン共重合型 樹脂等のスチレン系樹脂であるハイポーラスポリマーが挙げられ、 中でも母体構 造がスチレン系樹脂であるハイポーラスポリマーが好ましく、 更に比表面積が 4 0 0m2Zg以上、 特に 40 0〜 1 0 0 Oml/gのものが好ましい。 このような ハイポーラスポリマーとしては、 例えば三菱化学 (株) 製 HP— 2 0、 S P- 2 0 7、 R o hm— Ha a s社製 XAD— 1 1 8 0、 XAD— 1 6 0 0、 T o s o 一 Ha a s社製 Amb e r c h r omCG- 1 6 1等が挙げられる。 これらは単 独で或いは 2種以上を混合して使用してもよい。
これらハイポーラスポリマーの使用量は、 式 (1) で表される化合物 1重量部 に対して 0. 1〜5重量部、 好ましくは 0. 3〜 4重量部、 より好ましくは 0. 5 ~ 3重量部程度とするのが良い。 処理温度は、 一 2 0〜5 0°C、 好ましくは一 1 0〜3 0°C、 より好ましくは 0〜1 0°Cの範囲で保つのが良い。 処理時間は数分 〜2時間程度で十分である。 処理終了後、 ハイポーラスポリマーは濾過や遠心分 離といった通常の分離手段により分離することができる 本発明で使用する活性炭としては塩化亜鉛炭や水蒸気炭といった活性炭の種類 は問わず、 一般的なものが制限無く使用できる。 また、 それらを混合して使用し てもよい。
これら活性炭の使用量は、 式 .(1) で表される化合物のアルカリ金属塩 1重量 部に対して 0. 1〜5重量部、 好ましくは 0. 3〜4重量部、 より好ましくは 0. 5〜3重量部程度とするのが良い。 活性炭の含水率にも特に制限はなく、 50% 含水活性炭であっても、 含水率 10%程度の所謂 D r y活性炭であってもよい。 処理温度は、 一 20〜50°C、 好ましくは一 10〜30°C、 より好ましくは 0〜 10°Cの範囲で保つのが良い。 処理時間は数分〜 2時間程度で十分である。 処理 終了後、 活性炭は濾過や遠心分離といった通常の分離手段により除去することが できる。
得られた式 (2) で表される 7—ァミノ— 3— [ (Z) 一 2— (4—メチルチ ァゾールー 5—ィル) ビエル]一 3ーセフエム—4—カルボン酸の含有率が向上 した式 (1) で表される化合物のアルカリ金属塩の水溶液に、 塩酸等の酸を加え てその pHを 3· 0〜4.3に調整することにより、 式 (2) で表される Z体化合 物の含有率が向上した式 (1) で表される化合物とすることができる。 該式
(1) で表される化合物は結晶として水中に析出し、 この結晶を濾過や遠心分離 といった通常の分離手段により分離し、 水及び乾燥促進の為にアセトンで洗浄後 乾燥することにより得られる。
本発明の方法によれば、 例えば 1回の反応により E体含有率が 0. 1% (重 量%、 以下同様) よりも少なく、 極めて Z体含有率が高い、 具体的には Z体含有 率 99 %以上、 好ましくは 99〜100 %、 より好ましくは 99. 5〜99. 9 9%、 99. 75〜99.96 %、 99. 9〜 99. 95 %の 7—アミノー 3— [2 一 (4ーメチルチアゾール— 5—ィル) ビエル]一 3—セフエム一 4—カルボン 酸を得ることができる。 更に、 本発明によれば Z体を高収率で得ることができる。 反応を繰り返すことにより Z体の含有率を向上させることができる。 なお、 本明 細書において E体含有率は E体及び Z体中の E体の存在割合を意味しており、 次 式によって求められる。
E体含有率 (%) = 1 0 0 X (E体存在量) Z {(E体存在量) + (Z体存在 本発明において使用する式 (1) で表される 7—アミノー 3— [ (E/Z) - 2— (4ーメチルチアゾールー 5—ィル) ビニル ]一 3—セフエム— 4一力ルポ ン酸のアルカリ金属塩 [式 ( ) で表される化合物] は例えば次の反応式 1に 従って製造することができる。
反応式 1
Figure imgf000008_0001
[式中、 R 1はベンジル基又はフエノキシメチル基を示す。
護基を示す。 Mはアルカリ金属を示す。] ■
上記反応式 1によると、 式 (3) で表される 7—置換ァシルアミノー 3— [ (E/Z) —2— (4ーメチルチアゾールー 5—ィル) ビニル ]—3—セフエム 一 4一力ルボン酸化合物の 4位のカルボン酸保護基の脱保護反応 (第一工程) を 行って、 式 (4) で表される 7—置換ァシルァミノ— 3— [ (EZZ) - 2 -
(4ーメチルチアゾールー 5—ィル) ビニル]一 3—セフエムー 4一力ルボン酸 のアルカリ金属塩とし、 次いで 7位の置換ァシル基の脱離反応 (第二工程) を行 つて、 本発明で使用する式 ( ) で表される 7—アミノー 3— [ (EZZ) -2 一 (4—メチルチアゾールー 5 _ィル) ビニル]一 3—セフエムー 4一力ルボン 酸アル力リ金属塩を製造することができる。 R 2で示される力ルポン酸保護基は、 特に制限なく公知のものが使用できる。 例えば、 Th e o d o r a W. Gr e e n e著の "P r o t e c t i v e G r ou s i n O r g an i c Syn t h e s i s, 1981, by J o h n Wi l e y&S on s. I n c . "の第 5章 ( 152〜 192頁) に 記載されている基を例示できる。 中でもフエニル環上に置換基として電子供与性 基を有することのあるベンジル基及び Z又はフエニル環上に置換基として電子供 与性基を有することのあるジフエニルメチル基が好ましい。 電子供与性基の具体 例とじて、 メチル基、 ェチル基、 t e r t. —プチル基等の炭素数 1〜 6のアル' キル基、 ヒドロキシ基、 メトキシ基、 エトキシ基等の炭素数 1〜6のアルコキシ 基を挙げることができる。 ジフエニルメチル基の場合には、 置換又は非置換のフ ェニル基がメチレン鎖或いはへテロ原子を介して分子内で結合しているタイプの ものを含んでも良い。 フエニル環上に置換基として電子供与性基を有することの あるベンジル基及び 又はフェニル環上に置換基として電子供与性基を有するこ とのあるジフエニルメチル基の具体例として、 ベンジル基、 パラメトキシベンジ ル基、 オルソメトキシベンジル基、 ジフエ二ルメチル基、 3, 4, 5—トリメトキ シベンジル基、 3, 5—ジメトキシー 4—ヒドロキシベンジル基、 2, 4, 6—ト リメチルベンジル基、 ピぺロニル基、 ジトリルメチル基、 ナフチルメチル基、 9 一アントリル基等を挙げることができる。 中でも経済的な観点から、 容易に入手 できるパラメトキシベンジル基、 ジフエニルメチル基が特に好ましい。
