WO2020155111A1 - 使用金属诱导自掩模刻蚀工艺制作石英表面抗反层的方法 - Google Patents

使用金属诱导自掩模刻蚀工艺制作石英表面抗反层的方法 Download PDF

Info

Publication number
WO2020155111A1
WO2020155111A1 PCT/CN2019/074465 CN2019074465W WO2020155111A1 WO 2020155111 A1 WO2020155111 A1 WO 2020155111A1 CN 2019074465 W CN2019074465 W CN 2019074465W WO 2020155111 A1 WO2020155111 A1 WO 2020155111A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
quartz substrate
fluoride
quartz
etching
Prior art date
Application number
PCT/CN2019/074465
Other languages
English (en)
French (fr)
Inventor
史丽娜
李龙杰
张凯平
牛洁斌
谢常青
刘明
Original Assignee
中国科学院微电子研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院微电子研究所 filed Critical 中国科学院微电子研究所
Priority to PCT/CN2019/074465 priority Critical patent/WO2020155111A1/zh
Priority to US17/310,206 priority patent/US20220317338A1/en
Publication of WO2020155111A1 publication Critical patent/WO2020155111A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/12Optical coatings produced by application to, or surface treatment of, optical elements by surface treatment, e.g. by irradiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0694Halides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70316Details of optical elements, e.g. of Bragg reflectors, extreme ultraviolet [EUV] multilayer or bilayer mirrors or diffractive optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/101Nanooptics

