WO2005065385A3 - Power semiconductor devices and methods of manufacture - Google Patents

Power semiconductor devices and methods of manufacture Download PDF

Info

Publication number
WO2005065385A3
WO2005065385A3 PCT/US2004/043965 US2004043965W WO2005065385A3 WO 2005065385 A3 WO2005065385 A3 WO 2005065385A3 US 2004043965 W US2004043965 W US 2004043965W WO 2005065385 A3 WO2005065385 A3 WO 2005065385A3
Authority
WO
WIPO (PCT)
Prior art keywords
power devices
formation
improved
methods
devices
Prior art date
Application number
PCT/US2004/043965
Other languages
French (fr)
Other versions
WO2005065385A2 (en
Inventor
Ashok Challa
Alan Elbanhawy
Thomas E Grebs
Christopher B Kocon
Nathan L Kraft
Dean E Probst
Rodney S Ridley
Steven P Sapp
Qi Wang
Peter H Wilson
Joseph A Yedinak
Chongman Yun
Jin-Young Jung
Ho-Cheol Jang
Richard Stokes
Gary M Dolny
John Mytych
Becky Losee
Adam Selsley
Robert Herrick
James J Murphy
Gordon K Madson
Debra S Woolsey
Bruce D Marchant
Christopher L Rexer
Babak S Sani
Jae-Gil Lee
Original Assignee
Fairchild Semiconductor
Ashok Challa
Alan Elbanhawy
Thomas E Grebs
Christopher B Kocon
Nathan L Kraft
Dean E Probst
Rodney S Ridley
Steven P Sapp
Qi Wang
Peter H Wilson
Joseph A Yedinak
Chongman Yun
Jin-Young Jung
Ho-Cheol Jang
Richard Stokes
Gary M Dolny
John Mytych
Becky Losee
Adam Selsley
Robert Herrick
James J Murphy
Gordon K Madson
Debra S Woolsey
Bruce D Marchant
Christopher L Rexer
Babak S Sani
Jae-Gil Lee
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fairchild Semiconductor, Ashok Challa, Alan Elbanhawy, Thomas E Grebs, Christopher B Kocon, Nathan L Kraft, Dean E Probst, Rodney S Ridley, Steven P Sapp, Qi Wang, Peter H Wilson, Joseph A Yedinak, Chongman Yun, Jin-Young Jung, Ho-Cheol Jang, Richard Stokes, Gary M Dolny, John Mytych, Becky Losee, Adam Selsley, Robert Herrick, James J Murphy, Gordon K Madson, Debra S Woolsey, Bruce D Marchant, Christopher L Rexer, Babak S Sani, Jae-Gil Lee filed Critical Fairchild Semiconductor
Priority to JP2006547577A priority Critical patent/JP4903055B2/en
Priority to CN2004800421611A priority patent/CN101180737B/en
Priority to KR1020117030055A priority patent/KR101216533B1/en
Priority to DE202004021352U priority patent/DE202004021352U1/en
Priority to DE112004002608.3T priority patent/DE112004002608B4/en
Priority to KR1020067015458A priority patent/KR20070032627A/en
Publication of WO2005065385A2 publication Critical patent/WO2005065385A2/en
Publication of WO2005065385A3 publication Critical patent/WO2005065385A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/26Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys
    • H01L29/267Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7804Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7806Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a Schottky barrier diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7815Vertical DMOS transistors, i.e. VDMOS transistors with voltage or current sensing structure, e.g. emulator section, overcurrent sensing cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • H01L29/7828Vertical transistors without inversion channel, e.g. vertical ACCUFETs, normally-on vertical MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16245Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0661Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body specially adapted for altering the breakdown voltage by removing semiconductor material at, or in the neighbourhood of, a reverse biased junction, e.g. by bevelling, moat etching, depletion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/404Multiple field plate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41741Source or drain electrodes for field effect devices for vertical or pseudo-vertical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
    • H01L29/4933Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement with a silicide layer contacting the silicon layer, e.g. Polycide gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/495Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a simple metal, e.g. W, Mo
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7831Field effect transistors with field effect produced by an insulated gate with multiple gate structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12032Schottky diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • H01L2924/13034Silicon Controlled Rectifier [SCR]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

Various embodiments for improved power devices as well as their methods of manufacture, packaging and circuitry incorporating the same for use in a wide variety of power electronics are disclosed. One aspect of the invention combines a number of charge balancing techniques (311) and other techniques for reducing parasitic capacitance to arrive at different embodiments for power devices (300B) with improved voltage performance, higher switching speed, and lower on-resistance. Another aspect of the invention provides improved termination structures for low, medium and high voltage devices. Improved methods of fabrication for power devices (300B) are provided according to other aspects of the invention. Improvements to specific processing steps, such as formation of trenches (300, 302), formation of dielectric layers inside trenches (301, 302), formation of mesa structures and processes for reducing substrate thickness, among others, are presented. According to another aspect of the invention, charge balanced power devices (300B) incorporate temperature and current sensing elements such as diodes on the same die. Other aspects of the invention improve equivalent series resistance (ESR) for power devices, incorporate additional circuitry on the same chip as the power device (300B) and provide improvements to the packaging of charge balanced power devices.
PCT/US2004/043965 2003-12-30 2004-12-28 Power semiconductor devices and methods of manufacture WO2005065385A2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006547577A JP4903055B2 (en) 2003-12-30 2004-12-28 Power semiconductor device and manufacturing method thereof
CN2004800421611A CN101180737B (en) 2003-12-30 2004-12-29 Power semiconductor devices and methods of manufacture
KR1020117030055A KR101216533B1 (en) 2003-12-30 2004-12-29 Power Semiconductor Devices and Methods of Manufacture
DE202004021352U DE202004021352U1 (en) 2003-12-30 2004-12-29 Power semiconductor devices
DE112004002608.3T DE112004002608B4 (en) 2003-12-30 2004-12-29 Power semiconductor devices and manufacturing methods
KR1020067015458A KR20070032627A (en) 2003-12-30 2004-12-29 Power semiconductor device and manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US53379003P 2003-12-30 2003-12-30
US60/533,790 2003-12-30
US58884504P 2004-07-15 2004-07-15
US60/588,845 2004-07-15

Publications (2)

Publication Number Publication Date
WO2005065385A2 WO2005065385A2 (en) 2005-07-21
WO2005065385A3 true WO2005065385A3 (en) 2006-04-06

Family

ID=34753010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/043965 WO2005065385A2 (en) 2003-12-30 2004-12-28 Power semiconductor devices and methods of manufacture

Country Status (6)

Country Link
JP (3) JP4903055B2 (en)
KR (2) KR101216533B1 (en)
CN (3) CN103199017B (en)
DE (3) DE112004002608B4 (en)
TW (3) TWI521726B (en)
WO (1) WO2005065385A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9419129B2 (en) 2009-10-21 2016-08-16 Vishay-Siliconix Split gate semiconductor device with curved gate oxide profile
US9425305B2 (en) 2009-10-20 2016-08-23 Vishay-Siliconix Structures of and methods of fabricating split gate MIS devices
US9577089B2 (en) 2010-03-02 2017-02-21 Vishay-Siliconix Structures and methods of fabricating dual gate devices
CN108447911A (en) * 2018-03-09 2018-08-24 香港商莫斯飞特半导体股份有限公司 A kind of depth groove semiconductor power device and preparation method thereof
CN109390395B (en) * 2017-08-08 2021-10-29 三菱电机株式会社 Semiconductor device and power conversion device
JP7387501B2 (en) 2020-03-18 2023-11-28 株式会社東芝 Semiconductor device and its control method