第一工程の反応には、 /3—ラクタム化合物の該カルボン酸保護基の脱保護反応 として一般に知られている種々の手法が利用できる。 例えば、 貴金属触媒を用い て接触還元する方法、 酸で処理する方法等が知られている。 さらに後者の方法に はトリフルォロ酢酸を使用する方法 〔J. Am. C em. S o c. 91, 56 74 (1969)〕、 蟻酸を使用する方法 〔Ch em. Ph a rm. Bu i 1. 3 0, 4545 ( 1982)〕、 ァニソ一ル存在下に塩化アルミニウムを作用させる 方法 [Te t r ah e d r on L e t t. 2793 (1979)〕 等が知られ ているが、 特にフエノール類中で該脱保護反応を行う方法 (特公平 6— 4638 号公報) 力 経済的にも、 操作の簡便さの点からも優位である。
本工程における 4位カルボン酸保護基の脱保護反応に於いて、 好適に使用され るフエノール類の例としては、 例えばフエノール、 クロ口フエノール、 クレゾ一 ル、 メトキシフエノール、 ナフトール等が挙げられ、 これらフエノール類は単独 で又は二種以上混合して用いても良い。 本方法で用いられるフエノール類は試薬 としてのみではなく、 溶媒としての機能も有する為、 融点の低いフエノール、 ク レゾールが特に好ましい。 フエノール類を使用する場合は、 補助溶媒として例え ば水、 塩化メチレン、 クロ口ホルム等のハロゲン化炭化水素溶媒、 アセトン、 メ チルェチルケトン、 メチルイソプチルケトン等のケトン系溶媒、 酢酸ェチル、 酢 酸ブチル等のエステル系溶媒等を単独で或いは二種以上混合してフエノール類に 対して 5 0 %以下の範囲で添加することもできる。 フエノール類の使用量は、 式
( 3 ) で表される化合物 1重量部に対して 0. 5〜5 0 0重量部、 好ましくは 1 〜2 0 0重量部、 より好ましくは 1〜5 0重量部程度とするのが良い。 上記反応 の温度としては、 使用するフエノール類の種類によって異なるので一概には言え ないが、 一 2 0〜1 0 0 、 好ましくは一 1 0〜7 0 °C、 より好ましくは 0〜 6 0 °Cの範囲で行えば、 反応物及び生成物の安定性の点から考えても有利である。 反応時間は特に限定されることなく、 式 (3 ) で表される化合物がほとんど消失 するまで行えばよい。 反応温度にもよるが、 一般的には 0. 5〜1 2時間程度行 えば、 反応は完結する。 また、 本工程では反応系内に触媒量の酸を添加して、 よ り短時間に反応を完結させることができる。 本工程に於いて、 好適に使用される 酸性触媒の例としては、 例えば塩酸、 硫酸、 過塩素酸、 リン酸、 蟻酸、 酢酸、 ト リフルォロ酢酸、 メタンスルホン酸、 ベンゼンスルホン酸、 パラトルエンスルホ ン酸等が挙げられる。 これらは単独で或いは二種以上混合して使用しても良い。 触媒の使用量はその種類により若干異なるが、 総じて式 (3 ) で表される化合物 に対して 0. 0 1〜1 0 0モル%、 好ましくは 0. 0 1〜5 0モル%、 より好まし くは 0. 0 1〜1 0モル%である。 反応終了後、 式 (4 ) で表される化合物は通 常の抽出操作で容易に得ることができる。 例えば、 反応終了後の溶液に有機溶剤 としてメチルェチルケトン、 メチルイソプチルケトン等のケトン系溶媒、 酢酸ェ チル、 酢酸ブチル等のエステル系溶媒、 塩化メチレン、 クロ口ホルム等のハロゲ ン化炭化水素溶媒、 ベンゼン、 トルエン等の芳香族炭化水素溶媒、 ジェチルエー テル、 ジイソプロピルエーテル等のエーテル系溶媒を加え、 水層として水酸化ナ トリウム水溶液、 水酸化カリウム水溶液、 水酸化リチウム水溶液等のアルカリ金 属水酸化物の水溶液、 炭酸水素ナトリウム水溶液、 炭酸ナトリウム水溶液、 炭酸 力リゥム水溶液、 炭酸リチウム水溶液等のアル力リ金属塩の水溶液を加えること により、 フエノール類を有機溶剤層へ除去し、 式 (4) で表されるアルカリ金属 塩の水溶液として容易に取得することができる。
第二工程の反応には、 酵素反応が好適に用いられる。 7位の置換ァシル基の脱 離は酵素反応によって、 容易にしかもほぼ定量的な収率で実施することができる。 反応溶媒は、 酵素の活性を長く保っために、 通常水系で行われる。 第一工程に於 いて式 (4) で表される化合物はアルカリ金属塩の形で水溶液として取得するこ とができる為、 直接該水溶液中にそれぞれペニシリン— Gアシラーゼ酵素 (ベニ シリン— Gアミダーゼ酵素とも言う) を添加し、 反応温度及び pHを所定の範囲 に保ちながら式 (4) の化合物がほぼ消失するまで反応を行えば良い。 ベニシリ ン— Gアシラーゼ酵素としては例えば BOEHR I NGER MANNHE I M 社製:ペニシリン— Gアミダーゼ PGA— 150, PGA- 300, P GA- 4 50, DALAS B I OTECH L I M I T E D社製:ペニシリン— Gァシ ラーゼ (酵素)、 Ro c h e Mo l e c u l a r B i o c h em i c a l s 社製:ぺニシリン— Gアミダーゼ、 A l t u s B i o l o g i e s I n c. 社製: Syn t h aCLEC— PA等を例示することができる。 反応はほぼ定量 的に進行し、 式 (1 ') で表される 7 _アミノー 3— [ (E/Z) - 2 - (4ーメ チルチアゾールー 5—ィル) ビニル]一 3ーセフエム— 4一力ルボン酸アルカリ 金属塩が得られる。
