WO2005114711A1 - 液浸露光用液体および液浸露光方法 - Google Patents

液浸露光用液体および液浸露光方法 Download PDF

Info

Publication number
WO2005114711A1
WO2005114711A1 PCT/JP2005/009128 JP2005009128W WO2005114711A1 WO 2005114711 A1 WO2005114711 A1 WO 2005114711A1 JP 2005009128 W JP2005009128 W JP 2005009128W WO 2005114711 A1 WO2005114711 A1 WO 2005114711A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid
carbon atoms
immersion exposure
formula
Prior art date
Application number
PCT/JP2005/009128
Other languages
English (en)
French (fr)
Inventor
Takashi Miyamatsu
Hiroaki Nemoto
Yong Wang
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corporation filed Critical Jsr Corporation
Priority to JP2006513712A priority Critical patent/JP3969457B2/ja
Priority to US10/588,263 priority patent/US7580111B2/en
Priority to EP05741390A priority patent/EP1748469A4/en
Publication of WO2005114711A1 publication Critical patent/WO2005114711A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means

Definitions

  • the present invention relates to a liquid for liquid immersion exposure and a liquid immersion exposure method, and more particularly, in addition to the liquid and the method, a method for producing the liquid for liquid immersion exposure, an evaluation method as a liquid for liquid immersion exposure, a novel liquid It relates to a composition.
  • a stepper type or step-and-scan method of transferring a reticle pattern as a photomask to each shot area on a wafer coated with a photoresist through a projection optical system Type projection exposure apparatus is used.
  • the theoretical limit value of the resolution of the projection optical system provided in the projection exposure apparatus becomes higher as the numerical aperture of the projection optical system for which the exposure wavelength used is shorter increases. Therefore, with the miniaturization of integrated circuits, the exposure wavelength which is the wavelength of radiation used in a projection exposure apparatus is shortened year by year, and the numerical aperture of the projection optical system is also increasing.
  • k2- ⁇ / ⁇ 2 (ii)
  • the exposure wavelength
  • kl the process coefficient
  • NA the numerical aperture of the projection optical system
  • the refractive index of air is 1. It is defined by ( ⁇ '). That is, in the case of obtaining the same resolution R, a larger focal depth ⁇ can be obtained by using radiation having a short wavelength.
  • a photoresist film is formed on the wafer surface to be exposed, and a pattern is transferred to the photoresist film.
  • the space in which the wafer is placed is filled with air or nitrogen having a refractive index of 1.
  • n the space between the wafer and the lens of the projection exposure apparatus is filled with a medium of refractive index n, it is reported that the theoretical limit values of resolution R and depth of focus ⁇ are expressed by the following formula. ing.
  • NA k 2 -n 1 / NA 2 (iv)
  • NA means a constant defined by the above equation ( ⁇ ') which is smaller than the numerical aperture of the actual projection optical system (correctly the numerical aperture of the projection optical system)
  • a method of projection exposure in which the effective wavelength of radiation for exposure in this way is shortened and a finer pattern can be transferred is called immersion exposure, and in the future lithography will be further refined, in particular lithography of several 10 nm units. Is considered to be an essential technology, and its projection exposure apparatus is also known!
  • the permeability to these wavelength light whose refractive index is larger than that of pure water Liquid is required.
  • the liquid is required to be a liquid that does not adversely affect the photoresist film, such as elution of additives from the photoresist film, dissolution of the resist film, deterioration of the pattern, and the like, and does not further erode the lens.
  • the introduction of polarized light as exposure light has been studied with the increase of NA by the introduction of immersion exposure, and the liquid does not bend the direction of polarized light due to the properties such as optical rotation other than the above requirements. It is expected to be a liquid.
  • Non-patent Document 2 As a method for achieving this object, for example, an attempt is made to dissolve various salts in water to increase the refractive index (Non-patent Document 2).
  • this approach is difficult to control the concentration of salt, and, like water, has problems such as development defects due to elution of water-soluble components and lens contamination.
  • fluorine compounds such as perfluorinated polyethers, which are under investigation for F exposure
  • Inert liquids for example at 193 nm, have a low refractive index and are therefore difficult to use at these wavelengths.
  • organic bromides and iodides conventionally known as immersion exposure liquids for microscopes because of their high refractive index at a wavelength of 589 nm have poor transparency at 193 nm, for example, as well as stability to a photoresist film. It is inferior to sex.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11-176727
  • Patent Document 2 International Publication WO 99 Z 49 504
  • Patent Document 3 Japanese Patent Application Laid-Open No. 10-303114
  • Non Patent Literature 1 NIKKEI MICRODEVICE April 2004 p77
  • Non-Patent Document 2 Proc. SPIE Vol. 5377 (2004) p. 273
  • the present invention has been made to address such a problem, and in the immersion exposure method, it has excellent permeability at the immersion exposure wavelength, which has a refractive index greater than that of pure water.
  • the liquid for immersion exposure have a high transmittance at the exposure wavelength that can be used for this purpose and that the refractive index is sufficiently high compared to water. It was a condition.
  • the refractive index in the ultraviolet region of a liquid depends on the polarizability of the molecules that make up the liquid.
  • introducing an element having a mobile n electron such as sulfur, bromine, iodine, etc. into the molecule, carbon double bond having relatively mobile ⁇ electron, carbon carbon triple bond It is generally effective to introduce aromatic rings.
  • compounds containing these elements and molecular structures generally have strong absorption in the far ultraviolet region such as 193 nm and can not be used for this purpose.
  • examples of compounds having small absorption in the far-ultraviolet region include unsubstituted hydrocarbon compounds, cyano-based hydrocarbon compounds, fluorinated hydrocarbon compounds, sulfonic acid ester compounds, and some alcohols.
  • the substance generally has a higher refractive index than water, its refractive index does not have much difference with current water.
  • the liquid containing an alicyclic hydrocarbon of the present invention or silicon and having a cyclic hydrocarbon skeleton When used as a liquid for immersion exposure, it prevents elution or dissolution of the photoresist film or its upper layer film component (especially hydrophilic component), and defects at the time of formation of the resist pattern It has been found that it solves the problems of lens erosion and the like, and can form an excellent pattern with higher resolution and depth of focus, and complete the present invention.
  • the liquid for immersion exposure according to the present invention is a liquid for use in an immersion exposure apparatus or an immersion exposure method in which exposure is performed via a liquid filled between a lens of a projection optical system and a substrate.
  • the liquid is liquid in a temperature range in which the immersion exposure apparatus operates, and is characterized by being an alicyclic hydrocarbon compound or a cyclic hydrocarbon compound containing a silicon atom in a ring structure.
  • alicyclic hydrocarbon compounds or cyclic hydrocarbon compounds containing a silicon atom in the ring structure have a radiation transmittance of 70% or more per 1 mm of optical path length at a wavelength of 193 nm, and a refractive index of D line of 1. It is characterized in that it is 4 or more, preferably 1. 4 to 2.0.
  • the immersion exposure method of the present invention is an immersion exposure method of illuminating a mask with an exposure beam and exposing the substrate with the exposure beam through a liquid filled between the lens of the projection optical system and the substrate.
  • the liquid is a liquid for immersion exposure described above.
  • an alicyclic hydrocarbon compound having a high refractive index at an exposure wavelength with high hydrophobicity or a cyclic hydrocarbon containing a silicon atom in a ring structure Since the compound is used, the elution or dissolution of the photoresist film or its upper layer film component, in particular, the hydrophilic component can be prevented, and problems of defects during formation of the resist pattern and lens erosion can be solved, and as a liquid for immersion exposure. Degradation of pattern shape when used It is possible to reduce the resolution and improve the depth of focus.
  • An alicyclic hydrocarbon compound which can be used as a liquid for liquid immersion exposure or a cyclic hydrocarbon compound containing a silicon atom in its ring structure is an alicyclic saturated hydrocarbon compound or a cyclic group containing a silicon atom in its ring structure. It is preferably a saturated hydrocarbon compound. If unsaturated bonds exist in the hydrocarbon compound, the exposure beam is likely to be absorbed by the immersion exposure liquid.
  • R 1 is an aliphatic hydrocarbon group having 1 to 10 carbon atoms, an aliphatic hydrocarbon group having 3 to 14 carbon atoms, a cyano group, a hydroxyl group, a fluorine atom, a carbon number 1 to 10 fluorine-substituted hydrocarbon group, Si (R 9 ) group, or —SO R 1Q group, nl and n 2 each independently represent 1 to 3
  • R 1 s Represents an integer
  • a represents an integer of 0 to 10
  • R 1 s may be the same or different
  • two or more R 1 s combine with each other to form a ring structure
  • R 9 and R 1Q represent an alkyl group having 1 to 10 carbon atoms.
  • Examples of the aliphatic hydrocarbon group having 1 to 10 carbon atoms for R 1 include a methyl group, an ethyl group and an n-propyl group.
  • Examples of two or more of R 1 's linked to each other to form a ring structure include a cyclopentyl group, a cyclohexyl group and the like.
  • a C3-C14 alicyclic hydrocarbon group a cyclohexyl group, norbornyl group, etc. are mentioned.
  • As a C1-C10 fluorine-substituted hydrocarbon group a trifluoromethyl group, a pentafluoroethyl group, etc. are mentioned.
  • alkyl group having 1 to 10 carbon atoms is an alkyl group having 1 to 10 carbon atoms, and the alkyl group is a methyl group, And the like.
  • R 1 As a substituent of R 1 , the viewpoint that it is excellent in the radiation transmittance of 193 nm, an aliphatic saturated hydrocarbon group having 1 to 10 carbon atoms, and an alicyclic group having 3 to 14 carbon atoms A saturated hydrocarbon group, a cyano group, a fluorine atom, and a fluorine-substituted saturated hydrocarbon group having 1 to 10 carbon atoms are preferable.
  • an aliphatic saturated hydrocarbon group having 1 to 10 carbon atoms and an aliphatic saturated hydrocarbon group having 3 to 14 carbon atoms have higher refractive index and less interaction with the resist. It is particularly preferable that the dissolution of the water-soluble component in the resist causes the formation of defects and the erosion of the lens material does not easily occur.
  • preferred nl, n2 is 1 to 3, particularly preferred nl, n2 is 1 or 2, and preferred a is 0, 1 or 2.
  • a is particularly 0, for example, it is particularly preferable because the refractive index at 193 nm is high.
  • Equation 18 Preferably represented by the formula (1 one 1) Among the compounds, lay preferred alicyclic saturated hydrocarbon compounds, compounds represented by the following formula (2 one ⁇ is exemplified as particularly preferable compounds among them Be
  • A may be substituted by a single bond or an alkyl group having 1 to 10 carbon atoms, and may be substituted by a methylene group or an alkyl group having 1 to 10 carbon atoms:
  • R 2 represents an alkylene group having 2 to 14 carbon atoms
  • R 2 represents an aliphatic hydrocarbon group having 1 to 10 carbon atoms, an alicyclic hydrocarbon group having 3 to 14 carbon atoms, a cyano group, a hydroxyl group, a fluorine atom
  • R 1 represents a fluorine-substituted hydrocarbon group having 1 to 10 carbon atoms, a Si (R 9 ) group, or an SOR 1Q group
  • R 7 represents a hydrogen atom or 1 carbon atom
  • alkyl group of 10 to 10 a cyano group, a hydroxyl group, a fluorine atom, a fluorine-substituted alkyl group having 1 to 10 carbon atoms, or a Si (R 9 ) group
  • n3 is an integer of 2 to 4
  • n4 is 1 to Table 3 integers
  • R 2 s when there are a plurality of R 2 or R 7 , R 2 s may be the same or different, and two or more R 2 s combine with each other to form a ring structure
  • R 9 and R 1Q each represent an alkyl group having 1 to 10 carbon atoms.
  • Examples of the methylene group which may be substituted by an alkyl group having 1 to 10 carbon atoms or an alkylene group having 2 to 14 carbon atoms in A include an ethylene group, an n-propylene group and the like.
  • R 2 is the same as R 1 in formula (1-1).
  • the substituent of R 2 is excellent in radiation transmittance at 193 nm
  • the viewpoint power is also preferably an aliphatic saturated hydrocarbon group having 1 to 10 carbon atoms, an alicyclic saturated hydrocarbon group having 3 to 14 carbon atoms, a cyano group, a fluorine atom, and a fluorine substituted saturated hydrocarbon group having 1 to 10 carbon atoms. I'm sorry.
  • an aliphatic saturated hydrocarbon group having 1 to 10 carbon atoms and an aliphatic saturated hydrocarbon group having 3 to 14 carbon atoms are preferable because of the same reasoning as R 1 in (1-1).
  • Preferred n3 is 2 to 4, particularly preferably 2 or 3, preferred n4 is 1 to 3, particularly preferably 1 or 2, and preferred b is 0 or 1 or 2.
  • b is preferably 0, for example, because the refractive index at 193 nm is high. Specific examples of preferred (1-2) are shown below.
  • examples thereof include tricycloheptylmethane 1, 1-tricyclopentylmethane (
  • R 3 and R 4 each represents an aliphatic hydrocarbon group having 1 to 10 carbon atoms, an alicyclic hydrocarbon group having 3 to 14 carbon atoms, a cyano group, a hydroxyl group, a fluorine atom, or 1 to 5 carbon atoms. 10 fluorine-substituted hydrocarbon group, Si (R 9 ) group, or —SO R 1Q group, and R 3 and R 4 are respectively
  • R 3 and R 4 may be the same or different and two or more of R 3 and R 4 may form a ring structure alone or in combination with each other.
  • n6 represent an integer of 1 to 3;
  • c and d represent an integer of 0 to 8;
  • R 9 and R 1Q each represent an alkyl group having 1 to 10 carbon atoms.
  • R 3 and R 4 are the same as R 1 in formula (11).
  • an aliphatic saturated hydrocarbon group having 1 to 10 carbon atoms, a carbon number of 3 to 3 carbon atoms from the viewpoint of excellent radiation transmittance of 193 nm an aliphatic saturated hydrocarbon group having 1 to 10 carbon atoms, a carbon number of 3 to 3 carbon atoms from the viewpoint of excellent radiation transmittance of 193 nm.
  • Fourteen alicyclic saturated hydrocarbon groups, cyano groups, fluorine atoms, and fluorine-substituted saturated hydrocarbon groups having 1 to 10 carbon atoms are preferable.
  • an aliphatic saturated hydrocarbon group having 1 to 10 carbon atoms and an aliphatic saturated hydrocarbon group having 3 to 14 carbon atoms are preferable because of the same reasoning as R 1 in (1-1).
  • Preferred n5 and n6 are 1 to 3, particularly preferably 1 or 2, c and d are 0 or 1 or 2 In particular, c and d are preferably both 0, for example, because the refractive index at 193 nm is high. Preferred examples of the compound (1-3) are shown below.
  • a preferable example of the formula (1-3) includes spiro [5. 5] undecane.
  • B represents a methylene group or an ethylene group
  • R 5 is an aliphatic hydrocarbon group having 1 to 10 carbon atoms, carbon 3 to 14 alicyclic hydrocarbon group, cyano group, hydroxyl group, fluorine atom, fluorine-substituted hydrocarbon group having 1 to 10 carbon atoms, Si (R 9 ) group,
  • R 3 or - represents SO R 1Q group, if R 5 is more present, R 5 are either the same or different
  • R 5 's may combine with each other to form a ring structure e represents an integer of 0 to 10, n 7 represents an integer of:! To 3, R 9 and R 1 Q Represents a carbon number of! To 10 alkyl groups.
  • R 5 is the same as R 1 in formula (1-1).
  • an aliphatic saturated hydrocarbon group having 1 to 10 carbon atoms and an alicyclic saturated group having 3 to 14 carbon atoms are preferable from the viewpoint of excellent radiation transmittance of 193 nm.
  • Charcoal A hydrogen fluoride group, a cyano group, a fluorine atom, and a fluorine-substituted saturated hydrocarbon group having 1 to 10 carbon atoms are preferable.
  • an aliphatic saturated hydrocarbon group having 1 to 10 carbon atoms and an aliphatic saturated hydrocarbon group having 3 to 14 carbon atoms are preferable for the same reason as R 1 in (1-1).
  • Preferred e is 0 or 1 or 2 and n7 is 1 to 3, particularly preferably 1 or 2.
  • n7 is 1 to 3, particularly preferably 1 or 2.
  • the case where e is 0 is preferable because the refractive index at, for example, 193 nm is high.
  • An example of the preferred compound (14) is shown below.
  • Preferred compounds in the formula (14) include compounds represented by the formulas (2-2) and (2-2 ′).
  • R 5 is the same as R 5 in the formula (1 4), preferably i is 0, 1 or 2.
  • Particularly preferable examples of the compounds (2-2) and (2-2 ′) which are particularly preferable for the same reason as a in (1-1) that i is 0 are the above-mentioned (1 4 1) to (1 4).
  • the compound of 6) is mentioned.
  • a particularly preferred embodiment includes exo-tetrahydrodicyclopentadiene.
  • R ° is an aliphatic hydrocarbon group having 1 to 10 carbon atoms, an aliphatic hydrocarbon group having 3 to 14 carbon atoms, a cyano group, a hydroxyl group, a fluorine atom, a fluorine having 1 to 10 carbon atoms
  • R 6 When present, the R 6 may be the same or different.
  • R 9 and R 1Q represent an alkyl group having 1 to 10 carbon atoms.
  • R 6 is the same as R 1 in formula (1-1).
  • the radiation transmittance of 193 nm is excellent! /
  • the viewpoint power is also an aliphatic saturated hydrocarbon group having 1 to 10 carbon atoms, a carbon number 3 to 14 alicyclic saturated hydrocarbon groups, cyano groups, fluorine atoms, and fluorine-substituted saturated hydrocarbon groups having 1 to 10 carbon atoms are preferable.
  • an aliphatic saturated hydrocarbon group having 1 to 10 carbon atoms and an aliphatic saturated hydrocarbon group having 3 to 14 carbon atoms are preferred for the same reason as R 1 in formula (11). .
  • Preferred f is 1 or 2.
  • the position of the substituent is preferably bridgehead position.
  • Preferred compounds in the formula (15) include, for example, compounds represented by the following formulae.
  • R 8 and R 8 ′ each represent an aliphatic hydrocarbon group having 1 to 10 carbon atoms, an alicyclic hydrocarbon group having 3 to 14 carbon atoms, a cyano group, a hydroxyl group, a fluorine atom, or a carbon number 1 to 10 fluorine-substituted hydrocarbon group, Si (R 9 ) group, or —SO R 1Q group is represented, and g and h are each 0 to
  • N8 and n9 each represents an integer of 1 to 3; R 9 and R 1Q each represent an alkyl group having 1 to 10 carbon atoms.
  • R 8 and R 8 ′ are identical to R 1 in formula (1 1).
  • the substituent of R 8 and R 8 ′ in the formula (1-6) is an aliphatic saturated hydrocarbon group having 1 to 10 carbon atoms and 3 to 14 carbon atoms from the viewpoint of excellent radiation transmittance of 193 nm.
  • An alicyclic saturated hydrocarbon group, a cyano group, a fluorine atom, and a fluorine-substituted saturated hydrocarbon group having 1 to 10 carbon atoms are preferable.
  • aliphatic saturated hydrocarbon groups having 1 to 10 carbon atoms and aliphatic saturated hydrocarbon groups having 3 to 14 carbon atoms are preferable for the same reason as R 1 in formula (11).
  • Preferred g and h are 0, 1 or 2
  • n8 and n9 are 1 to 3, particularly preferably 1 Moth
  • R 11 and R 12 each represent an aliphatic hydrocarbon group having 1 to 10 carbon atoms, an alicyclic hydrocarbon group having 3 to 14 carbon atoms, a cyano group, a hydroxyl group, a fluorine atom, 1 carbon atom -10 fluorine-substituted hydrocarbon group, —Si (R 9 ) group, or — SOR 1Q group, nlO and nil are each
  • R represents an integer of 1 to 3
  • j and k each represent an integer of 0 to 6
  • R 11 and R 12 may be the same or different.
  • Two or more R 11 may be bonded to each other to form a ring structure, or two or more R 12 may be bonded to each other to form a ring structure.
  • X is a single bond, carbon number divalent aliphatic hydrocarbon group having 2 to 10, a divalent alicyclic hydrocarbon group having 3-14 carbon atoms
  • R 9 and R 1Q represents an alkyl group having 1 to 10 carbon atoms.
  • Aliphatic hydrocarbon group having 1 to 10 carbon atoms of R 11 and R 12 and alicyclic carbonization having 3 to 14 carbon atoms A hydrogen group, a fluorine-substituted hydrocarbon group having 1 to 10 carbon atoms, a Si (R 9 ) group, or an SO R 1Q group
  • 3 3 is the same as the aliphatic hydrocarbon group, alicyclic hydrocarbon group, fluorine-substituted hydrocarbon group, —Si (R 9 ) group, and —SO R 1Q group in formula ( 11 ).
  • the substituent of R 11 and R 12 is an aliphatic saturated hydrocarbon group having 1 to 10 carbon atoms, 3 to 3 carbon atoms from the viewpoint of excellent radiation transmittance of 193 nm.
  • aliphatic saturated hydrocarbon groups, cyano groups, fluorine atoms, and fluorine-substituted saturated hydrocarbon groups having 1 to 10 carbon atoms are preferable.
  • examples of the divalent aliphatic hydrocarbon group having 2 to 10 carbon atoms of X include ethylene group and propylene group, and as the divalent alicyclic hydrocarbon group having 3 to 14 carbon atoms, cyclo Examples thereof include pentane and divalent groups derived from cyclohexane.
  • X is preferably a single bond.
  • Preferred examples of the compound (1-7) are shown below.
  • R ′ ′ represents an alkyl group having 2 or more carbon atoms, an alicyclic hydrocarbon group having 3 or more carbon atoms, a cyano group, a hydroxyl group, a fluorine atom, or a fluorine-substituted hydrocarbon having 2 to 10 carbon atoms Group, -Si (R 9 ) group, or-SO R 1Q group is represented, p is an integer of 1 to 6, and R 13 is present in plural numbers
  • R 13 s may be the same or different, two or more R 13 s may be bonded to each other to form a ring structure.
  • R 9 and R 1 Q may be alkyl having 1 to 10 carbon atoms Represents a group.
  • Preferred R 13 is an alkyl group having 2 to 10 carbon atoms and an alicyclic hydrocarbon group having 3 to 14 carbon atoms, preferred p is 1 or 2 and particularly preferred p is 1.
  • alkyl group having 2 or more carbon atoms examples include a methyl group, an ethyl group, an n-propyl group and the like, which are preferably an alkyl group having 2 to 10 carbon atoms.
  • alkyl group having 3 or more carbon atoms examples include a cyclohexyl group, a norbornyl group and the like which are preferably an alicyclic hydrocarbon group having 3 to 14 carbon atoms.
  • R 14 is an aliphatic hydrocarbon group having 1 to 10 carbon atoms, an aliphatic hydrocarbon group having 3 to 14 carbon atoms, a cyano group, a hydroxyl group, a fluorine atom, carbon 1 to 10 fluorine-substituted hydrocarbon group, Si (R 9 ) group, or —SO R 1Q group, nl 2 is an integer of 1 to 3, q is 0 to
  • R 14 represents an integer of 9, and when there are a plurality of R 14 , R 14 may be the same or different.
  • R 9 and R 1Q each represent an alkyl group having 1 to 10 carbon atoms.
  • R ′ ′ is the same as R 1 in the formula (1-1). Further, preferable R ′ ′ is the same as that of R 1 is there. Preferred q is the same as a.
  • the compound has a chemical structure represented by the formulas (11) and (14), and these compounds are unsubstituted.
  • the compound is a compound substituted with an aliphatic saturated hydrocarbon group having 1 to 10 carbon atoms and an alicyclic saturated hydrocarbon group having 3 to 14 carbon atoms, and among these, compounds which are unsubstituted are particularly preferable.
  • the above compound is liquid at a temperature at which the immersion exposure apparatus operates, and has a refractive index higher than that of pure water, which is preferable because of the above-mentioned formulas (iii) and (iv). ,.
  • the refractive index is a value between water and the resist film (or upper film for immersion) before exposure, and a higher value compared to water at 25 ° C.
  • the refractive index at a wavelength of 193 mm is in the range of 1.45-1.8, preferably 1. 6 to 1.8
  • the refractive index power at a wavelength of 248 nm S1. Is in the range of 1.5 to 1.65.
  • the refractive index at D line is 1.4 or more, preferably 1.4 to 2.0, and more preferably 1.40 to L 65.
  • the composite is preferably a compound whose refractive index is not easily affected by temperature, pressure and the like.