Families Citing this family (298)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6838722B2 (en) 2002-03-22 2005-01-04 Siliconix Incorporated Structures of and methods of fabricating trench-gated MIS devices
US7638841B2 (en) 2003-05-20 2009-12-29 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
JP4903055B2 (en) * 2003-12-30 2012-03-21 フェアチャイルド・セミコンダクター・コーポレーション Power semiconductor device and manufacturing method thereof
US7183610B2 (en) * 2004-04-30 2007-02-27 Siliconix Incorporated Super trench MOSFET including buried source electrode and method of fabricating the same
JP5135663B2 (en) * 2004-10-21 2013-02-06 富士電機株式会社 Semiconductor device and manufacturing method thereof
US7453119B2 (en) * 2005-02-11 2008-11-18 Alphs & Omega Semiconductor, Ltd. Shielded gate trench (SGT) MOSFET cells implemented with a schottky source contact
JP4955222B2 (en) * 2005-05-20 2012-06-20 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device
CN103094348B (en) * 2005-06-10 2016-08-10 飞兆半导体公司 Field-effect transistor
JP4921730B2 (en) * 2005-06-20 2012-04-25 株式会社東芝 Semiconductor device
EP1908119B1 (en) * 2005-07-27 2012-04-18 Infineon Technologies Austria AG Semiconductor component with a drift region and with a drift control region
US8110868B2 (en) 2005-07-27 2012-02-07 Infineon Technologies Austria Ag Power semiconductor component with a low on-state resistance
US8461648B2 (en) 2005-07-27 2013-06-11 Infineon Technologies Austria Ag Semiconductor component with a drift region and a drift control region
DE102006002065B4 (en) * 2006-01-16 2007-11-29 Infineon Technologies Austria Ag Compensation component with reduced and adjustable on-resistance
US7595542B2 (en) * 2006-03-13 2009-09-29 Fairchild Semiconductor Corporation Periphery design for charge balance power devices
US7446374B2 (en) * 2006-03-24 2008-11-04 Fairchild Semiconductor Corporation High density trench FET with integrated Schottky diode and method of manufacture
DE102006026943B4 (en) * 2006-06-09 2011-01-05 Infineon Technologies Austria Ag By field effect controllable trench transistor with two control electrodes
US8432012B2 (en) * 2006-08-01 2013-04-30 Cree, Inc. Semiconductor devices including schottky diodes having overlapping doped regions and methods of fabricating same
US7544571B2 (en) * 2006-09-20 2009-06-09 Fairchild Semiconductor Corporation Trench gate FET with self-aligned features
JP2008153620A (en) * 2006-11-21 2008-07-03 Toshiba Corp Semiconductor device
US9437729B2 (en) 2007-01-08 2016-09-06 Vishay-Siliconix High-density power MOSFET with planarized metalization
US9947770B2 (en) 2007-04-03 2018-04-17 Vishay-Siliconix Self-aligned trench MOSFET and method of manufacture
DE102007020657B4 (en) * 2007-04-30 2012-10-04 Infineon Technologies Austria Ag Semiconductor device with a semiconductor body and method for producing the same
GB2457410B (en) * 2007-06-22 2012-01-04 Panasonic Corp Plasma display panel driving device and plasma display
JP5285242B2 (en) * 2007-07-04 2013-09-11 ローム株式会社 Semiconductor device
KR100847642B1 (en) * 2007-08-10 2008-07-21 주식회사 동부하이텍 Photo key treatment method for preventing particle
US8497549B2 (en) * 2007-08-21 2013-07-30 Fairchild Semiconductor Corporation Method and structure for shielded gate trench FET
US9484451B2 (en) 2007-10-05 2016-11-01 Vishay-Siliconix MOSFET active area and edge termination area charge balance
WO2009057015A1 (en) 2007-10-29 2009-05-07 Nxp B.V. Trench gate mosfet and method of manufacturing the same
JP2009164558A (en) * 2007-12-10 2009-07-23 Toyota Central R&D Labs Inc Semiconductor device and method of manufacturing the device, and method of manufacturing trench gate
JP5481030B2 (en) * 2008-01-30 2014-04-23 ルネサスエレクトロニクス株式会社 Semiconductor device
US7833862B2 (en) 2008-03-03 2010-11-16 Infineon Technologies Austria Ag Semiconductor device and method for forming same
US7952166B2 (en) 2008-05-22 2011-05-31 Infineon Technologies Austria Ag Semiconductor device with switch electrode and gate electrode and method for switching a semiconductor device
US7786600B2 (en) 2008-06-30 2010-08-31 Hynix Semiconductor Inc. Circuit substrate having circuit wire formed of conductive polarization particles, method of manufacturing the circuit substrate and semiconductor package having the circuit wire
US7936009B2 (en) * 2008-07-09 2011-05-03 Fairchild Semiconductor Corporation Shielded gate trench FET with an inter-electrode dielectric having a low-k dielectric therein
JP2012501545A (en) 2008-08-28 2012-01-19 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド Bulk silicon wafer products useful for the production of 3D multi-gate MOSFETs
TWI414019B (en) * 2008-09-11 2013-11-01 He Jian Technology Suzhou Co Ltd Method for fabricating a gate oxide layer
CN102187465B (en) * 2008-10-14 2013-06-19 三菱电机株式会社 Power device
US7915672B2 (en) * 2008-11-14 2011-03-29 Semiconductor Components Industries, L.L.C. Semiconductor device having trench shield electrode structure
JP5195357B2 (en) * 2008-12-01 2013-05-08 トヨタ自動車株式会社 Semiconductor device
US8158456B2 (en) * 2008-12-05 2012-04-17 Taiwan Semiconductor Manufacturing Co., Ltd. Method of forming stacked dies
US8304829B2 (en) * 2008-12-08 2012-11-06 Fairchild Semiconductor Corporation Trench-based power semiconductor devices with increased breakdown voltage characteristics
US8174067B2 (en) 2008-12-08 2012-05-08 Fairchild Semiconductor Corporation Trench-based power semiconductor devices with increased breakdown voltage characteristics
US8188538B2 (en) 2008-12-25 2012-05-29 Rohm Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
JP5588670B2 (en) * 2008-12-25 2014-09-10 ローム株式会社 Semiconductor device
US8148749B2 (en) * 2009-02-19 2012-04-03 Fairchild Semiconductor Corporation Trench-shielded semiconductor device
DE112010000882B4 (en) * 2009-02-24 2015-03-19 Mitsubishi Electric Corporation The silicon carbide semiconductor device
US7989885B2 (en) * 2009-02-26 2011-08-02 Infineon Technologies Austria Ag Semiconductor device having means for diverting short circuit current arranged in trench and method for producing same
CN101681903B (en) * 2009-03-30 2012-02-29 香港应用科技研究院有限公司 Electronic package and manufacturing method thereof
US7952141B2 (en) * 2009-07-24 2011-05-31 Fairchild Semiconductor Corporation Shield contacts in a shielded gate MOSFET
JP4998524B2 (en) 2009-07-24 2012-08-15 サンケン電気株式会社 Semiconductor device
JP5402395B2 (en) * 2009-08-21 2014-01-29 オムロン株式会社 Static induction generator
US9443974B2 (en) 2009-08-27 2016-09-13 Vishay-Siliconix Super junction trench power MOSFET device fabrication
US9425306B2 (en) * 2009-08-27 2016-08-23 Vishay-Siliconix Super junction trench power MOSFET devices
JP5568559B2 (en) * 2009-08-31 2014-08-06 ルネサスエレクトロニクス株式会社 Semiconductor device and field effect transistor
CN103367452B (en) * 2009-09-11 2015-11-25 中芯国际集成电路制造(上海)有限公司 Green transistors, resistance random access memory and driving method thereof
US8273617B2 (en) * 2009-09-30 2012-09-25 Suvolta, Inc. Electronic devices and systems, and methods for making and using the same