ここで用いられる酵素の使用量は、 式 (4) で表される化合物 1重量部に対し て 0. 1〜5重量部、 好ましくは 0. 3〜1重量部、 より好ましくは 0.4〜0.7 重量部程度とするのが良い。 上記反応の温度としては、 使用する酵素の種類によ つて異なるので一概には言えないが、 10〜50°C、 好ましくは 1 5〜40°C、 より好ましくは 20〜35 °Cの範囲で行うことができる。 上記反応の pHとして は、 使用する酵素の種類によって異なるので一概には言えないが、 7. 0〜9. 5、 好ましくは 7. 3〜 9. 0、 より好ましくは 7. 5〜 8. 8の範囲が好ましい。 反応 時間は特に限定されることなく、 式 (4) で表される化合物がほとんど消失する まで行えばよい。 反応温度及び pHにもよるが、 一般的には 0. 5〜1 2時間程 度行えば、 反応は完結する。 上記反応においては、 反応が進行するにつれてフエ ニル酢酸誘導体が産生する為、 反応系内の pHが低下する。 反応系の pHを所定 の範囲内で保持する目的で、 水酸化ナトリウム水溶液、 水酸化カリウム水溶液、 水酸化リチウム水溶液等のアル力リ金属水酸化物の水溶液、 炭酸水素ナトリウム 水溶液、 炭酸ナトリウム水溶液、 炭酸カリウム水溶液、 炭酸リチウム水溶液等の アル力リ金属炭酸塩の水溶液等を単独で或いは二種以上混合して加える。 反応終 了後、 酵素は濾過や遠心分離といった通常の分離手段により分離され、 式 (1) で表される 7—アミノー 3 _ [2— (4ーメチルチアゾ一ルー 5 _ィル) ビニル] - 3ーセフエム— 4一力ルボン酸のアルカリ金属塩を、 水系分離母液として得る ことができる。
本反応式 1で示される製造工程によれば式 (1') で表される 7—ァミノ— 3 - [ (E Z) —2— (4ーメチルチアゾール— 5—ィル) ビニル]一 3—セフエ ム _ 4一力ルボン酸アルカリ金属塩は水溶液の形態で得られている。 従って、 式 (1') で表される化合物を晶析、 分離により単離する必要なく、 本発明の方法 を適用することができる。
尚、 本反応式 1で示される式 (3) の化合物から式 (4) の化合物を経て、 式 (1') の化合物、 更に式 (1) の化合物を製造する方法は新規であり、 得られ る水溶液をそのまま使用することができるので好ましい。 発明を実施するための最良の形態 以下に参考例、 実施例、 試験例を挙げ、 本発明を具体的に説明するが、 何らこ れに限定されるものではない。
以下に、 実施例、 比較例及び参考例を掲げて、 本発明をより一層明らかにする。 尚、 式 (1) で表される化合物を化合物 (1)、 式 (1 ') で表される化合物を 化合物 (1')、 式 (2) で表される化合物を化合物 (2)、 式 (3) で表される 化合物を化合物 (3)、 式 (4) で表される化合物を化合物 (4) と示す。
また、 各実施例における E体含有率及び Z体含有率は HPL Cにより得られた 各面積値を各存在量として上記式により決定した。 測定条件は次の通りとした。 a) 化合物 (3) に適用
カラム 〔YMC— AM3 1 2 (OD S) 6. 0 φ X 1 5 Omm〕、 カラム温度 (2 5 °C付近の一定温度)、 移動相 (ァセトニトリル ZB u f f e r = 5 0/5 0、 B u f f e r : NaH2P04 - 2H20 7. 2 9 g、 N a 2H P 04 0. 464 gを、 蒸留水 1 Lに溶解する。)、 流量 (1. OmLZm i n.)、 検出波長 (2 7 4 nm)、 打ち込み量 (1 0 / L)、 走査時間: 4 5分、 Z体保持時間 (1 6〜1 7分)、 E体保持時間 (2 1〜2 2分)
b) 化合物 (1) 及び (2) に適用
カラム [Wa t e r s S y mm e t r y S h i e l d R P 8 5 m (4. 6 Χ 2 5 Omm)L カラム温度 ( 3 0 °C付近の一定温度)、 移動相 (ァセトニ トリル ZBu f f e r = 3Z9 7、 Bu f f e r : NH4H2P04 2. 9 gを、 蒸留水約 9 0 OmLに溶解する。 リン酸にて p H 2. 0に調整した後、 蒸留水を 加えて正確に 1 Lとする。)、 流量 (1. OmL/m i n.)、 検出波長 (2 54 η m)、 打ち込み量 (1 0 /iL)、 走査時間: 3 0分、 Z体保持時間 (6. 5〜7. 5 分)、 E体保持時間 (9. 5〜1 0. 5分)
実施例 1
〔操作 1〕 5 0 OmL四頭フラスコに、 E体含有率 1 0 %の化合物 (3) (R ι=ベンジル、 R2 =ジフエニルメチル) 1 0 gを量り取り、 フエノール 5 5m Lを加えて 5 0〜5 5 °Cで 5時間撹拌した。 反応液に酢酸ェチル 1 0 OmL及び 5 %炭酸水素ナ卜リゥム水溶液 2 0 0 mLを加えた後、 1 0 °C以下まで冷却した。 有機層を除いて水層を採り、 酢酸ェチル 1 5 OmLで 3回洗浄して、 化合物
(4) ベンジル、 M =ナトリウム) の水溶液を得た。 この水溶液に P G
A— 4 5 0 5 gを添加し、 2 0〜3 0° (:、 5 %炭酸ナトリウム水溶液を用いて pH= 7. 5〜8. 5の範囲内で制御しながら 3時間反応を行った。 反応終了後酵 素を濾過して除き、 化合物 ( ) (M =ナトリウム) の水溶液をフラスコ中に得 た。 この水溶液中には E体含有率 1 0 %の化合物 ( ) が 4. 7 7 g (収率 8 4. 0 %) 相当存在していた。
〔操作 2〕 この水溶液を 1 0°C以下に冷却後、 活性炭 5 gを添加して 1時間撹 拌した。 活性炭を濾過して除き、 瀘液に 4N—塩酸を加えて pHを 4. 0に調整 して 1 0°C以下の温度で 1時間熟成した。 析出した結晶を濾過して採り、 水及び アセトンで結晶を洗浄して乾燥後、 化合物 (2) の含有率が向上した化合物