  • the temperature changes during use due to the heat generated by the light absorption of the lens and resist material. It is preferable that the temperature dependence of the refractive index is low.
  • the absolute value is preferably the rate of change dnZdT with temperature (T) of the refractive Oriritsu (n), 5.
  • the specific heat of the present composite has a large value.
  • the specific heat has a value of preferably not less than 0.1 calZg '° C. 30 cal / g- ° C or higher.
  • the refractive index is not easily affected by chromatic aberration. It is preferable that the wavelength dependency of the refractive index around the exposure wavelength is small.
  • the other properties include viscosity with high permeability in the far ultraviolet region, solubility of gas such as oxygen and nitrogen, contact angle with lens and resist (or resist upper layer film), and surface tension. It is preferable that the flash point etc. be in the range described below, and that the chemical interaction with the lens and resist material is small. Hereinafter, these characteristics will be specifically described.
  • the radiation transmittance at 193 nm is particularly preferably 90% or more, more preferably 95% or more, at 25 ° C., preferably having a transmittance of 70% or more at an optical path length of 1 mm.
  • the transmittance is less than 70%, heat generation due to heat energy generated by light absorption of the liquid is likely to occur, and defocusing and distortion of the optical image due to refractive index fluctuation due to temperature rise are likely to occur.
  • the absorption of the liquid reduces the amount of light reaching the resist film, which causes a significant decrease in throughput.
  • the viscosity is preferably 0.5 Pa's or less at 20 ° C, particularly when used in an environment where the gap between the wafer and the lens material is 1 mm or less, preferably 0. OlPa's or less, particularly preferably 0. 005 Pa's or less. If the viscosity exceeds 0.5 Pa's, it is difficult for the liquid to penetrate into the gap between the resist film (or the upper film for immersion) and the lens material, or as a method for liquid supply of immersion, localized immersion As the method and exposure method, by moving the stage on which the wafer is mounted, sufficient scan speed can not be obtained when using the step-and-scan method of exposing the entire surface of the wafer, resulting in a significant decrease in throughput and temperature due to friction.
  • the rise tends to be apt and it is susceptible to changes in optical characteristics due to temperature changes.
  • the viscosity is preferably 0. OlPa's or less for the former reason.
  • the distance of the gap Low By reducing the permeability, it is possible to increase the liquid permeability and to be less susceptible to the absorption of the liquid, which is preferable.
  • the solubility of the gas in the liquid according to the present invention is determined by the molar fraction of the gas in the liquid when the partial pressure of oxygen and nitrogen is 25 ° C. and the partial pressure is 1 atm (atm). preferably 0. 5 X 10- 4 ⁇ 70 X 10- 4, further preferably 2. a 5 X 10- 4 ⁇ 50 X 10- 4 , the solubility of these air body 0. 5 X 10- 4 or less.
  • the nanobubbles generated by the resist is less likely to disappear, the light scattering by the bubbles tends to cause defects in the resist during patterning.
  • 70 X 10- 4 or more more susceptible to changes in the optical properties due to absorption of the gas.
  • the contact angle between the liquid of the present invention and the resist (or upper layer film for immersion) is preferably 20 ° to 90 °, more preferably 50 ° to 80 °, and quartz glass Such as CaF
  • the contact angle with the lens material is preferably 90 ° or less, preferably 80 ° or less. If the contact angle between the liquid of the present invention and the resist (or immersion upper layer film) before exposure is 20 ° or less, the liquid will not penetrate into the gap and it will be difficult for the liquid to penetrate. When a combination of the step and scan method is used, the liquid is likely to scatter in the membrane. On the other hand, when the contact angle between the liquid of the present invention and the resist (or immersion upper layer film) before exposure becomes 90 ° or more, gas is easily taken in at the interface of the resist (or upper layer film) with irregularities, and bubbles are generated. It becomes easy to do. Such a phenomenon is described in Immersion Lithography Modeling 2003 Year-End Report (International SEMATECH). Also, when the contact angle between the liquid of the present invention and the lens material exceeds 90 °, bubbles tend to form between the lens surface and the liquid.
  • the liquid of the present invention has high surface tension.
  • the surface tension at 20 ° C. is preferably 5 dynZ cm to 90 dyn Z cm, more preferably 20 dyn / cm to 80 dvn Z cm. If the contact angle between the liquid of the present invention and the resist surface is not suitable, the contact angle can be improved by using a suitable immersion upper film. In particular, since the liquid of the present invention has low polarity, the contact angle can be increased by using a highly polar upper film.
  • Specific liquid requirements include the change in absorbance per lcm after immersion for 180 seconds in the immersion experiment due to “the change in absorbance at the time of contact with the resist” in the evaluation method described later (absorbance after immersion-absorbance before immersion) Is preferably not more than 0.05, preferably not more than 0.02, and more preferably not more than 0.005.
  • the liquid of the present invention is preferably a compound having a low risk of explosion, ignition, ignition and the like in the use environment.
  • the flash point is preferably 25 ° C. or more, more preferably 50 ° C. or more
  • the ignition point is preferably 180 ° C. or more, more preferably 230 ° C. or more.
  • the vapor pressure at 25 ° C. is preferably 50 mmHg or less, more preferably 5 mmHg or less.
  • the harmfulness to human body and environment is low, and specifically, the harmfulness to human body is preferably a compound having no acute toxicity, such as carcinogenicity, mutagenicity, teratogenicity and reproductive toxicity.
  • a liquid in which the allowable concentration is preferably 30 ppm or more, more preferably 70 ppm or more, and the result of the Ames test is negative is preferable.
  • compounds that are not persistent or bioaccumulative are preferred.
  • the liquid of the present invention preferably has a purity of 95.0% by weight or more as measured by gas chromatography, particularly preferably 99.0% by weight or more, and still more preferably 9 9. 0% by weight. It is 9% by weight or more.
  • the ratio of compounds containing alefin with high absorbance, compounds containing an aromatic ring, compounds containing sulfur (sulfido, sulfoxide, sulfone structure), halogen, carbonyl group, ether group, etc. at an exposure wavelength of 193 nm, etc. Is particularly preferably less than 0.01% by weight, preferably less than 0.11% by weight.
  • the metal or metal salt content is low.
  • the metal content is 10 Oppb or less, Preferably it is lOppb or less, more preferably 1. Oppb or less. If the metal content exceeds 1 OOppb, metal ions or metal components may adversely affect the resist film etc. and contaminate the wafer.
  • the metal examples include at least one metal selected from Li, Na, K, Mg, Cu, Ca, Al, Fe, Zn and N. These metals can be measured by atomic absorption spectrometry.
  • the oxygen concentration in the present liquid is 100 ⁇ (100 / ⁇ gZml) or less, preferably 10 ppm or less, more preferably 2 ppm or less. In addition, particularly at the time of exposure, it is preferably within 1 ppm, more preferably within 1 ppb. If the oxygen concentration exceeds 100 ppm, the permeability tends to decrease due to oxidation reaction due to dissolved oxygen.
  • the liquid when the liquid is exposed to polarized light in particular, it is preferable that the liquid does not have an optical rotatory property, since the optical rotatory effect causes a decrease in optical contrast.
  • the compound constituting the liquid is a non-optically active (non-optically active;) compound having optical activity (optically active)
  • the compound contains an equal amount of optical isomers (is present as a racemate) and does not have optical activity as a whole liquid.
  • the compounds of the present invention can be produced as commercially available compounds or raw materials available by various existing synthetic methods.
  • the method for producing the present compound V will be described by way of specific examples.
  • a dry coke oil having a coal coke oven power a petroleum-based catalytic reformer oil and a fluid catalytic cracking oil, and further, a naphtha produced as a by-product of ethylene.
  • naphthalene or a naphthalene derivative contained in a cracked oil etc. by using a suitable catalyst V, and subjecting it to nuclear hydrogenation by catalytic hydrogenation.
  • These compounds contain nitrogen-containing compounds such as sulfur-containing compounds and pyridine and derivatives thereof. Naphthalene and naphthalene derivatives as raw materials can be obtained by force separation and purification of these mixtures.
  • the content of the sulfur-containing compound is preferably 100 ppm or less, more preferably 50 ppm or less.
  • the sulfur-containing compound becomes a catalyst poison in catalytic hydrogenation and causes the progress of the nuclear hydrogenation reaction, and the sulfur-containing compound in the compound (2-1)
  • the transmittance of the liquid of the present invention at an exposure wavelength such as 193 nm may be reduced.
  • the purity of the naphthalene as a raw material is high, which is preferable.
  • the purity is 99.0% or more, and the particularly preferable purity of naphthalene is 99.9% or more.
  • the above problems occur when the content of sulfur compound or the like is high as an impurity, and when other naphthalene derivatives, aromatic compounds and their derivatives are contained as an impurity, these impurities are hydrogenated. It produces difficult-to-separate hydrocarbon compounds, which makes it difficult to control the purity of decalin.
  • the power of noble metal catalysts such as nickel, platinum, rhodium, ruthenium, iridium, palladium and the like, such as cobalt, molybdenum, nickel molybdenum and nickel tungsten Sulfuric acid can be used.
  • nickel catalysts are preferable in terms of their catalytic activity and cost.
  • a gas phase method without using a solvent and a liquid phase method in which a raw material is dissolved in an appropriate solvent and reacted can be used.
  • a solvent and a liquid phase method in which a raw material is dissolved in an appropriate solvent and reacted can be used.
  • nickel, platinum and the like are preferable as the catalyst.
  • the target product is obtained under mild conditions by a method in which the intermediate tetralinker is also naphthalene removed using a nickel or platinum, noradium-based catalyst by the method described in, for example, patent document (Japanese Patent Laid-Open No. 2003-160515). It can also be done.
  • the reaction conversion rate is preferably 90% or more, more preferably 99% or more.
  • purification methods such as precision distillation, water washing, concentrated sulfuric acid washing, filtration, crystallization and the like and combinations thereof can be used.
  • precision distillation is preferable because it is effective for removing both non-volatile catalyst-derived metals and other metals and components derived from raw materials.
  • tetrahydrodicyclopentadiene is an optical lens, for an optical film
  • Tetrahydrodicyclopentadiene obtained by hydrogenating dicyclopentadiene (exo, endo mixture) or endodicyclopentadiene, which is known to be useful as a raw material monomer for butter oil, under appropriate conditions. It can be obtained by purifying gen by a method such as distillation.
  • dicyclopentadiene is also obtained selectively in the exo isomer. In the case where the mixture of dicyclopentadiene isomers is isomerized using an appropriate catalyst, the exo isomer is selectively obtained, and the above-mentioned water is obtained.
  • the reaction is carried out by the addition reaction, or by reacting endo (endo, exo mixed) tetrahydrodicyclopentadiene obtained by hydrogenation of endo (endo, exo mixed) dicyclopentadiene with an appropriate catalyst, it is exotetrahydrodialkyl.
  • Cyclopentadiene can be obtained selectively.
  • the above dicyclopentadiene is generally a so-called C fraction in the thermal decomposition product of naphtha
  • This dicyclopentadiene is derived, for example, from a C fraction such as 5-isopropyl norbornene.
  • Hydrocarbon components are contained as impurities, but if these compounds are contained, hydrocarbon products derived from these impurities remain after hydrogenation and isomerization, and the final product tetrahydrodicyclopenta Make purification of gen difficult. Therefore, it is preferable to use one that has been purified by a method such as purification in advance.
  • the purity in this case is preferably 95% by weight or more, more preferably 97% by weight or more.
  • the above dicyclopentadiene preferably has, for example, a small content of the sulfur-containing component that becomes a catalyst poison for hydrogenation reaction.
  • the sulfur-containing component present in dicyclopentadiene is preferably It is 500 ppb or less, more preferably 50 ppb or less. If the amount of the sulfur-containing component is 500 ppb, the hydrogenation reaction in the subsequent step tends to be inhibited.
  • the sulfur-containing component means, for example, the total amount of sulfur elements present in the form of inorganic or organic compounds such as free sulfur, elemental sulfur, hydrogen sulfide, mercaptos, disulfides, thiophen, etc. It can be analyzed by gas chromatography etc. equipped with an optical emission detector (SCD).
  • SCD optical emission detector
  • the sulfur fraction can be removed, for example, by the method of JP-A-2001-181217.
  • the hydrogenation of the dicyclopentadiene can be carried out using a known carbon-carbon double bond hydrogenation catalyst. The hydrogenation can be carried out, for example, by the methods disclosed in JP-A-60-209536 and JP-A-2004-123762.
  • tetrahydrodicyclopentadiene can be obtained by distillation after the addition, for example, in order to selectively obtain an exo form
  • a method of isomerizing using various Lewis acids is known.
  • the isomerization can be carried out, for example, by a method using halogen aluminum, sulfuric acid or the like as a Lewis acid (Japanese Patent Laid-Open No. 2002-255866).
  • adamantane is formed as a by-product, but when a large amount of adamantane is present, the transmittance at 193 nm decreases, so the amount of adamantane coexisting in the final liquid is 0.
  • the content should be 5% by weight or less, preferably 0.1% by weight, more preferably 0.05% by weight or less.
  • the adamantane can be removed by appropriately setting conditions of the above-mentioned isomeric reaction or by various known purification methods.
  • the values of oxygen solubility and nitrogen solubility are values in the case of 1 atm partial pressure, and 1 is ppm.
  • the absorbance at 193 nm is small and suitable.
  • the absorbance in this wavelength range is susceptible to trace impurities.
  • the presence of a base component in these liquids significantly affects the resist profile even if the amount is very small.
  • These impurities can be removed by purifying the liquid by an appropriate method.
  • saturated hydrocarbon compounds having the structures of (1-1) to (15) and (17) to (19) such as concentrated sulfuric acid washing, water washing, alkali washing, silica gel column purification, precision It can be purified by distillation, permanganate treatment under alkaline conditions and combinations thereof.
  • the concentrated sulfuric acid washing is repeated until the concentrated sulfuric acid is not colored, and then the concentrated sulfuric acid is removed by washing with water and alkali washing, and further, after washing with water and drying, precision distillation is performed. It can be purified more suitably.
  • impurities can be removed more efficiently by treating with permanganate under alkaline conditions prior to the pre-treatment.
  • concentrated sulfuric acid washing is effective for removing aromatic compounds having large absorption at 193 nm and compounds having carbon-carbon unsaturated bonds, and is also effective for removing trace basic compounds, and a preferred purification method It is.
  • the treatment is preferably carried out by selecting the optimum stirring method, temperature range, treatment time and treatment number depending on the compound to be purified.
  • the preferred treatment temperature is 20 ° C to 40 ° C, particularly preferred, and the treatment temperature is 10 ° C to 20 ° C.
  • the acidic impurity derived from concentrated sulfuric acid remaining in the liquid of the present invention after treatment when purification is carried out by the above concentrated sulfuric acid treatment is preferable to carry out an alkali washing, a pure water washing and a drying treatment for water removal.
  • the precision distillation is preferably carried out in a distillation column having the number of theoretical plates more than the number of theoretical plates necessary for its separation depending on the boiling point difference between the impurities to be removed and the liquid of the present invention.
  • the number of theoretical plates is preferably 10 to 100 in terms of impurity removal, but if the number of theoretical plates is increased, the equipment and manufacturing cost become high. Therefore, in combination with other purification methods, purification with a lower number of plates is possible. Is also possible.
  • the particularly preferred number of theoretical plates is 30 to 100.
  • distillation temperature is high, the effect of reducing absorption tends to be small due to the acid reaction of the compound and the like.
  • the preferred distillation temperature is 30 ° C to 120 ° C, and the particularly preferred distillation temperature is 30 ° C to 80 ° C.
  • the above purification treatment is preferably performed under an inert gas atmosphere such as nitrogen or argon.
  • an inert gas atmosphere such as nitrogen or argon.
  • the oxygen concentration in the inert gas and the organic component concentration be low.
  • the preferred oxygen concentration is lOOppm or less, more preferably lOppm or less, and particularly preferably lppm or less.
  • treatment with permanganate is particularly effective for removing non-aromatic carbon-carbon unsaturated bond-containing compounds, but for compounds having tertiary carbon, oxidation reaction of tertiary carbon is likely to occur. As a result, it is suitable for the purification of base compounds containing no tertiary carbon.
  • the refractive index was measured in the ultraviolet region for cis, trans decalin and, after purification, for trans decalin, dicyclohexyl, isopropoxyhexane, cyclooctane, cycloheptane, and acetylentrinole.
  • the measurement apparatus was a Golometer spectrophotometer Model 1 UV-VIS-IR manufactured by MOLLER-WEDEL, and the measurement method was measured at a measurement temperature of 25 ° C. by the minimum deflection method.
  • Measurement method A has an oxygen concentration of 0.5 pp Perform sampling of liquid in a 10 mm cell with a lid made of polytetrafluoroethylene in a glove box under a nitrogen atmosphere controlled to less than m! /, using JASCO i ⁇ ASCO -V-550 Then, using the above cell, air was measured as a reference.
  • the values in the table are values calculated by correcting the cell reflections and converting them to an optical path length of 1 mm.
  • Measurement method B is in a quartz cell with a lid made of polytetrafluoroethylene in a nitrogen atmosphere glove box in which the oxygen concentration is controlled to 0.5 ppm or less (for measurement: 50 mm in optical path length, reference: 10 mm in optical path length). Sampling of the liquid. Using the above cell, measurement was carried out by using a sample of 50 mm in optical path length and a cell of 10 mm in optical path length as a reference by SiiASCO-V-550 of Japan Spectroscopic Company. The value of this measurement was taken as the absorbance per 40 mm of optical path length. The values in the table are based on this value and converted to the value per 1 mm of optical path length.
  • trans-decalin (Tokyo Chemical Products) 10 or less--1.48 after purification trans-decalin ( 1 ) 93.4 1.63 1.48 after purification trans-decalin (2) 96.8-1.63 1.48 after purification trans-decalin (3) 99.5 1.63 1.48 exo-hydride Chlorhenen 10 or less--1.49 after purification exo-tetrahydrodicyclopentadiene (1) 87.7 1.65 1.49 after purification exo-tetrahydrodicyclopentadiene (2) 97.5 1.65 1.49 after purification exo-tetrahydrodicyclopentadiene (3) 99.6 1.65 1.49 After purification Dicyclo hexyl 97.3-1.64 1.48 After purification Isopropyl cyclohexane 76.3-1.59 1.44 After purification Cyclooctane 70.2 1.46 After purification Cyclopentane 71 1.44 facetydryl 91.8 1.44 1.34 Pure water 94 1.44 1.34
  • the compound of the present invention is a low polar compound, the solubility of gases such as oxygen and nitrogen is high. For this reason, absorption of these gases or immediately after standing in, for example, the atmosphere, absorption of dissolved oxygen or absorption of ozone generated by light excitation by light, or absorption of dissolved oxygen For example, a decrease in transmittance at 193 nm tends to occur due to the reaction or the like. For this reason, these compounds are subjected to a degassing treatment, and it is preferable to store them in an inert, low-absorbing gas such as nitrogen or argon. Specifically, it is preferable to treat so that the oxygen concentration in the storage liquid is preferably 100 ppm or less, more preferably 100 ppm or less. Also, especially if you can not deoxidize before exposure, The level is preferably 1 ppm or less, more preferably 10 ppb or less.
  • the liquid for immersion exposure according to the present invention is preferably stored in an inert gas as described above, but the container in that case may be a container component or a component of the lid of the container (for example, compounded in plastic). Storage in containers without elution of plasticizers etc.).
  • preferred containers are, for example, glass, metal (eg, SUS), ceramics, PTFE (polyfluorofluoroethylene), PFEP (perfluoroethylene propene copolymer), ECTFE (ethylene-chlorotrifluoroethylene).
  • PTFEZPDD polytetrafluoroethylene-perfluorodioxole copolymer
  • PFA perfluoroalkoxysilane
  • ETFE ethylene-tetrafluoroethylene copolymer
  • PVDF polyvinylidene
  • fluorine resin such as fluoride
  • PVF polybutyl fluoride
  • PCTFE polychlorotrifluoride
  • lids include, for example, lids made of polyethylene and containing no plasticizer, glass, metal (eg, SUS), ceramic, PTFE (polytetrafluorethylene), PFEP Perfluoroethylene propene copolymer), ECTFE (Ethylene-monochlorotrifluoroethylene copolymer), PTFEZPDD (Poly-tetra-fluoro-ethylene-fluoro-rhodiixol copolymer), PFA (Perfluoroalkoxy alkane) Lid which is a fluorine resin such as ET FE (ethylene-tetrafluoroethylene copolymer), PVDF (poly-vinyl fluoride), PVF (polyfluoride), PCTFE (poly-chloro-trifluorethylene) Can be mentioned.
  • PTFE polytetrafluorethylene
  • ECTFE Ethylene-monochlorotrifluoroethylene cop
  • the piping used to transfer the liquid to the exposure device glass, metal, porcelain and the like are preferably used as the piping which does not preferably have the same elution as described above.
  • the liquid for immersion exposure according to the present invention causes fine particles and bubbles (micro bubbles) to cause defects in the pattern when it is used for immersion exposure, it is necessary to remove the dissolved gas that causes fine particles and bubbles. It is preferable to make it before exposure.
  • a method of filtering using a suitable filter may be mentioned.
  • a filter using a material is preferable because the removal efficiency of fine particles is high and the change in absorption at the exposure wavelength due to elution at the time of filtration is not observed.
  • Preferred filter materials are, for example, glass, metals (for example, SUS, silver) and metal oxides, PTFE (polytetrafluoroethylene), PFEP (perfluoroethylenepropene copolymer), ECTFE (ethylene Close-up trifluoroethylene copolymer), PTFEZPDD (polytetrafluoroethylene-perfluorodioxole copolymer), PFA (perfluoroalkoxy alkane), ETFE (ethylene-tetrafluoroethylene copolymer), PVDF (polyvinylidene fluoride) And fluorine-containing resins such as PVF (polybule fluoride) and PCTFE (polychlorotrifluoroethylene).
  • the material of the peripheral part such as the housing, core, support, plug, etc. of the filter is also preferably selected from the above-mentioned preferable materials of the filter.
  • a vacuum degassing method for example, a vacuum degassing method, an ultrasonic degassing method, a degassing method using a gas permeable membrane, a degassing method using various degassers, etc. may be mentioned.