US8421162B2 (en) 2009-09-30 2013-04-16 Suvolta, Inc. Advanced transistors with punch through suppression
CN102790091B (en) * 2009-10-20 2015-04-01 中芯国际集成电路制造(上海)有限公司 Green transistor, nanometer silicon FeRAM and driving method thereof
US8421196B2 (en) 2009-11-25 2013-04-16 Infineon Technologies Austria Ag Semiconductor device and manufacturing method
US8174070B2 (en) 2009-12-02 2012-05-08 Alpha And Omega Semiconductor Incorporated Dual channel trench LDMOS transistors and BCD process with deep trench isolation
US8198678B2 (en) * 2009-12-09 2012-06-12 Infineon Technologies Austria Ag Semiconductor device with improved on-resistance
CN102130006B (en) * 2010-01-20 2013-12-18 上海华虹Nec电子有限公司 Method for preparing groove-type double-layer gate power metal oxide semiconductor (MOS) transistor
JP5762689B2 (en) * 2010-02-26 2015-08-12 株式会社東芝 Semiconductor device
CN104538444B (en) * 2010-03-05 2018-02-23 万国半导体股份有限公司 Device architecture and preparation method with trench oxide nanotube super junction
TWI407531B (en) * 2010-03-05 2013-09-01 Great Power Semiconductor Corp Power semiconductor structure with schottky diode and fabrication method thereof
US9117739B2 (en) 2010-03-08 2015-08-25 Cree, Inc. Semiconductor devices with heterojunction barrier regions and methods of fabricating same
US8367501B2 (en) * 2010-03-24 2013-02-05 Alpha & Omega Semiconductor, Inc. Oxide terminated trench MOSFET with three or four masks
TWI419237B (en) * 2010-04-27 2013-12-11 Great Power Semiconductor Corp Fabrication method of power semiconductor structure with reduced gate impenance
CN102254944A (en) * 2010-05-21 2011-11-23 上海新进半导体制造有限公司 Power metal oxide semiconductor field effect transistor (MOSFET) power rectification device and manufacturing method
US8319282B2 (en) 2010-07-09 2012-11-27 Infineon Technologies Austria Ag High-voltage bipolar transistor with trench field plate
CN102376758B (en) * 2010-08-12 2014-02-26 上海华虹宏力半导体制造有限公司 Insulated gate bipolar transistor, manufacturing method thereof and trench gate structure manufacturing method
EP2421046A1 (en) * 2010-08-16 2012-02-22 Nxp B.V. MOSFET having a capacitance control region
CN102386182B (en) * 2010-08-27 2014-11-05 万国半导体股份有限公司 Device and method for integration of sense FET into discrete power MOSFET
JP2012060063A (en) 2010-09-13 2012-03-22 Toshiba Corp Semiconductor device and method of manufacturing the same
JP2012064641A (en) * 2010-09-14 2012-03-29 Toshiba Corp Semiconductor device
DE102010043088A1 (en) 2010-10-29 2012-05-03 Robert Bosch Gmbh Semiconductor arrangement with Schottky diode
US8580667B2 (en) 2010-12-14 2013-11-12 Alpha And Omega Semiconductor Incorporated Self aligned trench MOSFET with integrated diode
TWI414069B (en) * 2011-01-05 2013-11-01 Anpec Electronics Corp Power transistor with low interface of low Miller capacitor and its making method
JP5556799B2 (en) * 2011-01-12 2014-07-23 株式会社デンソー Semiconductor device
US8313995B2 (en) * 2011-01-13 2012-11-20 Infineon Technologies Austria Ag Method for manufacturing a semiconductor device
DE102011003456A1 (en) 2011-02-01 2012-08-02 Robert Bosch Gmbh Semiconductor arrangement with reduced on-resistance
JP2012204395A (en) * 2011-03-23 2012-10-22 Toshiba Corp Semiconductor device and manufacturing method of the same
JP2012204529A (en) * 2011-03-24 2012-10-22 Toshiba Corp Semiconductor device and method of manufacturing the same
JP2012204636A (en) 2011-03-25 2012-10-22 Toshiba Corp Semiconductor device and manufacturing method of the same
TW201240087A (en) * 2011-03-30 2012-10-01 Anpec Electronics Corp Power device with boundary trench structure
US8823089B2 (en) * 2011-04-15 2014-09-02 Infineon Technologies Ag SiC semiconductor power device
KR101851821B1 (en) * 2011-05-05 2018-06-11 에이비비 슈바이쯔 아게 Bipolar punch-through semiconductor device and method for manufacturing such a semiconductor device
CN107482054B (en) * 2011-05-18 2021-07-20 威世硅尼克斯公司 Semiconductor device with a plurality of transistors
US8884340B2 (en) * 2011-05-25 2014-11-11 Samsung Electronics Co., Ltd. Semiconductor devices including dual gate electrode structures and related methods
JP5677222B2 (en) * 2011-07-25 2015-02-25 三菱電機株式会社 Silicon carbide semiconductor device
CN102916043B (en) * 2011-08-03 2015-07-22 中国科学院微电子研究所 MOS-HEMT (Metal-oxide-semiconductor High-electron-mobility Transistor) device and manufacturing method thereof
US8981748B2 (en) * 2011-08-08 2015-03-17 Semiconductor Components Industries, Llc Method of forming a semiconductor power switching device, structure therefor, and power converter
CN102956640A (en) * 2011-08-22 2013-03-06 大中积体电路股份有限公司 Double-conduction semiconductor component and manufacturing method thereof
JP2013058575A (en) * 2011-09-07 2013-03-28 Toshiba Corp Semiconductor device and manufacturing method of the same
US8680587B2 (en) 2011-09-11 2014-03-25 Cree, Inc. Schottky diode
US9184255B2 (en) * 2011-09-30 2015-11-10 Infineon Technologies Austria Ag Diode with controllable breakdown voltage
US8659126B2 (en) * 2011-12-07 2014-02-25 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit ground shielding structure
JP5742668B2 (en) * 2011-10-31 2015-07-01 三菱電機株式会社 Silicon carbide semiconductor device
JP2013115225A (en) * 2011-11-29 2013-06-10 Toshiba Corp Power semiconductor device and method of manufacturing the same
KR101275458B1 (en) * 2011-12-26 2013-06-17 삼성전기주식회사 Semiconductor device and fabricating method thereof
JP5720582B2 (en) 2012-01-12 2015-05-20 トヨタ自動車株式会社 Switching element
US9082746B2 (en) * 2012-01-16 2015-07-14 Infineon Technologies Austria Ag Method for forming self-aligned trench contacts of semiconductor components and a semiconductor component
JP5848142B2 (en) * 2012-01-25 2016-01-27 ルネサスエレクトロニクス株式会社 Manufacturing method of vertical planar power MOSFET
US9614043B2 (en) 2012-02-09 2017-04-04 Vishay-Siliconix MOSFET termination trench
CN104106142B (en) * 2012-02-10 2016-03-09 松下知识产权经营株式会社 Semiconductor device and manufacture method thereof
JP5856868B2 (en) * 2012-02-17 2016-02-10 国立大学法人九州工業大学 Fabrication method of CMOS and trench diode on the same substrate
US9159786B2 (en) 2012-02-20 2015-10-13 Taiwan Semiconductor Manufacturing Company, Ltd. Dual gate lateral MOSFET
US8866222B2 (en) * 2012-03-07 2014-10-21 Infineon Technologies Austria Ag Charge compensation semiconductor device
CN103378159B (en) * 2012-04-20 2016-08-03 英飞凌科技奥地利有限公司 There is transistor unit and the manufacture method of MOSFET
CN103377922B (en) * 2012-04-23 2015-12-16 中芯国际集成电路制造(上海)有限公司 A kind of fin formula field effect transistor and forming method thereof
DE112013002267T5 (en) * 2012-04-30 2015-03-12 Vishay-Siliconix Semiconductor device
US9842911B2 (en) 2012-05-30 2017-12-12 Vishay-Siliconix Adaptive charge balanced edge termination
US8884369B2 (en) * 2012-06-01 2014-11-11 Taiwan Semiconductor Manufacturing Company, Ltd. Vertical power MOSFET and methods of forming the same
US8680614B2 (en) * 2012-06-12 2014-03-25 Monolithic Power Systems, Inc. Split trench-gate MOSFET with integrated Schottky diode
