CN100492588C - 浸液曝光用液体以及浸液曝光方法 - Google Patents

浸液曝光用液体以及浸液曝光方法 Download PDF

Info

Publication number
CN100492588C
CN100492588C CNB2005800051182A CN200580005118A CN100492588C CN 100492588 C CN100492588 C CN 100492588C CN B2005800051182 A CNB2005800051182 A CN B2005800051182A CN 200580005118 A CN200580005118 A CN 200580005118A CN 100492588 C CN100492588 C CN 100492588C
Authority
CN
China
Prior art keywords
liquid
carbon number
immersion exposure
equal
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005800051182A
Other languages
English (en)
Other versions
CN1943013A (zh
Inventor
宫松隆
根本宏明
王勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Publication of CN1943013A publication Critical patent/CN1943013A/zh
Application granted granted Critical
Publication of CN100492588C publication Critical patent/CN100492588C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

本发明的目的在于提供一种在浸液曝光方法中,折射率大于纯水,防止光致抗蚀膜或其上层膜成分的洗脱或溶解,能够抑制抗蚀图案生成时的缺陷的浸液曝光用液体、以及利用该液体的浸液曝光方法。一种浸液用曝光液体,其在通过投影光学系统的透镜和基板之间充满的液体进行曝光的浸液曝光装置或浸液曝光方法中使用,在浸液曝光装置工作的温度区域内是液体,是包含脂环烃化合物或在环结构中含有硅原子的环烃化合物。