Definitions

  • the present disclosure relates to the field of nanofabrication in microelectronics technology, and in particular to a method for fabricating a quartz surface anti-reflective layer using a metal-induced self-mask etching process.
  • Fused silica is widely used in many optical systems, such as gratings, lenses and optical windows are usually made of fused silica.
  • Fresnel reflection at the air-fused silica interface more than 7% of the incident light is reflected from the quartz surface.
  • the refractive index of fused silica is 1.5603, and the transmittance is only 90.42%. Therefore, in order to suppress the incident light loss caused by Fresnel reflection, various anti-reflection layers have been developed.
  • the moth-eye structure anti-reflection layer on the quartz surface is caused by its good mechanical properties, environmental durability, and resistance to laser damage. People's focus.
  • the sub-wavelength moth-eye structure anti-reflection layer suppresses light reflection through the gradient refractive index distribution between air and quartz (the effective refractive index gradually increases from air to the quartz surface).
  • the fabrication of the moth-eye structure anti-reaction layer generally requires two steps: mask fabrication and etching.
  • the periodic moth-eye structure generally adopts electron beam lithography or interference lithography to make a mask, which is costly and has a complicated manufacturing process.
  • the random moth-eye structure generally uses metal nanoparticles generated by annealing as a mask.
  • the size of the moth-eye structure is determined by the size of the mask. For deep ultraviolet light with a wavelength of 193nm, a feature size less than 80nm is required.
  • the basic principle of self-masking is based on the grass-like structure formed in the process of reactive ion etching (RIE).
  • RIE reactive ion etching
  • the grass-like structure comes from micro-pollution during the etching process, and is mainly formed by the polymerization of the etching products.
  • gases containing fluorine and carbon such as CHF 3 , SF 6 , C 3 F 8 and CF 4 .
  • gases containing fluorine and carbon such as CHF 3 , SF 6 , C 3 F 8 and CF 4
  • a complicated process occurs on the surface of the sample, and fluorocarbon polymer accumulates to form Small clusters.
  • these small clusters have poor resistance to etching as a mask, and a moth-eye structure that can be used in an anti-reaction layer cannot be obtained.
  • a method for fabricating a quartz surface anti-reflective layer using a metal-induced self-mask etching process including: using a mixed gas containing a fluorine-based gas to reactive ion etching a metal material and a quartz substrate, The metal atoms and/or ions of the metal material are sputtered onto the surface of the quartz substrate to form a non-volatile metal fluoride on the surface of the quartz substrate; the etching products produced by reactive ion etching accumulate on the non-volatile A micro mask is formed around the metal fluoride; the micro mask and the quartz substrate are simultaneously etched to form a sub-wavelength structure anti-reflection layer.
  • the fluorine-based gas is one or more of trifluoromethane, sulfur hexafluoride, octafluoropropane, and carbon tetrafluoride.
  • the metal material is one or more of aluminum, iron, silver, nickel, and copper.
  • the non-volatile metal fluoride is one or more of aluminum fluoride, iron fluoride, silver fluoride, nickel fluoride, and copper fluoride.
  • the simultaneous etching of the micromask and the quartz substrate includes: using the non-volatile metal fluoride as the nucleus of the micromask, and the etching products continuously accumulate Around the non-volatile metal fluoride, the micro mask is self-recovering while being etched, forming a mask during the entire etching process.
  • a peak structure is formed in the area covered by the micromask on the surface of the quartz substrate.
  • O 2 in the mixed gas accounts for 15% to 40% of trifluoromethane, sulfur hexafluoride, octafluoropropane, and carbon tetrafluoride.
  • the quartz substrate is a quartz substrate used for a 193 nm lithography projection objective lens.
  • non-volatile metal fluoride is formed by sputtering metal on the surface of quartz, which improves the etching resistance of the micromask, and can obtain a deeper sub-wavelength structure on the surface of the quartz, which can meet the needs of the anti-reaction layer; and the manufacturing process is simple , The cost is low, and it can be produced quickly in a large area, which is conducive to wide application.
  • FIG. 1 is a flowchart of a method for fabricating an anti-reflective layer on a quartz surface using a metal-induced self-mask etching process according to an embodiment of the disclosure.
  • FIG. 2 is a schematic diagram of the formation of non-volatile metal fluoride in an embodiment of the disclosure.
  • FIG. 3 is a schematic diagram of forming a micro mask in an embodiment of the disclosure.
  • FIG. 4 is a schematic diagram of the formation of a sub-wavelength structure in an embodiment of the disclosure.
  • the present disclosure provides a method for fabricating a quartz surface anti-reflective layer using a metal-induced self-mask etching process, which includes: step S100, using a mixed gas containing a fluorine-based gas to etch metal materials and quartz substrates by reactive ion, and metal sputtering It is shot onto the quartz surface to form a non-volatile metal fluoride; step S200, the etched product fluorocarbon polymer is gathered around the metal fluoride to form a micromask; step S300, the micromask and the quartz substrate are simultaneously etched to form a subwavelength Structural resistance layer.
  • the present disclosure forms non-volatile metal fluorides through metal sputtering on the quartz surface, which improves the etching resistance of the micromask, and can obtain a deeper sub-wavelength structure on the quartz surface, which can meet the needs of the anti-reflective layer.
  • the disclosed manufacturing process is simple, low-cost, and capable of rapid and large-area manufacturing, which is conducive to wide application.
  • the embodiments of the present disclosure provide a method for fabricating an anti-reflective layer on a quartz surface using a metal-induced self-mask etching process. As shown in Figure 1, the method includes:
  • Step S100 Reactive ion etching of the metal material 1 and the quartz substrate 2 using a mixed gas containing fluorine-based gas.
  • the surface of the quartz substrate 2 and the metal material 1 are subjected to strong ion bombardment, and the metal of the metal material 1 Atoms and/or ions are sputtered onto the surface of the quartz substrate 2 to form a non-volatile metal fluoride 3 on a part of the surface of the quartz substrate 2, as shown in FIG. 2.
  • the metal material 1 may be one or more of aluminum, iron, silver, nickel, and copper, but it is not limited thereto.
  • aluminum is selected, and the non-volatile metal fluoride 3 formed on the surface of the quartz substrate 2 is AlF 3 .
  • the fluorine-based gas is CHF 3 , but it is not limited to this.
  • CHF 3 : O 2 4:1.
  • the ratio of the mixed gas can be within a certain range, and the above ratio is only a preferred value and should not be limited thereto.
  • the quartz substrate 2 in the present disclosure is mainly quartz applied to a 193 nm lithography projection objective lens.
  • Step S200 the fluorocarbon polymer produced by the etching gathers around the non-volatile metal fluoride to form a micromask 4, as shown in FIG. 3.
  • the fluorocarbon polymer covers the non-volatile metal fluoride, and a part of the surface of the quartz substrate 2 forms a micro mask 4.
  • the metal fluoride in this embodiment is aluminum fluoride AlF 3 .
  • Step S300 the quartz substrate 2 and the micro mask 4 are simultaneously etched to form a sub-wavelength structure anti-reflection layer.
  • the etching speed of the micromask is much slower than that of the quartz substrate, and a peak structure is formed on the surface of the quartz substrate 2, as shown in FIG. 4.
  • the present disclosure provides a non-volatile metal fluoride formed on the surface of quartz through metal sputtering using a metal-induced self-mask etching process in the present disclosure, which improves the etching resistance of the micromask, and can be used on the surface of quartz.
  • a deeper sub-wavelength structure is obtained, and a method for fabricating a quartz surface anti-reflective layer that can meet the requirements of the anti-reflective layer.
  • the disclosed manufacturing process is simple, low in cost, capable of rapid and large-area production, and is beneficial to wide application.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