(1) を得た。
収量: 3. 8 2 g
Z体収率: 9 5. 0% (操作 2)、 7 9. 8 % (操作 1 + 2)
E体含有率: 0. 0 9 % (Z体含有率: 9 9. 9 1 %)
^-NMR (0. 2mo 1 /L-DC 1 /D20 p pm f r om TS P) : 2. 5 3 (3H, s , CH3), 3. 5 6-3. 6 1 ( 1 H, d, S— CH (H), 1 8. 4Hz), 3. 7 5-3. 8 0 ( 1 H, d , S— CH (H), 1 8. 4 Hz), 5. 2 6-5. 2 7 (1 H, d, S -CH, 5. 2 H z ), 5. 45- 5. 4
6 (1 H, d, N-CH, 5. 2Hz), 6. 7 9 (2 H, s , HC = CH), 9.
7 9 (1 H, s, S-CH = N)
実施例 2
〔操作 1〕 5 0 OmL四頭フラスコに、 E体含有率 9 %の化合物 (3) (R1 =ベンジル、 R2==p—メトキシベンジル) 1 0 gを量り取り、 クレゾール 6 0 mLを加えて 4 5〜5 0°Cで 1 0時間撹拌した。 反応液に酢酸ブチル 1 0 OmL 及び 5 %炭酸水素ナトリウム水溶液 2 0 OmLを加えた後、 1 0°C以下まで冷却 した。 有機層を除いて水層を採り、 酢酸ブチル 1 5 OmLで 3回洗浄して、 化合 物 (4) (R1^ベンジル、 M =ナトリウム) の水溶液を得た。 この水溶液に P GA-450 (5 g) を添加し、 20〜30°C、 5 %炭酸ナトリウム水溶液を用 いて pH=7. 5〜8. 5の範囲内で制御しながら 3時間反応を行った。 反応終了 後酵素を濾過して除き、 化合物 ( ) (Mニナトリウム) の水溶液をフラスコ中 に得た。 この水溶液中には E体含有率 9 %の化合物 (1') が 5. 29 g (収率 8 6. 0 %) 相当存在していた。
〔操作 2〕 この水溶液を 10°C以下に冷却後、 活性炭 4. 5 gを添加して 1時 間撹拌した。 活性炭を濾過して除き、 濾液に 4N—塩酸を加えて pHを 4. 0に 調整して 10°C以下の温度で 1時間熟成した。 析出した結晶を濾過して採り、 水 及びアセトンで結晶を洗浄して乾燥後、 化合物 (2) の含有率が向上した化合物
(1) を得た。 化合物 (1) の構造は1 H— NMRで確認した。
収量: 4. 30 g
Z体収率: 95. 5% (操作 2 )、 82. 1% (操作 1 + 2 )
E体含有率: 0. 08 % (Z体含有率: 99. 92 %)
実施例 3
〔操作 1〕 50 OmL四頭フラスコに、 E体含有率 15%の化合物 (3) (R ュ=フエノキシメチル、 R2=パラメトキシベンジル) 10 gを量り取り、 フエ ノール クレゾール ( 1 Z 1 ) 混合溶媒 50 mLを加えて 50〜 60 °Cで 4時間 撹拌した。 反応液にメチルイソプチルケトン 10 OmL及び 5%炭酸水素ナトリ ゥム水溶液 20 OmLを加えた後、 1 Ot:以下まで冷却した。 有機層を除去して 水層を採り、 メチルイソプチルケトン 15 OmLで 3回洗浄して、 化合物 (4) (R1^フエノキシメチル、 M =ナトリウム) の水溶液を得た。 この水溶液に P G A— 450 (5 g) を添加し、 25〜30° (:、 5 %炭酸ナトリウム水溶液を用 いて pH=7. 7〜8. 7の範囲内で制御しながら 4時間反応を行った。 反応終了 後酵素を濾過して除き、 化合物 (Γ) (Mニナトリウム) の水溶液を得た。 この 水溶液中には E体含有率 1 5%の化合物 (1') が 4. 84 g (収率 80. 9%) 相当存在していた。
〔操作 2〕 この水溶液を 10°C以下に冷却後、 活性炭 6 gを添加して 1時間撹 拌した。 活性炭を濾過して除き、 濾液に 4N—塩酸を加えて pHを 4. 0に調整 して 10°C以下の温度で 1時間熟成した。 析出した結晶を濾過して採り、 水及び アセトンで結晶を洗浄して乾燥後、 化合物 (2) の含有率が向上した化合物 (1) を得た。 化合物 (1) の構造は1 H— NMRで確認した。
収量: 3. 56 g
Z体収率: 92. 5% (操作 2)、 74. 8% (操作 1 + 2)
E体含有率: 0. 10% (Z体含有率: 99. 90 %)
実施例 4
〔操作 1〕 50 OmL四頭フラスコに、 E体含有率 12%の化合物 (3) (R ェ=フエノキシメチル、 R2 =ジフエニルメチル) 10 gを量り取り、 フエノー ル 45mLを加えて 55〜60°Cで 4時間撹拌した。 反応液にメチルェチルケト ン 10 OmL及び 3 %炭酸カリウム水溶液 20 OmLを加えた後、 10°C以下ま で冷却した。 有機層を除去して水層を採り、 メチルェチルケ卜ン 15 OmLで 3 回洗浄して、 化合物 (4) フエノキシメチル、 M =カリウム) の水溶液 を得た。 この水溶液に PGA— 450 (5 g) を添加し、 25〜30°C、 5 %炭 酸カリウム水溶液を用いて pH= 7. 7〜8. 7の範囲内で制御しながら 4時間反 応を行った。 反応終了後酵素を濾過して除き、 化合物 (1') (M二カリウム) の 水溶液を得た。 この水溶液中には E体含有率 12%の化合物 (1') が 4. 93 g (収率 85. 1 %) 相当存在していた。
〔操作 2〕 この水溶液を 10 C以下に冷却後、 活性炭 6 gを添加して 1時間撹 拌した。 活性炭を濾過して除き、 濾液に 4N—塩酸を加えて pHを 4. 0に調整 して 10°C以下の温度で 1時間熟成した。 析出した結晶を濾過して採り、 水及び アセトンで結晶を洗浄して乾燥後、 化合物 (2) の含有率が向上した化合物 (1) を得た。 化合物 (1) の構造は1 H— NMRで確認した。
収量: 3. 65 g Z体収率: 94. 1 % (操作 2)、 80. 0% (操作 1 +2)