Description

浸液曝光用液体以及浸液曝光方法
技术领域
本发明涉及浸液曝光用液体以及浸液曝光方法,详细地讲,除了这些液体以及方法以外,涉及该浸液曝光用液体的制备方法、作为浸液曝光用液体的评价方法、新型液体组合物。
背景技术
在制造半导体元件等时,使用通过投影光学系统将作为光掩膜的标线片的图案转印至涂布有光致抗蚀剂的晶片上的各拍摄区域的分步型或步进扫描方式的投影曝光装置。
使用的曝光波长越短,投影光学系统的数值孔径越大,投影曝光装置所具备的投影光学系统的分辨率的理论阈值越高。因此,随着集成电路的微细化,投影曝光装置中使用的作为放射线波长的曝光波长逐年变短,投影光学系统的数值孔径也逐渐增大。
另外,当进行曝光时,焦点深度与分辨率同样地也变得重要。分辨率R和焦点深度δ的理论阈值分别用以下数学式表示。
R=k1·λ/NA                (i)
δ=k2·λ/NA2             (ii)
其中,λ是曝光波长,k1、k2是工艺参数,NA是投影光学系统的数值孔径,当空气的折射率设为1时,以下式(ii’)定义。即,当获得相同的分辨率R时,使用了具有短波长的放射线的一方能够获得大的焦点深度δ。
NA=sinθ(θ=曝光的光在抗蚀剂表面的最大入射角)(ii’)
如上所述,至今,通过曝光光源的短波长化、数值孔径的增大,不断满足集成电路的微细化要求,现在,正在研究使用了ArF准分子激光(波长193nm)作为曝光光源的1L1S(1:1线和空间)半间距90nm节点的大量生产。然而,对于进一步微细化的下一代半间距65nm节点或45nm节点,认为只通过使用ArF准分子激光是难以达成的。因此,针对这些下一代技术,正在研究F2准分子激光(波长157nm)、EUV(波长13nm)等短波长光源的使用。然而,对于这些光源的使用来说,技术上的难度高,现在还处于使用困难的状况。
在上述曝光技术中,在曝光的晶片表面上形成光致抗蚀膜,在该光致抗蚀膜上转印图案。在以前的投影曝光装置中,配置有晶片的空间被折射率为1的空气或氮气充满。此时,当用折射率n的介质充满晶片和投影曝光装置的透镜之间的空间时,据报告分辨率R、焦点深度δ的理论阀值用以下数学式表示。
R=k1·(λ/n)/NA      (iii)
δ=k2·nλ/NA2        (iv)
其中,NA不是实际的投影光学系统的数值孔径,表示用上述式(ii’)定义的常量(准确地讲,投影光学系统的数值孔径NA’用NA’=nsinθ(n与上述定义相同)表示)。
上式表示通过在投影曝光装置的透镜和晶片之间充满折射率n的液体,设定适当的光学系统,在理论上能够分别使分辩率的阀值和焦点深度为1/n、n倍。例如,在ArF工艺中,如果使用水作为上述介质,波长193nm的光在水中的折射率n为n=1.44,因此,与以空气或氮气为介质的曝光时相比,在理论上能够设计分辩率R达到69.4%(R=k1·(λ/1.44)/NA)、焦点深度达到144%(δ=k2·1.44λ/NA2)的光学系统。
将这样缩短用于曝光的放射线的有效波长,能够转印更微细图案的投影曝光方法称为浸液曝光,对于今后的光刻蚀的微细化,特别是数10nm单位的光刻蚀,被认为是必需的技术,其投影曝光装置也是已知的(参照专利文献1)。
以前,在浸液曝光方法中,作为投影光学系统的透镜和基板之间充满的液体,在ArF准分子激光中研究了纯水,在F2准分子激光中,出于157nm下的透明性高的理由,研究了氟类惰性液体等的使用。
对于纯水来说,在半导体制造工厂中容易得到,在环境上也没有问题。另外,容易进行温度调节,能够防止由曝光中产生的热引起的基板的热膨胀,被用作ArF用浸液液体(参照专利文献2),已确实在65nm半间距节点的装置的大量生产中采用。
另一方面,还公知了添加甲醇等作为减少纯水的表面张力,同时增大表面活性力的添加剂得到的液体(参照专利文献3)。
然而,由于使用纯水,水浸透于光致抗蚀膜中,有时产生光致抗蚀图案的截面形状成为T-顶端形状的形状劣化,分辨率降低。另外,由于构成光致抗蚀剂的光酸发生剂、碱性添加剂、由曝光产生的酸等水溶性成分洗脱至水中,有时还会引起T-顶端形状等形状劣化,产生分辨率、焦点深度的降低、桥接缺陷,在显像后的图案中产生缺陷,污染透镜表面。另外,这些成分洗脱到液体中会同时引起液体的污染,难以进行液体的再利用。因此,频繁地需要复杂的精制处理。
因此,为了隔断光致抗蚀膜和水,有在光致抗蚀膜上形成上层膜的方法,但存在对于曝光的足够的透光性或与光致抗蚀膜的混合性等不够充分的情况,还存在工时变复杂的问题。此外,还报道了以前在透镜材料中使用的CaF2被水侵蚀(非专利文献1),因此,还产生了需要涂布透镜表面的涂布材料的问题。
另一方面,如上述式(iii)所示,分辨率的阀值约为ArF干式曝光的1.44倍,从而可以预测:在进一步微细化,尤其是半间距45nm以下的下一代技术中,其使用变得困难。
如上所述,在进一步微细化的下一代浸液曝光方法中,需要在曝光波长(例如波长193nm等)下折射率大于纯水,对于这些波长的光的透光性高的液体。同时还需要该液体是不会引起添加剂从光致抗蚀膜洗脱、抗蚀膜的溶解、图案的劣化等对光致抗蚀膜的不良影响,而且不会侵蚀透镜的液体。同时随着由引入浸液曝光引起的高NA化,作为曝光的光研究了偏振光的引入,期待该液体是满足上述要求以外,例如利用旋光性等性质不使偏振光方向弯曲的液体。
作为达到该目的的方法,例如,尝试了将各种盐溶解于水而提高折射率(非专利文献2)。然而,该方法难以进行盐的浓度控制,此外,与水同样地存在由水溶性成分的洗脱而引起的显像缺陷、透镜的污染等问题。
另一方面,在F2曝光用中进行了研究的全氟聚醚等氟类惰性液体,例如在193nm下的折射率小,因此难以在该波长下使用。另外,由于在波长589nm下的高折射率而作为显微镜用的浸液曝光液体而到目前为止公知的有机溴化物、碘化物,例如在193nm下的透光性差,而且对于光致抗蚀膜的稳定性差。
专利文献1:特开平11-176727号公报
专利文献2:国际公开WO99/49504号公报
专利文献3:特开平10-303114号公报
非专利文献1:NIKKEI MICRODEVICE 2004年4月号p77
非专利文献2:Proc.SPIE Vol.5377(2004)p.273
发明内容
本发明是为了解决上述问题而完成的,目的在于提供一种在浸液曝光方法中,折射率大于纯水,在该浸液曝光波长下具有优异的透光性,能够防止光致抗蚀膜或其上层膜成分(尤其是亲水性成分)的洗脱或溶解,不侵蚀透镜,能够抑制抗蚀图案生成时的缺陷,当用作浸液曝光用液体时,能够抑制图案形状的劣化,形成分辨率以及焦点深度更优异的图案,而且液体易于再利用和精制的浸液曝光用液体以及使用了该液体的浸液曝光方法。
另外,除了上述浸液曝光用液体和浸液曝光方法之外,本发明的目的还在于提供该浸液曝光用液体的制备方法、作为浸液曝光用液体的评价方法、新型液体组合物。
为了解决上述课题,在能够用于本目的的曝光波长下具有高的透射率,而且与水相比折射率足够高是浸液曝光用液体必需满足的条件。另一方面,一般都知道液体的紫外区域的折射率与构成液体的分子极化率有关。作为提高极化率的方法,一般来说向分子中引入例如硫、溴、碘等具有容易迁移的n电子的元素以及引入具有比较易于迁移的π电子的碳-碳双键、碳-碳三键,尤其是芳香环是有效的。然而,含这些元素和分子结构的化合物一般例如在193nm等远紫外区域具有强吸收,不能用于本目的。另一方面,作为对于远紫外区域吸收小的化合物,可以列举非取代的烃化合物、氰基化烃化合物、氟代烃化合物、磺酸酯化合物、一部分醇等,但这些化合物一般折射率比水高,其折射率与现在的水差别不大。
另一方面,作为液体的折射率更准确的理论式,提出了下述式(Lorentz-Lorenz式),报道了利用下述式能够准确地预测苯的折射率n的结果(J.Phy.Chem.A.,Vol.103,No.42,1999 p8447)。
N=(1+4πNαeff)0.5
在上式中,N表示单位体积中的分子数,部分摩尔体积越小,其值越大。
由上述式可以预测:通过引入高吸收的官能团,即使不能提高α,但通过增大N也能够提高折射率。基于以上描述,对液体的分子结构进行了各种研究,结果发现:由于具有紧凑的结构,密度高的本发明的脂环烃、或含有硅且具有环烃骨架的液体兼具透明性和折射率,而且当用作浸液曝光用液体时,能够防止光致抗蚀膜或其上层膜成分(尤其是亲水性成分)的洗脱或溶解,进而解决抗蚀图案生成时的缺陷、透镜的侵蚀等问题,能够形成分辨率和焦点深度更优异的图案,从而完成本发明。
即,本发明的浸液曝光用液体是在通过投影光学系统的透镜和基板之间充满的液体进行曝光的浸液曝光装置或浸液曝光方法中使用的液体,其特征在于:该液体在浸液曝光装置工作的温度范围内是液体,是脂环烃化合物或在环结构中含有硅原子的环烃化合物。
特别地,脂环烃化合物或在环结构中含有硅原子的环烃化合物,其特征在于:在波长193nm下每1mm光程的放射线透射率为大于等于70%,D射线的折射率为大于等于1.4,优选为1.4~2.0。
本发明的浸液曝光方法,是用曝光光束照明掩膜,通过在投影光学系统的透镜和基板之间充满的液体,利用曝光光束对基板进行曝光的浸液曝光方法,其特征在于:上述液体是所述的浸液曝光用液体。
本发明的浸液曝光方法使用疏水性高、在曝光波长下是高折射率的脂环烃化合物或在环结构中含有硅原子的环烃化合物作为浸液曝光用液体,从而能够防止光致抗蚀膜或其上层膜成分,尤其是亲水性成分的洗脱或溶解,能够解决抗蚀图案生成时的缺陷、透镜的侵蚀问题,另外,当用作浸液曝光用液体时,能够抑制图案形状的劣化,改善分辨率和焦点深度。
具体实施方式
能够用作浸液曝光用液体的脂环烃化合物或在环结构中含有硅原子的环烃化合物优选分别为脂环饱和烃化合物或在环结构中含有硅原子的环饱和烃化合物。如果在烃化合物中存在不饱和键,曝光光束容易被浸液曝光用液体吸收。
对于能够用作浸液曝光用液体的脂环烃化合物或在环结构中含有硅原子的环烃化合物,通过下述式(1-1)~式(1~9)进行说明。
Figure C200580005118D00141
式(1-1)中,R1表示碳原子数1~10的脂肪族烃基、碳原子数3~14的脂环烃基、氰基、羟基、氟原子、碳原子数1~10的氟取代烃基、-Si(R9)3基、或-SO3R10基,n1、n2各自独立地表示1~3的整数,a表示0~10的整数,当存在多个R1时,该R1可以相同也可以不同,2个或更多个R1可以相互结合形成环结构,R9和R10表示碳原子数1~10的烷基。
作为R1中的碳原子数1~10的脂肪族烃基,可以列举甲基、乙基、正丙基等。作为2个或更多个R1相互结合形成环结构的例子,可以列举环戊基、环己基等。作为碳原子数3~14的脂环烃基,可以列举环己基、降冰片基(norbornyl)等。作为碳原子数1~10的氟取代烃基,可以列举三氟甲基、五氟乙基等。作为构成-Si(R9)3基的R9、和构成-SO3R10基的R10,表示碳原子数1~10的烷基,作为该烷基,可以列举甲基、乙基等。
式(1-1)中,作为取代基R1,从193nm的放射线透射率优异的观点出发,优选碳原子数1~10的脂肪族饱和烃基、碳原子数3~14的脂环饱和烃基、氰基、氟原子、碳原子数1~10的氟取代饱和烃基。
在上述取代基中,由于能够获得更高的折射率,与抗蚀剂的相互作用少,难以引起由抗蚀剂中的水溶性成分的洗脱产生的缺陷、对透镜材料的侵蚀,因而特别优选碳原子数1~10的脂肪族饱和烃基、碳原子数3~14的脂环族饱和烃基。
另外,优选的n1、n2为1~3,特别优选的n1、n2为1或2,优选的a为0、1或2。作为a,特别是在其为0的情况下,例如在193nm下的折射率增高,因而特别优选。
以下列举式(1-1)所示优选的脂环饱和烃化合物的具体例子。应予说明,在本说明书中,省略了脂环饱和烃化合物中与形成环的碳原子结合的氢原子。
Figure C200580005118D00161
Figure C200580005118D00171
Figure C200580005118D00181
以下列举式(1-1)所示优选的含有氰基的化合物的具体例子。
Figure C200580005118D00182
以下列举式(1-1)所示优选的含有氟原子的化合物的具体例子。
Figure C200580005118D00191
以下列举式(1-1)所示优选的氟取代饱和烃化合物的具体例子。
Figure C200580005118D00192
在式(1-1)所示的优选化合物中,优选脂环饱和烃化合物,其中,作为特别优选的化合物,可以列举下述式(2-1)所示的化合物。
Figure C200580005118D00193
在式(2-1)中,R1和a与式(1-1)的R1和a相同。
作为式(2-1)中的具体例子,可以列举由上述(1-1-16)、(1-1-19)、(1-1-20)、(1-1-21)、(1-1-34)、(1-1-35)、(1-1-36)、(1-1-37)、(1-1-38)、(1-1-39)所列举的化合物。
其中,不具有取代基的化合物例如在193nm下的折射率增高,因而优选,作为式(2-1)中特别优选的例子,可以列举顺-十氢化萘、反-十氢化萘。
Figure C200580005118D00201
式(1-2)中,A表示单键或可以被碳原子数1~10的烷基取代的亚甲基或可以被碳原子数1~10的烷基取代的碳原子数2~14的亚烷基,R2表示碳原子数1~10的脂肪族烃基、碳原子数3~14的脂环烃基、氰基、羟基、氟原子、碳原子数1~10的氟取代烃基、-Si(R9)3基、或-SO3R10基,R7表示氢原子、碳原子数1~10的烷基、氰基、羟基、氟原子、碳原子数1~10的氟取代烷基、或-Si(R9)3基,n3表示2~4的整数,n4表示1~3的整数,b表示0~6的整数,当存在多个R2或R7时,该R2可以相同也可以不同,2个或更多个R2可以相互结合形成环结构,R9和R10表示碳原子数1~10的烷基。
作为A中的可以被碳原子数1~10的烷基取代的亚甲基或可以被碳原子数1~10的烷基取代的碳原子数2~14的亚烷基,可以列举亚乙基、亚正丙基等。
R2与式(1-1)的R1相同。
式(1-2)中,作为取代基R2,从193nm的放射线透射率优异的观点出发,优选碳原子数1~10的脂肪族饱和烃基、碳原子数3~14的脂环饱和烃基、氰基、氟原子、碳原子数1~10的氟取代饱和烃基。
在上述取代基中,出于与(1-1)中R1相同的理由,优选碳原子数1~10的脂肪族饱和烃基、碳原子数3~14的脂环族饱和烃基。
优选的n3为2~4,特别优选为2或3,优选的n4为1~3,特别优选为1或2,优选的b为0或1或2。作为b,由于例如在193nm下的折射率增高,因而特别优选为0。以下示出优选的(1-2)的具体例子。
Figure C200580005118D00231
Figure C200580005118D00241
Figure C200580005118D00261
Figure C200580005118D00271
Figure C200580005118D00281
作为式(1-2)中特别优选的例子,可以列举1,1,1-三环庚基甲烷、1,1,1-三环戊基甲烷。
Figure C200580005118D00282
式(1-3)中,R3和R4表示碳原子数1~10的脂肪族烃基、碳原子数3~14的脂环烃基、氰基、羟基、氟原子、碳原子数1~10的氟取代烃基、-Si(R9)3基、或-SO3R100基,当R3和R4各自存在多个时,该R3和R4可各自相同也可以不同,2个或更多个R3和R4可以各自单独或相互结合形成环结构,n5和n6表示1~3的整数,c和d表示0~8的整数,R9和R10表示碳原子数1~10的烷基。
R3和R4与式(1-1)的R1相同。
式(1-3)中,作为取代基R3和R4,从193nm的放射线透射率优异的观点出发,优选碳原子数1~10的脂肪族饱和烃基、碳原子数3~14的脂环饱和烃基、氰基、氟原子、碳原子数1~10的氟取代饱和烃基。
在上述取代基中,出于与(1-1)中R1相同的理由,优选碳原子数1~10的脂肪族饱和烃基、碳原子数3~14的脂环族饱和烃基。
优选的n5和n6为1~3,特别优选为1或2,c和d为0或1或2。由于例如在193nm下的折射率增高,因而特别优选c和d两者都为0。以下示出优选的化合物(1-3)的具体例子。
Figure C200580005118D00291
Figure C200580005118D00301
Figure C200580005118D00311
作为式(1-3)中优选的例子,可以列举螺[5.5]十一烷。
Figure C200580005118D00312
式(1-4)的(a)、(b)、(c)中,B表示亚甲基或亚乙基,R5表示碳原子数1~10的脂肪族烃基、碳原子数3~14的脂环烃基、氰基、羟基、氟原子、碳原子数1~10的氟取代烃基、-Si(R9)3基、或-SO3R10基,当存在多个R5时,该R5可以相同也可以不同,2个或更多个R5可以相互结合形成环结构,e表示0~10的整数,n7表示1~3的整数,R9和R10表示碳原子数1~10的烷基。
R5与式(1-1)的R1相同。
式(1-4)中,作为取代基R5,从193nm的放射线透射率优异的观点出发,优选碳原子数1~10的脂肪族饱和烃基、碳原子数3~14的脂环饱和烃基、氰基、氟原子、碳原子数1~10的氟取代饱和烃基。
在上述取代基中,出于与(1-1)的R1相同的理由,优选碳原子数1~10的脂肪族饱和烃基、碳原子数3~14的脂环饱和烃基。
优选的c为0或1或2,n7为1~3,特别优选为1或2。由于例如在193nm下的折射率增高,因而特别优选e为0的情况。以下示出优选的化合物(1-4)的例子。
Figure C200580005118D00321
Figure C200580005118D00331
作为式(1-4)中优选的化合物,可以列举式(2-2)、式(2-2’)所示的化合物。
Figure C200580005118D00332
式(2-2)、(2-2’)中,R5与式(1-4)中的R5相同,优选的i为0、1或2。出于与(1-1)中的a相同的理由,特别优选i为0。
作为优选的化合物(2-2)、(2-2’)的具体例子,可以列举上述(1-4-1)~(1-4-6)的化合物。
作为特别优选的具体例子,可以列举挂-四氢双环戊二烯。
Figure C200580005118D00341
式(1-5)中,R6表示碳原子数1~10的脂肪族烃基、碳原子数3~14的脂环烃基、氰基、羟基、氟原子、碳原子数1~10的氟取代烃基、-Si(R9)3基、或-SO3R10基,f表示0~10的整数,当存在多个R6时,该R6可以相同也可以不同,R9和R10表示碳原子数1~10的烷基。
R6与式(1-1)的R1相同。
式(1-5)中,作为取代基R6,从193nm的放射线透射率优异的观点出发,优选碳原子数1~10的脂肪族饱和烃基、碳原子数3~14的脂环饱和烃基、氰基、氟原子、碳原子数1~10的氟取代饱和烃基。
在上述取代基中,出于与式(1-1)的R1相同的理由,优选碳原子数1~10的脂肪族饱和烃基、碳原子数3~14的脂环族饱和烃基。
优选的f为1或2。另外,取代基的位置优选桥头位。
作为式(1-5)中优选的例子,可以列举以下式所示的化合物。
Figure C200580005118D00351
式(1-6)中,R8和R8’表示碳原子数1~10的脂肪族烃基、碳原子数3~14的脂环烃基、氰基、羟基、氟原子、碳原子数1~10的氟取代烃基、-Si(R9)3基、或-SO3R10基,g和h分别表示0~6的整数,n8和n9表示1~3的整数,R9和R10表示碳原子数1~10的烷基。
R8和R8’与式(1-1)的R1相同。