本公开提供了一种使用金属诱导自掩模刻蚀工艺制作石英表面抗反层的方法,包括:利用包含氟基气体的混合气体反应离子刻蚀金属材料和石英基片,所述金属材料的金属原子和/或离子溅射到所述石英基片表面,在所述石英基片表面形成非挥发金属氟化物;反应离子刻蚀产生的刻蚀产物聚集在所述非挥发金属氟化物的周围,形成微掩模;同时刻蚀所述微掩模和所述石英基片,形成亚波长结构抗反层。

Description

使用金属诱导自掩模刻蚀工艺制作石英表面抗反层的方法 技术领域
本公开涉及微电子技术中的纳米加工领域,尤其涉及一种使用金属诱导自掩模刻蚀工艺制作石英表面抗反层的方法。
背景技术
熔融石英广泛应用于许多光学系统中,例如光栅,透镜和光学窗口等通常都是由熔融石英制造的。然而,由于空气-熔融石英界面的菲涅耳反射,超过7%的入射光从石英表面反射。尤其是对于193nm波长的紫外光,熔融石英的折射率是1.5603,透过率只有90.42%。所以,为了抑制菲涅耳反射造成的入射光损失,人们开发了各种抗反射层,其中石英表面蛾眼结构抗反层由于其机械性能好,环境耐久性,抗激光损伤等优点而引起了人们的重点关注。亚波长蛾眼结构抗反层通过空气和石英之间的渐变折射率分布(有效折射率从空气到石英表面逐渐增加)抑制了光的反射。
蛾眼结构抗反层制作一般需要两个步骤:掩模制造和刻蚀。周期蛾眼结构一般采用电子束光刻或者干涉光刻的方法制作掩模,成本高,制作工艺复杂。随机蛾眼结构一般采用退火生成的金属纳米颗粒作为掩模。蛾眼结构的尺度由掩模尺度决定,对于193nm波长的深紫外光,需要小于80nm的特征尺寸。对于周期小于80nm的蛾眼结构,电子束光刻的方法难于快速制作大面积的掩模,而且成本很高;退火生成的金属纳米颗粒较大,难以形成特征尺寸小于80nm的掩模,并且金属颗粒容易残留在石英表面,影响透过率。所以,人们提出了快速、低成本、大面积的自掩模方法。
自掩模的基本原理是基于反应离子刻蚀(RIE:Reactive ion etching)过程中形成的草状结构(grass-like structure)。草状结构来源于刻蚀过程中的微污染,主要由刻蚀产物聚合形成。为了刻蚀石英,通常使用含有氟和碳的气体(例如CHF 3、SF 6、C 3F 8和CF 4),刻蚀过程中,在样品表面发生复杂的过程,碳氟聚合物累积,形成小团簇。但是这些小团簇作为掩模抗刻蚀能力较差,不能得到能够用于抗反层的蛾眼结构。
基于此,目前亟需一种能够提高刻蚀深度的自掩模刻蚀方法,以解决上述技术问题。
公开内容
根据本公开的一个方面,提供了一种使用金属诱导自掩模刻蚀工艺制作石英表面抗反层的方法,包括:利用包含氟基气体的混合气体反应离子刻蚀金属材料和石英基片,所述金属材料的金属原子和/或离子溅射到所述石英基片表面,在所述石英基片表面形成非挥发金属氟化物;反应离子刻蚀产生的刻蚀产物聚集在所述非挥发金属氟化物的周围,形成微掩模;同时刻蚀所述微掩模和所述石英基片,形成亚波长结构抗反层。
在本公开的一些实施例中,所述氟基气体为三氟甲烷、六氟化硫、八氟丙烷和四氟化碳中的一种或多种。
在本公开的一些实施例中,所述金属材料为铝、铁、银、镍和铜中的一种或多种。
在本公开的一些实施例中,所述非挥发金属氟化物为氟化铝、氟化铁、氟化银、氟化镍、氟化铜中的一种或多种。
在本公开的一些实施例中,所述同时刻蚀所述微掩模和所述石英基片包括:以所述非挥发金属氟化物作为所述微掩模的核,刻蚀产物不断的聚集在所述非挥发金属氟化物的周围,所述微掩模在被刻蚀的同时,又自我恢复,在整个刻蚀过程中形成掩蔽。
在本公开的一些实施例中,在上述亚波长结构抗反层中,,在所述石英基片表面微掩模覆盖的区域形成尖峰结构。
在本公开的一些实施例中,所述混合气体中O 2占三氟甲烷、六氟化硫、八氟丙烷和四氟化碳的15%到40%。
在本公开的一些实施例中,所述石英基片采用用于193纳米光刻投影物镜的石英基片。
本公开通过金属溅射到石英表面形成非挥发金属氟化物,提高了微掩模的抗刻蚀能力,在石英表面可以得到更深的亚波长结构,能够满足抗反层的需求;并且制造工艺简单,成本低,能够快速大面积的制作,有利于广泛应用。
为使本发明的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定。对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本公开实施例使用金属诱导自掩模刻蚀工艺制作石英表面抗反层的方法的流程图。
图2为本公开实施例中非挥发的金属氟化物形成示意图。