E体含有率: 0. 10% (Z体含有率: 99. 90 %)
実施例 5
〔操作 1〕 50 OmL四頭フラスコに、 E体含有率 10%の化合物 (3) (R 1=ベンジル、 R2= 2, 4, 6—トリメチルベンジル) 10 gを量り取り、 フエ ノール 5 OmL及び濃塩酸 0. lmLを加えて 45〜 50°Cで 4時間撹拌した。 反応液に塩化メチレン 20 OmL及び 5%炭酸水素ナトリウム水溶液 20 OmL を加えた後、 10°C以下まで冷却した。 有機層を除去して水層をとり、 塩化メチ レン 15 OmLで 5回洗浄して、 化合物 (4) ベンジル、 M =ナトリウ ム) の水溶液を得た。 この水溶液に PGA— 450 (5 g) を添加し、 20〜3 0°C、' 5%炭酸ナトリウム水溶液を用いて pH= 7. 5〜8. 5の範囲内で制御し ながら 3時間反応を行った。 反応終了後酵素を濾過して除き、 化合物 ( ) (M =ナトリウム) の水溶液を得た。 この水溶液中には E体含有率 10%の化合物 (1 ') が 5. 00 g (収率 83.0%) 相当存在していた。
〔操作 2〕 この水溶液を 10 以下に冷却後、 活性炭 5 gを添加して 1時間撹 拌した。 活性炭を濾過して除き、 濾液に 4N—塩酸を加えて pHを 4. 0に調整 して 10°C以下の温度で 1時間熟成した。 析出した結晶を濾過して採り、 水及び アセトンで結晶を洗挣して乾燥後、 化合物 (2) の含有率が向上した化合物 (1) を得た。 化合物 (1) の構造は1 H— NMRで確認した。
収量: 4. 00 g
Z体収率: 95. 0% (操作 2 )、 78. 9% (操作 1 + 2 )
E体含有率: 0. 09% (Z体含有率 : 99. 91 %)
実施例 6
50 OmL四頭フラスコに、 E体含有率 10%の化合物 (3) ベンジ ル、 R2 =ジフエニルメチル) 10 gを量り取り、'フエノール 5 OmL及び濃硫 酸 0. lmLを加えて 50〜55 °Cで 3時間撹拌した。 反応液に酢酸ェチル 10 OmL及び 5%炭酸水素ナトリウム水溶液 30 OmLを加えた後、 10で以下ま で冷却した。 有機層を除去して水層を採り、 酢酸ェチル 1 5 OmLで 3回洗浄し て、 化合物 (4) ベンジル、 M =ナトリウム) の水溶液を得た。 この水 溶液に PGA— 450 (5 g) を添加し、 20〜30ΐ、 5%炭酸ナトリウム水 溶液を用いて ρΗ=7. 5〜8. 3の範囲内で制御しながら 4時間反応を行った。 反応終了後酵素を濾過して除き、 化合物 ( ) (Μニナトリウム) の水溶液を得 た。 この水溶液中には Ε体含有率 10%の化合物 (1') が 4. 89 g (収率 86.
1 %) 相当存在していた。
〔操作 2〕 この水溶液を 10°C以下に冷却後、 ハイポーラスポリマー (HP—
20) 15 gを添加して 1時間撹拌した。 該ハイポーラスポリマーを濾過して除 き、 濾液に 4N—塩酸を加えて pHを 4. 0に調整して 10°C以下の温度で 1時 間熟成した。 析出した結晶を濾過して採り、 水及びアセトンで結晶を洗浄して乾 燥後、 化合物 (2) の含有率が向上した化合物 (1) を得た。 化合物 (1) は1
H— NMRで確認した。
収量: 3. 91 g
Z体収率: 94. 9% (操作 2)、 81.6% (操作 1 + 2 )
E体含有率: 0. 09% (Z体含有率: 99. 91 %)
実施例 7
〔操作 1〕 50 OmL四頭フラスコに、 E体含有率 9%の化合物 (3) (R1 =ベンジル、 R2==パラメトキシベンジル) 10 gを量り取り、 ァニソール 30 mL及び氷冷下トリフルォロ酢酸 10 OmLを加えて同温度にて 1時間撹拌した。 反応液を減圧下で濃縮後、 酢酸ブチル 10 OmL及び 5%炭酸水素ナトリウム水 溶液 20 OmLを加え、 10°C以下まで冷却した。 有機層を除去して水層をとり、 酢酸ブチル 15 OmLで 3回洗浄して、 化合物 (4) ベンジル、 Μ-ナ トリウム) の水溶液を得た。 この水溶液に PGA— 450 (5 g) を添加し、 2 0〜30°C、 5%炭酸ナトリウム水溶液を用いて pH=7. 5〜8. 5の範囲内で 制御しながら 3時間反応を行った。 反応終了後酵素を濾過して除き、 化合物 (1 ') (M1==ナトリウム) の水溶液を得た。 この水溶液中には E体含有率 9%の化 合物 (Γ) 力 s、5. 22 g (収率 84. 9 %) 相当存在していた。
〔操作 2〕 この水溶液を 10°C以下に冷却後、 活性炭 5 gを添加して 1時間撹 拌した。 活性炭を濾過して除き、 濾液に 4 N—塩酸を加えて pHを 4. 0に調整 して 10°C以下の温度で 1時間熟成した。 析出した結晶を濾過して採り、 水及び アセトンで結晶を洗浄して乾燥後、 化合物 (2) の含有率が向上した化合物
(1) を得た。 化合物 (1) は1 H— NMRで確認した。
収量: 4. 25 g
収率 ·· 95. 5 % (操作 2 )、 81. 1 % (操作 1 + 2 )
E体含有率: 0. 09% (Z体含有率: 99. 91 %)
参考例 1
実施例 1〜7で得られた E異性体含有率の少ない化合物 (1) は、 いずれもセ フジトレンピポキシルへと効率よく変換できる。 例えば実施例 1より得られた化 合物 ( 1 ) は、 特許 2846186号公報や、 有機化学合成協会誌 Vo l.6 0, No. 2, 155 - 161 (2002) に記載の方法により、 セフジトレン ピポキシルを製造することができる。 産業上の利用可能性
本発明の製造方法によれば、 E体と Z体との幾何異性体が混在する 7—ァミノ ー3— [2— (4ーメチルチアゾ一ルー 5—ィル) ビニル]一 3—セフエムー 4一 カルボン酸をアルカリ金属塩とすることにより、 簡便に極めて高い Z体含有率を 有する 7—ァミノ—3— [2— (4—メチルチアゾール— 5—ィル) ビニル ]一 3 ーセフエム— 4一力ルポン酸及びそのアル力リ金属塩を高収率で得ることができ る。