式(1-6)中,作为取代基R8和R8’,从193nm的放射线透射率优异的观点出发,优选碳原子数1~10的脂肪族饱和烃基、碳原子数3~14的脂环饱和烃基、氰基、氟原子、碳原子数1~10的氟取代饱和烃基。
在上述取代基中,出于与式(1-1)中R1相同的理由,优选碳原子数1~10的脂肪族饱和烃基、碳原子数3~14的脂环族饱和烃基。
优选的g和h为0、1或2,n8和n9为1~3,特别优选为1或2。
以下示出优选的化合物(1-6)的具体例子。
Figure C200580005118D00371
Figure C200580005118D00381
Figure C200580005118D00391
作为式(1-6)中优选的例子,可以列举5-硅环[4,4]壬烷。
Figure C200580005118D00392
式(1-7)中,R11和R12表示碳原子数1~10的脂肪族烃基、碳原子数3~14的脂环烃基、氰基、羟基、氟原子、碳原子数1~10的氟取代烃基、-Si(R9)3基、或-SO3R10基,n10、n11各自独立地表示1~3的整数,j、k表示0~6的整数,当R11和R12各自存在多个时,该R11和R12可以相同也可以不同,2个或更多个R11可以相互结合形成环结构,或者2个或更多个R12可以相互结合形成环结构,X表示单键、碳原子数2~10的2价的脂肪族烃基、碳原子数3~14的2价的脂环烃基,R9和R10表示碳原子数1~10的烷基。
R11和R12的碳原子数1~10的脂肪族烃基、碳原子数3~14的脂环烃基、碳原子数1~10的氟取代烃基、-Si(R9)3基、或-SO3R10基与式(1-1)中的脂肪族烃基、脂环烃基、氟取代烃基、-Si(R9)3基、-SO3R10基相同。
式(1-7)中,作为取代基R11和R12,从193nm的放射线透射率优异的观点出发,优选碳原子数1~10的脂肪族饱和烃基、碳原子数3~14的脂环饱和烃基、氰基、氟原子、碳原子数1~10的氟取代饱和烃基。
另外,作为X的碳原子数2~10的2价的脂肪族烃基,可以列举亚乙基、亚丙基,作为碳原子数3~14的2价的脂环烃基,可以列举源自环戊烷、环己烷的2价基团等。
式(1-7)中,X优选为单键。以下示出优选的化合物(1-7)的具体例子。
Figure C200580005118D00401
Figure C200580005118D00411
Figure C200580005118D00421
Figure C200580005118D00431
Figure C200580005118D00441
作为优选的式(1-7)的例子,可以列举双环己基(dicyclohexyl)、双环戊基(dicyclopentyl)。
Figure C200580005118D00451
式(1-8)中,R13表示碳原子数大于等于2的烷基、碳原子数大于等于3的脂环烃基、氰基、羟基、氟原子、碳原子数2~10的氟取代烃基、-Si(R9)3基、或-SO3R10基,p表示1~6的整数,当存在多个R13时,该R13可以相同也可以不同,2个或更多个R13可以相互结合形成环结构,R9和R10表示碳原子数1~10的烷基。
优选的R13是碳原子数2~10的烷基、碳原子数3~14的脂环烃基,优选的p为1或2,特别优选的p为1。
上述碳原子数大于等于2的烷基优选碳原子数2~10的烷基,可以列举甲基、乙基、正丙基等。上述碳原子数大于等于3的脂环烃基优选碳原子数3~14的脂环烃基,可以列举环己基、降冰片基等。碳原子数2~10的氟取代烃基、-Si(R9)3基、或-SO3R10基与式(1-1)中的氟取代烃基、-Si(R9)3基、或-SO3R10基相同。2个或更多个R13相互结合形成的环结构可以列举环戊基、环己基等。
以下示出式(1-8)中优选化合物的具体例子。
Figure C200580005118D00461
式(1-9)中,R14表示碳原子数1~10的脂肪族烃基、碳原子数3~14的脂环烃基、氰基、羟基、氟原子、碳原子数1~10的氟取代烃基、-Si(R9)3基、或-SO3R10基,n12表示1~3的整数,q表示0~9的整数,当存在多个R14时,该R14可以相同也可以不同,R9和R10表示碳原子数1~10的烷基。
R14与式(1-1)中的R1相同。另外,优选的R14与优选的R1相同。优选的q与a相同。
以下示出式(1-9)中优选化合物的具体例子。
式(1-1)~式(1-9)中,特别优选的化合物是具有式(1-1)、式(1-4)所示化学结构,并且这些化合物是非取代、或被碳原子数1~10的脂肪族饱和烃基、碳原子数3~14的脂环饱和烃基取代的化合物,其中特别优选非取代的化合物。
上述化合物在浸液曝光装置工作的温度下是液体,出于上述(iii)式、(iv)式的理由,优选折射率高于纯水。
具体地讲,优选折射率是水与曝光前的抗蚀膜(或者浸液用上层膜)之间的值,并且为与水相比更高的值,在25℃下,波长193nm下的折射率为1.45~1.8,优选为1.6~1.8的范围,在25℃下,波长248nm下的折射率为1.42~1.65,优选为1.5~1.65的范围。另外,在25℃下,D射线(波长589nm)下的折射率为大于等于1.4,优选为1.4~2.0,更优选为1.40~1.65的范围。
另外,由于使用环境的变化引起的折射率变化成为散焦的原因,因此本化合物优选为折射率不易受温度、压力等影响的化合物。可以预测由于透镜、抗蚀剂材料的光吸收带来的发热,温度在使用时会发生变化,因此特别优选折射率的温度依赖性低。具体地说,温度(T)产生的折射率(n)的变化率dn/dT的绝对值优选为5。0×10-3(℃-1)以内,更优选为7.0×10-4(℃-1)以内。
另外,从本观点出发,优选本化合物的比热为大值,具体地讲,比热的值优选大于等于0.1cal/g·℃,更优选大于等于0.30cal/g·℃。
另外,上述化合物优选其折射率不易受色差产生的影响,优选在曝光波长周边的折射率的波长依赖性小。
另外,作为其他特性,在远紫外区域的透光性高,粘度、氧气、氮气等气体的溶解度、与透镜、抗蚀剂(或者抗蚀剂上层膜)的接触角、表面张力、闪点等优选在下述范围内,此外,还期望与透镜、抗蚀剂材料的化学相互作用小。以下详细地描述这些特性。
193nm下的放射线透射率在25℃下优选光程1mm的透射率大于等于70%,特别优选大于等于90%,进一步优选大于等于95%。此时,如果透射率低于70%,容易引起由液体的光吸收产生的热能引起的发热,容易产生由温度上升引起的折射率改变带来的光学像的散焦和变形。另外,由于液体的吸收,成为到达抗蚀膜的光量减少,引起产量大幅降低的原因。
对于粘度,20℃的粘度为小于等于0.5Pa·s,尤其当在晶片与透镜材料之间的间隙为小于等于1mm的环境中使用时,优选为小于等于0.01Pa·s,特别优选为小于等于0.005Pa·s。如果粘度超过0.5Pa·s,液体难以浸入抗蚀膜(或者浸液用上层膜)与透镜材料之间的间隙,或者不能获得当利用局部浸液法作为浸液液体的供给方法,利用通过移动承载晶片的载物台对晶片进行全面曝光的步进扫描方式作为曝光方式时足够的扫描速度,引起产量的大幅降低,另外,还存在容易产生由摩擦引起的温度上升的倾向,容易受到由温度变化引起的光学特性变化的影响。另外,尤其在晶片与透镜材料之间的间隙为小于等于1mm的情况下,根据上述理由,粘度优选为小于等于0.01Pa·s,此时,通过降低间隙的距离(液膜的厚度),能够提高液体的透射率,能够使之难以受到液体吸收的影响,因而是合适的。
另外,粘度增大时,容易产生液中生成气泡(纳米泡、微泡),另外,该气泡的寿命延长,因而不合适。
另外,对于气体在本发明涉及的液体中的溶解度,以氧气和氮气在25℃、分压为1个大气压(atm)时液体中的气体摩尔分数表示的溶解度优选为0.5×10-4~70×10-4,进一步优选为2.5×10-4~50×10-4,当这些气体的溶解度为小于等于0.5×10-4时,由抗蚀剂等产生的纳米泡难以消失,因此,由于气泡引起的光散射,在图案形成时容易产生抗蚀剂的缺陷。另外,如果为大于等于70×10-4,在曝光时会吸收周围的气体,容易受到由气体吸收引起的光学特性变化的影响。
另外,本发明的液体与抗蚀剂(或者浸液用上层膜)之间的接触角优选为20°~90°,进一步优选为50°~80°,另外,与石英玻璃或CaF2等透镜材料的接触角优选为小于等于90°,更优选为小于等于80°。如果本发明的液体与曝光前的抗蚀剂(或者浸液上层膜)的接触角为小于等于20°,液体难以浸入间隙,另外,当利用上述局部浸液法和步进扫描方式的组合作为曝光方式时,液体容易飞散到膜中。另一方面,如果本发明的液体与曝光前的抗蚀剂(或者浸液上层膜)的接触角大于等于90°,在具有凹凸的抗蚀剂(或者上层膜)界面处容易吸收气体,容易产生气泡。这样的现象记载于ImmersionLithography Modeling 2003 Year-End Report(InternationalSEMATECH)。
另外,如果本发明的液体与透镜材料的接触角超过90°,存在透镜表面和液体之间产生气泡的倾向。
另外,尤其当用于与现在水的浸液曝光中使用的同样的利用局部浸液法进行浸液的步进扫描方式的曝光装置时,扫描时的液体的飞散成为问题,因此本发明的液体优选表面张力高。具体地讲,20℃的表面张力优选为5dyn/cm~90dyn/cm,进一步优选为20dyn/cm~80dyn/cm。
当本发明的液体与抗蚀剂表面的接触角不合适时,通过使用适当的浸液上层膜能够改善接触角。特别是由于本发明的液体是低极性,因而通过使用高极性上层膜能够提高接触角。
该液体产生的光酸发生剂、碱性成分等的抗蚀剂成分的洗脱不仅对抗蚀剂的图案形成性能产生缺陷,对轮廓劣化等产生不良影响,而且还引起液体本身的污染,例如成为液体的光学特性的变化或透镜的侵蚀等的原因。另外,因此液体的再利用变得困难,需要频繁的进行液体精制。因此,优选由液体的洗脱引起的污染少。可以利用采用HPLC等的方法评价洗脱量,但是,更准确地说,193nm下的吸光度对于抗蚀剂中的成分的混入非常敏感,因此可以通过跟踪后者的变化进行评价。作为具体对于液体的要求,在后述评价方法中采用“抗蚀剂接触时的吸光度变化”的浸渍试验中浸渍180秒后每1cm的吸光度变化(浸渍后的吸光度-浸渍前的吸光度)为小于等于0.05,优选为小于等于0.02,进一步优选为小于等于0.005。
本发明的液体优选为在使用环境下爆炸、着火、引火等危险性低的化合物。具体地讲,闪点优选为大于等于25℃,进一步优选为大于等于50℃,燃点优选为大于等于180℃,进一步优选为大于等于230℃。另外,25℃的蒸汽压优选为小于等于50mmHg,进一步优选为小于等于5mmHg。
另外,优选对人体、环境的危害性低,具体地讲,关于对于人体的有害性,优选急性毒性低,没有致癌性、致变异性、促畸形性、生殖毒性等的化合物。具体地讲,容许浓度优选为大于等于30ppm,进一步优选为大于等于70ppm,优选Ames试验结果为阴性的液体。关于对于环境的有害性,优选没有残留性、生态累积性的化合物。
另外,本发明的液体优选利用气相色谱测定的纯度为大于等于95.0重量%,特别优选为大于等于99.0重量%,进一步优选纯度为大于等于99.9重量%。
优选特别在193nm等曝光波长下吸光度大的含有烯烃的化合物、含有芳香环的化合物、含有硫(硫化物、亚砜、砜结构)、卤素、羰基、醚基的化合物等的比例低于0.01重量%,特别优选低于0.001重量%。
另外,由本化合物组成的液体用于半导体集成电路制造工序,因此优选金属或金属盐含量低,具体地讲,金属含量为小于等于100ppb,优选为小于等于10ppb,进一步优选为小于等于1.0ppb。如果金属含量超过100ppb,金属离子或金属成分可能会给抗蚀膜等带来不良影响,污染晶片。
作为金属,可以列举选自Li、Na、K、Mg、Cu、Ca、Al、Fe、Zn、Ni的至少1种金属。这些金属能够通过原子吸光法进行测定。
另外,该液体中的氧浓度为小于等于100ppm(100μg/ml),优选为小于等于10ppm,更优选为小于等于2ppm。另外,尤其在曝光时优选为小于等于1ppm,进一步优选为小于等于10ppb。如果氧浓度超过100ppm,存在容易产生由溶解氧引起的氧化反应等造成的透射率下降的趋势。另外,即使不引起氧化反应等,如果溶解有氧,例如如实施例所示,由于溶解氧以及在向氧照射放射线时产生的臭氧的吸收,因此根据溶解氧浓度而液体的吸光度降低。另外,如果在氧共存下曝光液体,生成的臭氧会氧化液体,加速液体的劣化。
另外,特别当进行偏振光曝光时,如果具有旋光性,会导致光学对比度降低,因此,本液体优选为不具有旋光性的液体。具体地讲,构成本液体的化合物优选为不具有旋光性(没有光学活性)的化合物,当构成液体的化合物是具有旋光性(光学活性)的化合物时,优选含有等量的光学异构体(作为消旋体存在),液体整体不具有光学活性。
本发明的化合物能够以市售的化合物得到,或者能够通过已知的各种合成法,由可以获得的原料进行制造。以下,通过列举具体例子,对本化合物的制备方法进行说明。
例如,对于式(2-1)所示的化合物,能够通过使用适当的催化剂,采用接触氢化对产自煤炼焦炉的干馏油、石油类接触重整油和流动接触分解油、以及在乙烯的制造副产物的石脑分解油等所含的萘或萘衍生物进行核加氢而制造。
在上述接触重整油、流动重整油、石脑分解油中,除了萘、烷基萘之外,还含有苯、烷基苯、菲、蒽、其他多环芳香族及其衍生物、苯并噻吩及其衍生物等含硫化合物、吡啶及其衍生物等含氮化合物,作为原料的萘和萘衍生物能够通过由这些的混合物中进行分离精制而得到。
在用于制造上述化合物(2-1)的萘和萘衍生物中,优选上述中含硫化合物的含量低。此时,含硫化合物的含量优选为小于等于100ppm,进一步优选为小于等于50ppm。如果含硫化合物的含量超过100ppm,该含硫化合物会引起接触氢化时的催化剂中毒,妨害核加氢反应的进行,此外,在化合物(2-1)中混入源自该含硫化合物的含硫杂质,通过精制不能除去时,会引起本发明液体在193nm等曝光波长下的透射率降低。
另外,当制造化合物(2-1)中的顺-十氢化萘或反-十氢化萘及其混合物时,特别优选作为原料的萘的纯度高,优选萘的纯度为大于等于99.0%,特别优选的萘的纯度为大于等于99.9%。此时,当作为杂质的含硫化合物等的含量高时,除了会引起上述问题之外,当含有作为杂质的其他萘衍生物、芳香族化合物及其衍生物时,生成这些杂质进行加氢得到的难以分离的烃化合物,十氢化萘的纯度控制变得困难。
另外,作为接触氢化的催化剂,除了镍类、铂、铑、钌、铱、钯等贵金属类催化剂,还可以使用钴·钼、镍·钼、镍·钨等的硫化物。其中,考虑到其催化活性、成本,优选镍类催化剂。
另外,这些金属催化剂优选负载在适当的载体上使用,此时,通过使催化剂高度分散在载体上,氢化的反应速度提高,此外,尤其防止高温、高压条件下的活性中心劣化,而且提高对于催化剂中毒的抵抗力。
作为该载体,可以优选使用SiO2、γ-Al2O3、Cr2O3、TiO2、ZrO2、MgO、ThO2、硅藻土、活性炭等。
另外,作为上述接触氢化的方法,可以利用不使用溶剂的气相法和将原料溶解于适当溶剂进行反应的液相法。其中,由于在成本以及反应速度方面优异,因而优选气相法。
当使用气相法时,作为催化剂,优选镍、铂等。使用的催化剂的量越多,反应速度越高,但从成本方面考虑,并不优选。因此,为了加快反应速度而使反应结束,优选减少催化剂量,在温度以及氢压高的条件下进行反应。具体地优选在催化剂量相对于原料萘(萘衍生物)为0.01~10重量份、氢压为5~15MPa、反应温度为100℃~400℃左右下进行反应。
另外,利用例如专利文献(特开2003-160515)中记载的方法,采用使用镍或铂、钯系催化剂由中间体四氢化萘中除去萘的方法,在温和的条件下也能够得到目标产物。
在上述反应中,反应转化率优选为大于等于90%,进一步优选为大于等于99%。
上述反应后,优选通过进行适当的精制,除去未反应原料、催化剂等杂质。
作为上述精制方法,可以利用精馏、水洗、浓硫酸洗涤、过滤、晶析等精制方法以及它们的组合。其中,对于非挥发性的源自催化剂的金属及其他金属的去除、源自原料的成分两者的去除有效,因而优选精馏。另外,为了除去源自催化剂的金属,优选进行与催化剂相应的脱金属处理。
上述化合物中的四氢双环戊二烯能够通过下列步骤制得:在适当的条件下对已知作为光学透镜、光学薄膜用树脂的原料单体有用的双环戊二烯(外(exo)、内(endo)混合物)或内双环戊二烯进行加氢,通过蒸馏等方法精制所得四氢双环戊二烯。当由双环戊二烯中要选择性地得到外异构体时,通过利用适当的催化剂对双环戊二烯异构体混合物进行异构化,从而选择性地得到外体,进行上述加氢反应,或者利用适当的催化剂对通过内(内、外混合)的双环戊二烯的加氢得到的内(内,外混合)四氢双环戊二烯进行异构化,从而能够选择性地得到外四氢双环戊二烯。
上述双环戊二烯一般通过对石脑油的热分解产物中的所谓C5馏分中大量含有的环戊二烯进行二聚而制造。该双环戊二烯例如含5-异丙烯基降冰片烯等源自C5馏分的烃成分作为杂质,如果含有这些化合物,加氢、异构化后,会残留源自这些杂质的烃产物,使得最终产物四氢双环戊二烯的精制变得困难。因此,优选使用预先通过精制等方法高纯度化的物质。此时的纯度优选为大于等于95重量%,进一步优选为大于等于97重量%。
另外,上述双环戊二烯优选例如导致加氢反应催化剂中毒的含硫成分的含量少,具体地讲,双环戊二烯中存在的含硫成分优选为小于等于500ppb,进一步优选为小于等于50ppb。如果含硫成分的量为500ppb,容易妨害后续工序的加氢反应。
这里所谓该含硫成分,是指例如以游离硫、单质硫、硫化氢、硫醇类、二硫化物类、噻吩等无机或有机化合物的形式存在的硫元素的总量,能够利用具备硫化学发光检测器(SCD)的气相色谱等进行分析。该硫馏分例如能够通过特开2001-181217的方法除去。该双环戊二烯的加氢能够利用公知的碳-碳双键的加氢催化剂进行。该加氢能够通过例如特开昭60-209536、特开2004-123762中公开的方法进行。上述加氢后,通过进行蒸馏能够制得四氢双环戊二烯,例如要选择性地制得外体,已知利用各种路易斯酸进行异构化的方法。本异构化例如能够通过使用卤化铝、硫酸等作为路易斯酸的方法进行(特开2002-255866)。在本反应中,已知作为副产物生成金刚烷,但当大量存在金刚烷时,193nm下的透射率下降,因而必须使最终液体中共存的金刚烷的量为小于等于0.5重量%,优选为小于等于0.1重量%,进一步优选为小于等于0.05重量%。该金刚烷能够通过适当地设定上述异构化反应的条件或各种公知的精制方法除去。
以下,优选的浸液曝光用液体的结构和物性值的具体例子示于表1。
表1
Figure C200580005118D00561
另外,反-十氢化萘、挂-四氢双环戊二烯的各种物性数据示于表2。
表2
Figure C200580005118D00562
在表2中,氧溶解度和氮溶解度的值是分压1个大气压时的值,单位是ppm。
本发明的浸液曝光用液体具有选自上述式(1-1)~(1-9)的结构,因而例如在193nm下的吸光度小,是合适的,但该波长范围的吸光度容易受到微量杂质的影响。另外,当在这些液体中存在碱成分时,即使非常微量,也会给抗蚀剂轮廓产生大影响。这些杂质能够通过利用适当的方法精制上述液体而除去。例如,对于具有(1-1)~(1-5)、(1-7)~(1-9)的结构的饱和烃化合物,能够通过浓硫酸洗涤、水洗、碱洗涤、硅胶柱精制、精馏、碱条件下的高锰酸盐处理以及它们的组合进行精制。
具体地讲,例如能够通过下列步骤进行适当的精制:反复进行浓硫酸洗涤直到浓硫酸的着色消失,然后,通过水洗、碱洗涤除去浓硫酸,进而进行水洗、干燥后,进行精馏。
另外,因化合物的不同,在进行前期处理之前,通过在碱性条件下利用高锰酸盐进行处理,能够更高效地除去杂质。