图3为本公开实施例中微掩模形成示意图。
图4为本公开实施例中亚波长结构形成示意图。
【符号说明】。
1-金属材料;
2-石英基片;
3-金属氟化物;
4-微掩模。
具体实施方式
本公开提供了一种使用金属诱导自掩模刻蚀工艺制作石英表面抗反层的方法,包括:步骤S100,利用包含氟基气体的混合气体反应离子刻蚀金属材料和石英基片,金属溅射到石英表面形成非挥发金属氟化物;步骤S200,刻蚀产物碳氟聚合物聚集在金属氟化物周围,形成微掩模;步骤S300,同时刻蚀微掩模和石英基片,形成亚波长结构抗反层。本公开通过金属溅射到石英表面形成非挥发金属氟化物,提高了微掩模的抗刻蚀能力,在石英表面可以得到更深的亚波长结构,能够满足抗反层的需求,与此同时本公开制造工艺简单,成本低,能够快速大面积的制作,有利于广泛应用。
为使本公开的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本公开进一步详细说明。
本公开某些实施例于后方将参照所附附图做更全面性地描述,其中一些但并非全部的实施例将被示出。实际上,本公开的各种实施例可以许多不同形式实现,而不应被解释为限于此数所阐述的实施例;相对地,提供这些实施例使得本公开满足适用的法律要求。
在本公开实施例提供了一种使用金属诱导自掩模刻蚀工艺制作石英表面抗反层的方法。如图1所示,该方法包括:
步骤S100:利用包含氟基气体的混合气体反应离子刻蚀金属材料1和石英基片2,在刻蚀过程中,石英基片2表面和金属材料1受到强烈的离子轰击,金属材料1的金属原子和/或离子溅射到石英基片2表面,在石英基片2表面的部分区域形成非挥发的金属氟化物3,如图2所示。
具体的,金属材料1可以为铝、铁、银、镍和铜中的一种或多种,但并不以此为限。本实施例中选用的为铝,在石英基片2表面形成非挥发的金属氟化物3为AlF 3
具体的,氟基气体为CHF 3,但并不以此为限。进一步,混合气体为CHF 3和O 2形成的混合气体,其中CHF 3∶O 2=4∶1。本领域技术人员应该理解的是,混合气体的比例在一定范围内均可,上述比值仅为优选值,并不应以此为限。
这里需要说明的是本公开中的石英基片2主要为应用于193纳米光刻投影物镜上的石英。
步骤S200:刻蚀产生的碳氟聚合物聚集在非挥发的金属氟化物周围,形成微掩模4,如图3所示。碳氟聚合物覆盖在非挥发的金属氟化物上,石英基片2表面的部分区域形成微掩模4。
具体的,本实施例中的金属氟化物为氟化铝AlF 3
步骤S300:同时刻蚀石英基片2和微掩模4,形成亚波长结构抗反层。微掩模的刻蚀速度比石英基片的刻蚀速度慢得多,在石英基片2表面形成尖峰结构,如图4所示。
这里需要说明的是,在整个刻蚀过程中由于非挥发的金属氟化物作为微掩模的核,在刻蚀过程中碳氟聚合物不断的聚集在金属氟化物的周围,大大提高了微掩模的抗刻蚀能力。
至此,已经结合附图对本公开实施例进行了详细描述。需要说明的是,在附图或说明书正文中,未绘示或描述的实现方式,均为所属技术领域中普通技术人员所知的形式,并未进行详细说明。此外,上述对各元件和方法的定义并不仅限于实施例中提到的各种具体结构、形状或方式,本领域普通技术人员可对其进行简单地更改或替换。
依据以上描述,本领域技术人员应当对本公开使用金属诱导自掩模刻蚀工艺制作石英表面抗反层的方法有了清楚的认识。
综上所述,本公开提供一种本公开使用金属诱导自掩模刻蚀工艺通过金属溅射到石英表面形成非挥发金属氟化物,提高了微掩模的抗刻蚀能力,在石英表面可以得到更深的亚波长结构,能够满足抗反层需求的制作石英表面抗反层的方法,本公开制造工艺简单,成本低,能够快速大面积的制作,有利于广泛应用。
需要说明的是,本发明实施例中提到的方向用语,例如“顶”、“底”、“上”、“下”、“前”、“后”、“左”、“右”等,仅是参考附图的方向,并非用来限制本发明的保护范围。实际上,本发明中提到的“顶”、“底”可以被替换为“第一方向”、与“第一方向”相对的“第二方向”,“顶端”、“底端”可以被替换为“第一端”、与“第一端”相对的“第二端”,“顶部”、“底部”可以被替换为“第一端部”、与“第一端部”相对的“第二端部”。与此类似,本发明中的“上”、“下”,“前”、“后”,“左”、“右”也同样可以做上述替换。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限 制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (8)

