WO2005083163A1 - ポリウレタン弾性繊維及びその製造方法 - Google Patents

ポリウレタン弾性繊維及びその製造方法 Download PDF

Info

Publication number
WO2005083163A1
WO2005083163A1 PCT/JP2005/003334 JP2005003334W WO2005083163A1 WO 2005083163 A1 WO2005083163 A1 WO 2005083163A1 JP 2005003334 W JP2005003334 W JP 2005003334W WO 2005083163 A1 WO2005083163 A1 WO 2005083163A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyurethane elastic
elastic fiber
polyurethane
fiber
inorganic compound
Prior art date
Application number
PCT/JP2005/003334
Other languages
English (en)
French (fr)
Inventor
Taro Yamamoto
Masanori Doi
Original Assignee
Asahi Kasei Fibers Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Fibers Corporation filed Critical Asahi Kasei Fibers Corporation
Priority to EP05719651A priority Critical patent/EP1722015B1/en
Priority to US10/591,671 priority patent/US7485364B2/en
Priority to JP2006510507A priority patent/JP4585512B2/ja
Priority to DE602005020589T priority patent/DE602005020589D1/de
Priority to AT05719651T priority patent/ATE464409T1/de
Publication of WO2005083163A1 publication Critical patent/WO2005083163A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/04Dry spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/70Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyurethanes
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/10Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyurethanes
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/061Load-responsive characteristics elastic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2927Rod, strand, filament or fiber including structurally defined particulate matter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core