在上述精制操作中,浓硫酸洗涤对于在193nm下吸收大的芳香族化合物、具有碳-碳不饱和键的化合物的去除是有效的,此外,对于微量碱性化合物的去除也是有效的,是优选的精制方法。该处理优选根据精制的化合物,选择最佳的搅拌方法、温度范围、处理时间、处理次数进行处理。
具体地讲,温度越高,杂质除去的效率越高,但同时由于副反应容易生成导致吸收的杂质。优选的处理温度为-20℃~40℃,特别优选的处理温度为-10℃~20℃。
处理时间越长,与上述芳香族化合物、具有碳-碳不饱和键的杂质的反应进一步进行,上述杂质的除去效率越高,但存在副反应产生的导致吸收的杂质的生成量增加的趋势。
当利用上述浓硫酸处理进行精制时,为了完全除去处理后本发明的液体中残留的源自浓硫酸的酸性杂质、由浓硫酸处理生成的磺酸成分,优选进行碱洗涤、纯水洗涤和用于除去水分的干燥处理。
另外,通过在浓硫酸洗涤后进行精馏,能够更高效地除去导致吸收的杂质。
该精馏优选根据应当除去的杂质与本发明液体的沸点差,利用具有该分离所需的理论塔板数以上的理论塔板数的蒸馏塔进行。从除去杂质的观点出发,优选的理论塔板数为10~100,提高理论塔板数时,由于设备、制造成本提高,因此通过与其他精制方法组合,可以用比上述更低的塔板数进行精制。特别优选的理论塔板数为30~80。
此外,该精馏优选在适当的温度条件下进行。蒸馏温度升高,存在吸收的降低效果因化合物的氧化反应等而减小的倾向。优选的蒸馏温度为30℃~120℃,特别优选的蒸馏温度为30℃~80℃。
为了进行上述温度范围内的蒸馏,优选根据需要在减压下进行该精馏。
上述精制处理优选在氮或氩等惰性气体气氛下进行。此时,优选惰性气体中的氧浓度、有机成分浓度低。优选的氧浓度为小于等于1000ppm,进一步优选为小于等于10ppm,特别优选为小于等于1ppm。
另外,在上述处理中,利用高锰酸盐的处理对于非芳香族的含有碳-碳不饱和键的化合物的去除特别有效,但对于具有叔碳的化合物,容易引起叔碳的氧化反应,因此适于不具有叔碳的化合物的精制。
另外,从防止副反应的观点出发,该处理优选在小于等于室温的低温下进行。
作为具体例子,(顺、反混合物:Aldrich公司制造)十氢化萘、反-十氢化萘(东京化成公司制造)、采用后述实施例1所示的方法进行了精制的精制后的反-十氢化萘(1)、双环己基、异丙基环己烷、环辛烷、环庚烷、采用实施例2所示的方法进行了精制的精制后的反-十氢化萘(2)、采用实施例3所示的方法进行了精制的精制后的挂-四氢双环戊二烯(1)、采用实施例4所示的方法进行了精制的精制后的挂-四氢双环戊二烯(2)、采用实施例5所示的方法进行了精制的精制后的反-十氢化萘(3)、采用实施例6所示的方法进行了精制的精制后的挂-四氢双环戊二烯(3)、采用实施例7所示的方法进行了精制的精制后的双环己基、异丙基环已烷、环辛烷、环庚烷的折射率和透射率的测定结果示于表3和表4。另外,使用作为参比液体的乙腈、用作浸液曝光用液体的纯水、二碘甲烷作为比较例。
对于折射率,针对顺、反-十氢化萘以及精制后的反-十氢化萘、双环己基、异丙基环己烷、环辛烷、环庚烷、乙腈测定在紫外范围的折射率。测定装置使用MOLLER-WEDEL公司制造的测角分光计1型UV-VIS-IR,测定方法采用最小偏转角法、在25℃的测定温度下进行测定。
透射率采用测定法A或测定法B进行。测定法A通过下列步骤进行测定:在氧浓度控制在小于等于0.5ppm的氮气气氛的手套箱中,在聚四氟乙烯制的加盖的光程10mm的池内进行液体的取样,利用日本分光公司制造的JASCO-V-550,使用上述池,以空气作为参比进行测定。表中的值是通过计算校正池的反射后,根据该值换算成光程1mm的值。
测定法B是在氧浓度控制在小于等于0.5ppm的氮气气氛的手套箱中,在聚四氟乙烯制的加盖石英池(测定用:光程50mm,参比:光程10mm)中进行液体的取样。使用上述池,通过日本分光公司制造的JASCO-V-550,以光程50mm的池作为试样,以光程10mm的池作为参比,进行测定。将本测定的值作为每光程40mm的吸光度。表中的值是根据该值换算成每1mm光程的值。
表3
Figure C200580005118D00601
表4
Figure C200580005118D00602
如表3和表4所示,折射率的波长依赖性是随着波长减小,折射率增加,上述表中的本发明的液体例如在193nm下具有大于等于1.58的高折射率。
另外,本发明的化合物是低极性化合物,因此氧、氮等气体的溶解度高。因此,容易受到这些气体溶解的影响,例如当放置在大气气氛下时,由于溶解氧的吸收或光激发溶解氧而生成的臭氧的吸收、或者与溶解氧相关的氧化反应等,存在例如193nm的透射率降低的倾向。因此,这些化合物优选进行脱气处理,在氮、氩等惰性且吸收少的气体中进行保存。具体地讲,优选使保存液体中的氧浓度为小于等于100ppm,进一步优选为小于等于10ppm而进行处理。另外,在曝光前不能进行脱氧时,特别优选为小于等于1ppm,进一步优选为小于等于10ppb。
下面描述使用了本发明的浸液曝光用液体的浸液曝光方法。
本发明的浸液曝光用液体优选如上所述在惰性气体中保存,作为此时的容器,优选用容器成分或容器的盖成分(例如,混配于塑料中的增塑剂等)不会洗脱的容器进行保存。作为优选的容器的例子,例如可以列举材料是玻璃、金属(例如SUS)、陶器、PTFE(聚四氟乙烯)、PFEP(全氟乙烯丙烯共聚物)、ECTFE(乙烯-氯三氟乙烯共聚物)、PTFE/PDD(聚四氟乙烯-全氟二噁茂共聚物)、PFA(全氟烷氧基链烷)、ETFE(乙烯-四氟乙烯共聚物)、PVDF(聚偏氟乙烯)、PVF(聚氟乙烯)、PCTFE(聚氯三氟乙烯)等氟树脂的容器,但特别优选材料是玻璃、氟树脂的容器。
另外,作为优选的容器的盖的例子,例如可以列举材料是聚乙烯且不含增塑剂的盖,材料是玻璃、金属(例如SUS)、陶器、PTFE(聚四氟乙烯)、PFEP(全氟乙烯丙烯共聚物)、ECTFE(乙烯-氯三氟乙烯共聚物)、PTFE/PDD(聚四氟乙烯-全氟二噁茂共聚物)、PFA(全氟烷氧基链烷)、ETFE(乙烯-四氟乙烯共聚物)、PVDF(聚偏氟乙烯)、PVF(聚氟乙烯)、PCTFE(聚氯三氟乙烯)等氟树脂的盖。
另外,对于由容器向曝光机输液时使用的配管,优选与上述同样的不引起洗脱的配管,作为优选的配管的材料,可以列举玻璃、金属、陶器等。
本发明的浸液曝光用液体,当用于浸液曝光时,微粒、气泡(微泡)导致图案的缺陷等,因而优选在曝光前除去微粒和产生气泡的溶解气体。
作为除去微粒的方法,可以列举使用适当的过滤器进行过滤的方法。作为过滤器,优选微粒的除去效率高,并且使用了无过滤时洗脱引起的曝光波长下吸收变化的材料的过滤器。作为优选的过滤器材料,例如可以列举玻璃、金属(例如SUS、银)和金属氧化物、PTFE(聚四氟乙烯)、PFEP(全氟乙烯丙烯共聚物)、ECTFE(乙烯-氯三氟乙烯共聚物)、PTFE/PDD(聚四氟乙烯-全氟二噁茂共聚物)、PFA(全氟烷氧基链烷)、ETFE(乙烯-四氟乙烯共聚物)、PVDF(聚偏氟乙烯)、PVF(聚氟乙烯)、PCTFE(聚氯三氟乙烯)等氟树脂。另外,对于过滤器的外壳、芯、支架、塞子等周边部件的材料,也优选为从上述过滤器的优选材料中选择的材料。
作为溶解气体的除去方法,例如可以列举减压脱气法、超声波脱气法、利用气体透过性膜的脱气法、使用了各种脱气器的脱气法等。
本发明的浸液曝光用液体在曝光时是光学系统的一部分,因而优选在对液体的折射率等光学性质的变化没有影响的环境下使用。例如,优选在使影响液体光学特性的温度、压力等恒定的环境下使用。例如对于温度,优选控制在±0.1℃,更优选控制在±0.01℃的范围内。
另外,使用了本发明的液体的浸液曝光,还可以在大气气氛下进行,如上所述,氧气在本发明的液体中的溶解度高,有时影响曝光波长下的吸收特性,因此优选在曝光波长下的吸收少、不会引起与液体的化学反应的惰性气体中进行曝光。作为优选的该惰性气体,例如可以列举氮气、氩气等。
另外,从防止由空气中的有机成分引起的污染导致的液体在曝光波长下吸收特性变化的观点出发,优选将所用气氛中的有机成分浓度控制在一定水平以下。作为该有机成分浓度的控制方法,可以列举使用高纯度的上述惰性气体气氛、以及使用吸附有机成分的过滤器、各种气体精制管(装置)的方法等。为了浓度控制,优选定期进行周围气氛的分析,为此能够例如使用了利用了气相色谱的各种分析方法。
作为曝光区域的浸液的液体供给方法,已知mooving pool法、seimming stage法、Local Fill法(局部浸液方式)(参照特别学术研讨会浸液曝光技术(2004年5月27日召开)学术研讨会资料),由于局部浸液法的浸液曝光用液体的使用量少,因而优选。
作为利用了本液体的浸液曝光用的最终(物镜)透镜材料,由于其光学特性而优选现行的CaF2或熔凝硅石。作为其他优选的透镜材料,优选例如高周期碱土类金属M的氟盐以及通式CaxM1-xF2表示的盐、CaO、SrO、BaO等碱土类金属的氧化物等,当使用该材料时,与CaF2(n@193nm=1.50)、熔凝硅石(n@193nm=1.56)相比,透镜的折射率提高,因此,在设计、加工数值孔径超过1.5的高NA的透镜时特别优选。
由于抗蚀剂成分的洗脱非常少,因而本发明的液体能够在使用后再利用。当使用了能够忽略曝光时由抗蚀膜的洗脱等的影响的抗蚀剂(或者抗蚀剂上层膜)时,本发明的液体能够不进行精制而再利用,但是,此时优选在进行了脱气、过滤等处理后进行再利用。从简化工序的观点出发,优选在线进行这些处理。
另外,在使用时,即使是在1次使用中能够忽略由上述抗蚀膜的洗脱等的水平,但当使用次数超过一定次数时,可以预测:由于积蓄的杂质的影响,液体的物性会发生变化,因此,优选在使用一定次数后进行回收、精制。
作为该精制方法,可以列举水洗处理、酸洗涤、碱洗涤、精馏、使用了适当的过滤器(填充柱)的精制、过滤等方法,以及如上所述的本发明的液体的精制方法或者由这些精制方法组合产生的方法。其中,优选利用水洗处理、碱洗涤、酸洗涤、精馏或者这些精制方法的组合进行精制。
上述碱洗涤对于洗脱于本发明液体中的通过曝光产生的酸的除去是有效的,酸洗涤对于洗脱于本发明液体中的抗蚀剂中的碱性成分的去除是有效的,水洗处理对于洗脱于本发明的液体中的抗蚀膜中的光酸发生剂、碱性添加剂、曝光时产生的酸等洗脱物的去除是有效的。
对于精馏,除了对于上述添加剂中的低挥发性化合物的去除有效外,对于除去曝光时由抗蚀剂中的保护基的分解产生的疏水性成分也是有效的。
式(1-1)~式(1-9)所示的浸液曝光用液体能够各自单独使用,也能够混合使用。优选的例子是单独使用的情况。通过单独使用,容易设定浸液曝光条件。
另外,本发明的液体根据需要能够与本发明以外的液体混合使用,这样能够使例如折射率、透射率等光学特性值、接触角、比热、粘度、膨胀率等物性值达到期望值。
作为用于本目的的本发明以外的液体,除了其他能够浸液曝光的溶剂外,还能够使用各种消泡剂、表面活性剂等,对于气泡的减少、表面张力的控制是有效的。
使用上述浸液曝光用液体进行浸液曝光。
在基板上涂布光致抗蚀剂而形成光致抗蚀膜。基板能够使用例如硅晶片、用铝被覆的晶片等。另外,为了最大限度地发挥抗蚀膜的潜能,如例如特公平6-12452号公报等公开那样,能够预先在所使用的基板上形成有机类或无机类的防反射膜。
所用的光致抗蚀剂没有特别限制,能够根据抗蚀剂的使用目的适时地选择。作为光致抗蚀剂的树脂成分,可以列举含酸解离性基团的高分子。该酸解离性基团优选不因曝光而分解,特别优选该分解后产物在曝光条件下挥发,不洗脱于本发明液体中。作为这些高分子的例子,可以列举高分子侧链含脂环基、内酯基以及它们的衍生物等的树脂、包含羟基苯乙烯衍生物等的树脂等。
特别优选使用高分子侧链含脂环基、内酯基以及它们的衍生物的树脂的光致抗蚀剂。这些光致抗蚀剂含有与脂环烃化合物或在环结构中含硅原子的环烃化合物类似的化学结构,因而与本发明的浸液曝光用液体的亲和性优异。另外,不使光致抗蚀膜洗脱,也不会使其溶解。
作为光致抗蚀剂的例子,可以列举含有包含酸解离性基团的高分子作为树脂成分、酸发生剂、酸扩散控制剂等添加剂的化学放大型的正或负型抗蚀剂等。
当使用本发明的浸液曝光用液体时,特别优选正型抗蚀剂。对于化学放大型正型抗蚀剂,在通过曝光由酸发生剂生成的酸的作用下,聚合物中的酸解离性有机基团解离,生成例如羧基,其结果,抗蚀剂的曝光部位对于碱显像液的溶解性提高,该曝光部位被碱显像液溶解而除去,得到正型抗蚀图案。
光致抗蚀膜通过以下过程形成:例如以0.1~20重量%的固体成分浓度将用于形成光致抗蚀膜的树脂组合物溶解在适当的溶剂中,然后,例如通过孔径30nm左右的过滤器进行过滤而调制溶液,利用旋涂、流延涂布、辊涂等适当的涂布方法,在基板上涂布该抗蚀剂溶液,进行预焙烧(以下称为“PB”)使溶剂挥发。另外,此时能够直接使用市售的抗蚀剂溶液。该光致抗蚀膜优选相比浸液上层膜和浸液曝光用液体是高折射率,具体地优选光致抗蚀膜的折射率nRES为大于等于1.65。特别当NA为大于等于1.3时,nRES优选大于1.75,此时,能够防止NA的增大带来的曝光光线的对比度下降。
另外,在浸液曝光方法中,能够在光致抗蚀膜上进一步形成浸液用上层膜。
作为浸液用上层膜,只要是能够在光致抗蚀膜上形成保护膜而不引起对于曝光光线的波长足够的透过性和与光致抗蚀膜的混和,此外,维持稳定的被膜而不会在浸液曝光时使用的上述液体中洗脱,而且在显像前能够剥离的膜,就能够使用。此时,该上层膜如果是容易溶解于作为显像液的碱液的膜,在显像时被剥离,因而优选。
优选侧链具有六氟甲醇基和羧基的至少1个基团作为用于赋予碱可溶性的取代基的树脂。
该浸液用上层膜优选同时具有防止多重干涉的功能,此时,该浸液用上层膜的折射率noc优选为以下所示的数学式。
noc=(n1q×nRES)0.5
其中,n1q、nRES分别表示浸液曝光用液体的折射率、抗蚀膜的折射率。
具体地讲,noc优选为1.6~1.9的范围。
上述浸液上层膜能够通过以下过程形成:以0.01~10%固体成分浓度将浸液上层膜用树脂组合物溶解在不与抗蚀膜混合的溶剂中,然后采用与光致抗蚀膜形成时同样的方法涂布在抗蚀膜上,进行预焙烧。
以本发明的浸液曝光用液体作为介质,通过具有规定图案的掩膜向该光致抗蚀膜或者形成了浸液用上层膜的光致抗蚀膜照射放射线,接着进行显像,从而形成抗蚀图案。该工序是进行浸液曝光,在规定的温度下进行了焙烧后进行显像的工序。
用于浸液曝光的放射线,能够根据所用的光致抗蚀膜以及光致抗蚀膜和浸液用上层膜的组合,选择使用例如可见光;g射线、i射线等紫外线;准分子激光等远紫外线;同步加速器放射线等X射线;电子射线等带电粒子射线这样的各种放射线。特别优选ArF准分子激光(波长193nm)或KrF准分子激光(波长248nm)。
另外,为了提高抗蚀膜的分辨率、图案形状、显像性等,优选在曝光后进行焙烧(以下称为“PEB”)。该焙烧温度根据所用的抗蚀剂等进行适当调节,通常为30~200℃左右,优选为50~150℃。
接着,用显像液对光致抗蚀膜进行显像,进行洗涤,形成期望的抗蚀图案。
实施例
为了评价本发明的浸液曝光用液体,使用以下所示的放射线敏感性组合物形成抗蚀膜。另外,在其一部分上形成以下所示的浸液用上层膜。利用该评价用抗蚀膜测定作为浸液曝光用液体的特性(洗脱试验、膜的溶解性试验、图案形成评价)。
参考例1
采用以下方法制得用于放射线敏感性树脂组合物的树脂。
Figure C200580005118D00671
将39.85g(40摩尔%)化合物(S1-1)、27.47g(20摩尔%)化合物(S1-2)、32.68g(40摩尔%)化合物(S1-3)溶解于200g的2-丁酮中,进一步投入4.13g偶氮二异戊酸甲酯,准备单体溶液,对投入了100g的2-丁酮的1000ml的三口烧瓶进行30分钟的氮气净化。氮气净化后,一边搅拌反应釜,一边加热至80℃,使用滴液漏斗,用3小时滴加事先准备的上述单体溶液。以滴液开始作为聚合开始时间,进行5小时的聚合反应。聚合结束后,聚合溶液通过水冷冷却至小于等于30℃,投入到2000g的甲醇中,过滤析出的白色粉末。利用400g甲醇,在浆液上对过滤的白色粉末洗涤2次后过滤,在50℃下干燥17小时,制得白色粉末的聚合物(75g,收率75重量%)。该聚合物分子量为10300,13C-NMR分析的结果是化合物(S1-1)、化合物(S1-2)、化合物(S1-3)所示重复单元,各重复单元的含有率为42.3:20.3:37.4(摩尔%)的共聚物。将该聚合物作为树脂(A-1)。
参考例2
采用以下方法制得用于放射线敏感性树脂组合物的树脂。
Figure C200580005118D00681
将53.92g(50摩尔%)化合物(S2-1)、10.69g(10摩尔%)化合物(S2-2)、35.38g(40摩尔%)化合物(S2-3)溶解于187g的2-丁酮而得到单体溶液(1),准备将3.37g的二甲基2,2′-偶氮二(2-甲基丙酸酯)溶解于64g的2-丁酮得到的溶液(2),再将事先准备的28.77g单体溶液(1)、4.23g溶液(2)投入放有15g的2-丁酮的1000ml的三口烧瓶中,然后利用减压置换法进行氮气净化。氮气净化后,一边搅拌反应釜,一边加热至80℃,15分钟之后,利用输液泵,用3小时滴入258.98g单体溶液(1)、24.64g溶液(2)。滴液结束后,再搅拌4小时。聚合结束后,聚合溶液通过放置冷却冷却至小于等于30℃。反应结束后,溶液通过放置冷却,冷却到小于等于30℃,投入到4000g异丙醇中,过滤析出的白色粉末。利用2000g异丙醇,在浆液上对过滤的白色粉末洗涤2次后,进行过滤,在60℃下干燥17小时,制得白色粉末的聚合物(85g,收率85重量%)。该聚合物的Mw为7600,13C-NMR分析的结果是化合物(S2-1)、化合物(S2-2)、化合物(S2-3)所示重复单元,各重复单元的含有率为53.1:8.5:38.4(摩尔%)的共聚物。将该聚合物作为树脂(A-2)。
参考例3
采用以下方法制得形成浸液用上层膜的树脂。
Figure C200580005118D00691
将50g化合物(S3-1)、5g化合物(S3-2)、25g化合物(S3-3)、20g化合物(S3-4)以及6.00g偶氮二异戊酸甲酯溶解于200g甲乙酮,准备成为均匀溶液的单体溶液。接着,对投入有100g甲乙酮的1000ml的三口烧瓶进行30分钟的氮气净化。氮气净化后,一边搅拌烧瓶,一边加热至80℃,利用滴液漏斗,以10ml/5分钟的速度滴加事先调制的上述单体溶液。以滴加开始时作为聚合开始时间点,进行5小时的聚合。聚合结束后,将反应溶液冷却至小于等于30℃,接着,将该反应溶液投入到2000g庚烷中,过滤析出的白色粉末。重复2次将过滤的白色粉末与400g庚烷混合、形成浆液、搅拌的操作,洗涤后过滤,在50℃下干燥17小时,制得白色粉末树脂(E-1)(89g,收率89重0量%)。树脂(E-1)的Mw为7300。
参考例4
采用以下的方法制得形成浸液用上层膜的树脂。
Figure C200580005118D00701
作为单体,除了使用70g化合物(S4-1)、20g化合物(S4-2)和10g化合物(S4-3)以外,与参考例3同样地制得白色粉末的树脂(E-2)(88g,收率88重量%)。树脂(E-2)的Mw为6800。
参考例5
采用以下方法得到放射线敏感性树脂组合物。
混合表5所示的树脂、酸发生剂、酸扩散控制剂、溶剂,形成均匀溶液后,利用孔径200nm的膜滤器进行过滤,调制放射线敏感性树脂组合物(F1~F3)。在表5中,“份”是重量基准。
另外,以下示出所用的酸发生剂(B)、酸扩散控制剂(C)、溶剂(D)。
酸发生剂(B)
B-1:4-九氟正丁基磺酰氧基苯基·二苯基锍九氟正丁烷磺酸盐
B-2:三苯基锍·九氟正丁烷磺酸盐
酸扩散控制剂(C)
C-1:2-苯基苯并咪唑
溶剂(D)
D-1:丙二醇单甲醚乙酸酯
表5
 