ITMI20121123A1 (en) * 2012-06-26 2013-12-27 St Microelectronics Srl MOS VERTICAL GATE TRANSISTOR WITH FIELD ARMATURE ACCESS
US9293376B2 (en) 2012-07-11 2016-03-22 Taiwan Semiconductor Manufacturing Company, Ltd. Apparatus and method for power MOS transistor
JP2014027182A (en) * 2012-07-27 2014-02-06 Toshiba Corp Semiconductor device
CN104241341A (en) * 2012-07-27 2014-12-24 俞国庆 High-frequency low-power dissipation power MOS field-effect tube device
JP5715604B2 (en) 2012-09-12 2015-05-07 株式会社東芝 Power semiconductor device
US9059256B2 (en) 2012-09-13 2015-06-16 Infineon Technologies Ag Method for producing a controllable semiconductor component
JP5802636B2 (en) * 2012-09-18 2015-10-28 株式会社東芝 Semiconductor device and manufacturing method thereof
WO2014061619A1 (en) 2012-10-17 2014-04-24 富士電機株式会社 Semiconductor device
JP2014099484A (en) * 2012-11-13 2014-05-29 Toshiba Corp Semiconductor device
CN103855047B (en) * 2012-12-04 2016-10-26 上海华虹宏力半导体制造有限公司 The physical analysis structure of deep trench product and method
US9853140B2 (en) * 2012-12-31 2017-12-26 Vishay-Siliconix Adaptive charge balanced MOSFET techniques
CN103011550B (en) * 2013-01-16 2013-11-13 四川亿思通科技工程有限公司 Sludge freeze thawing dewatering treating system and treating method using system
KR101392587B1 (en) 2013-02-19 2014-05-27 주식회사 동부하이텍 High voltage electro-static discharge protection device
JP6143490B2 (en) 2013-02-19 2017-06-07 ローム株式会社 Semiconductor device and manufacturing method thereof
JP6164604B2 (en) 2013-03-05 2017-07-19 ローム株式会社 Semiconductor device
JP6164636B2 (en) 2013-03-05 2017-07-19 ローム株式会社 Semiconductor device
KR102011933B1 (en) * 2013-03-06 2019-08-20 삼성전자 주식회사 Method for fabricating nonvolatile memory device
JP2014187141A (en) 2013-03-22 2014-10-02 Toshiba Corp Semiconductor device
JP5784665B2 (en) 2013-03-22 2015-09-24 株式会社東芝 Manufacturing method of semiconductor device
US20140306284A1 (en) * 2013-04-12 2014-10-16 Infineon Technologies Austria Ag Semiconductor Device and Method for Producing the Same
JP2014216572A (en) 2013-04-26 2014-11-17 株式会社東芝 Semiconductor device
TWI514578B (en) * 2013-06-21 2015-12-21 Chip Integration Tech Co Ltd Structure of dual trench rectifier and method of forming the same
TWI511293B (en) * 2013-06-24 2015-12-01 Chip Integration Tech Co Ltd Structure of dualtrench mos transistor and method of forming the same
US9112022B2 (en) 2013-07-31 2015-08-18 Infineon Technologies Austria Ag Super junction structure having a thickness of first and second semiconductor regions which gradually changes from a transistor area into a termination area
CN104347376B (en) * 2013-08-05 2017-04-26 台湾茂矽电子股份有限公司 Method for forming shielding grid in metaloxide-semiconductor field-effect transistor
KR102036386B1 (en) * 2013-08-20 2019-10-25 한국전력공사 Geological resource monitoring method using electrical resistivity
JP6197995B2 (en) * 2013-08-23 2017-09-20 富士電機株式会社 Wide band gap insulated gate semiconductor device
JP2015056492A (en) * 2013-09-11 2015-03-23 株式会社東芝 Semiconductor device
CN104465603A (en) 2013-09-23 2015-03-25 台达电子企业管理(上海)有限公司 Power module
US9525058B2 (en) * 2013-10-30 2016-12-20 Infineon Technologies Austria Ag Integrated circuit and method of manufacturing an integrated circuit
CN104282751B (en) * 2013-11-20 2017-07-21 沈阳工业大学 High integration high mobility source and drain grid auxiliary control type nodeless mesh body pipe
CN104282750B (en) * 2013-11-20 2017-07-21 沈阳工业大学 The major-minor discrete control U-shaped raceway groove non-impurity-doped field-effect transistor of grid
CN103887286A (en) * 2013-11-29 2014-06-25 杭州恩能科技有限公司 Semiconductor device with improved surge current resistance
US9711637B2 (en) 2014-01-31 2017-07-18 Renesas Electronics Corporation Semiconductor device
JP6226786B2 (en) 2014-03-19 2017-11-08 三菱電機株式会社 Semiconductor device and manufacturing method thereof
KR102156130B1 (en) * 2014-04-10 2020-09-15 삼성전자주식회사 Method of Forming Semiconductor device
DE102014106825B4 (en) 2014-05-14 2019-06-27 Infineon Technologies Ag Semiconductor device
TWI555208B (en) * 2014-05-20 2016-10-21 力祥半導體股份有限公司 Power semiconductor device of stripe cell geometry
CN105097570B (en) * 2014-05-21 2017-12-19 北大方正集团有限公司 Manufacturing method of passivation layer and high-voltage semi-conductor power device
US9887259B2 (en) 2014-06-23 2018-02-06 Vishay-Siliconix Modulated super junction power MOSFET devices
CN106463537B (en) * 2014-06-26 2020-01-03 三菱电机株式会社 Semiconductor device with a plurality of semiconductor chips
CN105448893B (en) * 2014-06-30 2017-12-15 苏州远创达科技有限公司 ESD-protection structure and semiconductor devices in a kind of semiconductor devices
JP6022082B2 (en) * 2014-07-11 2016-11-09 新電元工業株式会社 Semiconductor device and manufacturing method of semiconductor device
DE102014109926A1 (en) * 2014-07-15 2016-01-21 Infineon Technologies Austria Ag A semiconductor device having a plurality of transistor cells and manufacturing methods
KR101621151B1 (en) 2014-07-21 2016-05-13 주식회사 케이이씨 Power Rectifier Device
KR101621150B1 (en) 2014-07-21 2016-05-13 주식회사 케이이씨 Power Rectifier Device
KR102098996B1 (en) 2014-08-19 2020-04-08 비쉐이-실리코닉스 Super-junction metal oxide semiconductor field effect transistor
CN107078161A (en) 2014-08-19 2017-08-18 维西埃-硅化物公司 Electronic circuit
DE102014112338A1 (en) 2014-08-28 2016-03-03 Infineon Technologies Austria Ag Semiconductor device and method for manufacturing a semiconductor device
JP2016096165A (en) * 2014-11-12 2016-05-26 サンケン電気株式会社 Semiconductor device
US9515177B2 (en) 2014-11-25 2016-12-06 Infineon Technologies Ag Vertically integrated semiconductor device and manufacturing method
US9443973B2 (en) 2014-11-26 2016-09-13 Infineon Technologies Austria Ag Semiconductor device with charge compensation region underneath gate trench
JP6299581B2 (en) 2014-12-17 2018-03-28 三菱電機株式会社 Semiconductor device
DE102014226161B4 (en) 2014-12-17 2017-10-26 Infineon Technologies Ag Semiconductor device with overload current capability
JP6526981B2 (en) 2015-02-13 2019-06-05 ローム株式会社 Semiconductor device and semiconductor module
WO2016132551A1 (en) * 2015-02-20 2016-08-25 新電元工業株式会社 Semiconductor device
JP2016167519A (en) * 2015-03-09 2016-09-15 株式会社東芝 Semiconductor device
DE102015204315B4 (en) 2015-03-11 2018-06-28 Infineon Technologies Ag Sensor for a semiconductor device
CN106033781A (en) * 2015-03-16 2016-10-19 中航(重庆)微电子有限公司 Schottky barrier diode and preparation method for the same
CN104733535A (en) * 2015-03-17 2015-06-24 北京中科新微特科技开发股份有限公司 Power MOSFET
JP2016181617A (en) 2015-03-24 2016-10-13 株式会社デンソー Semiconductor device
JP2016181618A (en) 2015-03-24 2016-10-13 株式会社デンソー Semiconductor device
DE102015105758A1 (en) * 2015-04-15 2016-10-20 Infineon Technologies Ag SEMICONDUCTOR COMPONENT AND MANUFACTURING METHOD
US9299830B1 (en) * 2015-05-07 2016-03-29 Texas Instruments Incorporated Multiple shielding trench gate fet
TWI555163B (en) * 2015-07-22 2016-10-21 新唐科技股份有限公司 Semiconductor structure
JP6512025B2 (en) * 2015-08-11 2019-05-15 富士電機株式会社 Semiconductor device and method of manufacturing semiconductor device
JP6696166B2 (en) * 2015-08-19 2020-05-20 富士電機株式会社 Semiconductor device and manufacturing method