Definitions

  • the present invention relates to a polyurethane elastic fiber having excellent processing stability and a method for producing the same.
  • Polyurethane elastic fibers are stretchable fibers having excellent elasticity, and are knitted and woven with polyamide fibers, polyester fibers, cotton, and the like, and are used in foundations, socks, pantyhose clothing, swimwear, sportswear, leotards, and the like. Widely used not only in the clothing field, but also in non-clothing fields such as ommuts, bandages, supporters, masks, automotive interior materials, nets, tapes, etc.
  • polyurethane elastic fibers When used in the field of clothing, they are usually warped or covered and cross-knitted, and then become a fabric product via a dyeing step and a heat setting step.
  • warping or canning a polyurethane elastic fiber friction occurs with the Prop guide and friction occurs between the guide and the knitting needle during cross knitting.
  • the frictional resistance of the polyurethane elastic fiber is always constant, a high-quality fabric with less thread breakage and less unevenness can be manufactured.
  • thread breakage occurs due to fluctuations in frictional resistance, and unevenness such as streaks frequently occurs in the fabric, which hinders processing stability.
  • a fiber treatment agent such as an oil agent is generally applied to polyurethane elastic fibers. If a large amount of oil is applied, the effect of improving the caroe stability is seen to some extent, but it is not sufficient. Rather, the large amount of the oil agent attached causes a problem of severe pollution of the equipment, and is not economical.
  • 58-44767 discloses a method of reducing the tackiness of polyurethane elastic fibers by adding a powdered metallic soap to a polyurethane solution in the process of producing polyurethane elastic fibers.
  • metallic soap is dispersed in the polyurethane solution, it clogs filters and nozzles, causing a large pressure increase during the process, causing a problem in process stability.
  • the inventors of the present invention have conducted intensive studies in order to solve the above-mentioned problems, and as a result, they have specific inorganic compound particles, have specific convex portions on the surface, and have specific friction characteristics.
  • the present inventors have found that polyurethane elastic fibers have excellent processing stability, and have accomplished the present invention.
  • the present invention is as follows.
  • Inorganic compound particles having an average particle size of 0.5-5 / ⁇ and a refractive index of 1.4-1.6 are contained on the fiber surface per 120 m in the fiber axis direction.
  • the polyurethane elastic fiber according to any one of the items 1 to 5, which is not more than 1.
  • Inorganic compound particles having an average particle diameter of 0.5-5 ⁇ m and a refractive index of 1.4-1.6 are finely dispersed in an amide-based polar solvent,
  • the polyurethane elastic fiber of the present invention has at least one relatively large convex portion having a maximum width of 0.5 to 5 m on the fiber surface per 120 m in the fiber axis direction. If the maximum width of the projections is less than 0.5 ⁇ m, the katenje stability is insufficient, and if it exceeds 5 ⁇ m, the projections become defects and the physical properties of the fiber become poor. The number of protrusions is required to be at least one on the fiber surface per 120 m length in the fiber axis direction, and if it is less than this, excellent processing stability cannot be obtained.
  • projection refers to a protruding portion protruding higher than the average surface of the fiber surface. If the maximum width is 0.5 to 5 m, the convex portion may be used. The shape does not matter. It is preferable that the maximum height of the projection from the fiber surface is 0.05 to 2 m.
  • the polyurethane elastic fiber of the present invention contains inorganic compound particles having an average particle diameter of 0.5 to 5 ⁇ m and a refractive index of 1.4 to 1.6.
  • the fiber has the above-mentioned morphological characteristics on the surface of the fiber and excellent physical properties can be obtained.
  • the average particle size is less than 0.5 ⁇ m, it is not possible to form a sufficiently large convex portion on the fiber surface, so that it is not possible to obtain excellent katenji stability. Also, if it exceeds 5 / zm In addition, the filter easily becomes clogged in the filter in the polyurethane elastic fiber production process, and the physical properties of the polyurethane elastic fiber become poor due to a defect of the inorganic compound particles, and thread breakage easily occurs during processing.
  • the inorganic compound particles having an average particle diameter of 0.5 to 5 ⁇ m and a refractive index of 1.4 to 1.6 are added to the polyurethane elastic fiber by 0.05%. More preferably, it is contained in an amount of 0.1 to 10% by weight, more preferably 0.1 to 4% by weight.
  • the content of the inorganic compound particles is in the above range, excellent processing stability is obtained, and also excellent spinning stability during production of polyurethane elastic fiber is obtained, and the physical properties of the fiber are also excellent. It becomes.
  • the inorganic compound particles have at least one convex portion having a maximum width of 0.5 to 5 m on the fiber surface per 120 m in the fiber axis direction of the obtained polyurethane elastic fiber. And if it can meet the requirements.
  • the inorganic compound particles include, for example, alumina, magnesium hydroxide, magnesium carbonate, calcium carbonate, calcium silicate, magnesium silicate, kaolin, myriki, silica and the like.
  • non-crystalline synthetic silica is preferable, and porous synthetic silica having a specific surface area of preferably 100 to 800 m 2 Zg is more preferable.
  • the physical properties of synthetic silica can be controlled by the production method.
  • a typical production method is to mix sodium silicate and sulfuric acid to form a silicate sol, polymerize the sol to form primary particles, and further control the size of aggregates by reaction conditions.
  • porous silica obtained by forming a three-dimensional aggregate from primary particles by reaction conditions under the former wet method and performing gelling is preferable.
  • Porous silica can change its physical properties such as internal specific surface area and pore size by changing the primary particle generation conditions.
  • those having a specific surface area of 100 to 800 m 2 Zg are preferred, more preferably 200 to 800 m 2 Zg.
  • silica is as rigid as titanium.Since porous silica is structurally brittle, the use of porous silica makes it possible to use the silica during production and production of polyurethane elastic fibers. Needle wear can be greatly reduced.
  • Silica white carbon having a small or no internal specific surface area obtained by a dry method under reaction conditions for stopping the growth of agglomerates even in a wet method under the condition of silica or a wet method is 0%. Because it is a very fine particle of 1 m or less, it may have a specific surface area similar to that of porous silica. These silicas tend to agglomerate in a solution or yarn, so they have a large filter clogging property, and the agglomerates are so dense that the guides and needles are greatly worn.
  • the surface of porous silica obtained industrially by the above-mentioned method is usually covered with hydroxyl groups, and may be made hydrophobic by masking the surface hydroxyl groups by a hydrophilic surface treatment.
  • Hydrophobization methods include, for example, a method in which an organosilicon compound such as trimethylsilane chloride bis (octadecyl) silane dichloride is reacted with a silanol group on a silica surface in a diligent manner, or an alkyl orthosilicate in a solvent.
  • Hydrophilic porous silica is economically excellent, and hydrophobic porous silica has high affinity for organic solvents and has excellent dispersibility in a polyurethane solution, so the production process of polyurethane elastic fiber is stable. The performance is improved.
  • the adsorption amount (DBA value) of di-n-butylamine adsorbed on the hydroxyl group is used.
  • the DBA value is 0 to 300 meq / kg is preferable because of its excellent dispersibility.
  • the polyurethane elastic fiber of the present invention preferably has a dynamic friction coefficient with respect to the knitting needles of 0.2 to 0.6. If the coefficient of kinetic friction with the knitting needle is within this range, the guide during processing ⁇ Because friction with Prov etc. is appropriate, the running stability of the yarn is excellent, the fluctuation of the insertion tension of the polyurethane elastic fiber into the fabric is suppressed, and the quality of the fabric is improved.
  • the polyurethane elastic fiber of the present invention has a small change in tension due to a change in dynamic friction with the knitting needle.
  • the change in the tension (T) on the input side which was subjected to frictional resistance due to the knitting needle during running for 20 minutes, was 1. OcN or less, the knitting needle, pr Tension fluctuation is suppressed, and the quality of the fabric is improved.
  • the polyurethane elastic fiber of the present invention has a coefficient of static friction against the polyurethane elastic fiber of 0.
  • the coefficient of static friction with respect to polyurethane elastic fibers is a value obtained by measuring the coefficient of static friction using polyurethane elastic fibers to be measured.
  • the change with time of the static friction coefficient against nylon yarn is preferably 0.1 or less.
  • the release condition of 70 ° C for 16 hours is a condition for accelerated evaluation assuming time-dependent changes at room temperature.Under these conditions, polyurethane elastic fibers having a time-dependent change in the static friction coefficient of 0.1 or less can be used. As a result, it is possible to maintain excellent processing stability for a long period of time due to a small change in friction characteristics.
  • a polyurethane elastic fiber having a kinetic friction coefficient with respect to a knitting needle and a static friction coefficient with respect to a polyurethane elastic fiber which satisfies the above-mentioned specific requirements, and further has a good removability for a long period of time. I prefer that.
  • the substrate polymer of the polyurethane elastic fiber of the present invention is obtained by, for example, reacting a polymer polyol, diisocyanate, a chain extender having a polyfunctional active hydrogen atom, and a terminal stopper having a monofunctional active hydrogen atom. Can be obtained.
  • polymer polyol examples include various types of substantially linear homo- or copolymer-based polyols such as polyesterdiol, polyetherdiol, polyesteramidediol, polyacryldiol, and polythiol. Ester diol, polythioether diol, polycarbonate diol, or a mixture thereof, or a copolymer thereof, and the like.
  • polyalkylene ether glycols for example, polyoxyethylene glycol, polyoxypropylene glycol, polytetramethylene ether glycol, polyoxypentamethylene glycol, tetramethylene group and 2,2-dimethylpropylene group.
  • Copolymerized polyether glycols copolymerized polyether glycols also comprising tetramethylene groups and 3-methyltetramethylene groups, or mixtures thereof.
  • polytetramethylene ether glycol and copolymerized polyether glycol having a tetramethylene group and a 2,2-dimethylpropylene group are preferred from the viewpoint of exhibiting excellent elasticity.
  • the number-average molecular weight is more preferable than 500-5000 force, ⁇ 1000-3000.
  • diisocyanate examples include aliphatic, alicyclic, and aromatic diisocyanates.
  • Examples of the chain extender having a polyfunctional active hydrogen atom include hydrazine, polyhydrazine, ethylene glycolone, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butanediol, 1,4 Butanediol, 1,5-pentanediol, 1,6-hexanediol, 2,2 dimethyl-1,3 propanediol, diethylene glycol, dipropylene glycol, 1,4-cyclohexanedimethanol, phenylethanolamine Low molecular weight diols such as ethylenediamine, 1,2 propylenediamine, 1,3 propylenediamine, 2-methynoleic 1,5 pentanediamine, triethylenediamine, m-xylylenediamine, piperazine, o—, m— Or p-phenylenediamine, 1,3-diaminocyclohexane, 1,4-diamino
  • Ethylenediamine alone which is more preferred than low-molecular diols, or at least one selected from the group consisting of 1,2-propylenediamine, 1,3-diaminocyclohexane, and 2-methyl-1,5-pentadiamine
  • There 5 one 40 mole 0/0 Echirenjiamin mixture preferably contained, and as things. More preferably, ethylenediamine alone is used.
  • Examples of the terminal terminator having a monofunctional active hydrogen atom include methanol, ethanol mono-ole, 2-propanol, 2-methinole 2-propanol, 1-butanol, 2-ethino 1-hexanol, Monoalcohols such as 3-methyl-1-butanol, monoalkylamines such as isopropylamine, n-butylamine, t-butylamine and 2-ethylhexylamine, getylamine, dimethylamine, di-n-butylamine, di-tert-butylamine, diisobutylamine, And dialkylamines such as di-2-ethylhexylamine and diisopropylamine. These can be used alone or as a mixture. Monofunctional amines such as monoalkylamines or dialkylamines are preferred over monoalcohols.
  • a known technique of the polyurethane reaction can be used. For example, a polyalkylene ether daryl and diisocyanate are reacted under a diisocyanate excess condition to synthesize a urethane prepolymer having an isocyanate group at a terminal, and then the urethane prepolymer is converted into an active hydrogen-containing diamine such as a bifunctional amine. A chain extension reaction is performed on the ligated product to obtain a polyurethane polymer.
  • a polyalkylene ether glycol having a number average molecular weight of 500 to 5000 is reacted with an excess equivalent of diisocyanate to synthesize a prepolymer having an isocyanate group at a terminal. Then, it is a polyurethane-rea polymer obtained by reacting a difunctional amine with a monofunctional amine in a prepolymer.
  • an amide-based polar solvent such as dimethylformamide, dimethyl sulfoxide, dimethylacetamide, or the like is used.
  • dimethylformamide dimethyl sulfoxide, dimethylacetamide, or the like is used.
  • dimethylacetamide Preferably di Methylacetamide.
  • inorganic compound particles to polyurethane elastic fibers
  • it is common to add inorganic compound particles to a polyurethane solution in advance.
  • it can be added during the urethane prepolymer reaction or the chain extension reaction.
  • the inorganic compound particles are preferably added in a state of being uniformly dispersed in the polyurethane solution.
  • coarse particles due to large secondary agglomeration are present in the polyurethane spinning solution, filter clogging and yarn breakage during spinning are likely to occur during production of polyurethane elastic fibers.
  • a preferred method is to finely disperse the inorganic compound particles in an amide-based polar solvent and then add the resulting dispersion to a polyurethane polymer to obtain a polyurethane spinning stock solution.
  • additives usually used for polyurethane fibers such as an ultraviolet absorber, an antioxidant, a light stabilizer, a gas-resistant colorant, Chlorine-resistant agents, coloring agents, matting agents, lubricants, fillers and the like may be added.