放射线敏感性树脂组合物 树脂(A)(份) 酸发生剂(B)(份) 酸扩散控制剂(C)(份) 溶剂(D)(份)
F-1 A-1(100) B-1(2.5) C-1(0.2) D-1(750)
F-2 A-1(100) B-1(2.5) C-1(0.2) D-1(750)
F-3 A-1(100) B-1(2.5) C-1(0.2) D-1(750)
参考例6
采用以下方法制得浸液用上层膜组合物。
将表6所示的树脂、溶剂混合,形成均匀溶液后,利用孔径200nm的膜滤器进行过滤,调制浸液用上层膜组合物(G1和G2)。在表6中,n-BuOH表示正丁醇,“份”是重量基准。
表6
 
上层膜组合物 树脂(E)(份) 溶剂(份)
G-1 E-1(1) n-BuOH(99)
G-2 E-2(1) n-BuOH(99)
参考例7
采用以下方法制得评价用抗蚀膜(H-1~H-5)。
在8英寸硅晶片上,采用旋涂、PB(90℃、60秒)进行下层防反射膜ARC29(ブル—ワサイエンス公司制造)的涂布,形成膜厚77nm的涂膜后,在同样的条件下使用表7所示的放射线敏感性树脂组合物,形成抗蚀膜(膜厚205nm)(H-1~H-3)。
另外,采用与上述同样的方法,使用放射线敏感性树脂组合物形成抗蚀膜(膜厚205nm)后,在该抗蚀膜上,采用旋涂、PB(130℃、90秒)将表7所示的浸液用上层膜组合物形成膜厚32nm的上层膜(H-4和H-5)。
表7
 