KR102404114B1 (en) 2015-08-20 2022-05-30 온세미컨덕터코리아 주식회사 Superjunction semiconductor device and method of manufacturing the same
JP6666671B2 (en) * 2015-08-24 2020-03-18 ローム株式会社 Semiconductor device
EP3951887A1 (en) * 2015-09-11 2022-02-09 Nexperia B.V. A semiconductor device and a method of making a semiconductor device
US9806186B2 (en) * 2015-10-02 2017-10-31 D3 Semiconductor LLC Termination region architecture for vertical power transistors
DE102015221376A1 (en) * 2015-11-02 2017-05-04 Robert Bosch Gmbh Semiconductor component and method for producing a semiconductor device and control device for a vehicle
JP2017107895A (en) * 2015-12-07 2017-06-15 サンケン電気株式会社 Semiconductor device
DE102015121566B4 (en) 2015-12-10 2021-12-09 Infineon Technologies Ag Semiconductor components and a circuit for controlling a field effect transistor of a semiconductor component
DE102015121563B4 (en) 2015-12-10 2023-03-02 Infineon Technologies Ag Semiconductor devices and a method of forming a semiconductor device
DE102015224965A1 (en) 2015-12-11 2017-06-14 Robert Bosch Gmbh Area-optimized transistor with superlattice structures
CN105428241B (en) * 2015-12-25 2018-04-17 上海华虹宏力半导体制造有限公司 The manufacture method of trench-gate power devices with shield grid
DE102015122938B4 (en) 2015-12-30 2021-11-11 Infineon Technologies Austria Ag TRANSISTOR WITH FIELD ELECTRODE AND METHOD FOR MANUFACTURING IT
WO2017168733A1 (en) 2016-03-31 2017-10-05 新電元工業株式会社 Method for producing semiconductor device, and semiconductor device
WO2017168734A1 (en) 2016-03-31 2017-10-05 新電元工業株式会社 Method for producing semiconductor device, and semiconductor device
JPWO2017187856A1 (en) * 2016-04-27 2018-05-10 三菱電機株式会社 Semiconductor device
US9691864B1 (en) * 2016-05-13 2017-06-27 Infineon Technologies Americas Corp. Semiconductor device having a cavity and method for manufacturing thereof
TWI577040B (en) * 2016-05-19 2017-04-01 國立中山大學 Method for monolithic manufacturing of serially connected photovoltaic devices
JP6649183B2 (en) 2016-05-30 2020-02-19 株式会社東芝 Semiconductor device
WO2017214627A1 (en) * 2016-06-10 2017-12-14 Maxpower Semiconductor, Inc. Fabrication of trench-gated wide-bandgap devices
JP6977273B2 (en) * 2016-06-16 2021-12-08 富士電機株式会社 Semiconductor devices and manufacturing methods
CN107564814B (en) * 2016-06-30 2020-11-10 株洲中车时代半导体有限公司 Method for manufacturing power semiconductor
CN106129113B (en) * 2016-07-11 2019-06-14 中国科学院微电子研究所 A kind of vertical DMOS field effect transistor
TWI693713B (en) 2016-07-22 2020-05-11 立積電子股份有限公司 Semiconductor structure
US9972540B2 (en) 2016-08-07 2018-05-15 International Business Machines Corporation Semiconductor device having multiple thickness oxides
JP6345378B1 (en) 2016-08-08 2018-06-20 三菱電機株式会社 Semiconductor device
CN107785263B (en) * 2016-08-26 2020-09-04 台湾半导体股份有限公司 Field effect transistor with multiple width electrode structure and its manufacturing method
CN107785426B (en) * 2016-08-31 2020-01-31 无锡华润上华科技有限公司 kinds of semiconductor devices and their manufacture
CN107785273B (en) * 2016-08-31 2020-03-13 无锡华润上华科技有限公司 Semiconductor device and method for manufacturing the same
JP6669628B2 (en) * 2016-10-20 2020-03-18 トヨタ自動車株式会社 Switching element
JP6659516B2 (en) * 2016-10-20 2020-03-04 トヨタ自動車株式会社 Semiconductor device
US10892359B2 (en) 2016-10-27 2021-01-12 Sanken Electric Co., Ltd. Semiconductor device
CN107039298B (en) * 2016-11-04 2019-12-24 厦门市三安光电科技有限公司 Transfer device, transfer method, manufacturing method, device and electronic apparatus for micro-component
US9812535B1 (en) * 2016-11-29 2017-11-07 Infineon Technologies Austria Ag Method for manufacturing a semiconductor device and power semiconductor device
KR102335489B1 (en) * 2016-12-13 2021-12-03 현대자동차 주식회사 Semiconductor device and method manufacturing the same
JP6589845B2 (en) * 2016-12-21 2019-10-16 株式会社デンソー Semiconductor device
JP6233539B1 (en) 2016-12-21 2017-11-22 富士電機株式会社 Semiconductor device and manufacturing method of semiconductor device
JP6996082B2 (en) * 2016-12-22 2022-01-17 富士電機株式会社 Semiconductor devices and methods for manufacturing semiconductor devices
DE102017101662B4 (en) 2017-01-27 2019-03-28 Infineon Technologies Austria Ag Semiconductor device having an insulation structure and a connection structure and a method for its production
US10163900B2 (en) 2017-02-08 2018-12-25 Globalfoundries Inc. Integration of vertical field-effect transistors and saddle fin-type field effect transistors
US10211333B2 (en) * 2017-04-26 2019-02-19 Alpha And Omega Semiconductor (Cayman) Ltd. Scalable SGT structure with improved FOM
US10236340B2 (en) 2017-04-28 2019-03-19 Semiconductor Components Industries, Llc Termination implant enrichment for shielded gate MOSFETs
US10374076B2 (en) 2017-06-30 2019-08-06 Semiconductor Components Industries, Llc Shield indent trench termination for shielded gate MOSFETs
CN109216452B (en) * 2017-07-03 2021-11-05 无锡华润上华科技有限公司 Groove type power device and preparation method thereof
CN109216175B (en) * 2017-07-03 2021-01-08 无锡华润上华科技有限公司 Gate structure of semiconductor device and manufacturing method thereof
CN109216432A (en) * 2017-07-03 2019-01-15 无锡华润上华科技有限公司 Slot type power device and preparation method thereof
DE112018003704T5 (en) 2017-07-19 2020-04-09 Globalwafers Japan Co., Ltd. METHOD FOR PRODUCING A THREE-DIMENSIONAL STRUCTURAL BODY, METHOD FOR PRODUCING A VERTICAL TRANSISTOR, WAFER FOR A VERTICAL TRANSISTOR AND SUBSTRATE FOR A VERTICAL TRANSISTOR
KR101960077B1 (en) * 2017-08-30 2019-03-21 파워큐브세미(주) SiC trench gate MOSFET with a floating shield and method of fabricating the same
TWI695418B (en) * 2017-09-22 2020-06-01 新唐科技股份有限公司 Semiconductor device and method of manufacturing the same
JP2019068592A (en) 2017-09-29 2019-04-25 トヨタ自動車株式会社 Electric power conversion device
TWI737855B (en) * 2017-11-15 2021-09-01 力智電子股份有限公司 Power transistor and manufacturing method thereof
CN108010847B (en) * 2017-11-30 2020-09-25 上海华虹宏力半导体制造有限公司 Shielded gate trench MOSFET and method of making same
US10777465B2 (en) 2018-01-11 2020-09-15 Globalfoundries Inc. Integration of vertical-transport transistors and planar transistors
CN108172622A (en) * 2018-01-30 2018-06-15 电子科技大学 Power semiconductor
JP6864640B2 (en) 2018-03-19 2021-04-28 株式会社東芝 Semiconductor devices and their control methods
US10304933B1 (en) * 2018-04-24 2019-05-28 Semiconductor Components Industries, Llc Trench power MOSFET having a trench cavity
CN109037337A (en) * 2018-06-28 2018-12-18 华为技术有限公司 A kind of power semiconductor and manufacturing method
JP7078226B2 (en) * 2018-07-19 2022-05-31 国立研究開発法人産業技術総合研究所 Semiconductor device
CN109119476A (en) * 2018-08-23 2019-01-01 电子科技大学 Separate gate VDMOS device and its manufacturing method with internal field plate
CN109326639B (en) * 2018-08-23 2021-11-23 电子科技大学 Split-gate VDMOS device with internal field plate and manufacturing method thereof
DE102018124737A1 (en) * 2018-10-08 2020-04-09 Infineon Technologies Ag SEMICONDUCTOR COMPONENT WITH A SIC SEMICONDUCTOR BODY AND METHOD FOR PRODUCING A SEMICONDUCTOR COMPONENT