  1. 一种使用金属诱导自掩模刻蚀工艺制作石英表面抗反层的方法,其中,包括:
    利用包含氟基气体的混合气体反应离子刻蚀金属材料和石英基片,所述金属材料的金属原子和/或离子溅射到所述石英基片表面,在所述石英基片表面形成非挥发金属氟化物;
    反应离子刻蚀产生的刻蚀产物聚集在所述非挥发金属氟化物的周围,形成微掩模;
    同时刻蚀所述微掩模和所述石英基片,形成亚波长结构抗反层。
  2. 根据权利要求1所述的方法,其中,所述氟基气体为三氟甲烷、六氟化硫、八氟丙烷和四氟化碳中的一种或多种。
  3. 根据权利要求1所述的方法,其中,所述金属材料为铝、铁、银、镍和铜中的一种或多种。
  4. 根据权利要求1所述的方法,其中,所述非挥发金属氟化物为氟化铝、氟化铁、氟化银、氟化镍、氟化铜中的一种或多种。
  5. 根据权利要求1所述的方法,其中,所述同时刻蚀所述微掩模和所述石英基片包括:以所述非挥发金属氟化物作为所述微掩模的核,刻蚀产物不断的聚集在所述非挥发金属氟化物的周围,所述微掩模在被刻蚀的同时,又自我恢复,在整个刻蚀过程中形成掩蔽。
  6. 根据权利要求1所述的方法,其中,在上述亚波长结构抗反层中,,在所述石英基片表面微掩模覆盖的区域形成尖峰结构。
  7. 根据权利要求2所述的制作石英表面抗反层的方法,其中,所述混合气体中O 2占三氟甲烷、六氟化硫、八氟丙烷和四氟化碳的15%到40%。
  8. 根据权利要求1所述的制作石英表面抗反层的方法,其中,所述石英基片采用用于193纳米光刻投影物镜的石英基片。
PCT/CN2019/074465 2019-02-01 2019-02-01 使用金属诱导自掩模刻蚀工艺制作石英表面抗反层的方法 WO2020155111A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/074465 WO2020155111A1 (zh) 2019-02-01 2019-02-01 使用金属诱导自掩模刻蚀工艺制作石英表面抗反层的方法
US17/310,206 US20220317338A1 (en) 2019-02-01 2019-02-01 Method for fabricating anti-reflective layer on quartz surface by using metal-induced self-masking etching technique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/074465 WO2020155111A1 (zh) 2019-02-01 2019-02-01 使用金属诱导自掩模刻蚀工艺制作石英表面抗反层的方法

Publications (1)