抗蚀膜 放射线敏感性树脂组合物 上层膜组合物
H-1 F-1 -
H-2 F-2 -
H-3 F-3 -
H-4 F-1 G-1
H-5 F-1 G-2
实施例1
采用以下方法精制市售的反-萘烷(反-十氢化萘),制得浸液曝光用液体。
将100ml市售的反-十氢化萘(东京化成公司制造,换算成1mm光程的193nm的透射率为小于等于10%)投入放有玻璃涂敷的搅拌片的200ml茄形烧瓶中,加入20ml的浓硫酸(和光纯药产品),将搅拌片的旋转速度设定为500~1000rpm,在25℃下搅拌20分钟。然后,通过分液除去浓硫酸,进行3次上述操作。然后,用50ml去离子水洗涤1次分离的有机层,用饱和碳酸氢钠水溶液洗涤3次。然后,用纯水洗涤有机层3次。在该时间点确认pH显示7(中性)。然后,用硫酸镁进行干燥,干燥后采用倾析除去硫酸镁,在压力10mmHg下,利用装备有长20cm的卫得门型精馏塔的蒸馏装置进行减压蒸馏,回收16份10ml的馏分。测定各馏分在193nm下的吸光度(测定条件采用上述测定法A的条件),换算成1mm光程的透射率为大于等于93%的馏分为12份,制得合计120ml的换算成1mm光程的透射率为大于等于90%的反-十氢化萘。另外,使各馏分氮气饱和并进行减压脱气,保存在进行了氮气置换的玻璃容器中。在封入容器后,通过气相色谱分析化合物的纯度,纯度(以下称为“GC纯度”)为99.92%。将采用实施例1的方法制得的精制后的反-十氢化萘称为精制后的反-十氢化萘(1)。
另外,采用上述方法精制市售反、顺-混合十氢化萘和市售顺-十氢化萘。
实施例2
在氮气气氛下,采用与实施例1相同的方法进行硫酸处理。然后采用与实施例1相同的方法,进行市售反-十氢化萘(东京化成公司制造;换算成光程1mm的193nm的透射率为小于等于10%)的精制,制得换算成1mm光程的透射率为96.8%的液体。利用气相色谱法(检测器TCD)分析本液体的溶解氧和溶解氮浓度,溶解氧浓度为低于1ppm(检测限度以下),溶解氮浓度为119ppm。另外,采用原子吸光法测定本液体的Li、Na、K、Mg、Cu、Ca、Al、Fe、Mn、Sn、Zn、Ni的金属含量,Ca为1ppb,Zn为6ppb,其他金属为低于1ppb(低于检测限度)。将采用实施例2的方法制得的精制后的反-十氢化萘称为精制后的反-十氢化萘(2)。
该液体的金属成分少,不仅用作浸液曝光用液体,还能够用于在可见光区域使用的光学装置等。
另外,将上述实施例2中制得的精制后的反-十氢化萘(2)放置在空气中,达到空气饱和状态,测定193nm下的透射率。结果示于表8。
表8
 
氧浓度(μg/ml) 透射率(%)(1mm)
精制后的反-十氢化萘(2) 不足1 96.8
空气饱和后的反-十氢化萘 61 74.8
纯水(空气饱和) 7 96.3
如表8所示,可以确认:氧浓度没有被饱和时,透射率提高。
另外,采用以下方法测定由与抗蚀膜接触而引起的透射率的变化。
在进行氮气置换、氧浓度控制在小于等于10ppm的氮气手套箱中,在形成了抗蚀膜H-1、H-4的硅晶片上放置液体3分钟,使液膜的厚度达到0.8mm,测定193nm下的透射率的变化。使用纯水作为比较例。结果示于表9。
表9
 
浸渍前 浸渍于H1后 浸渍于H4后
精制后的反-十氢化萘(2) 96.6% 96.8% 96.7%
纯水 98.0% 97.1% 96.0%
如表9所示,即使与抗蚀膜接触,精制后的反-十氢化萘(2)的透射率几乎没有变化。
采用以下方法测定酸发生剂对于精制后的反-十氢化萘(2)的溶解度。
使用三苯基锍·九氟正丁烷磺酸盐作为酸发生剂,向100ml精制后的反-十氢化萘中添加规定量的酸发生剂,搅拌1小时,通过目测确认是否全部溶解,对溶解度进行研究。使用纯水作为比较例。结果示于表10。
表10
 