KR102100863B1 (en) * 2018-12-06 2020-04-14 현대오트론 주식회사 SiC MOSFET power semiconductor device
US11348997B2 (en) 2018-12-17 2022-05-31 Vanguard International Semiconductor Corporation Semiconductor devices and methods for fabricating the same
CN111384149B (en) * 2018-12-29 2021-05-14 比亚迪半导体股份有限公司 Groove type IGBT and preparation method thereof
WO2020145109A1 (en) * 2019-01-08 2020-07-16 三菱電機株式会社 Semiconductor device and power conversion device
CN109767980B (en) * 2019-01-22 2021-07-30 上海华虹宏力半导体制造有限公司 Super junction and manufacturing method thereof, and deep trench manufacturing method of super junction
TWI823892B (en) * 2019-01-24 2023-12-01 世界先進積體電路股份有限公司 Semiconductor devices and methods for fabricating the same
JP7352360B2 (en) * 2019-02-12 2023-09-28 株式会社東芝 semiconductor equipment
JP7077251B2 (en) * 2019-02-25 2022-05-30 株式会社東芝 Semiconductor device
US11217541B2 (en) 2019-05-08 2022-01-04 Vishay-Siliconix, LLC Transistors with electrically active chip seal ring and methods of manufacture
US11521967B2 (en) 2019-06-28 2022-12-06 Stmicroelectronics International N.V. Multi-finger devices with reduced parasitic capacitance
DE102019210285B4 (en) 2019-07-11 2023-09-28 Infineon Technologies Ag Creating a buried cavity in a semiconductor substrate
US11218144B2 (en) 2019-09-12 2022-01-04 Vishay-Siliconix, LLC Semiconductor device with multiple independent gates
JP2021044517A (en) * 2019-09-13 2021-03-18 株式会社東芝 Semiconductor device, method of manufacturing semiconductor device, inverter circuit, driving device, vehicle, and elevator
CN110943132A (en) * 2019-12-17 2020-03-31 华羿微电子股份有限公司 Low-capacitance groove type VDMOS device and preparation method thereof
JP7374795B2 (en) * 2020-02-05 2023-11-07 株式会社東芝 semiconductor equipment
EP3863066A1 (en) 2020-02-06 2021-08-11 Infineon Technologies Austria AG Transistor device and method of fabricating a gate of a transistor device
US11264287B2 (en) 2020-02-11 2022-03-01 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device with cut metal gate and method of manufacture
US11355602B2 (en) 2020-02-18 2022-06-07 Kabushiki Kaisha Toshiba Semiconductor device having multiple conductive parts
JP7465123B2 (en) 2020-03-12 2024-04-10 株式会社東芝 Semiconductor Device
JP7270575B2 (en) * 2020-04-15 2023-05-10 株式会社東芝 semiconductor equipment
CN111883515A (en) * 2020-07-16 2020-11-03 上海华虹宏力半导体制造有限公司 Trench gate device and manufacturing method thereof
JP7470071B2 (en) 2020-07-22 2024-04-17 株式会社東芝 Semiconductor Device
JP7319754B2 (en) 2020-08-19 2023-08-02 株式会社東芝 semiconductor equipment
KR102382846B1 (en) * 2020-08-28 2022-04-05 부산대학교 산학협력단 METHOD AND DEVICE FOR SELF-ALIGNED PROCESSING TO REDUCE A CRITICAL DIMENSION OF SiC TRENCH GATE MOSFET STRUCTURE
CN112271134B (en) * 2020-10-20 2021-10-22 苏州东微半导体股份有限公司 Method for manufacturing semiconductor power device
KR102413641B1 (en) 2020-11-27 2022-06-27 주식회사 예스파워테크닉스 Trench power MOSFET and method of manufacturing the same
TWI801783B (en) * 2020-12-09 2023-05-11 大陸商上海瀚薪科技有限公司 Silicon carbide semiconductor components
KR102437528B1 (en) * 2020-12-22 2022-08-29 한국과학기술원 Schottky Barrier Diode passive device and methods of fabricating the same
CN112820648B (en) * 2020-12-31 2023-08-01 扬州扬杰电子科技股份有限公司 Gallium nitride metal oxide semiconductor transistor and preparation method thereof
JP2022111450A (en) 2021-01-20 2022-08-01 株式会社東芝 Semiconductor device
US11387338B1 (en) 2021-01-22 2022-07-12 Applied Materials, Inc. Methods for forming planar metal-oxide-semiconductor field-effect transistors
WO2022162894A1 (en) * 2021-01-29 2022-08-04 サンケン電気株式会社 Semiconductor device
JP7470075B2 (en) 2021-03-10 2024-04-17 株式会社東芝 Semiconductor Device
CN113066865B (en) * 2021-03-15 2022-10-28 无锡新洁能股份有限公司 Semiconductor device for reducing switching loss and manufacturing method thereof
KR102444384B1 (en) * 2021-03-16 2022-09-19 주식회사 키파운드리 Trench power MOSFET and manufacturing method thereof
FR3121280B1 (en) * 2021-03-29 2023-12-22 Commissariat Energie Atomique VERTICAL STRUCTURE FIELD EFFECT TRANSISTOR
CN115148812A (en) * 2021-03-30 2022-10-04 无锡华润上华科技有限公司 Semiconductor device and method for manufacturing the same
JP2022167237A (en) * 2021-04-22 2022-11-04 有限会社Mtec Semiconductor element manufacturing method and vertical mosfet element
CN113192842B (en) * 2021-05-19 2023-05-09 厦门中能微电子有限公司 CoolMOS device manufacturing method
JP2023027863A (en) 2021-08-18 2023-03-03 株式会社東芝 Semiconductor device and method for manufacturing the same
CN113707713B (en) * 2021-08-31 2023-06-30 西安电子科技大学 Multi-stage petal-shaped body region metal oxide semiconductor power device and manufacturing method thereof
EP4152408A1 (en) * 2021-09-21 2023-03-22 Infineon Technologies Austria AG Semiconductor die comprising a device
DE102021125271A1 (en) 2021-09-29 2023-03-30 Infineon Technologies Ag Power semiconductor device Method of manufacturing a power semiconductor device
CN113990921B (en) * 2021-10-18 2023-12-08 深圳市威兆半导体股份有限公司 Semiconductor vertical device and method for producing the same
KR102635228B1 (en) * 2021-12-28 2024-02-13 파워큐브세미 (주) Flat power module with insulation distance between pins
CN114334823A (en) * 2021-12-31 2022-04-12 上海晶岳电子有限公司 SGT device for improving wafer warping and manufacturing method thereof
CN114068531B (en) * 2022-01-17 2022-03-29 深圳市威兆半导体有限公司 Voltage sampling structure based on SGT-MOSFET
CN114496995B (en) * 2022-04-18 2022-06-17 深圳市威兆半导体有限公司 Shielding gate device with temperature sampling function
EP4345908A1 (en) * 2022-09-28 2024-04-03 Nexperia B.V. Semiconductor device and method of forming a semiconductor device
WO2024083312A1 (en) * 2022-10-18 2024-04-25 Huawei Digital Power Technologies Co., Ltd. Power mosfet device
WO2024122788A1 (en) * 2022-12-07 2024-06-13 주식회사 엘엑스세미콘 Latch-up circuit capable of suppressing trigger, and structure of semiconductor substrate comprising latch-up circuit capable of suppressing trigger
CN115799340B (en) * 2023-01-09 2023-05-12 无锡先瞳半导体科技有限公司 Shielded gate field effect transistor
TWI832716B (en) * 2023-03-02 2024-02-11 鴻海精密工業股份有限公司 Method of manufacturing semiconductor device and semiconductor device
CN116313809B (en) * 2023-03-14 2024-02-23 深圳市至信微电子有限公司 Preparation method and application of groove type MOS field effect transistor
CN116093146B (en) * 2023-04-11 2024-02-20 江苏应能微电子股份有限公司 Sectional type separation gate SGT MOSFET structure
CN116388742B (en) * 2023-06-02 2023-08-29 东莞市长工微电子有限公司 Gate driving circuit and driving method of power semiconductor device
CN117352555B (en) * 2023-12-06 2024-04-09 无锡锡产微芯半导体有限公司 Integrated shielded gate trench MOSFET and preparation process thereof
CN117410346B (en) * 2023-12-14 2024-03-26 深圳市森国科科技股份有限公司 Trench gate silicon carbide MOSFET and manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5998833A (en) * 1998-10-26 1999-12-07 North Carolina State University Power semiconductor devices having improved high frequency switching and breakdown characteristics
US6359308B1 (en) * 1999-07-22 2002-03-19 U.S. Philips Corporation Cellular trench-gate field-effect transistors