  • the total amount of the inorganic additives should be 10 wt% or less in the polyurethane elastic fiber to prevent the spinning stability and physical properties of the inorganic compound particles from being reduced due to excessive addition of the inorganic compound particles. It is preferable to be.
  • the polyurethane elastic fiber of the present invention is preferably produced by dry spinning an undiluted polyurethane spinning solution obtained by dissolving a polyurethane polymer in an amide-based polar solvent. Dry spinning can form the strongest physical crosslinks due to hydrogen bonding between hard segments, as compared to melt spinning or wet spinning.
  • the polyurethane spinning dope preferably has a polymer concentration of 30 to 40 wt% and a viscosity of a spinning dope of 100 to 800 Pa's at 30 ° C. Within this range, the spinning solution preparation process and the spinning process are performed smoothly, and industrial production is easy. For example, if the viscosity of the spinning dope is too high, transport to the spinning step is difficult, and the spinning dope tends to gel during transport. If the viscosity of the spinning stock solution is too low, many yarn breaks occur during spinning, and the yield tends to decrease. If the concentration of the spinning dope is too low, the energy cost of scattering the solvent will be large, and if it is too high, the viscosity of the spinning dope will be too high, and the A shipping problem occurs.
  • the oil agent to be imparted to the polyurethane elastic fiber obtained by spinning includes polydimethylsiloxane, polyester-modified silicone, polyether-modified silicone, amino-modified silicone, mineral oil, silicone resin, talc, colloidal alumina and the like.
  • Mineral fine particles, higher fatty acid metal salt powders such as magnesium stearate and calcium stearate, and waxes that are solid at room temperature such as higher aliphatic carboxylic acids, higher aliphatic alcohols, paraffin, and polyethylene can be used. These may be used alone or in any combination as needed.
  • any method may be used, such as adding the oil agent to the polyurethane fiber after spinning, or spinning the oil agent beforehand by incorporating the oil agent into the stock spinning solution.
  • the oil agent is not particularly limited as long as it is a stage after the fiber is formed, but is preferably immediately before being wound by a winder. It is difficult to apply oil after winding the fiber because it is difficult to unwind the fiber because of the winding package strength.
  • the method of applying the oil agent is a method in which the yarn immediately after spinning is brought into contact with an oil film formed on the surface of a metal cylinder rotating in an oil bath, and a method in which a fixed amount of the oil agent is discharged from the tip of a nozzle with a guide and the yarn
  • a known method such as a method of attaching can be used.
  • the polyurethane elastic fiber of the present invention includes natural fibers such as cotton, silk and wool, polyamide fibers such as nylon 6 and nylon 66, polyester fibers such as polyethylene terephthalate, polytrimethylene terephthalate and polytetramethylene terephthalate; Cross knitting with cationic dyeable polyester fiber, copper ammonia regenerated rayon, viscose rayon, acetate rayon, etc., or using these fibers to make a processed yarn by coating, entanglement, twisting, etc., and then cross knitting Thereby, a high-quality cloth without spots can be obtained.
  • natural fibers such as cotton, silk and wool
  • polyamide fibers such as nylon 6 and nylon 66
  • polyester fibers such as polyethylene terephthalate, polytrimethylene terephthalate and polytetramethylene terephthalate
  • Cross knitting with cationic dyeable polyester fiber copper ammonia regenerated rayon, viscose rayon, acetate rayon, etc., or using these fibers to make
  • Polyurethane elastic fiber of the present invention is suitable for warp knitted fabrics in which the quality of the original yarn is greatly affected, since the production of the yarn using the polyurethane elastic fiber is particularly large because the yarn is supplied with bare yarn. Power nets, satin nets, Russell lace, two-way tricot However, by using the polyurethane elastic fiber of the present invention, it is possible to obtain a high-quality fabric having few longitudinal streaks.
  • Fabrics using the polyurethane elastic fiber of the present invention include various stretch foundations such as swimwear, girdle, brassiere, intimate products, underwear, tights, pantyhose, waistband, body suits, snacks, stretch sportswear, It can be used for applications such as Stretchia Uta, medical wear and stretch lining.
  • the polyurethane elastic fiber of the present invention is excellent in processing stability, and can produce a high-quality cloth with few yarn breaks during spinning and processing and with little unevenness. In addition, it is not necessary to increase the amount of the fiber treatment agent as in the prior art! Therefore, the equipment is less polluted and economical.
  • FIG. 1 is a diagram schematically showing a method for measuring a coefficient of kinetic friction of a polyurethane elastic fiber against a knitting needle and a fluctuation in running yarn tension.
  • FIG. 2 is a diagram schematically showing a method for measuring a static friction coefficient ( ⁇ ss) for polyurethane elastic fibers and a static friction coefficient (sn) for nylon yarn.
  • FIG. 3 is an electron micrograph of the surface of the polyurethane elastic fiber of Example 1.
  • the present invention will be further described with reference to Examples, but the present invention is not limited thereto.
  • the measuring method, the evaluation method, etc. are as follows.
  • the measurement sample is decompressed at 160 ° C for 2 hours to perform pretreatment for degassing of the sample, and the measurement is performed by the BET method.
  • Solvents having different refractive indices were adjusted, and a certain amount of inorganic compound particles were added to each solvent. Measure the liquid permeability. Therefore, the refractive index of the solvent having the maximum transmittance is defined as the refractive index of the inorganic compound particles.
  • the specific force of the yarn tension before and after the knitting needle of the yarn running through the knitting needle also determines the dynamic friction coefficient d). That is, when the yarn is traveled at a feeding speed of 100 mZ from the package and a winding speed of 200 mZ, the knitting needle (N) is moved along the yarn traveling route with a friction angle of 152 ° (see FIG. 1). Measure the thread tension (T) on the input side and the thread tension (T) on the output side when inserting at 0.84 ⁇ (rad)). Dynamic friction
  • the number d) is calculated from the following equation (1).
  • the yarn tension on the output side fluctuates due to unevenness in the friction characteristics of the yarn with respect to the knitting needle.
  • the difference ( ⁇ ) between the maximum value and the minimum value of the yarn tension is obtained.
  • Static friction coefficient for polyurethane elastic fiber The static friction coefficient (ss) with respect to the polyurethane elastic fiber was measured using a Joy Balance balance meter (manufactured by Koa Shokai Co., Ltd.) under the following conditions. The coefficient of static friction between two polyurethane elastic fibers obtained by the same method is measured.
  • a load of 10 g (W) is applied to the polyurethane elastic fiber (S) to form a friction body.
  • a polyurethane elastic fiber (S) was attached to the lower part of the panel (B).
  • the static friction coefficient sn) for the nylon yarn is measured in the same manner as the measurement of the static friction coefficient for the polyurethane elastic fiber, except that the nylon yarn is used as the friction body.
  • an untreated nylon yarn (Leona 10 Z7B, manufactured by Asahi Kasei Fibers Corp.) is stretched over (S), and a load of 20 g (W) is applied to the friction body.
  • a 2g load (W) is applied to one end via a pulley with polyurethane elastic fiber) attached to the bottom of the panel (B).
  • the polyurethane elastic fiber (S) is run at a speed of 30 cmZ. At this time, the panel (B)
  • the change with time was measured by measuring the static friction coefficient of the polyurethane elastic fiber one week after the production and the static friction coefficient of the polyurethane elastic fiber after leaving it for 16 hours in an atmosphere of 70 ° C. Find the coefficient difference ( ⁇ sn).
  • test yarn was run under tension at a feeding speed of 43 mZ and a winding speed of 150 mZ, and a stainless steel knitting needle fixed to the yarn on its running path (Koike Machinery Co., Ltd.) Made: 18Ga200-DX type) Hook and run for 12 hours.
  • M The traces of the running traces are seen, but do not affect the strength of the knitting needles.
  • B The knitting needle is broken during the measurement, or the running trace is cut to such an extent that the strength of the knitting needle is greatly reduced.
  • DBA g-butylamine
  • ⁇ ⁇ ⁇ ⁇ refractive index is 1.46, specific surface area of 500 meters 2 Zg, the porous silica LWT% of DBA value 800meqZkg Jimechiruaseta
  • the mixture was dispersed with a homomixer to prepare a 15 wt% dispersion, mixed with a polyurethane solution to form a uniform solution, and then defoamed at room temperature under reduced pressure to obtain a spinning stock solution.
  • This spinning stock solution was dry-spun at a spinning speed of 800mZ and a hot air temperature of 310 ° C, and before the obtained polyurethane elastic fiber was wound around the knockage, the finishing agent was added to the polyurethane elastic fiber at 6wt%. The resultant was applied and wound around a paper tube to obtain a winding package of polyurethane elastic fiber of 44 decitex / 4 filament.
  • the finishing agent used was an oil agent composed of 57% by weight of polydimethylsiloxane, 30% by weight of mineral oil, 1.5% by weight of amino-modified silicone and 1.5% by weight of magnesium stearate.
  • FIG. 3 shows a scanning electron micrograph of the polyurethane elastic fiber obtained in Example 1.
  • a polyurethane elastic fiber was obtained in the same manner as in Example 1, except that the amount of the porous silica was changed to 0.2 wt%.
  • a polyurethane elastic fiber was obtained in the same manner as in Example 1, except that the amount of the porous silica added was changed to 4. Owt%.
  • Example 1 Attachment in Example 1, in place of the porous silica, average particle size 3. 9 / ⁇ ⁇ , refractive index 1.4 6, a specific surface area of 500 meters 2 Zg, the porous silica LWT% of DBA value 800meqZkg A polyurethane elastic fiber was obtained in the same manner as in Example 1 except that kneading was performed.
  • Example 1 instead of the porous silica, the average particle size was 3 .: m, and the refractive index was 1.4.
  • a polyurethane elastic fiber was obtained in the same manner as in Example 1 except that lwt% of porous silica having a specific surface area of 300 m 2 Zg and a DBA value of 500 meq Zkg was added.
  • Example 1 instead of the porous silica, the average particle diameter was 2. ⁇ , and the refractive index was 1.4.
  • a polyurethane elastic fiber was obtained in the same manner as in Example 1, except that 0.2 wt% of porous silica having a specific surface area of 230 m 2 Zg and a DBA value of 50 meq Zkg was added.
  • Example 7 In Example 1, instead of porous silica, porous silica lwt% having an average particle size of 2. ⁇ , a refractive index of 1.47, a specific surface area of 420 m 2 / g, and a DBA value of 175 meq / kg was used. A polyurethane elastic fiber was obtained in the same manner as in Example 1 except that the mixture was added.
  • Example 1 instead of polytetramethylene ether glycol having a number average molecular weight of 2000, a copolymerized polyether glycol (2,2) comprising a tetramethylene group having a number average molecular weight of 2000 and a 2,2-dimethylpropylene group as a high molecular weight polyol was used.
  • a polyurethane elastic fiber was obtained in the same manner as in Example 1 except that a polyurethane polymer was obtained using 400 wt parts of a 2-dimethylpropylene group copolymerization ratio of 10 mol%).
  • Polyurethane was prepared in the same manner as in Example 1 except that ⁇ % of synthetic magnesium silicate having an average particle size of 2.3 / ⁇ and a refractive index of 1.55 was added instead of the porous silica. An elastic fiber was obtained.
  • Polyurethane elastic fiber was prepared in the same manner as in Example 1 except that porous silica was added instead of porous silica, and a my force having an average particle diameter of 4.5 / ⁇ and a refractive index of 1.49 was added by ⁇ %. Was obtained.
  • a polyurethane elastic fiber was obtained in the same manner as in Example 1, except that the amount of the porous silica was changed to 12% by weight.
  • Example 1 except that porous silica was used instead of wet silica, which had an average particle size of 2.8 / ⁇ , a refractive index of 1.46, and a specific surface area of 150 m 2 Zg, instead of porous silica.
  • porous silica was used instead of wet silica, which had an average particle size of 2.8 / ⁇ , a refractive index of 1.46, and a specific surface area of 150 m 2 Zg, instead of porous silica.
  • polyurethane elastic fibers were obtained.
  • Example 1 in place of porous silica, dry silica lw having an average particle size of 1.9 m (16 nm as measured by an electron microscope), a refractive index of 1.46, and a specific surface area of 170 m 2 Zg was used. Except for adding t%, a polyurethane elastic fiber was obtained in the same manner as in Example 1. [0093] [Comparative Example 1]
  • a polyurethane elastic fiber was obtained in the same manner as in Example 1 except that porous silica was not added.
  • Example 1 lwt% of porous silica having an average particle size of 6.2 / ⁇ , a refractive index of 1.46, a specific surface area of 300 m 2 Zg, and a DBA value of 500 meq Zkg was added in place of the porous silica.
  • the mixture was dried to obtain a spinning dope in the same manner as in Example 1.
  • the obtained spinning dope was subjected to dry spinning in the same manner as in Example 1. However, since thread breakage occurred frequently and the pressure loss of the filter became large, polyurethane elastic fibers could not be obtained.
  • Table 1 shows the compositions in the above Examples and Comparative Examples, and Table 2 shows the physical properties of the obtained polyurethane-based fibers.
  • the polyurethane elastic fiber of the present invention is excellent in processing stability, it is possible to produce a high-quality cloth with less thread breakage, less unevenness, and the like.
  • Fabrics using the polyurethane elastic fiber of the present invention include various stretch foundations such as swimwear, girdle, brassiere, intimate products, underwear, tights, and panties king. It is suitable for applications such as waistbands, body suits, snacks, stretch sportswear, and stretches.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Artificial Filaments (AREA)
  • Knitting Of Fabric (AREA)
  • Materials For Medical Uses (AREA)