液体 水(100ml) 反-十氢化萘
九氟丁烷磺酸溶解度 50g 小于等于0.5mg
如表10所示,酸发生剂几乎不溶解于精制后的反-十氢化萘(2)。
实施例3
通过采用以下方法精制市售的挂-四氢双环戊二烯,从而制得浸液暴光用液体。
将100ml市售的挂-四氢双环戊二烯(东京化成公司制造,换算成1mm光程的193nm的透射率为小于等于10%)投入放有玻璃涂敷的搅拌片的200ml茄形烧瓶中,用冰水浴将内部温度冷却至5℃后,加入20ml的浓硫酸(和光纯药产品),将搅拌片的旋转速度设定为500~1000rpm,在25℃下搅拌20分钟。然后通过分液除去浓硫酸,进行3次上述操作。然后,用50ml去离子水洗涤分离的有机层1次,用饱和碳酸氢钠水溶液洗涤3次。然后用纯水洗涤3次有机层。确认此时的pH显示7(中性)。然后,使用硫酸镁干燥有机层,通过倾析除去硫酸镁。对此时得到的91ml液体进行30分钟的氮气发泡,测定193nm下的透射率(测定条件采用上述本文中记载的条件),结果换算成1mm光程为87.7%。另外,使本液体氮气饱和并进行脱气后,保存在经过氮气置换的玻璃容器中。封入容器后的化合物的GC纯度为99.94%。将采用实施例3的方法制得的精制后的挂-四氢双环戊二烯称为精制后的挂-四氢双环戊二烯(1)。
实施例4
在氮气气氛下,采用与实施例1相同的方法进行硫酸处理。然后采用与实施例3相同的方法,精制市售的挂-四氢双环戊二烯,再采用与实施例2相同的方法,在氮气气氛下进行减压蒸馏,从而制得换算成1mm光程的透射率为97.5%的液体。通过气相色谱(检测器TCD)分析本液体的溶解氧以及溶解氮浓度,溶解氧浓度低于1ppm(检测限度以下),溶解氮浓度为100ppm。将采用实施例4的方法制得的精制后的挂-四氢双环戊二烯称为精制后的挂-四氢双环戊二烯(2)。
实施例5
除了使用通过氮气精制机精制的氮气,在氮浓度控制在小于等于0.5ppm的手套箱中进行全部操作,并且控制减压度使蒸汽温度为小于等于50℃从而进行减压蒸馏外,采用与实施例1相同的方法进行市售反-十氢化萘(东京化成产品)的精制。以采用上述测定法B测定的吸光度值为基础,计算精制后的化合物每1mm光程的透射率,结果T=99.5%。通过GC(检测器TCD)测定此时的氧浓度,结果氧浓度低于1ppm,氮浓度为119ppm。另外,GC纯度为99.92%。将采用实施例5的方法制得的精制后的反-十氢化萘称为精制后的反-十氢化萘(3)。
实施例6
除了使用通过氮气精制机精制的氮气,在氮浓度控制在小于等于0.5ppm的手套箱中进行全部操作,并且控制减压度使蒸汽温度为小于等于50℃从而进行减压蒸馏外,采用与实施例3相同的方法进行市售挂-四氢双环戊二烯(东京化成产品)的精制。以采用上述测定法B测定的吸光度值为基础,计算精制后的化合物每1mm光程的透射率,结果T=99.6%。通过GC(检测器TCD)测定此时的氧浓度,结果氧浓度低于1ppm,氮浓度为100ppm。另外,GC纯度为97.80%。将采用实施例6的方法制得的精制后的挂-四氢双环戊二烯称为精制后的挂-四氢双环戊二烯(3)。
实施例7
通过与实施例3同样地进行硫酸处理,从而精制市售的双环己基、异丙基环己烷、环辛烷、环庚烷,制得浸液曝光用液体。
在上述实施例中,GC纯度分析采用以下条件。
采用Agilent Technology的GC6850(柱Agilent Technology HP-1(非极性型)检测器FID)进行测定。测定在注入口温度250℃、柱温度70℃~300℃(升温法),载气为氦气的条件下进行。纯度是将FID的总峰面积作为100%,由面积比求得。
实施例8~实施例22和比较例1~比较例2
使用上述评价用抗蚀膜,通过洗脱试验、膜的溶解性试验、图案形成评价(浸渍图案形成评价、利用双光束干涉曝光机的浸液曝光评价)、抗蚀剂接触时的吸光度变化(或者污染)评价本发明的浸液曝光用液体。结果示于表11~表14。另外,折射率的波长依赖性如表3所示,存在随着波长缩短而折射率值提高的相互关系。因此,通过测定D射线(波长589nm)下的折射率,能够预测短波长下的折射率。特别是由于本发明的浸液曝光用液体具有与表1所示的十氢化萘化学上类似的结构,因而能够由D射线(波长589nm)的折射率进行预测。因此示出了D射线(波长589nm)下的折射率。均显示出比纯水的折射率更高的值。
另外,实施例8~13中所示的浸液曝光用液体是根据实施例1精制的,实施例14~22中所示的浸液曝光用液体是根据实施例1的方法精制的。
(1)洗脱试验
将涂布了上述评价用抗蚀膜的晶片在300ml的表11所示的浸液曝光用液体中浸渍30秒后,取出晶片,使用HPLC(岛津制作所制造,柱Inertsil ODS-3(内径10mm×长250mm),洗脱溶剂:乙腈/水=80/20,检测器:UV@205nm、220nm、254nm,试样注入量4μm)测定有无残存的浸液曝光用液体中的杂质。此时,当用任何一个检测器确认检测限度以上的杂质时,将洗脱试验结果记作×,当没有确认检测限度以上的杂质时,将洗脱试验结果记作○。
(2)膜的溶解性试验
测定涂布了上述评价用抗蚀膜的晶片的初始膜厚后,在300ml的表11所示的浸液曝光用液体中浸渍30秒后,再次进行膜厚测定。此时,如果膜厚的减少量在初始膜厚的0.5%以内,则判断为浸液曝光用液体没有溶解抗蚀膜,记为“○”,如果为0.5%以上,则判断为浸液曝光用液体溶解抗蚀膜,记为“×”。
(3)图案形成评价试验
图案形成评价试验(1)
对于涂布了上述评价用抗蚀膜的晶片,用ArF投影曝光装置S306C(ニコン(株)社制造),在NA:0.78、δ:0.85、2/3Ann的光学条件下进行曝光(曝光量30mJ/cm2),然后,用CLEAN TRACK ACT8热板进行PEB(130℃、90秒),用该CLEAN TRACK ACT8的LD喷嘴进行桨叶式搅拌显像(显像液成分:2.38重量%氢氧化四氢铵水溶液)(60秒),用超纯水进行冲洗,接着,以4000rpm进行15秒钟的离心脱水,从而旋转干燥(显像后基板A)。然后,将上述图案形成的显像后基板A在表11所示的浸液曝光用液体中浸渍30秒后,采用与上述同样的方法进行PEB、显像、冲洗,制得显像后基板B。利用扫描电子显微镜(日立计测器(株)社制造)S-9360对显像后基板A和B观察相当于90nm线、90nm空间的掩膜图案的图案。此时,通过目视将对于显像后基板A和B能够得到相同形状的良好矩形抗蚀图案的场合记作“○”,将不能获得良好图案的场合记作“×”。“-”表示没有进行评价。
图案形成评价试验(2)
将在与图案形成评价试验(1)相同条件下进行了曝光的晶片在浸液曝光用液体中浸渍30秒,采用与上述相同的方法进行PEB、显像、冲洗,制得显像后基板C。此时,通过目视将对于基板A和C能够得到相同形状的良好矩形抗蚀图案的场合记作“○”,不能获得良好形状图案的场合记作“×”。“-”表示没有进行评价。
(4)接触角测定试验
使用Kruss制造的Mode IDSA10L2E,测定反-十氢化萘在上述抗蚀膜H2、H4、H5、石英玻璃上的接触角(测定法Elipse(tangentl)法)。结果示于表12。
(5)使用了双光束干涉的曝光试验
除了使下层防反射膜的膜厚为29nm,使抗蚀膜厚为100nm(用于45nm)、60nm(用于30nm)以外,对于涂布了采用与抗蚀膜H2相同的方法制作的评价用抗蚀膜的晶片,在双光束干涉型ArF浸液用简易曝光装置(佳能制造的45nm1L/1S用,ニコン(株)社制造的35nmlL/1S用、TE偏振光曝光使用)的透镜、晶片之间(间隙0.7mm)插入上述精制后浸液曝光用液体,进行曝光,然后,通过空气干燥除去晶片上的浸液曝光用液体,用CLEAN TRACK ACT8热板对本晶片进行PEB(115℃、90秒),用该CLEAN TRACK ACT8的LD喷嘴进行桨叶式搅拌显像(显像液成分:2.38重量%氢氧化四氢铵水溶液)(60秒),用超纯水进行冲洗,通过扫描电子显微镜(日立计测器(株)社制造)S-9360对显像后基板观察图案。此时,将得到期望尺寸的L/S(1L/1S)的良好抗蚀图案的场合记作“○”,将不能获得良好图案的场合记作“×”。结果示于表13。
(6)抗蚀剂接触时的吸光度变化(或者污染)
使用玻璃制的吸移管向直径6cm的培养皿中加入液体(去离子水或精制后的反-十氢化萘(2)(采用与实施例2相同的方法精制的其他批次产品)。此时,调节液量使液体的膜厚正好达到1mm。接着,用涂布了光致抗蚀剂(H1、H4)的硅晶片覆盖培养皿的上部。接着,将晶片和培养皿上下倒转,成为使液体浸渍于光致抗蚀膜的状态。此时充分密合培养皿和晶片使液体不从两者之间漏出,并且注意使晶片保持水平以使在用培养皿覆盖的整个部分上光致抗蚀剂均匀地被液体浸渍。然后用规定的浸渍时间进行浸渍,再次使晶片和培养皿上下倒转。收集这些一系列操作后的液体,采用实施例B的方法进行193.4nm的吸光度测定,根据测定值计算出每1cm吸光度的吸光度。另外,在23℃下在充满氮气的手套箱中进行上述一系列操作。结果示于表14。
表11
表12
 
抗蚀膜 接触角(度)
H2 23
H4 63.5
H5 64
石英玻璃 小于等于10
表13
 
浸液用液体 半间距 感光(Ecd)mJ/cm<sup>2</sup> 图案形状
精制后的反-十氢化萘(1) 45nm 27.1
精制后的反-十氢化萘(1) 35nm -
精制后的反-十氢化萘(2) 45nm 22.7
精制后的反-十氢化萘(2) 35nm -
精制后的挂-四氢双环戊二烯(1) 45nm 28.6
精制后的挂-四氢双环戊二烯(1) 35nm -
精制后的挂-四氢双环戊二烯(2) 45nm 23
精制后的挂-四氢双环戊二烯(2) 35nm -
异丙基环己烷 45nm -
异丙基环己烷 35nm - 没有析像
环辛烷 45nm -
环辛烷 35nm - 没有析像
45nm - T-顶端形状
表14
如表11所示,本发明的浸液曝光用液体比纯水的折射率大,具有式(1-1)~式(1-9)所示的化学结构,因此显示出优异的分辨率,而且不溶解抗蚀膜单体或形成上层膜的抗蚀膜,不洗脱膜成分,也不使生成的抗蚀图案形状变形。另外,如表14所示可知,精制后的十氢化萘在浸渍时间180秒提取后的吸光度没有变化。
另外可知:作为浸液曝光用液体的评价方法,在氮气气氛下使浸液曝光用液体与在基板上形成的光致抗蚀膜接触,测定接触前和接触后的上述液体在193nm下的吸光度变化并进行比较,从而能够评价浸液曝光用液体的污染度。
本发明的浸液曝光用液体是脂环烃化合物或在环结构中含有硅原子的环烃化合物,因而在浸液曝光时不会溶解光致抗蚀膜,能够形成分辨率、显像性等优异的抗蚀图案,非常适合用于制造预计今后微细化进一步发展的半导体装置。

Claims (24)