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4541001A (en) * 1982-09-23 1985-09-10 Eaton Corporation Bidirectional power FET with substrate-referenced shield
JP2590863B2 (en) * 1987-03-12 1997-03-12 日本電装株式会社 Conduction modulation type MOSFET
JP2570742B2 (en) * 1987-05-27 1997-01-16 ソニー株式会社 Semiconductor device
JPS6459868A (en) * 1987-08-29 1989-03-07 Fuji Electric Co Ltd Semiconductor device having insulating gate
US5430324A (en) * 1992-07-23 1995-07-04 Siliconix, Incorporated High voltage transistor having edge termination utilizing trench technology
US5326711A (en) * 1993-01-04 1994-07-05 Texas Instruments Incorporated High performance high voltage vertical transistor and method of fabrication
JP3257186B2 (en) * 1993-10-12 2002-02-18 富士電機株式会社 Insulated gate thyristor
JPH08264772A (en) * 1995-03-23 1996-10-11 Toyota Motor Corp Field-effect type semiconductor element
US6049108A (en) * 1995-06-02 2000-04-11 Siliconix Incorporated Trench-gated MOSFET with bidirectional voltage clamping
US6236099B1 (en) * 1996-04-22 2001-05-22 International Rectifier Corp. Trench MOS device and process for radhard device
JPH09331062A (en) * 1996-06-11 1997-12-22 Mitsubishi Electric Corp Semiconductor device and its manufacture
JPH1117000A (en) * 1997-06-27 1999-01-22 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
US6037628A (en) * 1997-06-30 2000-03-14 Intersil Corporation Semiconductor structures with trench contacts
JP4061711B2 (en) * 1998-06-18 2008-03-19 株式会社デンソー MOS transistor and manufacturing method thereof
EP1151478B1 (en) * 1999-01-11 2002-08-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Power mos element and method for producing the same
US6351018B1 (en) * 1999-02-26 2002-02-26 Fairchild Semiconductor Corporation Monolithically integrated trench MOSFET and Schottky diode
US6376878B1 (en) * 2000-02-11 2002-04-23 Fairchild Semiconductor Corporation MOS-gated devices with alternating zones of conductivity
JP2001284584A (en) * 2000-03-30 2001-10-12 Toshiba Corp Semiconductor device and method of manufacturing the same
EP1170803A3 (en) * 2000-06-08 2002-10-09 Siliconix Incorporated Trench gate MOSFET and method of making the same
JP4528460B2 (en) * 2000-06-30 2010-08-18 株式会社東芝 Semiconductor element
DE10038177A1 (en) * 2000-08-04 2002-02-21 Infineon Technologies Ag Semiconductor switching element with two control electrodes which can be controlled by means of a field effect
US6593620B1 (en) * 2000-10-06 2003-07-15 General Semiconductor, Inc. Trench DMOS transistor with embedded trench schottky rectifier
US6608350B2 (en) * 2000-12-07 2003-08-19 International Rectifier Corporation High voltage vertical conduction superjunction semiconductor device
JP4357753B2 (en) * 2001-01-26 2009-11-04 株式会社東芝 High voltage semiconductor device
US6677641B2 (en) * 2001-10-17 2004-01-13 Fairchild Semiconductor Corporation Semiconductor structure with improved smaller forward voltage loss and higher blocking capability
US6683363B2 (en) * 2001-07-03 2004-01-27 Fairchild Semiconductor Corporation Trench structure for semiconductor devices
US6621107B2 (en) * 2001-08-23 2003-09-16 General Semiconductor, Inc. Trench DMOS transistor with embedded trench schottky rectifier
US6573558B2 (en) * 2001-09-07 2003-06-03 Power Integrations, Inc. High-voltage vertical transistor with a multi-layered extended drain structure
GB0122120D0 (en) * 2001-09-13 2001-10-31 Koninkl Philips Electronics Nv Edge termination in MOS transistors
JP4097417B2 (en) * 2001-10-26 2008-06-11 株式会社ルネサステクノロジ Semiconductor device
DE10153315B4 (en) * 2001-10-29 2004-05-19 Infineon Technologies Ag Semiconductor device
JP4009825B2 (en) * 2002-02-20 2007-11-21 サンケン電気株式会社 Insulated gate transistor
US6841825B2 (en) * 2002-06-05 2005-01-11 Shindengen Electric Manufacturing Co., Ltd. Semiconductor device
JP4903055B2 (en) * 2003-12-30 2012-03-21 フェアチャイルド・セミコンダクター・コーポレーション Power semiconductor device and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5998833A (en) * 1998-10-26 1999-12-07 North Carolina State University Power semiconductor devices having improved high frequency switching and breakdown characteristics
US6359308B1 (en) * 1999-07-22 2002-03-19 U.S. Philips Corporation Cellular trench-gate field-effect transistors