  • the liquid for immersion exposure according to the present invention is a part of an optical system at the time of exposure, so it is preferable to use it in an environment which is not affected by changes in optical properties such as the refractive index of the liquid.
  • the temperature is preferably controlled within the range of ⁇ 0. c, more preferably ⁇ 0. 0 e.
  • immersion exposure using the liquid of the present invention can also be performed in the atmosphere, but as described above, the absorption characteristics at the exposure wavelength where the solubility of oxygen in the liquid of the present invention is high are affected. It is preferable to expose in an inert gas without causing a chemical reaction with the liquid absorbing less at the exposure wavelength.
  • the inert gas include nitrogen, argon and the like.
  • the concentration of the organic component in the use atmosphere it is preferable to control the concentration of the organic component in the use atmosphere to a certain level or less.
  • a method of managing the concentration of the organic component in addition to using an inert gas atmosphere of high purity, a filter for adsorbing the organic component, a method using various gas purification pipes (apparatus) and the like can be mentioned.
  • concentration control periodically analyze the surrounding atmosphere
  • various analytical methods using, for example, gas chromatography can be used for this purpose.
  • the mooving pool method, the simiming stage method, and the Local Fill method are known, but the special seminar immersion exposure technology (May 27, 2004 (Hold on the day) See the seminar text), Localized immersion method is preferred because it requires less liquid for immersion exposure U ,.
  • lens materials include, for example, a fluorine salt of a high-period alkaline earth metal M and a salt represented by the general formula Ca M F, Ca
  • the liquid of the present invention can be reused after use because the extraction of resist components is extremely small.
  • the liquid of the present invention can be reused without purification. It is preferable to recycle after performing the treatment of It is also preferable to perform these processes in-line in order to simplify the process.
  • the physical properties of the liquid change due to the effect of the accumulated impurities if the number of times of use exceeds a certain number of times. As it is expected, it is preferable to carry out recovery and purification after a certain number of uses.
  • purification method examples include methods such as water washing, acid washing, alkali washing, precision distillation, purification using a suitable filter (packed column), filtration and the like, and the above-described purification method of the liquid of the present invention. Or a combination of these purification methods. Among them, purification is preferably carried out by washing with water, alkali washing, acid washing, precision distillation or a combination of these purification methods.
  • the above-mentioned alkaline cleaning is the removal of the acid generated by the exposure eluted in the liquid of the present invention
  • the pickling Cleaning is for removal of basic components in the resist eluted in the liquid of the present invention
  • water washing treatment is for elution of photoacid generator, basic additive, acid generated at the time of exposure, etc. in the resist film eluted in the liquid of the present invention. It is effective for the removal of objects.
  • Precision distillation is effective not only for removing low-volatile compounds among the above additives, but also for removing hydrophobic components generated due to decomposition of protective groups in the resist during exposure.
  • the immersion exposure liquids represented by the formulas (11) to (19) may be used alone or in the form of a mixture.
  • a preferred example is when used alone. By using it alone, it becomes easy to set the immersion exposure conditions.
  • the liquid of the present invention can be used by mixing with a liquid other than the present invention as necessary, and by doing so, for example, optical property values such as refractive index and transmittance, contact angle, specific heat, viscosity Physical property values, such as an expansion coefficient, can be made into a desired value.
  • optical property values such as refractive index and transmittance, contact angle, specific heat, viscosity Physical property values, such as an expansion coefficient
  • liquids other than the present invention to be used for this purpose various immersion antifoaming agents, surfactants, and the like can be used in addition to other immersion exposure solvents, and it is possible to reduce bubbles and reduce surface tension. It is effective for control.
  • An immersion exposure is performed using the liquid for immersion exposure.
  • a photoresist film is formed by applying a photoresist on the substrate.
  • the substrate for example, silicon, a wafer coated with aluminum, or the like can be used.
  • an organic or inorganic antireflective film is formed on the substrate to be used as disclosed in, for example, Japanese Examined Patent Publication No. 6-12452. Can be
  • the photoresist to be used can be selected at any time according to the purpose of use of the resist which is not particularly limited.
  • the resin component of the photoresist include polymers containing an acid dissociable group.
  • the acid-dissociable group is preferably not decomposed by light exposure, and the product after the decomposition preferably volatilizes under exposure conditions and does not elute in the liquid of the present invention.
  • these polymers include resins containing an alicyclic group, a ratato group and derivatives thereof and the like in polymer side chains, and resins containing a hydroxystyrene derivative and the like.
  • a photoresist using a resin containing an alicyclic group, a rattaton group and derivatives thereof in the polymer side chain is particularly preferred.
  • These photoresists have chemical structures similar to alicyclic hydrocarbon compounds or cyclic hydrocarbon compounds containing a silicon atom in a ring structure, and thus have excellent affinity with the liquid for immersion exposure of the present invention. . Also, do not elute or dissolve the photoresist film.
  • photoresist chemically amplified positive or negative resist containing a polymer containing an acid dissociable group as a fat component, an acid generator, and an additive such as an acid diffusion control agent. Etc. can be mentioned.
  • a positive resist is particularly preferable.
  • the acid-dissociable organic group in the polymer is dissociated by the action of the acid generated by the exposure to an acid generator, resulting in, for example, a carboxyl group, and as a result, the exposed portion of the resist.
  • the solubility in an alkali developer increases, and the exposed portion is dissolved and removed by the alkali developer, whereby a positive resist pattern is obtained.
  • the photoresist film is prepared by, for example, dissolving a resin composition for forming a photoresist film in a suitable solvent at a solid content concentration of, for example, 0.1 to 20% by weight, for example, a filter having a pore diameter of about 30 nm.
  • the solution is prepared by filtration, and this resist solution is applied onto the substrate by an appropriate coating method such as spin coating, cast coating, and mouth coating, and prebaked (hereinafter referred to as “PB”).
  • the photoresist film preferably has a higher refractive index than the immersion upper layer film and the liquid for immersion exposure. Specifically, the refractive index n of the photoresist film is 1.65 or less.
  • NA is more than 1.3
  • n must be greater than 1.75
  • the immersion exposure method it is possible to further form an upper layer film for immersion on the photoresist film.
  • the upper layer film for liquid immersion a protective film can be formed on the photoresist film without causing sufficient transparency to the wavelength of the exposure light and without causing intermixing with the photoresist film, and further the liquid immersion light Any film can be used as long as it maintains a stable coating without eluting into the liquid sometimes used, and can be peeled off before development.
  • the upper layer film is a developer. If it is a film which is easily dissolved in an alkaline solution, it is preferable because it is peeled off during development.
  • a substituent for imparting alkali solubility it is preferable to be a resin having at least one of a hexafluorocarbinol group and a carboxyl group in a side chain.
  • the upper layer film for liquid immersion has a multiple interference prevention function at the same time.
  • the refractive index n of the upper layer film for liquid immersion is a formula shown below.
  • n (n x n)
  • n is the refractive index of the liquid for immersion exposure and n is the refractive index of the resist film.
  • n is preferably in the range of 1.6 to 1.9.
  • the liquid immersion upper layer film is formed by dissolving the resin composition for liquid immersion upper layer film on a resist film in a solvent not mixed with the resist film at a solid concentration of 0.01 to 10%, and then forming a photoresist film. It can be formed by coating and pre-baking by the same method as that of time.
  • the photoresist film or the photoresist film on which the upper film for immersion is formed is irradiated with radiation through a mask having a predetermined pattern using the immersion exposure liquid of the present invention as a medium, and then developed. Form a resist pattern.
  • This process is a process of developing after baking at a predetermined temperature without immersion light.
  • the radiation used for immersion exposure depends on the combination of the photoresist film used and the photoresist film and the upper layer film for immersion, for example, visible light; ultraviolet light such as g-line and i-line; Various types of radiation such as ultraviolet rays; X-rays such as synchrotron radiation; charged particle rays such as electron beams can be selected and used.
  • visible light such as g-line and i-line
  • ultraviolet light such as g-line and i-line
  • Various types of radiation such as ultraviolet rays
  • X-rays such as synchrotron radiation
  • charged particle rays such as electron beams
  • the baking temperature is a force which is appropriately adjusted depending on the resist used etc. Usually, about 30 to 200 ° C., preferably 50 to 150 ° C. It is.
  • the photoresist film is then developed with a developer and washed to form a desired resist pattern.
  • a resist film was formed using a radiation sensitive resin composition shown below.
  • an upper layer film for liquid immersion shown below was formed on a part thereof.
  • the characteristics as a liquid for immersion exposure were measured.
  • the resin used for the radiation sensitive resin composition was obtained by the following method.
  • the polymerization reaction was carried out for 5 hours, with the dripping start being the polymerization start time.
  • the polymerization solution is cooled to 30 ° C. or less by water cooling, charged into 2000 g of methanol, and the precipitated white powder is separated by filtration.
  • the filtered white powder is washed twice with 400 g of methanol on the slurry, then filtered and dried at 50 ° C. for 17 hours to polymerize the white powder.
  • the body was obtained (75 g, yield 75% by weight).
  • This polymer has a molecular weight of 10, 300, and as a result of NMR analysis, the repeating units represented by the compound (S1-1), the compound (S1-2), and the compound (S1-3), It was a copolymer having a repeating unit content of 42.3: 20.3: 37.4 (mol%).
  • This polymer is called resin (A-1).
  • the resin used for the radiation sensitive resin composition was obtained by the following method.
  • the filtered white powder was washed twice with 2000 g of isopropyl alcohol on a slurry, then filtered and dried at 60 ° C. for 17 hours to obtain a white powder polymer (85 g, yield 85) weight%).
  • This polymer has a Mw of 7, 600, and as a result of 13 C-NMR analysis, the compound (S2-1), the compound Objects (S2- 2), compound (S2- 3) repeating units represented by the content of 53.1 of the repeating unit: 8.5: a a copolymer of 38.4 (mol 0/0) The This polymer is used as a resin (A-2) Reference Example 3
  • the resin forming the upper layer film for immersion was obtained by the following method
  • the polymerization was carried out for 5 hours with the start of dropwise addition as the start of polymerization.
  • the reaction solution was cooled to 30 ° C. or less, then the reaction solution was poured into 2 000 g of heptane, and the precipitated white powder was separated by filtration.
  • the filtered white powder is mixed with 400 g of heptane and stirred as a slurry twice, washed by filtration, filtered and dried at 50 ° C. for 17 hours to obtain a white powder resin (E— 1) (89 g, 89 wt% yield) were obtained.
  • the resin (E-l) had a Mw of 7,300.
  • a resin for forming a liquid immersion upper film was obtained by the following method. [Formula 44]
  • the radiation sensitive resin composition was obtained by the following method.
  • a mixture of a resin, an acid generator, an acid diffusion control agent, and a solvent shown in Table 5 was mixed to form a uniform solution, and then filtered through a membrane filter with a pore size of 200 nm to obtain a radiation sensitive resin composition (F1 to F3).
  • a radiation sensitive resin composition (F1 to F3).
  • parts are by weight.
  • a liquid immersion upper film composition was obtained by the following method.
  • n-BuOH represents normal butanol, and parts are by weight.
  • Resist films (H-1 to ⁇ -5) for evaluation were obtained by the following method.
  • the upper layer film composition for immersion shown in Table 7 is spin coated on this resist film.
  • a top layer of 32 nm thick was formed (H-4 and H-5) by PB (130 ° C., 90 seconds).
  • trans-decalin trans-decahydronaphthalene
  • Transfusion decalin (made by Tokyo Kasei Chemical Co., Ltd .; light path length 1 mm equivalent 193 nm transmittance 10% or less) 100 ml was charged into a 200 ml eggplant flask containing a glass-coated stirrer chip, 20 ml concentrated sulfuric acid Photopure chemicals) were added, and stirring was performed at 25 ° C. for 20 minutes while setting the rotation speed of the stirrer tip to 500-lOOOO rpm. After that, concentrated sulfuric acid was removed by liquid separation, and the above operation was performed three times. Thereafter, the separated organic layer was washed once with 50 ml of deionized water and three times with saturated aqueous sodium hydrogen carbonate solution.
  • trans-decalin (1) When the absorbance at 193 nm of each fraction was measured (the measurement conditions were based on the conditions of measurement method A in the above paragraph [0044]), there were 12 fractions having a transmittance of 93% or more in terms of optical path length lmm, for a total of 120 ml
  • the trans-decalin with an optical path length of lmm and a transmittance of 90% or more was obtained.
  • Each fraction was nitrogen-saturated, subjected to vacuum degassing, and stored in a nitrogen-replaced glass container.
  • the purity of the compound immediately after being sealed in the container was analyzed by gas chromatography, and as a result, the purity (hereinafter referred to as "GC purity”) was 99.92%.
  • the purified trans-decalin obtained by the method of Example 1 is referred to as trans-decalin (1) after purification.
  • trans-trans-, cis-mixture decalin and trans-market cis- decalin were purified by the method described above.
  • the sulfuric acid treatment was performed in the same manner as in Example 1 under a nitrogen atmosphere.
  • the commercially available tmns-decalin manufactured by Tokyo Chemical Industry Co., Ltd .; light transmittance of lmm at 10 nm is 10% or less
  • the dissolved oxygen and nitrogen concentration of this liquid were analyzed by gas chromatography (detector TCD)
  • the dissolved oxygen concentration was less than 1 ppm (below the detection limit) and the dissolved nitrogen concentration was 119 ppm.
  • trans-decalin (2) the metal content of this liquid, Li ⁇ Na, K, Mg, Cu, Ca, Al, Fe, Mn, Sn, Zn, Ni, was measured by atomic absorption spectrometry, Ca was 1 ppb, Zn was 6 ppb, Other metals were less than lppb (less than detection limit).
  • trans-decalin (2) The purified trans-decalin obtained by the method of Example 2 is referred to as trans-decalin (2) after purification.
  • This liquid can be used not only as a liquid for liquid immersion exposure in which the metal content is low but also for an optical device used in the visible light region. Also, the purified trans-decalin (2) obtained in Example 2 was left in the air to make the air saturated, and the transmittance at 193 nm was measured. The results are shown in Table 8.
  • Resist film in a nitrogen glove box that is purged with nitrogen and has an oxygen concentration of 10 ppm or less
  • the liquid was placed on a silicon wafer on which H-1 and H-4 were deposited for 3 minutes so that the thickness of the liquid film was 0.8 mm, and the change in transmittance at 193 nm was measured. Pure water was used as a comparative example. The results are shown in Table 9.
  • the solubility of the acid generator in tmns-decalin (2) was measured by the following method. Using triphenylsulfo-m'nonafluoro-n-butanesulfonate as an acid generator, add a predetermined amount of acid generator to 100 ml of trans-decalin after purification and stir for 1 hour to see if it completely dissolves The solubility was examined by confirming with. Pure water ratio It used as a comparative example. The results are shown in Table 10.
  • the commercially available exo-tetrahydrodicyclopentadiene was purified by the following method to obtain a liquid for immersion exposure.
  • the separated organic layer was washed once with 50 ml of deionized water and three times with saturated aqueous sodium hydrogen carbonate solution. After that, the organic layer was washed three times with pure water. At this point it was confirmed that the pH was 7 (medium). Thereafter, the organic layer was dried using magnesium sulfate, and the magnesium sulfate was removed by decantation. The 9 l ml of liquid obtained at this point was nitrogen-published for 30 minutes, and the transmittance at 193 nm was measured (the measurement conditions are based on the conditions in the above paragraph [00 37]). there were. The liquid was degassed with nitrogen and stored in a nitrogen-replaced glass container.
  • exo-tetrahydrodicyclopentadiene (1) The purified exo-tetrahydrodicyclopentadiene obtained by the method of Example 3 is called exo-tetrahydrodicyclopentadiene (1) after purification.
  • Example 2 The sulfuric acid treatment was performed in the same manner as in Example 1 under a nitrogen atmosphere. Thereafter, commercially available exo-tetrahydrodicyclopentadiene was purified by the same method as in Example 3, and Example 2 was further carried out. By performing vacuum distillation under a nitrogen atmosphere in the same manner as above, a liquid having a transmittance of 97.5% in terms of optical path length lmm was obtained. When the dissolved oxygen and nitrogen concentration of this liquid was analyzed by gas chromatography (detector TCD), the dissolved oxygen concentration was less than 1 ppm (below the detection limit) and the dissolved nitrogen concentration was 100 ppm.
  • the purified exo-tetrahydrodicyclopentadiene obtained by the method of Example 4 is referred to as exo-tetrahydrodicyclopentadiene (2) after purification.
  • trans-trans-decalin (Tokyo Chemical Co., Ltd.) was carried out in the same manner as in Example 1 except that the purification was carried out.
  • the oxygen concentration at this time was measured by GC (detector TCD), and the oxygen concentration was less than 1 ppm, and the nitrogen concentration was 119 ppm. Further, the GC purity was 99. 92%.
  • the purified trans-decalin obtained by the method of Example 5 is referred to as trans-decalin (3) after purification.
  • Example 3 Using nitrogen purified by a nitrogen purifier, perform all operations in a glove box controlled to a nitrogen concentration of 0.5 ppm, and control the degree of reduced pressure so that the vapor temperature does not exceed 50 ° C.
  • purification of the commercialized exo-terahydrodicyclopentadiene (Tokyo Chemical Co., Ltd.) was performed.
  • T When the transmittance per 1 mm of the compound after purification was calculated based on the absorbance value measured by the measurement method B, T was 99.6%.
  • the oxygen concentration at this time was measured by GC (detector TCD). The oxygen concentration was less than 1 ppm, and the nitrogen concentration was 100 ppm.
  • the liquid for immersion exposure according to the present invention is subjected to dissolution test, dissolution test of the film, patterning evaluation (immersion patterning evaluation, liquid immersion exposure evaluation by two-speed interference exposure machine), resist contact It was evaluated by absorbance change (or contamination).
  • the results are shown in Tables 11-14.
  • Table 3 the wavelength dependency of the refractive index is in a correlation that becomes higher as the wavelength becomes shorter. Therefore, it is possible to predict the refractive index at a short wavelength by measuring the refractive index at D-line (wavelength: 589 nm).
  • the immersion exposure liquid of the present invention has a structure chemically similar to decalin shown in Table 1, it can be predicted from the refractive index at D-line (wavelength: 589 nm). Therefore, the refractive index at D line (wavelength 589 nm) is shown. V, the deviation is also higher than the refractive index of pure water.
  • Example 1 the liquid for immersion exposure shown in Examples 8 to 13 was purified by Example 1, and the liquid for immersion exposure shown in Examples 14 to 22 was purified according to the method of Example 1. It is a thing.
  • the wafer coated with the above resist film for evaluation was subjected to ArF projection exposure apparatus S 306 C (made by Nikon Co., Ltd.) under the optical conditions of NA: 0.78, Sigma: 0.85, 2Z3 Ann Perform exposure (exposure: 30 niJ / cm 2 ), and then perform PEB (130 ° C., 90 ° less) on the CLEAN TRACK ACT 8 hot plate, and paddle development on the same CLEAN TRACK ACT 8 LD nozzle (developer components , 2.
  • the wafer subjected to exposure under the same conditions as in the patterning evaluation test (1) was immersed in a liquid for immersion exposure for 30 seconds, subjected to PEB, development and rinsing in the same manner as above, to obtain a substrate C after development.
  • a good rectangular resist pattern of the same shape is obtained visually for substrate A and substrate C by visual observation is “ ⁇ ”, and a case where a pattern with the same shape is not obtained is“ X ”. .
  • “One" represents not evaluating.
  • the film thickness of the lower layer antireflective film is 29 nm and the resist thickness is 100 nm (for 45 nm) 60 nm (for 35 nm)
  • Two-beam interference type simple exposure system for ArF immersion for Canon 45nmlLZlS, Nikon Co., Ltd., for 35nmlLZlS, use of TE polarization exposure
  • Lens of the above between the wafers (grip 0. 7mm) the above purification
  • a post immersion exposure liquid is inserted to perform exposure, and then the immersion exposure liquid on the wafer is removed by air drying, and this wafer is cleaned.
  • a liquid (deionized water or other purified trans-decalin (2) (other lots prepared in the same manner as in Example 2) was added to a 6 cm diameter petri dish using a glass pipette. The amount of solution was adjusted so that the film thickness was exactly 1 mm, and then the top of the petri dish was covered with a silicon wafer coated with photoresist (Hl, H4). At this time, the film was kept in a state where the liquid was immersed, and both were firmly attached so that there was no leakage of the liquid between the petri dish and the wafer, and all parts covered with the petri dish were photographed.
  • Hl photoresist
  • the liquid for immersion exposure according to the present invention has a refractive index greater than that of pure water.
  • the liquid for immersion exposure and the photoresist film formed on the substrate are brought into contact in a nitrogen atmosphere, and the absorbance change of the liquid before and after contact is measured at 193 nm. It is important that the degree of contamination of the immersion exposure liquid can be evaluated by measuring and comparing.
  • the liquid for immersion exposure according to the present invention is an alicyclic hydrocarbon compound or a cyclic hydrocarbon compound containing a silicon atom in a ring structure, it does not dissolve the photoresist film during immersion exposure, and thus the resolution It is possible to form a resist pattern excellent in developability and the like, and it can be extremely suitably used for the production of a semiconductor device which is expected to be further miniaturized in the future.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