1、浸液曝光用液体,该液体用于通过投影光学系统的透镜和基板之间充满的液体进行曝光的浸液曝光装置或浸液曝光方法,其特征在于:该液体在上述浸液曝光装置工作的温度范围内是液体,该液体包含脂环烃化合物或在环结构中含有硅原子的环烃化合物,上述脂环烃化合物或在环结构中含有硅原子的环烃化合物在波长193nm下每1mm光程的放射线透射率大于等于70%、在波长589nm下的折射率大于等于1.4。
2、权利要求1所述的浸液曝光用液体,其特征在于:所述脂环烃化合物或在环结构中含有硅原子的环烃化合物是选自下述式(1-1)~式(1-9)的至少1种化合物,
Figure C200580005118C00021
式(1-1)中,R1表示碳原子数1~10的脂肪族烃基、碳原子数3~14的脂环烃基、氟原子、或碳原子数1~3的氟取代烃基,n1、n2各自独立地表示1~3的整数,a表示0~10的整数,当存在多个R1时,该R1可以相同也可以不同,2个或更多个R1可以相互结合形成环结构,
Figure C200580005118C00022
式(1-2)中,A表示单键或可以被碳原子数1~10的烷基取代的亚甲基或可以被碳原子数1~10的烷基取代的碳原子数2~14的亚烷基,R2表示碳原子数1~10的脂肪族烃基、碳原子数3~14的脂环烃基、氟原子、或碳原子数1~3的氟取代烃基,R7表示氢原子、碳原子数1~10的烷基、氟原子、或碳原子数1~3的氟取代烷基,当存在多个R7时,该R7可以相同也可以不同,2个或更多个R7可以相互结合形成环结构,n3表示2~4的整数,n4表示1~3的整数,b表示0~6的整数,当存在多个R2时,该R2可以相同也可以不同,2个或更多个R2可以相互结合形成环结构,
式(1-3)中,R3和R4表示碳原子数1~10的脂肪族烃基、碳原子数3~14的脂环烃基、氟原子、或碳原子数1~3的氟取代烃基,当R3和R4各自存在多个时,该R3和R4可各自相同也可以不同,2个或更多个R3和R4可以各自单独或相互结合形成环结构,n5和n6表示1~3的整数,c和d表示0~8的整数,
Figure C200580005118C00032
式(1-4)的(a)、(b)、(c)中,B表示亚甲基或亚乙基,R5表示碳原子数1~10的脂肪族烃基、碳原子数3~14的脂环烃基、氟原子、或碳原子数1~3的氟取代烃基,e表示0~10的整数,n7表示1~3的整数,当存在多个R5时,该R5可以相同也可以不同,2个或更多个R5可以相互结合形成环结构,
Figure C200580005118C00033
式(1-5)中,R6表示碳原子数1~10的脂肪族烃基、碳原子数3~14的脂环烃基、氟原子、或碳原子数1~3的氟取代烃基,f表示0~10的整数,当存在多个R6时,该R6可以相同也可以不同,
Figure C200580005118C00041
式(1-6)中,R8和R8’表示碳原子数1~10的脂肪族烃基、碳原子数3~14的脂环烃基、氟原子、或碳原子数1~3的氟取代烃基,g和h分别表示0~6的整数,n8和n9表示1~3的整数,
式(1-7)中,R11和R12表示碳原子数1~10的脂肪族烃基、碳原子数3~14的脂环烃基、氟原子、或碳原子数1~3的氟取代烃基,n10、n11各自独立地表示1~3的整数,j、k表示0~6的整数,当R11和R12各自存在多个时,该R11和R12可以相同也可以不同,2个或更多个R11可以相互结合形成环结构,或者2个或更多个R12可以相互结合形成环结构,X表示单键、碳原子数2~10的2价脂肪族烃基、碳原子数3~14的2价脂环烃基,
Figure C200580005118C00043
式(1-8)中,R13表示碳原子数大于等于2的烷基、碳原子数大于等于3的脂环烃基、氟原子、或碳原子数2~3的氟取代烃基,p表示1~6的整数,当存在多个R13时,该R13可以相同也可以不同,2个或更多个R13可以相互结合形成环结构,
Figure C200580005118C00051
式(1-9)中,R14表示碳原子数1~10的脂肪族烃基、碳原子数3~14的脂环烃基、氟原子、或碳原子数1~3的氟取代烃基,n12表示1~3的整数,q表示0~9的整数,当存在多个R14时,该R14可以相同也可以不同。
3、权利要求2所述的浸液曝光用液体,其特征在于:上述式(1-1)所示的化合物由下述式(2-1)表示,上述式(1-4)所示的化合物由下述式(2-2)表示,
Figure C200580005118C00052
式(2-1)中,R1表示碳原子数1~10的脂肪族烃基、碳原子数3~14的脂环烃基、氟原子、或碳原子数1~3的氟取代烃基,a表示0~10的整数,当存在多个R1时,该R1可以相同也可以不同,2个或更多个R1可以相互结合形成环结构,
式(2-2)中,R5表示碳原子数1~10的脂肪族烃基、碳原子数3~14的脂环烃基、氟原子、或碳原子数1~3的氟取代烃基,i表示0~2的整数,当存在多个R5时,该R5可以相同也可以不同,2个或更多个R5可以相互结合形成环结构。
4、权利要求1所述的浸液曝光用液体,其特征在于:使液膜的厚度为1mm、在氮气气氛下使该液体在光致抗蚀膜上接触180秒时,接触前与接触后的液体在193nm下每1cm光程的吸光度变化小于等于0.05。
5、权利要求1所述的浸液曝光用液体,其特征在于:相对于全部浸液曝光用液体,含有大于等于95重量%的所述脂环烃化合物或在环结构中含有硅原子的环烃化合物。
6、权利要求1所述的浸液曝光用液体,其特征在于:该液体的溶解氧量小于等于2ppm。
7、权利要求1所述的浸液曝光用液体,其特征在于:该液体含有的金属总量小于等于10ppb。
8、权利要求7所述的浸液曝光用液体,其特征在于:所述金属是选自锂、钠、钾、镁、铜、钙、铝、铁、锌、镍的至少1种金属。
9、权利要求1所述的浸液曝光用液体,其特征在于:该液体在25℃下的粘度小于等于0.01Pa·s。
10、权利要求1所述的浸液曝光用液体,其特征在于:在波长193nm下的折射率大于等于1.63。
11、权利要求10所述的浸液曝光用液体,其特征在于:在波长193nm下每1mm光程的放射线透射率大于等于95%。
12、权利要求3所述的浸液曝光用液体,其特征在于:上述式(2-1)所示的化合物是反-十氢化萘,在波长193nm下每1mm光程的放射线透射率大于等于95%,溶解氧量小于等于2ppm。
13、权利要求12所述的浸液曝光用液体,其特征在于:是在氮气气氛下通过对反-十氢化萘原料进行浓硫酸洗涤和蒸馏而得到的纯度大于等于95重量%的液体。
14、权利要求3所述的浸液曝光用液体,其特征在于:上述式(2-2)所示的化合物是挂-四氢双环戊二烯,在波长193nm下每1mm光程的放射线透射率大于等于95%,溶解氧量小于等于2ppm。
15、权利要求14所述的浸液曝光用液体,其特征在于:是在氮气气氛下通过对挂-四氢双环戊二烯原料进行浓硫酸洗涤和蒸馏而得到的纯度大于等于95重量%的液体。
16、权利要求1所述的浸液曝光用液体的制造方法,其特征在于:包括在氮气气氛下对包含上述脂环烃化合物或在环结构中含有硅原子的环烃化合物的液体进行浓硫酸洗涤和蒸馏的至少1个工序。
17、浸液曝光方法,该浸液曝光方法是用曝光光束照明掩膜,通过在投影光学系统的透镜和基板之间充满的液体,用上述曝光光束使基板曝光,其特征在于:上述液体是权利要求1所述的浸液曝光用液体。
18、权利要求17所述的浸液曝光方法,其特征在于:在上述基板上的抗蚀膜表面形成浸液用上层膜,该浸液用上层膜是含有可溶于碱显像液、且不溶于权利要求1所述的浸液曝光用液体的树脂成分的浸液用上层膜,具有六氟甲醇基和羧基的至少一个基团作为用于赋予该碱可溶性的取代基。
19、浸液曝光用液体的污染度评价方法,该污染度评价方法用于评价通过在投影光学系统的透镜与基板之间充满的液体进行曝光的浸液曝光装置或浸液曝光方法中使用的液体的浸液曝光使用时的污染度,
其特征在于:在氮气气氛下使浸液曝光用液体与在上述基板上形成的光致抗蚀膜接触,测定接触前和接触后的上述液体在波长193nm下的吸光度变化并进行比较,从而评价浸液曝光用液体的污染度。
20、浸液曝光液体组合物,其特征在于:含有大于等于95重量%的下述式(2-1)或下述式(2-2)所示的化合物,溶解氧量小于等于2ppm,
Figure C200580005118C00071
式(2-1)中,R1表示碳原子数1~10的脂肪族烃基、碳原子数3~14的脂环烃基、氟原子、或碳原子数1~3的氟取代烃基,a表示0~10的整数,当存在多个R1时,该R1可以相同也可以不同,2个或更多个R1可以相互结合形成环结构,
式(2-2)中,R5表示碳原子数1~10的脂肪族烃基、碳原子数3~14的脂环烃基、氟原子、或碳原子数1~3的氟取代烃基,i表示0~2的整数,当存在多个R5时,该R5可以相同也可以不同,2个或更多个R5可以相互结合形成环结构。
21、权利要求20所述的液体组合物,其特征在于:该液体组合物含有的金属总量小于等于10ppb。
22、权利要求20所述的液体组合物,其特征在于:上述式(2-1)所示的化合物是反-十氢化萘,在波长193nm下每1mm光程的放射线透射率大于等于95%。
23、权利要求20所述的液体组合物,其特征在于:上述式(2-2)所示的化合物是挂-四氢双环戊二烯,在波长193nm下每1mm光程的放射线透射率大于等于95%。
24、权利要求20所述的液体组合物,其特征在于:在氮气气氛下采用浓硫酸洗涤和蒸馏的至少1种方法对上述式(2-1)或式(2-2)所示的化合物进行精制。
CNB2005800051182A 2004-05-21 2005-05-19 浸液曝光用液体以及浸液曝光方法 Expired - Fee Related CN100492588C (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP151711/2004 2004-05-21
JP2004151711 2004-05-21
JP252289/2004 2004-08-31
JP011431/2005 2005-01-19
JP049468/2005 2005-02-24

Publications (2)

Publication Number Publication Date
CN1943013A CN1943013A (zh) 2007-04-04
CN100492588C true CN100492588C (zh) 2009-05-27

Family

ID=37959867

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005800051182A Expired - Fee Related CN100492588C (zh) 2004-05-21 2005-05-19 浸液曝光用液体以及浸液曝光方法

Country Status (1)

Country Link
CN (1) CN100492588C (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008153674A1 (en) 2007-06-09 2008-12-18 Boris Kobrin Method and apparatus for anisotropic etching
EP2238608A4 (en) * 2008-01-22 2012-02-22 Rolith Inc METHOD AND APPARATUS FOR FORMING LARGE AREA NANOMOTIVE
US8182982B2 (en) 2008-04-19 2012-05-22 Rolith Inc Method and device for patterning a disk
US8518633B2 (en) 2008-01-22 2013-08-27 Rolith Inc. Large area nanopatterning method and apparatus
US8192920B2 (en) 2008-04-26 2012-06-05 Rolith Inc. Lithography method
EP2609467A4 (en) 2010-08-23 2014-07-30 Rolith Inc MASK FOR NEAR FIELD LITHOGRAPHY AND ITS MANUFACTURE
CN101969026B (zh) * 2010-08-27 2012-07-18 上海交通大学 基于喷墨印刷与激光干涉曝光的电极制备方法

Also Published As

Publication number Publication date
CN1943013A (zh) 2007-04-04

Similar Documents

Publication Publication Date Title
JP3969457B2 (ja) 液浸露光用液体および液浸露光方法
CN100492588C (zh) 浸液曝光用液体以及浸液曝光方法
TWI527832B (zh) Sensitive radiation linear resin composition and photoresist pattern formation method
JP5728884B2 (ja) 感放射線性樹脂組成物及びその製造方法
CN115023652A (zh) 正型抗蚀剂组合物、抗蚀剂膜、图案形成方法及电子器件的制造方法
KR20230006907A (ko) 감활성광선성 또는 감방사선성 수지 조성물, 레지스트막, 패턴 형성 방법, 전자 디바이스의 제조 방법
IL310073A (en) Actinic beam-sensitive or radiation-sensitive resin composition, resistant layer, method for creating a template and method for manufacturing an electronic device
KR20240019832A (ko) 패턴 형성 방법, 전자 디바이스의 제조 방법
TWI313485B (en) Liquid for immersion, purifying method of liquid for immersoin, and immersion exposure method
JP2006222186A (ja) 液浸露光用液体およびその製造方法
KR20200122354A (ko) 감광성 수지 조성물과 그 제조 방법, 레지스트막, 패턴 형성 방법, 및 전자 디바이스의 제조 방법
JP2012078510A (ja) 感放射線性樹脂組成物及びその製造方法
JP4830303B2 (ja) 液浸露光用液体の製造方法およびリサイクル方法
JP2007081099A (ja) 液浸露光用液体および液浸露光方法
KR20230044482A (ko) 감활성광선성 또는 감방사선성 수지 조성물, 레지스트막, 패턴 형성 방법, 전자 디바이스의 제조 방법
JP2006210782A (ja) 液浸露光用液体および液浸露光方法
JP5985792B2 (ja) 感放射線性樹脂組成物及びその製造方法
US20070156003A1 (en) Method for producing saturated hydrocarbon compound
Furukawa et al. High-refractive index material design for ArF immersion lithography
JP2012088572A (ja) 感放射線性樹脂組成物及びその製造方法
JP2009164503A (ja) パターン形成方法
KR20070018058A (ko) 액침 노광용 액체 및 액침 노광 방법
JP2008306073A (ja) 液浸露光用液体
JP2007258664A (ja) 液浸露光用液体および液浸露光方法
KR20240036064A (ko) 약액, 패턴 형성 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090527

Termination date: 20210519

CF01 Termination of patent right due to non-payment of annual fee