Abstract

 平均粒径が0.5~5μm、屈折率が1.4~1.6の無機化合物粒子を含有し、繊維軸方向の長さ120μmあたりの繊維表面に最大幅が0.5~5μmの大きさの凸部を少なくとも1個有することを特徴とするポリウレタン弾性繊維。

Description

明 細 書
ポリウレタン弾性繊維及びその製造方法
技術分野
[0001] 本発明は、加工安定性に優れたポリウレタン弾性繊維及びその製造方法に関する ものである。
背景技術
[0002] ポリウレタン弾性繊維は、弾性機能に優れた伸縮性繊維であり、ポリアミド繊維、ポ リエステル繊維、綿などと交編織され、ファンデーション、ソックス、パンテイストツキン グ、水着、スポーツウエア、レオタード等の衣料分野をはじめ、ォムッ、包帯、サポー ター、マスク、自動車内装材、ネット、テープ等の非衣料分野にも広く使用されている
[0003] ポリウレタン弾性繊維は、衣料分野に使用される場合、通常、整経やカバリングされ て交編織され、染色工程や熱セット工程を経由して布帛製品となる。ポリウレタン弾性 繊維を整経やカノリングする際には、箴ゃガイドとの摩擦が生じ、また、交編織する 際にもガイドや編み針との摩擦が生じる。このような工程において、ポリウレタン弾性 繊維の摩擦抵抗が常に一定であれば、糸切れが少なぐ斑も少ない高品位の布帛 が製造できる。し力 実際には、摩擦抵抗の変動が原因で糸切れが発生したり、また 、筋のような斑が布帛に多く発生して、加工安定性が妨げられる。
[0004] このようなカ卩ェ安定性を改善するために、ポリウレタン弾性繊維に油剤などの繊維 処理剤を付与することが一般的に行われている。油剤を多く付与すればある程度カロ ェ安定性の改善効果は見られるが、十分ではない。むしろ、油剤の付着量が多いこ とによって、設備の汚染が激しくなるという問題が生じ、また経済的とは言えない。
[0005] 油剤の組成や付着量についても種々の検討がなされており、油剤に金属石けん、 シリカ、シリカ誘導体などの滑剤を含有させる方法が開示されている (例えば、特公昭 40— 5557号公報、特開昭 60-239519号公報、特公平 5—41747号公報など参照 )。しかし、油剤中の不溶物が繊維表面付着していると、加工時に糸表面力 脱落し てカスが発生するという問題が生じる。 [0006] 例えば、特公昭 58— 44767号公報には、ポリウレタン弾性繊維の製造工程で、ポリ ウレタン溶液に粉末状の金属石けんを含有させることにより、ポリウレタン弾性繊維の 粘着性を低下させる方法が開示されている。しかし、金属石けんは、ポリウレタン溶液 中に分散した状態であるため、フィルターやノズルに詰まり、工程中の圧力上昇が大 きぐ工程安定性に問題を生じる。
[0007] また、繊維表面を改質することによって加工安定性を向上させる検討もなされてお り、脂肪族飽和ジカルボン酸を添加することにより繊維表面に多数の凹凸を含有させ る方法 (特公平 5— 45684号公報参照)、ポリウレタンに特定の等電点を有する硫酸 ノリウムを添加し、潤滑仕上げ剤を併用することにより表面を粗面化して、潤滑性を 保持し、粘着性を低下させる方法 (特許第 3279569号公報参照)なども提案されて いる。し力しながら、これらの方法によっても十分なカ卩ェ安定性を得ることはできなか つた o
発明の開示
発明が解決しょうとする課題
[0008] 本発明は、加工安定性に優れたポリウレタン弾性繊維を提供することを目的とする ものである。さらに詳しくは、整経、交編織時において糸切れが少なぐ斑の少ない高 品位な布帛を提供し得るポリウレタン弾性繊維であって、油剤などの繊維処理剤の 付着量が少なくてすむ経済的なポリウレタン弾性繊維及びその製造方法を提供する ことを目的とするものである。
課題を解決するための手段
[0009] 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、特定の無機化 合物粒子を含有し、表面に特定の凸部を有し、特定の摩擦特性を有するポリウレタン 弾性繊維が、優れた加工安定性を有することを見出し、本発明をなすに至った。
[0010] すなわち本発明は、以下のとおりである。
[0011] (1)平均粒径が 0. 5— 5 /ζ πι、屈折率が 1. 4- 1. 6の無機化合物粒子を含有し、 繊維軸方向の長さ 120 mあたりの繊維表面に最大幅が 0. 5— 5 μ mの大きさの凸 部を少なくとも 1個有することを特徴とするポリウレタン弾性繊維。
[0012] (2)無機化合物粒子を 0. 05— 10wt%含有することを特徴とする上記 1記載のポリ ウレタン弾性繊維。
[0013] (3)無機化合物粒子が 100— 800m2Zgの比表面積を有する多孔質性のシリカで あることを特徴とする上記 1または 2記載のポリウレタン弾性繊維。
[0014] (4)編み針に対する動摩擦係数が 0. 2-0. 6であることを特徴とする上記 1一 3の
V、ずれかに記載のポリウレタン弾性繊維。
[0015] (5)ポリウレタン弾性繊維に対する静摩擦係数が 0. 3-0. 6であることを特徴とす る上記 1一 4のいずれかに記載のポリウレタン弾性繊維。
[0016] (6)ナイロン糸に対する静摩擦係数の経時変化(70°Cで 16時間放置したとき)が 0
. 1以下であることを特徴とする上記 1一 5のいずれかに記載のポリウレタン弾性繊維
[0017] (7)平均粒径が 0. 5— 5 μ m、屈折率が 1. 4-1. 6の無機化合物粒子をアミド系 極性溶媒中で微分散し、ポリウレタンに対し 0. 05— 10^%含有させたポリウレタン 紡糸原液を乾式紡糸することを特徴とするポリウレタン弾性繊維の製造方法。
以下、本願発明について詳細に説明する。
[0018] 本発明のポリウレタン弾性繊維は、繊維軸方向の長さ 120 mあたりの繊維表面に 、最大幅が 0. 5— 5 mの比較的大きな凸部を少なくとも 1個有する。凸部の最大幅 が 0. 5 μ m未満ではカ卩ェ安定性が不十分であり、 5 μ mを越えると凸部が欠点となつ て繊維としての物性が不良となる。凸部の数は、繊維軸方向の長さ 120 mあたりの 繊維表面に少なくとも 1個は必要であり、これより少な ヽ場合は優れた加工安定性が 得られない。
[0019] ここで言う凸部とは、繊維表面の平均面に対し、突起状に高く盛り上がつている部 分を言うが、最大幅が 0. 5— 5 mの大きさであればその形状は問わない。この凸部 は、繊維表面からの最大高さが 0. 05— 2 mであることが好ましい。
[0020] 本発明のポリウレタン弾性繊維は、平均粒径が 0. 5— 5 μ m、屈折率が 1. 4-1. 6 の無機化合物粒子を含有する。このような無機化合物粒子を含有することにより、上 記繊維表面の形態特性を有し、優れた物性を得ることができる。
[0021] 平均粒径が 0. 5 μ m未満の場合は、繊維表面に十分な大きさの凸部を形成させる ことができないため、優れたカ卩ェ安定性を得ることができない。また、 5 /z mを超えると 、ポリウレタン弾性繊維の生産工程でフィルターに詰まりやすくなつたり、無機化合物 粒子が欠点となってポリウレタン弾性繊維としての物性が不良となり、加工時等に糸 切れが起こりやすくなる。
[0022] また、屈折率が 1. 4- 1. 6の範囲外であると、基質のポリウレタンポリマーとの屈折 率の差が大きくなるため、ポリウレタン弾性繊維の透明性が低下し、色相が変化する 。特にタリヤータイプ糸の場合は、繊維軸方向の糸のわずかな繊度斑が強調され、 生地ゃ布帛製品の外観品位が低下する。
[0023] 本発明のポリウレタン弾性繊維は、上記の平均粒径が 0. 5— 5 μ m、屈折率が 1. 4 一 1. 6の無機化合物粒子を、ポリウレタン弾性繊維に対して 0. 05— 10wt%含有す ることが好ましぐより好ましくは 0. 1— 10wt%であり、さらに好ましくは 0. 1— 4wt% である。無機化合物粒子の含有量が上記の範囲であると、優れた加工安定性が得ら れ、また、ポリウレタン弾性繊維の生産時に優れた紡糸安定性が得られ、繊維の物理 的性質も優れたものとなる。
[0024] 無機化合物粒子としては、得られるポリウレタン弾性繊維の繊維軸方向の長さ 120 mあたりの繊維表面に、最大幅 0. 5— 5 mの大きさの凸部を少なくとも 1個有す ると 、う要件を満たすことができるものであればょ 、。
[0025] 本発明にお 、て、無機化合物粒子としては、例えば、アルミナ、水酸ィ匕マグネシゥ ム、炭酸マグネシウム、炭酸カルシウム、ケィ酸カルシウム、ケィ酸マグネシウム、カオ リン、マイ力、シリカ等が挙げられる。なかでも、非結晶性の合成シリカが好ましぐさら に好ましくは 100— 800m2Zgの比表面積を有する多孔質性の合成シリカである。合 成シリカは、製造方法によって物理的な性質をコントロールすることができる。代表的 な製造方法としては、ケィ酸ナトリウムと硫酸を混合してケィ酸ゾルを生成させ、これ を重合させることにより一次粒子を形成させ、さらに反応条件によって凝集体の大きさ を制御することにより得られる湿式法シリカ、四塩化ケィ素を気相中で燃焼加水分解 する乾式法シリカがある。
[0026] 本発明にお 、ては、前者の湿式法で、反応条件によって一次粒子から三次元的な 凝集体を形成させてゲルイ匕して得られる多孔質性のシリカが好適である。多孔質性 のシリカは一次粒子の生成条件を変えることにより、内部比表面積や細孔径等、物性 の異なるものを得ることができる力 本発明においては 100— 800m2Zgの比表面積 を有するものが好ましぐより好ましくは 200— 800m2Zgである。
[0027] 通常、繊維で従来より用いられるチタンなどの堅い無機物を繊維中に添加した場合 、繊維の製造時や加工時にガイドや編針の接触面の摩耗が加速される。一般に、シ リカはチタンと同様に堅いものである力 多孔質性のシリカは構造的に脆いため、多 孔質性のシリカを用いることによりポリウレタン弾性繊維の製造時およびカ卩ェ時にガ イドや針の摩耗を大幅に軽減できる。
[0028] 乾式法で得られる内部比表面積を持たな!ヽシリカや、湿式法でも凝集体の成長を 止める反応条件で得られる内部比表面積の小さいかまたは持たないシリカ(ホワイト カーボン)は、 0. 1 m以下の非常に微細な粒子であるため、多孔質シリカと同様の 比表面積を有することがある。これらのシリカは溶液中または糸中で凝集しやすいた めに、フィルター詰まり性が大きい上、凝集体が密であるため、ガイドや針の摩耗は 大きい。
[0029] 前述の方法によって工業的に得られる多孔質性シリカの表面は通常水酸基で覆わ れており親水性を有する力 表面処理によりこの表面水酸基をマスクして疎水性とし たものでもよい。疎水化の方法は、例えば、シリカ表面のシラノール基に、トリメチルシ ランクロリドゃビス (ォクタデシル)シランジクロリド等の有機ケィ素化合物をィ匕学的に 反応させる方法や、オルトケィ酸アルキルを溶剤中で加水分解させて直接疎水性の シリカを得る方法などがあるが、上記の粒子の特性の要件を満たすことができれば、 どの製造方法で得られたものを使用しても良い。
[0030] 親水性の多孔質シリカは経済的に優れ、疎水性の多孔質シリカは、有機溶剤との 親和性が高ぐポリウレタン溶液中での分散性が優れるため、ポリウレタン弾性繊維 の製造工程安定性が向上する。シリカ表面の疎水化度の目安としては、水酸基に吸 着されるジー n—ブチルァミンの吸着量(DBA値)が用いられるが、疎水性の多孔質シ リカとしては、 DBA値が 0— 300meq/kgであるものが分散性に優れるため好ましい
[0031] 本発明のポリウレタン弾性繊維は、編み針に対する動摩擦係数が 0. 2-0. 6であ ることが好ましい。編み針に対する動摩擦係数がこの範囲であれば、加工時のガイド ゃ箴などとの摩擦が適切となるため、糸の走行安定性に優れ、生地へのポリウレタン 弾性繊維の挿入張力変動が抑制され、布帛品位が向上する。
[0032] また、本発明のポリウレタン弾性繊維は、編み針に対する動摩擦の変化による張力 変動が少ない。編み針に対する動摩擦係数測定において、 20分走行させた時の編 み針による摩擦抵抗を受けた入力側の張力(T )の変化が 1. OcN以下であれば、加 ェ時の編み針、箴等による張力変動が抑制され、布帛品位が向上する。
[0033] 本発明のポリウレタン弾性繊維は、ポリウタレン弾性繊維に対する静摩擦係数が 0.
3-0. 6である摩擦特性を有することが好ましい。ポリウレタン弾性繊維に対する静 摩擦係数がこの範囲であれば、紙管に巻き取られたポリウレタン弾性繊維の形態安 定性に優れ、加工時の綾落ちによる糸切れや、ポリウレタン弾性繊維同士の膠着に よる糸切れを抑制することができる。なお、ポリウレタン弾性繊維に対する静摩擦係数 とは、測定対象のポリウレタン弾性繊維同士を用いて静摩擦係数を測定したときの値 である。