 液浸露光方法において、屈折率が大きく、フォトレジスト膜あるいはその上層膜成分の溶出や溶解を防ぎ、レジストパターンの生成時の欠陥を抑えることができる液浸露光用液体およびその液体を用いた液浸露光方法の提供を目的とする。  投影光学系のレンズと基板との間に満たされた液体を介して露光する液浸露光装置または液浸露光方法に用いられる液体であって、該液体は、液浸露光装置が作動する温度領域において液状であり、脂環式炭化水素化合物または珪素原子を環構造中に含む環式炭化水素化合物である。

Description

液浸露光用液体および液浸露光方法
技術分野
[0001] 本発明は液浸露光用液体および液浸露光方法に関し、詳しくはこれら液体および 方法に加えて、該液浸露光用液体の製造方法、液浸露光用液体としての評価方法 、新規液体組成物に関する。
背景技術
[0002] 半導体素子等を製造するのに際し、フォトマスクとしてのレチクルのパターンを投影 光学系を介して、フォトレジストが塗布されたウェハ上の各ショット領域に転写するス テッパー型、またはステップアンドスキャン方式の投影露光装置が使用されて 、る。 投影露光装置に備えられている投影光学系の解像度の理論限界値は、使用する 露光波長が短ぐ投影光学系の開口数が大きいほど高くなる。そのため、集積回路 の微細化に伴い投影露光装置で使用される放射線の波長である露光波長は年々短 波長化しており、投影光学系の開口数も増大してきている。
また、露光を行なう際には、解像度と同様に焦点深度も重要となる。解像度 およ び焦点深度 δの理論限界値はそれぞれ以下の数式で表される。
R=kl - λ /ΝΑ (i)
δ =k2- λ /ΝΑ2 (ii) ここで、 λは露光波長、 kl、 k2はプロセス係数であり、 NAは投影光学系の開口数で あり空気の屈折率を 1とした場合、下式 (ϋ')で定義される。すなわち同じ解像度 Rを 得る場合には短い波長を有する放射線を用いた方が大きな焦点深度 δを得ることが できる。
ΝΑ= 5ίη θ ( θ =レジスト表面への露光光の最大入射角)(ϋ') 上記に述べたように、これまでは、露光光源の短波長化、開口数の増大により集積 回路の微細化要求に応えてきており、現在では露光光源として ArFエキシマレーザ( 波長 193nm)を用いた 1L 1 S ( 1: 1ラインアンドスペース)ハーフピッチ 90nmノードの 量産化が検討されている。しかしながら、更に微細化が進んだ次世代のハーフピッチ 65nmノードあるいは 45nmノードについては ArFエキシマレーザの使用のみによる 達成は困難であるといわれている。そこで、これらの次世代技術については Fエキシ
2 マレーザ (波長 157nm)、 EUV (波長 13nm)等の短波長光源の使用が検討されて いる。し力しながら、これらの光源の使用については技術的難易度が高ぐ現状では まだ使用が困難な状況にある。
ところで、上記の露光技術においては、露光されるウェハ表面にはフォトレジスト膜 が形成されており、このフォトレジスト膜にパターンが転写される。従来の投影露光装 置では、ウェハが配置される空間は屈折率が 1の空気または窒素で満たされている。 このとき、ウェハと投影露光装置のレンズとの間の空間を屈折率 nの媒体で満たした 場合、解像度 R、焦点深度 δの理論限界値は以下の数式にて表されることが報告さ れている。
Figure imgf000003_0001
δ =k2 -n l /NA2 (iv) ここで、 NAは実際の投影光学系の開口数ではなぐ上記式 (ϋ')で定義される定数を 意味する (正確には投影光学系の開口数 NA'は NA' =nsin θ (nは上記と同じ定義) で表される。 )
上式は、屈折率 nの液体を投影露光装置のレンズとウェハの間に満たし、適当な光 学系を設定することにより、解像度の限界値及び、焦点深度をそれぞれ n分の 1、 n倍 にすることが理論的に可能であることを意味している。例えば、 ArFプロセスで、上記 媒体として水を使用すると波長 193nmの光の水中での屈折率 nは n= l . 44である から、空気または窒素を媒体とする露光時と比較し、解像度 Rは 69. 4% (R=kl - ( λ /1. 44) ΖΝΑ)、焦点深度は 144% ( δ =k2 - l . 44 λ /NA2)となる光学系の 設計が理論上可能である。
このように露光するための放射線の実効波長を短波長化し、より微細なパターンを 転写できる投影露光する方法を液浸露光といい、今後のリソグラフィ一の微細化、特 に数 lOnm単位のリソグラフィ一には、必須の技術と考えられ、その投影露光装置も 知られて!/ヽる (特許文献 1参照)。
従来、液浸露光方法において、投影光学系のレンズと基板との間に満たされる液 体としては、 ArFエキシマレーザにおいては純水、 Fエキシマレーザにおいては、 15
2
7nmにおける透明性が高いという理由力 フッ素系不活性液体等の使用が検討され てきた。
純水は半導体製造工場ではその入手が容易であり、環境的にも問題がない。また 、温度調整が容易で、露光中に生じる熱による基板の熱膨張を防ぐことができるとし て、 ArF用液浸の液体として採用されており(特許文献 2参照)、 65nmノヽーフピッチ ノードのデバイスの量産への採用が確実となって 、る。
一方で、純水の表面張力を減少させるとともに、界面活性力を増大させる添加剤と して、メチルアルコール等を添加した液体も知られている(特許文献 3参照)。
し力しながら、純水を使用することにより、フォトレジスト膜に水が浸透し、フォトレジ ストパターンの断面形状力 ST—トップ形状となる形状劣化を生じたり、解像度が低下し たりすることがある。また、フォトレジストを構成する光酸発生剤、塩基性添加剤、露光 により発生した酸等の水溶性成分が水へ溶出することにより、 T トップ形状等の形 状劣化が起こり、解像度、焦点深度の低下、ブリッジ欠陥が生じたり、現像後パター ンに欠陥が生じたり、レンズ表面が汚染されることもある。また、これらの成分の液体 への溶出は同時に液体の汚染を引き起こし、液体の再利用が困難となる。このため、 頻繁に煩雑な精製処理が必要となる。
このため、フォトレジスト膜と水とを遮断する目的で、フォトレジスト膜上に上層膜を 形成する方法があるが、露光に対する十分な透過性やフォトレジスト膜とのインターミ キシング性など十分でない場合があり、工数が複雑になる問題もある。更に、レンズ 材料に従来用いられている CaFが水により浸食されることが報告されており (非特許
2
文献 1)、このため、レンズ表面をコーティングするコーティング材が必要になるという 問題も生じている。
一方、上記の式 (iii)で示したように解像度の限界は ArFドライ露光の約 1. 44倍で あることから、より微細化が進む特にハーフピッチ 45nm以下の次世代技術にぉ 、て はその使用が困難になることが予測されて 、る。
このように、より微細化が進む次世代の液浸露光方法にぉ 、ては、露光波長(例え ば、波長 193nm等)において純水よりも屈折率が大きぐこれらの波長光に対する透 過性が高い液体が求められている。同時に該液体はフォトレジスト膜からの添加剤の 溶出、レジスト膜の溶解、パターンの劣化等フォトレジスト膜へ悪影響を及ぼさず、更 にレンズを浸食しない液体であることが求められている。同時に液浸露光の導入によ る高 NAィ匕に伴い、露光光として偏光の導入が検討されており、該液体は上記の要 求以外に例えば旋光性等の性質により偏光の方向を曲げない液体であることが期待 されている。
本目的を達成する方法として、例えば、水に各種の塩を溶解し屈折率を高める試 みがなされている(非特許文献 2)。しかしながらこのアプローチは塩の濃度制御が困 難である他、水同様に水溶性成分の溶出による現像欠陥、レンズの汚染、等の問題 がある。
一方、 F露光用に検討が進められているペルフルォロポリエーテルなどのフッ素系
2
不活性液体は、例えば 193nmにおいて屈折率が小さいため該波長での使用が困 難である。また、波長 589nmにおいて高屈折率であるとの理由で顕微鏡用の液浸 露光液体として従来知られている有機臭素化物、ヨウ素化物は、例えば 193nmにお ける透過性が悪いと共にフォトレジスト膜に対する安定性に劣る。
特許文献 1:特開平 11— 176727号公報
特許文献 2:国際公開 WO99Z49504号公報
特許文献 3:特開平 10— 303114号公報
非特許文献 1 : NIKKEI MICRODEVICE 2004年 4月号 p77
非特許文献 2 : Proc. SPIE Vol. 5377 (2004) p. 273
発明の開示
発明が解決しょうとする課題 [0006] 本発明は、このような問題に対処するためになされたもので、液浸露光方法におい て、純水よりも屈折率が大きぐ該液浸露光波長において優れた透過性を有し、フォ トレジスト膜あるいはその上層膜成分 (とりわけ親水性成分)の溶出や溶解を防ぎ、レ ンズを浸食せずレジストパターンの生成時の欠陥を抑えることができ、液浸露光用液 体として使用した場合、パターン形状の劣化を抑え、より解像度および焦点深度の優 れたパターンを形成できるとともに、液体の再利用および精製が容易な液浸露光用 液体およびその液体を用いた液浸露光方法の提供を目的とする。
また、上記液浸露光用液体および液浸露光方法に加えて、該液浸露光用液体の 製造方法、液浸露光用液体としての評価方法、新規液体組成物の提供を目的とする 課題を解決するための手段
[0007] 上記課題を解決するためには、本目的に使用できる露光波長における高い透過率 を有し、かつ水と比較して十分屈折率の高いことが液浸露光用液体に求められる必 須条件であった。一方、液体の紫外領域の屈折率は、液体を構成する分子の分極 率に依存することが一般に知られている。分極率を高める方法としては例えば硫黄、 臭素、ヨウ素などの動きやすい n電子をもつ元素を分子に導入することおよび比較的 動きやすい π電子を有する炭素 炭素 2重結合、炭素 炭素 3重結合、とりわけ芳 香族環を導入することが一般的に有効である。し力しながら、これらの元素および分 子構造を含む化合物は一般に例えば 193nm等の遠紫外領域に強い吸収をもち本 目的に使用することができない。一方遠紫外領域に対する吸収が小さい化合物とし ては、無置換の炭化水素化合物、シァノィ匕炭化水素化合物、フッ素化炭化水素化合 物、スルホン酸エステル化合物、一部のアルコール等が挙げられる力 これらの化合 物は一般に水より高屈折率であるがその屈折率は現行の水と大きな差がない。 一方、液体の屈折率のより正確な理論式として下記式 (Lorentz— Lorenzの式)が 提案されており、下記式を用いて、ベンゼンの屈折率 nが正確に予測できるという結 果カ s報告されている (J. P y. Chem. A. , Vol. 103, No. 42, 1999 p8447)。 η= (1 +4 π Ν α ^。·5 上式において、 Nは単位体積中の分子数を示し、部分モル体積が小さいほど大き な値になる。
上記式から、高吸収な官能基の導入により αを高められない場合でも Nを大きくす ることにより屈折率が高められると予測される。上記を参考に、液体の分子構造を種 々検討した結果、コンパクトな構造を有するために密度が高 、本発明の脂環式炭化 水素、または珪素を含有し環式炭化水素骨格を有する液体が、透明性と屈折率を両 立しかつ液浸露光用液体として用いた場合フォトレジスト膜あるいはその上層膜成分 (とりわけ親水性成分)の溶出や溶解を防ぎ、更にはレジストパターンの生成時の欠陥 、レンズの浸食等の問題を解決し、より解像度および焦点深度の優れたパターンを 形成できることを見出し本発明を完成するに至った。
すなわち、本発明の液浸露光用液体は、投影光学系のレンズと基板との間に満た された液体を介して露光する液浸露光装置または液浸露光方法に用いられる液体 であって、該液体は、液浸露光装置が作動する温度領域において液状であり、脂環 式炭化水素化合物または珪素原子を環構造中に含む環式炭化水素化合物であるこ とを特徴とする。
特に、脂環式炭化水素化合物または珪素原子を環構造中に含む環式炭化水素化 合物は、波長 193nmにおける光路長 lmmあたりの放射線透過率が 70%以上、 D 線の屈折率が 1. 4以上、好ましくは 1. 4〜2. 0であることを特徴とする。
本発明の液浸露光方法は、露光ビームでマスクを照明し、投影光学系のレンズと基 板との間に満たされた液体を介して露光ビームで基板を露光する液浸露光方法であ つて、上記液体が上述した液浸露光用液体であることを特徴とする。
発明の効果
本発明の液浸露光方法は、液浸露光用液体として、疎水性が高ぐ露光波長にお いて高屈折率である脂環式炭化水素化合物または珪素原子を環構造中に含む環 式炭化水素化合物を用いるので、フォトレジスト膜あるいはその上層膜成分、特に親 水性成分の溶出や溶解を防ぎ、レジストパターンの生成時の欠陥、レンズの浸食の 問題を解決でき、また、液浸露光用液体として用いた場合に、パターン形状の劣化を 抑え、解像度および焦点深度の改良が可能である。
発明を実施するための最良の形態
液浸露光用液体として使用できる脂環式炭化水素化合物または珪素原子を環構 造中に含む環式炭化水素化合物は、それぞれ脂環式飽和炭化水素化合物または 珪素原子を環構造中に含む環式飽和炭化水素化合物であることが好ましい。炭化 水素化合物に不飽和結合が存在すると露光ビームが液浸露光用液体に吸収されや すくなる。
液浸露光用液体として使用できる脂環式炭化水素化合物または珪素原子を環構 造中に含む環式炭化水素化合物につ 、て、下記式( 1 1)〜式( 1 9)により説明 する。
[化 12]
Figure imgf000008_0001
0-1 ) 式(1— 1)において、 R1は炭素数 1〜10の脂肪族炭化水素基、炭素数 3〜14の脂 環式炭化水素基、シァノ基、水酸基、フッ素原子、炭素数 1〜10のフッ素置換炭化 水素基、 Si(R9)基、または— SO R1Q基を表し、 nl、 n2はそれぞれ独立に 1〜3の
3 3
整数を表し、 aは 0〜 10の整数を表し、 R1が複数存在する場合、その R1は同一でも異 なっていてもよく、 2つ以上の R1が相互に結合して環構造を形成してもよぐ R9および R1Qは、炭素数 1〜10のアルキル基を表す。
R1における炭素数 1〜10の脂肪族炭化水素基としては、メチル基、ェチル基、 n— プロピル基等が挙げられる。 2つ以上の R1が相互に結合して環構造を形成する例と しては、シクロペンチル基、シクロへキシル基等が挙げられる。炭素数 3〜 14の脂環 式炭化水素基としては、シクロへキシル基、ノルボルニル基等が挙げられる。炭素数 1〜10のフッ素置換炭化水素基としては、トリフルォロメチル基、ペンタフルォロェチ ル基等が挙げられる。 Si(R9)基を構成する R9、および— SO R1Q基を構成する R1Q
3 3
しては、炭素数 1〜10のアルキル基を表し、このアルキル基としては、メチル基、ェチ ル基等が挙げられる。
式(1— 1)において R1の置換基としては、 193nmの放射線透過率に優れていると の観点力 炭素数 1〜10の脂肪族飽和炭化水素基、炭素数 3〜14の脂環式飽和炭 化水素基、シァノ基、フッ素原子、炭素数 1〜10のフッ素置換飽和炭化水素基が好 ましい。
上記置換基の中で、炭素数 1〜10の脂肪族飽和炭化水素基、炭素数 3〜14の脂 環族飽和炭化水素基が、より高屈折率が得られ、レジストとの相互作用が少なぐレ ジスト中の水溶性成分の溶出による欠陥の生成、レンズ材料への浸食がおこりにくく 、特に好ましい。
また、好ましい nl、 n2は 1〜3であり、特に好ましい nl、 n2は 1または 2であり、好ま しい aは 0、 1または 2であり。 aとしては特に 0である場合、例えば 193nmにおける屈 折率が高くなるため特に好まし 、。
式(1 1)で表される好ま U、脂環式飽和炭化水素化合物の具体例を以下に列挙 する。なお、本明細書において、脂環式飽和炭化水素化合物における環を形成する 炭素原子に結合する水素原子は記載を省略してある。
[化 13]
( ¾ ¾1丄丄丄丄丄丄
Figure imgf000010_0001
) ¾ (上上上1丄—
Figure imgf000011_0001
Figure imgf000011_0002
Figure imgf000011_0003
[化 15]
Figure imgf000012_0001
(1-1-31) (1-1-32) (1-1-33)
Figure imgf000012_0002
(1-1-34) (1-1-35) (1-1-36)
Figure imgf000012_0003
(1-1-37) (1-1-38) (1-1-39) 式(1 1)で表される好ま U、シァノ基含有化合物の具体例を以下に列挙する。
[化 16]
Figure imgf000012_0004
(1-1-40) (1-1-41)
Figure imgf000012_0005
(1-1-42) (1-1-43) 式(1— 1)で表される好ま U、フッ素原子含有ィ匕合物の具体例を以下に列挙する。
[化 17]
Figure imgf000013_0001
Figure imgf000013_0002
式(1一 1)で表される好ま U、フッ素置換飽和炭化水素化合物の具体例を以下に 列挙する。
[化 18]
Figure imgf000013_0003
式 ( 1一 1)で表される好まし 、化合物の中で、脂環式飽和炭化水素化合物が好ま しく、その中で特に好ましい化合物としては下記式 (2υで表される化合物が挙げ られる。
[化 19]
Figure imgf000013_0004
(2-1 ) 式(2— 1)にお!/、て、 R1および aは、式(1 1)の R1および aと同一である。
式(2—1)における具体例としては、上記(1— 1— 16)、 (1— 1— 19)、(1— 1— 20
)、(1 1— 21)、 (1— 1— 34)、 (1 1— 35)、(1 1— 36)、(1 1— 37)、(1— 1
- 38) , (1 - 1 - 39)で挙げたィ匕合物が挙げられる。
この中で、置換機を有さない化合物が例えば 193nmにおける屈折率が高くなるた め好ましぐ式(2—1)における特に好ましい例としては、 cis デカリン、 trans デカ リンが挙げられる。
[0013] [化 20]
Figure imgf000014_0001
式(1 2)にお 、て、 Aは単結合または炭素数 1〜10のアルキル基で置換されて ヽ てもよ 、メチレン基もしくは炭素数 1〜: LOのアルキル基で置換されて 、てもよ 、炭素 数 2〜14のアルキレン基を表し、 R2は炭素数 1〜10の脂肪族炭化水素基、炭素数 3 〜14の脂環式炭化水素基、シァノ基、水酸基、フッ素原子、炭素数 1〜10のフッ素 置換炭化水素基、 Si(R9)基、または SO R1Q基を表し、 R7は水素原子、炭素数 1
3 3
〜10のアルキル基、シァノ基、水酸基、フッ素原子、炭素数 1〜10のフッ素置換アル キル基、または Si(R9)基を表し、 n3は 2〜4の整数を表し、 n4は 1〜3の整数を表
3
し、 bは 0から 6の整数を表し、 R2または R7が複数存在する場合、その R2は同一でも異 なっていてもよく、 2つ以上の R2が相互に結合して環構造を形成してもよぐ R9および R1Qは、炭素数 1〜10のアルキル基を表す。
[0014] Aにおける炭素数 1〜10のアルキル基で置換されていてもよいメチレン基または同 炭素数 2〜 14のアルキレン基としては、エチレン基、 n—プロピレン基等が挙げられる
R2は、式(1— 1)の R1と同一である。
式( 1— 2)にお 、て R2の置換基としては 193nmの放射線透過率に優れて 、るとの 観点力も炭素数 1〜10の脂肪族飽和炭化水素基、炭素数 3〜 14の脂環式飽和炭 化水素基、シァノ基、フッ素原子、炭素数 1〜10のフッ素置換飽和炭化水素基が好 ましい。
上記置換基の中で、炭素数 1〜10の脂肪族飽和炭化水素基、炭素数 3〜14の脂 環族飽和炭化水素基が、(1— 1)における R1と同様の理由力 好ましい。
好ましい n3は 2〜4、特に好ましくは 2または 3であり、好ましい n4は 1〜3、特に好 ましくは 1または 2であり、好ましい bは 0または 1または 2である。 bとしては特に 0であ ることが、例えば 193nmにおける屈折率が高くなるため好ましい。好ましい(1— 2)の 具体例を以下に示す。
[化 21]
Figure imgf000015_0001
(1 -2-7) (1 -2-8) (1-2-9)
Figure imgf000016_0001
(一
Figure imgf000017_0001
3¾ CH C
Figure imgf000017_0002
Figure imgf000018_0001
Figure imgf000018_0002
Figure imgf000018_0003
Figure imgf000018_0004
Figure imgf000018_0005
(1-2-44) (1-2-45)
Figure imgf000019_0001
Figure imgf000019_0002
Figure imgf000020_0001
Figure imgf000020_0002
Figure imgf000020_0003
Figure imgf000020_0004
(1-2-60) (1-2-61)
Figure imgf000021_0001
Figure imgf000022_0001
式(1 2)における特に好ま 、例としては トリシクロへプチルメタン 1, 1—トリシクロペンチルメタンが挙げられる (
[化 23]
Figure imgf000022_0002
式(1 3)において、 R3および R4は炭素数 1〜10の脂肪族炭化水素基、炭素数 3 〜14の脂環式炭化水素基、シァノ基、水酸基、フッ素原子、炭素数 1〜10のフッ素 置換炭化水素基、 Si(R9)基、または— SO R1Q基を表し、 R3および R4がそれぞれ複
3 3
数存在する場合、その R3および R4はそれぞれ同一でも異なっていてもよぐ 2つ以上 の R3および R4がそれぞれ単独でまたは相互に結合して環構造を形成してもよく、 n5 および n6は 1〜3の整数を表し、 cおよび dは 0〜8の整数を表し、 R9および R1Qは、炭 素数 1〜 10のアルキル基を表す。
R3および R4は、式(1 1)の R1と同一である。
式( 1— 3)にお 、て R3および R4の置換基としては 193nmの放射線透過率に優れ ているとの観点から炭素数 1〜10の脂肪族飽和炭化水素基、炭素数 3〜14の脂環 式飽和炭化水素基、シァノ基、フッ素原子、炭素数 1〜10のフッ素置換飽和炭化水 素基が好ましい。
上記置換基の中で、炭素数 1〜10の脂肪族飽和炭化水素基、炭素数 3〜14の脂 環族飽和炭化水素基が、(1— 1)における R1と同様の理由力 好ましい。
好ましい n5および n6は 1〜3、特に好ましくは 1または 2であり、 cおよび dは 0または 1または 2である。 cおよび dは特に両方が 0であることが例えば 193nmにおける屈折 率が高くなるため好ま 、。好ま 、化合物(1— 3)の具体例を以下に示す。
[化 24]
Figure imgf000023_0001
(1-3-1) (1-3-2) (1-3-3)
Figure imgf000023_0002
(1-3-19) (1-3-20) (1-3-21)
[化 25]
Figure imgf000024_0001
Figure imgf000025_0001
Figure imgf000025_0002
(1-3-46) (1-3-47) (1 -3-48) 式(1— 3)における好ましい例としては、スピロ [5. 5]ゥンデカンが挙げられる。
[化 26]
Figure imgf000025_0003
(a) (b) (c)
(1-4) 式(1 4)における(a)、(b)、(c)において、 Bはメチレン基またはエチレン基を表し 、 R5は炭素数 1〜10の脂肪族炭化水素基、炭素数 3〜14の脂環式炭化水素基、シ ァノ基、水酸基、フッ素原子、炭素数 1〜10のフッ素置換炭化水素基、 Si(R9)基、
3 または— SO R1Q基を表し、 R5が複数存在する場合、その R5は同一でも異なっていて
3
もよぐ 2つ以上の R5が相互に結合して環構造を形成してもよぐ eは 0〜10の整数を 表し、 n7は:!〜 3の整数を表し、 R9および R1Qは、炭素数:!〜 10のアルキル基を表す。
R5は、式(1— 1)の R1と同一である。
式(1—4)において R5の置換基としては 193nmの放射線透過率に優れているとの 観点から炭素数 1〜10の脂肪族飽和炭化水素基、炭素数 3〜14の脂環式飽和炭 化水素基、シァノ基、フッ素原子、炭素数 1〜10のフッ素置換飽和炭化水素基が好 ましい。
上記置換基の中で、炭素数 1〜10の脂肪族飽和炭化水素基、炭素数 3〜14の脂 環式飽和炭化水素基が、(1— 1)の R1と同様の理由力 好ましい。
好ましい eは 0または 1または 2であり、 n7は、 1〜3、特に好ましくは 1または 2である 。特に eが 0である場合が例えば 193nmにおける屈折率が高くなるため好ましい。 好ま 、ィ匕合物(1 4)の例を以下に示す。
[化 27]
Figure imgf000026_0001
(1-4-7) (1-4-8) (1-4-9)
Figure imgf000027_0001
Figure imgf000027_0002
Figure imgf000027_0003
Figure imgf000027_0004
Figure imgf000027_0005
式(1 4)における好ま 、化合物としては式(2— 2)、式(2— 2')で表される化合 物が挙げられる。
[化 29]
Figure imgf000028_0001
式(2— 2)、(2— 2')において、 R5は式(1 4)における R5と同一であり、好ましい iは 0、 1または 2である。 iが 0であることが(1— 1)における aと同様の理由で特に好ましい 好ましい化合物(2— 2)、(2— 2')の具体例としては上記(1 4 1)〜(1 4 6) の化合物が挙げられる。