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9425305B2 (en) 2009-10-20 2016-08-23 Vishay-Siliconix Structures of and methods of fabricating split gate MIS devices
US9419129B2 (en) 2009-10-21 2016-08-16 Vishay-Siliconix Split gate semiconductor device with curved gate oxide profile
US9577089B2 (en) 2010-03-02 2017-02-21 Vishay-Siliconix Structures and methods of fabricating dual gate devices
CN109390395B (en) * 2017-08-08 2021-10-29 三菱电机株式会社 Semiconductor device and power conversion device
CN108447911A (en) * 2018-03-09 2018-08-24 香港商莫斯飞特半导体股份有限公司 A kind of depth groove semiconductor power device and preparation method thereof
CN108447911B (en) * 2018-03-09 2021-07-27 香港商莫斯飞特半导体股份有限公司 Deep and shallow groove semiconductor power device and preparation method thereof
JP7387501B2 (en) 2020-03-18 2023-11-28 株式会社東芝 Semiconductor device and its control method

Also Published As

Publication number Publication date
JP2012109580A (en) 2012-06-07
TW201308647A (en) 2013-02-16
TW200840041A (en) 2008-10-01
DE202004021352U1 (en) 2007-08-16
KR101216533B1 (en) 2013-01-21
CN101794817A (en) 2010-08-04
WO2005065385A2 (en) 2005-07-21
TW200527701A (en) 2005-08-16
DE112004003046B4 (en) 2016-12-29
CN101794817B (en) 2013-04-03
KR20070032627A (en) 2007-03-22
CN103199017A (en) 2013-07-10
DE112004002608B4 (en) 2015-12-03
TWI521726B (en) 2016-02-11
CN101180737A (en) 2008-05-14
DE202004021352U8 (en) 2008-02-21
TWI399855B (en) 2013-06-21
JP2007529115A (en) 2007-10-18
DE112004002608T5 (en) 2006-11-16
CN101180737B (en) 2011-12-07
TWI404220B (en) 2013-08-01
KR20120003019A (en) 2012-01-09
JP2008227514A (en) 2008-09-25
CN102420241A (en) 2012-04-18
CN103199017B (en) 2016-08-03
JP4903055B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
WO2005065385A3 (en) Power semiconductor devices and methods of manufacture
TWI603444B (en) Semiconductor-on-insulator integrated circuit with interconnect below the insulator
US8722503B2 (en) Capacitors and methods of forming
CN106067794B (en) Semiconductor device with a plurality of semiconductor chips
KR101619398B1 (en) Power device with monolithically integrated rc snubber
CN105895692B (en) Semiconductor devices with collocation structure
CN107924942A (en) Semiconductor device
CN104347617B (en) There is the semiconductor devices of combination passive device in chip dorsal part
JP2005529760A5 (en)
EP1189263A3 (en) Precision high-frequency capacitor formed on semiconductor substrate
EP1906449A4 (en) Semiconductor device and electric device
CN111937126B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
CN105932023B (en) Transient Voltage Suppressor
WO2003098700A3 (en) Resurf super-junction devices having trenches
US20160087030A1 (en) Capacitor cell and method for manufacturing same
CN101950744A (en) Semiconductor device
US7667269B2 (en) Trench gate type semiconductor device
US20160064973A1 (en) Battery protection circuit package
WO2005020257A3 (en) Organic capacitor having a voltage-controlled capacitance
US20090224302A1 (en) Semiconductor device with inherent capacitances and method for its production
CN103227211B (en) Decoupling capacitor and layout thereof
TW200608583A (en) Semiconductor device
CN115547994A (en) Three-dimensional silicon capacitor integrated structure, integrated passive device and preparation method thereof
CN102446709B (en) A kind of manufacture method of metal-silicon nitride-metal capacitor
CN115547995A (en) Three-dimensional silicon-based capacitor, preparation method thereof and integrated passive device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480042161.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006547577

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120040026083

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067015458

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 1020067015458

Country of ref document: KR