[0034] 本発明のポリウレタン弾性繊維は、ナイロン糸に対する静摩擦係数の経時変化(70 °Cで 16時間放置したとき)が 0. 1以下であることが好ましい。 70°C、 16時間という放 置条件は、室温での経時変化を想定した加速評価の条件であり、この条件での静摩 擦係数の経時変化が 0. 1以下のポリウレタン弾性繊維は、経時による摩擦特性の変 ィ匕が小さぐ優れた加工安定性を長期間維持することができる。
[0035] 本発明にお 、ては、編み針に対する動摩擦係数、ポリウレタン弾性繊維に対する 静摩擦係数が前記した特定の要件を満足し、さらに解じょ性が長期間良好に保持さ れるポリウレタン弾性繊維であることが好ま 、。
[0036] 本発明のポリウレタン弾性繊維の基質ポリマーは、例えば、高分子ポリオール、ジィ ソシァネート、多官能性活性水素原子を有する鎖延長剤、および単官能性活性水素 原子を有する末端停止剤を反応させて得ることができる。
[0037] 高分子ポリオールとしては、実質的に線状のホモ又は共重合体からなる各種ジォ ール、例えば、ポリエステルジオール、ポリエーテルジオール、ポリエステルアミドジォ ール、ポリアクリルジオール、ポリチォエステルジオール、ポリチォエーテルジオール 、ポリカーボネートジオール、又はこれらの混合物、又はこれらの共重合物等が挙げ られる。好ましくは、ポリアルキレンエーテルグリコールであり、例えば、ポリオキシェ チレングリコール、ポリオキシプロピレングリコール、ポリテトラメチレンエーテルグリコ ール、ポリオキシペンタメチレングリコール、テトラメチレン基と 2, 2—ジメチルプロピレ ン基力 成る共重合ポリエーテルグリコール、テトラメチレン基と 3—メチルテトラメチレ ン基カも成る共重合ポリエーテルグリコール、又はこれらの混合物等である。中でも、 優れた弾性機能を示すという観点から、ポリテトラメチレンエーテルグリコール、テトラ メチレン基と 2, 2—ジメチルプロピレン基力 成る共重合ポリエーテルグリコールが好 適である。
[0038] 数平均分子量は 500— 5000力 子ましぐより好まし <は 1000— 3000である。
[0039] ジイソシァネートとしては、脂肪族、脂環族、芳香族のジイソシァネート等が挙げら れる。例えば、 4, 4しジフエ-ルメタンジイソシァネート、 2, 4しジフエ-ルメタンジィ ソシァネート、 2, 4一又は 2, 6—トリレンジイソシァネート、 m—又は p キシリレンジイシ シァネート、 a , a , a ' , αしテトラメチル—キシリレンジイソシァネート、 4, 4,―ジフ ェ-ルエーテルジイソシァネート、 4, 4,ージシクロへキシルジイソシァネート、 1, 3— 又は 1, 4ーシクロへキシレンジイソシァネート、 3—( α イソシアナ一トェチノレ)フエ- ルイソシァネート、 1 , 6—へキサメチレンジイソシァネート、トリメチレンジイソシァネート 、テトラメチレンジイソシァネート、イソホロンジイソシァネート、又はこれらの混合物、 又はこれらの共重合物等が挙げられる。好ましくは、 4, 4'ージフヱニルメタンジィソシ ァネートである。
[0040] 多官能性活性水素原子を有する鎖延長剤としては、例えば、ヒドラジン、ポリヒドラ ジン、エチレングリコーノレ、 1 , 2 プロピレングリコール、 1, 3—プロピレングリコール、 1, 3 ブタンジオール、 1, 4 ブタンジオール、 1, 5—ペンタンジオール、 1, 6—へキ サンジオール、 2, 2 ジメチルー 1, 3 プロパンジオール、ジエチレングリコール、ジ プロピレングリコール、 1, 4ーシクロへキサンジメタノール、フエ-ルジェタノールァミン 等の低分子ジオールや、エチレンジァミン、 1, 2 プロピレンジァミン、 1, 3 プロピレ ンジァミン、 2—メチノレー 1, 5 ペンタンジァミン、トリエチレンジァミン、 m キシリレンジ ァミン、ピぺラジン、 o—、 m—又は p—フエ二レンジァミン、 1, 3—ジアミノシクロへキサン 、 1, 4ージアミノシクロへキサン、 1 , 6—へキサメチレンジァミン、 N, N,一 (メチレンジ— 4, 1 フエ-レン)ビス [2 (ェチルァミノ)ーゥレア]等の 2官能性ァミンが挙げられる。
[0041] これらは単独で、又は混合して用いることができる。低分子ジオールより 2官能性ァ ミンが好ましぐエチレンジァミン単独、又は、 1, 2 プロピレンジァミン、 1, 3—ジァミノ シクロへキサン、 2—メチルー 1, 5 ペンタジァミンの群から選ばれる少なくとも 1種が 5 一 40モル0 /0含まれるエチレンジァミン混合物が好まし 、ものとして挙げられる。より好 ましくは、エチレンジァミン単独である。
[0042] 単官能性活性水素原子を有する末端停止剤としては、例えば、メタノール、ェタノ 一ノレ、 2—プロパノーノレ、 2—メチノレー 2—プロパノーノレ、 1ーブタノ一ノレ、 2—ェチノレ一 1— へキサノール、 3—メチルー 1ーブタノール等のモノアルコールや、イソプロピルァミン、 n—ブチルァミン、 tーブチルァミン、 2—ェチルへキシルァミン等のモノアルキルアミン や、ジェチルァミン、ジメチルァミン、ジー n—ブチルァミン、ジー tーブチルァミン、ジイソ ブチルァミン、ジー 2—ェチルへキシルァミン、ジイソプロピルアミン等のジアルキルアミ ンが挙げられる。これらは単独で、又は混合して用いることができる。モノアルコール より、 1官能性ァミンであるモノアルキルアミンまたはジアルキルァミンが好まし 、。
[0043] 本発明のポリウレタン弾性繊維の原料ポリマーを製造する方法に関しては、公知の ポリウレタンィ匕反応の技術を用いることができる。例えば、ポリアルキレンエーテルダリ コールとジイソシァネートをジイソシァネート過剰の条件下で反応させ、末端にイソシ ァネート基を有するウレタンプレポリマーを合成し、次いで、このウレタンプレポリマー を 2官能性ァミン等の活性水素含有ィ匕合物で鎖伸張反応を行い、ポリウレタン重合 体を得ることができる。
[0044] 本発明のポリウレタン弾性繊維の好ましいポリマー基質としては、数平均分子量 50 0— 5000のポリアルキレンエーテルグリコールに過剰等量のジイソシアナートを反応 させて、末端にイソシァネート基を有するプレボリマーを合成し、次いで、プレボリマ 一に 2官能性ァミンと 1官能性ァミンとを反応させて得られるポリウレタンゥレア重合体 である。
[0045] ポリウレタン化反応の操作に関しては、ウレタンプレポリマー合成時やウレタンプレ ポリマーと活性水素含有ィ匕合物との反応時に、ジメチルホルムアミド、ジメチルスルホ キシド、ジメチルァセトアミド等のアミド系極性溶媒を用いることができる。好ましくはジ メチルァセトアミドである。
[0046] 本発明にお 、て、無機化合物粒子をポリウレタン弾性繊維中に添加する方法として は、ポリウレタン溶液中に添加するのが一般的である力 ポリウレタンの原料中にあら かじめ添加したり、または、ウレタンプレボリマー反応中や鎖延長反応中に添加する ことも可能である。また、無機化合物粒子は、ポリウレタン溶液中に均一に分散させた 状態で添加することが好ましい。ポリウレタン紡糸原液中に大きな二次凝集による粗 大粒子が存在すると、ポリウレタン弾性繊維の製造時に、フィルター詰まりや紡糸時 の糸切れが起こりやすくなる。また、得られたポリウレタン弾性繊維中で大きな凸部を 形成し、該弾性繊維の欠点となり、破断強度や破断伸度等の物理的性能が低下す る。好ましい方法としては、無機化合物粒子をアミド系極性溶媒中で微分散した後に 、ポリウレタン重合体に添加し、ポリウレタン紡糸原液を得る方法である。
[0047] このポリウレタン紡糸原液に、前記の無機化合物粒子以外に、ポリウレタン弹性繊 維に通常用いられる他の添加剤、例えば、紫外線吸収剤、酸化防止剤、光安定剤、 耐ガス着色防止剤、耐塩素剤、着色剤、艷消し剤、滑剤、充填剤等を添加してもよい 。他の無機系添加剤を添加する場合は、無機化合物粒子の過剰添カ卩による紡糸安 定性や物理的性質の低下を防ぐため、無機系添加剤の総量がポリウレタン弾性繊維 中で 10wt%以下となるようにすることが好まし 、。
[0048] 本発明のポリウレタン弾性繊維は、ポリウレタン重合体をアミド系極性溶媒に溶解し て得られたポリウレタン紡糸原液を乾式紡糸して製造することが好まし 、。乾式紡糸 は、溶融紡糸や湿式紡糸に比べて、ハードセグメント間の水素結合による物理架橋 を最も強固に形成させることが出来る。
[0049] 本発明において、ポリウレタン紡糸原液は、ポリマー濃度が 30— 40wt%で、紡糸 ドープの粘度が 30°Cにおいて 100— 800Pa' sであることが好ましい。この範囲であ ると、紡糸原液製造工程や紡糸工程が円滑に行われ、工業生産が容易である。例え ば、紡糸原液粘度が高すぎると、紡糸工程までの輸送が難しぐまた、紡糸原液が輸 送中にゲル化を起こしやすい。紡糸原液粘度が低すぎると、紡糸時に糸切れが多く 発生し、収率の低下を招きやすい。紡糸原液濃度が低すぎると、溶媒飛散のエネル ギーコストが大きぐまた、高すぎると、紡糸原液粘度が高くなりすぎて前述の如く輸 送上の問題が生じる。
[0050] 紡糸して得られたポリウレタン弾性繊維に付与する油剤としては、ポリジメチルシロ キサン、ポリエステル変性シリコーン、ポリエーテル変性シリコーン、ァミノ変性シリコ ーン、鉱物油、シリコンレジン、タルク、コロイダルアルミナ等の鉱物性微粒子、ステア リン酸マグネシウム、ステアリン酸カルシウム等の高級脂肪酸金属塩粉末、高級脂肪 族カルボン酸、高級脂肪族アルコール、パラフィン、ポリエチレン等の常温で固体の ワックス等を用いることができる。これらは、単独、または必要に応じて任意に組み合 わせて用いても良い。
[0051] ポリウレタン弾性繊維へ油剤を含有させる方法は、紡糸後にポリウレン弹性繊維に 付与してもよぐまた、油剤を紡糸原液に予め含有させて紡糸してもよぐそのいずれ の方法でも良い。紡糸後の繊維に油剤を付与する場合、繊維が形成された後の段 階であれば特に限定されないが、巻き取り機に巻き取られる直前が好ましい。繊維を 巻き取った後で油剤を付与することは、巻き取りパッケージ力も繊維を解舒することが 困難であるためむずか U、。
[0052] 油剤の付与方法は、油剤バス中で回転する金属円筒の表面上に形成された油膜 に紡糸直後の糸を接触させる方法、ガイド付きのノズル先端から油剤を定量吐出さ せて糸へ付着させる方法など、公知の方法を用いることが出来る。また、油剤を紡糸 原液へ含有させる場合は、紡糸原液を製造する任意の時点で添加することができ、 油剤は紡糸原液に溶解又は分散させる。
[0053] 本発明のポリウレタン弾性繊維は、綿、絹、羊毛等の天然繊維、ナイロン 6やナイ口 ン 66等のポリアミド繊維、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、 ポリテトラメチレンテレフタレート等のポリエステル繊維、カチオン可染ポリエステル繊 維、銅アンモニア再生レーヨン、ビスコースレーヨン、アセテートレーヨン等と交編織し たり、又は、これらの繊維を用いて被覆、交絡、合撚等により加工糸とした後、交編織 することによって斑のない高品位な布帛を得ることが出来る。
[0054] 本発明のポリウタレン弾性繊維は、特にポリウレタン弾性繊維を用いた布帛では生 産量が多ぐベア糸で供給されるため、原糸の品位の影響が大きい経編物に好適で ある。経編生地には、パワーネット、サテンネット、ラッセルレース、ツーウェイトリコット などがあるが、本発明のポリウレタン弾性繊維を用いることにより、経方向の筋の少な い高品位な布帛を得ることができる。
[0055] 本発明のポリウレタン弾性繊維を用いた布帛は、水着、ガードル、ブラジャー、イン ティメイト商品、肌着等の各種ストレッチファンデーション、タイツ、パンティストッキング 、ウェストバンド、ボディースーツ、スノ ッッ、ストレッチスポーツウェアー、ストレツチア ウタ一、医療用ウェア、ストレッチ裏地等の用途に用いることが出来る。
発明の効果
[0056] 本発明のポリウレタン弾性繊維は、加工安定性に優れており、紡糸時及び加工時 の糸切れが少なぐ斑の少ない高品位な布帛を製造できる。また、従来技術のように 繊維処理剤の付着量を多くする必要がな!、ので、設備の汚染も少なく経済的である 図面の簡単な説明
[0057] [図 1]ポリウレタン弾性繊維の編み針に対する動摩擦係数および走行糸張力変動の 測定方法を概略的に示す図である。
[図 2]ポリウレタン弾性繊維に対する静摩擦係数( μ ss)およびナイロン糸に対する静 摩擦係数 sn)の測定方法を概略的に示す図である。
[図 3]実施例 1のポリウレタン弾性繊維表面の電子顕微鏡写真である。
発明を実施するための最良の形態
[0058] 以下、実施例を挙げて本発明をさらに説明するが、本発明はこれらによって何ら限 定されるものではない。なお、測定法、評価法等は下記の通りである。