特に好ましい具体例としては、 exo—テトラヒドロジシクロペンタジェンが挙げられる [化 30]
Figure imgf000028_0002
式(1 5)において、 R°は炭素数 1〜10の脂肪族炭化水素基、炭素数 3〜14の脂 環式炭化水素基、シァノ基、水酸基、フッ素原子、炭素数 1〜10のフッ素置換炭化 水素基、 Si(R9)基、または— SO R1Q基を表し、 fは 0〜 10の整数を表し、 R6が複数
3 3
存在する場合、その R6は同一でも異なっていてもよぐ R9および R1Qは、炭素数 1〜1 0のアルキル基を表す。
R6は、式(1— 1)の R1と同一である。
式( 1— 5)にお!/、て R6の置換基としては 193nmの放射線透過率に優れて!/、るとの 観点力も炭素数 1〜10の脂肪族飽和炭化水素基、炭素数 3〜 14の脂環式飽和炭 化水素基、シァノ基、フッ素原子、炭素数 1〜10のフッ素置換飽和炭化水素基が好 ましい。 上記置換基の中で、炭素数 1〜10の脂肪族飽和炭化水素基、炭素数 3〜14の脂 環族飽和炭化水素基が、式(1 1)の R1と同様の理由で好ま 、。
好ましい fは 1または 2である。また、置換基の位置は、橋頭位が好ましい。
式(1 5)における好ま 、例としては以下の式で表される化合物が挙げられる。
[化 31]
Figure imgf000029_0001
(1-5-1) (1-5-2) (1-5-3) (1-5-4) (1-5-5)
Figure imgf000029_0002
(1-5-6) (1-5-7) (1-5-8)
Figure imgf000029_0003
(1-5-9) (1-5-10)
Figure imgf000030_0001
(1-5-1 1 ) (1 -5-12) (1 -5-13)
Figure imgf000030_0002
(1-5-14) (1 -5-15) (1 -5-16) [化 32]
Figure imgf000030_0003
(1 -6)
式(1— 6)において、 R8および R8'は炭素数 1〜10の脂肪族炭化水素基、炭素数 3 〜14の脂環式炭化水素基、シァノ基、水酸基、フッ素原子、炭素数 1〜10のフッ素 置換炭化水素基、 Si(R9)基、または— SO R1Q基を表し、 gおよび hはそれぞれ 0〜
3 3
6の整数を表し、 n8および n9は 1〜3の整数を表し、 R9および R1Qは、炭素数 1〜10 のアルキル基を表す。
R8および R8'は、式(1 1)の R1と同一である。
式(1— 6)において R8および R8'の置換基としては 193nmの放射線透過率に優れ ているとの観点から炭素数 1〜10の脂肪族飽和炭化水素基、炭素数 3〜14の脂環 式飽和炭化水素基、シァノ基、フッ素原子、炭素数 1〜10のフッ素置換飽和炭化水 素基が好ましい。
上記置換基の中で、炭素数 1〜10の脂肪族飽和炭化水素基、炭素数 3〜14の脂 環族飽和炭化水素基が、式(1 1)における R1と同様の理由で好ましい。
好ましい gおよび hは 0、 1または 2であり、 n8および n9は 1〜3、特に好ましくは 1ま 丄
Figure imgf000031_0001
)丄
Figure imgf000032_0001
Figure imgf000032_0002
Figure imgf000032_0003
(1-6-28) (1-6-29) (1-6-30)
Figure imgf000032_0004
(1-6-37) (1-6-38) (1-6-39)
Figure imgf000033_0001
Figure imgf000033_0002
Figure imgf000033_0003
(1 -6-46) (1 -6-47) (1 -6-48) 式(1— 6)における好ましい例としては、 5—シラシクロ [4, 4]ノナンが挙げられる。
[化 35]
Figure imgf000033_0004
(1 -7)
式(1— 7)において、 R11および R12は炭素数 1〜10の脂肪族炭化水素基、炭素数 3 〜14の脂環式炭化水素基、シァノ基、水酸基、フッ素原子、炭素数 1〜10のフッ素 置換炭化水素基、— Si(R9)基、または— SO R1Q基を表し、 nlO、 ni lはそれぞれ独
3 3
立に 1〜3の整数を表し、 j、 kは 0〜6の整数を表し、 R11および R12がそれぞれ複数存 在する場合、その R11および R12は同一でも異なっていてもよぐ 2つ以上の R11が相互 に結合して環構造を形成してもよぐまたは 2つ以上の R12が相互に結合して環構造 を形成してもよぐ Xは単結合、炭素数 2〜10の 2価の脂肪族炭化水素基、炭素数 3 〜14の 2価の脂環式炭化水素基を表し、 R9および R1Qは、炭素数 1〜10のアルキル 基を表す。
R11および R12の炭素数 1〜10の脂肪族炭化水素基、炭素数 3〜14の脂環式炭化 水素基、炭素数 1〜10のフッ素置換炭化水素基、 Si(R9)基、または SO R1Q
3 3 は、式 (1 1)における脂肪族炭化水素基、脂環式炭化水素基、フッ素置換炭化水 素基、—Si(R9)基、—SO R1Q基と同一である。
3 3
式(1— 7)にお 、て R11および R12の置換基としては 193nmの放射線透過率に優れ ているとの観点から炭素数 1〜10の脂肪族飽和炭化水素基、炭素数 3〜14の脂環 式飽和炭化水素基、シァノ基、フッ素原子、炭素数 1〜10のフッ素置換飽和炭化水 素基が好ましい。
また、 Xの炭素数 2〜 10の 2価の脂肪族炭化水素基としては、エチレン基、プロピレ ン基が挙げられ、炭素数 3〜 14の 2価の脂環式炭化水素基としては、シクロペンタン 、シクロへキサンに由来する 2価の基等が挙げられる。
式( 1— 7)にお 、て、 Xは単結合が好ま 、。好ま 、化合物(1— 7)の具体例を以 下に示す。
[化 36]
Figure imgf000034_0001
(1-7-1 ) (1-7-2) (1 -7-3)
Figure imgf000034_0002
(1-7-10) (1-7-1 1 ) (1 -7-12)
Figure imgf000035_0001
Figure imgf000036_0001
Figure imgf000037_0001
Figure imgf000037_0002
Figure imgf000037_0003
(1-7-67) (1-7-68) (1-7-69)
Figure imgf000038_0001
Figure imgf000039_0001
(1 -7-94) (1-7-95) (1-7-96) 好適な式(1 7)の例としては、ジシクロへキシル、ジシクロペンチルが挙げられる, [化 37]
Figure imgf000039_0002
式(1— 8)において、 R"は炭素数 2以上のアルキル基、炭素数 3以上の脂環式炭 化水素基、シァノ基、水酸基、フッ素原子、炭素数 2〜10のフッ素置換炭化水素基、 -Si(R9)基、または— SO R1Q基を表し、 pは 1〜6の整数を表し、 R13が複数存在する
3 3
場合、その R13は同一でも異なっていてもよぐ 2つ以上の R13が相互に結合して環構 造を形成してもよぐ R9および R1Qは、炭素数 1〜10のアルキル基を表す。
好ましい R13は炭素数 2〜 10のアルキル基、炭素数 3〜 14の脂環式炭化水素基で あり、好ましい pは 1または 2、特に好ましい pは 1である。
上記炭素数 2以上のアルキル基は、炭素数 2〜 10のアルキル基が好ましぐメチル 基、ェチル基、 n プロピル基等が挙げられる。上記炭素数 3以上の脂環式炭化水 素基は、炭素数 3〜 14の脂環式炭化水素基が好ましぐシクロへキシル基、ノルボル -ル基等が挙げられる。炭素数 2〜10のフッ素置換炭化水素基、 Si(R9)基、また
3 は SO R1Q基は、式(1— 1)におけるフッ素置換炭化水素基、 Si(R9)基、—SO R 1Q基と同一である。 2つ以上の R13が相互に結合して形成する環構造は、シクロペンチ ル基、シクロへキシル基等が挙げられる。
式(1 8)における好ま 、ィ匕合物の具体例を以下に示す。
[化 38]
Figure imgf000040_0001
(1 -8-4) (1 -8-5) (1 -8-6) (1 -8-7)
Figure imgf000040_0002
(1-9) 式(1— 9)において、 R14は炭素数 1〜10の脂肪族炭化水素基、炭素数 3〜14の脂 環式炭化水素基、シァノ基、水酸基、フッ素原子、炭素数 1〜10のフッ素置換炭化 水素基、 Si(R9)基、または— SO R1Q基を表し、 nl2は 1〜3の整数を表し、 qは 0〜
3 3
9の整数を表し、 R14が複数存在する場合、その R14は同一でも異なっていてもよぐ R9 および R1Qは、炭素数 1〜10のアルキル基を表す。
R"は、式(1— 1)における R1と同一である。また、好ましい R"は R1のそれと同一で ある。好ましい qは aと同じである。
式(1 9)における好ま 、化合物の具体例を以下に示す。
[化 40]
Figure imgf000041_0001
(1-9-10) (1-9-11) (1-9-12)
Figure imgf000042_0001
(1 -9-13) (1 -9-14) (1 -9-15)
Figure imgf000042_0002
(1 -9-16) (1 -9-17) (1 -9-18)
Figure imgf000042_0003
(1 -9-19) (1 -9-20) (1 -9-21 )
[0023] 式( 1 1)〜式( 1 9)の中で特に好ま 、化合物は式( 1 1)、式( 1 4)で表さ れる化学構造を有し、かつこれらの化合物が無置換である力 炭素数 1〜10の脂肪 族飽和炭化水素基、炭素数 3〜 14の脂環式飽和炭化水素基で置換された化合物 であり、この中で無置換である化合物が特に好ましい。
[0024] 上記化合物は、液浸露光装置が作動する温度にお!、て液体であり、屈折率は純水 よりも高 、ことが前述した (iii)式、(iv)式の理由で好ま 、。
具体的には、屈折率が水と露光前のレジスト膜 (または液浸用上層膜)との間の値 であり、かつ水と比較してより高い値であることが好ましぐ 25°Cにおいて、波長 193η mにおける屈折率が 1. 45-1. 8、好ましくは 1. 6〜1. 8の範囲、 25°Cにおいて、波 長 248nmにおける屈折率力 S1. 42〜: L 65、好ましくは 1. 5〜1. 65の範囲である。 また、 25°Cにおいて、 D線 (波長 589nm)における屈折率が 1. 4以上、好ましくは 1. 4〜2. 0、更に好ましくは 1. 40〜: L 65の範囲である。
[0025] また、使用環境の変化による屈折率変化はデフォーカスの原因となるため本ィ匕合 物は屈折率が温度、圧力等の影響を受けにくい化合物であることが好ましい。特に、 温度については、レンズ、レジスト材料の光吸収に伴う発熱により使用時に変化する ことが想定されるため、屈折率の温度依存性が低いことが好ましい。具体的には、屈 折率 (n)の温度 (T)による変化率 dnZdTの絶対値が好ましくは、 5. O X 10"3 (°C_1) 、更に好ましくは 7. 0 X 10— 4 (。C— 以内である。
また、本観点から、本ィ匕合物の比熱は大きい値であることが好ましぐ具体的には比 熱の値は 0. lcalZg'°C以上であることが好ましぐ更に好ましくは 0. 30cal/g-°C 以上である。
また、上記化合物は、その屈折率が色収差による影響を受けにくいことが好ましぐ 露光波長周辺における屈折率の波長依存性が小さいことが好ましい。
[0026] また、他の特性としては、遠紫外領域での透過性が高ぐ粘度、酸素、窒素等の気 体の溶解度、レンズ、レジスト (またはレジスト上層膜)との接触角、表面張力、引火点 等が下記に記す範囲であることが好ましい他、レンズ、レジスト材料との化学的相互 作用が少ないことが望まれる。以下、これらの特性について具体的に説明する。
193nmにおける放射線透過率は、 25°Cにおいて、光路長 lmmの透過率が 70% 以上であることが好ましぐ特に好ましくは 90%以上であり、更に好ましくは 95%以上 である。この場合、透過率が 70%未満であると液体の光吸収により生じた熱エネルギ 一による発熱が起こりやすくなり、温度上昇による屈折率変動による光学像のデフォ 一カス、および歪が生じやすくなる。また、液体の吸収により、レジスト膜に到達する 光量が減少し、スループットの大幅な低下を引き起こす原因となる。
[0027] 粘度は 20°Cにおける粘度が 0. 5Pa' s以下、特にウェハとレンズ材料の間のギヤッ プが lmm以下の環境で使用する場合は好ましくは 0. OlPa' s以下、特に好ましくは 0. 005Pa' s以下である。粘度が 0. 5Pa' sをこえる場合、レジスト膜 (または液浸用上 層膜)とレンズ材料との間のギャップに液体が浸入しにくい、あるいは、液浸の液体供 給方法として局所液浸法、露光方式として、ウェハをのせたステージを動かすことに より、ウェハを全面露光するステップアンドスキャン方式を用いた場合十分なスキャン 速度を得られずスループットの大幅な低下をもたらし、また摩擦による温度上昇がお こりやすい傾向にあり温度変化による光学特性変化の影響を受けやすい。また、特 にウェハとレンズ材料の間のギャップが lmm以下である場合、前者の理由から粘度 は 0. OlPa' s以下であることが好ましぐこの場合、ギャップの距離 (液膜の厚さ)を低 減させることにより、液体の透過率を上昇させ、液体の吸収の影響を受けにくくするこ とができ好適である。
また、粘度が大きくなつた場合液中の気泡(ナノバブル、マイクロバブル)の生成が 起こりやすくなり、また、該気泡の寿命が長くなるため好適でない。
[0028] また、本発明に係る液体への気体の溶解度は、酸素および窒素の 25°C、分圧が 1 気圧 (atm)であるときの液体中の気体のモル分率であらわされる溶解度が好ましくは 0. 5 X 10— 4〜70 X 10— 4、更に好ましくは 2. 5 X 10— 4〜50 X 10— 4であり、これらの気 体の溶解度が 0. 5 X 10— 4以下である場合レジスト等力 発生したナノバブルが消失 しにくいためバブルによる光散乱によりパターユング時にレジストの欠陥が生じやすく なる。また 70 X 10—4以上であると露光時に周囲の気体を吸収するため、気体の吸収 による光学特性の変化の影響を受けやすくなる。
[0029] また、本発明の液体とレジスト (または液浸用上層膜)との間の接触角は好ましくは 2 0° から 90° 、更に好ましくは 50° から 80° であり、また、石英ガラスや CaFなどの
2 レンズ材料との接触角は好ましくは 90° 以下、好ましくは 80° 以下である。本発明 の液体と露光前のレジスト(または液浸上層膜)との接触角が 20° 以下であるとギヤ ップに対して液体が浸入されにくぐまた、露光方式として上記、局所液浸法とステツ プアンドスキャン方式の組み合わせを用いた場合液体が膜中に飛散しやすくなる。 一方、本発明の液体と露光前のレジスト (または液浸上層膜)との接触角が 90° 以上 になると凹凸のあるレジスト (または上層膜)境界面で気体を取り込みやすくなり、気 泡が発生しやすくなる。このような現象は、 Immersion Lithography Modeling 2003 Year -End Report (International SEMATECH)に記載されている。 また、本発明の液体とレンズ材料との接触角が 90° をこえる場合レンズ表面と液体 の間に気泡が生じる傾向がある。
また、特に現在水の液浸露光で用いられているのと同様の、局所液浸法による液 浸でステップアンドスキャン方式の露光装置に使用する場合、スキャン時の液体の飛 散が問題となるため、本発明の液体は表面張力が高いことが好ましい。具体的には 2 0°Cにおける表面張力は好ましくは 5dynZcm〜90dynZcm、更に好ましくは 20dy n/ cm〜80dvnZ cmである。 本発明の液体とレジスト表面との接触角が好適でない場合、適当な液浸上層膜を 使用することにより接触角を改善することができる。特に本発明の液体は低極性であ るため、高極性上層膜を用いることにより接触角を高くすることができる。
[0030] 本液体による光酸発生剤、塩基性成分等のレジスト成分の抽出はレジストのパター ユング性能に欠陥、プロファイルの劣化等の悪影響を及ぼすのみでなぐ液体自身 の汚染につながり、例えば液体の光学特性の変化やレンズの浸食等の原因となる。 また、このために液体の再利用が困難になったり、頻繁な液体の精製が必要となる。 したがって、液体の抽出による汚染は少ないことが好ましい。溶出量の評価は HPLC 等による方法によって評価可能である力 より正確には 193nmにおける吸光度が、 レジスト中の成分の混入に対して極めて敏感であるため、後者の変化を追跡すること により評価可能である。具体的な液体に対する要求としては、後述する評価方法の 中で「レジスト接触時の吸光度変化」による浸漬実験における 180秒浸漬後の lcmあ たりの吸光度変化 (浸漬後の吸光度ー浸漬前の吸光度)が 0. 05以下、好ましくは 0 . 02以下、更に好ましくは 0. 005以下であることが好ましい。
[0031] 本発明の液体は使用環境下で爆発、発火、引火等の危険性が低い化合物である ことが好ましい。具体的には引火点は 25°C以上であることが好ましぐ 50°C以上であ ることが更に好ましい、発火点は好ましくは 180°C以上、更に好ましくは 230°C以上 である。また、 25°Cにおける蒸気圧は 50mmHg以下であることが好ましぐ更に好ま しくは 5mmHg以下である。
また、人体、環境に対する有害性が低いことが好ましく具体的には、人体に対する 有害性に関しては、急性毒性が低ぐ発がん性、変異原性、催奇形性、生殖毒性等 のない化合物が好ましい。具体的には、例えば、許容濃度が、好ましくは 30ppm以 上、更に好ましくは 70ppm以上であり、 Ames試験の結果は陰性である液体が好ま しい。環境に対する有害性については、残留性、生態蓄積性のない化合物が好まし い。
[0032] また、本発明の液体はガスクロマトグラフィーで測定した純度が 95. 0重量%以上 であることが好ましぐ特に好ましくは 99. 0重量%以上であり、更に好ましく純度が 9 9. 9重量%以上である。 特に、 193nm等露光波長において、吸光度が大きいォレフィンを含有する化合物 、芳香族環を含有する化合物、硫黄 (スルフイド、スルホキシド、スルホン構造)、ハロ ゲン、カルボニル基、エーテル基を含有する化合物等の割合は 0. 01重量%未満で あることが好ましぐ 0. 001重量%未満であることが特に好ましい。
また、本ィ匕合物からなる液体は半導体集積回路製造工程に使用されるものである ことから、金属または金属塩含有量が低いことが好ましぐ具体的には金属含量が 10 Oppb以下、好ましくは lOppb以下、更に好ましくは 1. Oppb以下である。金属含量が 1 OOppbをこえると金属イオンまたは金属成分によりレジスト膜等に悪影響を及ぼした りウェハーを汚染するおそれがある。
金属としては、 Li、 Na、 K、 Mg、 Cu、 Ca、 Al、 Fe、 Zn、 N も選ばれた少なくとも 1つの金属が挙げられる。これらの金属は原子吸光法により測定することができる。 また、本液体中の酸素濃度は 100ρρπι (100 /ζ gZml)以下、好ましくは lOppm以 下、より好ましくは 2ppm以下である。また、特に露光時には好ましくは lppm以内、 更に好ましくは lOppb以内である。酸素濃度が lOOppmをこえると溶存酸素による酸 化反応等による透過率低下が起こりやすい傾向にある。また、酸化反応等が起こらな い場合にも、酸素が溶存した場合、例えば実施例に示すように溶存酸素および、酸 素に放射線をあてた時に生じるオゾンの吸収のため、溶存酸素濃度に依存して液体 の吸光度が低下する。また、酸素共存下で液体を露光した場合、生成したオゾンが 液体を酸化し、液体の劣化がはやまる。
また、本液体は特に偏光露光を行なう場合、旋光性を有すると光学コントラスト低下 の原因となるため、旋光性を有さない液体であることが好ましい。具体的には、本液 体を構成する化合物が旋光性を有しな ヽ (光学活性でな 、;)化合物であることが好ま しぐ液体の構成化合物が旋光性を有する (光学活性な)化合物である場合には等 量の光学異性体を含有し (ラセミ体として存在し)、液体全体として光学活性を有しな いことが好ましい。
本発明の化合物は、市販の化合物として入手できる力、あるいは、既存の種々の合 成法により入手可能な原料力 製造することができる。以下、本化合物の製造法につ V、て具体例を挙げて説明する。 例えば、式(2— 1)で示したィ匕合物については、石炭コークス炉力 でる乾留油、 石油系の接触改質油および流動接触分解油、更にはエチレンの製造副生成物のナ フサ分解油等に含まれているナフタレンまたは、ナフタレン誘導体を適当な触媒を用 V、て、接触水素化により核水添することにより製造することができる。
上記、接触改質油、流動改質油、ナフサ分解油にはナフタレン、アルキルナフタレ ンの他、ベンゼン、アルキルベンゼン、フエナントレン、アントラセン、その他の多環芳 香族およびその誘導体、ベンゾチォフェンおよびその誘導体等の硫黄含有ィ匕合物、 ピリジンおよびその誘導体等の窒素含有ィヒ合物が含有されており、原料となるナフタ レン及びナフタレン誘導体はこれらの混合物力 分離精製することにより得ることがで きる。
[0034] 上記化合物(2— 1)の製造に使用するナフタレンおよびナフタレン誘導体中には上 記のうち硫黄含有化合物の含有量が低いものが好ましい。この場合硫黄含有化合物 の含有量は好ましくは lOOppm以下、更に好ましくは 50ppm以下である。硫黄含有 化合物の含有量が lOOppmをこえると該硫黄含有化合物が接触水素化の際の触媒 毒となり核水添反応の進行を妨げる原因となる他、化合物(2— 1)中に該硫黄含有 化合物に由来する硫黄含有不純物が混入し、精製により除けない場合、本発明の液 体の 193nm等の露光波長における透過率が低下する原因となる。
[0035] また、特に、化合物(2—1)のうち、 cis—デカリンまたは trans—デカリンおよびその 混合物を製造する場合は、原料となるナフタレンの純度が高いことが好ましぐ好まし いナフタレンの純度は 99. 0%以上、特に好ましいナフタレンの純度は 99. 9%以上 である。この場合、不純物として硫黄ィ匕合物等の含有量が高い場合上記の問題が起 こるほか、不純物として他のナフタレン誘導体、芳香族化合物およびその誘導体が 含まれた場合、これらの不純物が水添された分離困難な炭化水素化合物を生成し、 デカリンの純度制御が困難となる。
[0036] また、接触水素化の触媒としては、ニッケル系、白金、ロジウム、ルテニウム、イリジ ゥム、パラジウム等の貴金属系触媒のほ力 コノ レト 'モリブデン、ニッケル.モリブデ ン、ニッケル 'タングステン等の硫ィ匕物を用いることができる。この中でニッケル系触媒 がその触媒活性、コストの面力も好ましい。 また、これらの金属触媒は適当な担体に担持して使用することが好ましぐこの場合 触媒が担体上に高分散されることにより、水素化の反応速度があがる他、特に、高温 、高圧条件下における活性点劣化を防止し、また、触媒毒に対する抵抗力が向上す る。
該担体としては、 SiO 、 γ— Al O 、 Cr O 、 TiO 、 ZrO 、 MgO、 ThO、珪藻土、
2 2 3 2 3 2 2 2 活性炭等を好適に使用することができる。
また、上記接触水素化の方法としては、溶剤を用いない気相法および原料を適当 な溶剤に溶解して反応させる液相法を用いることができる。この中で、気相法力コスト および反応速度に優れるため好まし ヽ。
気相法を用いる場合、触媒としてはニッケル、白金等が好ましい。使用する触媒の 量は多いほど反応速度があがる力 コストの面力 好ましくない。したがって、反応速 度を速め、反応を完結させるためには触媒量を少なくし、温度および水素圧が高い 条件で反応させることが好ましい。具体的には触媒量が原料ナフタレン (ナフタレン 誘導体)対比 0. 01〜10重量部で水素圧が 5〜15MPa、反応温度は 100°C〜400 °C程度で反応させるのが好ま 、。
また、例えば特許文献 (特開 2003— 160515)に記された方法によりニッケルまた は白金、ノラジウム系触媒を用いて中間体のテトラリンカもナフタレンを除去する方 法により、温和な条件で目的物を得ることもできる。
[0037] 上記の反応において、反応転化率は好ましくは 90%以上、更に好ましくは 99%以 上である。
上記反応後、適当な精製を行なうことにより、未反応原料、触媒等の不純物を除去す ることが好ましい。
上記精製法としては、精密蒸留、水洗、濃硫酸洗浄、ろ過、晶析等の精製法および その組み合わせを用いることができる。この中で、精密蒸留が不揮発性の触媒由来 の金属その他の金属除去、原料由来の成分の両方の除去に対して有効であることか ら好ましい。また、触媒由来の金属を除去するために触媒に応じた脱金属処理を行 なうことが好ましい。
[0038] 上記化合物のうちテトラヒドロジシクロペンタジェンは、光学レンズ、光学フィルム用 榭脂の原料モノマーとして有用であることが知られているジシクロペンタジェン(exo、 endo混合物)または endoジシクロペンタジェンを、適当な条件で水添し、得られたテ トラヒドロジシクロペンタジェンを蒸留等の方法で精製することにより得ることができる。 また、ジシクロペンタジェンカも選択的に exo異性体を得た 、場合はジシクロペンタ ジェン異性体混合物を、適当な触媒を用いて異性ィ匕することにより exo体を選択的に 得て、上記の水添反応を行なうか、または、 endo (endo、 exo混合)ジシクロペンタジ ェンの水添により得た endo (endo, exo混合)テトラヒドロジシクロペンタジェンを適当 な触媒により異性ィ匕することにより exoテトラヒドロジシクロペンタジェンをを選択的に 得ることができる。