Claims

請求の範囲
1. 式 (1) で表される 7—ァミノ _ 3— [ (E/Z) 一 2— (4ーメ チルチアゾールー 5—ィル) ビニル] - 3—セフエム— 4一力ルボン酸のアル力 リ金属塩の水溶液に、 ハイポーラスポリマー及び Z又は活性炭を添加して処理す ることを特徴とする式 (2) で表される 7—アミノー 3— [ (Z) - 2 - (4- メチルチアゾールー 5—ィル) ビニル]一 3ーセフエムー 4一力ルボン酸及びそ のアルカリ金属塩の含有率が向上した式 (1) で表される 7—アミノー 3— [ (EZZ) — 2— (4—メチルチアゾールー 5—ィル) ピニル]一 3ーセフエム 一 4一力ルボン酸及びそのアル力リ金属塩の製造方法。
Figure imgf000020_0001
Figure imgf000020_0002
2. ハイポーラスポリマー及び Z又は活性炭での処理を撹拌下に行う 請求の範囲第 1項に記載の製造方法。
3. 式 (3) で表される 7 _置換ァシルアミノー 3— [ (E/Z) 一 2 一 (4ーメチルチアゾールー 5 Γル) ビニル]一 3—セフエムー 4一力ルボン 酸化合物に 4位カルボン酸保護基の脱保護反応を行い、 アルカリ金属水酸化物、 アル力リ金属炭酸水素塩、 及びアル力リ金属炭酸塩から選ばれる化合物の少なく とも 1種の水溶液で処理して式 (4) の 7—置換ァシルアミノー 3— [ (E/ Z) — 2— (4ーメチルチアゾ一ルー 5—ィル) ビニル]一 3—セフエムー 4一 カルボン酸のアルカリ金属塩を得た後、 水溶液中で酵素反応を施して得られる式
(1) の 7—アミノー 3— [ (EZZ) —2— (4—メチルチアゾールー 5—ィ ル) ビニル]一 3—セフエムー 4一力ルボン酸のアルカリ金属塩の水溶液に、 ノ イポーラスポリマー及び Z又は活性炭を添加して処理することを特徴とする式
(2) で表される 7—アミノー 3— [ (Z) 一 2— (4—メチルチアゾール _ 5 —ィル) ビニル]一 3—セフエム一 4一力ルボン酸及びそのアルカリ金属塩の含 有率が向上した式 (1) で表される 7—アミノー 3— [ (E/Z) 一 2— (4- メチルチアゾ一ルー 5—ィル) ビニル]一 3ーセフエム一 4—カルボン酸及びそ のアル力リ金属塩の製造方法。
Figure imgf000021_0001
[式中、 R1はベンジル基又はフエノキシメチル基を示す。 R2はカルボン酸保 護基を示す。]
Figure imgf000021_0002
[式中、 R1は前記に同じ。 Mはアルカリ金属を示す。]
4. ハイポーラスポリマー及び Z又は活性炭での処理を撹拌下に行う 請求の範囲第 3項に記載の製造方法。
5. ハイポーラスポリマーがアクリル系樹脂、 フエノール系樹脂、 ス チレン系樹脂を母体構造とする、 比表面積が 400m2Zg以上のポリマーであ る請求の範囲第 1〜 4項のいずれかに記載の製造方法。
6. 処理後の 7—アミノー 3— [ (Z) -2 - (4ーメチルチアゾ一ル ― 5—ィル) ビエル]一 3ーセフエムー 4一力ルボン酸及びそのアル力リ金属塩 の含有率が 99 %以上である請求の範囲第 1又は 3項に記載の製造方法。
7. 処理後の 7—アミノー 3— [ (Z) — 2— (4—メチルチアゾール — 5—ィル) ビエル]一 3—セフエムー 4一力ルボン酸及びそのアルカリ金属塩 の含有率が 99. 5%以上である請求の範囲第 6項に記載の製造方法。
8. 酵素反応をペニシリン一 Gアシラーゼ酵素を用いて、 反応温度 1 0〜50° (:、 pH7. 0〜9. 5の範囲で行う請求の範囲第 3項に記載の製造方法。
PCT/JP2005/010621 2004-06-04 2005-06-03 3−アルケニルセフェム化合物の製造方法 WO2005118595A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP05751538.9A EP1752459B1 (en) 2004-06-04 2005-06-03 Process for production of 3-alkenylcephem compounds
US11/628,248 US7893254B2 (en) 2004-06-04 2005-06-03 Process for production of 3-alkenylcephem compounds
ES05751538.9T ES2632500T3 (es) 2004-06-04 2005-06-03 Proceso para la producción de compuestos 3-alquenilcefem
CN2005800177369A CN1964981B (zh) 2004-06-04 2005-06-03 3-链烯基头孢烯化合物的制造方法
HK07111290.7A HK1105968A1 (en) 2004-06-04 2007-10-18 Process for production of 3-alkenylcephem compounds 3-