[0059] (1)無機化合物粒子の平均粒径
水 Zエタノール = 1Z1溶媒に分散させて、レーザー回折散乱法粒度分布測定装 置(島津製作所製: SALD-2000)で測定する。
[0060] (2)無機化合物粒子の比表面積
測定サンプルは、 160°Cで 2時間減圧して試料の脱ガス前処理を行い、 BET法で 測定を行う。
[0061] (3)無機化合物粒子の屈折率
屈折率の異なる溶媒を調整し、それぞれに無機化合物粒子を一定量投入し、各溶 液の透過度を測定する。そこで、透過度が最大となった溶媒の屈折率を、その無機 化合物粒子の屈折率とする。
[0062] (4)繊維表面の凸部の測定
走査電子顕微鏡(日本電子 (株)製: JSM-5510LV型)を用いて、 1000倍の倍率 で繊維軸方向の長さ 120 mの繊維表面をランダムに 3点撮影する。撮影された画 像から、平滑な繊維表面に対し、側面力 盛り上がりが観察できる部分、または盛り 上がりによる影が確認できる部分を凸部とする。この各凸部の大きさを画像処理ソフト にて簡易測長し、繊維表面の 0. 5— 5 mの大きさの凸部の個数を数えて、その平 均の個数を求める。
[0063] (5)破断強度、破断伸度
I張試験機 (オリエンテック (株)社製: UTM (登録商標) ΠΙ— 100型)を用いて、 2 0°C、 65%RH雰囲気下で、試料長 5cmの繊維を 1000%Z分の速度で破断するま で引張り、破断時の強度 (cN)および伸度(%)を測定する。
[0064] (6)編み針に対する動摩擦係数および走行糸張力変動
編み針( (株)小池機械製作所製: 18Ga200-DX型)を経由して走行して ヽる糸の 編み針の前後の糸張力の比力も動摩擦係数 d)を求める。即ち、パッケージから の送り出し速度を lOOmZ分、卷取り速度を 200mZ分で糸を走行させて 、る時に、 図 1に示すように、糸の走行経路に、編み針 (N)を摩擦角 152° (0. 84 π (rad) )で 挿入した際の、入力側の糸張力 (T )、出力側の糸張力 (T )を測定する。動摩擦係
1 2
数 d)は、下記式(1)から算出される。
[0065] [数 1]
I n ( T , T 2 )
d = ( 1 )
0. 8 4 7Γ
[0066] この際、編み針に対する糸の摩擦特性の斑により、出力側の糸張力が変動するが 、その糸張力の最大値と最小値の差(ΔΤ)を求める。 ΔΤが小さいほど、走行時の糸 張力斑が小さぐ加工安定性が良いことを示す。
[0067] (7)ポリウレタン弾性繊維に対する静摩擦係数 ポリウレタン弾性繊維に対する静摩擦係数 ss)は、ジヨリーバランス計 (興亜商会 (株)製)を用い、以下の条件で測定した。同一の方法によって得られた 2本のポリゥ レタン弾性繊維同士の静摩擦係数を測定する。
[0068] 即ち、図 2に示すように、ポリウレタン弾性繊維(S )に 10g (W )の荷重を付け摩擦 体とする。これと直角にポリウレタン弾性繊維 (S )をパネ (B)の下部に取り付けた滑
2
車を介し、一端に lgの荷重 (W )
2を付け、 30cmZ分の速度でポリウレタン弾性繊維
(S )を走行させる。この時、パネ (B)に加わる最大荷重 (T)を測定する。静摩擦係数
2
s)は、下記式(2)から算出される。
[0069] [数 2]
2 I n ( T Z 4 )
μ s = ( 2 )
[0070] (8)ナイロン糸に対する静摩擦係数の経時変化
ナイロン糸に対する静摩擦係数 sn)は、摩擦体としてナイロン糸を用いる以外は 、ポリウレタン弾性繊維に対する静摩擦係数の測定と同様に行う。
[0071] 即ち、図 2において、(S )に未処理のナイロン糸(旭化成せんい (株)製:レオナ 10 Z7B)を張り、 20g (W )の荷重を付け摩擦体とする。これと直角にポリウレタン弾性 繊維 )をパネ (B)の下部に取り付けた滑車を介し、一端に 2gの荷重 (W )を付け
2 2
、 30cmZ分の速度でポリウレタン弾性繊維(S )を走行させる。この時、パネ (B)に
2
加わる最大荷重 (T)を測定する。静摩擦係数 s)は、上記 (4)と同様に、上記式 (2 )から算出される。
[0072] 経時変化は、製造後、 1週間経過後のポリウレタン弾性繊維の静摩擦係数と、それ を 70°Cの雰囲気下で 16時間放置した後の静摩擦係数を測定し、放置前後の静摩 擦係数の差( Δ sn)を求める。
[0073] (9)金属摩耗性
試験糸を、送り出し速度 43mZ分、巻き取り速度 150mZ分で、張力をかけて走行 させ、その走行経路上の糸に固定したステンレス製の編み針( (株)小池機械製作所 製: 18Ga200— DX型)のフック部を引っ掛けて 12時間走行させる。
[0074] フック部の糸が走行した跡を電子顕微鏡で観察し、削れ状態を下記の基準で判定 した。
G :走行跡に削れが見られない、又は、削れが極めて軽微である。
M:走行跡に削れが見られるが、編み針の強度に影響するものではない。 B :測定中に編み針が折れる、又は、編み針の強度が大幅に低下する程度に走行 跡が削れている。
[0075] ( 10)多孔質性シリカの DBA値(ジー n—ブチルァミンの吸着量)
ジー n プチルァミン (DBA)はシリカ表面のシラノール基 (水酸基)に吸着されること から、その吸着量を疎水化度の目安とする。 DBA値が低いほど疎水化度は高い。 トルエンと DBAを規定量混合し、 DBA溶液を調整する。この溶液にシリカを添カロし て攪拌する。このときシリカ表面のシラノール基に DBAが吸着し、溶液中に残留した 過剰な DBAを酸で中和滴定し、残留する DBA量から、シリカに吸着した DBA値 (m eq/kg) 求める。
[0076] [実施例 1]
数平均分子量 2000のポリテトラメチレンエーテルグリコール 400wt部と、 4, 4,ージ フエ-ルメタンジイソシァネート 80. lwt部とを、乾燥窒素雰囲気下、 80°Cにおいて 3 時間、攪拌下で反応させて、末端力イソシァネートでキャップされたポリウレタンプレ ポリマーを得た。これを室温まで冷却した後、ジメチルァセトアミドをカ卩え、溶解してポ リウレタンプレボリマー溶液とした。
[0077] 一方、エチレンジァミン 6. 55wt部およびジェチルァミン 1. 02wt部を、乾燥ジメチ ルァセトアミドに溶解した溶液を用意し、これを前記プレボリマー溶液に室温下で添 加して、ポリウレタン固形分濃度 30wt%、粘度 450Pa ' s (30°C)のポリウレタン溶液 を得た。
[0078] ポリウレタン固形分に対し、 4, 4,ーブチリデンビス(3—メチルー 6 t ブチルフエノー ル)を lwt%、 2— (2,―ヒドロキシー 3,一 tーブチルー 5,一メチルフエ-ル)— 5 クロ口べ ンゾトリアゾールを 0. 5wt%、および、平均粒径が 2. Ί μ χη^屈折率が 1. 46、比表 面積 500m2Zg、 DBA値 800meqZkgの多孔質性シリカ lwt%をジメチルァセトァ ミドに加え、ホモミキサーで分散させ、 15wt%の分散液を作成し、ポリウレタン溶液と 混合して、均一な溶液とした後、室温、減圧下で脱泡し、これを紡糸原液とした。
[0079] この紡糸原液を、紡糸速度 800mZ分、熱風温度 310°Cで乾式紡糸し、得られた ポリウレタン弾性繊維がノ ッケージに巻き取られる前に、仕上げ剤をポリウレタン弾性 繊維に対して 6wt%付与し、紙製の紙管に巻き取って、 44デシテックス /4フィラメン トのポリウレタン弾性繊維の巻き取りパッケージを得た。なお、仕上げ剤としては、ポリ ジメチルシロキサン 57wt%、鉱物油 30wt%、ァミノ変性シリコーン 1. 5wt%、ステア リン酸マグネシウム 1. 5wt%からなる油剤を用 、た。
[0080] 実施例 1で得られたポリウレタン弾性繊維の走査電子顕微鏡写真を図 3に示す。
[0081] [実施例 2]
実施例 1において、多孔質性シリカの添加量を 0. 2wt%とした以外は、実施例 1と 同様にしてポリウレタン弾性繊維を得た。
[0082] [実施例 3]
実施例 1において、多孔質性シリカの添加量を 4. Owt%とした以外は、実施例 1と 同様にしてポリウレタン弾性繊維を得た。
[0083] [実施例 4]
実施例 1において、多孔質性シリカに代えて、平均粒径が 3. 9 /ζ πι、屈折率が 1. 4 6、比表面積 500m2Zg、 DBA値 800meqZkgの多孔質性シリカ lwt%を添カ卩した 以外は、実施例 1と同様にしてポリウレタン弾性繊維を得た。
[0084] [実施例 5]
実施例 1において、多孔質性シリカに代えて、平均粒径が 3.: m、屈折率が 1. 4
6、比表面積 300m2Zg、 DBA値 500meqZkgの多孔質性シリカ lwt%を添カ卩した 以外は、実施例 1と同様にしてポリウレタン弾性繊維を得た。
[0085] [実施例 6]
実施例 1において、多孔質性シリカに代えて、平均粒径が 2. Ι μ να,屈折率が 1. 4
7、比表面積 230m2Zg、 DBA値 50meqZkgの多孔質性シリカ 0. 2wt%を添カロし た以外は、実施例 1と同様にしてポリウレタン弾性繊維を得た。
[0086] [実施例 7] 実施例 1において、多孔質性シリカに代えて、平均粒径が 2. Ι μ να,屈折率が 1. 4 7、比表面積 420m2/g、 DBA値 175meq/kgの多孔質性シリカ lwt%を添カ卩した 以外は、実施例 1と同様にしてポリウレタン弾性繊維を得た。
[0087] [実施例 8]
実施例 1において、数平均分子量 2000のポリテトラメチレンエーテルグリコールに 代えて、高分子ポリオールとして数平均分子量 2000のテトラメチレン基と 2, 2—ジメ チルプロピレン基から成る共重合ポリエーテルグリコール(2, 2—ジメチルプロピレン 基の共重合率 10モル%) 400wt部を用いて、ポリウレタン重合体を得た以外は、実 施例 1と同様にしてポリウレタン弾性繊維を得た。
[0088] [実施例 9]
実施例 1において、多孔質性シリカに代えて、平均粒径が 2. 3 /ζ πι、屈折率 1. 55 の合成ケィ酸マグネシウムを^%添加した以外は、実施例 1と同様にしてポリウレタ ン弾性繊維を得た。
[0089] [実施例 10]
実施例 1において、多孔質性シリカに代えて、平均粒径が 4. 5 /ζ πι、屈折率 1. 49 のマイ力を^%添加した以外は、実施例 1と同様にしてポリウレタン弾性繊維を得 た。
[0090] [実施例 11]
実施例 1において、多孔質性シリカの添加量を 12wt%とした以外は、実施例 1と同 様にしてポリウレタン弾性繊維を得た。
[0091] [実施例 12]
実施例 1において、多孔質性シリカに代えて、平均粒径が 2. 8 /ζ πι、屈折率が 1. 4 6、比表面積 150m2Zgの内部表面積を持たな 、湿式シリカを 加した以外 は、実施例 1と同様にしてポリウレタン弾性繊維を得た。
[0092] [実施例 13]
実施例 1において、多孔質性シリカに代えて、平均粒径が 1. 9 m (電子顕微鏡に よる粒径測定では 16nm)、屈折率が 1. 46、比表面積 170m2Zgの乾式法シリカ lw t%を添加した以外は、実施例 1と同様にしてポリウレタン弾性繊維を得た。 [0093] [比較例 1]
実施例 1において、多孔質性シリカを添加しない以外は、実施例 1と同様にしてポリ ウレタン弾性繊維を得た。
[0094] [比較例 2]
実施例 1において、多孔質性シリカに代えて、平均粒径が 6. 2 /ζ πι、屈折率が 1. 4 6、比表面積 300m2Zg、 DBA値 500meqZkgの多孔質性シリカを lwt%添カ卩して 、実施例 1と同様にして紡糸原液を得た。得られた紡糸原液を、実施例 1と同様に乾 式紡糸しょうとしたが、糸切れが多発し、さらにフィルターの圧損が大きくなつたため、 ポリウレタン弾性繊維を得ることができな力 た。
[0095] 以上の各実施例および比較例における組成を表 1に、得られたポリウレタン弹性繊 維の物性を表 2に示す。
[0096] [表 1]
表' i0097
Figure imgf000020_0001
(注) PTMG :ポリテトラメチレンエーテルグリコール
Figure imgf000021_0001
産業上の利用可能性
本発明のポリウレタン弾性繊維は加工安定性に優れるため、糸切れが少なく、斑の 少なレ、高品位な布帛を製造することができる。
本発明のポリウレタン弾性繊維を用いた布帛は、水着、ガードル、ブラジャー、イン ティメイト商品、肌着等の各種ストレッチファンデーション、タイツ、パンティス キング 、ウェストバンド、ボディースーツ、スノ ッッ、ストレッチスポーツウェアー、ストレツチア ウタ一等の用途に好適である。