上記ジシクロペンタジェンは、一般にナフサの熱分解生成物中のいわゆる C留分
5 中に多量に含まれるシクロペンタジェンを 2量ィ匕することにより製造されて 、る。 この ジシクロペンタジェンは、例えば、 5-イソプロべ-ルノルボルネン等の C留分由来の
5
炭化水素成分を不純物として含んでいるが、これらの化合物が含有していると、水添 、異性ィ匕後にこれらの不純物由来の炭化水素生成物が残留し、最終生成物のテトラ ヒドロジシクロペンタジェンの精製を困難にする。したがって、あらかじめ精製する等 の方法により高純度化したものを使用することが好ましい。この場合の純度は好ましく は 95重量%以上、更に好ましくは 97重量%以上である。
また、上記ジシクロペンタジェンは、例えば水添反応の触媒毒となる含硫黄成分の 含有量が少ないことが好ましぐ具体的には、ジシクロペンタジェン中に存在する含 硫黄成分が好ましくは 500ppb以下、更に好ましくは 50ppb以下である。含硫黄成分 の量が 500ppbであると後工程における水添反応が阻害されやすくなる。
ここで、該含硫黄成分とは例えば、遊離硫黄、元素状硫黄、硫化水素、メルカプタ ン類、ジスルフイド類、チォフェンなどの無機または有機化合物の形態で存在する硫 黄元素の総量を意味し、硫黄ィ匕学発光検出器 (SCD)を備えたガスクロマトグラフィ 一等で分析することができる。該硫黄留分は例えば特開 2001— 181217の方法に より除去することができる。該ジシクロペンタジェンの水添は公知の炭素一炭素 2重 結合の水添触媒を用いて行なうことができる。該水添方は例えば特開昭 60— 2095 36、特開 2004— 123762に開示されている方法により行なうことができる。上記の水 添後に蒸留を行なうことによりテトラヒドロジシクロペンタジェンを得ることができるが、 例えば exo体を選択的に得るには各種ルイス酸を用いて異性ィ匕する方法が知られて いる。本異性ィ匕は例えば、ルイス酸としてハロゲンィ匕アルミニウム、硫酸等を用いた方 法により行なうことができる(特開 2002— 255866)。本反応において、副生成物とし てァダマンタンが生成することが知られて 、るが、ァダマンタンが多量に存在した場 合、 193nmにおける透過率が低下するため、最終液体に共存するァダマンタンの量 は 0. 5重量%以下、好ましくは 0. 1重量%、更に好ましくは 0. 05重量%以内にする 必要がある。該ァダマンタンは上記異性ィ匕反応の条件を適当に設定するかあるいは 、各種公知の精製方法により除去することができる。
以下、好ま 、液浸露光用液体の構造および物性値の具体例を表 1に示す。
[表 1]
1
1
Figure imgf000051_0001
また、 trans—デカリン、 exo—テトラヒドロジシクロペンタジェンの諸物性データを表 2に示す。
[表 2]
物性項目 物性値
exo-テトラヒトロンシク 項目 条件 単位 trans -丁力1リン
口ペンタジェン 沸点 760mHg °C 187.31 185 融点 760mHg °C -30.382 -79 比重 20°C (/4°C) 0.86969 0.93
ft
194.227nm - 1.631 1.649 屈折率
589nm 1.46932 1.49 屈折率温度依存性 Dn/dT 194.227nm -0.00056 -0.000056 屈折率圧力依存性 dn/dP 5 10"'°
誘電率 20°C 2.172
双極子モーメント - D 0 - 粘性率 20°C cP 2.128 2.86 表面張力 20°C dyn/cm 29.89
比熱(定圧) 20°C cal/ deg.mol 54.61 48.5
°C 413.8
臨界圧力 - atm 27 - 蒸気圧 25°C mmHg 0.78
熱伝導度 62.8。C(D),30。C(W〕 cal/cm.s.deg 0.000256
引火点 - °C 58 55 発火点 °C 262
酸素溶解度 分圧 1 attn ppm 274 220 窒素溶解度 分圧 1 atm ppm 1 13 96 表 2において、酸素溶解度および窒素溶解度の値は、分圧 1気圧の場合の値で単 1 は ppmである。
本発明の液浸露光用液体は上記式(1 1)〜(1 9)から選ばれる構造を有する ので例えば 193nmにおける吸光度が小さく好適である力 該波長領域の吸光度は 微量不純物の影響をうけやすい。また、これらの液体中の中に塩基成分が存在した 場合非常に微量でもレジストプロファイルに大きな影響を与える。これらの不純物は 上記液体を適当な方法で精製することによって除去することができる。例えば(1— 1 )〜( 1 5)、( 1 7)〜( 1 9)の構造を有する、飽和炭化水素化合物につ 、ては、 濃硫酸洗浄、水洗、アルカリ洗浄、シリカゲルカラム精製、精密蒸留、アルカリ条件下 での過マンガン酸塩処理およびこれらの組み合わせで精製することができる。
具体的には、例えば濃硫酸洗浄を濃硫酸の着色がなくなるまで繰り返し、その後、 水洗、アルカリ洗浄により濃硫酸を除去し、更に水洗、乾燥後、精密蒸留を行なうこと により好適に精製することができる。
また、化合物によっては前期処理を行なう前にアルカリ性条件下過マンガン酸塩で 処理することにより更に効率よく不純物を除去することができる。
[0041] 上記精製操作のうち、濃硫酸洗浄は 193nmにおいて吸収の大きい芳香族化合物 、炭素 炭素不飽和結合を有する化合物の除去に有効な他、微量塩基性化合物の 除去に有効であり好ましい精製法である。該処理は精製する化合物により最適な攪 拌法、温度範囲、処理時間、処理回数を選定して処理することが好ましい。
具体的には温度については、高いほど不純物除去の効率はあがる力 同時に副反 応により吸収原因となる不純物が生成しやすくなる傾向にある。好ましい処理温度は 20°C〜40°C、特に好まし 、処理温度は 10°C〜20°Cである。
処理時間については長いほど、上記芳香族化合物、炭素一炭素不飽和結合を有 する不純物との反応が進み上記不純物の除去効率があがる力 副反応による吸収 原因となる不純物の生成量が増加する傾向にある。
上記濃硫酸処理で精製を行なう場合処理後に本発明の液体中に残存する濃硫酸 由来の酸性不純物。濃硫酸処理により生成したスルホン酸成分を完全に除去するた め、アルカリ洗浄、純水洗浄および水分除去のための乾燥処理を行なうことが好まし い。
また、濃硫酸洗浄後に精密蒸留を行なうことにより、より効率よく吸収原因となる不 純物を除去することができる。
[0042] 該精密蒸留は除去すべき不純物と本発明の液体の沸点差に応じてその分離に必 要な理論段数以上の理論段数を有する蒸留塔で行なうことが好まし 、。不純物除去 の観点力も好ましい理論段数は 10段〜 100段であるが、理論段数を高めた場合設 備、製造コストが高くなるため、他の精製法との組み合わせにより、これより低い段数 での精製も可能である。特に好ましい理論段数は 30段〜 100段である。
また、該精密蒸留は適当な温度条件下で行なうことが好ましい。蒸留温度が高くな ると化合物の酸ィ匕反応等により吸収の低減効果が小さくなる傾向にある。好ましい蒸 留温度は 30°C〜120°C、特に好ましい蒸留温度は 30°C〜80°Cである。
上記の温度範囲での蒸留を行なうために、必要に応じて該精密蒸留は減圧下で行 なうことが好ましい。
上記精製処理は窒素またはアルゴン等の不活性ガス雰囲気下で行なうことが好ま しい。この場合、不活性ガス中の酸素濃度、有機成分濃度が低いことが好ましい。好 ましい酸素濃度は lOOOppm以下、更に好ましくは lOppm以下、特に好ましくは lpp m以下である。
また、上記処理のうち過マンガン酸塩による処理は特に非芳香族の炭素 炭素不 飽和結合含有化合物の除去に有効であるが、 3級炭素を有する化合物については 3 級炭素の酸化反応が起こりやす ヽことから、 3級炭素を有さな ヽ化合物の精製に好 適である。
また、該処理は副反応を防ぐ観点力も室温以下の低温で行なうことが好ま 、。
[0043] 具体例として、 (cis, trans混合物: Aldrich社製)デカリン、 trans デカリン (東京 化成社製)、後述する実施例 1に示す方法で精製を行なった精製後 tmns デカリン (1)、ジシクロへキシル、イソプロビルシクロへキサン、シクロオクタン、シクロヘプタン 、実施例 2に示す方法で精製を行なった精製後 tmns デカリン (2)、実施例 3に示 す方法で精製を行なった精製後 exo-テトラヒドロジシクロペンタジェン(1)、実施例 4 に示す方法で精製を行なった精製後 exo-テトラヒドロジシクロペンタジェン(2)、実 施例 5に示す方法で精製を行なった精製後 tmns デカリン (3)、実施例 6に示す方 法で精製を行なった精製後 exo-テトラヒドロジシクロペンタジェン(3)、実施例 7に示 す方法で精製を行なった精製後ジシクロへキシル、同イソプロビルシクロへキサン、 同シクロオクタン、同シクロヘプタンの屈折率および透過率の測定結果を表 3および 表 4に示す。なお、参照液体としてのァセトニトリル、液浸露光用液体として用いられ る純水、沃化メチレンを比較例として用いた。
[0044] 屈折率は、 cis、 trans デカリンおよび精製後 trans デカリン、ジシクロへキシル 、イソプロビルシクロへキサン、シクロオクタン、シクロヘプタン、ァセトニトリノレについ て紫外領域での屈折率を測定した。測定装置は、 MOLLER— WEDEL社製ゴ-ォ メータースぺクトロメーター 1形 UV— VIS— IRを用い、測定方法は最小偏角法により 測定温度 25°Cで測定した。
透過率は、測定法 Aまたは測定法 Bで行なった。測定法 Aは、酸素濃度を 0. 5pp m以下に管理した窒素雰囲気のグローブボックス中でポリテトラフルォロエチレン製 蓋付の光路長 10mmのセルに液体のサンプリングを行な!/、、 日本分光社 i^ASCO -V-550を用いて、上記セルを用いて、空気をリファレンスとして測定した。表中の値 はセルの反射を計算により補正した後、この値をもとに光路長 lmmに換算した値で ある。
測定法 Bは、酸素濃度を 0. 5ppm以下に管理した窒素雰囲気のグローブボックス 中でポリテトラフルォロエチレン製蓋付の石英セル (測定用:光路長 50mm、リファレ ンス:光路長 10mm)中に液体のサンプリングを行なった。上記のセルを用いて、 日 本分光社 SiiASCO-V-550により、光路長 50mmセルをサンプル、光路長 10mm のセルをリファレンスとして測定を行なった。本測定の値を光路長 40mmあたりの吸 光度とした。表中の値はこの値をもとに光路長 lmmあたりの値に換算したものである
[表 3]
Figure imgf000055_0001
[表 4]
透過率(193nm;mm— ' ) (%)
屈折率 屈折率 (193nm) (589nm) 測定法 A 測定法 B
デカリン
73.5 - 1.64 1.48
(cis,trans混合物)
trans-デカリン (東京化成品) 10以下 - - 1.48 精製後 trans-デカリン(1 ) 93.4 1.63 1.48 精製後 trans-デカリン(2) 96.8 - 1.63 1.48 精製後 trans-デカリン(3) 99.5 1.63 1.48 exo— ヒド クロヘンタンェン 10以下 - - 1.49 精製後 exo-テトラヒドロジシクロペンタジェン(1 ) 87.7 1.65 1.49 精製後 exo-テトラヒドロジシクロペンタジェン(2) 97.5 1.65 1.49 精製後 exo-テトラヒドロジシクロペンタジェン(3) 99.6 1.65 1.49 精製後ジシクロへキシル 97.3 - 1.64 1.48 精製後イソプロビルシクロへキサン 76.3 - 1.59 1.44 精製後シクロオクタン 70.2 1.46 精製後シクロヘプタン 71 1.44 ァセトニドリル 91.8 1.44 1.34 純水 94 1.44 1.34 ヨウ化メチレン 10以下 1.7 表 3および表 4に示すように、屈折率の波長依存性は波長が小さくなるにつれ屈折 率が増加し、上記表中の本発明の液体は、例えば 193nmにおいて 1. 58以上の高 屈折率を有する。
また、本発明の化合物は低極性ィ匕合物であるため酸素、窒素等の気体の溶解度が 高い。このため、これらの気体の溶存の影響を受けやすぐたとえば大気雰囲気下で 放置した場合、溶存酸素の吸収または溶存酸素が光により励起されて生じるオゾン の吸収、あるいは溶存酸素の関与する酸ィ匕反応等により例えば 193nmの透過率の 低下が起こる傾向がある。このため、これらの化合物は脱気処理を施し、窒素、アル ゴン等の不活性で吸収の少な 、気体中で保存することが好まし 、。具体的には保存 液体中の酸素濃度が lOOppm以下であることが好ましぐ更に好ましくは lOppm以 下になるように処理することが好ましい。また、露光前に脱酸素できない場合は、特に lppm以下が好ましぐさらに好ましくは lOppb以下である。
以下、本発明の液浸露光用液体を用いた液浸露光方法につ!、て説明する。
本発明の液浸露光用液体は、上記に述べたように不活性気体中で保存することが 好ましいが、その際の容器としては、容器成分または容器のふたの成分 (例えば、プ ラスチックに配合される可塑剤等)の溶出のな 、容器で保存することが好ま ヽ。好ま しい容器の例としては例えば材質がガラス、金属(例、 SUS)、陶器、 PTFE (ポリテト ラフルォロエチレン)、 PFEP (パーフルォロエチレンプロペンコポリマー)、 ECTFE ( エチレン クロ口トリフルォロエチレンコポリマー)、 PTFEZPDD (ポリテトラフルォロ エチレン パーフルォロジォキソールコポリマー)、 PFA (パーフルォロアルコキシァ ルカン)、 ETFE (エチレンーテトラフルォロエチレンコポリマー)、 PVDF (ポリビ-リ デンフルオライド)、 PVF (ポリビュルフルオライド)、 PCTFE (ポリクロ口トリフルォロェ チレン)等のフッ素榭脂である容器が挙げられるが、特に好ましくは材質がガラス、フ ッ素榭脂の容器である。
また、好ましい容器のふたの例としては、例えば材質がポリエチレンで可塑剤を含 まないふたや、材質がガラス、金属(例、 SUS)、陶器、 PTFE (ポリテトラフルォロェ チレン)、 PFEP (パーフルォロエチレンプロペンコポリマー)、 ECTFE (エチレン一ク ロロトリフルォロエチレンコポリマー)、 PTFEZPDD (ポリテトラフルォロエチレンーパ 一フルォロジォキソールコポリマー)、 PFA (パーフルォロアルコキシアルカン)、 ET FE (エチレンーテトラフルォロエチレンコポリマー)、 PVDF (ポリビ-リデンフルオラィ ド)、 PVF (ポリビュルフルオライド)、 PCTFE (ポリクロ口トリフルォロエチレン)等のフ ッ素榭脂であるふたが挙げられる。
また、容器力も露光機に送液時に使用する配管については、上記と同様の溶出の 起こらない配管であることが好ましぐ好ましい配管の材質としてはガラス、金属、陶 器等が挙げられる。
本発明の液浸露光用液体は、液浸露光に用いた場合、微粒子、気泡(マイクロバ ブル)がパターンの欠陥等の原因となることから、微粒子および気泡の原因となる溶 存気体の除去を露光前にしておくことが好ましい。
微粒子の除去方法としては適当なフィルターを用いてろ過する方法が挙げられる。 フィルタ一としては、微粒子の除去効率がよぐかつろ過時に溶出による、露光波長 における吸収の変化のな 、材質を用いたフィルターが好まし 、。好まし 、フィルター 材質としては、例えばガラス、金属(例えば、 SUS、銀)、および金属酸化物、 PTFE ( ポリテトラフルォロエチレン)、 PFEP (パーフルォロエチレンプロペンコポリマー)、 E CTFE (エチレン クロ口トリフルォロエチレンコポリマー)、 PTFEZPDD (ポリテトラ フルォロエチレン パーフルォロジォキソールコポリマー)、 PFA (パーフルォロアル コキシアルカン)、 ETFE (エチレン一テトラフルォロエチレンコポリマー)、 PVDF (ポ リビ-リデンフルオライド)、 PVF (ポリビュルフルオライド)、 PCTFE (ポリクロロトリフ ルォロエチレン)等のフッ素榭脂が挙げられる。また、フィルターのハウジング、コア、 サポート、プラグ等の周辺部の材質についても、上記のフィルターの好ましい材質の 中から選択される材質であることが好まし 、。
溶存気体の除去方法としては、例えば減圧脱気法、超音波脱気法、気体透過性膜 による脱気法、各種のデガッサーを用いた脱気法等が挙げられる。
本発明の液浸露光用液体は露光時は光学系の一部となるため、液体の屈折率な どの光学的性質の変化の影響のない環境で使用することが好ましい。例えば、液体 の光学特性に影響を与える温度、圧力等を一定にした環境下で使用することが好ま しい。例えば温度については好ましくは、 ±0. c、更に好ましくは ±0. o eの範 囲で管理することが好ま 、。
また、本発明の液体を用いた液浸露光は、大気雰囲気下で行なうことも可能である が、上述のように、本発明の液体に対する酸素の溶解度が高ぐ露光波長における 吸収特性に影響を与える場合があるため、露光波長における吸収の少なぐ液体と 化学反応を起こさな 、不活性気体中で露光することが好ま Uヽ。好ま Uヽ該不活性 気体としては、例えば、窒素、アルゴン等が挙げられる。
また、空気中の有機成分による汚染による液体の露光波長における吸収特性の変 化を防ぐ観点から、使用雰囲気中の有機成分濃度を一定レベル以下に管理すること が好ましい。この有機成分濃度の管理方法としては、上記不活性気体雰囲気に高純 度のものを用いるほか、有機成分を吸着するフィルター、各種ガス精製管 (装置)を使 用する方法等が挙げられる。濃度管理のためには、定期的に周辺雰囲気の分析を 行なうことが好ましいが、この目的には例えばガスクロマトグラフィーを用いた種々の 分析法を用いることができる。
露光領域の液浸の液体供給方法としては、 mooving pool法、 seimming stage 法、 Local Fill法 (局所液浸方式)が知られて ヽるが (特別セミナー液浸露光技術 (2 004年 5月 27日開催)セミナーテキスト参照)、局所液浸法が液浸露光用液体の使用 量が少なくてすむため好ま U、。
本液体を用いた液浸露光用の最終 (対物)レンズ材料としては現行の CaFあるいは
2 fused silicaがその光学特性から好ましい。他の好ましいレンズ材料としてはたとえ ば高周期アルカリ土類金属 Mのフッ素塩および一般式 Ca M Fで表される塩、 Ca
1 2
0、 SrO、 BaO等のアルカリ土類金属の酸ィ匕物等が好ましぐ該材料を用いた場合、 CaF (n@ 193nm= l. 50)、 fused silica (n@ 193nm= l. 56)と比較してレンズ
2
の屈折率が高くなるため、とりわけ開口数が 1. 5をこえる高 NAのレンズを設計、加工 する際に好ましい。
本発明の液体は、レジスト成分の抽出が極めて少ないため使用後に再利用するこ とができる。露光時のレジスト膜からの溶出等の影響が無視できるレジスト(またはレ ジスト上層膜)を用いた場合、本発明の液体は精製することなく再利用できるが、その 場合は、脱気、ろ過等の処理を行なった後再利用することが好ましい。これらの処理 はインラインで行なうことが工程を簡易化の観点力も好ましい。
また、使用時に上記のレジスト膜からの溶出等が 1回の使用で無視できるレベルで あっても、使用回数が一定回数をこえた場合、蓄積された不純物の影響により、液体 の物性が変化することが予想されるため、一定回数使用後に回収、精製を行なうこと が好ましい。
該精製の方法としては、水洗処理、酸洗浄、アルカリ洗浄、精密蒸留、適当なフィ ルター(充填カラム)を用いた精製、ろ過等の方法および、上記に述べた本発明の液 体の精製法、あるいはこれらの精製法の組み合わせによる方法が挙げられる。この中 で、水洗処理、アルカリ洗浄、酸洗浄、精密蒸留あるいはこれらの精製法の組み合わ せにより精製を行なうのが好ましい。
上記アルカリ洗浄は本発明の液体に溶出した露光により発生した酸の除去、酸洗 浄は本発明の液体に溶出したレジスト中の塩基性成分の除去、水洗処理は本発明 の液体に溶出したレジスト膜中の光酸発生剤、塩基性添加剤、露光時に発生した酸 等の溶出物の除去に対して有効である。
精密蒸留については、上記添加剤のうち低揮発性の化合物の除去に対して有効 な他、露光時にレジスト中の保護基の分解により発生する疎水性成分を除去するの に有効である。
[0048] 式(1 1)〜式(1 9)で表される液浸露光用液体は、それぞれ単独でも、また混 合物であっても使用できる。好ましい例としては、単独で使用する場合である。単独 で使用することにより、液浸露光条件を設定しやすくなる。
また、本発明の液体は必要に応じて本発明以外の液体と混合して使用することが でき、そうすることにより、例えば屈折率、透過率等の光学特性値、接触角、比熱、粘 度、膨張率等の物性値を所望の値にすることができる。
本目的に使用される本発明以外の液体としてはその他の液浸露光可能な溶剤の 他、各種の消泡剤、界面活性剤等を使用することができ、バブルの低減や、表面張 力のコントロールに有効である。
[0049] 上記液浸露光用液体を用いて、液浸露光がなされる。
基板上にフォトレジストを塗布してフォトレジスト膜が形成される。基板は、例えばシ リコンウエノ、、アルミニウムで被覆したウェハ等を用いることができる。また、レジスト膜 の潜在能力を最大限に引き出すため、例えば特公平 6— 12452号公報等に開示さ れているように、使用される基板上に有機系あるいは無機系の反射防止膜を形成し ておくことができる。
使用されるフォトレジストは、特に限定されるものではなぐレジストの使用目的に応 じて適時選定することができる。フォトレジストの榭脂成分としては、酸解離性基を含 む高分子が挙げられる。該酸解離性基は露光により分解しないことが好ましぐとりわ け、該分解後生成物が露光条件下で揮発し、本発明の液体に溶出しないものである ことが好ましい。これらの高分子の例としては、高分子側鎖に脂環族基、ラタトン基お よびこれらの誘導体等を含む榭脂、ヒドロキシスチレン誘導体等を含む榭脂等が挙げ られる。 特に高分子側鎖に脂環族基、ラタトン基およびこれらの誘導体を含む榭脂を用いる フォトレジストが好ましい。これらのフォトレジストは、脂環式炭化水素化合物または珪 素原子を環構造中に含む環式炭化水素化合物と類似する化学構造を含むので、本 発明の液浸露光用液体との親和性に優れる。また、フォトレジスト膜を溶出させたり溶 解させたりしない。
[0050] フォトレジストの例としては、榭脂成分として酸解離性基を含む高分子と、酸発生剤 と、酸拡散制御剤等の添加剤を含有する化学増幅型のポジ型またはネガ型レジスト 等を挙げることができる。
本発明の液浸露光用液体を用いる場合、特にポジ型レジストが好ましい。化学増幅 型ポジ型レジストにおいては、露光により酸発生剤力 発生した酸の作用によって、 重合体中の酸解離性有機基が解離して、例えばカルボキシル基を生じ、その結果、 レジストの露光部のアルカリ現像液に対する溶解性が高くなり、該露光部がアルカリ 現像液によって溶解、除去され、ポジ型のレジストパターンが得られる。
[0051] フォトレジスト膜は、フォトレジスト膜を形成するための榭脂組成物を適当な溶媒中 に、例えば 0. 1〜20重量%の固形分濃度で溶解したのち、例えば孔径 30nm程度 のフィルターでろ過して溶液を調製し、このレジスト溶液を、回転塗布、流延塗布、口 ール塗布等の適宜の塗布方法により基板上に塗布し、予備焼成 (以下、「PB」という
。)して溶媒を揮発することにより形成する。なお、この場合、市販のレジスト溶液をそ のまま使用できる。該、フォトレジスト膜は、液浸上層膜および液浸露光用液体よりも 高屈折率であることが好ましぐ具体的にはフォトレジスト膜の屈折率 n が 1. 65以
RES
上の範囲にあるのが好ましい。特に NAが 1. 3以上の場合 n は 1. 75より大きいこと
RES
が好ましくこの場合 NAの増大に伴う露光光のコントラスト低下を防ぐことができる。 なお、液浸露光方法においては、フォトレジスト膜上に更に液浸用上層膜を形成す ることがでさる。
[0052] 液浸用上層膜としては、露光光の波長に対して十分な透過性とフォトレジスト膜とィ ンターミキシングを起こすことなくフォトレジスト膜上に保護膜を形成でき、更に液浸露 光時に使用される上記液体に溶出することなく安定な被膜を維持し、現像前に剥離 することができる膜であれば使用することができる。この場合、該上層膜が現像液で あるアルカリ液に容易に溶解する膜であれば現像時に剥離されることから好ま 、。 アルカリ可溶性を付与するための置換基としては、へキサフルォロカルビノール基 およびカルボキシル基の少なくとも 1つの基を側鎖に有する榭脂であることが好まし い。
該液浸用上層膜は、同時に多重干渉防止機能を有することが好ましぐこの場合、 該液浸用上層膜の屈折率 n は以下に示す数式であることが好ま U
OC 、。 0.5
n = (n X n )
OC lq RES ここで、 nは液浸露光用液体の屈折率を、 n はレジスト膜の屈折率をそれぞれ表
lq RES
す。
具体的には、 n は 1. 6〜1. 9の範囲であるのが好ましい。
OC
上記液浸上層膜は、液浸上層膜用榭脂組成物をレジスト膜上にレジスト膜とインタ 一ミキシングしない溶剤に 0. 01〜10%の固形分濃度で溶解した後、フォトレジスト 膜の形成時と同様の方法により塗布、予備焼成を行なうことにより形成することができ る。
該フォトレジスト膜、または液浸用上層膜が形成されたフォトレジスト膜に本発明の 液浸露光用液体を媒体として、所定のパターンを有するマスクを通して放射線を照 射し、次いで現像することにより、レジストパターンを形成する。この工程は、液浸露 光を行な!ヽ、所定の温度で焼成を行なった後に現像する工程である。
液浸露光に用いられる放射線は、使用されるフォトレジスト膜およびフォトレジスト膜 と液浸用上層膜との組み合わせに応じて、例えば可視光線; g線、 i線等の紫外線;ェ キシマレーザ等の遠紫外線;シンクロトロン放射線等の X線;電子線等の荷電粒子線 の如き各種放射線を選択使用することができる。特に ArFエキシマレーザ (波長 193 nm)ある!/、は KrFエキシマレーザ(波長 248nm)が好まし!/ヽ。