Publication Number Publication Date
WO2020155111A1 true WO2020155111A1 (zh) 2020-08-06

Family

ID=71840765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074465 WO2020155111A1 (zh) 2019-02-01 2019-02-01 使用金属诱导自掩模刻蚀工艺制作石英表面抗反层的方法

Country Status (2)

Country Link
US (1) US20220317338A1 (zh)
WO (1) WO2020155111A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4336226A1 (en) * 2022-08-16 2024-03-13 Thorlabs Inc. Method for producing anti-reflective textured surface using additive thin film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1871530A (zh) * 2003-10-29 2006-11-29 松下电器产业株式会社 具有抗反射结构的光学元件和制造具有抗反射结构的光学元件的方法
CN102815052A (zh) * 2012-06-29 2012-12-12 法国圣戈班玻璃公司 超疏水减反基板及其制作方法
CN103048707A (zh) * 2013-01-04 2013-04-17 苏州大学 制作亚波长抗反射结构和亚波长抗反射结构压模的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7580111B2 (en) * 2004-05-21 2009-08-25 Jsr Corporation Liquid for immersion exposure and immersion exposure method
US8187481B1 (en) * 2005-05-05 2012-05-29 Coho Holdings, Llc Random texture anti-reflection optical surface treatment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1871530A (zh) * 2003-10-29 2006-11-29 松下电器产业株式会社 具有抗反射结构的光学元件和制造具有抗反射结构的光学元件的方法
CN102815052A (zh) * 2012-06-29 2012-12-12 法国圣戈班玻璃公司 超疏水减反基板及其制作方法
CN103048707A (zh) * 2013-01-04 2013-04-17 苏州大学 制作亚波长抗反射结构和亚波长抗反射结构压模的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JINGJUN WU : "Research on Self-mask Growth Mechanism of High-performance Antireflection Micro-nano Structures", THESIS, 20 May 2018 (2018-05-20), CN, pages 1 - 69, XP009522523 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4336226A1 (en) * 2022-08-16 2024-03-13 Thorlabs Inc. Method for producing anti-reflective textured surface using additive thin film

Also Published As

Publication number Publication date
US20220317338A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
US8043771B2 (en) Phase shift mask blank and method of manufacturing phase shift mask
Yu et al. Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff
US9939723B2 (en) Mask blank, method of manufacturing phase shift mask, phase shift mask, and method of manufacturing semiconductor device
US10088744B2 (en) Mask blank, method of manufacturing phase shift mask, phase shift mask, and method of manufacturing semiconductor device
JP2008508553A (ja) ナノ構造反射防止表面
US6841309B1 (en) Damage resistant photomask construction
JP5544914B2 (ja) 反射型マスクの製造方法
KR20130057954A (ko) 나노섬 마스크를 이용한 대면적 무반사 나노구조를 구비하는 렌즈 및 이의 제조 방법
JP2001272505A (ja) 表面処理方法
WO2020155111A1 (zh) 使用金属诱导自掩模刻蚀工艺制作石英表面抗反层的方法
CN109856706B (zh) 使用金属诱导自掩模刻蚀工艺制作石英表面抗反层的方法
JP2013077617A (ja) 低反射構造を成型するための原版の製造方法および原版
CN115494567B (zh) 一种微透镜阵列纳米光栅的复合结构及制备方法、应用
WO2020066590A1 (ja) マスクブランク、転写用マスクおよび半導体デバイスの製造方法
JP2014191176A (ja) フォトマスクブランクス、フォトマスク及びその製造方法
CN113387318B (zh) 一种基于纳米环形阵列的近红外带通滤波器及制备方法
JP6713336B2 (ja) マスクブランクの製造方法、および転写用マスクの製造方法
KR101449515B1 (ko) 유전체 나노 텍스쳐를 이용한 무반사층 제조방법
JP2006078953A (ja) ハーフトーン型位相シフトマスク及びその製造法
JP2012033608A (ja) Euv露光用反射型マスクの製造方法
EP4336226A1 (en) Method for producing anti-reflective textured surface using additive thin film
JP2008257274A (ja) フォトマスクの製造方法
US10345692B2 (en) Photomask and a fabrication method therefor
JP2022505873A (ja) テーパー状の傾斜したフィンを作製するための制御されたハードマスク成形
Miyoshi et al. Pattern transfer processes for 157-nm lithography

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913568

Country of ref document: EP

Kind code of ref document: A1