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004167581A JP4046708B2 (ja) 2004-06-04 2004-06-04 3−アルケニルセフェム化合物の製造方法
JP2004-167581 2004-06-04

Publications (1)

Publication Number Publication Date
WO2005118595A1 true WO2005118595A1 (ja) 2005-12-15

Family

ID=35462876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010621 WO2005118595A1 (ja) 2004-06-04 2005-06-03 3−アルケニルセフェム化合物の製造方法

Country Status (8)

Country Link
US (1) US7893254B2 (ja)
EP (1) EP1752459B1 (ja)
JP (1) JP4046708B2 (ja)
KR (2) KR100882067B1 (ja)
CN (1) CN1964981B (ja)
ES (1) ES2632500T3 (ja)
HK (1) HK1105968A1 (ja)
WO (1) WO2005118595A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7459550B2 (en) * 2003-07-04 2008-12-02 Orchid Chemicals & Pharmaceuticals Ltd. Process for the preparation of Cefditoren
JP4064948B2 (ja) * 2004-06-04 2008-03-19 明治製菓株式会社 3−アルケニルセフェム化合物及び製造方法
JP4659074B2 (ja) * 2008-07-15 2011-03-30 日本化学工業株式会社 3−アルケニルセフェム化合物の製造方法
CN101735248A (zh) * 2008-11-07 2010-06-16 日本化学工业株式会社 3-链烯基头孢烯化合物的制造方法
KR101618874B1 (ko) * 2008-11-07 2016-05-09 니폰 가가쿠 고교 가부시키가이샤 3-알케닐세펨 화합물의 제조 방법
JPWO2011093294A1 (ja) * 2010-01-27 2013-06-06 日本化学工業株式会社 セファロスポリン誘導体の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61249989A (ja) * 1985-04-22 1986-11-07 ブリストル―マイヤーズ スクイブ カンパニー 7−アミノ−3−プロペニルセフアロスポラン酸及びそのエステル
JPH05211890A (ja) * 1990-12-21 1993-08-24 Antibioticos Spa 7−アミノセファロスポラン酸及び誘導体の酵素調製法
JPH07503474A (ja) * 1992-02-05 1995-04-13 バイオケミ・ゲゼルシヤフト・エム・ベー・ハー 3−セフェム−4−カルボン酸誘導体の精製方法
JPH07188250A (ja) * 1993-11-17 1995-07-25 Biochem Gmbh セファロスポリン異性体の分離
US6288223B1 (en) * 1997-06-24 2001-09-11 Meiji Seika Kaisha, Ltd. Process for the selective preparation of Z-isomers of 3-2(substituted vinyl)cephalosporins