また、レジスト膜の解像度、パターン形状、現像性等を向上させるために、露光後に 焼成(以下、「PEB」という。)を行なうことが好ましい。その焼成温度は、使用されるレ ジスト等によって適宜調節される力 通常、 30〜200°C程度、好ましくは 50〜150°C である。
次いで、フォトレジスト膜を現像液で現像し、洗浄して、所望のレジストパターンを形 成する。
実施例
本発明の液浸露光用液体を評価するために、以下に示す感放射線性榭脂組成物 を用いてレジスト膜を形成した。また、その一部に以下に示す液浸用上層膜を形成し た。この評価用レジスト膜を用いて液浸露光用液体としての特性 (溶出試験、膜の溶 解性試験、パターユング評価)を測定した。
参考例 1
感放射線性榭脂組成物に用いる榭脂を以下の方法で得た。
[化 41]
CH2
Figure imgf000063_0001
(S1 -1 ) (S1 -2) (S1 -3) ィ匕合物(SI— 1) 39. 858 (40モノレ%)、ィ匕合物(31—2) 27. 47g (20モノレ0 /0)、ィ匕 合物(S1— 3) 32. 68g (40モノレ0 /0)を 2—ブタノン 200g【こ溶解し、更 ίこ ヒ、、スイソ 吉草酸メチル 4. 13gを投入したモノマー溶液を準備し、 lOOgの 2—ブタノンを投入 した 1000mlの三口フラスコを 30分窒素パージする。窒素パージの後、反応釜を攪 拌しながら 80°Cに加熱し、事前に準備した上記モノマー溶液を滴下漏斗を用いて 3 時間かけて滴下した。滴下開始を重合開始時間とし、重合反応を 5時間実施した。重 合終了後、重合溶液は水冷することにより 30°C以下に冷却し、 2000gのメタノール へ投入し、析出した白色粉末をろ別する。ろ別された白色粉末を 2度 400gのメタノー ルにてスラリー上で洗浄した後、ろ別し、 50°Cにて 17時間乾燥し、白色粉末の重合 体を得た(75g、収率 75重量%)。この重合体は分子量が 10, 300であり、 NM R分析の結果、化合物(S 1— 1)、化合物(S 1— 2)、化合物(S 1— 3)で表される繰り 返し単位、各繰り返し単位の含有率が 42. 3 : 20. 3 : 37. 4 (モル%)の共重合体で あった。この重合体を榭脂 (A— 1)とする。
参考例 2
感放射線性榭脂組成物に用いる榭脂を以下の方法で得た。
[化 42]
Figure imgf000064_0001
(S2-1 ) (S2-2) (S2-3) ィ匕合物(S2— 1) 53. 928 (50モノレ%)、ィ匕合物(32— 2) 10. 69g (10モノレ0 /0)、ィ匕 合物(S2— 3) 35. 38g (40モル%)を 2 ブタノン 187gに溶解した単量体溶液(1)、 ジメチル 2, 2'—ァゾビス(2—メチルプロピオネート) 3. 37gを 2 ブタノン 64gに溶 解した溶液(2)を準備し、更に 2 ブタノンを 15g投入した 1000mlの三つ口フラスコ に前に準備した単量体溶液(1) 28. 77g、溶液 (2) 4. 23gを投入し、その後減圧置 換法にて窒素パージする。窒素パージの後、反応釜を攪拌しながら 80°Cに加熱し、 15分後、単量体溶液(1) 258. 98g、溶液(2) 24. 64gを送液ポンプを用いて 3時間 かけて滴下した。滴下終了後更に 4時間攪拌した。重合終了後、重合溶液は放冷す ることにより 30°C以下に冷却した。反応終了後、溶液は放冷し 30°C以下に冷却し、 4 OOOgのイソプロピルアルコールへ投入し、析出した白色粉末をろ別する。ろ別された 白色粉末を 2度 2000gのイソプロピルアルコールにてスラリー上で洗浄した後、ろ別 し、 60°Cにて 17時間乾燥し、白色粉末の重合体を得た (85g、収率 85重量%)。こ の重合体は Mwが 7, 600であり、 13C— NMR分析の結果、化合物(S2— 1)、化合 物(S2— 2)、化合物(S2— 3)で表される繰り返し単位、各繰り返し単位の含有率が 53. 1 : 8. 5 : 38. 4 (モル0 /0)の共重合体であった。この重合体を榭脂 (A— 2)とする 参考例 3
液浸用上層膜を形成する榭脂を以下の方法で得た
[化 43]
Figure imgf000065_0001
(S3- 1 ) (S3- 2) (S3- 3) (S3— 4) 化合物(S3— 1) 50g、化合物(S3— 2) 5g、化合物(S3— 3) 25g、化合物(S3— 4 ) 20g、およびァゾビスイソ吉草酸メチル 6. 00gをメチルェチルケトン 200gに溶解し、 均一溶液としたモノマー溶液を準備した。そして、メチルェチルケトン 100gを投入し た 1000mlの三口フラスコを 30分窒素パージした。窒素パージ後、フラスコ内を攪拌 しながら 80°Cに加熱し、事前に調製した上記モノマー溶液を滴下漏斗を用いて、 10 mlZ5分の速度で滴下した。滴下開始時を重合開始時点として、重合を 5時間実施 した。重合終了後、反応溶液を 30°C以下に冷却し、次いで該反応溶液をヘプタン 2 000g中へ投入し、析出した白色粉末をろ別した。ろ別した白色粉末をヘプタン 400 gと混合してスラリーとして攪拌する操作を 2回繰り返して洗浄した後、ろ別し、 50°Cに て 17時間乾燥して、白色粉末の榭脂 (E— 1)を得た (89g、収率 89重量%)。榭脂( E—l)は、Mwが7, 300であった。
参考例 4
液浸用上層膜を形成する榭脂を以下の方法で得た。 [化 44]
Figure imgf000066_0001
(S4-1) (S4-2) (S4-3) 単量体として、化合物(S4— l) 70g、化合物(S4— 2) 20gおよび化合物(S4— 3) 10gを用いる以外は、参考例 3と同様にして白色粉末の榭脂 (E— 2)を得た (88g、 収率 88重量%)。榭脂(E— 2)は、 Mwが 6, 800であった。
参考例 5
感放射線性榭脂組成物を以下の方法で得た。
表 5に示す榭脂、酸発生剤、酸拡散制御剤、溶剤を混合、均一溶液とした後、孔径 200nmのメンブランスフィルターでろ過することにより感放射線性榭脂組成物 (Fl〜 F3)を調製した。表 5において、部は重量基準である。
なお、用いた酸発生剤 (B)、酸拡散制御剤 (C)、溶剤 (D)を以下に示す。
酸発生剤 (B)
B— 1: 4 ノナフルォロ n ブチルスルホニルォキシフエニル ·ジフエニルスルホニ ゥムノナフルオロー n—ブタンスルホネート、
B- 2 :トリフエ-ルスルホ -ゥム ·ノナフルオロー n—ブタンスルホネート
酸拡散制御剤 (C)
C— 1: 2—フエ-ルペンズイミダゾール
溶剤 (D)
D— 1:プロピレングリコーノレモノメチノレエーテノレアセテート
[表 5]
Figure imgf000067_0001
参考例 6
液浸用上層膜組成物を以下の方法で得た。
表 6に示す榭脂、溶剤を混合して均一溶液とした後、孔径 200nmのメンブランスフ ィルターでろ過することにより液浸用上層膜組成物(G1および G2)を調製した。表 6 において、 n—BuOHはノルマルブタノールを表し、部は重量基準である。
[表 6]
Figure imgf000067_0002
参考例 7
評価用レジスト膜 (H— 1〜Η— 5)を以下の方法で得た。
8インチシリコンウェハ上に、スピンコート、 PB (90°C、 60秒)により下層反射防止膜 ARC29 (ブルーヮサイエンス社製)の塗布を行な ヽ、膜厚 77nmの塗膜を形成した 後、同条件で表 7に示す感放射線性榭脂組成物を用いてレジスト膜 (膜厚 205nm) を形成した (H— 1〜H— 3)。
また、上記と同様の方法で感放射線性榭脂組成物を用いてレジスト膜 (膜厚 205η m)を形成した後、このレジスト膜上に、表 7に示す液浸用上層膜組成物をスピンコー ト、 PB(130°C、 90秒)により膜厚 32nmの上層膜を形成した (H— 4および H— 5)。
[表 7]
Figure imgf000067_0003
実施例 1
市販の trans—デカリン (trans—デカヒドロナフタレン)を以下の方法で精製するこ とにより液浸露光用液体を得た。
巿販 trans—デカリン (東京化成社製;光路長 1mm換算の 193nmの透過率が 10 %以下) 100mlをガラスコーティングしたスターラーチップが入った 200mlのなすフラ スコに投入し、 20mlの濃硫酸 (和光純薬品)を入れ、スターラーチップの回転速度を 500— lOOOrpmに設定して 20分間 25°Cで攪拌した。その後分液により濃硫酸を除 去し、上記の操作を 3回行なった。その後、分離した有機層を脱イオン水 50mlで 1回 、飽和炭酸水素ナトリウム水溶液で 3回洗浄した。その後有機層を純水で 3回洗浄し た。この時点で pHは 7(中性)を示していることを確認した。その後硫酸マグネシウムで 乾燥し、乾燥後デカンテーシヨンにより硫酸マグネシウムを除去し、圧力 lOmmHgで 長さ 20cmのゥイツドマー型精留塔を備え付けた蒸留装置で減圧蒸留を行ない 10ml のフラクションを 16本を回収した。各フラクションの 193nmにおける吸光度を測定( 測定条件は上記段落 [0044]の測定法 Aの条件による)したところ光路長 lmm換算 で透過率が 93%以上である留分が 12本あり、合計 120mlの光路長 lmm換算透過 率 90%以上の trans—デカリンを得た。なお、各フラクションは窒素飽和にして減圧 脱気を行な 、窒素置換を行なったガラス容器中で保存した。容器封入直後の化合 物の純度をガスクロマトグラフィーにより分析したところ純度(以下「GC純度」という)が 99. 92%であった。実施例 1の方法で得られた精製後の trans—デカリンを精製後 t rans—デカリン(1)という。
また、巿販 trans, cis— mixtureデカリンおよび巿販 cis—デカリンを上記の方法で 精製を行なった。
実施例 2
窒素雰囲気下で実施例 1と同じ方法により硫酸処理を行なった。その後実施例 1と 同じ方法により、市販 tmns—デカリン (東京化成社製;光路長 lmm換算の 193nm の透過率が 10%以下)の精製を行ない、光路長 lmm換算で透過率 96. 8%の液体 を得た。本液体の溶存酸素および溶存窒素濃度をガスクロマトグラフィー (検出器 TC D)により分析したところ、溶存酸素濃度は lppm未満 (検出限界以下)、溶存窒素濃 度は 119ppmであった。また、本液体の Liゝ Na、 K、 Mg、 Cu、 Ca、 Al、 Fe、 Mn、 S n、 Zn、 Niの金属含量を原子吸光法により測定したところ Caが lppb、 Znが 6ppb、 他の金属は lppb未満 (検出限界未満)であった。実施例 2の方法で得られた精製後 の trans—デカリンを精製後 trans—デカリン(2)という。
この液体は金属分が少なぐ液浸露光用液体として使用するのみならず、可視光領 域で使用される光学装置等に使用できる。 また、上記実施例 2で得られた精製後 trans—デカリン(2)を空気中に放置し、空気 飽和の状態にし、 193nmにおける透過率を測定した。結果を表 8に示す。
[表 8]
Figure imgf000069_0001
表 8に示すように、酸素濃度が飽和されていない場合、透過率が高くなることが確 pilj( れ/こ。
また、レジスト膜との接触による透過率の変化を次の方法で測定した。
窒素置換し、酸素濃度を lOppm以下にした窒素グローブボックスの中でレジスト膜
H— 1、 H— 4が成膜されたシリコンウェハ上に液膜の厚さが 0. 8mmになるように液 体を 3分間のせて 193nmにおける透過率の変化を測定した。純水を比較例として用 いた。結果を表 9に示す。
[表 9]
Figure imgf000069_0002
表 9に示すように、レジスト膜に接触しても精製後 trans—デカリン(2)の透過率は 殆ど変化しな力つた。
精製後 tmns—デカリン (2)に対する酸発生剤の溶解度を次の方法で測定した。 酸発生剤としてトリフエ-ルスルホ -ゥム 'ノナフルオロー n—ブタンスルホネートを 用いて、精製後 trans—デカリン 100mlに所定量の酸発生剤を添加して 1時間攪拌 して、全部溶解するかどうかを目視で確認することにより、溶解度を調べた。純水を比 較例として用いた。結果を表 10に示す。
[表 10]
Figure imgf000070_0001
表 10に示すように、精製後 trans—デカリン(2)に酸発生剤は殆ど溶解しなカゝつた
[0066] 実施例 3
市販の exo—テトラヒドロジシクロペンタジェンを以下の方法で精製することにより液 浸露光用液体を得た。
巿販 exo—テトラヒドロジシクロペンタジェン (東京化成社製、光路長 lmm換算の 1 93nmの透過率が 10%以下) 100mlをガラスコーティングしたスターラーチップが入 つた 200mlのなすフラスコに投入し、氷水浴で内温を 5°Cに冷却した後 20mlの濃硫 酸 (和光純薬品)を入れ、スターラーチップの回転速度を 500— lOOOrpmに設定し て 20分間 25°Cで攪拌した。その後分液により濃硫酸を除去し、上記の操作を 3回行 なった。その後、分離した有機層を脱イオン水 50mlで 1回、飽和炭酸水素ナトリウム 水溶液で 3回洗浄した。その後有機層を純水で 3回洗浄した。この時点で pHは 7(中 性)を示していることを確認した。その後、硫酸マグネシウムを用い有機層を乾燥しデ カンテーシヨンにより硫酸マグネシウムを除去した。この時点で得られた 9 lmlの液体 を 30分窒素パブリングし、 193nmにおける透過率を測定 (測定条件は上記段落 [00 37]の条件による)したところ、光路長 lmm換算で 87. 7%であった。なお、本液体 は窒素飽和にして脱気後、窒素置換したガラス容器中で保存した。容器封入直後の 化合物の GC純度が 99. 94%であった。実施例 3の方法で得られた精製後の exo— テトラヒドロジシクロペンタジェンを精製後 exo—テトラヒドロジシクロペンタジェン(1) という。
[0067] 実施例 4
窒素雰囲気下で実施例 1と同じ方法により硫酸処理を行なった。その後実施例 3と 同じ方法により、市販の exo—テトラヒドロジシクロペンタジェン精製し、更に実施例 2 と同様の方法で窒素雰囲気下で減圧蒸留することにより、光路長 lmm換算で透過 率 97. 5%の液体を得た。本液体の溶存酸素および溶存窒素濃度をガスクロマトダラ フィー (検出器 TCD)により分析したところ、溶存酸素濃度は lppm未満 (検出限界以 下)、溶存窒素濃度は lOOppmであった。実施例 4の方法で得られた精製後の exo ーテトラヒドロジシクロペンタジェンを精製後 exo—テトラヒドロジシクロペンタジェン(2 )という。
[0068] 実施例 5
窒素精製機により精製した窒素を用いて、窒素濃度 0. 5ppm以内に管理したグロ ーブボックス中で全操作を行な ヽ、かつ減圧蒸留を蒸気温度が 50°C以下になるよう に減圧度を制御して行なった以外は実施例 1と同様の方法で巿販 trans -デカリン( 東京化成品)の精製を行なった。精製後の化合物の lmmあたりの透過率を、上記測 定法 Bにより測定した吸光度の値をもとに算出したところ T= 99. 5%であった。このと きの酸素濃度を GC (検出器 TCD)で測定したところ酸素濃度は lppm未満、窒素濃 度は 119ppmであった。また、 GC純度は 99. 92%であった。実施例 5の方法で得ら れた精製後の trans—デカリンを精製後 trans—デカリン(3)という。
[0069] 実施例 6
窒素精製機により精製した窒素を用いて、窒素濃度 0. 5ppm以内に管理したグロ ーブボックス中で全操作を行な ヽ、かつ減圧蒸留を蒸気温度が 50°C以下になるよう に減圧度をコントロールして行なった以外は実施例 3と同様の方法で巿販 exo—テト ラヒドロジシクロペンタジェン (東京化成品)の精製を行なった。精製後の化合物の 1 mmあたりの透過率を、上記測定法 Bにより測定した吸光度の値をもとに算出したとこ ろ T= 99. 6%であった。このときの酸素濃度を GC (検出器 TCD)で測定したところ 酸素濃度は lppm未満、窒素濃度は lOOppmであった。また、 GC純度は 97. 80% であった。実施例 6の方法で得られた精製後の exo—テトラヒドロジシクロペンタジェ ンを精製後 exo—テトラヒドロジシクロペンタジェン(3) t 、う。
[0070] 実施例 7
実施例 3と同様にして硫酸処理を行なうことにより、市販のジシクロへキシル、イソプ 口ビルシクロへキサン、シクロオクタン、シクロヘプタンを精製し、液浸露光用液体を 得た。
[0071] 上記実施例において、 GC純度分析は、以下の条件による。
Agilentテクノロジーの GC6850 (カラム Agilentテクノロジー HP— 1 (非極性タイプ )検出器 FID)により測定した。測定は、注入口温度 250°C、カラム温度 70°C〜300 °C (昇温法)、キャリアーガスはヘリウムの条件下で測定した。純度は FIDの全ピーク 面積を 100%とし、面積比より求めた。
[0072] 実施例 8〜実施例 22、および比較例 1〜比較例 2
上記評価用レジスト膜を用いて、本発明の液浸露光用液体を、溶出試験、膜の溶 解性試験、パターニング評価 (浸漬パターニング評価、 2光速干渉露光機による液浸 露評価)、レジスト接触時の吸光度変化 (あるいは汚染)により評価した。結果を表 11 〜表 14に示す。なお、屈折率の波長依存性は、表 3に示すように、波長が短くなるに 従い高い屈折率値となる相関関係にある。このため、 D線 (波長 589nm)における屈 折率を測定することで短波長における屈折率を予側することが可能である。特に本 発明の液浸露光用液体は表 1に示すデカリンと化学的に類似の構造を有するので、 D線(波長 589nm)における屈折率から予測できる。そのため、 D線(波長 589nm) における屈折率を示した。 V、ずれも純水の屈折率よりも高 、値を示した。
なお、実施例 8〜 13に示す液浸露光用液体は、実施例 1により精製したものであり 、実施例 14〜22に示す液浸露光用液体は、実施例 1の方法に準じて精製したもの である。
[0073] (1)溶出試験
上記の評価用レジスト膜を塗布したウェハを 300mlの表 11に示す液浸露光用液 体に 30秒浸漬させた後、ウェハを取り出し、残存する液浸露光用液体中の不純物の 有無を HPLC (島津製作所製、カラム Inertsil ODS— 3 (内径 lOmmX長さ 250m m)、展開溶剤:ァセトニトリル Z水 = 80Z20、検出器: UV@ 205nm, 220nm, 25 4nm,試料注入量 4 m)を用いて測定した。この際、いずれかひとつの検出器で検 出限界以上の不純物が確認された場合、溶出試験結果 X、検出限界以上の不純物 が確認されなかった場合、溶出試験結果。とした。
(2)膜の溶解性試験 上記の評価用レジスト膜を塗布したウェハの初期膜厚さを測定した後、 300mlの表 11に示す液浸露光用液体に 30秒間浸漬させた後、再び膜厚測定を行なった。この とき、膜厚さの減少量が初期膜厚の 0. 5%以内であれば液浸露光用液体がレジスト 膜を溶解しないと判断して「〇」、 0. 5%以上であれば液浸露光用液体がレジスト膜 を溶解すると判断して「 X」とした。
(3)パターニング評価試験
パターニング評価試験(1)
上記の評価用レジスト膜を塗布したウェハに対して、 ArF投影露光装置 S 306C (二 コン (株)社製)で、 NA: 0. 78、シグマ: 0. 85、 2Z3 Annの光学条件にて露光(露 光量 30niJ/cm2)を行ない、その後、 CLEAN TRACK ACT8ホットプレートにて PEB(130°C、 90禾少)を行ない、同 CLEAN TRACK ACT8の LDノズルにてパド ル現像 (現像液成分、 2. 38重量0 /0テトラヒドロアンモ-ゥムヒドロキシド水溶液)(60秒 間)、超純水にてリンス、次いで 4000rpmで 15秒間振り切りによりスピンドライした( 現像後基板 A)。その後、上記パターユングされた現像後基板 Aを表 11に示す液浸 露光用液体に 30秒間浸漬させた後、上記と同様の方法で PEB、現像、リンスを行な い現像後基板 Bを得た。現像後基板 Aおよび同 Bを走査型電子顕微鏡(日立計測器 (株)社製) S— 9360で 90nmライン、 90nmスペースのマスクパターンに該当するパタ ーンを観察した。このとき、目視で現像後基板 Aと同 Bとについて同じ形状の良好な 矩形のレジストパターンが得られた場合を「〇」、良好なパターンが得られなカゝつた場 合を「X」とする。「-」は評価していないことを表す。
パターニング評価試験 (2)
パターニング評価試験(1)と同様の条件で露光を行なったウェハを液浸露光用液 体に 30秒浸漬させ、上記と同様の方法で PEB,現像、リンスを行ない現像後基板 Cを 得た。このとき、目視で基板 Aと同 Cとについて同じ形状の良好な矩形のレジストバタ ーンが得られた場合を「〇」、同じ形状のパターンが得られな力 た場合を「 X」とす る。「一」は評価していないことを表す。
(4)接触角測定実験
上記レジスト膜 H2, H4, H5、石英ガラス上に対する trans—デカリンの接触角の 測定を Kruss製、 Mode IDSA10L2Eを用いて行なった(測定法 Elipse (tangent 1)法。結果を表 12に記す。
(5) 2光束干渉を用いた露光実験
下層反射防止膜の膜厚を 29nm、レジスト-膜厚を 100nm (45nm用) 60nm (35n m用)にした以外はレジスト膜 H2と同様の方法で作った評価用レジスト膜を塗布した ウェハに対して、 2光束干渉型 ArF液浸用簡易露光装置 (キャノン製 45nmlLZlS 用、ニコン (株)社製、 35nmlLZlS用、 TE偏光露光使用)のレンズ、ウェハ間(ギヤ ップ 0. 7mm)に上記精製後液浸露光用液体を挿入して露光を行ない、その後、ゥ ェハ上の液浸露光用液体を空気乾燥により除去し、本ウェハを CLEAN TRACK
ACT8ホットプレートにて PEB(115°C、 90秒)を行ない、同 CLEAN TRACKAC T8の LDノズルにてパドル現像 (現像液成分、 2. 38重量0 /0テトラヒドロアンモ-ゥムヒ ドロキシド水溶液)(60秒間)、超純水にてリンスを行ない現像後基板を走査型電子顕 微鏡(日立計測器 (株)社製) S— 9360でパターンを観察した。このとき、所望の寸法 の LZS (1LZ1S)の良好なレジストパターンが得られた場合を「〇」、良好なパター ンが得られな力つた場合を「 X」とする。結果を表 13に記す。
(6)レジスト接触時の吸光度変化 (あるいは汚染)
液体 (脱イオン水水あるいは精製後 trans—デカリン(2) (実施例 2と同じ方法で精 製した他ロット品)を直径 6cmのシャーレにガラス製のピペットを使って加えた。このと き液体の膜厚がちょうど lmmになるように液量を調節した。次にフォトレジスト(Hl、 H4)を塗布したシリコンウェハーでシャーレ上部を覆った。次にウェハーとシャーレ の上下を逆転させ、フォトレジストフィルムに液体が浸された状態にした。このときシャ ーレとウェハーの間からの液体の漏出がないように両者はしつ力り密着させ、かつ、 シャーレで覆われた全ての部分でフォトレジストが均一に液体に浸されるよう、ウェハ 一が水平になるように注意した。その後、決められた浸漬時間浸漬を行ない、ウェハ 一とシャーレの上下を再び逆転させた。これらの一連の操作後液体を集め 193. 4n mの吸光度測定を実施例 Bの方法で行な 、、測定値をもとに吸光度 lcmあたりの吸 光度を算出した。また、上記の一連の操作は 23°Cで窒素で満たされたグローブボッ タスの中で行なった。結果を表 14に記す。 [表 11]
Figure imgf000075_0001
[表 12]
Figure imgf000075_0002
[表 13] 液浸用液体 ハーフピッチ 感度(Ecd)mJ/cm2 パターン形状 精製後 trans-デカリン(1 ) 45nm 27.1 〇 精製後 trans-デカリン(1 ) j5nm 〇 精製後 trans-デカリン(2) 45nm 22.7 〇 精製後 trans -デカリン(2) 35nm - 〇 精製後 exo-テトラヒドロジシクロペンタジェン(1 ) 45nm 28.6 〇 精製後 exo-テトラヒドロジシクロべンタジェン Π ) j5nm - 〇 精製後 exo-テトラヒドロジシクロペンタジェン(2) 45nm 23 〇 精製後 exo-テトラヒドロジシクロペンタジェン(2) 35nm - 〇 イソプロビルシクロへキサン 45nm 〇 イソプロビルシクロへキサン 35nm - 解像せず シクロオクタン 45nm 〇 シクロオクタン 35nm 解像せず 水 45nm T-top形状 [表 14]
Figure imgf000076_0001
[0074] 表 11に示すように、本発明の液浸露光用液体は、純水よりも屈折率が大きぐ式(1
1)〜式(1 9)で表される化学構造を有するので、優れた解像度を示すとともにレ ジスト膜単体、または上層膜形成レジスト膜を溶解したり、膜成分を溶出させたり、生 成したレジストパターン形状を変形させたりしない。また、表 14に示すように、精製後 のデカリンは、浸漬時間 180秒抽出後の吸光度変化がないことが分力つた。
また、液浸露光用液体の評価方法として、窒素雰囲気下で液浸露光用液体と基板 上に形成されたフォトレジスト膜とを接触させ、接触前と接触後の前記液体の 193nm における吸光度変化を測定して比較することにより液浸露光用液体の汚染度が評価 できることが分力つた。
産業上の利用可能性
[0075] 本発明の液浸露光用液体は、脂環式炭化水素化合物または珪素原子を環構造中 に含む環式炭化水素化合物であるので、液浸露光時にフォトレジスト膜を溶解せず 、解像度、現像性等にも優れたレジストパターンを形成することができ、今後更に微 細化が進行すると予想される半導体デバイスの製造に極めて好適に使用することが できる。