Claims

請求の範囲
[1] 平均粒径が 0. 5— 5 /z m、屈折率が 1. 4- 1. 6の無機化合物粒子を含有し、繊維 軸方向の長さ 120 mあたりの繊維表面に最大幅が 0. 5— 5 μ mの大きさの凸部を 少なくとも 1個有することを特徴とするポリウレタン弾性繊維。
[2] 無機化合物粒子を 0. 05— 10wt%含有することを特徴とする請求項 1記載のポリ ウレタン弾性繊維。
[3] 無機化合物粒子が 100— 800m2Zgの比表面積を有する多孔質性のシリカである ことを特徴とする請求項 1または 2記載のポリウレタン弾性繊維。
[4] 編み針に対する動摩擦係数が 0. 2-0. 6であることを特徴とする請求項 1一 3のい ずれかに記載のポリウレタン弾性繊維。
[5] ポリウレタン弾性繊維に対する静摩擦係数が 0. 3— 0. 6であることを特徴とする請 求項 1一 4のいずれかに記載のポリウレタン弾性繊維。
[6] ナイロン糸に対する静摩擦係数の経時変化(70°Cで 16時間放置したとき)が 0. 1 以下であることを特徴とする請求項 1一 5のいずれかに記載のポリウレタン弾性繊維。
[7] 平均粒径が 0. 5— 5 μ m、屈折率が 1. 4- 1. 6の無機化合物粒子をアミド系極性 溶媒中で微分散し、ポリウレタンに対し 0. 05— 10wt%含有させたポリウレタン紡糸 原液を乾式紡糸することを特徴とするポリウレタン弾性繊維の製造方法。
PCT/JP2005/003334 2004-03-02 2005-02-28 ポリウレタン弾性繊維及びその製造方法 WO2005083163A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP05719651A EP1722015B1 (en) 2004-03-02 2005-02-28 Polyurethane elastic fiber and method for production thereof
US10/591,671 US7485364B2 (en) 2004-03-02 2005-02-28 Polyurethane elastic fiber and process for producing same
JP2006510507A JP4585512B2 (ja) 2004-03-02 2005-02-28 ポリウレタン弾性繊維及びその製造方法
DE602005020589T DE602005020589D1 (de) 2004-03-02 2005-02-28 Polyurethanelastofaser und verfahren zu deren herstellung
AT05719651T ATE464409T1 (de) 2004-03-02 2005-02-28 Polyurethanelastofaser und verfahren zu deren herstellung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004057415 2004-03-02
JP2004-057415 2004-03-02

Publications (1)

Publication Number Publication Date
WO2005083163A1 true WO2005083163A1 (ja) 2005-09-09

Family

ID=34909033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003334 WO2005083163A1 (ja) 2004-03-02 2005-02-28 ポリウレタン弾性繊維及びその製造方法

Country Status (10)

Country Link
US (1) US7485364B2 (ja)
EP (1) EP1722015B1 (ja)
JP (1) JP4585512B2 (ja)
KR (1) KR100831183B1 (ja)
CN (1) CN100447318C (ja)
AT (1) ATE464409T1 (ja)
DE (1) DE602005020589D1 (ja)
ES (1) ES2341871T3 (ja)
TW (1) TWI294002B (ja)
WO (1) WO2005083163A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196067A (ja) * 2007-02-09 2008-08-28 Asahi Kasei Fibers Corp ポリウレタン弾性繊維及びその製造方法
JP2013144861A (ja) * 2011-12-16 2013-07-25 Toray Opelontex Co Ltd ポリウレタン弾性繊維およびその製造方法
JP2018535331A (ja) * 2015-10-08 2018-11-29 ユニバーシティ オブ リーズ 複合体繊維