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3979383A (en) * 1975-03-07 1976-09-07 Eli Lilly And Company Purification process for 7-aminocephalosporins
DE2620094A1 (de) * 1975-05-12 1976-12-02 Takeda Chemical Industries Ltd Cephalosporinverbindungen und verfahren zu ihrer herstellung
US4311698A (en) * 1979-03-12 1982-01-19 Haskell Theodore H Aminoacid derivatives of cephalosporin compounds
JPS5643288A (en) * 1979-09-18 1981-04-21 Meiji Seika Kaisha Ltd Cephalosporin derivative and its preparation
EP0081971A3 (en) * 1981-12-08 1984-09-26 Tanabe Seiyaku Co., Ltd. Novel cephalosporin compound and process for preparing the same
US4699979A (en) * 1985-04-22 1987-10-13 Bristol-Meyers Company 7-amino-3-propenylcephalosporanic acid and esters thereof
CN1012812B (zh) * 1986-01-31 1991-06-12 三菱化成株式会社 镓的回收方法
US5061371A (en) * 1990-04-06 1991-10-29 Nippon Rensui Co. Chromatographic separation apparatus
DE4026630A1 (de) * 1990-08-23 1992-02-27 Hoechst Ag Verfahren zur herstellung von kristalliner tacs
US5194371A (en) * 1991-07-31 1993-03-16 Bristol-Myers Squibb Company Production of pradimicin antibiotics
JPH0798752B2 (ja) * 1991-08-09 1995-10-25 株式会社ツムラ β−グルクロニダーゼ阻害剤
WO1997047209A1 (fr) * 1996-06-12 1997-12-18 Kyowa Hakko Kogyo Co., Ltd. Amelioration du metabolisme lipidique
JPH10101679A (ja) * 1996-10-02 1998-04-21 Otsuka Chem Co Ltd セファゾリンの製造法
JPH11171895A (ja) * 1997-12-11 1999-06-29 Ajinomoto Co Inc アスパルテームとアスパルテーム誘導体の分離精製方法
US5945542A (en) * 1998-02-26 1999-08-31 Robert L. Pollack Isolation of natural L-β-3-indolylalanine and enrichment of natural aliphatic amino acid mixtures with natural L-β-3-indolylalanine
JP2002522072A (ja) * 1998-08-12 2002-07-23 マキシジェン, インコーポレイテッド 工業用化学薬品の製造のためのモノオキシゲナーゼ遺伝子のdnaシャッフリング。
US6407091B1 (en) * 1999-04-15 2002-06-18 Research Corporation Technologies, Inc. β-lactamase inhibiting compounds
EP1316314A4 (en) * 2000-08-31 2004-12-29 Kitasato Inst PREPARATION OF A VACCINE CONTAINING FATTY ACID AS A COMPOUND
JP4401775B2 (ja) * 2001-10-25 2010-01-20 協和発酵バイオ株式会社 酸化型グルタチオンの結晶およびその製造方法
JP2005516972A (ja) * 2002-01-22 2005-06-09 ファイザー・インク 血栓疾患の治療のためのtafi−a阻害剤として使用される3−(イミダゾリル)−2−アミノプロピオン酸
WO2003064538A1 (fr) * 2002-02-01 2003-08-07 San-Ei Gen F.F.I., Inc. Couleur de mais rouge purifiee et procede de preparation de celle-ci
TWI344371B (en) * 2003-03-18 2011-07-01 Suntory Holdings Ltd Angiotensin-converting enzyme inhibitory peptides
US20080249163A1 (en) * 2003-10-01 2008-10-09 Kinya Takagaki Process For Producing Product Containing Proanthocyanidin in High Proportion
US7087423B2 (en) * 2003-12-23 2006-08-08 Dainippon Ink And Chemicals, Inc. Process for producing sporangia of Bacillus popilliae
JP4064948B2 (ja) * 2004-06-04 2008-03-19 明治製菓株式会社 3−アルケニルセフェム化合物及び製造方法
EP1693471A1 (en) * 2005-02-16 2006-08-23 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method for refining a liquor, comprising an aqueous solution of a carbohydrate
EP1870457A4 (en) * 2005-03-29 2012-02-22 Kyowa Hakko Bio Co Ltd DIPEPTIDE CRYSTAL AND METHOD FOR THE PRODUCTION THEREOF
TW200741005A (en) * 2005-08-10 2007-11-01 Kyowa Hakko Kogyo Kk A purification method of cytidine diphosphate
US20070161784A1 (en) * 2006-01-11 2007-07-12 Aminopath Labs, Llc Methods and products of amino acid isolation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61249989A (ja) * 1985-04-22 1986-11-07 ブリストル―マイヤーズ スクイブ カンパニー 7−アミノ−3−プロペニルセフアロスポラン酸及びそのエステル
JPH05211890A (ja) * 1990-12-21 1993-08-24 Antibioticos Spa 7−アミノセファロスポラン酸及び誘導体の酵素調製法
JPH07503474A (ja) * 1992-02-05 1995-04-13 バイオケミ・ゲゼルシヤフト・エム・ベー・ハー 3−セフェム−4−カルボン酸誘導体の精製方法
JPH07188250A (ja) * 1993-11-17 1995-07-25 Biochem Gmbh セファロスポリン異性体の分離
US6288223B1 (en) * 1997-06-24 2001-09-11 Meiji Seika Kaisha, Ltd. Process for the selective preparation of Z-isomers of 3-2(substituted vinyl)cephalosporins

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1752459A4 *

Also Published As

Publication number Publication date
EP1752459B1 (en) 2017-05-10
KR100870804B1 (ko) 2008-11-27
JP2005343854A (ja) 2005-12-15
EP1752459A1 (en) 2007-02-14
HK1105968A1 (en) 2008-02-29
KR100882067B1 (ko) 2009-02-10
US20080033166A1 (en) 2008-02-07
CN1964981A (zh) 2007-05-16
ES2632500T3 (es) 2017-09-13
US7893254B2 (en) 2011-02-22
JP4046708B2 (ja) 2008-02-13
KR20080086554A (ko) 2008-09-25
EP1752459A4 (en) 2008-01-02
KR20070030261A (ko) 2007-03-15
CN1964981B (zh) 2011-08-17

Similar Documents

Publication Publication Date Title
WO2005118595A1 (ja) 3−アルケニルセフェム化合物の製造方法
US8252952B2 (en) Optically active quaternary ammonium salt having axial asymmetry, and method for producing alpha-amino acid and derivative thereof by using the same
JPH10212248A (ja) 混合物中の三置換ホスフィン、アルシンおよび/またはスチビンの酸化物の量を減少させる方法
WO2006083012A1 (ja) ピリミジン化合物の製造方法
EP0222022B1 (en) Process for producing beta-lactam derivatives
JP2003513983A (ja) 高純度セフポドキシムプロキセチルの製造方法
EP2861598B1 (en) NEW SYNTHETIC ROUTE FOR THE PREPARATION OF ß-AMINOBUTYRYL SUBSTITUTED 5,6,7,8-TETRAHYDRO[1,4]DIAZOLO[4,3-a]PYRAZIN-7-YL COMPOUNDS
JP2011011976A (ja) プテリジン化合物及びl−ビオプテリンの製造方法
JP4705199B2 (ja) 3−アルケニルセフェム化合物の製造方法
JP3883352B2 (ja) 光学活性4,4,4−トリフルオロ−3−ヒドロキシブタン酸エステル誘導体の製造方法
JPH093043A (ja) ピロリジン誘導体の製造方法
Annunziata et al. A Novel Approach to the Synthesis of Precursors of Tricyclic β‐Lactam Antibiotics
KR101618874B1 (ko) 3-알케닐세펨 화합물의 제조 방법
JP4138911B2 (ja) β−ラクタム誘導体の製造法
JP4659074B2 (ja) 3−アルケニルセフェム化合物の製造方法
IE72500B1 (en) Process for the preparation of the dextrorotatory isomer of an isoindolinone derivative
JP2001213853A (ja) (±)−n−ホルミルロイシンの光学分割法
WO2008026527A1 (fr) Procédé de fabrication d'un dérivé de 3-cyanopyrrolidine ou d'un de ses sels
JP2001081083A (ja) N−炭化水素オキシカルボニルアラニルアミノチアゾール酢酸エステル誘導体の製造方法
JP2003026689A (ja) 光学活性3−ホスホグリセリン酸誘導体の製造方法
JP2000344740A (ja) プロリノール誘導体の製造方法
JP2002080472A (ja) アルキルオキシアミノフラノン誘導体の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
REEP Request for entry into the european phase

Ref document number: 2005751538

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005751538

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580017736.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11628248

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 7314/DELNP/2006

Country of ref document: IN

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077000096

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005751538

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020077000096

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 11628248

Country of ref document: US