Claims

請求の範囲
[1] 投影光学系のレンズと基板との間に満たされた液体を介して露光する液浸露光装 置または液浸露光方法に用いられる液体であって、該液体は、前記液浸露光装置 が作動する温度領域において液体であり、脂環式炭化水素化合物または珪素原子 を環構造中に含む環式炭化水素化合物を含む液体であることを特徴とする液浸露 光用液体。
[2] 前記脂環式炭化水素化合物または珪素原子を環構造中に含む環式炭化水素化 合物は、波長 193nmにおける光路長 lmmあたりの放射線透過率が 70%以上、 D 線の屈折率が 1. 4以上であることを特徴とする請求項 1記載の液浸露光用液体。
[3] 前記脂環式炭化水素化合物または珪素原子を環構造中に含む環式炭化水素化 合物が下記式(1 1)な 、し式(1 9)力 選ばれる少なくとも 1つの化合物であるこ とを特徴とする請求項 2記載の液浸露光用液体。
[化 1]
Figure imgf000077_0001
(1-1 )
(式(1— 1)において、 R1は炭素数 1〜10の脂肪族炭化水素基、炭素数 3〜14の脂 環式炭化水素基、シァノ基、水酸基、フッ素原子、炭素数 1〜10のフッ素置換炭化 水素基、 Si(R9)基、または— SO R1Q基を表し、 nl、 n2はそれぞれ独立に 1〜3の
3 3
整数を表し、 aは 0〜 10の整数を表し、 R1が複数存在する場合、その R1は同一でも異 なっていてもよく、 2つ以上の R1が相互に結合して環構造を形成してもよぐ R9および R1Qは、炭素数 1〜10のアルキル基を表す。 )
[化 2]
Figure imgf000078_0001
(式( 1 2)にお 、て、 Aは単結合または炭素数 1〜 10のアルキル基で置換されて ヽ てもよ 、メチレン基もしくは炭素数 1〜: LOのアルキル基で置換されて 、てもよ 、炭素 数 2〜14のアルキレン基を表し、 R2は炭素数 1〜10の脂肪族炭化水素基、炭素数 3 〜14の脂環式炭化水素基、シァノ基、水酸基、フッ素原子、炭素数 1〜10のフッ素 置換炭化水素基、 -Si(R9)基、または SO R1Q基を表し、 R7は水素原子、炭素数 1
3 3
〜10のアルキル基、シァノ基、水酸基、フッ素原子、炭素数 1〜10のフッ素置換アル キル基、または Si(R9)基を表し、 R7が複数存在する場合、その R7は同一でも異な
3
つていてもよぐ 2つ以上の R7が相互に結合して環構造を形成してもよぐ n3は 2〜4 の整数を表し、 n4は 1〜3の整数を表し、 bは 0から 6の整数を表し、 R2が複数存在す る場合、その R2は同一でも異なっていてもよぐ 2つ以上の R2が相互に結合して環構 造を形成してもよぐ R9および R1Qは、炭素数 1〜10のアルキル基を表す。 )
[化 3]
Figure imgf000078_0002
(式(1— 3)において、 R3および R4は炭素数 1〜10の脂肪族炭化水素基、炭素数 3〜 14の脂環式炭化水素基、シァノ基、水酸基、フッ素原子、炭素数 1〜10のフッ素置 換炭化水素基、 Si(R9)基、または— SO R1Q基を表し、 R3および R4がそれぞれ複数
3 3
存在する場合、その R3および R4はそれぞれ同一でも異なっていてもよぐ 2つ以上の R3および R4がそれぞれ単独でまたは相互に結合して環構造を形成してもよぐ n5お よび n6は 1〜3の整数を表し、 cおよび dは 0〜8の整数を表し、 R9および R1Qは、炭素 '10のアルキル基を表す。)
[化 4]
Figure imgf000079_0001
(式(1 4)における(a)、(b)、(c)において、 Bはメチレン基またはエチレン基を表し 、 R5は炭素数 1〜10の脂肪族炭化水素基、炭素数 3〜14の脂環式炭化水素基、シ ァノ基、水酸基、フッ素原子、炭素数 1〜10のフッ素置換炭化水素基、 Si(R9)基、
3 または— SO R1G基を表し、 eは 0〜10の整数を表し、 n7は 1〜3の整数を表し、 R5
3
複数存在する場合、その R5は同一でも異なっていてもよぐ 2つ以上の R5が相互に結 合して環構造を形成してもよぐ R9および R1Qは、炭素数 1〜10のアルキル基を表す。 )
[化 5]
Figure imgf000079_0002
(式(1— 5)において、 R6は炭素数 1〜10の脂肪族炭化水素基、炭素数 3〜14の脂 環式炭化水素基、シァノ基、水酸基、フッ素原子、炭素数 1〜10のフッ素置換炭化 水素基、 Si(R9)基、または— SO R1Q基を表し、 fは 0〜 10の整数を表し、 R6が複数
3 3
存在する場合、その R6は同一でも異なっていてもよぐ R9および R1Qは、炭素数 1〜1 0のアルキル基を表す。)
[化 6]
Figure imgf000080_0001
(1-6)
(式(1— 6)において、 R8および R8'は炭素数 1〜10の脂肪族炭化水素基、炭素数 3 〜14の脂環式炭化水素基、シァノ基、水酸基、フッ素原子、炭素数 1〜10のフッ素 置換炭化水素基、— Si(R9)基、または— SO R1Q基を表し、 gおよび hはそれぞれ 0〜
3 3
6の整数を表し、 n8および n9は 1〜3の整数を表し、 R9および R1Qは、炭素数 1〜10 のアルキル基を表す。 )
[化 7]
Figure imgf000080_0002
(1-7)
(式(1— 7)において、 R11および R12は炭素数 1〜10の脂肪族炭化水素基、炭素数 3 〜14の脂環式炭化水素基、シァノ基、水酸基、フッ素原子、炭素数 1〜10のフッ素 置換炭化水素基、— Si(R9)基、または— SO R1Q基を表し、 nlO、 ni lはそれぞれ独
3 3
立に 1〜3の整数を表し、 j、 kは 0〜6の整数を表し、 R11および R12がそれぞれ複数存 在する場合、その R11および R12は同一でも異なっていてもよぐ 2つ以上の R11が相互 に結合して環構造を形成してもよぐまたは 2つ以上の R12が相互に結合して環構造 を形成してもよぐ Xは単結合、炭素数 2〜10の 2価の脂肪族炭化水素基、炭素数 3 〜14の 2価の脂環式炭化水素基を表し、 R9および R1Qは、炭素数 1〜10のアルキル 基を表す。 )
[化 8]
Figure imgf000080_0003
(1-8) (式(1— 8)において、 R"は炭素数 2以上のアルキル基、炭素数 3以上の脂環式炭 化水素基、シァノ基、水酸基、フッ素原子、炭素数 2〜10のフッ素置換炭化水素基、 -Si(R9)基、または SO R1Q基を表し、 pは 1〜6の整数を表し、 R13が複数存在する
3 3
場合、その R13は同一でも異なっていてもよぐ 2つ以上の R13が相互に結合して環構 造を形成してもよぐ R9および R1Qは、炭素数 1〜10のアルキル基を表す。 )
[化 9]
Figure imgf000081_0001
(1-9)
(式(1— 9)において、 R14は炭素数 1〜10の脂肪族炭化水素基、炭素数 3〜14の脂 環式炭化水素基、シァノ基、水酸基、フッ素原子、炭素数 1〜10のフッ素置換炭化 水素基、 Si(R9)基、または— SO R1Q基を表し、 nl2は 1〜3の整数を表し、 qは 0〜
3 3
9の整数を表し、 R14が複数存在する場合、その R14は同一でも異なっていてもよぐ R9 および R1Qは、炭素数 1〜: L0のアルキル基を表す。 )
前記式(1 1)で表される化合物が下記式(2— 1)で表され、前記式(1 4)で表さ れる化合物が下記式(2— 2)で表されることを特徴とする請求項 3記載の液浸露光用 液体。
[化 10]
Figure imgf000081_0002
(2-1 ) (2-2)
(式 (2—1)において、 R1は炭素数 1〜10の脂肪族炭化水素基、炭素数 3〜14の脂 環式炭化水素基、シァノ基、水酸基、フッ素原子、炭素数 1〜10のフッ素置換炭化 水素基、 Si(R9)基、または— SO R1Q基を表し、 aは 0〜: L0の整数を表し、 R1が複数
3 3
存在する場合、その R1は同一でも異なっていてもよぐ 2つ以上の R1が相互に結合し て環構造を形成してもよぐ R9および R1Qは、炭素数 1〜10のアルキル基を表し、 式 (2— 2)において、 R5は炭素数 1〜10の脂肪族炭化水素基、炭素数 3〜14の脂 環式炭化水素基、シァノ基、水酸基、フッ素原子、炭素数 1〜10のフッ素置換炭化 水素基、— Si(R9)基、または— SO R1Q基を表し、 iは 0〜2の整数を表し、 R5が複数
3 3
存在する場合、その R5は同一でも異なっていてもよぐ 2つ以上の R5が相互に結合し て環構造を形成してもよぐ R9および R1Qは、炭素数 1〜10のアルキル基を表す。 ) [5] 請求項 1記載の液浸露光用液体であって、該液体を液膜の厚みが lmmになるよう にして窒素雰囲気下で 180秒間フォトレジスト膜上に接触させたとき、接触前と接触 後の液体の 193nmにおける光路長 lcm当たりの吸光度変化が 0. 05以下であるこ とを特徴とする液浸露光用液体。
[6] 前記脂環式炭化水素化合物または珪素原子を環構造中に含む環式炭化水素化 合物が液浸露光用液体全体に対して 95重量%以上含まれていることを特徴とする 請求項 1記載の液浸露光用液体。
[7] 請求項 1記載の液浸露光用液体であって、該液体の溶存酸素量が 2ppm以下であ ることを特徴とする液浸露光用液体。
[8] 請求項 1記載の液浸露光用液体であって、該液体の含有金属の総量が lOppb以 下であることを特徴とする液浸露光用液体。
[9] 請求項 8記載の液浸露光用液体であって、前記金属がリチウム、ナトリウム、力リウ ム、マグネシウム、銅、カルシウム、アルミニウム、鉄、亜鉛、ニッケル力 選ばれた少 なくとも 1つの金属であることを特徴とする液浸露光用液体。
[10] 請求項 1記載の液浸露光用液体であって、該液体の 25°Cにおける粘度が 0. 01P a. s以下であることを特徴とする液浸露光用液体。
[11] 請求項 1記載の液浸露光用液体であって、波長 193nmにおける屈折率が 1. 63以 上であることを特徴とする液浸露光用液体。
[12] 請求項 11記載の液浸露光用液体であって、波長 193nmにおける光路長 lmmあ たりの放射線透過率が 95%以上であることを特徴とする液浸露光用液体。
[13] 請求項 4記載の液浸露光用液体であって、前記式(2— 1)で表される化合物が tra ns -デカヒドロナフタレンであり、波長 193nmにおける光路長 lmmあたりの放射線透 過率が 95%以上、溶存酸素量が 2ppm以下であることを特徴とする液浸露光用液体
[14] 請求項 13記載の液浸露光用液体であって、 trans-デカヒドロナフタレン原料を窒 素雰囲気下で濃硫酸洗浄および蒸留することにより得られる純度 95重量%以上の 液体であることを特徴とする液浸露光用液体。
[15] 請求項 4記載の液浸露光用液体であって、前記式(2— 2)で表される化合物が exo -テトラヒドロジシクロペンタジェンであり、波長 193nmにおける光路長 lmmあたりの 放射線透過率が 95%以上、溶存酸素量が 2ppm以下であることを特徴とする液浸露 光用液体。
[16] 請求項 15記載の液浸露光用液体であって、 exo-テトラヒドロジシクロペンタジェン 原料を窒素雰囲気下で濃硫酸洗浄および蒸留することにより得られる純度 95重量 %以上の液体であることを特徴とする液浸露光用液体。
[17] 請求項 1記載の液浸露光用液体の製造方法であって、前記脂環式炭化水素化合 物または珪素原子を環構造中に含む環式炭化水素化合物を含む液体を窒素雰囲 気下で、濃硫酸洗浄工程および蒸留工程の少なくとも 1つの工程を備えることを特徴 とする液浸露光用液体の製造方法。
[18] 露光ビームでマスクを照明し、投影光学系のレンズと基板との間に満たされた液体 を介して前記露光ビームで基板を露光する液浸露光方法であって、前記液体が請 求項 1記載の液浸露光用液体であることを特徴とする液浸露光方法。
[19] 請求項 18記載の液浸露光方法であって、前記基板上のレジスト膜表面に液浸用 上層膜が形成され、該液浸用上層膜がアルカリ現像液に可溶であり、かつ請求項 1 記載の液浸露光用液体に不溶な樹脂成分を含有する液浸用上層膜であり、該アル カリ可溶性を付与するための置換基としてへキサフルォロカルビノール基およびカル ボキシル基の少なくとも 1つの基を有することを特徴とする液浸露光方法。
[20] 投影光学系のレンズと基板との間に満たされた液体を介して露光する液浸露光装 置または液浸露光方法に用いられる液体の液浸露光使用時の汚染度を評価するた めの汚染度評価方法であって、
窒素雰囲気下で液浸露光用液体と前記基板上に形成されたフォトレジスト膜とを接 触させ、接触前と接触後の前記液体の波長 193nmにおける吸光度変化を測定して 比較することにより液浸露光用液体の汚染度を評価することを特徴とする液浸露光 用液体の汚染度評価方法。
下記式(2— 1)または下記式 (2- 2)で表される化合物が 95重量%以上含まれ、 溶存酸素量が 2ppm以下であることを特徴とする液体組成物。
[化 11]
Figure imgf000084_0001
(式 (2—1)において、 R1は炭素数 1〜10の脂肪族炭化水素基、炭素数 3〜14の脂 環式炭化水素基、シァノ基、水酸基、フッ素原子、炭素数 1〜10のフッ素置換炭化 水素基、— Si(R9)基、または— SO R1Q基を表し、 aは 0〜: L0の整数を表し、 R1が複数
3 3
存在する場合、その R1は同一でも異なっていてもよぐ 2つ以上の R1が相互に結合し て環構造を形成してもよぐ R9および R1Qは、炭素数 1〜10のアルキル基を表し、 式 (2— 2)において、 R5は炭素数 1〜10の脂肪族炭化水素基、炭素数 3〜14の脂 環式炭化水素基、シァノ基、水酸基、フッ素原子、炭素数 1〜10のフッ素置換炭化 水素基、— Si(R9)基、または— SO R1Q基を表し、 iは 0〜2の整数を表し、 R5が複数
3 3
存在する場合、その R5は同一でも異なっていてもよぐ 2つ以上の R5が相互に結合し て環構造を形成してもよぐ R9および R1Qは、炭素数 1〜10のアルキル基を表す。 ) [22] 請求項 21記載の液体組成物であって、該液体組成物の含有金属の総量が lOppb 以下であることを特徴とする液体組成物。
[23] 請求項 21記載の液体組成物であって、前記式(2— 1)で表される化合物が trans- デカヒドロナフタレンであり、波長 193nmにおける光路長 1mmあたりの放射線透過 率が 95%以上であることを特徴とする液体組成物。
[24] 請求項 21記載の液体組成物であって、前記式(2— 2)で表される化合物が exo-テ トラヒドロジシクロペンタジェンであり、波長 193nmにおける光路長 1mmあたりの放 射線透過率が 95%以上であることを特徴とする液体組成物。
請求項 21記載の液体組成物であって、前記式(2— 1)または式 (2- 2)で表される 化合物を窒素雰囲気下で、濃硫酸洗浄および蒸留の少なくとも 1つの方法により精 製することを特徴とする液体組成物。
PCT/JP2005/009128 2004-05-21 2005-05-19 液浸露光用液体および液浸露光方法 WO2005114711A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006513712A JP3969457B2 (ja) 2004-05-21 2005-05-19 液浸露光用液体および液浸露光方法
US10/588,263 US7580111B2 (en) 2004-05-21 2005-05-19 Liquid for immersion exposure and immersion exposure method
EP05741390A EP1748469A4 (en) 2004-05-21 2005-05-19 LIQUID FOR IMMERSION EXPOSURE AND METHOD OF IMMERSION EXPOSURE

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2004-151711 2004-05-21
JP2004151711 2004-05-21
JP2004-252289 2004-08-31
JP2004252289 2004-08-31
JP2005011431 2005-01-19
JP2005-011431 2005-01-19
JP2005-049468 2005-02-24
JP2005049468 2005-02-24

Publications (1)

Publication Number Publication Date
WO2005114711A1 true WO2005114711A1 (ja) 2005-12-01

Family

ID=35428611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009128 WO2005114711A1 (ja) 2004-05-21 2005-05-19 液浸露光用液体および液浸露光方法

Country Status (5)

Country Link
US (1) US7580111B2 (ja)
EP (1) EP1748469A4 (ja)
JP (1) JP3969457B2 (ja)
TW (1) TW200610027A (ja)
WO (1) WO2005114711A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005252239A (ja) * 2004-01-23 2005-09-15 Air Products & Chemicals Inc 液浸リソグラフィ流体
JP2006140429A (ja) * 2004-10-13 2006-06-01 Asahi Glass Co Ltd 液浸型露光方法および液浸型露光用媒体
JP2006191058A (ja) * 2004-12-28 2006-07-20 Asml Netherlands Bv デバイス製造方法、トップコート材料、及び基板
WO2006080250A1 (ja) * 2005-01-25 2006-08-03 Jsr Corporation 液浸型露光システム、液浸型露光用液体のリサイクル方法及び供給方法
WO2006115268A1 (ja) * 2005-04-26 2006-11-02 Mitsui Chemicals, Inc. 液浸式露光用液体、液浸式露光用液体の精製方法および液浸式露光方法
JP2007067011A (ja) * 2005-08-29 2007-03-15 Jsr Corp 液浸露光用液体および液浸露光方法
JP2007067009A (ja) * 2005-08-29 2007-03-15 Jsr Corp 液浸露光用液体および液浸露光方法
JP2007180450A (ja) * 2005-12-28 2007-07-12 Canon Inc 露光装置
JP2007227811A (ja) * 2006-02-24 2007-09-06 Mitsubishi Gas Chem Co Inc 液浸露光プロセス用液体および該液体を用いたレジストパターン形成方法
JP2008046541A (ja) * 2006-08-21 2008-02-28 Jsr Corp 上層膜形成組成物用樹脂、上層膜形成組成物、及びフォトレジストパターン形成方法
WO2009141932A1 (ja) * 2008-05-20 2009-11-26 パナソニック株式会社 パターン形成方法
US7671247B2 (en) 2006-09-13 2010-03-02 E.I. Du Pont De Nemours And Company Methods for purifying alkane liquids
US7733459B2 (en) 2003-08-29 2010-06-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7745102B2 (en) * 2006-05-26 2010-06-29 Massachusetts Institute Of Technology Immersion fluids for lithography
US7879531B2 (en) 2004-01-23 2011-02-01 Air Products And Chemicals, Inc. Immersion lithography fluids
JP4821776B2 (ja) * 2005-11-21 2011-11-24 Jsr株式会社 感放射線性樹脂組成物
JP4934043B2 (ja) * 2005-08-29 2012-05-16 三井化学株式会社 液浸式ArFレーザー露光用液体および液浸式ArFレーザー露光方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006004964A (ja) * 2004-06-15 2006-01-05 Nec Electronics Corp 露光装置および露光方法
JP4322205B2 (ja) * 2004-12-27 2009-08-26 東京応化工業株式会社 レジスト保護膜形成用材料およびこれを用いたレジストパターン形成方法
US7435528B2 (en) * 2005-06-09 2008-10-14 E.I. Du Pont De Nemours And Company Processes and devices using polycyclic fluoroalkanes in vacuum and deep ultraviolet applications
KR100764416B1 (ko) * 2005-08-17 2007-10-05 주식회사 하이닉스반도체 이머젼 리소그라피 공정을 이용한 반도체 소자 제조방법
WO2008153674A1 (en) * 2007-06-09 2008-12-18 Boris Kobrin Method and apparatus for anisotropic etching
NL1036432A1 (nl) * 2008-01-23 2009-07-27 Asml Holding Nv An immersion lithographic apparatus with immersion fluid re-circulating system.
JP2009272613A (ja) * 2008-04-11 2009-11-19 Canon Inc 露光装置、露光方法およびデバイス製造方法
JP2014501934A (ja) 2010-08-23 2014-01-23 ローイス インコーポレイテッド 近接場リソグラフィのためのマスク及びその製造方法
JP5839897B2 (ja) * 2011-09-02 2016-01-06 オリンパス株式会社 非線形光学顕微鏡
JP6505534B2 (ja) * 2015-07-22 2019-04-24 株式会社平間理化研究所 現像液の管理方法及び装置
WO2020155111A1 (zh) * 2019-02-01 2020-08-06 中国科学院微电子研究所 使用金属诱导自掩模刻蚀工艺制作石英表面抗反层的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6294813A (ja) * 1985-10-21 1987-05-01 Idemitsu Petrochem Co Ltd 顕微鏡用液浸油
JPH07220990A (ja) * 1994-01-28 1995-08-18 Hitachi Ltd パターン形成方法及びその露光装置
JPH09241214A (ja) * 1996-03-02 1997-09-16 Carl Zeiss:Fa 液浸油
JPH11233402A (ja) * 1998-02-09 1999-08-27 Nikon Corp 光学素子光洗浄方法および投影露光装置
WO1999049504A1 (fr) * 1998-03-26 1999-09-30 Nikon Corporation Procede et systeme d'exposition par projection
JP2001068400A (ja) * 1999-08-27 2001-03-16 Nikon Corp 吸光物質検出方法、並びに露光方法及び装置
WO2001032739A1 (fr) * 1999-11-01 2001-05-10 Zeon Corporation Procede de production d'un polymere cyclo-olefinique
JP2001326162A (ja) * 2000-05-17 2001-11-22 Canon Inc 半導体製造装置および半導体デバイス製造方法
WO2003016365A1 (fr) * 2001-08-17 2003-02-27 Asahi Kasei Kabushiki Kaisha Copolymere de cyclodiene conjugue
JP2005072230A (ja) * 2003-08-25 2005-03-17 Matsushita Electric Ind Co Ltd パターン形成方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60209536A (ja) * 1984-04-04 1985-10-22 Mitsubishi Petrochem Co Ltd エキソ−テトラヒドロジシクロペンタジエンの製造法
JPH0612452A (ja) 1992-06-25 1994-01-21 Hitachi Ltd グループ情報アクセス方式
JP3747566B2 (ja) 1997-04-23 2006-02-22 株式会社ニコン 液浸型露光装置
JPH11176727A (ja) 1997-12-11 1999-07-02 Nikon Corp 投影露光装置
JP2001181217A (ja) 1999-12-27 2001-07-03 Nippon Zeon Co Ltd ジシクロペンタジエンおよびその精製方法
JP2004123762A (ja) 2000-06-30 2004-04-22 Nippon Zeon Co Ltd 洗浄剤および洗浄方法
JP2002255866A (ja) 2001-03-05 2002-09-11 Nippon Zeon Co Ltd エキソ−テトラヒドロジシクロペンタジエンの製造方法
JP2003160515A (ja) * 2001-11-28 2003-06-03 Nippon Oil Corp ナフタレンから2段水素化反応によりデカリンを製造する方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6294813A (ja) * 1985-10-21 1987-05-01 Idemitsu Petrochem Co Ltd 顕微鏡用液浸油
JPH07220990A (ja) * 1994-01-28 1995-08-18 Hitachi Ltd パターン形成方法及びその露光装置
JPH09241214A (ja) * 1996-03-02 1997-09-16 Carl Zeiss:Fa 液浸油
JPH11233402A (ja) * 1998-02-09 1999-08-27 Nikon Corp 光学素子光洗浄方法および投影露光装置
WO1999049504A1 (fr) * 1998-03-26 1999-09-30 Nikon Corporation Procede et systeme d'exposition par projection
JP2001068400A (ja) * 1999-08-27 2001-03-16 Nikon Corp 吸光物質検出方法、並びに露光方法及び装置
WO2001032739A1 (fr) * 1999-11-01 2001-05-10 Zeon Corporation Procede de production d'un polymere cyclo-olefinique
JP2001326162A (ja) * 2000-05-17 2001-11-22 Canon Inc 半導体製造装置および半導体デバイス製造方法
WO2003016365A1 (fr) * 2001-08-17 2003-02-27 Asahi Kasei Kabushiki Kaisha Copolymere de cyclodiene conjugue
JP2005072230A (ja) * 2003-08-25 2005-03-17 Matsushita Electric Ind Co Ltd パターン形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1748469A4 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9581914B2 (en) 2003-08-29 2017-02-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7733459B2 (en) 2003-08-29 2010-06-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8629971B2 (en) 2003-08-29 2014-01-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8953144B2 (en) 2003-08-29 2015-02-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9025127B2 (en) 2003-08-29 2015-05-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8007986B2 (en) 2004-01-23 2011-08-30 Air Products And Chemicals, Inc. Immersion lithography fluids
JP2005252239A (ja) * 2004-01-23 2005-09-15 Air Products & Chemicals Inc 液浸リソグラフィ流体
US7879531B2 (en) 2004-01-23 2011-02-01 Air Products And Chemicals, Inc. Immersion lithography fluids
JP2006140429A (ja) * 2004-10-13 2006-06-01 Asahi Glass Co Ltd 液浸型露光方法および液浸型露光用媒体
JP2006191058A (ja) * 2004-12-28 2006-07-20 Asml Netherlands Bv デバイス製造方法、トップコート材料、及び基板
US7763355B2 (en) 2004-12-28 2010-07-27 Asml Netherlands B.V. Device manufacturing method, top coat material and substrate
WO2006080250A1 (ja) * 2005-01-25 2006-08-03 Jsr Corporation 液浸型露光システム、液浸型露光用液体のリサイクル方法及び供給方法
WO2006115268A1 (ja) * 2005-04-26 2006-11-02 Mitsui Chemicals, Inc. 液浸式露光用液体、液浸式露光用液体の精製方法および液浸式露光方法
JPWO2006115268A1 (ja) * 2005-04-26 2008-12-18 三井化学株式会社 液浸式露光用液体、液浸式露光用液体の精製方法および液浸式露光方法
JP4616884B2 (ja) * 2005-04-26 2011-01-19 三井化学株式会社 液浸式露光用液体、液浸式露光用液体の精製方法および液浸式露光方法
JP4687334B2 (ja) * 2005-08-29 2011-05-25 Jsr株式会社 液浸露光用液体および液浸露光方法
JP4934043B2 (ja) * 2005-08-29 2012-05-16 三井化学株式会社 液浸式ArFレーザー露光用液体および液浸式ArFレーザー露光方法
JP2007067009A (ja) * 2005-08-29 2007-03-15 Jsr Corp 液浸露光用液体および液浸露光方法
JP2007067011A (ja) * 2005-08-29 2007-03-15 Jsr Corp 液浸露光用液体および液浸露光方法
JP4821776B2 (ja) * 2005-11-21 2011-11-24 Jsr株式会社 感放射線性樹脂組成物
JP2007180450A (ja) * 2005-12-28 2007-07-12 Canon Inc 露光装置
JP2007227811A (ja) * 2006-02-24 2007-09-06 Mitsubishi Gas Chem Co Inc 液浸露光プロセス用液体および該液体を用いたレジストパターン形成方法
US7745102B2 (en) * 2006-05-26 2010-06-29 Massachusetts Institute Of Technology Immersion fluids for lithography
JP2008046541A (ja) * 2006-08-21 2008-02-28 Jsr Corp 上層膜形成組成物用樹脂、上層膜形成組成物、及びフォトレジストパターン形成方法
US7671247B2 (en) 2006-09-13 2010-03-02 E.I. Du Pont De Nemours And Company Methods for purifying alkane liquids
WO2009141932A1 (ja) * 2008-05-20 2009-11-26 パナソニック株式会社 パターン形成方法

Also Published As

Publication number Publication date
US7580111B2 (en) 2009-08-25
EP1748469A1 (en) 2007-01-31
TW200610027A (en) 2006-03-16
JPWO2005114711A1 (ja) 2008-03-27
JP3969457B2 (ja) 2007-09-05
US20070164261A1 (en) 2007-07-19
EP1748469A4 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
WO2005114711A1 (ja) 液浸露光用液体および液浸露光方法
TWI412892B (zh) 形成上層膜用組成物及光阻圖型之形成方法
JP6568936B2 (ja) プレリンス液、プレリンス処理方法、及び、パターン形成方法
CN101031597A (zh) 共聚物及形成上层膜用组合物
EP1803036A2 (en) Projection exposure apparatus for microlithography
JP2021113091A (ja) 半導体製造用処理液を収容する収容容器
KR20100068261A (ko) 액침용 상층막 형성용 조성물 및 액침용 상층막 및 포토레지스트 패턴 형성 방법
CN100492588C (zh) 浸液曝光用液体以及浸液曝光方法
KR20230006907A (ko) 감활성광선성 또는 감방사선성 수지 조성물, 레지스트막, 패턴 형성 방법, 전자 디바이스의 제조 방법
TWI313485B (en) Liquid for immersion, purifying method of liquid for immersoin, and immersion exposure method
JP2006222186A (ja) 液浸露光用液体およびその製造方法
KR101047372B1 (ko) 모노머, 수지 및 이 수지를 이용한 레지스트 조성물, 및 이레지스트 조성물을 이용한 반도체 장치의 제조 방법
JP4830303B2 (ja) 液浸露光用液体の製造方法およびリサイクル方法
JP2007081099A (ja) 液浸露光用液体および液浸露光方法
JP4687334B2 (ja) 液浸露光用液体および液浸露光方法
JP2006210782A (ja) 液浸露光用液体および液浸露光方法
KR20230044482A (ko) 감활성광선성 또는 감방사선성 수지 조성물, 레지스트막, 패턴 형성 방법, 전자 디바이스의 제조 방법
US20070156003A1 (en) Method for producing saturated hydrocarbon compound
TW202212997A (zh) 圖案形成方法
JP2008306073A (ja) 液浸露光用液体
JP2006352032A (ja) 液浸露光用液体および液浸露光方法
CN113544593A (zh) 药液、冲洗液、抗蚀剂图案形成方法
KR20070018058A (ko) 액침 노광용 액체 및 액침 노광 방법
JP2007258664A (ja) 液浸露光用液体および液浸露光方法
JP2009164503A (ja) パターン形成方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006513712

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005741390

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007164261

Country of ref document: US

Ref document number: 10588263

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580005118.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020067021864

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005741390

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067021864

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10588263

Country of ref document: US