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE464409T1 (de) * 2004-03-02 2010-04-15 Asahi Kasei Fibers Corp Polyurethanelastofaser und verfahren zu deren herstellung
ATE484614T1 (de) * 2004-12-03 2010-10-15 Dow Global Technologies Inc Elastanfasern mit niedrigerem reibungskoeffizient
CA2688335C (en) * 2007-05-29 2015-07-21 Innova Materials, Llc Surfaces having particles and related methods
EP2328731A4 (en) 2008-08-21 2017-11-01 Tpk Holding Co., Ltd Enhanced surfaces, coatings, and related methods
CA2829242A1 (en) 2010-08-07 2012-02-16 Arjun Daniel Srinivas Device components with surface-embedded additives and related manufacturing methods
CN104040642B (zh) 2011-08-24 2016-11-16 宸鸿科技控股有限公司 图案化透明导体和相关制备方法
KR102077864B1 (ko) * 2012-08-01 2020-02-14 쇼와 덴코 패키징 가부시키가이샤 내용물 부착 방지 덮개재
KR101341055B1 (ko) * 2012-12-26 2013-12-13 박희대 열가소성 폴리우레탄 원사의 조성물 및 그 제조방법
CN103437032A (zh) * 2013-08-29 2013-12-11 苏州宏优纺织有限公司 一种防紫外线铜氨纤维面料
CN109844191B (zh) * 2016-10-19 2022-04-05 三菱化学株式会社 纤维和填充物
EP3558190B1 (en) 2016-12-20 2021-10-13 The Procter & Gamble Company Method for making elastomeric laminates with elastic strands unwound from beams
JP2020056116A (ja) * 2017-02-13 2020-04-09 旭化成株式会社 ポリウレタン弾性繊維
US11925537B2 (en) 2017-09-01 2024-03-12 The Procter & Gamble Company Beamed elastomeric laminate structure, fit, and texture
CN111050718B (zh) 2017-09-01 2021-12-14 宝洁公司 制备弹性体层合物的方法和设备
US11147718B2 (en) 2017-09-01 2021-10-19 The Procter & Gamble Company Beamed elastomeric laminate structure, fit, and texture
JP7102555B2 (ja) * 2019-01-22 2022-07-19 旭化成株式会社 ポリウレタン弾性繊維及びそれを含有する布帛
KR101971849B1 (ko) * 2019-02-25 2019-04-23 박희대 열가소성 폴리우레탄 원사
KR102082090B1 (ko) * 2019-12-09 2020-02-26 박희대 소수성 나노실리카가 배합된 열가소성 폴리우레탄 코팅 원사
CN111926411A (zh) * 2020-08-24 2020-11-13 浙江华峰氨纶股份有限公司 一种低摩擦系数聚氨酯弹性纤维及其制备方法
CN112442754B (zh) * 2020-11-09 2022-07-26 华峰化学股份有限公司 一种氨纶纤维及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60239519A (ja) * 1984-05-11 1985-11-28 Asahi Chem Ind Co Ltd ポリウレタン弾性繊維
JPH06123067A (ja) * 1992-10-09 1994-05-06 Nisshin Flour Milling Co Ltd 超微粒子を表面に均一に分散付着した繊維または織布およびその製造方法およびそれを用いた繊維強化複合材
JPH10259577A (ja) * 1997-03-13 1998-09-29 Takemoto Oil & Fat Co Ltd ポリウレタン系弾性繊維用処理剤および該処理剤を用いて処理されたポリウレタン系弾性繊維
JP2002363825A (ja) * 2001-06-04 2002-12-18 Du Pont Toray Co Ltd ポリウレタン系弾性繊維およびその製造方法
JP2005120545A (ja) * 2003-10-20 2005-05-12 Toyobo Co Ltd 弾性繊維およびその製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5959912A (ja) 1982-09-22 1984-04-05 Toyobo Co Ltd ポリウレタン弾性繊維の製造法
US4605594A (en) * 1984-08-08 1986-08-12 Minnesota Mining And Manufacturing Company Ceramic articles having a nonporous core and porous outer layer
US5369916A (en) * 1988-08-01 1994-12-06 Dentsply Research & Development Corp. Polishing element
US5078754A (en) * 1988-08-01 1992-01-07 Dentsply Research & Development Corp. Finishing/polishing system
US4909597A (en) * 1989-02-23 1990-03-20 The Dow Chemical Company Flexible optical waveguide containing a thermoplastic aliphatic segmented polyurethane core
JPH0816284B2 (ja) 1991-07-23 1996-02-21 富士紡績株式会社 改質ポリウレタン弾性繊維
US5443775A (en) * 1992-05-08 1995-08-22 Plasticolors, Inc. Process for preparing pigmented thermoplastic polymer compositions and low shrinking thermosetting resin molding composition
US6027803A (en) * 1993-06-11 2000-02-22 E. I. Du Pont De Nemours And Company Spandex containing barium sulfate
EP0880610B1 (en) * 1996-02-12 2001-10-31 Fibervisions A/S Particle-containing fibres
DE69825972T2 (de) * 1997-02-13 2005-09-01 Asahi Kasei Kabushiki Kaisha Elastische polyurethanfasern und verfahren zu ihrer herstellung
US6171516B1 (en) * 1997-03-13 2001-01-09 Takemoto Oil & Fat Co., Ltd. Treatment agent for elastic polyurethane fibers, and elastic polyurethane fibers treated therewith
DE69938143T2 (de) * 1998-08-10 2009-01-29 Asahi Kasei Kabushiki Kaisha Elastomere polyurethanfasern
DE60024801T2 (de) * 1999-03-19 2006-08-31 Asahi Kasei Kabushiki Kaisha Polyurethanharnstofffasern und verfahren zu ihrer herstellung
US6531514B2 (en) * 2000-03-15 2003-03-11 E.I. Du Pont De Nemours And Company Dispersant slurries for making spandex
AU2001288212A1 (en) * 2000-09-08 2002-03-22 3M Innovative Properties Company Abrasive sheet, method of manufacturing the same and method to abrade a fiber optic connector
JP2003113535A (ja) 2001-10-04 2003-04-18 Toyobo Co Ltd ポリウレタン弾性繊維
US6962946B2 (en) * 2001-11-21 2005-11-08 3M Innovative Properties Company Nanoparticles having a rutile-like crystalline phase and method of preparing same
JP3518685B2 (ja) * 2002-05-16 2004-04-12 東洋紡績株式会社 ストッキング
JP2004052208A (ja) * 2002-05-14 2004-02-19 Toray Ind Inc 消臭性繊維製品
JP4329017B2 (ja) * 2003-10-20 2009-09-09 東洋紡績株式会社 カバリング弾性糸
ATE464409T1 (de) * 2004-03-02 2010-04-15 Asahi Kasei Fibers Corp Polyurethanelastofaser und verfahren zu deren herstellung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60239519A (ja) * 1984-05-11 1985-11-28 Asahi Chem Ind Co Ltd ポリウレタン弾性繊維
JPH06123067A (ja) * 1992-10-09 1994-05-06 Nisshin Flour Milling Co Ltd 超微粒子を表面に均一に分散付着した繊維または織布およびその製造方法およびそれを用いた繊維強化複合材
JPH10259577A (ja) * 1997-03-13 1998-09-29 Takemoto Oil & Fat Co Ltd ポリウレタン系弾性繊維用処理剤および該処理剤を用いて処理されたポリウレタン系弾性繊維
JP2002363825A (ja) * 2001-06-04 2002-12-18 Du Pont Toray Co Ltd ポリウレタン系弾性繊維およびその製造方法
JP2005120545A (ja) * 2003-10-20 2005-05-12 Toyobo Co Ltd 弾性繊維およびその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196067A (ja) * 2007-02-09 2008-08-28 Asahi Kasei Fibers Corp ポリウレタン弾性繊維及びその製造方法
JP2013144861A (ja) * 2011-12-16 2013-07-25 Toray Opelontex Co Ltd ポリウレタン弾性繊維およびその製造方法
JP2018535331A (ja) * 2015-10-08 2018-11-29 ユニバーシティ オブ リーズ 複合体繊維
JP7046369B2 (ja) 2015-10-08 2022-04-04 ユニバーシティ・オブ・ハダースフィールド 複合体繊維

Also Published As

Publication number Publication date
KR100831183B1 (ko) 2008-05-21
US20070196650A1 (en) 2007-08-23
US7485364B2 (en) 2009-02-03
TWI294002B (en) 2008-03-01
CN100447318C (zh) 2008-12-31
EP1722015B1 (en) 2010-04-14
KR20060116241A (ko) 2006-11-14
JPWO2005083163A1 (ja) 2007-11-22
JP4585512B2 (ja) 2010-11-24
DE602005020589D1 (de) 2010-05-27
ATE464409T1 (de) 2010-04-15
EP1722015A4 (en) 2007-12-12
ES2341871T3 (es) 2010-06-29
CN1926268A (zh) 2007-03-07
TW200602524A (en) 2006-01-16
EP1722015A1 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
WO2005083163A1 (ja) ポリウレタン弾性繊維及びその製造方法
JP4595775B2 (ja) ポリウレタン系弾性繊維およびその製造方法
KR101166807B1 (ko) 내열성과 항염소성이 우수한 폴리우레탄우레아 탄성섬유 및그의 제조방법
MXPA05013978A (es) Spandex con baja temperatura de termofijacion y materiales para su produccion.
CN111194364B (zh) 聚氨酯弹性纤维、其绕纱体、及包含其的制品
WO2019103013A1 (ja) ポリウレタン弾性繊維及びその巻糸体
CN113939618B (zh) 聚氨酯弹性纤维及含有其的产品、以及聚氨酯弹性纤维用表面处理剂
JP5067945B2 (ja) 弾性繊維製造用改質剤
JPH11315202A (ja) 帯電防止性を示すように仕上げられたポリウレタン類およびエラスタン繊維
JP2012207332A (ja) ポリウレタン弾性繊維及びその製法
CN113272483B (zh) 聚氨酯弹性纤维及含有其的布帛
JP5507868B2 (ja) ポリウレタン系弾性繊維およびその製造方法
JP3838773B2 (ja) ポリウレタン弾性繊維及びその弾性布帛
JP3988123B2 (ja) ポリウレタン系弾性繊維およびその製造方法
EP4198180A1 (en) Polyurethane elastic fiber, winding body therefor, gather member, and sanitary material
JP4416818B2 (ja) ポリウレタン弾性繊維の製造方法
JP2002517533A (ja) ポリウレタン尿素、ポリウレタン尿素繊維、及びその製法
CN110249084B (zh) 聚氨酯弹性纤维、其制造方法、及包含其的褶裥构件
JPH07102485A (ja) 共重合ポリエーテルをベースとしたポリウレタン弾性繊維
JP2003020521A (ja) ポリウレタン弾性繊維
JP4100769B2 (ja) ポリウレタン弾性繊維及びその製造方法
JP3226060B2 (ja) 膠着性の改善された弾性糸
JP2019026962A (ja) ポリウレタン弾性繊維およびその製造方法
JP2006144192A (ja) ソフトストレッチ性ポリウレタン弾性糸およびその製造方法
JP2009144276A (ja) ポリウレタン糸およびその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006510507

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10591671

Country of ref document: US

Ref document number: 2007196650

Country of ref document: US

Ref document number: 1020067017745

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580006894.4

Country of ref document: CN

Ref document number: 2533/KOLNP/2006

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005719651

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067017745

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005719651

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10591671

Country of ref document: US